
Thomas Karagiannis
Xenofontas Dimitropoulos (Eds.)

 123

LN
CS

 9
63

1

17th International Conference, PAM 2016
Heraklion, Greece, March 31 – April 1, 2016
Proceedings

Passive and Active
Measurement

Lecture Notes in Computer Science 9631

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7411

http://www.springer.com/series/7411

Thomas Karagiannis •

Xenofontas Dimitropoulos (Eds.)

Passive and Active
Measurement
17th International Conference, PAM 2016
Heraklion, Greece, March 31 – April 1, 2016
Proceedings

123

Editors
Thomas Karagiannis
Microsoft Research
Cambridge
UK

Xenofontas Dimitropoulos
FORTH-ICS
Heraklion
Greece

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-30504-2 ISBN 978-3-319-30505-9 (eBook)
DOI 10.1007/978-3-319-30505-9

Library of Congress Control Number: 2016931998

LNCS Sublibrary: SL5 – Computer Communication Networks and Telecommunications

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

Welcome to the proceedings of the 2016 Passive and Active Measurements (PAM)
conference, which was held in Heraklion, Crete, in Greece. The conference took place
from March 31 to April 1, and featured 30 papers spanning a wide spectrum of topics in
the general area of Internet measurements. This was the 17th year of PAM, which
continues the tradition of a conference publishing original, early academic work that
fosters discussion and active participation from the attendees.

While PAM in the past focused on research and practical applications of network
measurement at Layer-3, over the past few years, PAM has broadened its scope sig-
nificantly to encompass measurements of networked applications, content distribution
networks, online social networks, overlay networks, and more. Measurement tech-
nology is needed at all layers of the stack: for power profiling of hardware components;
at the MAC/network/transport layers; as well as up the stack for application profiling
and even to collect user feedback. Measurement technologies are being designed for
the digital home, residential access networks, wireless and mobile access, enterprise,
ISP, and data center networks.

Overall, PAM aims to understand the role that measurement techniques can play in
networked environments and applications, across different layers, and how they can
serve as critical building blocks for broader measurement needs. At the same time,
PAM also continues with its original goal, to expand the techniques, tools, and practical
uses of network measurement technology and to be open to works at their early stages.

This year PAM attracted 93 submissions from a variety of institutions in academia
and industry all around the world – authors of submitted papers originated from
22 different counties representing 128 institutions! In all, 30 papers were selected for
the conference by the Technical Program Committee (TPC) having a similar diverse
geographical and institutional span (12 countries, 44 institutions). The TPC itself
comprised experts across several areas so that the new, broadened scope of PAM is
well represented. Most TCP members were selected from PAM participants and con-
tributors in previous conferences.

Each paper received at least three reviews from TPC members, while papers were
extensively discussed on-line by the TPC after the review round was over. A number of
papers were selectively shepherded, as reviewers required a number of comments to be
addressed before final publication. This year’s program comprised high-quality papers
covering a wide scope of topics ranging from security and privacy, studies on mobile,
cellular, broadband and the Web, to more traditional PAM topic such as DNS, routing
and measurement frameworks, and testbeds.

Before closing this preface, we would like to thank the Steering Committee for its
guidance throughout the organization of the conference, and Antonis Papadogiannakis,

who provided an excellent advertisement campaign of the conference as our publicity
chair. We are further indebted to Pavlos Sermpezis for his tremendous support for
HotCRP and in the overall organization of the conference. Last but not least, we would
like to thank our local volunteers who made the conference possible.

March 2016 Thomas Karagiannis
Xenofontas Dimitropoulos

VI Preface

Organization

General Chair

Xenofontas Dimitropoulos University of Crete/FORTH-ICS, Greece

Program Chair

Thomas Karagiannis Microsoft Research, UK

Publicity Chair

Antonis Papadogiannakis FORTH-ICS, Greece

Local Arrangements Chairs

Christos Liaskos FORTH-ICS, Greece
Pavlos Sermpezis FORTH-ICS, Greece

Steering Committee

Fabio Ricciato University of Salento, Italy
George Riley Georgia Institute of Technology, USA
Ian Graham Endace, New Zealand
Neil Spring University of Maryland, USA
Nevil Brownlee The University of Auckland, New Zealand
Nina Taft Google, USA
Matthew Roughan University of Adelaide, Australia
Rocky K.C. Chang The Hong Kong Polytechnic University, Hong Kong,

SAR China

Program Committee

Alan Mislove Northeastern University, USA
Aleksandar Kuzmanovic Northwestern University, USA
Alessandro Finamore Telefonica, Spain
Amogh Dhamdhere CAIDA/UC San Diego, USA
Ben Zhao University of California Santa Barbara, USA
Bozidar Radunovic Microsoft Research, UK
Chadi Barakat Inria, France
Christo Wilson Northeastern University, USA
Constantine Dovrolis Georgia Tech, USA

Costin Raiciu Universitatea Politehnica Bucuresti, Romania
Dejan Kostic KTH Royal Institute of Technology, Sweden
Elias Athanasopoulos Vrije Universiteit Amsterdam, The Netherlands
Fahad Dogar Tufts University, USA
Georgios Smaragdakis MIT/TU Berlin, Germany
Gianluca Iannaccone Facebook, USA
Harsha Madhyastha University of Michigan, USA
Marco Mellia Politecnico di Torino, Italy
Marina K. Mahesh The University of Edinburgh, UK
Matthew Luckie University of Waikato, New Zealand
Pietro Michiardi Eurecom, France
Richard Mortier University of Cambridge, UK
Robert Beverly Naval Postgraduate School, USA
Rocky K.C. Chang The Hong Kong Polytechnic University, Hong Kong,

SAR China
Roya Ensafi Princeton, USA
Simon Leinen SWITCH, Switzerland
Srikanth Sundaresan ICSI, USA

Sponsoring Institutions

Microsoft Research, UK

VIII Organization

Contents

Security and Privacy

Exploring Tor’s Activity Through Long-Term Passive TLS Traffic
Measurement . 3

Johanna Amann and Robin Sommer

Measuring the Latency and Pervasiveness of TLS Certificate Revocation 16
Liang Zhu, Johanna Amann, and John Heidemann

Tracking Personal Identifiers Across the Web . 30
Marjan Falahrastegar, Hamed Haddadi, Steve Uhlig,
and Richard Mortier

Like a Pack of Wolves: Community Structure of Web Trackers 42
Vasiliki Kalavri, Jeremy Blackburn, Matteo Varvello,
and Konstantina Papagiannaki

Mobile and Cellular

A First Analysis of Multipath TCP on Smartphones 57
Quentin De Coninck, Matthieu Baerts, Benjamin Hesmans,
and Olivier Bonaventure

Crowdsourcing Measurements of Mobile Network Performance and
Mobility During a Large Scale Event. 70

Alexander Frömmgen, Jens Heuschkel, Patrick Jahnke, Fabio Cuozzo,
Immanuel Schweizer, Patrick Eugster, Max Mühlhäuser,
and Alejandro Buchmann

A Study of MVNO Data Paths and Performance. 83
Paul Schmitt, Morgan Vigil, and Elizabeth Belding

Detecting Cellular Middleboxes Using Passive Measurement Techniques 95
Utkarsh Goel, Moritz Steiner, Mike P. Wittie, Martin Flack,
and Stephen Ludin

The Last Mile

Home Network or Access Link? Locating Last-Mile Downstream
Throughput Bottlenecks . 111

Srikanth Sundaresan, Nick Feamster, and Renata Teixeira

http://dx.doi.org/10.1007/978-3-319-30505-9_1
http://dx.doi.org/10.1007/978-3-319-30505-9_1
http://dx.doi.org/10.1007/978-3-319-30505-9_2
http://dx.doi.org/10.1007/978-3-319-30505-9_3
http://dx.doi.org/10.1007/978-3-319-30505-9_4
http://dx.doi.org/10.1007/978-3-319-30505-9_5
http://dx.doi.org/10.1007/978-3-319-30505-9_6
http://dx.doi.org/10.1007/978-3-319-30505-9_6
http://dx.doi.org/10.1007/978-3-319-30505-9_7
http://dx.doi.org/10.1007/978-3-319-30505-9_8
http://dx.doi.org/10.1007/978-3-319-30505-9_9
http://dx.doi.org/10.1007/978-3-319-30505-9_9

A Case Study of Traffic Demand Response to Broadband Service-Plan
Upgrades . 124

Sarthak Grover, Roya Ensafi, and Nick Feamster

eXploring Xfinity: A First Look at Provider-Enabled Community Networks . . . 136
Dipendra K. Jha, John P. Rula, and Fabián E. Bustamante

NAT Revelio: Detecting NAT444 in the ISP . 149
Andra Lutu, Marcelo Bagnulo, Amogh Dhamdhere, and K.C. Claffy

Testbeds and Frameworks

GPLMT: A Lightweight Experimentation and Testbed Management
Framework. 165

Matthias Wachs, Nadine Herold, Stephan-A. Posselt, Florian Dold,
and Georg Carle

Periscope: Unifying Looking Glass Querying . 177
Vasileios Giotsas, Amogh Dhamdhere, and K.C. Claffy

Analyzing Locality of Mobile Messaging Traffic using the MATAdOR
Framework. 190

Quirin Scheitle, Matthias Wachs, Johannes Zirngibl, and Georg Carle

Web

Scout: A Point of Presence Recommendation System Using Real User
Monitoring Data . 205

Yang Yang, Liang Zhang, Ritesh Maheshwari, Zaid Ali Kahn,
Deepak Agarwal, and Sanjay Dubey

Is the Web HTTP/2 Yet? . 218
Matteo Varvello, Kyle Schomp, David Naylor, Jeremy Blackburn,
Alessandro Finamore, and Konstantina Papagiannaki

Modeling HTTP/2 Speed from HTTP/1 Traces . 233
Kyriakos Zarifis, Mark Holland, Manish Jain, Ethan Katz-Bassett,
and Ramesh Govindan

Behind Box-Office Sales: Understanding the Mechanics of Automation
Spam in Classifieds . 248

Andrew J. Kaizer, Minaxi Gupta, Mejbaol Sajib, Anirban Acharjee,
and Qatrunnada Ismail

X Contents

http://dx.doi.org/10.1007/978-3-319-30505-9_10
http://dx.doi.org/10.1007/978-3-319-30505-9_10
http://dx.doi.org/10.1007/978-3-319-30505-9_11
http://dx.doi.org/10.1007/978-3-319-30505-9_12
http://dx.doi.org/10.1007/978-3-319-30505-9_13
http://dx.doi.org/10.1007/978-3-319-30505-9_13
http://dx.doi.org/10.1007/978-3-319-30505-9_14
http://dx.doi.org/10.1007/978-3-319-30505-9_15
http://dx.doi.org/10.1007/978-3-319-30505-9_15
http://dx.doi.org/10.1007/978-3-319-30505-9_16
http://dx.doi.org/10.1007/978-3-319-30505-9_16
http://dx.doi.org/10.1007/978-3-319-30505-9_17
http://dx.doi.org/10.1007/978-3-319-30505-9_18
http://dx.doi.org/10.1007/978-3-319-30505-9_19
http://dx.doi.org/10.1007/978-3-319-30505-9_19

DNS and Routing

Towards a Model of DNS Client Behavior . 263
Kyle Schomp, Michael Rabinovich, and Mark Allman

Detecting DNS Root Manipulation . 276
Ben Jones, Nick Feamster, Vern Paxson, Nicholas Weaver,
and Mark Allman

Behind IP Prefix Overlaps in the BGP Routing Table 289
Quentin Jacquemart, Guillaume Urvoy-Keller, and Ernst Biersack

Characterizing Rule Compression Mechanisms in Software-Defined
Networks . 302

Curtis Yu, Cristian Lumezanu, Harsha V. Madhyastha, and Guofei Jiang

IXPs and MPLS

Blackholing at IXPs: On the Effectiveness of DDoS Mitigation in the Wild. . . . 319
Christoph Dietzel, Anja Feldmann, and Thomas King

Dissecting the Largest National Ecosystem of Public Internet eXchange
Points in Brazil . 333

Samuel Henrique Bucke Brito, Mateus A.S. Santos,
Ramon dos Reis Fontes, Danny A. Lachos Perez,
and Christian Esteve Rothenberg

traIXroute: Detecting IXPs in traceroute paths. 346
George Nomikos and Xenofontas Dimitropoulos

A Brief History of MPLS Usage in IPv6 . 359
Yves Vanaubel, Pascal Mérindol, Jean-Jacques Pansiot,
and Benoit Donnet

Scheduling and Timing

An Empirical Study of Android Alarm Usage for Application Scheduling . . . 373
Mario Almeida, Muhammad Bilal, Jeremy Blackburn,
and Konstantina Papagiannaki

Network Timing and the 2015 Leap Second . 385
Darryl Veitch and Kanthaiah Vijayalayan

Can Machine Learning Benefit Bandwidth Estimation at Ultra-high
Speeds? . 397

Qianwen Yin and Jasleen Kaur

Author Index . 413

Contents XI

http://dx.doi.org/10.1007/978-3-319-30505-9_20
http://dx.doi.org/10.1007/978-3-319-30505-9_21
http://dx.doi.org/10.1007/978-3-319-30505-9_22
http://dx.doi.org/10.1007/978-3-319-30505-9_23
http://dx.doi.org/10.1007/978-3-319-30505-9_23
http://dx.doi.org/10.1007/978-3-319-30505-9_24
http://dx.doi.org/10.1007/978-3-319-30505-9_25
http://dx.doi.org/10.1007/978-3-319-30505-9_25
http://dx.doi.org/10.1007/978-3-319-30505-9_26
http://dx.doi.org/10.1007/978-3-319-30505-9_27
http://dx.doi.org/10.1007/978-3-319-30505-9_28
http://dx.doi.org/10.1007/978-3-319-30505-9_29
http://dx.doi.org/10.1007/978-3-319-30505-9_30
http://dx.doi.org/10.1007/978-3-319-30505-9_30

Security and Privacy

Exploring Tor’s Activity Through Long-Term
Passive TLS Traffic Measurement

Johanna Amann1(B) and Robin Sommer1,2

1 International Computer Science Institute, Berkeley, USA
{johanna,robin}@icir.org

2 Lawrence Berkeley National Laboratory, Berkeley, USA

Abstract. Tor constitutes one of the pillars of anonymous online com-
munication. It allows its users to communicate while concealing from
observers their location as well as the Internet resources they access.
Since its first release in 2002, Tor has enjoyed an increasing level of
popularity with now commonly more than 2,000,000 simultaneous active
clients on the network. However, even though Tor is widely popular,
there is only little understanding of the large-scale behavior of its net-
work clients. In this paper, we present a longitudinal study of the Tor
network based on passive analysis of TLS traffic at the Internet uplinks
of four large universities inside and outside of the US. We show how Tor
traffic can be identified by properties of its autogenerated certificates,
and we use this knowledge to analyze characteristics and development of
Tor’s traffic over more than three years.

1 Introduction

Anonymous online communication has become a paramount interest for both
researchers and the Internet community at large. Tor represents the most popular
system to that end, allowing users to communicate with Internet servers while
keeping their identity and location private. While many conceptual aspects of
Tor’s communication have been studied in the past, details about its network-
level properties—such as, especially, the clients’ behavior—remain scarce. Most
of what the community knows about the Tor network comes from public directory
information, which it uses to maintain the network. However, as Tor purposefully
limits this knowledge, there is hardly any information about real-world usage
patterns of Tor clients.

By default, Tor uses the SSL/TLS1 protocol suite to establish encrypted
connections between participating nodes, just as it is commonly used by web
browsers, email clients, etc. In difference to other services using TLS, Tor does
not partake in the global PKI with its trusted Certificate Authority system.
Instead, Tor nodes automatically generate X.509 server certificates, which they
rotate frequently. It turns out, however, that Tor’s current certificate algorithm
leaves them identifiable through pattern matching, enabling passive observers of
the TLS data stream to distinguish Tor connections from other TLS connections.
1 For the remainder of this paper, we will refer to either SSL or TLS as “TLS.”.

c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 3–15, 2016.
DOI: 10.1007/978-3-319-30505-9 1

4 J. Amann and R. Sommer

In this paper, we exploit this characteristic to present a measurement study of
the Tor network using passively collected TLS session information. We (i) iden-
tify Tor sessions; (ii) compare the connections against publicly available infor-
mation from Tor directory authorities and; (iii) use metadata from the TLS
protocol layer to infer properties of clients and servers.

Our data set consists of passively collected information of all outgoing TLS
sessions from 4 university networks with, in total, more than 300,000 users,
spanning a period of more than 3 years. Of the 138 billion total sessions in that
set, Tor contributes more than 40 million.

We organize the remainder of this paper as follows: Sect. 2 gives a short
overview of the related work. Section 3 summarizes the Tor protocol and intro-
duces our data set. Section 4 discusses the methodology of our measurement
study. Section 5 takes a look at the properties of outgoing Tor connections in
our data set while Sect. 6 examines characteristics of Tor servers. Section 7 dis-
cusses our results and concludes this paper.

2 Related Work

There are a number of works that measure different parts of the Tor infrastruc-
ture. In 2009, McCoy et al. [17] measure the Tor network by joining in as exit and
relay nodes. Their results show that non-interactive protocols consume a dispro-
portionate amount of bandwidth; that substantial Tor communication involves
clear-text protocols (including transmitting user passwords); and that at least
one exit node examined the content of user payloads. In 2010, Chaabane et al. [5]
perform a slightly different measurement using the same approach.

Loesing measures the relay as well as the client side of the Tor network using
information from the Tor directory authorities [14,15], showing trends from 2006
to 2009. The studies examine the number, bandwidth and country distribution
of relays and clients, and offer an estimate of the number of requests that the
network transfers. Dhungel et al. [7] measure and examine delays introduced by
guard relays using active probing.

While there is further a wealth of work examining anonymity in the Tor
network [11,13,16], proposing updates to the Tor routing algorithms [20], and
measuring specific details like underground marketplaces [6] and child pornog-
raphy trafficking [12], to the best of our knowledge no prior effort has studied
the encrypted traffic between Tor nodes.

3 Background

We begin our discussion by summarizing the background, starting with an
overview of the inner working of Tor with a focus on its communication pro-
tocol. For this we first introduce Tor’s different node types in Sect. 3.1, followed
by an overview of their communication in Sect. 3.2. Finally, Sect. 3.3 introduces
the data set from the ICSI Notary service that we use throughout this paper.

Exploring Tor’s Activity 5

3.1 Tor Node Types

The Tor network consists of different types of nodes. Users run a Tor client
that allows them to access the Tor network. They use a web browser, or other
local software, to access the network via a proxy port that the Tor client opens
on their machine. Clients connect to relays, which forward their information to
other nodes or the Internet at large.

Information about all currently available relays is publically available from
semi-trusted directory authorities, which the Tor client software hardcodes. At
the time of writing, the Tor network offers 9 directory authorities. After retriev-
ing relay information from a directory authority, clients connect to the network
by connecting to typically three guard relays. The Tor network chooses guard
relays through an automated process that favors stable and reliable nodes.2

Clients keep connecting to the same set of guard relays for about 4 to 8 weeks—
a design that protects against attackers controlling nodes only for shorter periods
while aiming to correlate timing information [18].3 Next, exit relays forward con-
nections to the public Internet, with a relay’s administrator deciding if the node
may act in this role.

When a Tor client wants to connect to a host on the Internet, it picks a ran-
dom path through the Tor network, starting at one of its guard relays. Neigh-
boring relays on that path establish connections between each other, forming
circuits that allow clients to reach the destination. The same circuit can be
re-used by a client for several connections to the same target server. The time
limit for a circuit’s reuse depends on the Tor version, and tends to lie between
10 min and 2 h.4 Finally, bridges represent a further class of relays. Their IP
addresses remain private to allow clients from censored countries or networks to
access the Tor network, even if those countries block all Tor relays listed by the
public directory authorities. Bridge IP addresses can, e.g., be obtained via Tor’s
website, which enforces rate limits and uses captchas.

3.2 Tor Node Communication

Tor supports two ways of communication: (i) using the traditional Tor protocol;
and (ii) using pluggable transports. When using the traditional Tor protocol [8],
Tor nodes connect to each other using a TLS connection. Depending on the Tor
protocol version, the way in which a node establishes the TLS connection varies
slightly, but with all modern versions of Tor the server presents an automati-
cally generated X.509 certificate. The nodes start using the Tor communication
protocol after finishing the setup of the TLS connection.

The second way of connecting to the Tor network uses pluggable transports,5

which enable tunneling Tor through other protocols. Tor supports several such
2 https://blog.torproject.org/blog/lifecycle-of-a-new-relay.
3 https://www.torproject.org/docs/faq.
4 https://lists.torproject.org/pipermail/tor-dev/2015-March/008548.html.
5 https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt.

https://blog.torproject.org/blog/lifecycle-of-a-new-relay
https://www.torproject.org/docs/faq
https://lists.torproject.org/pipermail/tor-dev/2015-March/008548.html
https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt

6 J. Amann and R. Sommer

transport protocols, including obfs2 and obfs36 (protocol obfuscation layers for
TCP protocols), WebSockets,7 and Meek,8 which uses domain fronting to hide
inside innocuous-looking HTTP requests to CDNs.

For our study, we examine only Tor communication over TLS, not any plug-
gable transports.

3.3 The ICSI SSL Notary

For our study, we use data from the ICSI SSL Notary [1], which passively collects
TLS session and certificate information from currently seven research and univer-
sity networks, covering activity of approximately 390 thousand users in total. To
date, the Notary has recorded more than 138 billion TLS connections, and more
than 3 million unique certificates.9 The first data providers started contributing
data to the Notary in February 2012. Our data providers run the open-source
Bro Network Monitoring System [4,19] on their gateway links. We provide them
with a custom Bro analysis script that collects details from each outgoing SSL
connection. For more details about the setup, we refer to [1]. For this paper,
we use data from four of our seven data providers, choosing universities with
large user populations that have been contributing consistently. Table 1 shows
aggregate information about these four providers. This subset covers more than
300,000 users on two continents for a period of more than 3 years.

Table 1. Summary of data set properties from contributing sites. N = North America,
X = rest of world. Total reflects the number of unique items across the sites. Filt. counts
certificates after filtering Tor and Grid Computing certificates.

Site Certificates Connections Time

Site Users Filtered certs Tor certs Total conns Tor conns Days

N1 90 K 2.6 M 3.7 M 60 G 11 M 1,284

N2 50 K 1.1 M 9.5 M 22 G 29 M 1,022

N3 170 K 1.4 M 658 K 42 G 1,1 M 853

X1 12 K 233 K 258 K 3.1 G 252 K 1,003

Total 391 K 3.5 M 16 M 127 G 41 M —

4 Methodology

In this section we introduce our measurement methodology, including our app-
roach to identifying Tor certificates. We also present the features that we consider
for each Tor connection.
6 https://gitweb.torproject.org/pluggable-transports/obfsproxy.git.
7 https://crypto.stanford.edu/flashproxy/.
8 https://trac.torproject.org/projects/tor/wiki/doc/meek.
9 Not counting Tor and Grid Computing certificates.

https://gitweb.torproject.org/pluggable-transports/obfsproxy.git
https://crypto.stanford.edu/flashproxy/
https://trac.torproject.org/projects/tor/wiki/doc/meek

Exploring Tor’s Activity 7

For studying Tor sessions, we need to distinguish traffic between Tor nodes
from other TLS communication. Examining Tor’s payload, as well as its TLS
source code,10 reveals that the certificates that Tor servers generate exhibit char-
acteristics tha renders them unique. By default, both the issuer and the subject
of the certificates use random Common Names consisting of the components
www., a random 8 to 20 letter base-32 encoded domain name, and a .com or
.net ending (e.g., www.4dpbq2neblawq7lbq.net, www.iqo3xm6iukfa4qf.com).
The subject and issuer fields are generated independently and thus differ from
each other. Neither subject nor the issuer fields contain further information that
is commonly found in certificates (and mandated by Certificate Authorities),
such as location or company names.

Table 2. Features collected by our TLS data collection. Shaded features are used in
this study.

Collected Features

Timestamp TLS extension value lengths Client EC curves
TLS Version Client SNI (RFC6066) DH parameter size
Server certificates Server ticket lifetime (RFC5077) Sent & Received bytes
No. client certificates Hash(Client & Server session ID) Connection Duration
Server IP & port Hash(Client IP, Server IP, Salt) Selected EC curve
Client available ciphers Hash(Client IP, SNI, Salt) TLS Alerts
Selected cipher Client & Server ALPN (RFC7301) Client EC point formats

These properties allow us to identify Tor connections by parsing the X.509
certificates in our data set and then matching a corresponding regular expression
on their subject and the issuer fields. Through a set of semi-automated cross-
checks, we verified that our data set contains no non-Tor TLS sessions with
certificates matching this heuristic.

One potential pitfall of identifying Tor connections this way stems from TLS
session resumption, which skips most of the TLS handshake, including the cer-
tificate exchange, for consecutive connections to the same TLS server. However,
the Tor specification states that Tor clients and servers must not implement
session resumption (Sect. 2.2 of [8]), hence avoiding that challenge.

Table 2 summarizes the features that our notary data set provides.11 Most
of the collected information concerns the TLS handshake, such as the supported
cipher list a client sends, the server selected cipher or different TLS extensions.
In addition to this, the Notary information also contains the IP address and port
of the server. To retain anonymity of users at contributing sites, we hash client
IP addresses with Server IP (and SNI if present), along with a site-specific secret
salt unknown to us. This enables us to identify unique client/server pairs while
keeping client IPs private.
10 https://doxygen.torproject.org/tortls 8c source.html#l01178.
11 Since we have extended our data collection script over time, information about older

connections does not contain all the listed attributes.

https://doxygen.torproject.org/tortls_8c_source.html#l01178

8 J. Amann and R. Sommer

5 Tor Server Connections

As a first step in our exploration of the Tor network, we compare the passively col-
lected data from our measuring points with publically available information from
the Tor network. The Tor Project releases a set of statistics containing information
about the relays and bridges in the network on its CollecTor webpage.12

5.1 Tor Consensus Information

For our subsequent analysis, we use CollecTor information about the Tor network
status consensuses. These network status consensuses contain all the relays in
the Tor network as agreed on by the semi-trusted Tor directory authorities (see
Sect. 3.1). Among others, the data contains the IP addresses, ports, and Tor
versions of all public relays, as well as the relay flags (like guard relay, exit relay,
stable, fast). This data is available since the end of 2007 with hourly granularity.

e
d

b
c
a

0

5000

10000

20
07

−1
2−

01
20

08
−0

6−
01

20
08

−1
2−

01
20

09
−0

6−
01

20
09

−1
2−

01
20

10
−0

6−
01

20
10

−1
2−

01
20

11
−0

6−
01

20
11

−1
2−

01
20

12
−0

6−
01

20
12

−1
2−

01
20

13
−0

6−
01

20
13

−1
2−

01
20

14
−0

6−
01

20
14

−1
2−

01
20

15
−0

6−
01

20
15

−1
2−

01

IP
s

p
er

 d
ay

Flags
a: Total
b: Fast
c: Stable
d: Guard Relay
e: Exit Relay

Fig. 1. Relay types derived from CollecTor data.

Figure 1 shows a plot of the consensus information showing all relays as well
as specific subclasses of relays having the exit, guard, stable and fast status flags
set. A single relay can hold several flags simultaneously to represent, e.g., both
a guard and an exit node.

As the graph shows, the Tor network size has been rising slowly over the
recent years. However, this is not true for all node types. While the average
number of relays per day increased from 3,984 in 2011 to 7,524 in 2014 (i.e., 89 %
more), and the number of guard nodes increased from 793 to 1,911 (141 %), the
number of exit relays indeed decreased by 37 % from 1,965 to 1,243 per day. We
assume this corresponds to an increasing awareness that Tor exit node maintain-
ers may find themselves facing legal challenges.13 However, this also means that
in 2014, each exit node routed a larger fraction of the traffic than in 2011—which
12 https://collector.torproject.org/.
13 https://www.torproject.org/eff/tor-legal-faq.html.en.

https://collector.torproject.org/
https://www.torproject.org/eff/tor-legal-faq.html.en

Exploring Tor’s Activity 9

makes operating an exit node more interesting to malicious participants aiming
to examine outgoing traffic.

The stable flag signals that a node has remained reliable over time; it con-
stitutes a requirement for becoming a guard node. Tor considers a relay stable
when either its mean time between failures (MTBF) is at least the median of
all known active relays or its weighted MTBF (definition in [22]) is more than
7 days [22]. The number of stable Tor relays has increased by 183 % from 2011
to 2014, from an average of 1,466 relays to 4,171. This might correlate with
permanent Internet connections becoming more available to end-users.

5.2 Connection Classification

Generally, in any large end-user network, we would expect most Tor nodes to
act as clients. Hence, most outgoing connections should connect to guard relays.
To check this, we match all outgoing connections to the Tor network consensus
information of CollecTor.

c
b
a

0

2000

4000

6000

20
12

−0
4−

01
20

12
−0

7−
01

20
12

−1
0−

01
20

13
−0

1−
01

20
13

−0
4−

01
20

13
−0

7−
01

20
13

−1
0−

01
20

14
−0

1−
01

20
14

−0
4−

01
20

14
−0

7−
01

20
14

−1
0−

01
20

15
−0

1−
01

20
15

−0
4−

01
20

15
−0

7−
01

20
15

−1
0−

01

IP
s

p
er

 d
ay

Server Types (top to bottom)
a: All Servers
b: Guard Relays
c: Exit Relays

Fig. 2. Connections to differing node types at N1.

Figure 2 shows the total number of external relay IP addresses seen each day
at site N1, also indicating which of them act as guard and exit relays. Over the
time period of the measurement, 50 % of all connections (5,318,445 of 10,612,263)
terminated at guard nodes. Considering that the average number of guard nodes
in the Tor network is just 20 % (all-time; 25 % in 2014), this indicates that there
is a sizeable fraction of clients running at this institution.

The graph also contains several distinct peaks during which the ratio of guard
nodes per day is much lower. During these times, most connections terminate
at “normal” relay nodes on the Tor network that are neither exit nor guard
relays. We suspect that the peak between August and November of 2013 can
be attributed to the Mevade Botnet, which caused a massive global rise in the
number of active Tor users, going from approximately 1 million daily users to
nearly 6 million [10]. We are not aware of specific reasons for the other spikes,
the most notable spanning October to December 2014. However, as we do not see

10 J. Amann and R. Sommer

similar artifacts at our other sites, and taking into account that most connections
do not target guard servers, we speculate that a local user was running a Tor
relay during these times, offering the university’s excellent bandwidth to the
Tor network. To verify that hypothesis, we analyze the TLS fingerprints of the
connections from this site to the Tor network. In particular, we focus on two bits
of information that each client sends in its TLS client hello message: the lists
of cipher suites and TLS extensions that it supports, which both depend on the
interplay between the versions of Tor and OpenSSL. This analysis reveals that
the spikes in December 2014, the Mevade spike between August and November
2013, the spike in February 2014, and the spike in March 2013 all map to specific
TLS fingerprints, indicating a single software responsible for each.

Looking at our other sites, site N3 and site X1 exhibit a generally low level
of Tor connections (1,286 and 418 connections per day on average, respectively)
in comparison to site N1 (9,366/day). Connections there mostly terminate at
guard nodes in the Tor network (80 % and 75 % of connections respectively),
suggesting client activity. Site N2 has the largest number of connections into the
Tor network among all of our sites (21,675/day on average), with connections
steadily increasing from 2,818/day in February 2013 to 88,666 in February 2015.
The distribution of connections changes starting in mid-2014, going from 72 %
terminating at guard nodes in January 2014 to just 38 % in January 2015. We
again assume this to be a case of having well-established Tor servers inside the
network of this university.

5.3 Connection Durations

Another piece of information available to a passive observer of the Tor network
is the duration of connections going to Tor relays. Table 3 gives an overview of
the connection durations to guard nodes that we encountered at our 4 sites. At
each of our sites, we see a few very long connections, with at least one connection
having a duration of more than 6.8 days in each case. However, the distribution
of durations is highly skewed towards very short connections. Depending on the
site, the median connection duration across the data set is between 3.0 and
6.3 min, with the mean being a bit higher at 7.3 to 19.5 min. Figure 3 shows a
comparison of the daily mean and medium durations at site N1, illustrating that
the mean remains stable over time while the median fluctuates more, potentially
due to local user activity.

Table 3. Summary of guard relay connection durations for each site in minutes.
Qu. = Quantile.

Site 1st Qu. Median Mean 3rd Qu. Max

N1 3.0 3.0 9.6 10.1 9,839

N2 3.0 6.3 19.5 16.8 22,280

N3 1.5 3.0 7.3 3.2 16,370

X1 3.0 3.0 8.3 3.3 10,120

Exploring Tor’s Activity 11

We find a partial explanation for this behavior by examining how Tor relays
establish connections between each other. When two Tor relays set up a circuit,
they keep the TLS session alive for up to three minutes to potentially reuse for
followup requests; only if there are no further circuits going over this connec-
tion during that time, they will tear it down [2]. However, from the literature
we could not identify an explanation for the even shorter duration that we see
frequently as well. Their high number (17 %, 6.9 %, 34 % and 13 % of all connec-
tions for N1, N2, N3, and X1, respectively) points towards a systematic reason.
Possible explanations include Tor clients using short-lived connections for inter-
nal house-keeping, independent of user activity (e.g. to update their relay lists);
and implementation artifacts.

b

a

3

10

20

50

100

20
12

−1
2−

01
20

13
−0

3−
01

20
13

−0
6−

01
20

13
−0

9−
01

20
13

−1
2−

01
20

14
−0

3−
01

20
14

−0
6−

01
20

14
−0

9−
01

20
14

−1
2−

01
20

15
−0

3−
01

20
15

−0
6−

01
20

15
−0

9−
01

[M
ea

n
/M

ed
ia

n
]

co
n

n
 d

u
ra

ti
o

n
s/

d
ay Connection durations

a: Mean
b: Median

Fig. 3. Median and mean guard relay connection durations at site N1 in minutes. y-axis
log-scale.

6 Server Characteristics

In this section, we take a look at the server side of the Tor, beginning with an
examination of the server version changes in Sect. 6.1, followed by a look at the
server-chosen cipher suites in Sect. 6.2.

6.1 Tor Server Versions

The Tor network consensus introduced in Sect. 5.1 provides the software versions
for all running Tor relays. We extracted these and show their distribution over
time in Fig. 4. While generally the uptake of new server versions is rather fast,
we see a long tail of servers that remain on older releases for a significant period
of time. From a deployment perspective, this makes sense; unlike for the Tor
client software which, when used in form of the Tor Browser bundle, comes
with an autoupdate functionality, administrators install Tor relay servers either
manually or via the package management system of their operating system.

12 J. Amann and R. Sommer

0.1.2.17
0.1.2.18

0.1.2.19

0.2.0.30

0.2.0.31

0.2.0.32

0.2.0.33

0.2.0.34

0.2.0.35

0.2.1.19

0.2.1.20

0.2.1.21

0.2.1.22

0.2.1.23
0.2.1.24

0.2.1.25

0.2.1.26

0.2.1.27
0.2.1.28

0.2.1.29 0.2.1.30

0.2.2.32

0.2.2.33

0.2.2.34

0.2.2.35

0.2.2.36

0.2.2.37

0.2.2.38

0.2.2.39

0.2.3.19−rc
0.2.3.20−rc

0.2.3.22−rc0.2.3.24−rc

0.2.3.25

0.2.4.17−rc

0.2.4.19

0.2.4.20

0.2.4.210.2.4.22

0.2.4.23

0.2.4.24

0.2.4.27

0.2.5.10

0.2.5.11

0.2.5.12

0.2.5.8−rc

0.2.6.10

0.2.6.9

0.0

0.2

0.4

0.6

0.8

20
08

−0
2−

01
20

08
−0

8−
01

20
09

−0
2−

01
20

09
−0

8−
01

20
10

−0
2−

01
20

10
−0

8−
01

20
11

−0
2−

01
20

11
−0

8−
01

20
12

−0
2−

01
20

12
−0

8−
01

20
13

−0
2−

01
20

13
−0

8−
01

20
14

−0
2−

01
20

14
−0

8−
01

20
15

−0
2−

01
20

15
−0

8−
01

[%
]

se
rv

er
s

w
it

h
 v

er
si

o
n

 p
er

 m
o

n
th

Fig. 4. Tor versions used by relay nodes, according to CollecTor network status con-
sensus information. Does not include versions with peak usage < 10 %.

Considering this, we deem the update rate surprisingly good, suggesting a high
level of motivation among server operators to update the software diligently,
likely due to their interest to protect Tor users’ privacy as much as possible.
Furthermore, it certainly helps that Tor’s developers tend to be well-connected
within the OS community, with some of them being, e.g., also Debian developers.

Inspecting the data in more detail reveals that a large number of Tor versions
never see widespread adoption. In total, we observe 325 different versions in the
consensus data set. Of these, only 48 versions ever reach a usage level of more
than 10 % of all relays. Of the 277 versions with a maximum usage level below
10 %, 257 are alpha or release candidate versions. As Fig. 4 shows, there are
only 6 versions of Tor that exhibit a combined use of more than 60 % of all
relay nodes. There is a repeating pattern of specific versions like, e.g., 0.2.2.36 to
0.2.2.38, do not see any widespread use, while their parent version keeps enjoying
popularity (which however then ends rapidly eventually). This kind of behavior
suggests that OS distributions may not include certain versions of the software,
preventing it from seeing widespread adoption.

6.2 Server Cipher Suites

With this knowledge, we take a deeper look at the Notary data set. Another
piece of information present in our data is the cipher suite that a server chooses
in its TLS server hello message, which represents the encryption algorithm used
for the remainder of the TLS session.

Figure 5 shows the main cipher suites that the outgoing connections at site
N1 selected. It suggests a number of encouraging conclusions. Tor, in general,
chooses secure cipher suites that use ephemeral keys and are thus perfectly for-
ward secure. This indeed matches one of the original design goals of Tor, which
also contributed to its choice to avoid session resumptions (see Sect. 4).

Exploring Tor’s Activity 13

e
d
c

b

a

0.00

0.25

0.50

0.75

1.00

20
12

−1
1−

01
20

13
−0

2−
01

20
13

−0
5−

01
20

13
−0

8−
01

20
13

−1
1−

01
20

14
−0

2−
01

20
14

−0
5−

01
20

14
−0

8−
01

20
14

−1
1−

01
20

15
−0

2−
01

20
15

−0
5−

01
20

15
−0

8−
01

[%
]

co
n

n
ec

ti
o

n
s

w
it

h
 c

ip
h

er
/m

o
n

th

Cipher suites
a: DHE_AES_256_CBC_SHA
b: ECDHE_AES_256_CBC_SHA
c: ECDHE_AES_128_GCM_SHA256
d: ECDHE_AES_128_CBC_SHA
e: DHE_AES_128_CBC_SHA

Fig. 5. TLS connection ciphers at site N1.

The plot also shows that Tor connections started to switch from Diffie-
Hellman (DH) key exchange to Elliptic Curve Diffie-Hellman (ECDH) in Decem-
ber 2012. The process has proceeded only slowly and is still ongoing: more
than 50 % of the connections still use DH. Examining the DH key exchange
in more detail reveals that its parameter size is always 1024 bits; Tor apparently
never uses larger parameters. We assume that the reason for the continuing use
of DH key exchanges lies in the OpenSSL versions that are installed on Tor
servers. Some operating system providers have excluded ECDH support from
their OpenSSL libraries for a long time due to fears of patent claims [9], making
DH key exchanges the only viable alternative for perfect forward secrecy. While
1024 bit keys are not yet considered insecure, their use is discouraged. Since a
sizeable percentage of connections is still using DH key exchanges, Tor should
consider switching the parameter size to 2048 bits.

For ECDH connections, we at first see an uptake of connections using AES-
128 with SHA1 in cipher block chaining (CBC) mode, which in 2014 rapidly
switches to either AES-256 with SHA1 and CBC, or AES-128 using Galois/
Counter-Mode (GCM) and SHA-256. The reason for this is probably that
OpenSSL only supports GCM starting with OpenSSL 1.0.1. Version 1.0.0, which
is still maintained, cannot use this cipher mode. Since GCM is the preferential
choice of cipher suites, we assume that Tor falls back to CBC if not available.
EC connections almost exclusively use the secp256r1 curve, which also is the
most commonly supported curve on web servers [3].

Taking a look at all other cipher suites that we observe, only a few thousand
connections (<0.1 %) use non perfectly forward ciphers. We assume these are
the result of non-Tor software trying to contact Tor servers.

7 Discussion and Conclusion

This paper presents a longitudinal measurement study of Tor’s network-level
activity, derived from passively collected TLS connection information at four

14 J. Amann and R. Sommer

large-scale network sites over the course of more than 3 years. Generally, our
study confirms that Tor pays attention to choosing TLS security parameters
carefully, including ensuring forward secrecy, avoiding broken ciphers and pick-
ing modern cryptographic primitives. However, we also notice that a significant
number of servers keep using a Diffie-Hellman key exchange with a parameter
size of 1024, which could become a security risk soon. Our analysis also shows
that while server operators tend to update their software quickly, a significant
long-tail of systems keep using outdated versions for significant periods of time.

For the reader not intricately familiar with Tor, one surprising result might
be the ease with which one can identify Tor connections on the network by
their characteristic use of X.509 certificates. For environments aiming to block
Tor traffic—common not only from a censorship perspective, but also inside
many enterprise environments—this suggests an alternative route to the stan-
dard approach of tracking Tor relays through blacklists, which need frequent
updates. Interestingly, Tor switched to the current certificate scheme precisely
to avoid such detection. As [21] discusses, earlier versions used “funny-looking
certs [that] made Tor pretty easy to profile”. With Tor 0.2.0.20, they switched
to the current scheme to better blend in. However, as our study shows, detection
remains an arms race, and an attacker with the ability to match regular expres-
sions against certificates on the wire can easily identify Tor traffic today. Going
forward, Tor could raise the bar further by avoiding the tell-tale signs that our
detector picks up on. However, longer term, their strategy to rely on pluggable
transports promises a better chance to render their users invisible again.

Acknowledgments. We thank Phillip Winter and David Fifield for their feedback
during the writing of this paper. This work was supported by the National Science
Foundation under grant numbers CNS-1528156 and ACI-1348077. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF.

References

1. Amann, J., Vallentin, M., Hall, S., Sommer, R.: Extracting Certificates from Live
Traffic: A Near Real-Time SSL Notary Service. Technical report TR-12-014, Inter-
national Computer Science Institute, November 2012

2. Biryukov, A., Pustogarov, I., Weinmann, R.-P.: TorScan: Tracing long-lived con-
nections and differential scanning attacks. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 469–486. Springer, Heidelberg (2012)

3. Bos, J.W., Halderman, J.A., Heninger, N., Moore, J., Naehrig, M., Wustrow, E.:
Elliptic curve cryptography in practice. In: Christin, N., Safavi-Naini, R. (eds.) FC
2014. LNCS, vol. 8437, pp. 156–174. Springer, Heidelberg (2014)

4. Bro Network Monitoring System. https://www.bro.org
5. Chaabane, A., Manils, P., Kaafar, M.A.: Digging into anonymous traffic: a deep

analysis of the tor anonymizing network. In: Proceedings of NSS (2010)
6. Christin, N.: Traveling the silk road: a measurement analysis of a large anonymous

online marketplace. In: Proceedings of WWW (2013)

https://www.bro.org

Exploring Tor’s Activity 15

7. Dhungel, P., Steiner, M., Rimac, I., Hilt, V., Ross, K.: Waiting for anonymity:
understanding delays in the tor overlay. In: Proceedings of P2P (2010)

8. Dingledine, R., Mathewson, N.: Tor Protocol Specification. https://gitweb.
torproject.org/torspec.git/tree/tor-spec.txt

9. Enable Elliptical Curve Diffie-Hellman (ECDHE) in Linux, July 2013. https://
www.internetstaff.com/enable-elliptical-curve-diffie-hellman-ecdhe-linux/

10. Hopper, N.: Challenges in protecting tor hidden services from botnet abuse. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 312–321.
Springer, Heidelberg (2014)

11. Hopper, N., Vasserman, E.Y., Chan-TIN, E.: How much anonymity does network
latency leak? ACM Trans. Inf. Syst. Secur. 13(2), 13: 1–13: 28 (2010)

12. Hurley, R., Prusty, S., Soroush, H., Walls, R.J., Albrecht, J., Cecchet, E., Levine,
B.N., Liberatore, M., Lynn, B., Wolak, J.: Measurement and analysis of child
pornography trafficking on P2P networks. In: Proceedings of WWW (2013)

13. Le Blond, S., Manils, P., Chaabane, A., Kaafar, M.A., Castelluccia, C., Legout,
A., Dabbous, W.: One bad apple spoils the bunch: exploiting P2P applications to
trace and profile tor users. In: Proceedings of LEET (2011)

14. Loesing, K.: Measuring the Tor Network, Evaluation of Client Requests to the
Directories to Determine total Numbers and Countries of Users. Technical report
2009–06-002, The Tor Project, June 2009

15. Loesing, K.: Measuring the Tor Network from Public Directory Information. Tech-
nical report 2009–08-002, The Tor Project, August 2009

16. Manils, P., Abdelberi, C., Blond, S.L., Kâafar, M.A., Castelluccia, C., Legout, A.,
Dabbous, W.: Compromising Tor Anonymity Exploiting P2PInformation Leakage.
CoRR abs/1004.1461 (2010). http://arxiv.org/abs/1004.1461

17. McCoy, D., Bauer, K., Grunwald, D., Kohno, T., Sicker, D.C.: Shining light in dark
places: understanding the tor network. In: Borisov, N., Goldberg, I. (eds.) PETS
2008. LNCS, vol. 5134, pp. 63–76. Springer, Heidelberg (2008)

18. Overlier, L., Syverson, P.: Locating hidden servers. In: Proceedings of IEEE S&P
(2006)

19. Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput.
Netw. 31(23–24), 2435–2463 (1999)

20. Tang, C., Goldberg, I.: An improved algorithm for tor circuit scheduling. In: Pro-
ceedings of CCS (2010)

21. Tor Wiki – TLS History. https://trac.torproject.org/projects/tor/wiki/org/
projects/Tor/TLSHistory

22. Tor Directory Protocol, Version 3. https://gitweb.torproject.org/torspec.git/tree/
dir-spec.txt

https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://www.internetstaff.com/enable-elliptical-curve-diffie-hellman-ecdhe-linux/
https://www.internetstaff.com/enable-elliptical-curve-diffie-hellman-ecdhe-linux/
http://arxiv.org/abs/1004.1461
https://trac.torproject.org/projects/tor/wiki/org/projects/Tor/TLSHistory
https://trac.torproject.org/projects/tor/wiki/org/projects/Tor/TLSHistory
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt

Measuring the Latency and Pervasiveness
of TLS Certificate Revocation

Liang Zhu1(B), Johanna Amann2, and John Heidemann1

1 USC Information Sciences Institute, Marina del Rey, USA
liangzhu@usc.edu, johnh@isi.edu

2 International Computer Science Institute, Berkeley, USA
johanna@icir.org

Abstract. Today, Transport-Layer Security (TLS) is the bedrock of
Internet security for the web and web-derived applications. TLS depends
on the X.509 Public Key Infrastructure (PKI) to authenticate endpoint
identity. An essential part of a PKI is the ability to quickly revoke certifi-
cates, for example, after a key compromise. Today the Online Certificate
Status Protocol (OCSP) is the most common way to quickly distrib-
ute revocation information. However, prior and current concerns about
OCSP latency and privacy raise questions about its use. We examine
OCSP using passive network monitoring of live traffic at the Internet
uplink of a large research university and verify the results using active
scans. Our measurements show that the median latency of OCSP queries
is quite good: only 20 ms today, much less than the 291 ms observed in
2012. This improvement is because content delivery networks (CDNs)
serve most OCSP traffic today; our measurements show 94 % of queries
are served by CDNs. We also show that OCSP use is ubiquitous today:
it is used by all popular web browsers, as well as important non-web
applications such as MS-Windows code signing.

1 Introduction

Transport Layer Security (TLS), the successor to Secure Socket Layer (SSL) is
one of the key building blocks of today’s Internet security. It provides authen-
tication through its underlying X.509 Public Key Infrastructure (PKI) as well
as encryption for end-to-end communication over the Internet such as online
banking and e-mail.

With the millions of certificates that are part X.509 PKI, it is inevitable
that some private keys will be compromised by malicious third parties, lost, or
corrupted. An attacker that manages to get access to a certificate’s private key
can impersonate its owner until the certificate’s expiration date. Heartbleed is
one example where the private keys of certificates were potentially exposed [9,24].
Even more risky than attacks on individual certificates and keys are attacks
on the infrastructure of specific Certificate Authorities (CAs), which can issue
certificates for any server (e.g. [5–7]).

Two primary mechanisms exist to revoke certificates: Certificate Revocation
Lists (CRLs) [8] which provide downloadable lists of revoked certificates, and the
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 16–29, 2016.
DOI: 10.1007/978-3-319-30505-9 2

Measuring the Latency and Pervasiveness of TLS Certificate Revocation 17

Online Certificate Status Protocol (OCSP) [18] which allows clients to check for
revoked certificates by sending short HTTP requests to servers of the respective
CA. Alternatively, OCSP stapling [17] allows revocation information to be sent
by the server in the initial TLS handshake. Some in the security community
question the usefulness and viability of these approaches, citing privacy, speed,
and other concerns [11,20].

Today, most major web browsers do not reliably check certificate revocation
information [12], thus opening their users up to attacks.

In this work, we examine live traffic at the Internet uplink of the University
of California at Berkeley (UCB) to check the pervasiveness and latency of OCSP,
and then confirm our conclusions with active measurements from two sites.

The primary contribution of this paper is new measurements of OCSP that
show that OCSP latency has improved significantly since 2012. We see a median
latency of only 20 ms (Sect. 4), far lower than the 291 ms reported in previous
studies [20]. We show that one reason for this improvement is that most OCSP
traffic today is served by content delivery networks (CDNs). Our second contri-
bution is a cost evaluation of OCSP connections. We identify that OCSP ver-
ification typically accounts for 10 % of the TLS setup time. OCSP will almost
never delay TLS when being run in parallel with the TLS handshake, and it
only adds a modest delay if run sequentially (Sect. 4.3). Our final contribution
is examination of how OCSP is being used today: all popular web browsers
and important non-web applications such as MS-Windows code signing (Sect. 3)
use OCSP. Furthermore, 88 % of the IPv4 addresses that perform TLS queries
during our measurement also perform OCSP queries.

2 Data Collection

Our study uses passive data collected from live Internet traffic to determine
characteristics and features of OCSP use. We augment our passive data with
information from active scans to verify our timing results and to check which
OCSP servers use CDNs. We use passive measurements to study how OCSP
is actually used on the Internet, and to evaluate the interplay between server
and client software. These passive measurements are from a specific site (UCB),
so our passive results depend on what sites that population visits. We take
active probes from two sites, Berkeley and the University of Southern California.
While this data source may bias our results, Berkeley has a large user population
and we probe many observed sites, so our data reflects the real experiences of
this population, and does not reflect outliers due to rarely used servers. Our
active measurements are from two sites (to avoid some bias), but both are well
connected and users with slower connectivity may experience higher latencies.
We believe this dataset is informative and reflects the lookup performance of
current OCSP servers and their use of CDNs, even if future work is needed to
confirm the results from other viewpoints. These risks are common to many
measurement studies that depend on data from large, real populations where
multiple data sources are difficult to obtain due to privacy concerns around
network measurement.

18 L. Zhu et al.

For our data collection, we extended the Bro Network Monitor [2,15] with
the capability to parse OCSP requests and responses. Bro uses a file signature
(expressed as a regular expression) to detect OCSP requests and replies. We
correlate OCSP messages with TLS connections using IP addresses, certificate
hashes and timing information (see Sect. 4.3). Our changes will be integrated in
the next version of Bro.

Our passive measurements cover 56 days of data taken between 2015-07-28
to 2015-09-28 at the Internet uplink of the University of California at Berkeley
(UCB). We record data for only 56 days of this 63-day period because of outages
due to hardware failures, fire, and preemption by another study that required
complete access to the hardware for about a week. We observed 1690 M TLS
connections with certificates encountered and about 42 M OCSP requests over
this period.

After processing the data we noticed that in 0.43 % of the OCSP connections,
we have zero (or in a handful of cases negative) lookup times. We verified the
correctness of our measurement manually against network traces and were not
able to reproduce these error cases. We believe these impossible results are caused
by interactions between packet retransmissions and Bro.

Table 1. OCSP applications (based on HTTP user agent) observed in 41.87 M OCSP
HTTP requests. Date: 2015-07-28 to 2015-09-28.

Category Application Percent

Web browsers 32.10% Firefox 31.63%

Chrome .21%

Pale moon .06%

Opera .06%

Rekonq, Bolt, Midori, Iceweasel, Seamonkey, Safari
Sonkeror, IE, Camino, Epiphany, Konqueror

<.15%

Library or daemon
used by
applications

66.87% ocspd 37.15%

Microsoft-CryptoAPI 23.74%

Securityd 4.74%

Java 1.24%

CFNetwork <.0001%

Email client .32% Thunderbird .30%

Postbox, Gomeza, Zdesktop, Eudora, Icedove .02%

Other applications .33% Lightning .31%

Zotero .01%

Celtx, ppkhandler, Komodo, Dalvik, slimerjs, Unity
Phoenix, Sunbird, Slurp, miniupnpc, googlebot
Entrust entelligence security provider

<.0074%

Unknown .38% Unknown .38%

Measuring the Latency and Pervasiveness of TLS Certificate Revocation 19

3 OCSP use in Applications and Hosts

We first want to understand how widely OCSP is used—how many applications
and hosts make OCSP queries.

Applications: We evaluate which applications use OCSP by examining the
user-agent header of the OCSP requests. Table 1 shows the resulting distribution
of user-agents. The majority of the lookups are done by Firefox and system
libraries and daemons: Microsoft-CryptoAPI (Windows) and ocspd (Mac OS).

To understand this distribution, we examine the behavior of common Inter-
net Browsers (IE, Chrome, Firefox, Safari) and operating systems. We find that
Firefox always uses its own user-agent, which is attributable to the fact that it
uses its own encryption library [1]. Microsoft Internet Explorer and Safari use
their respective operating system functionality for OCSP lookups, not directly
revealing their user-agents. Google Chrome only uses OCSP for extended Vali-
dation certificates [11,12]. It uses the operating system functionality for OCSP
lookups on Windows and Mac OS. On Linux, it performs OCSP requests with
its own user-agent.

This use of libraries makes it difficult to distinguish the different browsers.
This problem is exacerbated by the fact that a manual examination of OCSP
requests revealed that Windows and Mac OS also perform OCSP requests for
application signatures with the same user-agent. When we examine all unique
OCSP requests (those for different certificates), we see that 81 % of these unique
certificates account for nearly all (95 %) of total OCSP requests observed on
the wire. Hence, the number of code-signing requests is at most the number of
requests without matching certificates in traffic: 5 % of all OCSP requests and
at 19 % of the unique requests encountered.

Application Comments: While examining the OCSP requests, we noticed a
number of software bugs in different implementations. According to the respec-
tive standard, an OCSP request sent with HTTP GET will be base 64 and then
URL-encoded. Some clients do not adhere to this standard, skipping the URL-
encoding of requests. Servers still seem to accept these malformed requests. In
our dataset, 99.9 % of these non-standard requests were caused by the Apple
ocspd versions 1.0.1 and 1.0.2. The bug was apparently fixed in version 1.0.3,
appearing in MacOS 10.10. We also encountered requests where the user-agent
only contains the string representation of a memory address.

Clients can choose which hash algorithm they wish to use in an OCSP
requests. During our monitoring effort, all clients used SHA1.

During a random day (2015-08-24), the median size of the OCSP requests
and responses were 300 and 1900 bytes.

Use of OCSP by Hosts: To evaluate how many hosts send OCSP, we examine
how many IP addresses send both OCSP and TLS traffic. We found that 88% of
IPv4 addresses using TLS also send OCSP, suggesting widespread use of OCSP.
We do not measure IPv6 addresses because hosts exchange web traffic via TLS
on IPv6 but issue their OCSP request via IPv4. Underuse of IPv6 for OCSP is

20 L. Zhu et al.

likely because of limited support of IPv6 in OCSP servers: only 45 % of the 304
unique OCSP servers we observe have an IPv6 address.

Please note that Network Address Translation may cause an overestimate
of OCSP deployment. Ideally, one would want to determine the exact number
of connections that use OCSP; however performing such measurements would
require simulating the use of OCSP caching and is beyond the scope of this
paper.

4 Latency of OCSP

Web browsing is very sensitive to latency, and there have been concerns that the
latency introduced by OCSP is too high [11]. In this section, we study OCSP
latency in three ways. First, we measure OCSP latency in live Internet traffic
in Sect. 4.1. Then, we verify these results with active probes of OCSP servers
in Sect. 4.2. Finally, we compare OCSP latency to the TLS connection setup
latency in Sect. 4.3.

4.1 OCSP Delay in Network Traffic

As a first step, we use our passive dataset (Sect. 2), to analyze the distribution
of OCSP latency.

Methodology: We define OCSP lookup time as the time from setting up a
new TCP connection to getting the first OCSP response. When multiple OCSP
responses are pipelined over a single TCP connection, we define the lookup time
for subsequent requests from start of request to the end of the corresponding
response. This definition reflects the amortization of connection setup time over
several requests, but it may underrepresent the user-perceived time if requests
arrived in a burst.

CDNs used in Traffic: We find that overall the current OCSP lookup is
very quick with a median time of 19.25 ms (Fig. 1). Even when we include the
connection setup times by considering only new HTTP connections, the median
OCSP lookup time is still only 23.78 ms. Studies by Stark et al. in 2012 showed
medians 14× larger [20] (291 ms compared to our 19 ms). Although most lookups
are fast, the distribution of times has a long tail, with a very few (less than 0.1 %)
taking 5 s to 8 min.

We believe the primary reason OCSP performance has improved since 2012
is that today most OCSP traffic is served by CDNs. To identify OCSP queries
going to CDNs we mapped IP addresses in the traffic to hostnames and well
known CDNs (like Akamai, Edgecast, and Google) or the presence of CDNs in
the reverse hostname.

Table 2 shows the fraction of lookups (dynamic traffic) and servers (static
OCSP sites) that we identify as being served or hosted by CDNs. While only
39 % of the servers that are accessed in our passive measurements are hosted by
known CDNs, we see that these servers manage the popular certificates: more

Measuring the Latency and Pervasiveness of TLS Certificate Revocation 21

Fig. 1. Cumulative distribution of OCSP lookup time including the TCP handshake
time for the first OCSP request in HTTP connection, over 41.12 M OCSP lookups.
Date: 2015-07-28 to 2015-09-28

Table 2. CDN usage of 304 unique OCSP servers discovered in our passive monitoring
over two months. Date: 2015-07-28 to 2015-09-28

Query traffic OCSP servers

CDN 39,313,464 94 % 120 39 %

Other 2,526,338 6 % 184 61 %

Total 41,839,802 100 % 304 100 %

than nine-tenths of queries (94 %) are served by CDNs. Service is quite heavily
skewed, with the 68 % of traffic serviced by the top 10 busiest OCSP servers
(Table 3). All of them are handled by third party or internal CDNs.

CDNs seen on Servers: To get further evidence of the use of CDNs by CAs,
we examine the certificates of an Internet-wide scan of TCP port 443 by Rapid7
Labs [3]. Using their scan of 2015-09-28, we extract a list of 455 unique OCSP
servers. This list includes 57 % of the OCSP servers we discovered, but neither
list subsumes the other. We evaluate this list for CDNs using the same method as
before. We find that 29 % of the OCSP servers are invalid (non-existent domain),
which is probably cased by misconfigurations, outdated, or internal certificates.
Of all certificates with valid servers, 23 % are served by CDNs, confirming that
many CAs use CDNs for their OCSP servers. It also shows that CDN use is
more common in certificates of popularly used servers than in all certificates.
We believe this skew to be caused by the fact that popular services keep their
certificates updated better than the “average” TLS user. This result again shows
the importance of studying dynamic traffic to differentiate typical OCSP perfor-
mance from the worst case.

22 L. Zhu et al.

Table 3. Top 10 busy OCSP servers and their lookups discovered in our passive mon-
itoring. Date: 2015-07-28 to 2015-09-28

Server Observed CDN Lookup

ocsp.digicert.com phicdn.net 6,205,125 14.83 %

clients1.google.com self-hosted 4,859,409 11.61 %

sr.symcd.com akamaiedge 3,778,672 9.03 %

ocsp.entrust.net akamaiedge 2,421,420 5.79 %

ocsp.godaddy.com self-hosted (using akadns) 2,399,931 5.74 %

ocsp.usertrust.com self-hosted 2,248,577 5.37 %

vassg141.ocsp.omniroot.com akamai 1,915,287 4.58 %

ss.symcd.com akamaiedge 1,663,053 3.97 %

ocsp.comodoca.com self-hosted 1,478,911 3.53 %

ocsp.verisign.com akamaiedge 1,345,724 3.22 %

All 294 others 13,523,693 32.32 %

Total 41,839,802 100 %

We have two additional observations about OCSP latency. First, we see
that GET requests are faster than POST requests (median 13.0 ms compared to
22.8 ms, Figure 1). The HTTP standards recommend GET for short requests,
and we see about half of all OCSP requests using this method.

Finally, we see that it is not uncommon for OCSP requests to reuse an existing
HTTP connection, avoiding connection setup latency. In our measurements, 24 %
of all OCSP lookups reuse a connection. Examining random samples of OCSP
requests that were reused reveals that connection reuse has several likely causes:
webpages that include resources from several other pages that share the same
OCSP servers, users accessing pages that share the same OCSP server quickly to
each other, and checks for end-host and intermediate certificates that share the
same OCSP server. Connection reuse reduces the overhead significantly: OCSP
queries that reuse connections complete with a median of 10 ms; less than half
that of those that start new connections (24 ms).

Our data includes OCSP requests for both intermediate certificates and
leaf certificates. Our analysis reflects the overall lookup performance of OCSP
servers; we do not study specific types of certificates.

4.2 OCSP Server Delay

Our passive study of OCSP traffic emphasizes the performance of the most
commonly used servers. We next augment our study with observations of active
probes to OCSP servers, to verify the results of our passive measurements and
capturing a static picture of the time an application takes to verify the validity
of certificates.

Measuring the Latency and Pervasiveness of TLS Certificate Revocation 23

Methodology: We actively probe OCSP servers of the Alexa top-1000 from
two different vantage points, UCB and USC. We perform an HTTPS connection
attempt for each site (Fig. 2a). We discard 362 (USC: 364) sites with failing
DNS lookups, where servers not answer to HTTPS requests or where we cannot
obtain valid certificate chains. We obtain complete certificate chains for the
remaining 638 (USC: 636) sites. We identify 508 (USC: 506) unique end host
certificates, discarding 130 (USC: 130) duplicate certificates (typically by sites
operated by the same company, such as youtube.com and google.com). We then
query the OCSP servers to check each end certificate using a custom program
that employs the OpenSSL library to send OCSP requests via HTTP POST.
We record the query start and response times. We conducted this experiment
on two well connected, capable machines (32-core with x86-64 Fedora 21 Linux
4.0.5 and 4-core with x86-64 Fedora 22 Linux 4.2.6). We repeat each query 20
times and report the median value to avoid outliers.

Our active probes show overall short latencies with a median of 22.28 ms at
UCB (Fig. 2b), which is similar to the median of OCSP network delay measured
by passively collected data (Sect. 4.1). It also shows that computational cost for
generating OCSP request and parsing response is small; in our experiment, the
time to generate an OCSP request is normally less than 0.5 ms. The latency
of most OCSP requests is acceptable: at UCB, 77 % of the OCSP queries are
completed within 50 ms, although there are also some tardy responses (22 %) tak-
ing more than 150 ms. This also confirms our passive measurements of network
delay and reinforces that lookup time improved significantly compared to [20].
Our measurements from USC show a similar distribution of OCSP lookup perfor-
mance, but with slightly smaller latency (median 6.6 ms). We think the difference
is caused by fewer hops to CDNs from our vantage point at USC. The stepped
pattern in Fig. 2b is caused by certificates sharing the same OCSP servers and
the speed of the different CDNs.

Fig. 2. Evaluating OCSP across the Alexa top-1000 websites. Date: 2016-01-09.

http://youtube.com
http://google.com

24 L. Zhu et al.

4.3 OCSP Overhead in TLS

Our measurements show only modest OCSP delays. However, this cost needs to
be put into the context of overhead it adds to the TLS connection setup. We
now examine how OCSP affects TLS performance during session establishment,
using our passive dataset (Sect. 2). We define TLS delay as the time between
the client hello message and the first encrypted application data packet sent by
client. During an OCSP query, the TLS handshake can either be interrupted
until an OCSP response is received, or continue in parallel. In the parallel case,
the client must not send its first request to the server until receiving a valid
OCSP response.

Matching OCSP Requests to TLS Connections: To understand the over-
head OCSP adds to TLS, we must map OCSP messages transmitted via HTTP
to their corresponding TLS connections. We log all TLS connections and infor-
mation about their certificates in addition to all OCSP requests and responses.
We then match OCSP requests to TLS connections using the 4-tuple (source ip,
ocsp URL, issuer name hash, serial number) from both flows and identify the
TLS connection closest in time to the OCSP request. We identify and discard
cases where the OCSP request precedes the TLS connection (an early request),
and when it follows by more than 10 s (a late request).

Using the method above, we successfully correlate 52 % of the 41 M OCSP
requests with TLS connections (matched requests). We discard 17 % as early
requests, 1.8 % as late requests and are unable to match 30 % using the 4-tuple
(unmatched requests).

Although we match the majority of requests, the high mismatch rate (includ-
ing impossible early requests) stems from several challenges in matching. We
believe a large number of mismatches are caused by dual-stack, IPv4/v6 hosts
where TLS connections occur on IPv6 but where the OCSP servers only sup-
port IPv4. While 88 % of IPv4 addresses send both TLS and OCSP requests,
90 % of IPv6 addresses send no OCSP requests. OCSP requests caused by non-
TLS services, such as code-signing [22] are another reason for unmatched OCSP
requests [22] (see Sect. 3) Finally, while the reported packet-loss in our mon-
itoring infrastructure is low (about 1 % of packets), it may still prevent the
identification and parsing of some TLS and OCSP connections. To avoid errors,
we use only matched requests in the following analysis.

Finally, we filter empty TLS and OCSP queries: we discard 11 % of TLS
connections that have no client application data and 0.9 % of OCSP lookups
that are missing either a request or response.

OCSP Lookup in TLS Delay: Using the paired OCSP queries and TLS
connections, we evaluate how much latency the OCSP lookup adds to TLS
connections in Fig. 3.

The key result is that OCSP typically accounts for one-tenth of the total TLS
delay. We see a median TLS delay of 242 ms compared to a median OCSP lookup
time of 15.8 ms. We compute the ratio of OCSP lookup time to TLS delay for
each paired connection with a median of 0.0965. We see some outliers (1.2 %)

Measuring the Latency and Pervasiveness of TLS Certificate Revocation 25

Fig. 3. Cumulative distribution of OCSP network latency and TLS delay for all
matched pairs. Date: 2015-07-28 to 2015-09-28. The blue dotted line shows the cumu-
lative distribution of the ratio of the sum of OCSP network latency to TLS delay for
every matched pair.

where the OCSP lookup time exceeds the TLS delay; we expect these cases to
be caused by timeouts.

The actual delay OCSP incurs to the user depends on the structure of the
application. Many applications do OCSP validation in parallel with starting the
TLS connection. Our evaluation shows that OCSP lookup time is only about
10 % of TLS delay overall, as shown by the median latency ratio, and the cost
is typically 16 ms. This cost suggests that, if OCSP is performed in parallel with
TLS session setup, the OCSP delay is almost never visible.

In summary, the OCSP lookup latencies we observe have improved signifi-
cantly compared to prior reports [20]. OCSP lookup only adds modest delay to
TLS setup, and potentially never adds latency when performed in parallel.

4.4 Effectiveness of OCSP Caching

A final component of OCSP latency is caching of OCSP responses. Our data
does not provide an exact picture of caching, but we can use it to estimate the
effectiveness of caching.

The potential of OCSP caching can be seen in the OCSP validity periods.
Our passive dataset of OCSP traffic, Fig. 4a shows that most OCSP responses
have a validity period of a week or more. 95 % are valid for at least one day.

To give some estimate of the effectiveness of caching we counted the aggregate
number of OCSP requests relative to TLS connections. Figure 4b shows the
number of TLS connections and OCSP requests per day, with a mean of 30 M
TLS connections and only 0.7 M OCSP requests per day. Since we have shown
that most browsers and most IPv4 addresses use OCSP (Sect. 3), this ratio
of 1 OCSP request for 40 TLS connections suggests very effective caching. To

26 L. Zhu et al.

Fig. 4. Evaluating OCSP caching. Date: 2015-07-28 to 2015-09-28.

understand the exact impact of OCSP caching, future work must distinguish a
cache hit from cases where browsers disable OCSP, and from TLS sessions are
established by software that does not use TLS.

The potential of long-term OCSP caching is important because it significantly
attenuates the information about end-user browsing that is visible to CAs. Since
OCSP replies can be cached for at least one day, the information visible over
this channel is quite limited.

5 OCSP in Action: Revoked Certificates

The point of OCSP is to revoke certificate that are no longer suitable for use,
a condition that we expect to be very rare but still very important. OCSP is
effective in practice—we see a few examples of revoked certificates in our data.

As expected, there are relatively few revoked certificates. We see OCSP
replies for 2,180 unique revoked certificates in our passive dataset that con-
tains OCSP replies for 1,418,315 unique certificates. Only 0.3 % of OCSP queries
report a revoked certificate.

We manually examined the top 10 revoked certificates by number of OCSP
requests to understand their use. Seven of these were expired code-signing cer-
tificates for software on the Windows platform. The rest were for subdomains of
t-mobile.com, aol.com and lijit.com that were inaccessible in October 2015. We
speculate that these revocations indicate deployed software that has not been
updated and is trying to use discontinued services.

Finally, we observe a very few 638 (0.001 %) OCSP responses for 105 unique
certificates with the status of “unknown”. Searching for cases where the same
OCSP responses also returned a different status revealed the cause for 72 of
these requests for 12 unique certificates: The most common cause is certificates
that have just been issued and are not known to the revocation server yet. For
4 certificates, the CA returned an unknown status, apparently without reason

http://t-mobile.com
http://aol.com
http://lijit.com

Measuring the Latency and Pervasiveness of TLS Certificate Revocation 27

(certificate valid, later replies indicate “good” again). For 1 code-signing certifi-
cate, the CA apparently returns unknown after the certificate expired. For the
remainder of the requests we could not identify a reason.

6 Related Work

There has been a wealth of work to measure different parts of the TLS and
certificate ecosystem, including studies of details of the CA ecosystem [10], TLS
errors [4] and certificates contained in root stores [16].

Prior work examined different aspects of TLS certificate revocation. After the
2008 Debian OpenSSL vulnerability and the Heartbleed bug, researchers studied
the number of revocations, revocation patterns and patching behavior [9,23,
24]. In difference to these studies which focus on certificate revocation patterns
after a vulnerability, we study the performance impact of revocation in general.
Researchers also proposed to use alternative approaches to certificate revocation
like FM radio broadcasts for certificate revocation [19] as well as using short-lived
certificates to make revocations unnecessary [21].

Most recently, Liu et al. use full IPv4 scans and compare them with black-
lists [12]. They also study revocation checking behavior of web browsers and
operating systems as well as Google’s certificate revocation infrastructure. In
difference to us, they do not study the actual use of OCSP on the Internet or
its latency impact on the Internet.

Most related to our work, Stark et al. measured OCSP lookup latency [20].
Like their work, we use active and passive approach to understand OCSP latency.
However, we collect network traffic at a university network with a broader cov-
erage. Our data has a more diverse and much larger set of clients. Furthermore,
we also compare the speed of OCSP connections to the remainder of the TLS
handshake. Netcraft published OCSP performance surveys of major CAs [13,14].
They use static sites to study OCSP latency and reliability. In contrast, our
analysis uses live network traffic to understand current OCSP latency.

OCSP stapling [17] was proposed as an alternative. Examining the usage of
OCSP stapling and its overhead is future work.

To the best of our knowledge, no previous work examined OCSP network
traffic. Our analysis of actual traffic patterns provides insight into dynamic traf-
fic, complementing these prior studies that focused on analysis of static sites.

7 Conclusion

Our measurements show that the speed of OCSP servers has increased tremen-
dously. Due to the widespread use of CDNs OCSP almost never has any user-
perceived performance cost when done in parallel with TLS setup, and adds only
about 10 % additional latency if done sequentially (Sect. 4.1).

Privacy has been a second concern about OCSP—CAs running the OCSP
servers can potentially deduce parts of a users browsing behavior. We have shown

28 L. Zhu et al.

that OCSP caching means that queries most queries are sent weekly or at most
daily, limiting this channel (Sect. 4.4).

A third concern about OCSP are problems with captive portals—web-pages
that require a user to agree to terms and conditions before being able to use the
Internet; some of these captive portals use HTTPS. In these cases, the OCSP
servers cannot be contacted to verify that the site certificate has not yet been
revoked. We leave addressing this problem to future work. One possible approach
is to use OCSP stapling [17] for captive portals—in these cases, OCSP lookups
would not be necessary. Alternatively, captive portals could allow HTTP con-
nections to specific OCSP servers.

Finally, we have shown that while certificate revocations are quite rare (as
expected), they do occur in practice (Sect. 5).

Ultimately, the data in our paper suggests that OCSP today is both impor-
tant and viable—it adds minimal or no user-visible delay or privacy, and it
provides an essential protection against certificate compromise.

Acknowledgments. This work was supported by the National Science Foundation
(NSF) under grant numbers CNS-1528156 and ACI-1348077, by the Department of
Homeland Security (DHS) Science and Technology Directorate, HSARPA, Cyber Secu-
rity Division, via SPAWAR Systems Center Pacific (contract N66001-13-C-3001), and
via BAA 11-01-RIKA and Air Force Research Laboratory, Information Directorate
(agreements FA8750-12-2-0344 and FA8750-15-2-0224). The U.S. Government is autho-
rized to make reprints for governmental purposes notwithstanding any copyright. The
views contained herein are those of the authors and do not necessarily represent those
of NSF, DHS or the U.S. Government.

References

1. Network security services. https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/NSS

2. The Bro network security monitor. https://www.bro.org
3. Project Sonar: IPv4 SSL certificates, August 2015. https://scans.io/study/sonar.

ssl
4. Akhawe, D., Amann, J., Vallentin, M., Sommer, R.: Here’s my cert, so trust me,

maybe? Understanding TLS errors on the web. In: WWW, May 2013
5. Arthur, C.: DigiNotar SSL certificate hack amounts to cyberwar, saysexpert,

September 2011. http://www.theguardian.com/technology/2011/sep/05/
diginotar-certificate-hack-cyberwar

6. Bhat, S.: Gmail users in Iran hit by MITM attacks, August 2011. http://techie-
buzz.com/tech-news/gmail-iran-hit-mitm.html

7. Comodo. Comodo fraud incident, March 2011. https://www.comodo.com/
Comodo-Fraud-Incident-2011-03-23.html

8. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 public key infrastructure certificate and certificate revocation list (CRL)
profile. RFC 5280, May 2008

9. Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., Li, F., Weaver,
N., Amann, J., Beekman, J., Payer, M., Paxson, V.: The matter of Heartbleed. In:
ACM IMC (2014)

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://www.bro.org
https://scans.io/study/sonar.ssl
https://scans.io/study/sonar.ssl
http://www.theguardian.com/technology/2011/sep/05/diginotar-certificate-hack-cyberwar
http://www.theguardian.com/technology/2011/sep/05/diginotar-certificate-hack-cyberwar
http://techie-buzz.com/tech-news/gmail-iran-hit-mitm.html
http://techie-buzz.com/tech-news/gmail-iran-hit-mitm.html
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

Measuring the Latency and Pervasiveness of TLS Certificate Revocation 29

10. Holz, R., Braun, L., Kammenhuber, N., Carle, G.: The SSL landscape: a thor-
ough analysis of the X.509 PKI using active and passive measurements. In: ACM
SIGCOMM (2011)

11. Langley, A.: Revocation checking and Chrome’s CRL, February 2012. https://
www.imperialviolet.org/2012/02/05/crlsets.html

12. Liu, Y., Tome, W., Zhang, L., Choffnes, D., Levin, D., Maggs, B., Mislove, A.,
Schulman, A., Wilson, C.: An end-to-end measurement of certificate revocation in
the web’s PKI. In: ACM IMC (2015)

13. Netcraft. Certificate revocation and the performance of OCSP. http://news.
netcraft.com/archives/2013/04/16/certificate-revocation-and-the-performance-of-
ocsp.html

14. Netcraft. OCSP server performance in April 2013. http://news.netcraft.com/
archives/2013/05/23/ocsp-server-performance-in-april-2013.html

15. Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput.
Netw. 31(23–24), 2435–2463 (1999)

16. Perl, H., Fahl, S., Smith, M.: You wont be needing these any more: on removing
unused certificates from trust stores. In: FC (2014)

17. Pettersen, Y.: The transport layer security (TLS) multiple certificate status request
extension. RFC 6961 (2013)

18. Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: X.509
internet public key infrastructure online certificate status protocol - OCSP. RFC
6960, June 2013

19. Schulman, A., Levin, D., Spring, N.: RevCast: fast, private certificate revocation
over FM radio. In: ACM CCS (2014)

20. Stark, E., Huang, L.-S., Israni, D., Jackson, C., Boneh, D.: The case for prefetching
and prevalidating TLS server certificates. In: NDSS (2012)

21. Topalovic, E., Saeta, B., Huang, L.-S., Jackson, C., Boneh, D.: Towards short-lived
certificates. In: W2SPP (2012)

22. Wikipedia. Code signing. https://en.wikipedia.org/wiki/Code signing
23. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys

are public: results from the 2008 Debian OpenSSL vulnerability. In: ACM IMC
(2009)

24. Zhang, L., Choffnes, D., Levin, D., Dumitras, T., Mislove, A., Schulman, A.,
Wilson, C.: Analysis of SSL certificate reissues and revocations in the wake of
heartbleed. In: ACM IMC (2014)

https://www.imperialviolet.org/2012/02/05/crlsets.html
https://www.imperialviolet.org/2012/02/05/crlsets.html
http://news.netcraft.com/archives/2013/04/16/certificate-revocation-and-the-performance-of-ocsp.html
http://news.netcraft.com/archives/2013/04/16/certificate-revocation-and-the-performance-of-ocsp.html
http://news.netcraft.com/archives/2013/04/16/certificate-revocation-and-the-performance-of-ocsp.html
http://news.netcraft.com/archives/2013/05/23/ocsp-server-performance-in-april-2013.html
http://news.netcraft.com/archives/2013/05/23/ocsp-server-performance-in-april-2013.html
https://en.wikipedia.org/wiki/Code_signing

Tracking Personal Identifiers Across the Web

Marjan Falahrastegar1(B), Hamed Haddadi1, Steve Uhlig1,
and Richard Mortier2

1 Queen Mary University of London, London, UK
marjan.falahrastegar@qmul.ac.uk

2 University of Cambridge, Cambridge, UK

Abstract. User tracking has become de facto practice of the Web,
however, our understanding of the scale and nature of this practice
remains rudimentary. In this paper, we explore the connections amongst
all parties of the Web, especially focusing on how trackers share user IDs.
Using data collected from both browsing histories of 129 users and active
experiments, we identify user-specific IDs that we suspect are used to
track users. We find a significant amount of ID-sharing practices across
different organisations providing various service categories. Our obser-
vations reveal that ID-sharing happens in a large scale regardless of the
user profile size and profile condition such as logged-in and logged-out.
We unexpectedly observe a higher number of ID-sharing domains when
user is logged-out. We believe that our work reveals the huge gap between
what is known about user tracking and what is done by this complex and
important ecosystem.

1 Introduction

The rise in the use of personal data and the application of sophisticated algo-
rithms to track and analyse our online browsing behaviour have caused an
increase in the number of different tracking services. These services include
third-party advertising and analytics services on the Internet and the mobile
web [1–3]. User tracking services build a user profile by collecting, aggregating,
and correlating an individual’s browsing behaviour, demographics and interests.
While these services are vital for the online economy, there are complex debates
over privacy issues that are caused directly or indirectly by such services (e.g.,
misusing ad tracker cookies to identify individuals [4]).

These services are not only growing steadily in number [2], but are also
evolving in terms of mechanisms and technologies. An example of this trend is
the emergence of various user tracking mechanisms such as Flash cookies, ETags
re-spawning [5] and canvas fingerprinting [6] in a relatively short period of time.

One of the very important phenomena of the Web ecosystem that has been
less explored is the practice of sharing user-specific identifiers (IDs). A few works
have highlighted the presence of this practice [2,7]. Moreover, the authors in [6]
introduced a method to identify user-specific IDs. Although we are aware of
the existence of this phenomenon, our understanding about the extent of this

c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 30–41, 2016.
DOI: 10.1007/978-3-319-30505-9 3

Tracking Personal Identifiers Across the Web 31

practice and the nature of the parties involved in user-specific ID sharing is
rudimentary.

In the rest of this paper, we explore the characteristics of user ID-sharing
groups by analysing the organisational and categorical relation amongst the
members of ID-sharing groups (Sect. 2). We then investigate the effect of user
profile on the presence of ID-sharing groups. We show that users are being
tracked regardless of their profile size (e.g., amount of their browsing history)
and profile condition (logged-in or logged-out) (Sect. 3). After discussing the
related work (Sect. 4), we provide our conclusions (Sect. 5).

2 User Tracking

We start our analysis by exploring the connections between domains when they
are aimed to track users. User tracking is a practice by which a domain, either
being directly visited by a user or indirectly through third-party trackers, assigns
a unique identifier to the user, and shares this identifier with other domains. The
parties participating in user tracking are able to aggregate the data collected by
other parties in order to construct a comprehensive profile of users. In the rest
of this section, we first describe our methodology and dataset, and subsequently
explore the size and nature of a user ID-sharing group.

2.1 Methodology and Data Collection

We extended the Lightbeam Firefox plug-in to log all headers of HTTP requests
and responses. The plug-in additionally records the country where the user is
located (our modified version is available in [8]). The recorded data is delivered
automatically to our server using an encrypted connection. While there are var-
ious Firefox plug-ins to visualize and block third-party trackers, we chose Light-
beam (Fig. 1) because of its interactive and easily understandable user interface.
We asked our colleagues and friends to install our plug-in and use Firefox as
their main browser for the minimum duration of two weeks. In order to preserve
users’ privacy we did not record any identifiable information such as the IP
address, name or contact information. Additionally, we obtained ethics approval
from QMUL ethics committee (code QMREC1416a) before performing our user
studies. All our data were obtained between 20 February 2015 until 1 April 2015.
In total we had 129 participants from 22 countries across the globe. Our partic-
ipants have visited 4951 unique websites which include 6568 unique third-party
trackers. Table 1 lists the number of our participants in each geographical region.

2.2 Nature of ID-Sharing Groups

To explore user tracking via sharing user-specific identifiers, we first need to
determine the identifiers that are likely to be used as user-specific IDs: a unique
identifier stored in a cookie or embedded as a parameter in a URL. For this
purpose, we apply the following rules inspired by Acar et al. [6] on all items
stored in the cookies and the URL parameters.

32 M. Falahrastegar et al.

Fig. 1. Lightbeam presents the connection between websites with an interactive and
easily understandable user interface.

Table 1. Number of participants per geographical location.

Region Country No. P

Europe BE, CH, FE, DE, DK, ES, GB, GR, NL, FI 97

Middle East BD, IR, QA 11

America CA, MX, US 9

Oceania-East Asia AU, CN, MY 8

Africa SG, MR 3

– Extract (key,value) pairs using delimiters such as ampersand (&) and semi-
colon (;). For instance, this string id=ece53b2e-ea5c-4433-ad3d&ssid=
02ba238451cec44ba88 contains two (key,value) pairs: (id,ece53b2e-ea5c-4433-
ad3d) and (ssid,02ba238451cec44ba88).

– Exclude (key,value) pairs that are inconsistent : a (key,value) pair is inconsis-
tent if there are multiple values for the same key belonging to a certain domain.
For example these pairs (id,ece53b2e-ea5c-4433) and (id,ffc87j3o-gh11-3278)
observed from bbc.co.uk are excluded.

– Exclude those value strings that are shared by multiple users.
– Only include those value strings that their length is longer than 7 characters.

After applying the aforementioned rules on our dataset, we found that 96 %
of user-specific IDs have a minimum length of 7 characters.

We applied the above-described method for each user. Table 2 shows sample
URLs and their identified user-specific IDs with their associated keys. The iden-
tified IDs appear in various formats of which the most common are { xx..x},
{ x-x-..-x} and { x|x|..|x} where x can be any combination of characters
and numbers. We find 3,224 unique user IDs from 806 domains. To our sur-
prise, the vast majority of these IDs (96 %) are being shared between at least
two domains. We identify 769 domains that share unique user IDs with other
domains. Extracting the user-specific IDs enables us to identify user ID-sharing
groups: a set of domains that share user-specific IDs. We identify 660 unique

Tracking Personal Identifiers Across the Web 33

Table 2. Example of URLs and the identified user-specific IDs with their associated
keys.

URL User-Specific IDs Key

http://ads.rubiconproject.com/ad/11078.js 65d39451-1f73-435a-bf39 put 2760

http://apex.go.sonobi.com/trinity.js i736hcjtwb05natk uin bw

http://cm.adform.net/pixel d4848|VOzy0|N1xas adform pc

N
o.

 O
f G

ro
up

s

1

5

10

50

100

465

2 3 4 5 6 7 8 9 10 11

Domain Tracking Group Size

N
o.

 o
f G

ro
up

s

5

10

50

100

420

1 2 3 4 5 6 7 8

Organisational Tracking Group Size

Fig. 2. Size of ID sharing groups based on number of (a) domains and (b) organisations
(Y-axis in both figures uses a logarithmic scale).

ID-sharing groups containing two to more than eight domains. Figure 2a pro-
vides the distribution of the number of different sharing groups (y-axis uses a
logarithmic scale) across their group size (x-axis). From Fig. 2a, we observe that
user IDs are mainly shared between two (467 unique groups, 2742 occurrences)
or three (86 unique groups, 201 occurrences) domains. Moreover, the number of
unique groups and their occurrences drop steadily as group size increases.

Organisational Sharing. User ID-sharing groups consist of multiple domains
that may actually belong to the same organisation. Therefore, we broaden our app-
roach from domains to organisations, resulting in organisational sharing groups.
For example, the organisational sharing group for {google.com, youtube.com} is
{Google}, and for this group: {youtube.com, scorecardresearch.com} is {Google,
comScore}.

To identify the organisation behind a set of domains, we applied a combina-
tion of three methods. First, we used Collusion’s dataset1 to detect ID-sharing
domains belonging to the same company. We manually inspected this dataset
for any changes using websites and wiki pages of the companies involved. Sec-
ond, we used the e-mail addresses of domains obtained by querying their SOA
(Start of Authority) record. The email address, however, is unhelpful if it is
a general account from a cloud, CDN or DNS service. For example, awsdns-
1 http://collusion.toolness.org/.

http://ads.rubiconproject.com/ad/11078.js
http://apex.go.sonobi.com/trinity.js
http://cm.adform.net/pixel
file:www.google.com
file:www.youtube.com
file:www.youtube.com
file:www.scorecardresearch.com
http://collusion.toolness.org/

34 M. Falahrastegar et al.

hostmaster@amazon.com is the email address of all third-parties hosted on Ama-
zon Web Services, and dns-admin@google.com is assigned to all services hosted
on Google App Engine. We identified the unhelpful email addresses by their
email domain name belonging to the known CDN and DNS services, or contain-
ing keywords indicating such services. For these cases we used the organization
indicated in their whois records if available, or else we assumed the domain has
no parent company. We are aware that there can be some cases with an outdated
whois record or email addresses but we believe this is the best approach that
can be executed automatically.

Figure 2b provides the distribution of the number of organisational sharing
groups (again using a logarithmic y-axis) across their sizes (x-axis). We observe
that the number of within-organisational sharing groups (sharing within a single
organisation) is considerably lower than those with more than one organisation
(sharing across different organisations). Moreover, the most cross-organisational
sharing appears between only two organisations. The majority of these two-
organisation groups contain a member organisation that appears only once (306).
On the other hand, dominant organisations such as Google, Rubicon Project and
Optimizely (a user targeting company) appear in 43, 40 and 33 two-organisation
groups respectively.

In general, we find some organisations such as Rubicon Project (an ad
exchange company) appears strongly in the cross-organisational sharing groups
(112 groups) while large organisations such as Google appears in both cross-
organisational and within-organisational sharing groups. Table 3 shows the top
15 most popular organisational sharing groups (in their frequency of occurrence)
and the nature of their user-specific ID-sharing within the group, i.e., within an
organisation (w-org) or cross organisations (c-org).

Cross Categories Sharing. To gain more insight into the nature of user
ID-sharing, we analysed the ID-sharing groups with a different approach. We
examined the categories of domains in each group. We first identified domain
categories using the Trend Micro Site Safety Center categorization service2. The
Trend Micro service contains 85 different interest categories. Moreover, we man-
ually inspected those that were not available on Trend Micro. We find categories
related to the ad ecosystem (e.g., ad networks, analytics, ad exchanges) have,
expectedly, the highest presence. This strong presence is due to the employed
advertising mechanisms (e.g., real-time bidding) that share user-specific IDs
across different entities of the ad ecosystem.

We then compared the categories of domains in each group. For instance,
in the following ID-sharing group {getclicky.com,ibtimes.co.uk} the categories
of domains in the group are {Analytics, News}. Table 4 shows the top 15 cat-
egories of the sharing groups (in their frequency of occurrence) and the nature
of their domain categories in the group, i.e., within a category (w-cat.) or cross
categories (c-cat). We observe that the majority of ID-sharing in the groups hap-
pens across different categories. We find only 28 ID-sharing groups of which their
2 http://global.sitesafety.trendmicro.com.

file:www.getclicky.com
file:www.ibtimes.co.uk
http://global.sitesafety.trendmicro.com

Tracking Personal Identifiers Across the Web 35

Table 3. Top 15 user ID-sharing groups ordered based on their frequency of occur-
rence. The Type column indicates the nature of organisational sharing within the group
(within-organisation=w-org versus cross-organisation=c-org).

Sharing group Type

google.com, googleadservices.com w-org

google.com, youtube.com w-org

flickr.com, yahoo.com, yahooapis.com w-org

bbc.com, effectivemeasure.net c-org

yahoo.com, www.yimg.com w-org

bing.com, live.com w-org

adxcore.com,cherryssp.net c-org

rubiconproject.com, wtp101.com c-org

rubiconproject.com, tapad.com c-org

bing.com, live.com, msn.com w-org

eyeviewads.com, rubiconproject.com c-org

everesttech.net, rubiconproject.com c-org

rubiconproject.com, w55c.net c-org

sina.com.cn, weibo.com w-org

rubiconproject.com, rundsp.com c-org

members belong to the same category (within-category sharing). This number
is considerably lower than 110 groups with members belonging to different cat-
egories (cross-categories sharing). We have also observed that sensitive domain
categories such as health related ones participate in the ID-sharing with domains
related to advertisement trackers and search engines (7 groups). For instance,
webmd.com (a health information website) has shared user-specific IDs with
gravity.com (an advertisement tracker). Looking at a sample HTTP request from
webmd.com to gravity.com in Table 5, shows that gravity.com logs users’ visited
pages via referrer URL-parameter. This information enables gravity.com to cre-
ate users’ profiles based on their visited pages and searched terms on webmd.com.
The presence of such domain categories within sharing groups raises serious pri-
vacy concerns since users’ sensitive information can be exposed within sharing
groups.

3 Effect of User Profile

In the previous section, we observed strong presence of user ID-sharing based
on two-weeks online activities’ logs of over 100 users. In this section, we further
examine the potential intentions behind the ID-sharing by studying the effect of
user profile on the presence of ID-sharing domains. For this purpose we run mul-
tiple crawls on sets of trained user profiles. In order to create the user profiles, we

file:www.google.com
file:www.googleadservices.com
file:www.google.com
file:www.youtube.com
file:www.flickr.com
file:www.yahoo.com
file:www.yahooapis.com
file:www.bbc.com
file:www.effectivemeasure.net
file:www.yahoo.com
file:www.yimg.com
file:www.bing.com
file:www.live.com
file:www.adxcore.com
file:www.cherryssp.net
file:www.rubiconproject.com
file:www.wtp101.com
file:www.rubiconproject.com
file:www.tapad.com
file:www.bing.com
file:www.live.com
file:www.msn.com
file:www.eyeviewads.com
file:www.rubiconproject.com
file:www.everesttech.net
file:www.rubiconproject.com
file:www.rubiconproject.com
file:www.w55c.net
file:www.sina.com.cn
file:www.weibo.com
file:www.rubiconproject.com
file:www.rundsp.com
file:www.webmd.com
file:www.gravity.com
file:www.webmd.com
file:www.gravity.com
file:www.gravity.com
file:www.gravity.com
file:www.webmd.com

36 M. Falahrastegar et al.

Table 4. Top 15 categories of the sharing groups ordered based on their frequency
of occurrence. The Type column indicates the nature of domain categories within the
sharing group (within category=w-cat. versus cross category=c-cat.).

Sharing group Type

Search engines, Web advertisements c-cat

Search engines, Streaming media c-cat

Ad-tracker w-cat

Search engines w-cat

Ad-tracker, Web advertisements c-cat

Ad-tracker, Internet infrastructure c-cat

Ad tracker, Photo searches, Search engines c-cat

Media, News c-cat

Ad tracker, News c-cat

Web advertisements w-cat

Ad-tracker, Business c-cat

Health w-cat

Internet infrastructure, Web advertisements c-cat

Ad tracker, Search engines c-cat

first created five artificial users with separate accounts on Google, Amazon, eBay
and Twitter. We assigned three different profile sizes, in terms of the browsing
histories, to our users: (1) Two users were given a browsing history consisting of
Alexa’s top 500 websites (Profile-500); (2) Two other users with smaller size of
browsing history including Alexa’s top 200 websites (Profile-200); (3) One user
with an empty browsing history (Profile-0). To explore the effect of not having
a user profile, we considered a user with an empty browsing history and with-
out any accounts on the aforementioned websites (noAcount). We created the
browsing history by crawling the corresponding Alexa’s list of websites for five
consecutive times while users were logged-in. The profile-training step was done
on the Firefox browser installed on a separate Linux machine per user. After
creating the user profiles, we installed the Firefox extension from the Sect. 2.1
on the Firefox browsers. Then, we executed the main step of the experiment by
visiting Alexa’s top 1000 websites for each user. We repeated this step for 20
iterations to expose as many as possible ID-sharing domains. We performed the
main step identically under two conditions: user logged-in and user logged-out.

We applied the same rules as described in Sect. 2.2 to identify user-specific
IDs. Consequently, we identified 4,104 unique user-specific IDs shared by 787
domains. Figure 3 illustrates the accumulated number of unique ID-sharing
domains across the iterations per user and profile condition. We observe that
the highest rise occurs between the first and second iteration (approximately
40 %), in comparison with subsequent iterations (Fig. 3). Moreover, we explored

Tracking Personal Identifiers Across the Web 37

Table 5. A sample HTTP request from webmd.com (a health information website)
to gravity.com (an advertisement tracker). Gravity.com logs users’ visited pages via
referrer URL-parameter. Consequently, the searched terms by users on webmd.com
are exposed to gravity.com (e.g. query=breast-cancer)

RequestURL: http://rma-api.gravity.com/v1/beacons/log?action=beacon&user
guid=21737bfabd4416779f6&referrer=

http://www.webmd.com/search/search results/default.aspx?
query=breast-cancer

Host: rma-api.gravity.com

Referer: http://www.webmd.com/breast-cancer/default.htm

N
o.

 ID
−

sh
ar

in
g

D
om

ai
ns

0
10

0
20

0
30

0
40

0
50

0
60

0

us
er

1.
P50

0

us
er

1.
P50

0

us
er

2.
P50

0

us
er

2.
P50

0

us
er

3.
P20

0

us
er

3.
P20

0

us
er

4.
P20

0

us
er

4.
P20

0

us
er

5.
P0

us
er

5.
P0

us
er

6.
no

Acc
ou

nt

logged−out logged−in No account

Fig. 3. Number of ID-sharing domains across the iterations. Each bar represents an
iteration.

the number of ID-sharing domains across various profile sizes (browsing histories)
and profile conditions (logged-in, logged-out, and noAcount). Table 6 shows the
unique number of ID-sharing domains per profile size and condition. The results
in Table 6 suggests that users with a larger profile (more browsing history) are
tracked by a higher number of ID-sharing domains than those with smaller profile
sizes. On the other hand, we find the number of ID-sharing domains, unexpect-
edly, higher in the logged-out condition than logged-in (Table 6b). In general, the
comparable numbers of ID-sharing domains across various profile conditions and
profile sizes suggest that the users are being tracked regardless of their profile
condition and the amount of browsing history (Table 6).

Afterwards, we examined the presence of organisational ID-sharing groups
across different profile conditions. We defined ID-sharing groups as sets of
domains that share user-specific IDs (refer to Sect. 2.2). In addition, we identified

http://rma-api.gravity.com/v1/beacons/log?action=beacon&user_guid=21737bfabd4416779f6&referrer=
http://rma-api.gravity.com/v1/beacons/log?action=beacon&user_guid=21737bfabd4416779f6&referrer=
http://www.webmd.com/search/search_results/default.aspx?query=breast-cancer
http://www.webmd.com/search/search_results/default.aspx?query=breast-cancer
file:www.rma-api.gravity.com
http://www.webmd.com/breast-cancer/default.htm

38 M. Falahrastegar et al.

Table 6. Total number of unique ID-sharing domains for each (a) profile size and
(b) profile condition.

N
o.

 O
f G

ro
up

s

2

5

10

20

50

100

200

500

2 7 12 17 22 27 32 37 42 47

ID Sharing Group Size
N

o.
 O

f G
ro

up
s

2

5

10

20

50

100

200

500

2 7 12 17 22 27 32 37 42

ID Sharing Group Size

Fig. 4. Organisational ID-sharing groups across various profile conditions: (a) logged-
out and (b) logged-in (Y-axis in both figures uses a logarithmic scale).

the organisations behind the sharing groups using the method described in the
Sect. 2.2. We identified 694 ID-sharing groups of which 357 (=51 %) belonging to
two distinct organisations. We find that across these groups, Google and Rubi-
con Project have the highest presence with respectively 27 (=7 %), 20 (=5 %)
cases. Figure 4 shows the number of organisational ID-sharing groups against
their group size when the user is logged-out (Fig. 4a) and logged-in (Fig. 4b).
The number of ID-sharing groups with a larger size are higher in the logged-out
condition comparing to the logged-in condition. As an example, Fig. 5 shows the
largest ID-sharing group for the logged-out mode. In this group, we find the
Rubicon Project, Switch Concept (an ad. Network company) and StickyADStv
(a video publisher company) as the most dominant ones in terms of organisa-
tional ID-sharing. We observe strong collaborations between specific organisa-
tions such as the Rubicon Project, Sovrn (an ad Network company), Google and
StickyADStv.

This unexpected finding can be due to the fact that more domains have been
collaborating with each other when the user was logged-out, to compensate for
the lack of context about the user, and trying to create a more precise profile
for that user—by gathering as much information as possible.

4 Related Work

A number of studies have analyzed trackers from different points of view.
Krishnamurthy & Wills [2] showed the expansion of third-party trackers and
the acquisitions of tracking companies from 2005 for a period of three years.

Tracking Personal Identifiers Across the Web 39

Switch

33Across

A3Cloud
AdExtentadlooxtracking

Advertising.com

AlephD

A
ppN

exus

B
lueC

ava

bnm
laB

tr
ll

B
ur

st
ne

t

C
on

ve
rs

an
tm

ed
ia

C
ap

ita
lP

ow
erCrit

eo

Data
Je

tengage:BDR
FastClick

flx1

Blueshift

Google

HiMediaDs

Iponweb

Krux

Sovrn
M

icrosoft
M

indplotter
m

m
tro

m
yT

hings

navdm
p

N
eu

st
ar

O
V

H

R
ub

ic
on

P
ro

je
ct

Sim
pl

i.f
i

Sok
ra

ti

StickyAdstv

Tapad

MediaInovation

AOL

Wayfair

Fig. 5. The biggest organisational ID-sharing group in the logged-out mode. Link thick-
ness represents the frequency of collaboration between two organisations. A Darker
colored organisations are involved in higher number of cross-organisational ID-sharing.

In [9], they examined the access of web trackers to personal information based
on the category of the first-party website in which they are embedded. They
found that websites providing health and travel-related services disclose more
information to trackers than other types of websites. Gill et al. [10] studied the
amount of inferred information about users through tracking their visited web-
sites by ad networks. Liu et al. [11] have looked at tracking personal data on
the web using ISP travel from 2011, however the big shift away from using clear
text in the web introduces a much more complicated user ID sharing ecosystem
in the web today. They observed that ad networks are able to estimate users’
interest with 50 % accuracy. These studies showed the possible access of track-
ers to the user personal information whereas we study the scale and nature of
tracking ecosystem.

Roesner et al. [12] proposed a framework for classifying the behaviour of web
trackers based on the scope of the browsing profile they produce. They show
the spread of the identified classes amongst the top 500 websites in the world.
Zarras et al. [13] studied the ecosystem of ad networks that serve malicious
advertisement. Interestingly, they observed some ad networks which more than a
third of their traffic belongs to malicious advertisement. Gomer et al. [14] focused
on the network aspects of third-party trackers which appeared in the search
results of three search engines. They show a consistent network structure of

40 M. Falahrastegar et al.

third-party trackers and high efficiency in exchanging information among third-
parties.

Mayer et al. [15] surveyed different techniques which are used by web trackers
to collect user information. Acar et al. [6] presented a thorough study of persis-
tent user tracking mechanisms, particularly canvas fingerprinting and evercook-
ies. They introduced a method for identifying persistent user IDs. They crawled
top 3,000 Alexa domains, and examined the effect of blocking third-party cook-
ies as well as advertisement opt-out. They observed a decrease in the number of
shared IDs, however, they showed that such decrease does not affect the overall
access of ID sharing domains to user’s browsing history. The main purpose of
this study is to explore persistent methods of user tracking through active mea-
surements. Additionally, Olejnik et al. [7] studied cookie syncing. They observed
the presence of over 100 cookie syncing across top 100 sites. While these studies
highlighted the presence of ID-sharing practice across the Web, we focus on the
nature of ID sharing groups and their relation with user information using a
series of active and passive measurements.

5 Conclusion

In this paper, we explored the entangled connections between all parties of the
Web ecosystem. In particular, we investigated the tracking groups that shared
user specific identifiers. We recorded the browsing history of more than 100 users
for more than two weeks. To our surprise, we find 660 ID-sharing groups in our
data. We identify a significant amount of ID-sharing across different organisa-
tions. We identified Google and Rubicon Project (an ad. network company) as
the most dominant companies that used ID-sharing. Similar to our observation
at the organisational level, we observe a significant presence of domains from
different categories within ID-sharing groups. We observe that sensitive domain
categories such as health related ones participate in the ID-sharing with domains
related to advertisement trackers and search engines (seven ID-sharing groups).
Moreover, we examined the effect of user profile on the presence of ID-sharing
domains. Interestingly, we observe that users are being tracked regardless of their
profile condition (logged-in or logged-out) and the amount of browsing history.
We unexpectedly observe that the number of ID-sharing domains are higher in
the logged-out condition than logged-in. Our results suggest that more domains
are collaborating with each other when the user is logged-out trying to create a
more precise profile for that user. As a further work, we would like to examine
whether this collaboration amongst ID-sharing domains in the logged-out mode
aims to identify the user, or it is a side-effect of knowing less about the user, hence
being more inclusive in potential advertising sources. Note that from our data we
cannot directly observe whether domains use these IDs to merge collected data
from different sources. However, considering the possibility of such practice, we
believe it is important to get additional insight about what ID-sharing groups
actually do through the user IDs.

Tracking Personal Identifiers Across the Web 41

References

1. Vallina-Rodriguez, N., Shah, J., Finamore, A., Grunenberger, Y., Papagiannaki,
K., Haddadi, H., Crowcroft, J.: Breaking for commercials: characterizing mobile
advertising. In: Proceedings of the ACM Internet Measurement Conference (2012)

2. Krishnamurthy, B., Wills, C.: Privacy diffusion on the web: a longitudinal perspec-
tive. In: Proceedings of the 18th International Conference on World Wide Web.
ACM (2009)

3. Falahrastegar, M., Haddadi, H., Uhlig, S., Mortier, R.: The rise of panopticons:
examining region-specific third-party web tracking. In: Dainotti, A., Mahanti, A.,
Uhlig, S. (eds.) TMA 2014. LNCS, vol. 8406, pp. 104–114. Springer, Heidelberg
(2014)

4. NSA using Google’s online ad tracking tools to spy on web users. http://threatpost.
com/nsa-using-google-non-advertising-cookie-to-spy/

5. Ayenson, M., Wambach, D.J., Soltani, A., Good, N., Hoofnagle, C.J.: Flash Cookies
and Privacy II: Now with HTML5 and ETag Respawning. Social Science Research
Network Working Paper Series (2011)

6. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., Diaz, C.: The
web never forgets: persistent tracking mechanisms in the wild. In: Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2014, pp. 674–689. ACM, New York (2014)

7. Ghosh, A., Roth, A.: Selling privacy at auction. In: Proceedings of the 12th ACM
Conference on Electronic Commerce, EC 2011, pp. 199–208. ACM, New York
(2011)

8. Findtracker. http://www.eecs.qmul.ac.uk/∼marjan/repo/findtracker.zip
9. Krishnamurthy, B., Naryshkin, K., Wills, C.: Privacy leakage vs. protection mea-

sures: the growing disconnect. In: Proceedigs of the Web 2.0 Security and Privacy
Workshopp (2011)

10. Gill, P., Erramilli, V., Chaintreau, A., Krishnamurthy, B., Papagiannaki, K.,
Rodriguez, P.: Follow the money: understanding economics of online aggregation
and advertising. In: Proceedings of the Conference on Internet Measurement Con-
ference, IMC 2013, pp. 141–148. ACM, New York (2013)

11. Liu, Y., Song, H.H., Bermudez, I., Mislove, A., Baldi, M., Tongaonkar, A.: Iden-
tifying personal information in internet traffic. In: Proceedings of the 3rd ACM
Conference on Online Social Networks (COSN 2015), Palo Alto, November 2015

12. Roesner, F., Kohno, T., Wetherall, D.: Detecting and defending against third-party
tracking on the web. In: USENIX Symposium on Networking Systems Design and
Implementation (2012)

13. Apostolis, Z., Alexandros, K., Gianluca, S., Thorsten, H., Christopher, K.,
Giovanni, V.: The dark alleys of madison avenue: understanding malicious adver-
tisements. In: Proceedings of the Conference on Internet Measurement Conference,
IMC 2014, pp. 373–380. ACM, New York (2014)

14. Gomer, R., Rodrigues, E., Frayling, N.M., Schraefel, M.C.: Network analysis of
third party tracking: user exposure to tracking cookies through search. In: Web
Intelligence and Intelligent Agent Technology, vol. 1 (2013)

15. Mayer, J.R., Mitchell, J.C.: Third-party web tracking: policy and technology. In:
Proceedings of the IEEE Symposium on Security and Privacy (2012)

http://threatpost.com/nsa-using-google-non-advertising-cookie-to-spy/
http://threatpost.com/nsa-using-google-non-advertising-cookie-to-spy/
http://www.eecs.qmul.ac.uk/~marjan/repo/findtracker.zip

Like a Pack of Wolves: Community Structure
of Web Trackers

Vasiliki Kalavri1(B), Jeremy Blackburn2, Matteo Varvello2,
and Konstantina Papagiannaki2

1 KTH Royal Institute of Technology, Stockholm, Sweden
kalavri@kth.se

2 Telefonica Research, Barcelona, Spain

Abstract. Web trackers are services that monitor user behavior on the
web. The information they collect is ostensibly used for customization
and targeted advertising. Due to rising privacy concerns, users have
started to install browser plugins that prevent tracking of their web
usage. Such plugins tend to address tracking activity by means of crowd-
sourced filters. While these tools have been relatively effective in pro-
tecting users from privacy violations, their crowdsourced nature requires
significant human effort, and provide no fundamental understanding of
how trackers operate. In this paper, we leverage the insight that funda-
mental requirements for trackers’ success can be used as discriminating
features for tracker detection. We begin by using traces from a mobile
web proxy to model user browsing behavior as a graph. We then per-
form a transformation on the extracted graph that reveals very well-
connected communities of trackers. Next, after discovering that trackers’
position in the transformed graph significantly differentiates them from
“normal” vertices, we design an automated tracker detection mechanism
using two simple algorithms. We find that both techniques for automated
tracker detection are quite accurate (over 97 %) and robust (less than
2 % false positives). In conjunction with previous research, our findings
can be used to build robust, fully automated online privacy preservation
systems.

1 Introduction

The massive growth of the web has been funded almost entirely via
advertisements shown to users. Web ads have proven superior to traditional
advertisements for several reasons, the most prominent being the ability to show
personally relevant ads. While the content of the web page the ad is being served
on can help provide hints as to relevance, web advertisement agencies also rely
on mechanisms to uniquely identify and track user behavior over time. Known
as trackers, these systems are able to uniquely identify a user via a variety of
methods and over time can build up enough information about a user to serve
extremely targeted ads.

While ad agencies’ use of trackers has enabled services to provide access to
users free of charge, there is also a certain degree of “creepiness” in the way the
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 42–54, 2016.
DOI: 10.1007/978-3-319-30505-9 4

Like a Pack of Wolves: Community Structure of Web Trackers 43

current ecosystem works that has also been highlighted in the US congress [12].
Recent work [5] has even shown that government agencies can easily exploit
trackers to spy on people. Privacy concerns have led to the creation of client
side applications that block trackers and ads. For example, AdBlock [1] blocks
trackers by filtering requests through a set of crowdsourced rules. Unfortunately,
such lists are mostly opaque: there is no straight forward way to understand why
a tracker was added to the list or to get a sense as to how trackers work on an
individual or group basis, and users can be left out in the cold as evidenced by
the recent sale of AdBlock to an undisclosed buyer who immediately enabled
opting in to the “Acceptable Ads” program [14].

In the research community, several strategies for detecting and defending
against trackers have been introduced [7,10,13]. Overall, these works focus on
understanding the methods that trackers use in order to define techniques for
obfuscating a user’s browsing behavior. However, these previous works are gen-
erally focused on lower level intricacies, e.g., how trackers fingerprint users or
ensure that cookies persist even after users clean them.

In this paper, we take a different approach and attempt to characterize
some more fundamental aspects of trackers. Our rationale is that user requests,
e.g., accessing google.com, and requests to trackers, e.g., 3rd party request to
doubleclick.net, can be represented as a bipartite graph from which we can
derive unique tracker properties, allowing for the optimization and automation
of the tracker detection problem.

This work makes several contributions.

1. We model user browsing as a 2-mode graph using 6 months (November 2014–
April 2015) of traffic logs from an explicit web proxy. By analyzing this graph,
we discover that trackers are very well connected: 94 % appear in the largest
connected component of the graph.

2. We explore the communities trackers form by inducing a 1-mode projection
of the 2-mode browsing graph. We find that trackers form very well-defined
communities that distinguish them from regular URLs.

3. We show that the 1-mode projection graph is a useful tool to automatically
classify trackers with high precision and very low false positive rate. More
importantly, using the projection graph for tracker detection is very robust
to evasion since it captures a fundamental necessity of the tracking ecosystem:
presence of trackers on multiple sites, and presence of multiple trackers on the
same site, which allows publishers to better monetize ad display through real
time bidding. Changing such a behavior would limit the efficiency of tracking
as a whole.

2 Background and Dataset

Trackers enable targeted advertising and personalization services by monitoring
user behavior on the web. To understand web tracking, let us consider what
happens in the browser when a user visits a URL. First, the browser issues an

44 V. Kalavri et al.

HTTP request to the site to fetch the contents of the web page. The response con-
tains the page resources, including HTML, and references to embedded objects
like images and scripts. These references might then instruct the browser to
make additional HTTP requests (e.g., for the image itself) until the page is fully
loaded. Embedded objects can be hosted on different servers than the page con-
tent itself, in which case they are referred to as third-party objects. A fraction
of these third-party objects open connections to trackers, e.g., the popular Face-
book “like” button, at which point the users’ online whereabouts are logged for
targeting/personalization purposes.

2.1 Dataset

Our dataset is derived from 6 months (November 2014–April 2015) of traffic logs
from an explicit web proxy. The proxy is operated by a major telecom located in
a large European country. Our data is delivered to us in the form of augmented
Apache logs. The logs include fields to identify the user that made the access,
the URL that was requested, headers, performance information like latency and
bytes delivered. We call this dataset the proxy log, and in total it represents 80
million accesses to 2 million individual sites. In the following section, we describe
how we use the proxy log to model web tracking as a graph problem. We label
URLs in our dataset as tracker or other based on ground truth derived from the
EasyPrivacy list for AdBlock [3].

2.2 Web Tracking as a Graph Problem

A 2-mode graph is a graph with two different modes (or classes) of vertices,
where edges are only allowed between vertices belonging to different modes.
The interactions between explicit user requests and background requests, both
page content and third-party objects like web tracking services, can be naturally
modeled as a 2-mode graph. The first mode of vertices in the graph are URLs
that the user intentionally visits, while the second mode are URLs for objects
that are embedded in the visited page.

More precisely, we represent the URLs that a browser accesses as a 2-mode
graph G = (U, V,E), where U are the URLs that the user explicitly visits,
V are the URLs that are embedded within those pages, and E is the set of
edges connecting vertices in U (explicitly visited URLs) to vertices in V (URLs
embedded within visited pages). In this paper, we call vertices in U referers,
vertices in V hosts, and G the referer-hosts graph.

In graph analysis, communities are groups of vertices that are well-connected
internally, and sparsely connected with other groups of vertices. Vertices belong-
ing to the same community are more likely to be similar with respect to con-
nectivity and network position than vertices belonging to different communities.
V contains both regular embedded objects and third-party objects potentially
associated with trackers. We expect regular embedded objects to only appear
on the hosting web page, while tracker objects need to appear on as many
web pages as possible to enable successful tracking of users across websites.

Like a Pack of Wolves: Community Structure of Web Trackers 45

Fig. 1. Example of the hosts-projection graph transformation. Vertices prefixed with
r are the pages the user explicitly visited while those prefixed with h were embedded
within the r vertex they have an edge with. Note that additional information associ-
ated with the vertex (e.g., tracker/non-tracker/unknown label) is not affected by the
transformation.

This implies that: (1) tracker vertices in V should be linked to many different
vertices in U and (2) tracker vertices are members of well-defined communities
in G.

Unfortunately, working with communities in 2-mode graphs like ours can be
tricky. For example, the relationships between vertices in the same mode are only
inferred from relationships that pass through vertices in the second mode, which
can lead to unexpected results from standard community detection algorithms
run on a raw 2-mode graph. This is especially a problem when the community
structures of the two modes are different as we might expect in our case [9]. To
avoid this problem, it is typical to extract and analyze 1-mode projections of
2-mode graphs.

Assuming that users do not intentionally visit tracker sites, U should not
contain tracker URLs which are instead contained in V . Accordingly, we can
project the 2-mode graph into a 1-mode graph that only contains the vertices in
V , by creating the hosts-projection graph G′. In G′, we create an edge between
any two vertices in V that share a common neighbor in G. I.e., if two vertices,
v and v′ from V both share an edge with a vertex u from U , then there is
an edge e = (v, v′) in G′. Figure 1 illustrates this transformation. This way,
G′ preserves much of the original graph’s structural information and captures
implicit connections between trackers through other sites.

3 Trackers’ Position in the Graph

In this section we present an analysis on the referer-hosts graph and the hosts-
projection graph. We are especially interested in discovering whether trackers
have different properties than “normal” URLs in these graphs.

3.1 In the Referer-Hosts Graph

We first investigate trackers’ degree centrality, or how well trackers are con-
nected to other vertices in the graph. Although trackers are essentially required

46 V. Kalavri et al.

0.00

0.25

0.50

0.75

1.00

100 102 104 106

In−degree

C
D

F

kind

Other

Tracker

(a) CDF of in-degree.

100

101

102

103

104

105

101 102 103 104 105

Component Size

C
ou

nt

(b) Connected components distribution.

Fig. 2. Basic analysis of referer-hosts graph.

to appear on many different pages to collect meaningful data, we are interested
in quantifying this. We begin by plotting the in-degree of vertices in mode V
of the referer-hosts graph, broken down into “trackers” and “others” in Fig. 2a.
The figure can be thought of as illustrating the number of unique referers that
tracker/non-tracker hosts are embedded within. Surprisingly, we find that track-
ers tend to have a slightly lower in-degree than other URLs, which contradicts
our initial observation that trackers must appear on many different pages in
order to work. When looking at things a bit closer, we discovered that this is
due to the use of user/page specific tracking URLs, mostly from Google, such
unique-hash.metrics.gstatic.com. It follows that simply assuming high in-
degree vertices as characteristic of trackers is not suitable. As we will discuss
later, the hosts-projection graph transformation can be used to shed additional
light on this situation.

Next, to see how well connected trackers are to each other we extract con-
nected components and plot the distribution of their sizes in Fig. 2b. A connected
component is a subgraph in which there exists a path between any two of its
vertices. As expected, there are many 2-vertex components (pages that were
only visited once and that host no, or very uncommon 3rd party content) and
one dominant component. This largest connected component (LCC) contains
500,000 vertices, i.e., one fourth of the distinct URLs in our dataset, and 94 %
of all trackers in our dataset (identified via EasyPrivacy list) are in the LCC. We
will leverage this finding in Sect. 4 when showing how the community structure
of trackers can be exploited for detection purposes.

3.2 In the Hosts-Projection Graph

We create the hosts-projection graph from the largest connected component in
the referer-hosts graph. The projection has 80,000 vertices and 43 million edges.
We note that the only substantive information lost in the projection graph is
the number of unique pages a tracker appears on (i.e., the in-degree of the

Like a Pack of Wolves: Community Structure of Web Trackers 47

0.00

0.25

0.50

0.75

1.00

100 101 102 103 104 105

degree

C
D

F

kind

Other

Tracker

Fig. 3. CDF of degrees in the hosts-projection graph for trackers and others.

vertex within the referer-hosts graph). We first look at the degree distribution of
trackers, and then examine the composition of their neighborhoods within the
hosts-projection graph.

Trackers’ Degree Distribution is a Distinguishing Factor. Figure 3 shows
the degree distribution of trackers and other hosts in the hosts-projection graph.
As opposed to the referer-hosts case, here we observe a clear difference between
the degree distribution of trackers and other pages, noting that the low-degree
skew of trackers has disappeared. This is due to the construction of the projection
graph: while in the referer-hosts graph, trackers only have edges to the pages
they are embedded within, in the projection graph, they are directly connected
with any URL that co-appears on the same page. For example, if we have three
trackers that are only embedded within a single page, they will each have an
in-degree of 1 in the referer-hosts graph, however, they will all be connected in
the projection graph, resulting in a degree of 2. In general, we note that a higher
degree might imply that trackers are more “important” in the projected graph
than other pages.

Figure 3 also illustrates another distinguishing factor of trackers. Their degree
distribution skews extremely high, with about 80 % having a degree of over 3,000.
The explanation for this is that URLs that point to content on sites (e.g., CDNs)
tend to be unique, or at least tend to appear on only a few sites. On the other
hand, trackers must appear on multiple sites to be effective, and thus co-appear
with many other URLs (some tracker, some not).

Trackers are Mainly Connected to Other Trackers. Next, we examine
trackers’ neighborhoods more closely. Figure 4a shows the ratio of a vertex’s
neighbors that are trackers, distinguishing between tracker vertices and other.
We observe that the vast majority of trackers’ neighbors are other trackers. To
further investigate how well-connected trackers are among them, we plot the
ratio of a vertex’s neighbors that are trackers over the total number of trackers
in Fig. 4b and observe that trackers tend to be direct neighbors with most of

48 V. Kalavri et al.

0.00

0.25

0.50

0.75

1.00

10−3 10−2 10−1 100

Ratio of tracker neighbors over all neighbors

C
D

F

kind

Other

Tracker

(a) Ratio of the projection graph vertices’
neighbors that are trackers.

0.00

0.25

0.50

0.75

1.00

10−3 10−2 10−1 100

Ratio of tracker neighbors over total trackers

C
D

F kind

Other

Tracker

(b) Ratio of a node’s tracker neighbors over
the total number of trackers in the dataset.

Fig. 4. CDFs of neighborhood compositions for trackers and non-trackers.

Fig. 5. Tracker oriented visualization of the hosts-projection graph from April’s logs.
The visualization includes only edges where at least one end point is a tracker, resulting
in 60 k vertices and 340 k edges. The darker a vertex’s color, the higher its degree. The
community on the right contains trackers and ad servers, where ad servers can be seen
as having a slightly lighter color and being mostly clustered on the left edge of the
community. The left cluster consists of normal webpages and a few popular trackers,
distinguished by their larger size and darker color (Color figure online).

the other trackers in the graph. This result is likely an artifact of publishers’
tendency to add multiple trackers on their websites in the hope of serving better
targeted ads.

From a privacy standpoint, this result is worrying as it highlights the per-
vasiveness of passive “surveillance” on the web. Even completely blocking any
particular tracker could be somewhat mitigated by collusion. We do note that
because the hosts-projection graph flattens the referer-hosts graph, collusion
would not be enough to regain information on visits to pages where it is uniquely
present.

Our findings up until now suggest that trackers form a dense community in
the hosts-projection graph. This dense community is quite clearly seen in Fig. 5,
which visualizes the host-projection graph (from April’s logs) focused around
trackers’ positions. We observe that the majority of low-degree trackers indeed

Like a Pack of Wolves: Community Structure of Web Trackers 49

Table 1. New trackers per month

Test records in LCC Trackers in LCC Total new trackers

February 13685 760 811

March 18313 740 774

April 40465 747 792

form a very dense and easily identifiable community (the cluster on the right).
On the other hand, there exist a few popular trackers (the large dark nodes in
the left cluster), which are connected to the majority of normal URLs and are
also very well-connected among each other.

4 Classifying Trackers

Our findings suggest that trackers form a well-connected cluster in the hosts-
projection graph, and are mostly connected to other trackers. In this section,
we leverage these findings to automatically classify trackers. We show that even
a simple assessment of vertices’ neighbors in the hosts-projection graph can
yield good classification results with two methods: (1) a rule-based classifier
which analyzes the first-hop neighborhoods of each unlabeled vertex in the hosts-
projection graph, and (2) an iterative label propagation method.

4.1 Classification via Neighborhood Analysis

This classification method analyzes the first-hop neighborhoods of each unla-
beled node in the hosts-projection graph. For each unlabeled node, we count
the number of trackers among its immediate neighbors and make a classification
decision based on a configurable threshold. If the percentage of tracker neighbors
is above the threshold, then the node is labeled as a tracker.

We evaluate our classifier using three subsets of our dataset. For every subset,
we use all the hosts that appear in the last month as the test set and all the
previous months as the training set. Thus, we use, e.g., the logs from November
up to January in order to classify hosts seen in February logs. Hosts in the
training set are labeled as “tracker” or “other” using the EasyPrivacy list as
ground truth. Note that we also ensure that previously labeled vertices are not
included in any future test sets. We use our classifier to tag each of the untagged
nodes as tracker or non-tracker and measure precision, accuracy, false positive
rate (FPR) and recall for each method. We assess classification stability, by
randomly choosing test sets out of the complete dataset.

The number of test records and previously unseen trackers per month are
shown in Table 1. We observe around 800 new trackers per month and this num-
ber is independent from the total number of requests to new pages over the

50 V. Kalavri et al.

Fig. 6. Classifier performance for the neighborhood analysis method.

6 months of our dataset1. This indicates that there is enough diversity in the
tracker “ecosystem” that users are constantly exposed to “new-to-them” track-
ers. In turn, this strengthens the need for an automated detection system to
alleviate the load on crowdsourced approaches.

The classification results for February, March, and April are shown in Fig. 6.
We assess the impact of threshold selection in the following ways: (a) Unlabeled
nodes take the label of their neighbors’ most common tag (threshold = 0.00),
and (b) The tag appears on at least a given fraction of the vertex’s neighbors.

In all cases, we achieve a classification precision that varies from 64 % up to
83 %. We observe that precision increases for higher thresholds: the more tracker
neighbors a node has, the higher the probability that it is a tracker itself. Simi-
larly, FPR and accuracy both improve for higher thresholds, but remain under
2 % and over 97 % in all cases. On the other hand, recall decreases as we increase
the threshold, which means that we might miss a few trackers, but it is above
88 % in all cases.

4.2 Classification via Label Propagation

Label Propagation is a scalable iterative algorithm for community detection [11].
It exploits the graph structure to propagate labels and identify densely connected
groups of vertices. Initially, vertices are assigned unique labels. Then, in an
iterative fashion, vertices exchange labels with their neighbors. At each iteration,
a vertex receives a list of labels of its immediate neighbors, adopting the most
frequent label for itself. The algorithm converges when an iteration results in no
label changes.

Figure 7 illustrates how we use this algorithm on the hosts-projection graph.
First, vertices propagate labels until convergence (i=0:4 in Fig. 7a); next vertices
1 We consider a tracker new if our users have not been exposed to it before. Note that

we identify trackers by their unique URLs, without grouping them by domain.

Like a Pack of Wolves: Community Structure of Web Trackers 51

(a) Cluster identification with label propagation.

(b) Assigning tags to individual vertices. (c) Super tag assignment to communities.

Fig. 7. Illustration of label propagation technique for tracker classification.

Table 2. Label propagation classification results

Precision FPR Accuracy Recall

Monthly test sets February 0.934 0.004 0.993 0.932

March 0.946 0.002 0.994 0.9

April 0.922 0.001 0.997 0.872

Random test sets 5 % 0.923 0.004 0.994 0.958

10 % 0.934 0.004 0.993 0.941

20 % 0.941 0.003 0.994 0.948

30 % 0.939 0.003 0.994 0.951

with the same label are grouped in the same community (i=5 in Fig. 7a). Then,
we use the EasyPrivacy list to identify and tag known trackers inside the clusters,
and tag as non-trackers white-listed vertices (Fig. 7b). Finally, we assign a super
tag to each cluster by choosing the most popular tag among its cluster members
(Fig. 7c). We classify unlabeled nodes by assigning them the super tag of the
cluster in which they belong.

The results for the label propagation method are shown in Table 2. To assess
classification stability, we evaluate the classification using random sets of test
records of varying sizes. Instead of selecting the test set based on the timestamp

52 V. Kalavri et al.

of the log record, we create test sets from the complete graph, by randomly
choosing log records and marking them as “untagged”. We run this experiment
for test sets of 5 %, 10 %, 20 % and 30 % of the complete dataset and repeat it 3
times.

By exploring further than the first-hop neighborhood of nodes, this method
can successfully locate the trackers community and classify test items with
extremely high precision, up to 94 %, in addition to achieving high accuracy
and recall, and lowering FPR. Further, this result does not come at a perfor-
mance cost: the algorithm converged in less than 10 iterations for all the test
sets used. Finally, this method has the advantage of not needing a manually set
threshold.

5 Related Work

A number of studies have empirically analyzed the ecosystem of trackers and
third-parties on the web, focusing on behavioral and network aspects.

TrackAdvisor [8] is a tool that analyzes cookie exchange statistics from HTTP
requests to automatically detect trackers. Similar to us, their goal is to iden-
tify trackers without having to rely on blacklists. They also identify third-party
requests by looking at the referer field. Their dataset is created by visiting Alexa
top 10 K pages (not real user data) and is an order of magnitude smaller than
ours (500 k requests in total). Our method does not need to intercept cookie
traffic. Our finding that a tracker appears in multiple pages agrees with their
results. In conclusion, we could call the two methods complementary; they could
be combined to produce a more powerful tool.

Roesner et al. provide a study of web tracking, classifying tracking behaviors
and evaluating defense mechanisms [13] using web traces from AOL search logs
to simulate real user behavior. They build a classification framework for distin-
guishing different types of trackers, based on their functionality. In contrast, our
classification method distinguishes between trackers and non-trackers, while it
is oblivious to the tracker mechanisms and functionality specifics.

Bau et al. propose a machine learning mechanism for detecting trackers [4].
They evaluate machine learning approaches and present results from a prototype
implementation. They use DOM-like hierarchies from the crawl data HTTP
content headers as the main features. While they achieve precision of 54 % for
1 % FPR, our methods achieve much better precision and lower FRP, while not
relying on page content collection.

Gomer et al. investigate the graph structure of third-party tracking domains
in [6] in the context of search engine results. They obtain their graph by using
searching several popular search engines with a set of pre-defined queries as
opposed to real browsing behavior as we do. Their focus is on how users are
exposed to trackers via normal search behavior and they find a 99.5 % chance
of being tracked by all major trackers within 30 clicks on search results. They
further found that the graph structure was similar across geographic regions,
which reduces the concern of bias in our dataset.

Like a Pack of Wolves: Community Structure of Web Trackers 53

In agreement with our findings, most of the above works also find that a small
number of trackers are able to capture the majority of user behavior. However,
our work is, to the best of our knowledge, the first to show that using this
community structure as an explicit feature can accurately predict whether an
unknown URL is a tracker or not.

6 Conclusion

In this paper we explored the community structure of trackers using a large-
scale dataset from an explicit web proxy. We transformed user requests into
a 2-mode referer-hosts graph where vertices in the first mode represent pages
the user visited and vertices in the second mode represent requests for objects
embedded in those pages. We found that 94 % of trackers were in the largest
connected component of this graph. In order to study how trackers relate to
each other, we collapsed the referer-hosts graph into a 1-mode hosts-projection
graph. From the hosts-projection graph we observed an extremely high degree of
clustering, indicating the formation of tight communities. From this observation,
we demonstrated the effectiveness of two tracker detection mechanisms: (1) a
simple threshold based classifier that examines the number of tracker neighbors
of unknown vertices and (2) a label propagation algorithm that makes implicit
use of the communities trackers form. Both techniques achieved highly surprising
accuracies (over 97 %) and low false positive rates (under 2 %).

We implemented the analysis and classification algorithms using Apache
Flink [2]. In the future we intend to port them to a streaming version for deploy-
ment within our explicit web proxy, but even our initial implementations are
quite fast. For example classification via the label propagation method was on
the order of minutes when run on a commodity Mac laptop, indicating there are
few scalability concerns for production deployment.

References

1. AdBlock. https://getadblock.com/
2. Apache Flink. http://www.flink.apache.org
3. EasyPrivacy list. https://hg.adblockplus.org/easylist/
4. Bau, J., Mayer, J., Paskov, H., Mitchell, J.C.: A promising direction for web track-

ing countermeasures. In: Web 2.0 Security and Privacy (2013)
5. Englehardt, S., Reisman, D., Eubank, C., Zimmerman, P., Mayer, J., Narayanan,

A., Felten, E.W.: Cookies that give you away: the surveillance implications of web
tracking. In: Proceedings of the 24th international conference on World Wide Web,
WWW 2015 (2015)

6. Gomer, R., Rodrigues, E.M., Milic-Frayling, N., Schraefel, M.C.: Network analysis
of third party tracking: user exposure to tracking cookies through search. In: Pro-
ceedings of the IEEE/WIC/ACM International Joint Conferences on Web Intelli-
gence and Intelligent Agent Technologies, pp. 549–556 (2013)

7. Krishnamurthy, B., Wills, C.: Privacy diffusion on the web: a longitudinal perspec-
tive. In: Proceedings of the 18th International Conference on World Wide Web,
WWW 2009, pp. 541–550 (2009)

https://getadblock.com/
http://www.flink.apache.org
https://hg.adblockplus.org/easylist/

54 V. Kalavri et al.

8. Li, T.-C., Hang, H., Faloutsos, M., Efstathopoulos, P.: TrackAdvisor: taking back
browsing privacy from third-party trackers. In: Mirkovic, J., Liu, Y. (eds.) PAM
2015. LNCS, vol. 8995, pp. 277–289. Springer, Heidelberg (2015)

9. Melamed, D.: Community structures in bipartite networks: a dual-projection app-
roach. PLoS ONE 9(5), e97823 (2014)

10. Papaodyssefs, F., Iordanou, C., Blackburn, J., Laoutaris, N., Papagiannaki, K.:
Web identity translator: behavioral advertising and identity privacy with WIT.
In: Proceedings of the 14th ACM Workshop on Hot Topics in Networks (to appear),
HotNets 2015 (2011)

11. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)

12. Rockefeller, J.D.: Do-Not-Track online act of 2013. US Senate (2013)
13. Roesner, F., Kohno, T., Wetherall, D.: Detecting and defending against third-party

tracking on the web. In: Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI 2012 (2012)

14. Williams, O.: Adblock extension with 40 million users sells to mystery buyer,
refuses to name new owner (2015). http://thenextweb.com/apps/2015/10/02/
trust-us-we-block-ads/

http://thenextweb.com/apps/2015/10/02/trust-us-we-block-ads/
http://thenextweb.com/apps/2015/10/02/trust-us-we-block-ads/

Mobile and Cellular

A First Analysis of Multipath TCP
on Smartphones

Quentin De Coninck1(B), Matthieu Baerts2, Benjamin Hesmans1,
and Olivier Bonaventure1

1 Université catholique de Louvain, Louvain-la-Neuve, Belgium
{quentin.deconinck,benjamin.hesmans,olivier.bonaventure}@uclouvain.be

2 Tessares SA, Louvain-la-Neuve, Belgium
matthieu.baerts@tessares.net

http://smartphone.multipath-tcp.org

Abstract. Multipath TCP is a recent TCP extension that enables mul-
tihomed hosts like smartphones to send and receive data over multiple
interfaces. Despite the growing interest in this new TCP extension, little
is known about its behavior with real applications in wireless networks.
This paper analyzes a trace from a SOCKS proxy serving smartphones
using Multipath TCP. This first detailed study of real Multipath TCP
smartphone traffic reveals several interesting points about its behavior in
the wild. It confirms the heterogeneity of wireless and cellular networks
which influences the scheduling of Multipath TCP. The analysis shows
that most of the additional subflows are never used to send data. The
amount of reinjections is also quantified and shows that they are not a
major issue for the deployment of Multipath TCP. With our method-
ology to detect handovers, around a quarter of the connections using
several subflows experience data handovers.

1 Introduction

TCP is the dominant transport protocol, both on the wired Internet and in
wireless networks. Over the years, TCP has evolved and included various opti-
mizations. Multipath TCP is the last major extension to TCP [9,20]. It enables a
multihomed host to exchange data for a single connection over different interfaces.

Multipath TCP was standardized in early 2013. Although the extension is still
young, it is already used to support several commercial services. In September
2013, Apple has deployed Multipath TCP on hundreds of millions of smart-
phones and tablets to improve the user experience for the Siri voice recognition
application. In July 2015, Korean Telecom announced that they have enabled
Multipath TCP on Android smartphones to bond WiFi and LTE together. These
smartphones reach download speeds of 800 Mbps and more. In September 2015,
OVH, a French ISP and hosting provider, announced their OverTheBox ser-
vice that uses Multipath TCP to enable SMEs to bond several DSL over cable
links together. Other use cases are being explored and it can be expected that
Multipath TCP traffic will grow in the coming years.
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 57–69, 2016.
DOI: 10.1007/978-3-319-30505-9 5

58 Q. De Coninck et al.

Despite the important role that Multipath TCP could play on smartphones,
little is known about its behavior with real applications. Most of the articles on
Multipath TCP performance relied on lab measurements [15,19] or were carried
out with test applications [1,7,8].

This paper provides the first detailed analysis of the operation of Multi-
path TCP on smartphones used by real users. Since Multipath TCP is not yet
deployed on Internet and cloud servers, installing a Multipath TCP kernel is
not sufficient to automatically generate Multipath TCP traffic. To benefit from
Multipath TCP, a SOCKS proxy had to be installed on a server supporting Mul-
tipath TCP and the smartphones were configured to use the SOCKS server as
their relay for all connections. This is the same setup as KT’s commercial deploy-
ment. By sharing the studied trace, the measurement tools and the analysis, this
paper improves our understanding of the dynamics of this new protocol.

This paper is organized as follows. It first provides a brief overview of Multi-
path TCP and discusses related work in Sect. 2. It describes the collected dataset
in Sect. 3 and gives first characteristics in Sect. 4. In Sect. 5, it takes a closer look at
the performances of Multipath TCP. It concludes in Sect. 6 with the main lessons
that we learned from this first detailed analysis of Multipath TCP packet traces.

2 Multipath TCP and Related Work

Multipath TCP is a recent TCP extension that enables the transmission of the
data belonging to one connection over different paths or interfaces [9]. A Multi-
path TCP connection is a logical association that provides a bytestream service.
To understand its operation, let us see briefly an example on how a smartphone
could use Multipath TCP. To request the utilization of Multipath TCP, the
smartphone adds the MP CAPABLE option in SYN segment sent over its cellular
interface. This option contains some flags and a key [9]. If the server supports
Multipath TCP, it includes its key in the MP CAPABLE option sent in the SYN+ACK.
According to the Multipath TCP terminology, this TCP connection is called the
initial subflow [9]. The smartphone can use it to exchange data over the cel-
lular interface. If the smartphone wants to also send data for this connection
over its WiFi interface, it sends a new SYN segment with the MP JOIN option
over this interface. This option contains a token derived from the key announced
by the server in the MP CAPABLE option. This token identifies the Multipath
TCP connection on the server side. The server replies with a SYN+ACK contain-
ing the MP JOIN option and the second subflow is established. At this stage,
the Multipath TCP connection contains two subflows, but this number is not
fixed. The WiFi subflow can stop when the smartphone goes away from access
point. At this point, the smartphone can advertise the proxy that it lost one
address through a REMOVE ADDR sent unreliably in TCP options. Another sub-
flow can be created when another IP address is learned from a different access
point. Multipath TCP sends data over any of the available subflows. Two levels
of sequence numbers are used by Multipath TCP : the regular TCP sequence
number and the Data Sequence Number (DSN). The DSN corresponds to the

A First Analysis of Multipath TCP on Smartphones 59

Multipath TCP bytestream and when data is sent over a subflow, its DSN is
mapped to the regular sequence numbers with the DSS option that also contains
DSN acknowledgements. When losses occur, Multipath TCP can retransmit data
over a different subflow. This operation is called a reinjection [20].

The operation of a Multipath TCP implementation depends on several algo-
rithms that are not standardized by the IETF. First, the path manager defines
the strategy used to create and delete subflows. The smartphones use the
full-mesh path manager that creates one subflow over each pair of interfaces as
soon as the initial subflow has been fully established or as soon as a new address
has been learned. Second, the packet scheduler [16] selects, among the active
subflows that have an open congestion window, the subflow that will be used to
send the data. The smartphones and the proxy used the default Multipath TCP
scheduler in the Linux kernel that prefers the subflow with the smallest RTT.
Third, the congestion controller. Here, the standard one (LIA) was used.

Various researchers have analyzed the performance of Multipath TCP
through measurements. Raiciu et al. [19] discuss how Multipath TCP can be
used to support mobile devices and provide early measurement results. Paasch
et al. [15] propose three modes for the operation of Multipath TCP in wireless
networks and analyse measurements of handovers. Chen et al. [1] analyze the
performance of Multipath TCP in WiFi/cellular networks by using bulk transfer
applications running on laptops. Ferlin et al. [8] analyze how Multipath TCP
reacts to bufferbloat and propose a mitigation technique. As of this writing, this
mitigation technique has not been included in the Linux Multipath TCP imple-
mentation. Ferlin et al. [7] propose a probing technique to detect low performing
paths and evaluates it in wireless networks. Deng et al. [4] compare the perfor-
mance of single-path TCP over WiFi and LTE networks with Multipath TCP on
multi-homed devices by using active measurements and replaying HTTP traf-
fic observed on mobile applications. They show that Multipath TCP provides
benefits for long flows but not for short ones, for which the selection of inter-
face for the initial subflow is important from a performance viewpoint. Hesmans
et al. [11] analyze a one week-long server trace supporting Multipath TCP.

3 Dataset

Although Multipath TCP is already used by hundred of millions of Apple smart-
phones to support the Siri voice recognition application, it is difficult to collect
both WiFi and cellular traces without cooperation from an ISP. Instead, a Multi-
path TCP capable SOCKS proxy was set up (like KT) and this analysis focuses on
the Multipath TCP implementation in the Linux kernel [14]. This implementation
is distributed from http://multipath-tcp.org and can be integrated in Android.

The dataset covers the traffic produced by a dozen of users using Nexus 5
smartphones running Android 4.4 with a modified Linux kernel that includes
Multipath TCP v0.89.5. These users were either professors, PhD or Master stu-
dents at Université catholique de Louvain. While some of them used their device
to go only on the Internet, others are still using them as their main phone.

http://multipath-tcp.org

60 Q. De Coninck et al.

However, installing Multipath TCP on the smartphones is not sufficient to use
it for all connections established by applications. As of this writing, there are
probably only a few dozens of Multipath TCP enabled servers on the Internet
and these are rarely accessed by real smartphone applications. To force these
applications to use Multipath TCP, ShadowSocks1 was installed on each smart-
phone and configured to use a SOCKS server that supports Multipath TCP for
all TCP connections. Note that since ShadowSocks does not support IPv6, this
trace only contains IPv4 packets. The smartphones thus use Multipath TCP over
their WiFi and cellular interfaces to reach the SOCKS server and this server uses
regular TCP to interact with the final destinations. From the server side, all the
connections from the dozen smartphones appear as coming from the SOCKS
server. This implies that the external (cellular or WiFi) IP address of the smart-
phone is not visible to the servers that it contacts. This might affect the operation
of some servers that adapt their behavior (e.g. the initial congestion window) in
function of the client IP address. Moreover, note that the ShadowSocks client
sends DNS requests over TCP.

A special Android application [3] managing the utilization of the cellular
and WiFi interfaces was also installed on each smartphone. Smartphones with
Android 4.4 assume that only one wireless interface is active at a time. When such
a smartphone switches from cellular to WiFi, it automatically resets all existing
TCP connections by using Android specific functions. This application enables
the cellular and WiFi interfaces simultaneously. It also controls the routing tables
and updates the policy routes that are required for Multipath TCP every time
the smartphone connects to a wireless network. Thanks to this application, the
modified Nexus 5 can be used by any user since it does not require any networking
knowledge.

The SOCKS proxy ran tcpdump to collect all the packets exchanged with
the smartphones. Measurements were performed in Belgium from March 8th to
April 28th 2015. Over this period of 7 weeks, more than 71 millions Multipath
TCP packets were collected for a total of 25.4 GBytes over 390,782 Multipath
TCP connections.2 To our knowledge, there is no equivalent public dataset. The
analysis scripts are also open-sourced [2,3].

4 Characterization of the Trace

The main characteristics of the Multipath TCP connections in the dataset are
first analyzed. The destination ports of the captured packets are not sufficient to
identify the application level protocol. Since the smartphone connects through
a SOCKS proxy, all the packets are sent towards the destination port used by
the proxy (443 to prevent middlebox interferences). The real destination port
is extracted from the SOCKS command sent by the ShadowSocks client at the
beginning of each connection. As shown on Table 1, most of the connections and
data bytes are related to Web traffic. Since ShadowSocks sends DNS requests
1 Available at http://shadowsocks.org.
2 Anonymized traces available: http://crawdad.org/uclouvain/mptcp smartphone.

http://shadowsocks.org
http://crawdad.org/uclouvain/mptcp_smartphone

A First Analysis of Multipath TCP on Smartphones 61

Table 1. Statistics about destination port fetched by smartphones.

Port # connections % connections Bytes % bytes

53 107,012 27.4 17.4 MB < 0.1

80 103,597 26.5 14,943 MB 58.8

443 104,223 26.7 9,253 MB 36.4

4070 571 0.1 91.7 MB 0.4

5228 10,602 2.7 27.3 MB 0.1

8009 10,765 2.8 0.97 MB < 0.1

Others 54,012 13.8 1,090 MB 4.3

over TCP, it is expected to have a large fraction of the connections using port
53. Among other popular port numbers, there are ports 4070 — e.g., used by
Spotify —, Google Services (5228) and Google Chromecast (8009).

65 % of the observed connections last less than 10 s. In particular, 4.3 % are
failed connections, i.e. the first SYN was received and answered by the proxy,
but the third ACK was lost (or a RST occurred). 20.8 % of the connections last
more than 100 s. Six of them last for more than one entire day (up to nearly two
days).

Looking at the bytes carried by each connection, most (86.9 %) of them carry
less than 10 KBytes. In particular, 3.1 % of the connections carry between 9 and
11 bytes. Actually, those are empty connections, since the SOCKS command are
7 bytes long, two bytes are consumed by the SYNs and the use of the remaining
two bytes depend on how the connections were closed (RST or FIN). The longest
connection in terms of bytes transported around 450 MBytes and was spread over
five subflows.

5 Analysis

In the following, the analysis will focus on relevant subsets of the trace such
as connections with at least two subflows, connections using at least two sub-
flows or connections experiencing handover. Table 2 gives the characteristics of
these subsets. They are used to analyze how Multipath TCP subflows are cre-
ated (Sect. 5.1), study the heterogeneity of the available networks in terms of
round-trip-times (Sect. 5.2), estimate the packet reordering of Multipath TCP
(Sect. 5.3), study how subflows are used (Sect. 5.4), quantify the reinjection over-
head (Sect. 5.5) and identify connections experiencing handovers (Sect. 5.6).

5.1 Establishment of the Subflows

With Multipath TCP, a smartphone can send data over various paths. The
number of subflows that a smartphone creates depends on the number of active
interfaces that it has and on the availability of the wireless networks.

62 Q. De Coninck et al.

Table 2. The different (sub)traces analyzed in this section.

Name Description # connections Bytes to proxy Bytes from proxy

T0 Full trace 390,782 652MB 24,771MB

T1 At least 2 established subflows 126,040 238MB 13,496MB

T2 At least 2 used subflows 32,889 152MB 11,856MB

T3 With handover 8,461 36.7MB 4,626MB

Table 3. Number of subflows per Multipath TCP connection.

Number of subflows 1 2 3 4 5 >5

Percentage of connections 67.75 % 29.96 % 1.07 % 0.48 % 0.26 % 0.48 %

Table 3 reports the number of (not necessarily concurrent) subflows that are
observed in T0. Most of the connections only have one subflow. On another side,
2.29 % of the connections have more than two subflows. Having more subflows
than the number of network interfaces is a sign of mobility over different WiFi
and/or cellular access points since IPv6 was not used. A connection establishing
42 different subflows was observed.

Another interesting point is the delay between the establishment of the con-
nection (i.e. the first subflow) and the establishment of the other subflows. The
smartphone tries to create subflows shortly after the creation of the Multipath
TCP connection and as soon as a new interface gets an IP address. Late joins can
mainly be expected when a smartphone moves from one network access point
to another. To quantify this effect, Fig. 1 plots the CDF of the delays between
the creation of each Multipath TCP connection and all the additional subflows
that are linked to it. 57.4 % of all the additional subflows are established within
200 ms. This percentage increases to 72.2 % if this limit is set to one second.
If the analysis is restricted to the first additional subflow, these percentages
are respectively 61.7 % and 77.5 %. Joins can occur much after the connection
is established. Indeed, 13.5 % of the additional subflows were established one
minute after the establishment of the connection, and 1.5 % of them were added
one hour later. The maximal observed delay is 134,563 s (more than 37 h) and
this connection was related to the Google Services. Those late joins suggests
network handovers, and late second subflow establishments can be explained by
smartphones having one network interface unavailable.

5.2 Subflows Round-trip-times

From now, we focus on the subtrace T1 that includes all the connections with at
least two subflows. A subflow is established through a three-way handshake like a
TCP connection. Thanks to this exchange, the communicating hosts agree on the
sequence numbers, TCP options and also measure the initial value of the round-
trip-time for the subflow. For the used Linux implementation of Multipath TCP,

A First Analysis of Multipath TCP on Smartphones 63

10 -2 10 -1
10 0 10 1

10 2 10 3 10 4 10 5
10 6

Time between MP_JOIN and MP_CAP [s]

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Additional subflows
Second subflows

Fig. 1. Delay between the creation of
the Multipath TCP connection and the
establishment of a subflow.

10
-1

10 0 10
1

10 2 10 3 10
4

10
5

RTT [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Worst - Best

Fig. 2. Difference of average RTT seen by
the proxy between the worst and the best
subflows with at least 3 RTT samples.

the round-trip-time measurement is an important performance metric because the
default packet scheduler prefers the subflows having the lowest round-trip-times.

To evaluate the round-trip-time heterogeneity of the Multipath TCP con-
nections, the analysis uses tstat [13] to compute the average round-trip-time
over all the subflows that a connection contains. Then, it extracts for each con-
nection the minimum and the maximum of these average round-trip-times. To
have consistent values, it only takes into account the subflows having at least 3
RTT estimation samples. Figure 2 plots the CDF of the difference in the aver-
age RTT between the subflows having the largest and the smallest RTTs over
all connections in T1. Only 19.4 % of the connections are composed of subflows
whose round-trip-times are within 10 ms or less whereas 77.9 % have RTTs within
100 ms or less. 3.9 % of the connections experience subflows having 1 s or more
of difference in their average RTT. With such network heterogeneity, if a packet
is sent on a low-bandwidth and high-delay subflow s0 and following packets are
sent on another high-bandwidth low-delay one s1, the sender may encounter
head-of-line blocking.

5.3 Multipath TCP Acknowledgements

As explained in Sect. 2, Multipath TCP uses two ACK levels: the regular TCP
ACKs at the subflow level and the cumulative Multipath TCP ACKs at the
connection level. It is possible to have some data acknowledged at TCP level
but not at Multipath TCP one, typically if previous data was sent on another
subflow but not yet acknowledged. Figure 3 plots in red-dotted curve the CDF of
the number of bytes sent by the proxy that are acknowledged by non-duplicate
TCP ACKs. This plot is a weighted CDF where the contribution of each ACK
is weighted by the number of bytes that it acknowledges. In TCP, ACKs of
1428 bytes or less cover 50.7 % of all acknowledged bytes and considering ACKs
of 20 KB or less the percentage is 91.1 %.

64 Q. De Coninck et al.

The same analysis is now performed by looking at the DSS option that carries
the Multipath TCP Data ACKs with mptcptrace [10]. The green curve in Fig. 3
shows the weighted cumulative distribution of the number of bytes acked per
Data ACK. Compared with the regular TCP ACKs, the Multipath TCP ACKs
cover more bytes. Indeed, 51 % of all bytes acknowledged by Multipath TCP are
covered with Data ACKs of 2856 bytes or less, and this percentage increases to
70.6 % considering Data ACKs of 20 KB or less.

The difference between the regular TCP ACKs and the Data ACKs is caused
by the reordering that occurs when data is sent over different subflows. Since the
Data ACKs are cumulative they can only be updated once all the previous data
have been received on all subflows. If subflows with very different round-trip-
times are used, it will cause reordering and data will possibly filling the receiver’s
window during a long period. This can also change the way applications read
data which would be more by large bursts instead of small frequent reads. On
mobile devices, such memory footprints should be minimized.

10
0 10

1
10

2
10

3 10
4

10
5

10
6 10

7

Acks size [Bytes]

0.0

0.2

0.4

0.6

0.8

1.0

B
yt

es
 p

er
ce

nt
ag

e

MPTCP acks

TCP acks

Fig. 3. Size of the Multipath TCP
and TCP ACKs received by the proxy
(Color figure online).

10
0 10

1
10

2
10

3 10
4

10
5

subflow blocks

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

0B-10KB
10KB-100KB
100KB-1MB
>=1MB

Fig. 4. Size of the subflow blocks from
proxy to smartphones on T1.

5.4 Utilization of the Subflows

The next question is how data is spread among the subflows. Does Multipath
TCP alternates packets between the different subflows or does it send bursts of
packets? Again, to be relevant, the subtrace T1 is considered.

To quantify the spread of data, this paper introduces the notion of subflow
block. Intuitively, a subflow block is a sequence of packets from a connection
sent over a given subflow without any packet transmitted over another subflow.
Consider a connection where a host sends N data packets. Number them as
0, ..., N − 1 with 0 the first data packet sent and N − 1 the last one. Let fi
denote the subflow on which packet i was sent. The nth subflow blocks bn is
defined as bn = {max(bn−1)+1}∪{i | i−1 ∈ bn and fi = fi−1}, with b0 = {−1}
and f−1 =⊥. As an example, if the proxy sends two data packets on s0, then

A First Analysis of Multipath TCP on Smartphones 65

three on s1, retransmits the second packet on s0 and sends the last two packets
on s1, we will have b1 = {0, 1}, b2 = {2, 3, 4}, b3 = {5} and b4 = {6, 7}. This
notion is implemented in our analysis scripts [2]. A connection balancing the
traffic with several subflows will produce lot of small subflow blocks whereas
a connection sending all its data over one single subflow will have only one
subflow block containing all the connection’s packets. Figure 4 shows the number
of subflow blocks that each connection contains. Each curve contains connections
carrying their labeled amount of total bytes from proxy to smartphones. For
most of the large connections, Multipath TCP balances well the packets over
different subflows. In particular, 26.4 % of connections carrying more than 1 MB
have more than 100 subflow blocks. As expected, the shorter the connection
is, more the subflow blocks tend to contain most of the connection traffic. For
short connections carrying less than 10 KBytes, 72.8 % of them contain only
one subflow block, and therefore they only use one subflow. This number raises
concerns about unused subflows. If connections having at least two subflows
are considered, over their 276,133 subflows, 41.2 % of them are unused in both
directions. It is worth noting that nearly all of these unused subflows are actually
additional subflows, leading to 75.6 % of unused additional subflows. This is
clearly an overhead, since creating subflows that are not used consumes bytes
and energy [18] on smartphones since the interface over which these subflows are
established is kept active.

There are three reasons that explain those unused subflows. Firstly, a sub-
flow can become active after all the data has been exchanged. This happens
frequently since 62.9 % of the connections carry less than 2000 bytes of data.
In practice, for 21 % of the unused additional subflows the proxy received their
third ACK after that it had finished to send data. Secondly, as suggested in
Sect. 5.2, the difference in round-trip-times between the two available subflows
can be so large that the subflow with the highest RTT is never selected by the
packet scheduler. If the server does not transmit too much data, the congestion
window on the lowest-RTT subflow remains open and the second subflow is not
used. Though, 36.2 % of the unused additional subflows have a better RTT for
the newly-established subflow than the other available one. However, 59.9 % of
these subflows belong to connections carrying less than 1000 bytes (90.1 % less
than 10 KBytes). Thirdly, a subflow can be established as a backup subflow [9].
Indeed, a user can set the cellular subflow as a backup one, e.g., for cost purpose.
2.1 % of the unused additional subflows were backup subflows.

5.5 Reinjections and Retransmissions

In addition to unused subflows, another Multipath TCP specific overhead is the
reinjections. A reinjection [20] is the transmission of the same data over two or
more subflows. Since by definition, reinjections can only occur on connections
that use at least two subflows, this analysis considers the subtrace T2. A reinjec-
tion can be detected by looking at the Multipath TCP Data Sequence Number
(DSN). If a packet A with DSN x is sent first on the subflow 1 and after another
packet B with the same DSN x is sent on the subflow 2, then B is a reinjection

66 Q. De Coninck et al.

of A. mptcptrace [10] was extended to detect them. A reinjection can occur for
several reasons: (i) handover, (ii) excessive losses over one subflow or (iii) the
utilization of the Opportunistic Retransmission and Penalization (ORP) algo-
rithm [17,20]. This phenomenon has been shown to limit the performance of
Multipath TCP in some wireless networks [21]. Typically, Multipath TCP rein-
jections are closely coupled with regular TCP retransmissions. Figure 5 shows
the CDF of the reinjections and retransmissions sent by the proxy. The number
of retransmitted and reinjected bytes are normalized with the number of unique
bytes sent by the proxy over each connection. 52.7 % of the connections using at
least two subflows experience retransmissions on one of their subflows whereas
reinjections occur on 29.3 % of them. This percentage of retransmissions tends to
match previous analysis of TCP on smartphones [6,12]. 68.7 % of T2 connections
have less than 1 % of their unique bytes retransmitted, and 85 % less than 10 %.
79.7 % of the connections have less than 1 % of their unique bytes reinjected,
and 89.8 % less than 10 %. Observing more retransmissions than reinjections
is expected since retransmissions can trigger reinjections. In the studied trace,
the impact of reinjections remains limited since over more than 11.8 GBytes of
unique data sent by proxy, there are only 86.8 MB of retransmissions and 65 MB
of reinjections. On some small connections, we observe more retransmitted and
reinjected bytes than the unique bytes. This is because all the data sent over
the connection was retransmitted several times. On Fig. 5 the thousand of con-
nections having a fraction of retransmitted bytes over unique bytes greater or
equal to 1 carried fewer than 10 KB of unique data, and 83.3 % of them fewer
than 1 KB. Concerning the reinjections, the few hundred of connections in such
case carried less than 14 KB, 63.4 % of them carried less than 1 KB and 76.1 %
of them less than 1428 bytes.

5.6 Handovers

One of the main benefits of Multipath TCP is that it supports seamless han-
dovers which enables mobility scenarios [9,15]. A handover is here defined as

10 -5 10 -4
10

-3
10

-2 10 -1
10

0 10 1

Fraction of unique bytes

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

Retransmission
Reinjection

Fig. 5. Fraction of bytes that are rein-
jected/retransmitted by the proxy on T2.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of total unique bytes

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Additional SFs

Fig. 6. Fraction of total data bytes on non-
initial subflows sent by the proxy on T3.

A First Analysis of Multipath TCP on Smartphones 67

a recovery of a failed subflow by another one. A naive solution is to rely on
REMOVE ADDRs to detect handover. However, this TCP option is sent unreliably.
Indeed, 22.1 % of the connections experiencing handover have no REMOVE ADDR.

This paper proposes an alternative methodology implemented in [2] that relies
on the TCP segments exchanged. Let LAi be the time of the last (non-RST) ACK
sent by the smartphone seen on subflow i (that was used to send data) and LPj

the time of the last (non-retransmitted) segment containing data on subflow j.
If ∃ k, l | k �= l, no FIN seen from the smartphone on subflow k, LAl > LAk

and LPl > LAk, then the connection experiences handover. Notice that only han-
dovers on the subflows carrying data are detected. Among the connections that use
at least two subflows, 25.7 % experience handover. It has also the advantage to be
implementation independent since it does not use the ADD ADDRs or REMOVE ADDRs
options that are not supported by all implementations [5].

Based on the subtrace T3, Fig. 6 shows the fraction of unique bytes that
were sent by the proxy on the additional subflows on connections experiencing
handover. This illustrates the connections that could not be possible if regular
TCP was used on these mobile devices. Indeed, an handover is typically related
to the mobility of the user who can go out of the reachability of a network.
Notice that this methodology can also detect handover in the smartphone to
proxy flow. Indeed, 20.4 % of connections experience handover with all data sent
by the proxy on the initial subflow because the smartphone sent data on another
subflow after having lost the initial one.

6 Conclusion

This work brings the first results about real Multipath TCP traffic on
smartphones. In addition to analyzing the released trace, this paper proposes
techniques to quantify the utilization of the subflows and presents a simple imple-
mentation independent methodology to detect handover. The analysis tools are
also available for the community [2]. The results shows that Multipath TCP
offers benefits for long connections, since it allows seamless handovers. However,
with the default algorithms, the protocol brings some overheads, in particular
with the establishment of unused subflows. This opens new areas of improve-
ments to adapt Multipath TCP with the smartphone case, in particular the
path manager.

Acknowledgements. This work was partially supported by the EC within the FP7
Trilogy2 project. We would like to thank Gregory Detal and Sébastien Barré for the
port of the latest Multipath TCP Linux kernel on the Nexus 5 and Patrick Delcoigne
and his team for the cellular measurements.

68 Q. De Coninck et al.

References

1. Chen, Y.-C., et al.: A measurement-based study of MultiPath TCP performance
over wireless networks. In: IMC 2013, pp. 455–468. ACM, New York (2013). http://
doi.acm.org/10.1145/2504730.2504751

2. De Coninck, Q., Baerts, M.: Analysis scripts (2015). http://github.com/
multipath-tcp/mptcp-analysis-scripts

3. De Coninck, Q., et al.: Poster: evaluating android applications with Multipath
TCP. In: MOBICOM 2015, pp. 230–232. ACM (2015). http://dx.doi.org/10.1145/
2789168.2795165

4. Deng, S., et al.: WiFi, LTE, or both?: measuring multi-homed wireless internet
performance. In: IMC 2014, pp. 181–194. ACM, New York (2014). http://doi.acm.
org/10.1145/2663716.2663727

5. Eardley, P.: Survey of MPTCP Implementations. Internet-Draft draft-eardley-
mptcp-implementations-survey-02, IETF Secretariat, July 2013. http://tools.ietf.
org/html/draft-eardley-mptcp-implementations-survey-02

6. Falaki, H., et al.: A first look at traffic on smartphones. In: IMC 2010, pp. 281–287.
ACM, Melbourne (2010). http://dx.doi.org/10.1145/1879141.1879176

7. Ferlin, S., Dreibholz, T., Alay, Ö.: Multi-path transport over heterogeneous wireless
networks: does it really pay off? In: Proceedings of the IEEE GLOBECOM. IEEE,
Austin, December 2014. http://dx.doi.org/10.1109/GLOCOM.2014.7037567

8. Ferlin-Oliveira, S., et al.: Tackling the challenge of bufferbloat in multi-path trans-
port over heterogeneous wireless networks. In: 2014 IEEE 22nd International Sym-
posium of Quality of Service (IWQoS), pp. 123–128, May 2014. http://dx.doi.org/
10.1109/IWQoS.2014.6914310

9. Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: TCP Extensions for Multi-
path Operation with Multiple Addresses. RFC 6824, January 2013. http://www.
rfc-editor.org/rfc/rfc6824.txt

10. Hesmans, B., Bonaventure, O.: Tracing Multipath TCP connections. SIGCOMM
Comput. Commun. Rev. 44(4), 361–362 (2014). http://doi.acm.org/10.1145/
2740070.2631453

11. Hesmans, B., Tran-Viet, H., Sadre, R., Bonaventure, O.: A first look at real multi-
path TCP traffic. In: Steiner, M., Barlet-Ros, P., Bonaventure, O. (eds.) TMA 2015.
LNCS, vol. 9053, pp. 233–246. Springer, Heidelberg (2015). http://dx.doi.org/
10.1007/978-3-319-17172-2 16

12. Huang, J., et al.: Anatomizing application performance differences on smartphones.
In: MobiSys 2010, pp. 165–178. ACM (2010). http://dx.doi.org/10.1145/1814433.
1814452

13. Mellia, M., Carpani, A., Cigno, R.L.: TStat: TCP statistic and analysis tool. In:
Ajmone Marsan, M., Listanti, G.C.M., Roveri, A. (eds.) QoS-IP 2003. LNCS,
vol. 2601, pp. 145–157. Springer, Heidelberg (2003). http://www.tlc-networks.
polito.it/mellia/papers/Tstat QoSIP.ps

14. Paasch, C., Barre, S., et al.: Multipath TCP in the Linux Kernel. http://www.
multipath-tcp.org

15. Paasch, C., et al.: Exploring Mobile/WiFi handover with Multipath TCP. In:
ACM SIGCOMM CellNet Workshop, pp. 31–36 (2012). http://doi.acm.org/10.
1145/2342468.2342476

16. Paasch, C., et al.: Experimental evaluation of Multipath TCP schedulers. In: CSWS
2014, pp. 27–32. ACM, New York. http://doi.acm.org/10.1145/2630088.2631977

http://doi.acm.org/10.1145/2504730.2504751
http://doi.acm.org/10.1145/2504730.2504751
http://github.com/multipath-tcp/mptcp-analysis-scripts
http://github.com/multipath-tcp/mptcp-analysis-scripts
http://dx.doi.org/10.1145/2789168.2795165
http://dx.doi.org/10.1145/2789168.2795165
http://doi.acm.org/10.1145/2663716.2663727
http://doi.acm.org/10.1145/2663716.2663727
http://tools.ietf.org/html/draft-eardley-mptcp-implementations-survey-02
http://tools.ietf.org/html/draft-eardley-mptcp-implementations-survey-02
http://dx.doi.org/10.1145/1879141.1879176
http://dx.doi.org/10.1109/GLOCOM.2014.7037567
http://dx.doi.org/10.1109/IWQoS.2014.6914310
http://dx.doi.org/10.1109/IWQoS.2014.6914310
http://www.rfc-editor.org/rfc/rfc6824.txt
http://www.rfc-editor.org/rfc/rfc6824.txt
http://doi.acm.org/10.1145/2740070.2631453
http://doi.acm.org/10.1145/2740070.2631453
http://dx.doi.org/10.1007/978-3-319-17172-2_16
http://dx.doi.org/10.1007/978-3-319-17172-2_16
http://dx.doi.org/10.1145/1814433.1814452
http://dx.doi.org/10.1145/1814433.1814452
http://www.tlc-networks.polito.it/mellia/papers/Tstat_QoSIP.ps
http://www.tlc-networks.polito.it/mellia/papers/Tstat_QoSIP.ps
http://www.multipath-tcp.org
http://www.multipath-tcp.org
http://doi.acm.org/10.1145/2342468.2342476
http://doi.acm.org/10.1145/2342468.2342476
http://doi.acm.org/10.1145/2630088.2631977

A First Analysis of Multipath TCP on Smartphones 69

17. Paasch, C., et al.: On the benefits of applying experimental design to improve
Multipath TCP. In: CoNEXT 2013, pp. 393–398. ACM, New York (2013).
http://inl.info.ucl.ac.be/publications/benefits-applying-experimental-design-impro
ve-multipath-tcp

18. Peng, Q., et al.: Energy efficient Multipath TCP for mobile devices. In: MobiHoc
2014, pp. 257–266. ACM, New York (2014). http://doi.acm.org/10.1145/2632951.
2632971

19. Raiciu, C., et al.: Opportunistic mobility with Multipath TCP. In: MobiArch 2011,
pp. 7–12. ACM, New York (2011). http://doi.acm.org/10.1145/1999916.1999919

20. Raiciu, C., et al.: How hard can it be? designing and implementing a deploy-
able Multipath TCP. In: NSDI 2012, pp. 29–29. USENIX Assoc., Berkeley
(2012). http://inl.info.ucl.ac.be/publications/how-hard-can-it-be-designing-and-
implementing-deployable-multipath-tcp

21. Sup Lim, Y., et al.: Cross-layer path management in multi-path transport protocol
for mobile devices. In: INFOCOM 2014, pp. 1815–1823. IEEE, April 2014. http://
dx.doi.org/10.1109/INFOCOM.2014.6848120

http://inl.info.ucl.ac.be/publications/benefits-applying-experimental-design-improve-multipath-tcp
http://inl.info.ucl.ac.be/publications/benefits-applying-experimental-design-improve-multipath-tcp
http://doi.acm.org/10.1145/2632951.2632971
http://doi.acm.org/10.1145/2632951.2632971
http://doi.acm.org/10.1145/1999916.1999919
http://inl.info.ucl.ac.be/publications/how-hard-can-it-be-designing-and-implementing-deployable-multipath-tcp
http://inl.info.ucl.ac.be/publications/how-hard-can-it-be-designing-and-implementing-deployable-multipath-tcp
http://dx.doi.org/10.1109/INFOCOM.2014.6848120
http://dx.doi.org/10.1109/INFOCOM.2014.6848120

Crowdsourcing Measurements of Mobile
Network Performance and Mobility During

a Large Scale Event

Alexander Frömmgen1(B), Jens Heuschkel2, Patrick Jahnke3, Fabio Cuozzo1,
Immanuel Schweizer2, Patrick Eugster3, Max Mühlhäuser2,

and Alejandro Buchmann1

1 Databases and Distributed Systems, TU Darmstadt, Darmstadt, Germany
{froemmgen,cuozzo,buchmann}@dvs.tu-darmstadt.de

2 Telecooperation Lab, TU Darmstadt, Darmstadt, Germany
{jens.heuschkel,schweizer,max}@tk.informatik.tu-darmstadt.de

3 Distributed Systems Programming, TU Darmstadt, Darmstadt, Germany
{jahnke,peugster}@dsp.tu-darmstadt.de

Abstract. Cellular infrastructure in urban areas is provisioned to easily
cope with the usual daily demands. When facing shockingly high loads,
e.g., due to large scale sport or music events, users complain about perfor-
mance degradations of the mobile network. Analyzing the impact of large
scale events on the mobile network infrastructure and how users perceive
overload situations is essential to improve user experience. Therefore, a
large data set is required to get a detailed understanding of the differences
between providers, mobile devices, mobile network access technologies,
and the mobility of people.

In this paper, we present experiences and results from a crowdsourc-
ing measurement during a music festival in Germany with over 110,000
visitors per day. More than 1,000 visitors ran our crowdsourcing app to
collect active and passive measurements of the mobile network and the
user mobility. We show that there is significant performance degradation
during the festival regarding DNS and HTTP failures as well as increased
load times. Furthermore, we evaluate the impact of the carrier, the access
technology, and the user mobility on the perceived performance.

1 Introduction

Network providers are facing rapidly increasing mobile data traffic [1]. Their cel-
lular infrastructure is provisioned to easily cope with the usual daily demands.
High demand peaks at events with thousands of users in a small area, how-
ever, are highly challenging for the infrastructure. Figure 1 shows the venue of a
music festival, the Schloßgrabenfest1, on a normal day and during the event. This
paper investigates the question how the network performance of the user devices
is affected by large scale events. Understanding how users perceives overload sit-
uations requires a large data set. Especially for a comparison between different
1 The official website [German]: http://www.schlossgrabenfest.de/2015/.

c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 70–82, 2016.
DOI: 10.1007/978-3-319-30505-9 6

http://www.schlossgrabenfest.de/2015/

Mobile Network Performance and Mobility During a Large Scale Event 71

(a) Normal day. (b) During the festival.

Fig. 1. The Schloßgrabenfest, a music festival in the city center of Darmstadt.

network providers, mobile devices, and access technologies, a systematic study
with actively controlled measurements on the user devices is required.

Based on these considerations, we developed a crowdsourcing app which
actively measures network performance during events. The app measures the
performance of different network protocols (e.g. HTTP and DNS), the network
paths, the used network technologies, the signal strengths, and location data.
As this app is executed on the user’s device, the results represent the actual
performance perceived by the user and are not limited to certain carriers. With
this app, we took a large measurement during the Schloßgrabenfest 2015, a music
festival with more than 110,000 visitors per day. More than 1,000 participants
ran the crowdsourcing app, allowing detailed analysis of the event.

In this paper, we (i) present our crowdsourcing measurement app, (ii) provide
a first look at the measurements2 on end user devices during a large scale event,
and (iii) investigate the impact of the high load on the network performance.
We especially analyze how the HTTP and DNS performance suffers depending
on the location, the time, and the network carrier. Furthermore, we briefly show
insights from additionally measured data, such as Bluetooth beacons.

The remainder of this paper is structured as follows: Sect. 2 presents the
crowdsourcing app, the venue, and a summary of the collected data. Based on a
discussion of the location data in Sect. 3, we analyze the HTTP performance in
Sect. 4 in detail. Section 5 briefly investigates the DNS performance, traceroute
results, and traffic statistics. Section 6 presents related work. Finally, Sect. 7
concludes the paper and gives an overview of future work.

2 Methodology and Data Set

Venue: The Schloßgrabenfest is the biggest music festival in the state of Hesse in
Germany. During the festival, the city center of Darmstadt, a city with approxi-
mately 150,000 inhabitants, is highly crowded (Fig. 1). The event takes four days
(Thursday till Sunday) and has more than 110,000 visitors per day.

Crowdsourcing App: We advertised Research4Refill, our crowdsourcing app
for Android smartphones, in local print media3, local television, social media,
2 Available at https://www.dvs.tu-darmstadt.de/research/sgf.
3 http://www.echo-online.de/lokales/darmstadt/tu-informatiker-erforschen-per-app-

die-handynetz-ueberlastung 15328733.htm.

https://www.dvs.tu-darmstadt.de/research/sgf
http://www.echo-online.de/lokales/darmstadt/tu-informatiker-erforschen-per-app-die-handynetz-ueberlastung_15328733.htm
http://www.echo-online.de/lokales/darmstadt/tu-informatiker-erforschen-per-app-die-handynetz-ueberlastung_15328733.htm

72 A. Frömmgen et al.

Fig. 2. The number of participants running the crowdsourcing app.

the university campus, and on the video screen during the festival. In our adver-
tisement, we stressed that users help us to understand their network problems.
As additional incentive, we offered a free drink for users who ran the app. We
found more than 1,000 users willing to give up some privacy for a free beer.

As we were focusing on a very large data set with as many participants as
possible, we limited the amount of collected data to preserve privacy and to avoid
scaring off potential participants. The app tracks the location (GPS, network,
and additional placed Bluetooth Beacons), the WiFi and cellular network state,
and actively executes HTTP, DNS, and traceroute measurements. Additionally,
we asked all users to fill in a short questionnaire. Thus, the app does not track
the actual transferred user data and requires minimal rights.

Data Set: The app automatically started on all devices at 18:00 and stopped at
02:00 (on Sunday, the app started earlier). Figure 2 shows the number of partici-
pating users during the festival. The number decreased per day. We assume that
this happens due to the higher energy consumption which drained the battery.
We concentrate our further analysis on Thursday, as this is the day with the
highest number of participants at the venue (at once up to 194). On Thursday,
the number of participants at the venue decreases earlier than on the other days,
as Friday was a workday. The feature to continue measurements tomorrow led
to an unintended increase of participants at midnight, as many devices suddenly
continued to measure. The feature should have continued tomorrow evening.

In total, 1,401 participants ran our app. According to GPS information, 740
of these were at least one time at the venue, and 410 participants were at the
venue on Thursday. We identified 252 additional smartphones at the venue due
to Bluetooth beacon signals, 135 of these users were at the venue on Thursday.
Thus, out of 110,000 visitors of the venue on Thursday, 545 (≈ 0.5%) run our
app. Traditional counting of visitors can not track users and therefore sums
up the number of visitors per day. Officially, 500,000 people visited the event.
Summing up the number of app participants per day leads to 1562 users. Thus,
this method overestimates the number of unique participants by 592 (61 %).

86 % of the devices belonged to one of four leading brands running the
Android OS. Most devices had Android SDK 19 or 21 (58 %). The four Ger-
man mobile carrier were represented with between 21.4 % and 28.3 %, which
does not reflect the distribution of all users in Germany.

Mobile Network Performance and Mobility During a Large Scale Event 73

(a) The venue (b) 19:00 (c) 20:00 (d) 00:00

Fig. 3. User density on Thursday (white: low density, black: high density).

Limitations: The data has to be interpreted carefully, as the collected data
sample might not be representative. We assume that most participants are tech-
savvy and students. The app might influence the participants, as they stayed
longer to gain a free drink, or only installed the app if they planned to stay
long. Additionally, the app induced network traffic and increased the energy
consumption of the smartphone.

3 Active Measurement: Location

The location information of users is important to understand movement patterns
and investigate possible mitigation strategies, such as ad hoc or delay tolerant
networks. Out of 1,196,875 location measurements, 161,429 location samples are
located in the area of the venue. We discarded location information outside
of this area due to privacy concerns. The app used the network and the GPS
location provider. As 276 devices only returned network locations, we assume
that many users manually turned off GPS.

In this section, we discuss the distribution of the people, their movement
patterns, the accuracy of the location provider reported by the operating system,
and our experiences with Bluetooth Beacons for location tracking.

3.1 User Density and Movement

Figure 3 visualizes the distribution of the participants on Thursday evening. For
this purpose, we divide the venue in areas and count the number of participants
per area per hour. This implies that people moving between areas in one hour
are counted multiple times. The user density rapidly increases at the beginning
of the event and decreases at midnight. Figure 3 shows that the participants
concentrate in a few areas, which are in front of the main stage of the music
festival. Some participants were located in areas which were inaccessible during
the event. Figure 4 illustrates the user movement. Dark arrows represent many
area transitions, bright arrows a few. Thus, even though the user density in front
of the main stage is high, people are constantly moving between areas. A more
detailed analysis could evaluate the efficiency of delay tolerant networks and
placement strategies for access points.

74 A. Frömmgen et al.

Fig. 4. User movement on Thursday evening.

Fig. 5. Analysis of the location accuracy.

3.2 Location Accuracy and Bluetooth Beacons

As using GPS for location data is often discouraged due to the energy consump-
tion, we investigate the measured accuracy of the samples. Figure 5a shows that
nearly 40 % of all GPS results had an accuracy of less than 20 m, whereas the
network never had such a high accuracy. The network accuracy rapidly decreases
at about 70 %, thus 30 % of all network location samples could not benefit from
seen WiFi access points but relied on cellular networks.

Beside the GPS and network location provider, the app regularly searches
for Bluetooth Beacons. We placed 50 Bluetooth Low Energy Beacons4 at the
venue. We were surprised that most people turned off Bluetooth immediately
and complained about this measurement. However, 250 devices saw at least 3
Beacons at the same time and can be located with the Beacon information.
As we do not have the ground truth locations, we compare location measure-
ments to investigate differences between GPS and the Beacons. We distinguish
between the difference ignoring the reported GPS accuracy, and the difference
after regarding the GPS accuracy. Figure 5b shows that nearly 50 % of all sam-
ples are equal regarding the GPS accuracy. Ignoring the accuracy, 50 % of all
samples have a difference of less than 20 m (99 % less than 100 m). The Figure
4 http://www.beaconinside.com/.

http://www.beaconinside.com/

Mobile Network Performance and Mobility During a Large Scale Event 75

Fig. 6. Active HTTP measurements on Thursday.

shows the reported GPS accuracy for those measurements which are different
regarding the accuracy. Most of these measurements have an accuracy of less
than 20 m.

4 Active Measurement: HTTP Load Times

In this section, we investigate how the HTTP load time varied during the event.
The app regularly triggered HTTP GET requests to different web pages, e.g.,
the front pages of Google, Wikipedia, and Facebook. We measured the load
completion time, but canceled the request after 30 s. In the following, we analyze
the general performance, investigate differences between carriers, web pages, and
the used network type.

4.1 General Overview

Figure 6a shows the HTTP load time of all devices at the venue on Thursday
evening. With the increasing number of users at the venue, the amount of samples
per time increases. The successful requests increase till 20:00. Between 20:00 and
23:00, the number of failed requests increases rapidly. As there is only a limited
amount of samples after half past midnight, these results are imprecise. The
average HTTP load time and its standard deviation show the same pattern.
To conclude, during the event, both the failure rate and the average load time
increases significantly.

Nikravesh et al. [5] showed that network performance follows a daily pattern.
To prove that the event caused a performance degradation, we compare the

76 A. Frömmgen et al.

Fig. 7. Comparison of the carriers for the HTTP measurements on Thursday.

results with all devices which where not at the venue (Fig. 6b) and those which
were not at the venue and were connected to WiFi (Fig. 6c). Here, the average
load time and the number of failures are both rather stable. We were surprised
that the number of successful requests dropped. We assume that many users who
were not at the venue stopped our app after recognizing that it was running.
Even before the performance at the venue decreases, the WiFi measurements
show a significant lower average load time. This supports the results of existing
measurements [7]. Regarding the failure rate, Fig. 6d shows a peak failure rate
of nearly 40 % at the venue, whereas the WiFi measurements have a constantly
low failure rate. The reasons for the increased failure rate for devices not at the
venue require further investigation. The total number of requests increases after
midnight due to the continue tomorrow feature. This is not reflected in Fig. 6a,
as people left the venue earlier on Thursday.

To conclude, the comparison of the performance between participants at the
venue and those who were not at the venue proves that the event caused a high
performance degradation.

4.2 Carrier Analysis

Figure 7 shows the performance depending on the carrier on Thursday. The per-
formance of all carriers decreases during the event. However, the load time dis-
tribution differs between the carriers (Fig. 7c). Even though Carrier 3 has the
lowest load times for the first 50 % of all requests, it has a worse tail distrib-
ution than Carrier 1. Carrier 2 performs significantly worse. The failure rates,
however, provide a different view on the performance (Fig. 7d). Here, Carrier 1

Mobile Network Performance and Mobility During a Large Scale Event 77

Fig. 8. Impact of the network type on the HTTP performance.

Fig. 9. Used network types at the area.

nearly always has the highest failure rate, whereas Carrier 4 nearly always has
the lowest failure rate. Thus, the carrier with the lowest failure rate (Carrier 4)
has the second worst load time, whereas the carrier with the worst failure rate
(Carrier 1) has one of the best load times.

4.3 Network Type

Figure 8 shows the load times depending on the network type. As expected, the
network type has a huge influence on the performance. The LTE requests have
the lowest average load time and nearly no failed requests were reported. Between
20:00 and 22:30, however, the portion of participants using EDGE increased
(Fig. 9a), whereas LTE decreased. Thus, the overall performance degradation
might be partly caused by a lower portion of LTE connections.

78 A. Frömmgen et al.

EDGE UMTS HSPA HSPA+ LTE

82EGDE
UMTS 70 76 24
HSPA 21 198 58

HSPA+ 52 75 293 34
LTE 45 67 70 101

(a) Transitions between network types.

(b) Signal strength map (darker:
higher signal strength).

Fig. 10. Network type and signal strength.

We assumed that an overloaded network causes many network type changes.
However, Fig. 9b shows that the network type does not change more often dur-
ing the event. The distribution of the actual transitions between network types
(Fig. 10a) shows that most transitions happen between HSPA and HSPA+.
Keeping in mind the bad performance of EDGE and UMTS, the transitions
to these two types imply a sudden performance degradation for the users. A
first analysis how the signal strength (Fig. 10b) influences the performance did
not show any correlation. A more detailed investigation remains as future work.

4.4 Web Page Analysis

The performance of most web pages, as shown in Fig. 11a, follows the general
pattern of Fig. 6a. This supports the assumption that the first network hops of
the client devices are overloaded. However, the page load time of the venue’s
page shows a sudden increase between midnight and 2 (Fig. 11b). We assume
that this is caused by the high load introduced by our measurements and the
high number of users at midnight.

Fig. 11. Differences between web pages regarding the page load time.

Mobile Network Performance and Mobility During a Large Scale Event 79

5 Additional Measurements

5.1 Active Measurement: DNS Lookup

In addition to the HTTP measurements, we tested the performance of DNS
during the event. Therefore, we actively executed 167,412 DNS lookups on the
smartphones. We used both popular domains and randomly generated domains
to investigate the impact of caching (mainly in the Android system). The ran-
domly generated domains often resolved to Navigation Help pages of the carriers
(e.g. 62.157.140.133 and 80.156.86.78). Figure 12a shows a CDF of all executed
DNS requests depending on the domain (existing, not existing) and the result
(successful, not successful). The successful requests for not existing domains
(Navigation Help resolutions) take at least 20 ms. Thus, 5 % of the not suc-
cessful requests for not existing domains already failed due to network failures.
Regarding the existing domains, it is surprising that even cached results take
up to 20 ms. For existing domains, more than 50 % of all failed requests fail in
the first 20 ms. However, the tail of the failed requests for not existing domains is
the longest of all four. Figure 12b shows that the performance during the event
follows the same pattern as the HTTP requests. To investigate the impact of
the location on the performance, Fig. 13 shows the load time depending on the
location and the time. Even though there are differences between the locations,
we find that at 21:00 the performance suffers all over the area.

Fig. 12. DNS measurement results.

5.2 Active Measurement: Traceroute

To allow correlations between the network performance and the paths in the net-
work, we executed 2202 trace routes to multiple domains. Figure 14a shows how
the path length differs between the carriers. In our measurements, we observe
a longest path of 23 hops (Carrier 1), which occurs one time. For future work,
we will try to reenact results from other traceroute studies, such as Brownlee [2]
and Luckie et al. [4].

5.3 Passive Measurement: Traffic Stats

Beside the active measurements, we passively collected traffic statistics provided
by Android (Fig. 14). Except for the mobile received bytes, the metrics do not

80 A. Frömmgen et al.

(a) 18:00 (b) 19:00 (c) 20:00 (d) 21:00

Fig. 13. DNS request time during the event (darker: slower)

Fig. 14. Traffic stats on Thursday.

significantly change during the event. However, it is unclear why this metric
suddenly increases at midnight. In general, users downloaded 4 times more than
uploaded. This fits with the average packet size, as transferred packets were not
filled. Even though these statistics include the induced traffic of our measure-
ments, these results do not correspond with recent measurements from other
papers. Erman et al. [3], for example, found that people uploaded as much data
as download during the Super Bowl event.

6 Related Work

Related work on large scale events concentrates on a single carrier or passive
measurements of users in the network infrastructure. Erman et al. [3] analyzed
the Super Bowl from AT&T’s perspective and provided a detailed analysis of
the performance and the user behavior. Shafiq et al. [6] describe provider obser-
vations of two crowded events. They present lower layer metrics, but provide
only limited insights into the actual performance available at the end device.
Additionally, they are restricted to the perspective of a few network operators.

Crowdsourcing approaches leverage users which support measurements.
Thus, they have access to details on the end device and are not restricted to
certain network operators. Nikravesh et al. [5], for example, evaluated a long
time crowdsourcing measurement. With samples from all over the world, they
provide valuable insights into the general network performance. Xu et al. [8] used
crowdsourcing to investigate a cellular network in Singapore.

Mobile Network Performance and Mobility During a Large Scale Event 81

Our work is the first combining the benefits of extensive crowdsourcing with
active measurements of a crowded event.

7 Discussion and Future Work

App-Based Crowdsourcing: Our measurement study shows that large crowd-
sourcing measurements are feasible. We convinced more than 1,000 users to
participate in our study. We noticed that people liked the idea to help us to
understand their performance issues. A small fraction of participants complained
(e.g., in the play store) about the increased data transmission and higher energy
consumption due to the app. Our measurement setup does not allow us to dis-
tinguish between the induced energy consumption of our app and a potentially
increased consumption due to the overloaded network. Future crowdsourcing
studies should explicitly consider this.

Measurement Results: The analysis of the movement patterns showed that
users moved even during crowded times. The Bluetooth beacon based location
service allowed us to trace users who did not provide GPS locations. We showed
that there is significant performance degradation during the festival regarding
DNS and HTTP failures as well as increased load times. The performance degra-
dation differs between network operators, network types, and locations. Carriers
with a low failure rate during the event had a higher average load time. We
currently investigate the underlying causes for these differences.

Future Work: The large data set allows to retrieve detailed movement models
for large scale events, analysis of dependencies between the signal strength and
the user density, and the evaluation of new technologies to deal with crowded
events. By making the data available to the community, we hope to encourage
others to conduct similar analysis.

Acknowledgements. This work has been funded by the German Research Founda-
tion (DFG) as part of projects A2, B2, B1 within the Collaborative Research Center
(CRC) 1053 – MAKI.

References

1. Cisco visual networking index: global mobile data traffic forecast update 2014–
2019 white paper (2015). http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/white paper c11-520862.html

2. Brownlee, N.: On searching for patterns in traceroute responses. In: Faloutsos,
M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 67–76. Springer,
Heidelberg (2014)

3. Erman, J., Ramakrishnan, K.K.: Understanding the super-sized traffic of the
super bowl. In: Proceedings of the 2013 Conference on Internet Measurement
Conference, pp. 353–360. ACM (2013)

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html

82 A. Frömmgen et al.

4. Luckie, M., et al.: A second look at detecting third-party addresses in traceroute
traces with the IP timestamp option. In: Faloutsos, M., Kuzmanovic, A. (eds.)
PAM 2014. LNCS, vol. 8362, pp. 46–55. Springer, Heidelberg (2014)

5. Nikravesh, A., Choffnes, D.R., Katz-Bassett, E., Mao, Z.M., Welsh, M.: Mobile
network performance from user devices: a longitudinal, multidimensional analysis.
In: Faloutsos, M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 12–22.
Springer, Heidelberg (2014)

6. Shafiq, M.Z., Ji, L., Liu, A.X., Pang, J., Venkataraman, S., Wang, J.: A first look
at cellular network performance during crowded events. In: ACM SIGMETRICS
Performance Evaluation Review, vol. 41, pp. 17–28. ACM (2013)

7. Sommers, J., Barford, P.: Cell vs. Wifi: on the performance of metro area mobile
connections. In: Proceedings of the 2012 ACM Conference on Internet Measure-
ment Conference, IMC 2012, pp. 301–314. ACM, New York (2012)

8. Xu, Y., Wang, Z., Leong, W.K., Leong, B.: An end-to-end measurement study
of modern cellular data networks. In: Faloutsos, M., Kuzmanovic, A. (eds.) PAM
2014. LNCS, vol. 8362, pp. 34–45. Springer, Heidelberg (2014)

A Study of MVNO Data Paths and Performance

Paul Schmitt(B), Morgan Vigil, and Elizabeth Belding

University of California, Santa Barbara, USA
{pschmitt,mvigil,ebelding}@cs.ucsb.edu

Abstract. Characterization of mobile data traffic performance is diffi-
cult given the inherent complexity and opacity of mobile networks, yet it is
increasingly important as emerging wireless standards approach wireline-
like latencies. Mobile virtual network operators (MVNOs) increase mobile
network topology complexity due to additional infrastructure and net-
work configurations. We collect and analyze traces on mobile carriers in
the United States along with MVNO networks on each of the base carri-
ers in order to discover differences in network performance and behavior.
Ultimately, we find that traffic on MVNO networks takes more circuitous,
less efficient paths to reach content servers compared to base operators.
Factors such as location of the destination server as well as the provider
network design are critical in better understanding behaviors and impli-
cations on performance for each of the mobile carriers.

1 Introduction

What factors cause one mobile Internet provider to be faster than another, even
if they share some common core infrastructure? Traditional metrics chosen to
represent speed may not perfectly correlate with end-user performance and are
heavily influenced by the design and behavior of the underlying mobile data
network. The challenge of mobile network characterization is further extended
with the rise in popularity of mobile network virtual operators (MVNOs). In this
paper, we shed light on observable traffic behaviors exhibited by mobile networks
that affect performance metrics and user experience. We examine mobile data
network behavior when connecting to popular content delivery networks used to
serve media. We are particularly interested in performance comparisons between
the four major mobile carriers in the United States and MVNOs that license use
of the underlying base carrier infrastructure. Ultimately, we want to explore
network topology factors that affect traffic in mobile data networks.

Increasingly popular due to relaxed contract terms, MVNOs have quickly
grown their market share in recent years [1–3]. They operate by leasing access
to base mobile network operator (MNO) infrastructure, thus avoiding the high
cost of building their own networks or licensing spectrum. Performance of MVNO
data networks is often assumed to be inferior, but ultimately at least somewhat
attributable to the underlying base carrier network. Previous work [4] has shown
that is indeed the case; application performance suffers when using MVNO net-
works compared to MNOs. We investigate MVNOs and MNOs, searching for
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 83–94, 2016.
DOI: 10.1007/978-3-319-30505-9 7

84 P. Schmitt et al.

potential causes of degraded performance such as server resolution location and
inefficient (e.g. excess hop counts and geographically indirect) paths.

We focus on traffic to content delivery networks (CDNs), which improve
performance for end users by replicating identical content across geographically
diverse locations [5]. CDNs are important factors in the user experience as they
are typically responsible for delivering large web objects. The exact CDN server
chosen by the client when browsing is typically dependent on DNS resolution
with the expectation that the client is ‘near’ the DNS resolver. Unfortunately for
most users, mobile data networks are strongly hierarchical and it has been shown
that accurately localizing mobile users is a difficult challenge [6]. The localization
problem illuminates a critical issue for mobile networks: the closest or best server
depends on the mobile network core topology as well as peering arrangements
between the content providers and mobile carriers. We study geographic paths
taken by traffic on all of the mobile networks in order to better understand the
obtained performance and routing behavior of the networks. Specifically, we are
interested in the following questions:
– Can we identify reasons behind MVNOs performing worse than MNOs? We

characterize network performance for all four major U.S. carriers as well as a
single MVNO for each, discovering that performance appears to be dramati-
cally affected by destination server location.

– Can we find potential areas for improvement in order to reduce performance
gaps between mobile carriers? We find that MVNOs have more intermediate
hops, which are also geographically inefficient in the case of full MVNOs we
study. From our study we believe there is room for improvement with regards
to mobile network topology.

– Do we observe marked difference between full and light MVNOs? We observe
that a light MVNO closely resembles the underlying MNO, while traffic on
full MVNOs differs, often exceptionally, compared to respective MNOs.

2 Background

CDNs and DNS. The use of CDNs to deliver content from distributed replica
servers is commonplace in order to improve performance as Internet content has
become increasingly heavy and media-rich. Client DNS requests resolve to partic-
ular replica server IP addresses when the clients browse the Internet. Ideally, the
resolved servers are ‘near’ (e.g. lowest round trip time) the client relative to other
potential servers in order to maximize application performance [7,8]. A challenge
for mobile data networks is that the limited number of public-facing gateways
in the cellular core network, as well as the location of cellular network DNS
resolvers, make localizing clients from an outside perspective difficult. Peering
arrangements, or lack thereof, between mobile providers and content providers
also leads to inefficient traffic routes even with the presence of a nearby replica [9].

MVNOs. Recently, MVNOs have increased in popularity worldwide. MVNOs
are virtual in the sense that they offer telecommunications services without own-
ing all of the mobile infrastructure used by clients. Instead, MVNOs pay MNOs

A Study of MVNO Data Paths and Performance 85

for the right to service user traffic using the underlying base carrier network.
The rise in popularity of MVNOs is often attributed to relaxed contract terms
such as pay-as-you-go and pre-paid plans compared to traditional base carriers
in the U.S. which have traditionally operated using post-paid plans. MVNOs
can be classified in one of two ways: full or light. Full MVNOs are carriers
that license only the radio network of the base carrier. They implement their
own core, including authentication and billing services (i.e. they distribute their
own SIM cards). Light MVNOs, also called resellers, are re-branded versions of
the base carrier, which means they can fully use the base carrier infrastructure.
Mobile operators often create light MVNOs to target specific demographics or
to lower consumer cost by cutting back on support services.

3 Data Collection

We collect data from eight mobile devices running on eight different carriers
between March 6 and March 20, 2015. We conduct the experiment over two
weeks to account for performance differences attributable to time-of-day pat-
terns. All measurement phones are located in Santa Barbara, CA and left in
a static location. All phones report ‘good’ or ‘great’ signal strength via the
Android telephony API throughout the experiment. For simplicity, we focus on
routes and performance associated with the popular social media sites Face-
book and Instagram. These services are responsible for huge amounts of mobile
Internet traffic, 19.43 % and 4.27 % respectively in North America [10], and are
widely replicated across many well-known CDN data centers, which allows us to
explore geographic differences between carriers. Measurements gathered across
additional locations, carriers, and sites would be ideal; however, this study is an
initial look at potential factors impacting MVNO network performance and we
hope to motivate further, more in-depth research. The list of CDNs that we use as
measurement points can be accessed on our project repository at https://github.
com/schmittpaul/mobileCDNs. The list includes 108 servers: 72 associated with
Facebook and 36 associated with Instagram. Some servers are location-specific,
identified by location clues in the name. We include international servers in our
study as through initial work we find that mobile traffic surprisingly resolves to
such servers a significant portion of the time (>5 %) for multiple carriers.

3.1 Carriers and Phones

We collect data on all four of the major base carriers in the United States. We
identify base carriers as A, B, C, and D. Carriers A and C are GSM networks
while carriers B and D use CDMA technology. MVNO carriers are identified
as A-1, B-1, C-1, and D-1, with their letters indicating the underlying base
carrier. MVNO B-1 is a light MVNO, which means that it has full access to
the infrastructure of carrier B. Carriers A-1, C-1, and D-1 are all branded as
the same full MVNO with different SIM cards and contracts specifying the base
carrier used. All phones run Android 4.4 and we leave them in a high-power
state to avoid latency due to radios entering low-power states. All phones are

https://github.com/schmittpaul/mobileCDNs
https://github.com/schmittpaul/mobileCDNs

86 P. Schmitt et al.

attached to their carrier (i.e. not roaming). We choose to run all experiments
while connected via 3G rather than 4G due to uneven 4G LTE coverage in
our area between carriers. Recent work [9] has found that 3G and 4G mobile
networks in the U.S. have few Internet ingress points, meaning 4G networks will
exhibit similar behavior in terms of routes and CDN resolution as 3G networks.

3.2 Traceroute and Location Data

Each hour of the testing period, each device records a traceroute to each of
the servers in the CDN server list, resulting in 14 × 24 × 8 × 108 = 290, 304
records. We then use multiple techniques to estimate the location of each IP
address in the traceroute records. We first employ the IP2Location DB5 data-
base in order to map the traceroute IP addresses to latitude and longitude coor-
dinates. Unfortunately, prior work has established that IP geolocation databases
are often rather inaccurate [11]. We also verify through a manual sanity check
of the IP-location mapping, where we find improbable location mappings. To fix
inaccuracies we use two other sources to manually estimate location for 5,172
unique, routable IP addresses observed over the course of the experiment. We
use nslookup to resolve the human-readable name of the IP address if it exists.
We do this because routers and servers often include three or four character loca-
tion clues in their names. Next, we use Internet looking glass servers, available
through traceroute.org from multiple cities around the U.S., to traceroute to
each IP address. Observing the paths taken and RTT values from geographi-
cally diverse vantage points enables us to further estimate location (e.g. RTT of
a few milliseconds from a particular looking glass server and intermediate hops
containing location identifying names). Overall, we find that out of the 5,172
unique IP addresses, we override 1,988 addresses (36.4 %) from the IP2Location
database with our manual location estimate.

We run whois on each observed IP address to determine the associated
Autonomous System (AS) number. With this information, we create a data set
corresponding to each attempted traceroute that includes: the number of hops,
the IP address associated with each hop, the geographic coordinates associated
with each hop, the autonomous system number for each hop, and the observed
RTTs associated with three traceroute probes.

4 Network Analysis

We measure traffic on the four major mobile network operator networks in the
United States as well as MVNO carriers operating on each of them. We first look
at network performance using standard metrics such as round trip times, hop
counts, and autonomous system paths. We then combine geographic information
and traceroute records to explore traffic route path characteristics.

4.1 Round Trip Times (RTT)

We begin by investigating RTTs for packets traversing the mobile networks
to the 73 non-location specific servers specified in our CDN server list.

A Study of MVNO Data Paths and Performance 87

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

RTT (ms)

C
D

F

A
A−1
B
B−1
C
C−1
D
D−1

Fig. 1. RTT measurements for mobile carriers to non-location specific servers.

RTT is a critical metric in network performance as the majority of TCP vari-
ants rely on RTT to determine throughput [12]. Figure 1 shows a cumulative
distribution function (CDF) plot of measured RTT values for all carriers in our
study. We see considerable performance variance between the networks despite
all measurements originating from the same location.

We also observe significant performance differences between base carriers and
MVNO carriers operating on the corresponding base carrier infrastructure. For
instance, in Fig. 1 we see a 772.03 ms difference between the median RTT values
for carrier A and the MVNO carrier A-1. However, the most surprising results
are that MVNO carriers A-1 and B-1 outperform their respective base carriers
in terms of achieved RTTs, with the aforementioned 772 ms lower median value
for A-1 and a 87.24 ms median difference between B and B-1. These results
contradict the expectation that MVNOs universally offer inferior performance.
Previous work has established the widespread use of transparent middleboxes on
mobile networks [13], which could help explain why networks with better RTT
performance do not necessarily outperform others as such middleboxes likely
ignore our measurement traffic. In order to understand round trip performance
more fully we must also consider the locations of servers to which client traffic
is resolved, explored in the next section.

4.2 Location-Specific RTTs

We study performance by examining the data center locations to which carriers
are most likely to resolve. We record the geographic location for the destination
server in all of the traceroutes corresponding to non-location specific requests
in the previous experiment and find that the vast majority of requests resolve
to data centers in nine US cities and most carriers heavily favor relatively few
server locations. We then measure RTT performance to all locations using our
list of location-specific servers, which are identified using 3-character airport
codes in server names (e.g. scontent-a-lax.cdninstagram.com corresponds to
an Instagram server in Los Angeles). Figure 2 shows RTT CDFs for each of the
data center locations and highlights each carrier’s top three ‘preferred’ locations.
We find location preference by calculating the percent of ‘hits’ at each location
for all non-location specific requests.

88 P. Schmitt et al.

10 100 1,000 10,000
0

0.2

0.4

0.6

0.8

1

RTT (ms)

C
D

F

ATL
ORD
DFW
LAX
MIA
LGA
SJC
SEA
IAD

(a) Carrier A:
DFW: 95.4%, SEA: 0.2%, LAX: 0.2%

10 100 1,000 10,000
0

0.2

0.4

0.6

0.8

1

RTT (ms)

C
D

F

ATL
ORD
DFW
LAX
MIA
LGA
SJC
SEA
IAD

(b) Carrier A-1:
DFW: 34.2%, ORD: 29.7%, LGA: 21.1%

10 100 1,000 10,000
0

0.2

0.4

0.6

0.8

1

RTT (ms)

C
D

F

ATL
ORD
DFW
LAX
MIA
LGA
SJC
SEA
IAD

(c) Carrier B:
LAX: 51.1%, SEA: 17.5%, SJC: 15.1%

10 100 1,000 10,000
0

0.2

0.4

0.6

0.8

1

RTT (ms)

C
D

F

ATL
ORD
DFW
LAX
MIA
SJC
SEA
IAD

(d) Carrier B-1:
LAX: 66.2%, SEA: 17.0%, DFW: 5.9%

10 100 1,000 10,000
0

0.2

0.4

0.6

0.8

1

RTT (ms)

C
D

F

ATL
ORD
DFW
LAX
MIA
LGA
SJC
SEA
IAD

(e) Carrier C:
LAX: 26.7%, SEA: 24.2%, SJC: 23.8%

10 100 1,000 10,000
0

0.2

0.4

0.6

0.8

1

RTT (ms)

C
D

F

ATL
ORD
DFW
LAX
MIA
LGA
SJC
SEA
IAD

(f) Carrier C-1:
SEA: 52.5%, LAX: 19.4%, SJC: 15.9%

10 100 1,000 10,000
0

0.2

0.4

0.6

0.8

1

RTT (ms)

C
D

F

ATL
ORD
DFW
LAX
MIA
LGA
SJC
SEA
IAD

(g) Carrier D:
SJC: 56.6%, LAX: 14.0%, ORD: 9.4%

10 100 1,000 10,000
0

0.2

0.4

0.6

0.8

1

RTT (ms)

C
D

F

ATL
ORD
DFW
LAX
MIA
LGA
SJC
SEA
IAD

(h) Carrier D-1:
ORD: 53.1%, LGA: 24.5%, SEA: 5.9%

Fig. 2. RTT comparison for specific CDN locations identified by airport codes: Atlanta
(ATL), Chicago (ORD), Dallas (DFW), Los Angeles (LAX), Miami (MIA), New York
(LGA), San Jose (SJC), Seattle (SEA), Washington DC (IAD). Each carrier’s top three
preferred locations are indicated.

A Study of MVNO Data Paths and Performance 89

The figure illustrates large performance differences and unique behaviors
between carriers. Some MVNOs appear to mimic the underlying base carrier,
while others behave in drastically different ways. Perhaps the most interesting
performance is seen on carriers A and A-1. Carrier A experiences vastly different
round trip times between different CDN locations. Additionally, carrier A favors
CDN sites (Dallas, Seattle, Los Angeles) that have the slowest median RTT
compared to the other locations. The latency to Los Angeles servers is the sec-
ond longest, despite Los Angeles being the data center nearest our measurement
location of Santa Barbara. Carrier A-1 (Fig. 2(b)) displays the broadest range
of RTT values across all CDN sites, and also favors servers located in Dallas,
TX. However, carrier A-1’s second and third most popular locations are Chicago
and New York, respectively. We believe these results are due to A-1 being a full
MVNO; thus, they employ their own core infrastructure and have service and
peering arrangements independent from the base carrier A.

Carriers B and B-1 (Fig. 2(c) and (d)), on the other hand, perform more sim-
ilarly in both latency measurements and preferred destinations. In fact, MVNO
B-1 slightly outperforms the base MNO in terms of RTT in our experiments.
Both carriers tend to route traffic toward Los Angeles. Los Angeles also tends
to correspond to the lowest RTT values for both carriers. The striking similarity
can be explained as carrier B-1 is a ‘light MVNO,’ thus B and B-1 use the same
infrastructure to handle client traffic. In this regard, it stands to argue that cus-
tomers considering carriers B and B-1 are essentially choosing between the same
service when it comes to connecting to our specified CDN sites.

Carriers C and C-1 are quite different from one another in terms of perfor-
mance even though they favor the same three data center locations. Interest-
ingly, carrier C (Fig. 2(e)) routes the highest percentage of its traffic to servers
in Los Angeles, which achieve highly variable RTT values (seemingly bimodal).
We speculate that this result is due to the carrier load-balancing flows across
dissimilar paths. Latency values on carrier C-1 (Fig. 2(f)) are rather consistent
to all CDN locations, with higher RTTs overall compared with carrier C. Car-
rier D (Fig. 2(g)) experiences the lowest network latencies overall. This carrier
tends to favor CDN servers located in San Jose, CA, which also has the lowest
median RTT value for carrier D. MVNO carrier D-1 (Fig. 2(h)) shows the most
consistent latency across all data center locations, but interestingly favors CDN
servers in Chicago, 2,961 km away from San Jose. Similar to A-1, we believe this
is likely due to D-1 being a full MVNO, with traffic traversing a different core
network than the base MNO.

Overall, we observe that some MVNOs exhibit drastically different RTT per-
formance from their MNO counterparts, while others are similar. While it seems
that the light MVNO can be characterized as simply a re-branded version of
the base MNO, our experiments using full MVNOs show unique latencies and
resolutions between them and their MNOs. Thus, these carriers do not appear to
simply reflect the performance of the MNO network on which they reside. Such
behaviors will clearly impact network latency and throughput and may help to
explain why MVNOs networks generally perform worse than MNOs.

90 P. Schmitt et al.

(a) Number of unique AS
numbers observed per carrier.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Hops

C
D

F

A
A−1
B
B−1
C
C−1
D
D−1

(b) Number of hops observed per car-
rier.

Fig. 3. Path metrics for mobile networks. MNOs and MVNOs exhibit similar AS path
lengths but differ in the number of hops taken to reach the destination.

4.3 Autonomous System Paths and Hop Counts

We next investigate traffic routes with respect to autonomous system (AS)
paths in the traceroutes for each carrier to non-location specific servers. We
use whois queries to map all IP addresses seen in carrier traceroutes to AS
numbers. Figure 3(a) shows the number of unique AS numbers observed across
the carriers, with the dark line indicating the mean. As shown, it appears as
though MVNO behavior overall is similar to MNO networks. This result illus-
trates that MVNO networks are bound to some degree to the MNO network
configuration. We study the actual AS numbers traversed by traffic between
MNOs and MVNOs and find that they generally match, and as such omit this
analysis for brevity. Interestingly, although carriers A-1, C-1, and D-1 all fall
under the ‘same’ MVNO brand, traffic for each client behaves differently based
on the underlying carrier. It appears that in terms of AS paths, MVNOs closely
reflect the underlying MNO. These results lead us to investigate hop counts to
help explain performance differences between MVNOs and MNOs.

We consider the total number of hops in traceroute records for traffic on
each mobile network to non-location specific servers. We only consider records
that reach the destination server. Figure 3(b) shows the results. As with other
metrics, we observe considerable variability between carriers. Carriers A and D
both use dramatically fewer hops to reach the server compared to their respective
MVNOs, while carriers B and C closely resemble their respective MVNOs. The
path length inflation seen on carriers A-1 and D-1 could help explain poorer
RTT performance compared to the base carrier. We also observe that MVNOs
A-1, C-1, and D-1, which are all marketed as the same carrier, experience very
different length paths to reach the destination servers. We believe the variance
may be attributable to the different preferred locations observed in Fig. 2.

4.4 Geographic Path Analysis

Lastly, we study the geographic paths taken by traffic on each mobile provider
going to specific CDN locations. This analysis provides us visual insight into

A Study of MVNO Data Paths and Performance 91

(a) Base Carrier A (b) MVNO Carrier A-1

(c) Base Carrier B (d) MVNO Carrier B-1

Fig. 4. Paths taken for each carrier to reach servers located in Los Angeles (LAX) from
clients in Santa Barbara (SBA). Arc weight indicates the number of times a particular
hop was taken. Clockwise arcs indicate direction of traffic between adjacent hops.

the carrier network behavior and performance. Figure 4 illustrates hops taken
by traceroutes over our two-week experiment where the destination servers are
located in Los Angeles, CA (140 km away from our location in Santa Barbara,
CA). Due to space limitations, we only include plots for Los Angeles and four car-
riers, as it is representative for all locations observed and illustrates the contrast
between full and light MVNOs. The figures indicate the differences in behav-
ior between MVNOs and their base carriers. For instance, carrier A (Fig. 4(a))
clearly operates over different, more stable routes compared with its correspond-
ing MVNO (Fig. 4(b)). This helps explain why there is such a marked difference
in performance between the two when connecting to various data centers. Car-
riers B and B-1 (Fig. 4(c) and (d)), on the other hand, are quite similar to one
another. This result depicts the difference between light and full MVNOs, where
the light MVNO (B-1) routes traffic in the same way as the base MNO, while
full MVNOs that implement their own core are influenced by outside factors and
differ from their respective base carriers.

A curious finding is that many of the carriers, particularly the MVNOs,
contain paths that pass through Los Angeles only to continue with subsequent
hops in distant locations before finally returning to Los Angeles. This seems to
indicate the lack of peering between the network that the earlier Los Angeles
hop is within and the content provider located in Los Angeles. This behavior is
interesting given that [9] found three of the four major US MNOs have peering

92 P. Schmitt et al.

arrangements with Google servers in Los Angeles. The propagation delay intro-
duced by such scenarios can be considerable, without accounting for additional
potential for congestion or queuing delays. Bottlenecks such as these must be
removed in order for mobile data to shrink the performance gap between mobile
and traditional wired connectivity.

Overall, path visualization gives us an increased understanding of how car-
riers differ. The full MVNOs that we measure share many locations with their
underlying MNO, but their routes are more frenetic. This could be due to dif-
ferent peering arrangements versus the base carrier or simply due to different
overall Internet connectivity. We also see that the light MVNO in our study
closely resembles its base carrier. Given all that we have observed it seems clear
that light MVNOs are, at their foundation, re-branded base carriers.

5 Related Work

There has been significant effort towards measuring, characterizing, and improv-
ing the performance of cellular network infrastructure with respect to the user
experience [9,14,15]. Sommers et al. [14] compare the performance of cellular and
WiFi networks using a crowdsourced approach for measuring network through-
put. Nikrashev et al. [15] measure longitudinal performance from end-devices
to uncover the prevalence of middleboxes in mobile networks. Zarifis et al. [9]
use end-devices to identify latency caused by inflated routes and the relation-
ships between user performance, Internet ingress points, and peering agreements.
Similar to previous work, we use measurements from the end-user perspective
to understand the impacts of network infrastructure on user experience.

Zarinni et al. [4] compare application performance over two major carriers
and three MVNOs per carrier. Our work focuses on performance with respect to
underlying network layers (e.g. latency and route paths) and considers all four
major U.S. carriers and MVNOs operating on top of each.

As cellular networks become the primary mode of Internet connectivity,
research efforts have focused on the analysis of the impact of content placement
and network configuration on end-user experience [6,9]. Zarifis et al. [9] find
that route inflation leads to increased RTT experienced by end users connecting
from locations with limited infrastructure. Rula et al. [6] explores the relation-
ship between cellular DNS infrastructure and the location of selected content
replicas, finding that instability of cellular DNS resolvers significantly degrades
the experience of mobile users. We find that locations of resolved content servers
are not universally attributable to one single factor.

6 Discussion and Conclusion

Given the results of our measurement study, what are the overriding lessons?

Round Trip Times. We observe that round trip times vary significantly
between MNOs as well as MVNOs. Additionally, we see that location of des-
tination servers drastically affects RTTs, and resolved server locations do not

A Study of MVNO Data Paths and Performance 93

appear to be logical in that they are often physically distant from the client
location. Such behavior could be the result of mobile carrier peering arrange-
ments, DNS infrastructure, and Internet ingress points. Future work should focus
on making more efficient network topologies in order to close the performance
gap between mobile carriers.

Route Paths. We find that MVNOs typically traverse the same autonomous
systems as their MNO counterparts in their paths to reach servers. However,
we often observe a higher number of hops on the MVNOs. The root cause of
such path inflation needs more thorough investigation, as it could be attribut-
able to multiple factors such as: Internet ingress points or middleboxes used for
accounting or traffic shaping in the mobile core network. Given our geographic
analysis, we believe that full MVNOs, which operate their own core networks,
route traffic through seemingly inefficient paths. Perhaps increasing the num-
ber of ingress/egress points as well as replicating middlebox functionality across
more geographic locations could improve the directness of mobile traffic on such
networks.

MNOs vs MVNOs.With the exception of carrier B-1, we observe marked
performance differences on MVNO networks compared with their underlying
MNO networks. As carrier B-1 is a light MVNO, while the others are all full
MVNOs, we can argue that consumers should expect a different user experience
when connecting via full MVNOs compared with base carriers. The observed
light MVNO leads us to conclude that its use is in essence the same as the base
carrier. It remains to be seen whether the same is true for all light MVNOs.
We find that full MVNOs tend to share some infrastructure with the MNO,
but that they are less predictable in terms of routing paths. Latency differences
are also considerable between MNOs and full MVNOs and some variability can
be attributed to destination server location. It seems likely that MVNOs may
have fewer peering agreements with content providers, evidenced by considerably
longer, more circuitous paths taken.

We do not believe that MVNOs, by their nature, are bound to offer inferior
performance compared to MNO carriers. There appears to be multiple avenues
available to explore for MVNO carriers in order to maximize traffic efficiency.
For researchers, this subject deserves more in-depth, longitudinal studies from
many locations to fully understand performance of these networks. For con-
sumers considering which MVNO or plan is the best option, there is currently
no clear answer. Additionally, the ‘best’ carrier will likely vary based on what
content the user intends to consume on the Internet. The inherent tradeoffs
between carriers are worthy of future exploration using real-world user traffic.

Limitations. Our measurement study provides only a limited glimpse into the
performance of mobile data networks given a single measurement location and
targeting a small set of servers. A longitudinal, in-depth measurement campaign
is required to fully understand the tradeoffs between mobile carriers and content
delivery networks. Measurements also rely on the efficacy of the tools we use,
such as traceroute, and the equal treatment of measurement traffic by the
carrier core networks. A larger study must include more real world traffic.

94 P. Schmitt et al.

Acknowledgements. This work was funded through NSF Network Science and Engi-
neering (NetSE) Award CNS-1064821.

References

1. Kechiche, S.: M2M and MVNOs driving US connections growth.http://gsmainte
lligence.com/research/2013/08/m2m-and-mvnos-driving-us-connections-growth/
397/. Accessed 15 August 2013

2. Cricelli, L., Grimaldi, M., Ghiron, N.L.: The competition among mobile network
operators in the telecommunication supply chain. Int. J. Prod. Econ. 131(1), 22–29
(2011)

3. Shin, D.H., Bartolacci, M.: A study of MVNO diffusion and market structure in
the EU, US, Hong Kong, and Singapore. Telematics Inform. 24(2), 86–100 (2007)

4. Zarinni, F., Chakraborty, A., Sekar, V., Das, S.R., Gill, P.: A first look at perfor-
mance in mobile virtual network operators. In: IMC 2014, Vancouver, BC, Canada,
November 2014

5. Vakali, A., Pallis, G.: Content delivery networks: status and trends. IEEE Internet
Comput. 7(6), 68–74 (2003)

6. Rula, J.P., Bustamante, F.E.: Behind the curtain: cellular DNS and content replica
selection. In: IMC 2014, Vancouver, BC, Canada, November 2014

7. Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., Maggs, B.: Cutting the
electric bill for internet-scale systems. ACM SIGCOMM Comput. Commun. Rev.
39(4), 123–134 (2009)

8. Alzoubi, H.A., Lee, S., Rabinovich, M., Spatscheck, O., Van der Merwe, J.: Anycast
CDNS revisited. In: WWW 2008, Beijing, China, April 2008

9. Zarifis, K., et al.: Diagnosing path inflation of mobile client traffic. In: Faloutsos, M.,
Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 23–33. Springer, Switzerland
(2014)

10. Sandvine: global internet Phenomena report: 2H 2014. https://www.sandvine.
com/downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-
phenomena-report.pdf. Accessed 21 November 2014

11. Poese, I., Uhlig, S., Kaafar, M.A., Donnet, B., Gueye, B.: IP geolocation databases:
unreliable? ACM SIGCOMM Comput. Commun. Rev. 41(2), 53–56 (2011)

12. Jacobson, V.: Congestion avoidance and control. SIGCOMM Comput. Commun.
Rev. 18(4), 314–329 (1988)

13. Vallina-Rodriguez, N., Sundaresan, S., Kreibich, C., Weaver, N., Paxson, V.:
Beyond the radio: illuminating the higher layers of mobile networks. In: Mobisys
15, Florence, Italy, June 2015

14. Sommers, J., Barford, P.: Cell vs. WiFi: on the performance of metro area mobile
connections. In: IMC 2012, Boston, Massachusetts, USA, November 2012

15. Nikravesh, A., Choffnes, D.R., Katz-Bassett, E., Mao, Z.M., Welsh, M.: Mobile
network performance from user devices: a longitudinal, multidimensional analysis.
In: Faloutsos, M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 12–22.
Springer, Switzerland (2014)

http://gsmaintelligence.com/research/2013/08/m2m-and-mvnos-driving-us-connections-growth/397/
http://gsmaintelligence.com/research/2013/08/m2m-and-mvnos-driving-us-connections-growth/397/
http://gsmaintelligence.com/research/2013/08/m2m-and-mvnos-driving-us-connections-growth/397/
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-phenomena-report.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-phenomena-report.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-phenomena-report.pdf

Detecting Cellular Middleboxes Using Passive
Measurement Techniques

Utkarsh Goel1(B), Moritz Steiner2, Mike P. Wittie1, Martin Flack2,
and Stephen Ludin2

1 Department of Computer Science, Montana State University,
Bozeman, MT 59717, USA

utkarsh.goel@montana.edu, mwittie@cs.montana.edu
2 Akamai Technologies, Inc., San Francisco, CA 94103, USA

{moritz,mflack,sludin}@akamai.com

Abstract. The Transmission Control Protocol (TCP) follows the end-
to-end principle – when a client establishes a connection with a server,
the connection is only shared by two physical machines, the client and
the server. In current cellular networks, a myriad of middleboxes dis-
regard the end-to-end principle to enable network operators to deploy
services such as content caching, compression, and protocol optimiza-
tion to improve end-to-end network performance. If server operators
remain unaware of such middleboxes, TCP connections may not be opti-
mized specifically for middleboxes and instead are optimized for mobile
devices. We argue that without costly active measurement, it remains
challenging for server operators to reliably detect the presence of mid-
dleboxes that split TCP connections. In this paper, we present three tech-
niques (based on latency, loss, and characteristics of TCP SYN packets)
for server operators to passively identify Connection Terminating
Proxies (CTPs) in cellular networks, with the goal to optimize
TCP connections for faster content delivery. Using TCP and HTTP logs
recorded by Content Delivery Network (CDN) servers, we demonstrate
that our passive techniques are as reliable and accurate as active tech-
niques in detecting CTPs deployed in cellular networks worldwide.

Keywords: Cellular · Middleboxes · Split TCP · Network measurement

1 Introduction

The Transmission Control Protocol (TCP), Hyper Text Transport Proto-
col (HTTP) and secure HTTP (HTTPS) were originally designed with the
assumption that clients communicate over end-to-end connections with servers.
However, given the different types of networks involved in an end-to-end connec-
tion between cellular clients and servers (such as the radio network, the cellular
backbone, and the public Internet), optimizing communication for each of these
networks independently improves the overall performance of the end-to-end con-
nections between clients and servers [5,10,11]. One of the techniques used by
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 95–107, 2016.
DOI: 10.1007/978-3-319-30505-9 8

96 U. Goel et al.

cellular carriers to improve the communication performance in their networks is
to deploy Connection Terminating Proxies (CTPs) that split TCP connections
between clients and servers [9,13]. CTPs allow cellular carriers to speed up TCP
transfers between devices and the cellular gateways to the Internet through TCP
optimization, content caching, and bandwidth throttling.

Content Distribution Networks (CDNs), cloud providers, or other server
providers on the Internet are mostly unaware of specific CTPs deployed by indi-
vidual cellular carriers. As a result, servers may not optimize their connections
for CTPs, but optimize connections for the mobile device instead. We believe
that if server providers are made aware of the presence of CTPs, TCP configu-
rations could be fine-tuned to improve content delivery to the middlebox and to
the end-user [7]. However, without expensive active network measurements on
mobile devices, it remains challenging for server operators to reliably detect the
presence of CTPs and optimize connections accordingly [17].

In this study, we propose three techniques to passively detect the presence
of CTPs in cellular networks, using TCP and HTTP logs recorded by Akamai’s
geographically distributed CDN servers. Our first technique compares latency
estimated by clients and servers for TCP connections. The second technique
compares the packet loss experienced by CDN servers for HTTP and HTTPS
sessions. Our third technique analyzes characteristics of TCP SYN packets for
connections to ports 80 (HTTP) and 443 (HTTPS). Although our evaluation is
based on Akamai server logs, we argue that our techniques are not limited to
CDN providers and also apply to other types of servers. The major contributions
of this work are as follows:

• We perform the first large scale measurement study to passively detect the
presence of CTPs deployed in cellular networks worldwide. Our study is based
on data collected by Akamai CDN servers during January-July 2015. Our
current dataset contains performance metrics from over a total of 14 million
TCP connections from clients in different cellular networks.

• We propose three techniques for server operators to passively detect the pres-
ence of CTPs from TCP and HTTP server logs. Results from our measure-
ments indicate that the use of CTPs is very popular among cellular carriers
worldwide. In fact, carriers employ CTPs for splitting HTTPS sessions, in
addition to splitting HTTP sessions.

Table 1. Comparison of results from our passive techniques with previous work [17]
that uses active experiments, for cellular networks in the US.

Detecting Cellular Middleboxes Using Passive Measurement Techniques 97

• Using the collected data, we demonstrate that our techniques are reliable
in detecting CTPs deployed in cellular networks across several countries. In
Table 1, we compare the results of our passive techniques with the Delayed
Handshake (DH) active measurement technique of CTP detection for cellular
carriers in the US [17]. The tickmarks in the table indicate the presence of
CTPs. We show that despite the fact that our passive measurement techniques
do not generate probing traffic, they correctly detect CTPs as detected by
active experiments in DH [17].

The rest of the paper is organized as follows. In Sect. 2, we discuss related
work on detecting cellular middleboxes. In Sect. 3, we present our methodology.
In Sects. 4, 5, and 6, we discuss how server operators could detect CTPs by using
latency estimated by clients and servers, packet loss observed on the server-side,
and inspecting TCP SYN packets, respectively. In Sect. 7, we offer discussion of
our results. Finally, we conclude in Sect. 8.

2 Related Work

Several studies have investigated the characteristics, performance benefits and
deployment locations of CTPs in cellular networks. Weaver et al. and Xu et al.
investigated the characteristics of transparent Web proxies in cellular networks
using active experiments on mobile devices [16,17]. Other studies looked at the
performance benefits of TCP splitting proxies to improve Web communications
in cellular networks [6,9,13]. Ehsan et al. measured the performance gains of
CTPs for Web caching and packet loss mitigation in satellite networks [8].
A study by Wang et al. characterized implications of cellular middleboxes on
improving network security, device power consumption and application perfor-
mance [15]. Our work, in contrast to these studies, focuses on detecting CTPs
using passive measurement techniques, instead of active experiments.

3 Data Collection Methodology

To verify that our latency-based technique reliably detects CTPs in cellular net-
works worldwide, we used the webpage timing data collected by Akamai’s Real
User Monitoring system (RUM) [3], which leverages the Navigation Timing API
on the client browser [1]. The data includes the time to establish TCP connec-
tions for both HTTP and HTTPS sessions. Akamai’s RUM also records TCP
latency estimated by CDN servers for HTTP and HTTPS session. To investigate
whether our packet loss-based technique reliably detects CTPs, we used TCP
logs recorded by CDN servers deployed worldwide and extracted the number
of packets retransmitted by the server for both HTTP and HTTPS sessions.
Finally, to investigate whether our TCP SYN-based technique detect CTPs, we
collected TCP-dumps on CDN servers for several hours and captured SYN packets
for connection requests to port 80 (HTTP) and 443 (HTTPS).

98 U. Goel et al.

4 Detecting CTPs from Client and Server-Side Latency

When a CTP splits an end-to-end connection between clients and CDN servers,
the latency estimated by clients should be higher than latency estimated by CDN
servers. This is because the latency observed by the client will include the radio
and cellular backbone latency (∼tens of milliseconds [2]). Whereas the latency
estimated by CDN servers would include the latency on the wired public Internet
and is likely to be low (∼5 ms), as CDNs have wide deployment of servers inside
many cellular networks.

In this section we analyze the TCP latency estimated by clients and servers
for TCP connections (both HTTP and HTTPS sessions) using two different
methods. First, we compare the latency from both client and server endpoints
to identify networks where the latency experienced by clients is significantly
higher than latency experienced by servers – which indicates that a CTP is being
used for a connection. Second, we compare the latency for HTTP and HTTPS
sessions only from the server-side to identify networks where servers experience
significantly different latencies for HTTP and HTTPS sessions – which indicates
that a CTP is used for one type of connections.

Table 2. Distribution of TCP latency estimated by clients (Client RTT) and
servers (Server RTT) for IPv4-based cellular networks in North America.

Detecting Cellular Middleboxes Using Passive Measurement Techniques 99

In Table 2, we show the distribution (25th, 50th, and 75th percentile) of
network latency measured by the client (Client RTT) and by the server (Server
RTT) for major cellular networks in North America. The column CC represents
the country code of each network. Column Hits represents the number of unique
TCP connections behind latency distributions. The column Proxy? indicates
whether our techniques detect CTPs for a given cellular carrier. For example,
for AT&T network in the US, the Client RTT for HTTP sessions is almost 10
times the Server RTT, which indicates that servers are communicating with a
device only 4 ms away. Since 4 ms is too low for an end-to-end connection over
a cellular network [2], we argue that servers communicate with CTPs deployed
in AT&T network (as indicated by � in the Proxy column). In the case of
HTTPS sessions in AT&T, we observe that Client RTT and Server RTT are
similar, which indicates that there is no CTP for HTTPS sessions in the AT&T
network (as indicated by X in Proxy column). Further, when we look at only the
Server RTT for HTTP and HTTPS sessions, we see that servers experience
significantly higher latency for HTTPS sessions, which further confirms that
AT&T does not employ CTPs for splitting HTTPS sessions. Tables 3, 4, and 5
show the application of the latency technique to detect CTPs in cellular networks
in Asia, Europe, and Oceania and South America, respectively.

Table 3. Distribution of TCP latency estimated by clients (Client RTT) and
servers (Server RTT) for cellular networks in Asia.

100 U. Goel et al.

While employing our latency-based techniques to detect CTPs in cellular
networks worldwide, we made five observations on the behavior of CTPs. First,
we observe that for p25 of HTTP sessions in T-Mobile USA network, the latency
experienced by clients and servers is significantly different, which indicates a
presence of CTPs HTTP sessions in T-Mobile network. However, for p50 of the
HTTP sessions, the two latencies are similar – indicating no presence of CTPs
for HTTP sessions in T-Mobile network. To investigate this surprising behavior
of T-Mobile network, we classified our data based on server locations and domain
names. Table 6 shows the distribution Client RTT and Server RTT for HTTP
sessions for different domain names across different locations in the US. We
observe that for clients connecting to servers in CA and VA, CTPs are used on
per domain basis. For example, the HTTP latency estimated by servers in CA
to download webpages associated with a clothing website is significantly lower
than latency estimated for a ticketing website. We see similar trends at other
locations in the US and across several domain names. Next, we observe that
T-Mobile employs CTPs for HTTP sessions only at a few locations in the US.
For example, in Table 6 the latency experienced by clients connecting to servers
in TX indicate that T-Mobile does not use a CTP for terminating HTTP sessions
for any domain name. Thus we argue that T-Mobile’s deployment of CTPs in
the US is different across different locations and domain names. Based on these
observations, we label the Proxy? column in Table 2 as ‘Limited’.

The second observation we make is that cellular networks in the US use CTPs
for TCP connections over their IPv4 networks, but not over their IPv6 networks.
Since we did not observe statistically significant IPv6 traffic from cellular carriers
deployed outside of the US, we restrict this observation to cellular carriers in the
US only. In Table 7, we show the distribution of TCP latency for IPv6 networks
deployed by major US carriers, estimated by clients and CDN servers. We observe
that clients in Verizon Wireless connecting to CDNs over IPv6 network experi-
ence latency similar to that estimated at the server for HTTP sessions. However,
from Table 2, we observe that Verizon clients connecting to CDN servers over
its IPv4 network experience much higher latency than experienced by the CDN
servers, for HTTP sessions – indicating the presence of CTP for HTTP sessions
in its IPv4 network. Therefore, we argue that Verizon employs CTPs for HTTP
sessions in its IPv4 network and not in its IPv6 network.

The third observation we make is that some networks use CTPs to split
HTTPS sessions. Using our measurement data, we identified a cellular carrier
in France that employs CTPs to split HTTPS sessions. In Table 4, we show
that for France Telecom, the Server RTT for HTTPS sessions is significantly
lower than the Client RTT, therefore we believe that France Telecom uses
CTPs to split HTTPS sessions. Telefonica in Spain is another cellular carrier
for which we observe that CTPs split HTTPS sessions, as the latency estimated
by CDN servers is lower than latency estimated by clients. Further, Telefonica’s
recent design of mcTLS protocol indicates that ISPs work towards deploying
CTPs for HTTPS sessions [12], likely to support content caching and connection
optimization for secure connections [14].

Detecting Cellular Middleboxes Using Passive Measurement Techniques 101

Table 4. Distribution of TCP latency estimated by clients (Client RTT) and
servers (Server RTT) for cellular networks in the Europe.

102 U. Goel et al.

Table 5. Distribution of TCP latency estimated by clients (Client RTT) and
servers (Server RTT) for cellular networks in Oceania and South America.

Table 6. Distribution of HTTP latency estimated by clients (Client RTT) and
servers (Server RTT) for T-Mobile across different domains & locations.

The fourth observation we make is that for some carriers, the p75 of Server
RTT is similar to p25 of Client RTT, when the p25 and p50 of Server RTT
indicate the presence of CTPs in that carrier. For example, the p75 of Server
RTT for HTTP sessions in Etisalat network in Table 3, suggests that CTPs may
not be used for splitting all HTTP sessions. We speculate that when CTPs get
overloaded, client requests are likely not sent to CTPs and instead sent directly to
servers. As a result servers occasionally experience (unproxied) latency of end-
to-end connections to mobile devices. To deal with such occasional instances,
TCP stacks of servers should interpret such connections as direct connections to
mobile devices.

Finally, the fifth observation we make is that for a few cellular carriers the
Server RTT is either higher or lower than Client RTT by at least 80 ms for
p75. Specifically, if we observe Server RTT to be higher than Client RTT, we
speculate that CTPs are deployed near the gateway and Internet egress points are

Detecting Cellular Middleboxes Using Passive Measurement Techniques 103

Table 7. Distribution of TCP latency estimated by clients (Client RTT) and
servers (Server RTT) for IPv6 cellular networks in North America.

far from the gateway. If we observe Server RTT to be lower than Client RTT,
we speculate that CTPs are near to both egress points and gateways but clients
connect to gateways far in the network. For such cellular carriers we place a ‘-’
in the Proxy? column in Tables 2, 3, 4, and 5. We argue that for such cellular
carriers, passive techniques in the following sections may be used to detect the
presence of CTPs.

5 Detecting CTPs from Packet Loss on the Server-Side

In previous section, we discussed how server operators could use latencies mea-
surements by clients and servers to detect the presence of CTPs. In this section,
we are interested in verifying another technique, based on packet loss, to pas-
sively detect CTPs across cellular networks worldwide using measurement data
collected by Akamai CDN servers. Since we observe TCP latency estimated by
CDN servers to CTPs is significantly low, we argue that CTPs and CDN servers
are usually deployed within the same or nearby datacenters. Therefore, when a
CTP is employed to split connections, the number of packets retransmitted by
servers should be lower than packets retransmitted for connections where CTPs
are not used. Following this assumption, in Fig. 1, we show the distribution of
packet loss observed during our tests for thousands of HTTP and HTTPS ses-
sions. Our first goal is to identify networks where packet loss observed by CDN
servers is higher for one type of connections and not others. We also aim to
determine whether results from using packet loss correlate with our CTP detec-
tion in the previous section. Due to space limitations, we show distribution of
packet loss for only a few cellular carriers in North America and Europe.

In Fig. 1(a), we show the distribution of packet loss observed for HTTP and
HTTPS sessions in four major cellular carriers in the US. Specifically, in the case

104 U. Goel et al.

0 10 20 30 40 50 60 70

0.
6

0.
7

0.
8

0.
9

1.
0

Packet Loss (%)

C
D

F
of

 T
C

P
C

on
ne

ct
io

ns

HTTP - AT&T
HTTPS - AT&T
HTTP - Verizon
HTTPS - Verizon
HTTP - Sprint
HTTPS - Sprint
HTTP - T-Mobile
HTTPS - T-Mobile

(a) USA

0 10 20 30 40 50 60 70

0.
6

0.
7

0.
8

0.
9

1.
0

Packet Loss (%)

C
D

F
of

 T
C

P
C

on
ne

ct
io

ns

HTTP - Bell Canada
HTTPS - Bell Canada
HTTP - Rogers
HTTPS - Rogers

(b) Canada

0 10 20 30 40 50 60 70

0.
6

0.
7

0.
8

0.
9

1.
0

Packet Loss (%)

C
D

F
of

 T
C

P
C

on
ne

ct
io

ns

HTTP - Telefonica
HTTPS - Telefonica
HTTP - Vodafone
HTTPS - Vodafone

(c) Great Britain

0 10 20 30 40 50 60 70

0.
6

0.
7

0.
8

0.
9

1.
0

Packet Loss (%)

C
D

F
of

 T
C

P
C

on
ne

ct
io

ns

HTTP - DTAG
HTTPS - DTAG
HTTP - Vodafone
HTTPS - Vodafone

(d) Germany

0 10 20 30 40 50 60 70

0.
6

0.
7

0.
8

0.
9

1.
0

Packet Loss (%)

C
D

F
of

 T
C

P
C

on
ne

ct
io

ns

HTTP - Bouygues
HTTPS - Bouygues
HTTP - France Telecom
HTTPS - France Telecom
HTTP - SFR
HTTPS - SFR

(e) France

0 10 20 30 40 50 60 70

0.
6

0.
7

0.
8

0.
9

1.
0

Packet Loss (%)

C
D

F
of

 T
C

P
C

on
ne

ct
io

ns

HTTP - Telefonica
HTTPS - Telefonica
HTTP - Vodafone
HTTPS - Vodafone
HTTP - Uni2
HTTPS - Uni2
HTTP - Jazztel
HTTPS - Jazztel

(f) Spain

Fig. 1. Distribution of packet loss over HTTP and HTTPS sessions for cellular networks
in different countries. For visibility, we reduced the number of symbols on each line.

of Verizon, AT&T, and Sprint networks, we observe that for HTTP sessions CDN
servers experience low packet loss, whereas for HTTPS sessions CDN servers
experience significantly higher packet loss – indicating the presence of CTPs for
HTTP sessions. The results for these networks agree with our observations from
using latency-based technique. However, in the case of T-Mobile, we see that
the packet loss for HTTP sessions is slightly higher compared to other networks.
We speculate that the packet loss for HTTP sessions in T-Mobile network are
influenced by T-Mobile’s policy to employ CTPs at only a few locations and
domain names in the US (Table 6).

Next, we compare the packet loss observed for connections in a network where
CTP is not employed, the Rogers network in Canada, as detected by our latency-
based technique in Table 2, with a network where our latency-based technique
could not detect the presence of CTPs, the Bell Canada network in Canada. In
Fig. 1(b), we show that for both HTTP and HTTPS sessions in Bell Canada and
Rogers networks, CDN servers observe similar packet loss. We speculate that
either CTPs are not employed in the Bell Canada network or CTPs are present
but CTPs experience same network conditions as Rogers network without CTPs.

We now extend our discussion and compare packet loss observed by CDN
servers for connections in major cellular carriers in the UK, Germany, France,
and Spain. Similarly to carriers in the US, in Fig. 1(c) and (d), we show that
packet loss observed by servers for HTTP sessions is significantly lower than
packet loss observed for HTTPS sessions – indicating the presence of CTPs
for HTTP sessions, similar to our observations from using latency-based tech-
nique. For cellular carriers in France in Fig. 1(e), we observe that packet loss for

Detecting Cellular Middleboxes Using Passive Measurement Techniques 105

HTTPS sessions in France Telecom network is similar to packet loss for HTTP
sessions, with both being almost zero. This indicates that CTPs are employed
by France Telecom for splitting both HTTP and HTTPS sessions – validating
our observations from using latency-based technique.

Finally, in Fig. 1(f), we show distribution of packet loss observed by CDN
servers for major cellular carriers in Spain. We observe that for Vodafone and
Telefonica networks, the packet loss for HTTP sessions is much lower than packet
loss for HTTPS session – indicating the presence of CTPs for only HTTP connec-
tions, similar to our observations from using latency-based technique. For Uni2
and Jazztel, however, we observe that packet loss for both HTTP and HTTPS is
similar. This indicates that CTPs are used for both HTTP and HTTPS sessions,
similar to our observations from using latency-based technique. One exception to
our results is for Telefonica. Using the latency technique we identified that Tele-
fonica could be a potential carrier where CTPs are used to terminate HTTPS
sessions. However, the high packet loss for HTTPS sessions indicates that CTPs
are not used for splitting HTTPS sessions. To disambiguate the presence of
CTPs, we propose another technique that relies on analyzing the characteristics
of TCP SYN packets, which we discuss next.

6 Detecting CTPs from TCP SYN Characteristics

Our third technique is based on analyzing TCP SYN packets to detect the presence
of CTPs in cellular networks. Our active experiments on understanding charac-
teristics of TCP SYN packets generated by different types of mobile devices have
revealed that the advertised Initial Congestion Window Size (ICWS), TCP
Timestamp in the TCP options header, and Maximum Segment Size (MSS) val-
ues are different across different types of mobile devices. We also observed that
these values are different even when the same device connects to Wi-Fi and cellu-
lar network. Based on this observation, our goal is to identify whether analyzing
TCP SYN packets (captured passively for HTTP and HTTPS sessions) have the
same ICWS, MSS, and an increasing TCP Timestamp value, which would indicate
that SYN packets are likely being generated by a single machine (a CTP), instead
of from multiple mobile devices with different hardware.

Results from our analysis of TCP SYN packets indicate that for all observed
TCP SYN packets on port 80 from cellular carriers for which our latency and
packet loss-based techniques suggest presence of CTP for HTTP sessions, the
ICWS and MSS fields in the TCP SYN packets have the same value and the TCP
Timestamp option have monotonically increasing values with a near constant
skew – indicating the presence of CTPs for splitting HTTP sessions. For TCP SYN
packets (generated from networks for which our latency and packet loss-based
techniques suggest absence of CTPs for HTTPS sessions) to port 443 of CDN
servers, we observed varying values of ICWS, MSS, and TCP Timestamp – indi-
cating that the TCP SYN packets are likely generated by different mobile devices,
instead of CTPs. We also verified our technique to be reliable for cellular car-
riers that employ CTPs for HTTPS sessions. For example, for France Telecom

106 U. Goel et al.

network in France we observed that the characteristics of all observed TCP SYN
packets to port 443 were similar – indicating the presence of CTPs for HTTPS
connections. For Telefonica in Spain, we did not observe similar characteristics
of observed TCP SYN packets to port 443 – indicating absence of CTPs for split-
ting HTTPS sessions. Based on our findings on Telefonica’s CTPs for HTTPS
sessions from our latency, loss, and SYN-based techniques, we argue that active
measurements may be needed to reliably detect CTPs. Finally, based on the
data collected we did not find networks where ICWS and MSS values were similar
but CTP was not detected using latency packet loss based techniques.

7 Discussion

We believe that one can leverage the use of our latency-based technique to
identify the cellular latency offered by carriers where CTPs are present. We
argue that for such carriers, Client RTT is a reliable indicator of the cellular
latency, comprising of the sum of radio latency and latency within the cellular
backbone. Specifically, if 4G is widely deployed by a cellular carrier, the latency
offered by 4G would be reflected in both p25 and p75 of Client RTT. Further,
if 3G is more widely deployed than 4G, then the latency offered by 4G would
be reflected in the p25 and latency offered by 3G would be reflected in p75 of
Client RTT. For example, for Telefonica in Spain, Sensorly’s [4] signal strength
data suggests a wide deployment of 3G, but little deployment of 4G. Therefore, in
Table 4, the p25 of Client RTT for HTTP sessions (55 ms) reflects Telefonica’s
latency over its 4G network, whereas the p75 latency of 372 ms reflects its 3G
latency. Further, the Etisalat network in AE (in Table 3) has wide deployment of
4G (based on Sensorly data), thus the HTTP latency shown in both p25 (30 ms)
and p75 (49 ms) of Client RTT represents the latency offered by Etisalat’s 4G
network. For other cellular networks with CTPs also, we verified that using
Sensorly’s data and Client RTT together allows cellular latency estimation in
a given carrier.

8 Conclusions

Connection Terminating Proxies (CTPs) have been a great area of interest for
many cellular carriers in the past. These proxies allow for optimizing TCP con-
nections between servers and client devices. In this paper, we propose three
techniques to passively identify the presence of CTPs, based on latency, loss,
and TCP SYN characteristics. We also conduct an extensive measurement study
based on Akamai server logs to demonstrate that our techniques can reliably
detect CTPs in cellular networks worldwide. Based on our measurement results,
we argue that server operators could use our suggested techniques to detect
CTPs using server logs only and optimize communications for different cellular
networks with the goal of faster content delivery to end-users.

Detecting Cellular Middleboxes Using Passive Measurement Techniques 107

Acknowledgments. We thank Ruomei Gao, Chris Heller, Ajay Kumar Miyyapuram,
and Kanika Shah for their invaluable insights on refining our data collection process.
We also thank National Science Foundation for supporting this work through grant
NSF CNS-1555591.

References

1. Navigation Timing, August 2015. http://w3c.github.io/navigation-timing/
2. NSF Workshop on Achieving Ultra-Low Latencies in Wireless Networks, March

2015. http://inlab.lab.asu.edu/nsf/files/WorkshopReport.pdf
3. Real User Monitoring, August 2015. https://www.akamai.com/us/en/resources/

real-user-monitoring.jsp
4. Unbiased Wireless Network Information, August 2015. http://www.sensorly.com
5. Border, J., Kojo, M., Griner, J., Montenegro, G., Shelby, Z.: Performance Enhanc-

ing Proxies Intended to Mitigate Link-Related Degradations, June 2001. https://
tools.ietf.org/html/rfc3135

6. Botta, A., Pescape, A.: Monitoring and measuring wireless network performance
in the presence of middleboxes. In: Conference on Wireless On-Demand Network
Systems and Services, January 2012

7. Dukkipati, N., Refice, T., Cheng, Y., Chu, J., Herbert, T., Agarwal, A., Jain, A.,
Sutin, N.: An argument for increasing TCP’s initial congestion window. SIGCOMM
CCR 40(3), 26–33 (2010)

8. Ehsan, N., Liu, M., Ragland, R.J.: Evaluation of performance enhancing proxies
in internet over satellite. Int. J. Commun. Syst. 16(6), 513–534 (2003)

9. Farkas, V., Héder, B., Nováczki, S.: A split connection TCP proxy in LTE networks.
In: Szabó, R., Vidács, A. (eds.) EUNICE 2012. LNCS, vol. 7479, pp. 263–274.
Springer, Heidelberg (2012)

10. Gomez, C., Catalan, M., Viamonte, D., Paradells, J., Calveras, A.: Web browsing
optimization over 2.5G and 3G: end-to-end mechanisms vs. usage of performance
enhancing proxies. Wireless Commun. Mob. Comput. 8, 213–230 (2008)

11. Ivanovich, M., Bickerdike, P., Li, J.: On TCP performance enhancing proxies in a
wireless environment. IEEE Commun. Mag. 46, 76–83 (2008)

12. Naylor, D., Schomp, K., Varvello, M., Leontiadis, I., Blackburn, J., Lopez, D.,
Papagiannaki, K., Rodriguez, P.R., Steenkiste, P.: Investigating transparent web
proxies in cellular networks. In: ACM SIGCOMM, August 2015

13. Necker, M., Scharf, M., Weber, A.: Performance of different proxy concepts in
UMTS networks. In: Wireless Systems and Mobility in Next Generation Internet,
June 2004

14. Thomson, M.: Blind Proxy Caching, July 2015. https://httpworkshop.github.io/
workshop/presentations/thomson-cache.pdf

15. Wang, Z., Qian, Z., Xu, Q., Mao, Z., Zhang, M.: An untold story of middleboxes
in cellular networks. In: ACM SIGCOMM, August 2011

16. Weaver, N., Kreibich, C., Dam, M., Paxson, V.: Here be web proxies. In: Faloutsos,
M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 183–192. Springer,
Heidelberg (2014)

17. Xu, X., Jiang, Y., Flach, T., Katz-Bassett, E., Choffnes, D., Govindan, R.: Investi-
gating transparent web proxies in cellular networks. In: Mirkovic, J., Liu, Y. (eds.)
PAM 2015. LNCS, vol. 8995, pp. 262–276. Springer, Heidelberg (2015)

http://w3c.github.io/navigation-timing/
http://inlab.lab.asu.edu/nsf/files/WorkshopReport.pdf
https://www.akamai.com/us/en/resources/real-user-monitoring.jsp
https://www.akamai.com/us/en/resources/real-user-monitoring.jsp
http://www.sensorly.com
https://tools.ietf.org/html/rfc3135
https://tools.ietf.org/html/rfc3135
https://httpworkshop.github.io/workshop/presentations/thomson-cache.pdf
https://httpworkshop.github.io/workshop/presentations/thomson-cache.pdf

The Last Mile

Home Network or Access Link? Locating
Last-Mile Downstream Throughput Bottlenecks

Srikanth Sundaresan1(B), Nick Feamster2, and Renata Teixeira3

1 ICSI, Berkeley, USA
srikanth@icsi.berkeley.edu

2 Princeton University, Princeton, USA
3 Inria, Lyon, France

Abstract. As home networks see increasingly faster downstream
throughput speeds, a natural question is whether users are benefiting
from these faster speeds or simply facing performance bottlenecks in
their own home networks. In this paper, we ask whether downstream
throughput bottlenecks occur more frequently in their home networks
or in their access ISPs. We identify lightweight metrics that can accu-
rately identify whether a throughput bottleneck lies inside or outside
a user’s home network and develop a detection algorithm that locates
these bottlenecks. We validate this algorithm in controlled settings and
report on two deployments, one of which included 2,652 homes across
the United States. We find that wireless bottlenecks are more common
than access-link bottlenecks—particularly for home networks with down-
stream throughput greater than 20 Mbps, where access-link bottlenecks
are relatively rare.

Keywords: Bottleneck location · Wireless bottlenecks · Last-mile ·
Passive measurements

1 Introduction

Many countries around the world are investing heavily to increase the speeds
of access network infrastructure. As the downstream throughput of access links
increases, a natural question is whether users are reaping the benefits of these
faster speeds. The downstream throughput they are experiencing may be limited
by other factors, such as their home wireless networks, which may face perfor-
mance problems due to a variety of factors (e.g., a poorly placed access link,
interference from competing networks or even devices on the same network). In
light of these trends, we study a simple question: Do users tend to see downstream
throughput bottlenecks more often in their access ISPs or in their home wireless
networks? To study this question, we design and implement an algorithm, HoA
(Home or Access), that can accurately locate these downstream bottlenecks on
commodity home routers. We deploy HoA in 2,652 home networks in the United
States and characterize the throughput bottlenecks that we observe across this
deployment.
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 111–123, 2016.
DOI: 10.1007/978-3-319-30505-9 9

112 S. Sundaresan et al.

Despite the importance and widespread interest in answering this question,
both data and conclusions have proved to be elusive. Although throughput analy-
sis and wireless diagnosis tools exist, each existing tool has some limitation that
makes it unsuitable for studying this question—typically, these tools require per-
forming measurements from multiple vantage points (which are hard to convince
users to install in their home networks), performing active measurements (which
can affect the performance of the wireless network), or custom hardware (which
can hamper widespread deployment). (Section 4 explains how our work relates
to previous throughput detection and analysis tools and why existing tools do
not apply in our setting.) In contrast, we seek to develop a passive network mea-
surement tool that can run from a low-cost, commodity home network router.
This choice necessarily limits the extent of the data that we can collect (and,
as a result, the conclusions that we can draw), but it also affords a relatively
large-scale deployment. HoA’s simplicity allowed us to implement it on a com-
modity Netgear router for two in-home deployments: A deployment of BISmark
routers across 64 homes and 15 countries; and another deployment that was
sponsored by the US Federal Communications Commission (FCC) and included
2,652 homes across the United States. These deployments allowed us to conduct
a first-of-its-kind large-scale study of last-mile bottlenecks. Section 2.6 describes
the deployments in more detail.

Realizing HoA required tackling several challenges. First, we needed to prop-
erly isolate performance problems in the home network versus outside of the
home; capturing measurements at the home router offers a convenient solution
to this challenge, since it lies between these two parts of the network. Next,
we had to identify and validate metrics that were lightweight enough to cap-
ture on a low-cost home router, yet sufficient to accurately locate downstream
throughput bottlenecks. We also wanted to use performance metrics from pas-
sive network traffic capture, to avoid introducing conditions that might either
alter the state of the wireless network or disrupt network performance for home
network users. Ultimately, we identified two features—the coefficient of variation
of packet inter-arrival time and the round-trip time on the wireless LAN—that
can be measured passively, are lightweight enough to be deployed on a commod-
ity home gateway, and can identity last-mile bottlenecks in many circumstances.
Section 2 incorporates these metrics into a complete identification algorithm.

We offer two important contributions: (1) the design of HoA, a lightweight
tool that both accurately detects home access link and wireless network bot-
tlenecks; (2) a detailed characterization of the nature and extent of throughput
bottlenecks that commonly arise in many home networks using data from a large-
scale prototype deployment of HoA in home routers. We do not determine why a
particular bottleneck exists (e.g., it cannot determine whether a wireless problem
results from poor device placement, non-WiFi interference, or other causes), but
rather only where the problem exists, to the granularity of whether the problem
is inside or outside the home. Our study yields the following important findings:

• Access link bottlenecks rarely occur in home networks where downstream
access throughput exceeds 20 Mbps. Rather, in these cases, throughput
bottlenecks are often introduced by the home wireless network.

Locating Last-Mile Downstream Throughput Bottlenecks 113

• Access link bottlenecks only tend to be common for users whose downstream
access throughput is less than 10 Mbps.

• In homes with multiple devices where we detect a wireless bottleneck, it is
equally likely that only a single device experiences the wireless bottleneck as
it is that all devices in the home experience the bottleneck simultaneously.

Our results suggest that it is worth spending effort to improve home wireless
network performance, in addition to the extensive attempts to optimize perfor-
mance in other parts of the network and end hosts.

2 HoA: Design, Implementation, and Deployments

We describe the design, implementation, and deployment of HoA.

2.1 Design Choices

Our first design choice was to perform measurements from the home access point.
Locating bottlenecks at the last mile becomes easier with a vantage point inside
the home network. Although vantage points in the access ISP (such as in the
DSLAM for a DSL ISP) can see all the home traffic, these locations outside
the home obscure metrics that can provide important clues about whether the
home wireless network is introducing a bottleneck. Inside the home, we can
either instrument end-hosts or the access point itself. Client devices can observe
wireless properties from their own traffic but may not be able to observe traffic
properties of other clients. A device also cannot determine characteristics of the
access link. End-host tools such as T-RAT [22] can monitor TCP properties such
as congestion window or duplicate ACKs to identify the causes of throughput
bottlenecks but cannot isolate the location of congestion.

Our second design choice was to use passive traffic measurements. While
active probing may yield useful information about the state of the network,
it also carries potential drawbacks. It risks introducing extra load on the net-
work, thereby affecting the conditions that we are trying to measure; it may also
disrupt the users who are hosting our measurement devices. Thus, we rely on
passive measurements of in situ user traffic as the main source of information
for detecting performance bottlenecks. We aim to do so without custom wireless
drivers or anything that could adversely affect the performance of the networks
we are measuring, so we look for features at the IP layer that can indicate per-
formance problems. Possible metrics thus include flow timings and sizes, packet
timings and sizes, and information that we can retrieve from TCP headers. We
briefly discuss our choices.

2.2 Network Metrics

Packet arrival timings and TCP RTT are promising metrics particularly because
our vantage point at the access point allows us to separately compute these

114 S. Sundaresan et al.

(a) Cumulative distribution of the number
of packets per second in FCC deployment.

(b) Cumulative distribution of the number
of packets per flow in FCC deployment.

Fig. 1. Properties of test samples from the FCC deployment

0.0 0.5 1.0 1.5 2.0 2.5 3.0
cv

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fr
ac

ti
on

of
sa

m
pl

es

Access link bottleneck

Wireless bottleneck

Fig. 2. Coefficient of variation of
packet interarrival times. When the
access link is a downstream throughput
bottleneck, packet arrivals are smooth
(i.e., the variance on packet interarrival
time is lower).

0 5 10 15 20 25 30 35 40
LAN RTT (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fr
ac

ti
on

of
sa

m
pl

es

Access link bottleneck

Wireless bottleneck

Fig. 3. TCP RTT between client
and access point. When the wireless
link is the throughput bottleneck, the
TCP RTT between the device and the
access point is significantly higher.

metrics for the WAN and LAN portions of the end-to-end path, potentially
allowing us to disambiguate problems that occur on either side of the access
point.

Packet Interarrival Time. We exploit an observation that is common to many
bottleneck links: packets traversing a bottlenecked link experience buffering imme-
diately upstream of the link; as a result, they experience smoothed arrival patterns
downstream of the bottleneck link. To capture this effect, we use the coefficient
of variation of packet interarrival times, cv, which is the standard deviation of
packet interarrival time divided by the mean packet interarrival time. In our
example, when the access link is the bottleneck cv = 0.05; whereas when the
wireless is the bottleneck cv is 0.88. In Fig. 2, the “access link bottleneck” curve
presents the distribution of cv for 100 experiments where we introduced a bottle-
neck at the access link; and the “wireless bottleneck” curve for 100 experiments
where the bottleneck was on the wireless. There is no overlap between the two
curves: cv is lower when the access link is the bottleneck versus when it is not.

Wireless Round-Trip Time. The second effect is that devices in home net-
works are only one hop away from the access point, so the baseline latency
between the access point and the device should be a few milliseconds (as we

Locating Last-Mile Downstream Throughput Bottlenecks 115

measured in our controlled experiments). We observe that the delays caused by
buffering in the wireless network (i.e., those caused by throughput bottlenecks)
are significantly higher. We measure this effect by capturing the TCP RTT, τ ,
between the device and the access point. Figure 3 presents the LAN TCP RTT
(the RTT over TCP between the access point and a device in the home network)
for two downstream throughput bottleneck scenarios: an access network bottle-
neck and a wireless bottleneck. In both experiments, we established (through
repeated experiments) the wireless network capacity to be about 40 Mbps. In
the first case, the access link is 30 Mbps, so it is always the bottleneck. In the
second case, the access link is 70 Mbps so that the wireless network becomes the
bottleneck. When the access link is the bottleneck, the RTT is about 5 ms. In
contrast, when the wireless is the bottleneck, packet buffering at the head of the
wireless link (i.e., the access point) increases RTTs to about 25–35 ms.

2.3 Detection Algorithm

For each device, d, we use two independent detectors. One detector uses a deci-
sion rule that determines whether an access-link bottleneck event, B, occurs,
given a particular observed value of cv. The other detector uses a decision rule
that determines whether a wireless bottleneck event, W , occurs given a partic-
ular observed value of τd. We first compute likelihood functions f(cv|B) and
f(cv|B) in a controlled setting, where we use our ability to control the through-
put of the upstream link to introduce a bottleneck on the access link. We then
define our decision rule in terms of the likelihood ratio:

Λ(cv = v) =
f(cv = v|B)
f(cv = v|B)

where v is the measured coefficient of variation of packet interarrival time for
packets over the observation window. When Λ is greater than some threshold
γ, the detector says that the access link is the bottleneck (i.e., it is more likely
than not, given the observation of cv = v, that the prior is the event B). We can
tune the detector by varying the value of γ; higher values will result in higher
detection rates, but also higher false positive rates. We use a similar approach
for W . The next section presents our choices of threshold.

We can only perform bottleneck detection if the network is sending enough
traffic. We set a minimum number of packets per second, Tpps, and a minimum
number of packets per flow, Tpf , for running HoA. Figure 1 shows the distribution
of the number of packets per second and packets per flow observed across homes
in the FCC deployment. In approximately 40 % of measured one-second intervals,
we observe packet rates of less than 10 packets per second. We also tested Tpps

values of 50, 100, and 150 packets per second, and Tpf values of 25, 50, and 75
packets per flow on real-world deployment data; none of these settings changed
our conclusions.

116 S. Sundaresan et al.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
po

si
tiv

e
ra

te

0.0 0.05 0.1
0.9

0.95

1.0

Fig. 4. Receiver operating character-
istic for access link bottleneck detec-
tion using the coefficient of variation of
packet interarrival time.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
po

si
tiv

e
ra

te

0.0 0.05 0.1
0.9

0.95

1.0

Fig. 5. Receiver operating character-
istic for wireless bottleneck detection
using the TCP RTT between the access
point and the client.

2.4 Calibration

We built a testbed to run controlled experiments to calibrate detection thresh-
olds. The testbed has an access point, its LAN, a network traffic shaper upstream
of the access point, a well-provisioned university network, and servers in the
university network. The access point is a Netgear WNDR3800 router running
OpenWrt. To change the downstream throughput of the emulated access link,
we use tc and netem on a second WNDR3800 router running OpenWrt. We
run our tests against servers in the same well-provisioned university network to
avoid potential wide-area bottlenecks. We run two sets of experiments using the
testbed.

We use a traffic shaper to shape the link to different throughput levels while
keeping the wireless link constant. In this case, identifying the ground truth
is straightforward, as we know the capacities of both the wireless link and the
shaped access link. We use 802.11a and 802.11n for the wireless link with respec-
tive capacities of 21 Mbps and 80 Mbps over TCP. We generate 1,356 experiments
with 11 different emulated access links, with capacities varying from 3 Mbps to
more than 100 Mbps. To introduce wireless bottlenecks, we conduct two sets of
experiments. (1) Reduce capacity by degrading channel quality: we do this by
positioning the host at different distances from the access point, and with mul-
tiple obstructions, and also transient problems by human activity. (2) Reduce
the available capacity of the channel by creating contention with an interfer-
ing host that sends constant UDP traffic, with the interfering host close to the
access point. For each setting, we run a TCP throughput test using iperf. To
minimize interference that we do not introduce ourselves, we use the 5 GHz
spectrum, which is less congested than the 2.4 GHz range in our testbed. In our
repeated controlled experiments, we found that the wireless channel in our test-
bed delivers a TCP throughput of about 80 Mbps on 802.11n. We performed
1,356 experiments over many operating conditions.

Locating Last-Mile Downstream Throughput Bottlenecks 117

Because there can only be one throughput bottleneck on an end-to-end path,
by definition, the detectors should never detect bottlenecks simultaneously. Using
the thresholds that we computed for each detector—as we describe for each case
below—simultaneous detection occurs only 2 % of all time intervals, typically in
cases where the throughput values for the home wireless network and the access
link were similar (Fig. 5).

Packet Interarrival Time (Tcv). We use the results from the controlled exper-
iments described above to compute the likelihood functions f(cv|B) and f(cv|B)
to determine the detection threshold Tcv. We first evaluate the detection accu-
racy of the algorithm for different values of Tcv. Figure 4 shows the receiver
operating characteristic for this detector. When Tcv is low (close to zero), the
detector will always determine that the access link is not the bottleneck; when
Tcv is high (close to one), the detector will always identify the access link as the
bottleneck. Our results indicate that detection accuracy remains high for a wide
range of threshold settings for Tcv, particularly between 0.7 and 0.9. Detection
accuracy is very high in this range, with a true positive rate more than 95 % and
a false positive rate less than 5 %. The range of good thresholds reinforces our
confidence of its robustness as a detection metric. We use a threshold Tcv = 0.8,
which offers the best tradeoff between the true positive and false positive rates,
to declare the access link the bottleneck.

Wireless Round-Trip Time (Tτ). We calibrate the thresholds for the like-
lihood functions f(τd|W) and f(τd|W) using a similar method. We choose a
threshold Tτ = 15 ms, which yields a detection rate of 95 % and a low false
positive rate of less than 5 %. Similar to the Tcv parameter, Tτ is also robust;
we get similarly high true positive rates and low false positive rates for values
ranging from 12–17 ms. Higher LAN latencies in the wireless network can result
from other wireless problems that may manifest as retransmissions or backoffs.
We observe empirically that these wireless issues introduce up to 8–12 ms of
delay, whereas delays caused by wireless throughput bottlenecks introduce more
than 15 ms of extra delay, thresholds which yield a high detection and low false
positive rate in our experiments.

2.5 Limitations

HoA has several limitations. First, because it relies on passive traffic analysis,
the link must carry enough traffic to enable analysis. Section 2.3 how we deter-
mine minimum thresholds for detection, which are heuristics. Second, constant
bit rate traffic could in some cases yield a low cv, thus causing HoA to mistak-
enly detect a throughput bottleneck on the access link; such cases may need to
rely on other detection methods. With respect to bottlenecks, HoA cannot iden-
tify the root cause of bottlenecks, and it cannot identify bottlenecks far from
the last mile, such as peering or server-side bottlenecks. HoA can only locate
throughput bottlenecks where the link is work-conserving; because wireless links
violate this assumption, HoA cannot detect upstream throughput bottlenecks.

118 S. Sundaresan et al.

Additionally, detection thresholds may be sensitive to certain settings and con-
figurations: Tτ may depend on the wireless driver and hardware; in cable access
networks, Tcv may depend on the channel bonding configuration of the DOCSIS
modem. The calibration methods from Sect. 2.4 may help determine the appro-
priate thresholds in various settings. Finally, to reduce CPU load, HoA collects
data periodically, which does not allow us to capture aspects of the network that
vary over small timescales.

2.6 Deployments

Table 1 summarizes our two deployments, which we briefly describe below.

Table 1. Deployments of HoA, including locations and study durations. In addition
to the larger FCC deployment, we also performed a pilot deployment of HoA on 100
homes in the FCC deployment from August 24–30, 2014.

BISmark FCC

Homes 64 2,652

Location 15 Countries United States

Duration March 6–April 6, 2013 November 4–5, 2014

Tests 52,252 73,193

BISmark Deployment. We deployed HoA on Netgear’s WNDR3700/3800,
which has an Atheros chipset with a 450 MHz processor, one 802.11bgn radio,
and one 802.11an radio. The 3800 has 128 Mbytes of RAM, and the 3700 has
64 Mbytes of RAM. The devices run OpenWrt, with the ath9k wireless driver.
The driver uses the Minstrel rate adaptation algorithm, with the default setting
to a maximum bitrate of 130 Mbps. Every 5 min, HoA collects packet traces from
the WAN port for 15 s and extracts timestamps and per-flow RTTs on either side
of the access point, as well as the number of packets for each connection using
tcptrace [21]. tcptrace tracks packets and the corresponding ACKs to compute
the RTTs.

FCC Deployment. We use the FCC’s deployment of Netgear WNR3500L,
which has a Broadcom chipset and a 480 MHz processor, one 802.11bgn radio,
and 64 Mbytes of RAM. The devices run a custom Netgear firmware based on
OpenWRT. The resource constraints of the WNR3500L required two changes to
our implementation. First, we imposed a packet limit and a time limit for every
trace collection iteration. The collection runs for 10 s or until it has collected
10,000 packets, whichever comes first. We discard any trace for which the packet
filters dropped at least 5 % of packets from our analysis. Additionally, due to
resource constraints, we do not perform any processing on the device, except for
anonymization. Instead, we offload the packet header traces for offline analysis.
To avoid conflicts with FCC’s Measuring Broadband America program, we could
only perform our measurements three times per hour.

Locating Last-Mile Downstream Throughput Bottlenecks 119

3 Results

This section explores our findings: (1) In home networks where downstream
throughput exceeds 20 Mbps, the home wireless network is the primary cause
of throughput bottlenecks. (2) Access link bottlenecks are prevalent in home
networks where the downstream throughput is less than 10 Mbps. (3) In homes
where HoA detects a wireless throughput bottleneck, it is about equally likely
that the wireless throughput bottleneck is isolated to a single device or observed
across all devices.

0 10 20 30 40 50 60 70 80 90

Downstream access link throughput bins (Mbps)

(a) BISmark deployment. (b) FCC deployment.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

of
po

si
tiv

e
te

st
s

Access link Wireless

0 10 20 30 40 50 60 70 80 90

Downstream access link throughput bins (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

of
po

si
tiv

e
te

st
s

Access link Wireless

Fig. 6. Prevalence of access link and wireless bottlenecks home networks the two
deployments deployment. When downstream access-link throughput exceeds about
20 Mbps, only about 20 % of last-mile bottlenecks occur on the access link.

3.1 Prevalence of Last-Mile Bottlenecks

In this section, we explore the prevalence of downstream throughput bottlenecks
in access links versus home wireless networks using HoA. Specifically, we study
the fraction of tests for which HoA identifies downstream throughput bottle-
necks, and to what extent these bottlenecks are caused by the access link versus
the home wireless network.

We perform more than 50,000 tests over a wide range operating conditions
in the field. HoA identifies downstream throughput bottlenecks in 55 % of tests
in the BISmark deployment and 47 % of tests in the FCC deployment. When
HoA does not detect a bottleneck, the underlying cause may be low demand
or bottlenecks being elsewhere in the network (e.g., at a peering point). As
expected, homes with access-link throughput less than 10 Mbps experience the
largest fraction of throughput bottlenecks; 55 % of tests detect a bottleneck.
The fraction of tests where HoA detects a bottleneck, however, remains close to
40 % even for homes with access-link throughput above 90 Mbps. In the rest of
this section, we further characterize the tests where HoA detects a downstream
throughput bottleneck.

Figure 6a plots the fraction of downstream throughput bottlenecks in the
BISmark deployment that are located either in the access link or in the home
wireless network. We group home networks into bins of 10 Mbps according to

120 S. Sundaresan et al.

the measured downstream throughput of their access links. The results show
that many throughput bottlenecks in the BISmark deployment are due to the
wireless network. Our analysis of the bottlenecks per home in the BISmark
deployment shows that the fraction of wireless bottlenecks varies significantly
across homes even for homes with similar access-link throughput. For example,
homes with access-link throughput less than 20 Mbps had wireless bottlenecks in
between 3–58 % of downstream throughput bottlenecks, and 11–83 % of down-
stream throughput bottlenecks. By default, we configured these home routers to
use 802.11n, which can support significantly higher rates. The default 802.11n
configuration supports frame rates of up to 130 Mbps (we observed about 85–
90 Mbps over TCP), while 802.11 g supports only framerates up to 54 Mbps.
The fact that these networks are experiencing throughput bottlenecks suggests
persistent problems with home wireless network deployments in practice.

Figure 6b shows the same results for the FCC deployment. First, access-link
bottlenecks only occur frequently for home networks with downstream access
throughput less than 20 Mbps. Homes with access throughput less than 10 Mbps
experience access-link bottlenecks in about 66 % of cases; however this fraction
drops rapidly as access throughput increases: for homes with access through-
put between 10 and 20 Mbps about 40 % of downstream throughput bottlenecks
are due to access-link bottlenecks, whereas for homes with access links exceed-
ing 20 Mbps access-link bottlenecks explain only about 20 % of downstream
throughput bottlenecks. Conversely, wireless throughput bottlenecks become
more prevalent in homes with higher access throughput: 33 % of downstream
throughput bottlenecks for homes with throughput less than 10 Mbps are due
to wireless bottlenecks; 40 % of the bottlenecks are in the wireless network for
homes with 10–20 Mbps access throughput; and, nearly 80 % of the bottlenecks
are in the wireless network when access throughput exceeds 20 Mbps. That wire-
less throughput bottlenecks occur even for access links with such low speeds is
surprising: the FCC access points support 802.11n, with default frame bitrates
of up to 130 Mbps and a maximum frame bitrate of 300 Mbps. Some users had
configured their routers to 802.11g, and those users did experience lower through-
put. Yet, 802.11g comprised only 10 % of all tests, so most of the problems that
we observed occurred even with 802.11n.

In about 8 % of downstream throughput bottlenecks in homes with access-link
throughput less than 10 Mbps, HoA indicates that both the wireless network and
the access link are introducing throughput bottlenecks. In principle, this should
not occur as, by definition, there can be only one bottleneck. The prevalence of
this result for primarily low-throughput access links suggests that in these cases,
at least one device in the home network may be experiencing poor wireless
conditions in conjunction with an access-link bottleneck.

3.2 Wireless Bottlenecks Within a Home

The previous section demonstrated that wireless bottlenecks are common; in
cases where wireless bottlenecks exist, at least one device in the home experi-
ences a wireless throughput bottleneck during the tests. For about 75 % of tests

Locating Last-Mile Downstream Throughput Bottlenecks 121

when HoA detects a wireless bottleneck, we only observe traffic for one device in
the home. For the remaining 25 % of tests with a wireless bottleneck, we investi-
gate whether the active devices experience a downstream throughput bottleneck
in the wireless network simultaneously. Simultaneous throughput bottlenecks in
the wireless network to independent devices might indicate a more systemic prob-
lem (e.g., pervasive interference, poor signal from the access point, contention),
whereas isolated throughput bottlenecks are more likely to indicate a problem
with a particular device. About half of the cases we observed involve throughput
bottlenecks that are isolated to a single device; in another 45 % of cases, all of
the devices in the home simultaneously experience a throughput bottleneck.

4 Related Work

HoA draws inspiration from several previous diagnosis techniques. Zhang
et al. developed T-RAT [22] to analyze TCP performance. T-RAT estimates
TCP parameters such as maximum segment size, round-trip time, and loss to
understand flow behavior. Katabi et al. [11], used entropy in packet interarrival
time to estimate shared bottlenecks. Biaz et al. [3] used packet interarrival times
for distinguishing between different kinds of losses. HoA is similar to some of the
approaches used in these papers (e.g., it uses packet interarrival time as input
to a detector for access link bottlenecks), but we tailor our approach so that
it only relies on data that can be easily collected from a home router. Previ-
ous work has studied broadband access performance [4,8,9,20]. In particular,
Sundaresan et al. [20] study residential access performance from home routers
(also using the FCC Broadband America dataset). There have also been many
previous approaches to diagnosing wireless networks. One approach is to deploy
passive traffic monitors throughout the network to diagnose wireless patholo-
gies [1,2,6,15,16] or to study wireless performance [14]. Kanuparthy et al. [10]
developed a tool to detect common wireless pathologies (such as low signal-to-
noise ratio, congestion, and hidden terminals) by using both active probes and an
additional passive monitor deployed within the network. Kim et al. [12] analyze
wireless metrics such as frame bitrates, frame ACKs and retransmission rates to
identify root causes of wireless performance problems. Other approaches have
monitored wireless networks with custom hardware [5,13,16–18]. Unfortunately,
it is difficult to deploy multiple monitoring points or custom hardware in many
home networks, since it requires deploying equipment beyond what a normal user
is typically willing to install or have installed in their home. Other efforts have
characterized home networks in terms of connected devices and usage [7,19].
None of these studies, however, have studied how often the home network
constraint downstream throughput.

5 Conclusion

To identify performance bottlenecks in home networks, we developed an algo-
rithm and tool, HoA, that passively observes traffic flows between the home net-
work and the access network to determine the location of last-mile downstream

122 S. Sundaresan et al.

throughput bottlenecks. Our prototype deployment of HoA in 2,652 home net-
works shed new light on the prevalence of downstream throughput bottlenecks
in both home networks and access networks. We find that when the downstream
throughput of a user’s access link exceeds about 20 Mbps, a high fraction of
throughput bottlenecks are caused by the user’s home wireless network. This
finding is significant in light of recent proposed regulations to change the def-
inition of broadband Internet access to increasingly higher speeds. Our study
opens several avenues for future work. First, we need methods to identify root
causes that explain why various wireless performance problems exist in addi-
tion to where they are. Second, a follow-up to HoA could attribute problems
that home network users experience to a more complete and more specific set of
causes.

Acknowledgments. We thank the FCC and SamKnows for helping us develop and
deploy HoA in the Measuring Broadband America (MBA) platform. We also acknowl-
edge the participants of the MBA platform. We would like to thank our shepherd,
Mahesh K. Marina, and the reviewers for their helpful comments. This work was
supported by NSF awards CNS-1535796, CNS-1539906, and CNS-1213157, and the
European Communitys Seventh Framework Programme (FP7/2007–2013) no. 611001
(User-Centric Networking).

References

1. Adya, A., Bahl, P., Chandra, R., Qiu, L.: Architecture and techniques for diag-
nosing faults in IEEE 802.11 infrastructure networks. In: MobiCom, pp. 30–44,
Philadelphia, PA (2004)

2. Ahmed, N., Ismail, U., Keshav, S., Papagiannaki, K.: Online estimation of RF
interference. In: ACM CoNEXT, Madrid, Spain, December 2008

3. Biaz, S., Vaidya, N.H.: Discriminating congestion losses from wireless losses using
inter-arrival times at the receiver. In: IEEE Symposium on Application - Specific
Systems and Software Engineering and Technology (ASSET), Washington, DC,
USA (1999)

4. Canadi, I., Barford, P., Sommers, J.: Revisiting broadband performance. In: ACM
SIGCOMM Internet Measurement Conference (IMC), October 2012

5. Cheng, Y., Bellardo, J., Benko, P., Snoeren, A.C., Voelker, G.M., Savage, S.: Jigsaw:
solving the puzzle of enterprise 802.11 analysis. In: Proceedings of ACM SIGCOMM,
Pisa, Italy, August 2006

6. Cheng, Y.C., Afanasyev, M., Verkaik, P., Benkö, P., Chiang, J., Snoeren, A.C.,
Savage, S., Voelker, G.M.: Automating cross-layer diagnosis of enterprise wireless
networks. SIGCOMM Comput. Commun. Rev. 37(4), 25–36 (2007)

7. Cioccio, L.D., Teixeira, R., Rosenberg, C.: Measuring home networks with Home-
Net profiler. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799,
pp. 176–186. Springer, Heidelberg (2013)

8. Croce, D., En-Najjary, T., Urvoy-Keller, G., Biersack, E.: Capacity estimation of
ADSL links. In: Proceedings of CoNEXT, December 2008

9. Dischinger, M., Haeberlen, A., Gummadi, K.P., Saroiu, S.: Characterizing residen-
tial broadband networks. In: Proceedings of ACM SIGCOMM Internet Measure-
ment Conference, San Diego, CA, USA, October 2007

Locating Last-Mile Downstream Throughput Bottlenecks 123

10. Kanuparthy, P., Dovrolis, C., Papagiannaki, K., Seshan, S., Steenkiste, P.: Can
user-level probing detect and diagnose common home-WLAN pathologies. SIG-
COMM Comput. Commun. Rev. 42(1), 7–15 (2012)

11. Katabi, D., Blake, C.: Inferring congestion sharing and path characteristics from
packet interarrival times. Technical report MIT-LCS-TR-828, Massachusetts Insti-
tute of Technology (2002)

12. Kim, K.H., Nam, H., Schulzrinne, H.: WiSlow: a Wi-Fi network performance trou-
bleshooting tool for end users. In: IEEE INFOCOM, pp. 862–870 (2014)

13. Lakshminarayanan, K., Sapra, S., Seshan, S., Steenkiste, P.: RFdump: an architec-
ture for monitoring the wireless ether. In: Proceedings of the 5th International Con-
ference on Emerging Networking Experiments and Technologies, CoNEXT 2009,
pp. 253–264 (2009)

14. Mahajan, R., Rodrig, M., Wetherall, D., Zahorjan, J.: Analyzing the mac-level
behavior of wireless networks in the wild. In: SIGCOMM 2006, pp. 75–86 (2006)

15. Niculescu, D.: Interference map for 802.11 networks. In: ACM SIGCOMM Internet
Measurement Conference, pp. 339–350, San Diego, California, USA, October 2007

16. Rayanchu, S., Mishra, A., Agrawal, D., Saha, S., Banerjee, S.: Diagnosing wireless
packet losses in 802.11: separating collision from weak signal. In: INFOCOM 2008,
The 27th Conference on Computer Communications, April 2008, pp. 735–743.
IEEE (2008)

17. Rayanchu, S., Patro, A., Banerjee, S.: Catching whales and minnows using
WiFiNet: deconstructing non-WiFi interference using wifi hardware. In: USENIX
NSDI, San Jose, CA

18. Rayanchu, S., Patro, A., Banerjee, S.: Airshark: detecting non-WiFi RF devices
using commodity wifi hardware. In: ACM SIGCOMM Internet Measurement Con-
ference, pp. 137–154, Berlin, Germany (2011)

19. Sánchez, M.A., Otto, J.S., Bischof, Z.S., Bustamante, F.E.: Trying broadband char-
acterization at home. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol.
7799, pp. 198–207. Springer, Heidelberg (2013)

20. Sundaresan, S., de Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè,
A.: Broadband internet performance: a view from the gateway. In: ACM SIG-
COMM, Toronto, Ontario, Canada, August 2011

21. tcptrace: A TCP connection analysis tool. http://irg.cs.ohiou.edu/software/
tcptrace/

22. Zhang, Y., Breslau, L., Paxson, V., Shenker, S.: On the characteristics and origins
of internet flow rates. In: Proceedings of ACM SIGCOMM, Pittsburgh, PA, August
2002

http://irg.cs.ohiou.edu/software/tcptrace/
http://irg.cs.ohiou.edu/software/tcptrace/

A Case Study of Traffic Demand Response
to Broadband Service-Plan Upgrades

Sarthak Grover(B), Roya Ensafi, and Nick Feamster

Department of Computer Science, Princeton University, Princeton, USA
{sgrover,rensafi,feamster}@cs.princeton.edu

Abstract. Internet service providers are facing mounting pressure from
regulatory agencies to increase the speed of their service offerings to
consumers; some are beginning to deploy gigabit-per-second speeds in
certain markets, as well. The race to deploy increasingly faster speeds
begs the question of whether users are exhausting the capacity that is
already available. Previous work has shown that users who are already
maximizing their usage on a given access link will continue to do so when
they are migrated to a higher service tier.

In a unique controlled experiment involving thousands of Comcast
subscribers in the same city, we analyzed usage patterns of two groups:
a control group (105 Mbps) and a randomly selected treatment group
that was upgraded to 250 Mbps without their knowledge. We study how
users who are already on service plans with high downstream throughput
respond when they are upgraded to a higher service tier without their
knowledge, as compared to a similar control group. To our surprise, the
difference between traffic demands between both groups is higher for
subscribers with moderate traffic demands, as compared to high-volume
subscribers. We speculate that even though these users may not take
advantage of the full available capacity, the service-tier increase generally
improves performance, which causes them to use the Internet more than
they otherwise would have.

1 Introduction

With the large impact of broadband Internet on our daily lives and its rapid
increase in bandwidth-intensive services, policymakers and service providers
(ISPs) are trying to determine how much bandwidth consumers need. With
the proliferation of high quality video content, and the recent boom in Internet-
enabled consumer device, it is worth studying—and continually re-evaluating—
whether (and how) users consume the capacity that ISPs offer. Up to a certain
point, users will exhaust available capacity, and they will also adapt when more
capacity becomes available; this increased demand in turn drives provisioning.
Above certain speeds, however, the typical user no longer exhausts the available
capacity. At what speed does this inflection point occur? How do users adapt
their demands when an ISP offers faster speed tiers? Answers to these ques-
tions will ultimately help inform policymakers and ISPs determine how to make
investments in infrastructure, and when to make them.
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 124–135, 2016.
DOI: 10.1007/978-3-319-30505-9 10

A Case Study of Traffic Demand Response 125

In the United States, the Federal Communications Commission (FCC) is
interested in the relationship between demand and capacity for several rea-
sons. First, the FCC recognizes the need to define broadband benchmarks based
on traffic demand and is considering doing so [9]. It has defined a “typical”
household traffic demand to enable concurrent broadband use, such as video
streaming, web browsing, and VoIP. The FCC has also asked for comments and
suggestions on how to define such a demand-based benchmark for future plan-
ning [7,8]. Second, recent research shows that diurnal Internet usage patterns
are correlated with GDP, Internet allocations, and the electrical consumption of
a region [11], which makes the study of usage potentially relevant to the reg-
ulatory bodies responsible for development. Finally, the FCC is responsible for
increasing broadband deployment throughout the US, and it recently decided
to aggressively increase the broadband threshold benchmark to 25 Mbps down-
stream and 3 Mbps upstream. Yet, a survey conducted by NCTA (for the FCC)
showed that the largest deterrent to deployment of faster speed tiers is that
consumers do not want the faster speeds (the second largest deterrent is the
price) [8]. Clearly, this question deserves both rigorous and continuous study.

Previous work discovered that users who are already maximizing their usage
on a given access link will continue to do so when they are migrated to a higher
service tier [1]. In this paper, we study how the traffic demands of subscribers
who are already on service plans with high downstream throughput respond to
an undisclosed service plan upgrade as part of a randomized control trial (RCT).
This experiment offers the unique opportunity to explore the effects of a service-
tier upgrade on user traffic demand, while mitigating the cognitive bias of the
service-tier upgrade by withholding that information from subscribers. To the
best of our knowledge, this is the first such comparative study of usage behavior
in a controlled experiment to study responses to service upgrades.

Our study is based on data from the residential home gateways of Comcast
subscribers in Salt Lake City, Utah. To measure traffic demand, Comcast collects
aggregate byte counts every 15 min from two types of users: control, or users
who pay and use a high capacity access link (105 Mbps); and treatment, or users
who pay for 105 Mbps but were actually offered a 250 Mbps access link without
their knowledge. We evaluate three months of traffic demand for more than
6,000 Comcast subscribers, 1,519 of whom were in the treatment group. We find
that subscribers who are already using most of their available capacity at the
105 Mbps and the 250 Mbps service tiers do not show a significant difference
in traffic demand. On the other hand, subscribers who exhibit moderate traffic
demands in the both groups often exhibit a large relative difference in their traffic
demands. This result suggests that even users who are not fully exhausting the
available capacity at one service tier may increase usage at higher service tiers,
perhaps because the improved performance at the higher tier may cause these
subscribers to use the Internet more than they otherwise would. We also observed
that the most significant difference in per-subscriber traffic demand occurred
during non-prime-time hours on weekdays, suggesting that this demographic
of consumer may disproportionately include users who work from home. Such a

126 S. Grover et al.

phenomenon is also consistent with our observation that traffic demands at these
higher service tiers consistently rises throughout the course of the day, with no
mid-afternoon drop in traffic volume, as is evident in other studies.

The rest of the paper is organized as follows. In Sect. 2 we overview some pre-
vious studies of traffic demand and service capacity. In Sect. 3, we offer details
about our data, sanitization, and characterization. We then proceed by describ-
ing our evaluation criteria and analyze traffic demand in response to a service
tier upgrade in Sect. 4. We summarize our findings in Sect. 5.

2 Related Work

The measurement community has produced a plethora of studies of broadband
performance analysis, yet has performed relatively fewer studies of traffic demand
in broadband access networks. The increasing availability of high-bandwidth
Internet services and the FCC’s recent interest in exploring traffic demand as a
broadband benchmark [8] now calls for increased attention to the relationship
between user traffic demand and broadband capacity.

Our work complements an earlier study by Bischof et al. [1], who used nat-
ural experiments to investigate causal relationships between the traffic demand
(which they refer to as “user demand”, or “usage” in their paper) and fac-
tors such as service capacity, performance, and price. Bischof et al. showed that
demand increases with capacity, but “follows a law of diminishing returns”;
in other words, increases in capacity for an already high tier results in a lower
increase in demand. Our work presents complementary results from a large-scale
controlled experiment and examines in particular a high service tier (105 Mbps)
that has not been studied before. Our dataset mitigates the affect of price, per-
formance, and other potential biases (such as regional [2,4], capped usage [3],
and “geek-effect” [1]) by limiting the dataset to a large number of users selected
randomly from the same service tier and location.

Zheleva et al. present a case study of the effects of an Internet service upgrade,
from 256 kbps satellite to 2 Mbps terrestrial wireless, in rural Zambia [15]. This
work observed that the stark change in traffic demand three months after the
upgrade caused a performance bottleneck. In contrast, our case study focuses on
traffic demands of subscribers from much higher service tiers who are not contin-
uously bottlenecked by their access link; additionally, we study how users adjust
their traffic demands without informing them of the upgrade, thus eliminating
potential cognitive bias.

Other efforts such as [10,12] study the characteristics of residential broad-
band, and report the contributions of the most popular web applications to the
total usage. The bi-annual Sandvine reports [13,14] provide an overview of over-
all Internet traffic demand from fixed lines and mobile carriers as well as an
updated analysis of the most popular Internet applications. They showed that
video accounts for 63 % of traffic usage overall, and traffic demand peaks during
the peak evening hours, possibly due to increasing video content consumption.
Our work does not concern with the applications responsible for most traffic,
but only with the peak period during which an individual subscriber’s traffic
demand is high.

A Case Study of Traffic Demand Response 127

Fig. 1. Distribution of downstream demand averaged across subscribers in the control
and treatment groups from October through December 2014.

3 Method and Data

We describe the design of our randomized control experiment and the dataset
that we used for this experiment.

3.1 Method

In designing our controlled experiment, we follow the popular statistical conven-
tion of experimental designers to refer to the service upgrade as factor, the group
of users without the upgrade as control and the upgraded users as treatment [5].

Controlled experiments are difficult to do on the Internet scale. Our work
involves a randomized control experiment on the scale of a large urban city.
This enables us to study the effect of just one factor, the service plan upgrade,
while other factors, such as price, performance, or regional differences between
users, are controlled. We believe the effects observed on this dataset will also be
observed in others collected from urban cities and high tiers.

By examining a single ISP’s high-capacity tier with an unannounced upgrade,
our dataset mitigates several biases that previous studies may have suffered.
Studying the behavior of users who opt for buying a higher service plan (unsat-
isfied subscribers) will naturally show an increase in demand on upgrading ser-
vice [1]. Similarly users who have been offered an upgrade in service may change
their behavior to utilize the upgraded capacity (cognitive bias) [15]. Studying
datasets with these biases are prone to positive high correlation between demand
and capacity.

3.2 Data

Our raw dataset consists of network usage byte counters reported every 15 min
from October 1, 2014 to December 29, 2014 from about 20,000 Comcast res-
idential broadband gateways in Salt Lake City, Utah. Each dataset contains
the following fields: Device ID (household identifier), the 15-min time interval

128 S. Grover et al.

Table 1. Overview of the control (4,845 subscribers) and treatment (1,519 subscribers)
datasets for upstream and downstream traffic. The 95 percentile traffic is the peak
of total demand. PT traffic is the average traffic demand per hour during prime-time
hours. We normalize traffic for both groups to 1,000 subscribers for comparison. The
daily demand is the average traffic demand per subscriber over a single day. All values
are in gigabytes (GB).

Dataset Hourly traffic per 1,000 subscribers (GB) Per subscriber

Total 95 % Traffic PT Non-PT Daily demand (GB)

Control down 2.67 × 105 234.5 205.1 108.5 2.97

Treatment down 2.95 × 105 244.42 209.5 122.3 3.30

Control up 2.98 × 104 21.39 18.942 12.80 0.33

Treatment up 4.27 × 104 31.48 22.81 19.02 0.48

(end time), service direction ({downstream, upstream}), anonymized IP address,
and the bytes transferred in each 15-min interval.

The data consisted of two groups: a control set, consisting of 18,354 house-
holds with a 105 Mbps access link; and a treatment set, consisting of 2,219 house-
holds that were paying for a 105 Mbps access link, yet were receiving 250 Mbps
instead. Subscribers in the treatment group were selected randomly and were
not told that their access bandwidth had been increased for the three months
of our analysis. Our initial analysis of the data from more than 20,573 house-
holds showed that not all gateways were reporting their traffic counters every
15 min over the whole three-month period: 32 % of the treatment dataset and
72 % of the control dataset gateway devices were responsive less than 80 % of
the time throughout the measurement period. For the analysis in Sect. 4, we
present results based on the accepted group of subscribers that contributed to
the three-month dataset more than 80 % during their lifetime. Our ultimate
dataset consists of 4,845 subscribers in the control dataset and 1,519 subscribers
in the treatment dataset.

Figure 1 shows the distribution of downstream traffic demand, averaged
across subscribers (average bytes per 15-min sample period), for the three months
in our measurement period for both groups. Table 1 compares the total demand
for subscribers in the control and treatment datasets, scaled to a thousand house-
holds. The downlink 95th percentile traffic demand over an hour is 234.5 GB for
the lower tier control group, and 244.42 GB for the higher tier treatment group.
Table 1 also shows that an average subscriber in the control group would down-
load 2.97 GB in a day, and 3.30 GB if they belonged to the treatment group. As
for the uplink, an average subscriber would transfer 0.33 GB over a day in the
control group, and 0.48 GB over a day in the treatment group.

A Case Study of Traffic Demand Response 129

4 Results

Table 2 shows the metrics that we use to evaluate how user demand responds to
service-tier upgrades. The traffic demand for a subscriber is defined as the total
bytes transferred, in upstream or downstream, during a single sample measure-
ment (15 min). We use traffic demand to calculate the total demand per hour,
and the average and 95th percentile peak demand over a day. To compare the
total traffic of the control and treatment groups, we scale to a thousand sub-
scribers wherever applicable. We define prime time as 8:00 p.m. to 12:00 a.m.,
when Internet usage tends to be highest. Indeed, we observed that the total daily
traffic consistently falls within 90th percentile during this four-hour period. We
define the prime-time ratio as the ratio of traffic during an average prime-time
hour, to the average hourly traffic outside the prime-time hour. This ratio con-
veys the disparity between demand during the prime-time and the rest of the
day. The rest of this section explores the effects of a service-tier upgrade on user
traffic demand in the context of these metrics.

Table 2. Evaluation metrics

Parameter Definition

Traffic Demand per Subscriber (Sect. 4.1)
total bytes transferred in measurement int.

number of contributing subscribers

Peak Demand (Sect. 4.1) Daily 95th percentile of bytes transferred in
any 15-min interval

Prime-Time Ratio (Sect. 4.2) avg usage in peak (prime-time) hour

avg usage in off-peak hour

Peak-to-Average Ratio (Sect. 4.3) 95 %-ile of daily traffic demand

mean of daily traffic demand

4.1 Traffic Demand Per Subscriber

We first explore how an upgrade to a higher service tier affected the average
traffic demand per subscriber, for different times of the day and days of the
week. Figure 2 shows the average downlink traffic demand across subscribers
for a week, for both the treatment and control groups. We observe that sub-
scriber behavior differs significantly on weekdays and weekends. The average
per-subscriber demand over a weekday is 35.6 MB, and the 95th percentile peak
demand is 61.12 MB for subscribers in the treatment group (Table 3). Over a
weekend, the average demand is 40.1 MB, and the 95th percentile demand is
64.3 MB for treatment, but the median is 45.27 MB due to consistent use in
the major part of the day. On weekdays, traffic demand increases monotonically
from morning until prime-time hours in the evening. On weekends, we observed
a sharp rise in demand in the early morning period, from 8:00 a.m. to 10:00 a.m.
Then, the demand plateaued until the next rise before evening prime-time hours.

130 S. Grover et al.

00
:0

0

02
:0

0

04
:0

0

06
:0

0

08
:0

0

10
:0

0

12
:0

0

14
:0

0

16
:0

0

18
:0

0

20
:0

0

22
:0

0

0

10

20

30

40

50

60

70

D
em

an
d

pe
r

su
bs

cr
ib

er
(M

B
) treatment

control

(a) Weekday traffic demand.

00
:0

0

02
:0

0

04
:0

0

06
:0

0

08
:0

0

10
:0

0

12
:0

0

14
:0

0

16
:0

0

18
:0

0

20
:0

0

22
:0

0

0

10

20

30

40

50

60

70

D
em

an
d

pe
r

su
bs

cr
ib

er
(M

B
)

treatment

control

(b) Weekend traffic demand.

Fig. 2. Mean subscriber demand (bytes per 15-min interval).

Table 3. Weekday and weekend traffic demands (MB) per measurement window.

Median Mean 95 %

Weekday Treatment 35.97 35.58 61.12

control 28.06 31.12 58.78

Weekend Treatment 45.27 40.10 64.27

Control 41.15 37.66 62.23

Previous reports indicate that the aggregate traffic volume for US fixed access
link providers usually troughs during mid-afternoon hours (between 2:00 p.m.–
6:00 p.m.) [13]. In contrast to these previous reports, we do not observe such
troughs in subscriber demand.

Figure 3a shows the distribution of the 95th percentile downlink traffic
demand over the three-month measurement period. The highest peak demand
per 15-min interval amongst subscribers in the control group was 2.97 GB; in
the treatment group, the highest peak demand was 3.0 GB. The average peak
traffic demand was 169.8 MB for control and 186.6 MB for treatment. Given the
105 Mbps service-tier capacity, this means that users rarely utilize their links,
even on averaging the 95th percentile demand (average utilization was 1.43 %
for control and 1.5 % for treatment).

We suspected that the subscribers who downloaded most bytes in the higher
service tier would be the ones causing the largest difference in mean demand, as
previous studies have observed such a phenomenon. In fact, we observed that the
more moderate (median) subscribers actually seemed to exhibit larger differences
in traffic demand: The median peak demand was 66.7 MB for the lower service
tier, and 98.4 MB for the higher tier. This result indicates that the more moderate
subscribers who received a service-tier upgrade exhibit significantly higher peak
demand than comparable users in the control group.

We also observed a significant difference in the mean peak demand was
present in the 50 % of subscribers in the control group with the lowest traffic
demand when compared to the same set of subscribers of the treatment group.
(This disparity appears as a large gap under the 50 % tick in Fig. 3a.)

A Case Study of Traffic Demand Response 131

10−4 10−3 10−2 10−1 100 101 102 103 104

Subscriber Peak-Demands (MB)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n
of

Su
bs

cr
ib

er
s

treatment

control

(a) Peak (95%) traffic demand per sub-
scriber.

0 20 40 60 80 100

Increasing Subscriber Peak-Demands %

−20

−10

0

10

20

30

40

50

60

70

D
if

f
of

Su
bs

cr
ib

er
Pe

ak
D

em
an

d
(M

B
)

(b) Change in overall peak (95%) demand
per subscriber.

Fig. 3. 95th percentile traffic demand (bytes per 15 min) per subscriber for the control
and treatment groups over the three-month measurement period. Subscribers were
considered at every 5 % in each group. The y-axis units are bytes transferred in the
peak 15-min interval, in MB.

Figure 3b shows another way of looking at this phenomenon: it explores the
difference between the distribution of users with particular traffic demands in the
control and treatment groups. For each group, we sort the subscribers according
to increasing demand. Then we compute the difference in peak demand for each
percentile in the group. For example, the plot shows the median user (50 % on the
x-axis) increased their peak demand by about 25 % in response to the service tier
upgrade. Comparing the 70 % subscribers of both groups with the least demand,
we see that peak demand in the treatment group is higher than the peak demand
in the control group, indicating that in fact even moderate users may increase their
demand as a result of the service-tier increase, even though they are not using the
full capacity in either case. When we combine this analysis with that in Fig. 3a, we
find that these subscribers who respond with increased usage have a peak demand
less than 200 MB. Naturally, the small number of users with the highest demand
(closer to 100 %) also show a substantially larger usage for the higher service-tier.

Further investigation revealed that users with moderate peak traffic demands
not only exhibit a large difference in their traffic demands in aggregate, but also
on a daily basis. Figure 4 shows that when subscribers on the lower tier had a
daily peak demand under 600 MB, 70 % of subscribers in the treatment group
had 15-min demands that were 5–20 MB higher. The ratio of the differences in
demand across percentiles also shows that the 40 % of subscribers with lowest
peak demands in the treatment group demonstrate more than double the daily
peak traffic demand of comparable users in the control group.

One possible explanation for why moderate users might increase their usage
in response to a service-tier upgrade is that the higher service tier not only
affords more capacity, but also a better user experience (e.g., faster downloads).
Thus, even though users may not be exhausting the capacity of the higher service
tier, they nonetheless seem to respond to the service tier upgrade by using the
Internet more than they had before the service-tier upgrade.

132 S. Grover et al.

10−4 10−3 10−2 10−1 100 101 102 103 104

Subscriber daily Peak-Demands (MB)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n
of

Su
bs

cr
ib

er
-D

ay
s

treatment

control

(a) Daily peak (95%) traffic demand per
subscriber.

0.0 0.2 0.4 0.6 0.8 1.0

Increasing Subscriber Daily Peak-Demands %

0

20

40

60

80

100

120

D
if

f
of

Su
bs

cr
ib

er
D

ai
ly

Pe
ak

D
em

an
d

(M
B

)

(b) Change in daily peak (95%) demand
per subscriber.

Fig. 4. 95th percentile traffic demand (bytes per 15 min) per day per subscriber for the
control and treatment groups. Subscribers were considered at every 5 % in each group.
y-axis units are bytes transferred in the peak 15-min interval, in MB.

4.2 Prime-Time Ratio

ISPs design networks to handle peak demand, which is usually observed during
prime-time hours, when subscribers heavily consume real-time entertainment
traffic, such as video. The FCC defines prime-time as the local time from 7:00–
11:00 p.m. [6]. To measure the concentration of network usage during prime-time,
we use Sandvine’s definition of the prime-time ratio: the ratio of the average
(hourly) traffic demand during prime-time hours to the average demand in non-
prime-time hours [13,14]. We measured the prime-time ratio of the subscribers in
the control and treatment groups considering each contiguous four-hour period
in each day. Our experiment shows that, in fact, the evening hours with the
largest prime-time ratio are 8:00 p.m.–12:00 a.m., so we use this time interval
for our definition of prime time.

Table 1 shows that the average hourly prime-time downstream traffic per 1,000
subscribers is 209.5 GB for the treatment group, compared to 205.1 GB for the
control group, which is about a 2 % difference. In contrast, during an average hour
outside of prime time, the traffic per 1,000 subscribers is 122.3 GB for the treat-
ment group, compared to 108.5 GB for the control group, amounting to about a
12 % difference. The more significant difference in demand during hours outside
of the daily prime-time is also apparent from the weekly usage patterns in Fig. 2.

Table 4. Hourly traffic demand during (and outside) prime-time hours per subscriber,
in MB. Prime-time traffic demand is defined as the average traffic demand during a
prime-time hour.

Hourly traffic in PT Hourly traffic in Non-PT Prime-time Ratio

Weekday Treatment 233.12 124.18 1.88

Control 225.40 104.30 2.16

Weekend Treatment 246.93 143.08 1.73

Control 238.15 133.16 1.79

A Case Study of Traffic Demand Response 133

We also calculated the prime-time ratio per day over weekends and weekdays,
as shown in Table 4. On weekends, the prime-time ratios for the treatment and
control groups are 1.73 and 1.79 respectively. On the weekdays, the prime-time
ratio for the control group is 2.16 compared to 1.88 for the treatment group. In
terms of absolute demand, the prime-time demand on weekdays in the treatment
group is within 4 % of that in the control group. In contrast, the demand in
non-prime-time hours is 19 % higher for the treatment group on weekdays, and
only 7.5 % higher on weekends. The large difference in non-prime-time demand
between the control and treatment groups on weekdays suggests that many of
the users in the treatment group may in fact be subscribers who work from
home may adjust their behavior during non-prime-time hours and weekdays in
response to a higher service tier.

Although 6 % of the subscribers in both groups had a prime-time ratio over
100, we also observed that 9 % of the control group and 14 % of the treatment
group had prime-time ratios less than one, indicating that these users actually
had higher demand during the day than they did during prime time. Similarly,
these users may be small home businesses or subscribers who work at home.

4.3 Peak-to-Average Ratio

In addition to examining traffic demands across the entire four-hour prime-time
window, we also explored how subscribers in the treatment group exhibited
different behavior for the 15-min interval of highest (95th percentile) demand
in a day, regardless of prime-time hours. We measure the disparity between a
subscriber’s daily 95th percentile and the mean usage as the peak-to-average
ratio (PAR). This standard metric shows the ratio of peak values to the effective
value and extends those used in conventional studies of user traffic patterns, such
as the Sandvine’s peak traffic analysis [13].

Figure 5 shows the PAR for each subscriber in the treatment and control
groups. The median PAR for subscribers from the treatment group is 4.64, com-
pared to 4.51 for the control group. We found that 40 % of the subscribers in

0 1 2 3 4 5 6 7 8 9

Peak Ratio

0.0

0.2

0.4

0.6

0.8

1.0
treatment

control

Fig. 5. Distribution of the daily peak-to-average ratio per subscriber, averaged for each
subscriber over the measurement period in the treatment and control groups.

134 S. Grover et al.

both groups have PAR greater than five; the PAR of subscribers in the treatment
group is higher than those in the control group, perhaps indicating that users in
both higher service tiers do in fact use the additional capacity for short periods of
time. The notable difference occurs for peak-to-average ratios of less-than 5: as we
observed in Sect. 4.1, subscribers with more moderate (median) traffic demands
tend to increase their peak demand more in response to the increased service tier.
Again, we believe these trends appear not because users are necessarily eager to
fill the additional capacity of a higher service tier, but rather may be occurring
because the upgrade results in better performance, and that this improved user
experience in turn causes these subscribers to make more use of the Internet.

The lower prime-time ratio by volume, and a consistently higher peak-to-
average ratio per subscriber indicates the following: subscribers in the treatment
group have higher peak-to-average ratio than those in the control group. How-
ever, these subscribers tend to still have low absolute demand, so the relatively
higher PAR for the treatment group does not significantly affect total traffic dur-
ing prime-time and, when it is high, the demand tends to be in non-prime-time
hours. Consistent with the results in Sect. 4.2, we also found that on weekdays,
the peak-to-average ratios in the treatment group are higher than the control
group, whereas on weekends peak-to-average ratios for both the control and
treatment groups are similar.

5 Conclusion

In this paper, we study how subscribers respond to an increase in their ISP’s ser-
vice tier. To do so, we use a randomized control trial to compare per-subscriber
traffic volumes between two groups of Comcast subscribers in the same city
during the same time period: a control group, with Comcast’s 105 Mbps ser-
vice offering; and a treatment group of subscribers who were upgraded to the
250 Mbps service tier without their knowledge. We observed that subscribers
with more moderate traffic demands exhibit a relatively higher usage for the
upgraded service-tier as compared to subscribers who were already sending rel-
atively high traffic volumes in both groups.

Initially, we were surprised by this result: after all, both intuition and previ-
ous work suggest that when users experience service-tier upgrades, they immedi-
ately exhaust the available capacity (particularly the high-volume subscribers).
At higher tiers, however, we observe a completely different phenomenon: in gen-
eral, users are not exhausting the available capacity, but a service tier upgrade
may simply result in a better user experience that causes subscribers with more
moderate traffic demands to use the Internet more than they otherwise would.
The fact that the most significant difference that we observed between the two
service-tier groups occurred during non-prime-time hours on weekdays also sug-
gests that these higher service tiers may generally be disproportionately used
by subscribers who work from home. Future research should aim to repeat our
experiment for different cohorts (i.e., different subscribers, geographies, service

A Case Study of Traffic Demand Response 135

tiers, and ISPs), and could also strive to obtain more fine-grained traffic sta-
tistics to explore exactly which applications are responsible for the behavioral
changes that we have observed.

Acknowledgments. This research was supported by the Comcast Tech Research
Fund and by NSF Awards CNS-1539902 and CNS-1540066. We thank Jason
Livingood and James Moon from Comcast for helpful discussions and access to the
data that we used for this study.

References

1. Bischof, Z.S., Bustamante, F.E., Stanojevic, R.: Need, want, can afford: broadband
markets and the behavior of users. In: Proceedings of the Conference on Internet
Measurement Conference, IMC 2014, pp. 73–86. ACM, New York (2014)

2. Cardona, J.C., Stanojevic, R., Cuevas, R.: On weather and internet traffic demand.
In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp. 260–263.
Springer, Heidelberg (2013)

3. Chetty, M., Banks, R., Brush, A., Donner, J., Grinter, R.: You’re capped: under-
standing the effects of bandwidth caps on broadband use in the home. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI 2012, pp. 3021–3030. ACM, New York (2012)

4. Cho, K., Fukuda, K., Esaki, H., Kato, A.: The impact and implications of the
growth in residential user-to-user traffic. In: Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations, SIGCOMM 2006, pp. 207–218. ACM, New York (2006)

5. Easton, V., McColl, J.: Statistics Glossary. STEPS (1997)
6. Federal Communications Commission. Measuring Broadband America - 2014, April

2014
7. Federal Communications Commission: Tenth Broadband Progress Report No

14-113, February 2014
8. Federal Communications Commission. Eleventh Broadband Progress Report No

15-10A1, February 2015
9. Federal Communications Commission. International Broadband Data Report

(Fourth), February 2015
10. Grover, S., Park, M.S., Sundaresan, S., Burnett, S., Kim, H., Ravi, B., Feamster,

N.: Peeking behind the nat: an empirical study of home networks. In: Proceedings
of the Conference on Internet Measurement Conference, IMC 2013, pp. 377–390.
ACM, New York (2013)

11. Quan, L., Heidemann, J., Pradkin, Y.: ANT Evaluation of the Diurnal Internet,
October 2014

12. Maier, G., Feldmann, A., Paxson, V., Allman, M.: On dominant characteristics of
residential broadband internet traffic. In: Proceedings of the 9th ACM SIGCOMM
Conference on Internet Measurement Conference, IMC 2009, pp. 90–102. ACM,
New York (2009)

13. Sandvine. Global Internet Phenomena Report - 1H, April 2014
14. Sandvine. Global Internet Phenomena Report - 2H, November 2014
15. Zheleva, M., Schmitt, P., Vigil, M., Belding, E.: The increased bandwidth fallacy:

performance and usage in rural zambia. In: Annual Symposium on Computing for
Development (DEV) (2013)

eXploring Xfinity

A First Look at Provider-Enabled Community Networks

Dipendra K. Jha, John P. Rula, and Fabián E. Bustamante(B)

Northwestern University, Evanston, IL, USA
fabianb@eecs.northwestern.edu

Abstract. Several broadband providers have been offering community
WiFi as an additional service for existing customers and paid subscribers.
These community networks provide Internet connectivity on the go for
mobile devices and a path to offload cellular traffic. Rather than deploy-
ing new infrastructure or relying on the resources of an organized com-
munity, these provider-enabled community WiFi services leverage the
existing hardware and connections of their customers. The past few years
have seen a significant growth in their popularity and coverage and some
municipalities and institutions have started to consider them as the basis
for public Internet access.

In this paper, we present the first characterization of one such ser-
vice – the Xfinity Community WiFi network. Taking the perspectives of
the home-router owner and the public hotspot user, we characterize the
performance and availability of this service in urban and suburban set-
tings, at different times, between September, 2014 and 2015. Our results
highlight the challenges of providing these services in urban environ-
ments considering the tensions between coverage and interference, large
obstructions and high population densities. Through a series of controlled
experiments, we measure the impact to hosting customers, finding that
in certain cases, the use of the public hotspot can degrade host network
throughput by up-to 67 % under high traffic on the public hotspot.

1 Introduction

The impressive growth in the number of mobile devices and our dependance
on them and the services they support have created a high demand for Internet
connectivity on the go. Several large network providers including Comcast, Time
Warner, British Telecom (UK), and Orange (France) have started addressing
such demand by deploying millions of WiFi hotspots around the globe, as a free
service to existing customers or as an additional source of revenue.

Rather than deploying new infrastructure or relying on the resources of an
organized community [8], these provider-enabled community WiFi services lever-
age the existing hardware and connections of their customers for coverage. In
these networks, residential and commercial customers’ access points broadcast
an additional public hotspot SSID to bootstrap coverage of the community WiFi
network. Despite their rapid growth and extensive media coverage, we lack an

c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 136–148, 2016.
DOI: 10.1007/978-3-319-30505-9 11

eXploring Xfinity 137

understanding of the effective value of these community network service for con-
sumers, and the impact - if any - of their use on the residential customers they
rely upon.

In this paper, we present the first characterization of a provider-enabled com-
munity WiFi network, focusing on the Xfinity Community WiFi. Xfinity WiFi is
the largest of such networks available in the U.S. with over 10 million devices in
July 2015 [24]. Taking the perspectives of both the home router owner and the
public hotspot user, we characterize the coverage, availability, and performance
of this service under various geographic and temporal contexts, over three weeks
in 2014 and six weeks in 2015. We performed controlled experiments to measure
the impact of concurrent access of both the home network and the public Xfinity
WiFi hotspot. Our results highlight the challenges of providing these community
WiFi services in urban and suburban settings considering the tensions between
coverage and interference in high population densities.

Key Findings. First, we found significant growth in the Xfinity WiFi network in
all areas measured during the period of our study. Much of this growth was in the
number of from access points starting to broadcast in the 5 GHz band, particular
in our urban environment where 45 % of access points use 5 GHz (compared to only
15 % in the measured suburban one). Second, despite the higher number of Xfinity
WiFi access points, we found it challenging connecting to these access points for
Internet connectivity. After examining the signal strength and interference in each
environment, we found much lower signal strength and higher interference levels
in our urban setting measurements, compared with the suburban ones, which par-
tially explain the observed differences in connectivity and performance. Last, we
found significant performance degradation of the hosting customer’s home net-
work with throughput reaching to half of the maximum attainable throughput for
4 Mbps traffic on public WiFi. This appear to be caused not by the additional traf-
fic on the link, but rather because of the competition with the hosted public WiFi
hotspot network for same radio device and spectrum.

2 Community Wifi Networks

There has been a growing interest in providing public WiFi access from the pri-
vate sector, civil organizations and end users. As a notable example, the Elec-
tronic Frontier Foundation is one of the many sponsors of the Open Wireless
Movement [13], aimed at creating a network of volunteer-supported free and
open wireless Internet. Several router manufacturers are equipping routers with
additional “Guest” WiFi access point, allowing public access while isolating pub-
lic from home traffic. As another example, FON offers access to a virtually global
WiFi network of “foneros” that support guest users in exchange for free roaming
and/or revenue from paid users [15].

Several municipalities around the world, sometimes in cooperation with the
private sector, have also begun providing free or fee-based access to city-wide
wireless networks. Chicago is coming up with the Chicago Tech Plan to build
a model for cities and technology for smart communities [22]. Other examples

138 D.K. Jha et al.

include early efforts such as the MIT RoofNet [4] and MadMesh [9], and the
Google’s public Wifi in Palo Alto, CA.

Recently, Internet service providers such as AT&T, Comcast, Time Warner,
British Telecom (UK) and Orange (France) have also started to offer public WiFi
hotspots for their existing customers. In the case of AT&T, for example, both
existing cellular and broadband customers have access to a nationwide network
of WiFi hotspots, labeled attwifi, located at AT&T retail locations, as well as
partnered businesses.

2.1 Xfinity WiFi - a Provider-Enabled Community WiFi

On June 10th, 2013, Comcast announced its plans to create millions of WiFi AP
available to its customers through a neighborhood hotspot initiative [10]. The
company started to enable a second xfinitywifi SSID broadcast in their existing
customer gateways to act as a publicly accessible hotspot. The uniqueness of this
model comes from its customer-supported-and-provider-enabled approach, what
we call provider-enabled community WiFi, that allowed Comcast to bootstrap
hotspot coverage by leveraging the provided routers of existing commercial and
residential customers.

Since then the service has grown to include over 10 million public hotspots
in the US [24]. All Comcast users with XFINITY Internet Performance tier and
above can connect to these hotspots for free1, while non-Comcast customers can
purchase an XFINITY WiFi Access Pass with different hourly, daily and weekly
durations [11].

3 Characterization of Xfinity WiFi Network

To understand the challenges of providing community WiFi services in urban
environments, we conducted a series of experiments in Chicago’s central business
district (The Loop) and in Evanston, one of its northern suburbs. We designed
our experiments to capture the experience of public users, taking measurements
from public areas surrounding Xfinity WiFi access points. In the following para-
graphs, we use results from a series of such experiments conducted over the
course of a year to discuss (i) the coverage of Xfinity WiFi, (ii) its availability
as a usable Internet connection, and (iii) its performance to users. Motivated
by the comparable poor connectivity and performance we observed in urban
Chicago, we investigate possible causes including radio interference and signal
strengths of deployed access points.

3.1 Data and Methodology

We measured the coverage, availability and performance of Xfinity WiFi using
an instrumented Samsung Galaxy S4 to continuously scan for available APs,
1 Before connecting, a Comcast user must be authenticated through an HTML form

with their subscription credentials.

eXploring Xfinity 139

recording their signal strength, BSSIDs and channel, along with the device’s
current GPS location. When an available xfinitywifi SSID was found, the
tool attempts to connect to the one with the strongest received signal strength
(RSSI), and upon successful association and authentication, conducts network
performance measurements using the Network Diagnostic Tool (NDT) [18]2.

We conducted our experiments in two geographic areas, one in the high-
density urban environment of Chicago, IL and one in a mix of residential and
low-density commercial in Evanston, IL. Each area covers a similar surface – 4× 4
block area (0.13 sq. mi) and a 6× 4 block area (0.15 sq. mi) in Evanston and
Chicago respectively. We took our measurements at three separate times between
2014 and 2015: in September 2014, April 2015 and September 2015. In each
instance, we canvassed each area, walking the same path in 2 h intervals both in
the morning and evenings to capture peak and non-peak hours. Unless otherwise
specified, the results presented for availability and network performance come
from the September 2015 dataset.

Fig. 1. Growth of Xfinity: Significant deployment of Xfinity WiFi APs in both areas,
with more deployments using 5 GHz radio bands in urban Chicago compared to sub-
urban Evanston.

3.2 Deployment and Coverage

We measured the growth in deployed Xfinity WiFi access points in both loca-
tions between September 2014 and September 2015, noticing a significant growth
in both areas in the number of observed access points. We found that while
Evanston gained more overall access points, Chicago saw a much larger rela-
tive increase. Between September 2014 and 2015, the number of Xfinity WiFi
hotspots in urban Chicago has increased more than 7 times (from 22 to 164);
during the same period, the number of hotspots in suburban Evanston has nearly
doubled (from 181 to 342). Despite the large growth, we still observed twice as
many access points in Evanston than in Chicago in our final measurement.
2 While NDT results on network properties have been questioned, we believe that the

gathered measurements should be consistent for comparisons between settings, and
2.4 GHz and 5 GHz bands [7].

140 D.K. Jha et al.

Aside from the overall growth in the number of access points, we observed
a higher proportion of new 5 GHz band deployments over the year. Similar to
the results from total access points, we observed a much higher growth rate of
5 GHz hotspots in Chicago (around 45 %) compared with suburban Evanston
(15 %). Deploying hotspots using 5 GHz radio band in urban environments may
be driven by the assumption of lower radio interference.3

Geographic coverage is determined by dividing each measured area into a grid
of cells - each cell an area of 0.001 degree latitude by 0.001 degree longitude - and
searching for the presence of Xfinity WiFi access points in each. In September
2015, we found access points in over 70 % of areas in downtown Chicago, and
over 90 % of areas in Evanston.

3.3 Availability

The utility of community WiFi networks depends not only on the presence of
an access point, but in the ability of clients to successfully connect to them.
There are many reasons why a client could see the service SSID but be unable
to connect to it, such as low signal strength. In this section, we discuss results
from our measurements of service availability which we define as the percentage
of Xfinity WiFi access points that one can successfully connect to during an
experiment.

Overall, despite the extensive coverage and high density of the Xfinity WiFi
hotspot network, we found the service to be typically unavailable with our mea-
surement device unable to connect to the large majority of access points – 56 %
in Evanston and 87 % in downtown Chicago. Table 1 summarizes these findings,
organized by measurement location and radio band.

Table 1. Xfinity WiFi APs statistics for urban Chicago and suburban Evanston, taken
in September 2015.

Location 5GHz 2GHz

All Xfinity Attempted Connected All Xfinity Attempted Connected

Chicago (urban) 3840 71 49 8 (16%) 3688 97 75 10 (13%)

Evanston (suburban) 442 56 39 13 (33%) 2316 286 150 66 (44%)

We find that the Xfinity WiFi in Evanston displayed much higher availability
compared to downtown Chicago. Of 124 APs we attempted connection with in
Chicago, we were only able to connect with 10 (13 %) 2.4 GHz and 8 (16 %)
5 GHz hotspots. In Evanston, we successfully connected to a significantly higher
fraction of access points – 66 (44 %) 2.4 GHz and 13 (33 %) 5 GHz networks.

There can be many external factors which explain the poor connectivity in
urban areas. We investigated how signal properties of these access points affected
3 http://www.extremetech.com/computing/179344-how-to-boost-your-wifi-speed-by

-choosing-the-right-channel.

http://www.extremetech.com/computing/179344-how-to-boost-your-wifi-speed-by-choosing-the-right-channel
http://www.extremetech.com/computing/179344-how-to-boost-your-wifi-speed-by-choosing-the-right-channel

eXploring Xfinity 141

Fig. 2. Signal Strength in two areas. Chicago has poor wireless signal strength com-
pared to suburban Evanston. APs with low signal strength suffer from very low con-
nectivity rates.

our availability results, looking at the RSSI of devices we issued connect requests
to Figs. 2a and b display the distribution of maximum signal strengths observed
for the set of Xfinity WiFi access points found in each radio band.

We noted a higher presence of Xfinity WiFi hotspots with strong signal
strength (broadcast RSSI) in suburban Evanston than in urban Chicago, which
partially helps explain the higher service availability observed in Evanston. The
impact of low signal strength on availability is clearly illustrated in Fig. 2c, which
shows the number of successful connections compared to the total attempts for
5 GHz access points in Chicago at different signal strengths. The steep drop off of
successful attempts with decreasing signal strength – including the 4 % success
rate of 5 GHz APs with RSSI less than 80 – explains much of the low availability
seen in this setting.

Investigating Wireless Properties. After observing the low availability of
Xfinity WiFi access points in urban Chicago, we further investigated whether
interference on Xfinity WiFi radio channel was contributing to the lack of con-
nectivity. During our September 2015 measurements, we employed an instru-
mented Linux laptop equipped with an Atheros AR9820 802.11a/b/g/n chipset
to measure interference on different WiFi channels by capturing channel busy
time (CBT). CBT represents a more accurate picture of the radio channel than
medium utilization as it also accounts for channel noise and packet collisions [2].
We continuously recorded the CBT from NIC registers exposed in Atheros radio.
To normalize each CBT, we further calculated the Interference Factor (IF) for
each channel, defined as the ratio of the observed busy time over the time spent
on the channel [1].

A large source of interference for wireless 802.11 hotspots comes from other
nearby access points. We found that the density of wireless access points in urban
Chicago is significantly higher compared to our suburban setting. At median,
we observed around 70 of 2.4 GHz and 90 of 5 GHz wireless APs per cell in
Chicago compared to around 50 of 2.4 GHz and 5 of 5 GHz wireless APs per
cell in Evanston as shown in Fig. 3a. The density of 2.4 GHz network is similar
in both areas we measured, as well as, similar radio interference for 2.4 GHz.

142 D.K. Jha et al.

Fig. 3. Interference and Density of APs in two areas: Urban Chicago has slightly higher
radio interference due to high density of wireless APs in both radio bands. 5 GHz
networks have significantly less interference compared to 2.4 GHz band. However, we
find small impact of interference on connectivity.

However, with an order of magnitude more 5 GHz radio networks in urban
Chicago, we observed a very small but a clear separation in the interference
graph of 5 GHz for the two areas (Fig. 3b). We found that interference in the
5 GHz radio band is much lower in both areas than the 2.4 GHz band with a
median interference of 0.05 (compared to 0.4 for 2.4 GHz), for instance, in our
urban environment.

Figure 3c illustrates the comparison of minimum channel interference
observed for connected and attempted only access points, in the 2.4 GHz band
in Evanston. In the median case, we see a difference of around 0.1 between the
interference value for the access points we were able to connect and those we
were not. For 5 GHz networks, which showed very low interference values, we did
not noticed a significant impact of interference on connectivity.

3.4 Network Performance

We present the performance of Xfinity WiFi hotspots in both areas across down-
load speed, upload speed and RTT, collected using NDT. We observed significant
difference in network performance in between areas and radio bands, as well as

Fig. 4. Network performance measured at Xfinity WiFi hotspots by radio band and
environment. Xfinity WiFi hotspots show lower performance in downtown Chicago
across all metrics. 5 GHz band radios also performed better in both locations.

eXploring Xfinity 143

a large variation in performance of such networks within each area. The results
are shown in Fig. 4.

We find a large performance differential between the two radio bands, with
5 GHz bands exhibiting higher throughput in both areas. Surprisingly though,
these 5 GHz bands showed higher latencies in Chicago than 2.4 GHz bands. We
believe this is likely due to the poor signal strength properties observed in
Chicago rather than indicative of general performance. Sundaresan et al. [23]
found similar performance results for home networks.

4 Cross Traffic Interference

Comcast is leveraging its customer’s gateway routers as public hotspots for their
neighborhood xfinitywifi service. To understand the impact of such sharing on
customers’ performance, we conducted controlled experiments for the case when
both networks use same router with single radio band (and hence, share same
radio channel). We generated cross traffic on a node connected to Xfinity WiFi
network and measured the network performance on another node connected to
home network. Since we started our study, Comcast has been moving toward
double band routers now offering three new devices, two of them supporting
dual band radio. However, one of these routers is currently only available in
selected markets while the other one is provided only to customers with high-
end Internet plans [12].

4.1 Methodology

We conducted our experiments over a continuous 24 h period to account for
time-of-day patterns. Each set of tests consisted of injecting different amounts
of downstream or upstream cross traffic (one direction at time) at different
rates. We run experiments with downstream cross traffic at 0, 1, 2, 4, 8 and
16 Mbps and upstream cross traffic at 0, 1, 2 and 4 Mbps. Both upper bound
limits were set based on our initial experiments. All experiments were run under
controlled settings, with only one home device connecting to these gateways.
We collected our measurements using a single Xfinity customer’s ARRIS TG862
Gateway [5] which was actively broadcasting xfinitywifi SSID, in a home with a
25 Mbps subscription. Based on preliminary measurements, we believe that our
key observations would apply to other single-radio-band devices and broadband
subscriptions.

Cross traffic was generated on a separate node connected to the xfinity-
network broadcasted from the same router. Upstream cross traffic was gen-
erated by running iPerf [16] utility to send upstream UDP packets at
specific rates. Downstream traffic generation was generated using a python server
hosted in university network that sent UDP packets at the requested rate to
the xfinity-network node. These two processes of performance measurement on
home-network and traffic generation on xfinity-network were coordinated and
automated using a configuration/coordination server in our lab. We took all

144 D.K. Jha et al.

performance measurements using NDT [18] on a node connected to the home-
network.4 We took three measurements of download/upload rate and selected
the maximum to handle small temporal variations.

4.2 Experimental Results

Figures 5a and c show the mean of the observed bandwidths along with the stan-
dard deviation for cross traffic. We observed significant performance degradation
of the home-network WiFi due to cross traffic from xfinity-network. The impact
of downstream cross traffic is significant starting at low values; for 2 Mbps cross
traffic on xfinity-network, we observe the download speed of home-network drop
from 15 Mbps to 10 Mbps, and drop by half (7.5 Mbps) for a cross traffic of
4 Mbps. Figure 5a illustrates this trend in decreasing performance as cross traffic
is increased, with reduction in throughput as high as 67 % for 16 Mbps traffic on
public WiFi.

Fig. 5. Cross Traffic Impact of Public Hotspot on Hosting router’s Personal Network.
As the public and hosting WiFi share same radio spectrum, we observe significant
performance degradation of hosting network.

4 We refer to the public hotspot WiFi network as the xfinity-network and customer’s
personal network as the home-network.

eXploring Xfinity 145

As the upstream cross traffic is limited at 4 Mbps, it caused less wireless
interference and has lower impact on download speed. The maximum upload
speed we observed on the public hotspot was around 2 Mbps, and the impact
on download speed and upload speed is not noticeable before 4 Mbps upstream
cross traffic as seen in Fig. 5c. Hence, we don’t observe any significant impact of
upstream traffic from public hotspot network on the hosting network.

To isolate the cause of cross traffic interference, we performed the same
series of experiments with the measurement node in home-network connected
via Ethernet to the router in place of the wireless interface. Figures 5b and d
show the home network performance for downstream and upstream cross traffic,
respectively, for a client connected over the wired interface. The figures show
that download and upload measured bandwidths of home-network remain con-
stant for all values of cross traffic on xfinity-network, for both downstream and
upstream cross traffic. With no cross traffic interference over the wired interface,
we conclude that interference due to xfinity-network cross traffic originates solely
from the two WiFi competing for same radio (device and spectrum) resulting in
significant radio interferences with increase in network traffic.

Fig. 6. Performance impact due to WiFi incompatibility of connected public hotspot
user device. A public user with WiFi 802.11g device brings down the performance of
802.11n device in home network.

4.3 WiFi Compatibility Issues

The performance of the home-router owner could be impacted by a public
hotspot user connecting with an old WiFi standard device. To evaluate the
potential impact of this issue, we run experiments connecting a 802.11n device
and a 802.11g device, one at a time, to xfinity-network and measuring the
performance of a home user using a 802.11n device. We run our experiments
using NDT, and during off-peak hours (2am–6am). Figures 6a and b present our
results. We observed many NDT timeouts while measuring the impact of down-
stream cross traffic with the 802.11g device that lead to fewer data points. The
802.11g device has, as we expected, a significant impact on the home network
and brings down the overall WiFi performance by a significance margin.

146 D.K. Jha et al.

5 Related Work

Several projects have measured the performance characteristics of wireless net-
works, including Kotz et al. [17] study of campus-wide network and Aguayo
et al. [4] report on link level characteristics of a rooftop based mesh network.
Farshad et al. [14] used mobile crowdsourcing to characterize the Edinburgh
WiFi. More closely to our work, Sathiaseelan et al. [21] focused on the technical
and social context of providing Internet access by sharing existing broadband
subscribers’ connections deploying Public Access WiFi Systems in medium-sized
British city. Mota et al. [19] recently evaluated the feasibility of offloading cellular
data traffic through WiFi hotspots provided by the government and private WiFi
access points in Paris. Robinson et al. [20] and Afanasyev et al. [3] studied the
coverage properties of the Google WiFi mesh network around Mountain View,
CA. Brik et al. [9] focused on a Mad Mesh network with 250 Mesh Access Points.
Braem et al. [6] analyzed the end-to-end quality of Internet access in community
networks. By contrast, our work focuses on characterizing a provider-enabled
WiFi network in urban and suburban settings and from the perspectives of both
the public user and the host network owner.

6 Conclusion

We presented the first characterization of the coverage, availability and per-
formance of provider-enabled community networks. We focused our study on
Comcast’ Xfinity WiFi network - the largest community WiFi network in US,
with more than ten million devices in July 2015. We analyzed the performance of
this service under various geographic and temporal contexts, and from the per-
spectives of both the home router owner and the public hotspot user. We found
that the connectivity and performance of these services in urban environment
can be impacted by high signal attenuation from densely populated physical
objects and radio interference from crowded wireless APs. Our results show a
significant degradation on the performance of the hosting customer’s home net-
work with reductions in throughput as high as 67 % due to wireless interference.
This preliminary study was focused on a single service in two limited geographic
areas - downtown Chicago and Evanston, IL and we would like to expand this
as part of our future work. We believe, however, that our findings and analysis
should be applicable to other community WiFi networks and comparable urban
and suburban environments.

Acknowledgments. We thank our shepherd Matthew Luckie and the anonymous
reviewers for their invaluable feedback. Also, we thank Rishabh Gemawat and
Sabita Acharya for helping with data collection. This work was supported in part
by the National Science Foundation through Award CNS 1218287.

eXploring Xfinity 147

References

1. ACS (Automatic Channel Selection), May 2015. https://wireless.wiki.kernel.org/
en/users/documentation/acs

2. Acharya, P.A.K., Sharma, A., Belding, E.M., Almeroth, K.C., Papagiannaki, K.:
Congestion-aware rate adaptation in wireless networks: a measurement-driven app-
roach. In: Proceedings of the IEEE SECON (2008)

3. Afanasyev, M., Chen, T., Voelker, G.M., Snoeren, A.C.: Analysis of a mixed-use
urban wifi network: when metropolitan becomes neapolitan. In: Proceedings of the
IMC (2008)

4. Aguayo, D., Bicket, J., Biswas, S., Judd, G., Morris, R.: Link-level measurements
from an 802.11 b mesh network. In: Proceedings of the ACM SIGCOMM (2004)

5. ARRIS. ARRIS Touchstone R© TG682 Telephony Gateway User’s Guide. http://
tinyurl.com/mw6gcgs

6. Bart Braem, C., Bergs, J.: Analysis of end-user qoe in community networks. In:
Proceedings of the ACM DEV (2015)

7. Bauer, S., Clark, D.D., Lehr, W.: Understanding broadband speed measurements.
TPRC (2010)

8. Braem, B., Blondia, C., Barz, C., Rogge, H., Freitag, F., Navarro, L., Bonicioli,
J., Papathanasiou, S., Escrich, P., Viñas, R.B., Kaplan, A.L., i Balaguer, I.V.,
Tatum, B., Matson, M.: A case for research with and on community networks. In:
SIGCOMM Computing Communication Reviews, July 2013

9. Brik, V., Rayanchu, S., Saha, S., Sen, S., Shivastava, V., Banerjee, S.: A measure-
ment study of a commercial-grade urban wifi mesh. In: Proceedings of the IMC
(2008)

10. Comcast. Comcast Unveils Plans for Millions of Xfinity WiFi Hotspots Through
its Home-Based Neighborhood Hotspot Initiative. http://tinyurl.com/o23vvps

11. Comcast. Wireless Internet on the Go - XFINITY WiFi by Comcast. http://wifi.
comcast.com

12. Comcast. The different wireless gateways for your home network (2016). http://
customer.xfinity.com/help-and-support/internet/wireless-gateway-compare/

13. Electronic Frontier Foundation. Open Wireless Movement. https://openwireless.
org/

14. Farshad, A., Marina, M., Garcia, F.: Urban WiFi characterization via mobile
crowdsensing. In: Proceedings of the IEEE NOMS (2014)

15. Fon. How it Works — Fon. https://corp.fon.com/en/how-it-works
16. French forum for Iperf. Iperf - The TCP/UDP Bandwidth Measurement Tool.

https://iperf.fr
17. Kotz, D., Essien, K.: Analysis of a campus-wide wireless network. In: Proceedings

of MobiCom (2002)
18. M-Lab. NDT (Network Diagnostic Test). http://www.measurementlab.net/tools/

ndt
19. Mota, V.F., Macedo, D.F., Ghamri-Doudane, Y., Nogueira, J.M.S.: On the feasi-

bility of WiFi offloading in urban areas: the Paris case study. In: Proceedings of
the IFIP (WD) (2013)

20. Robinson, J., Swaminathan, R., Knightly, E.: Assessment of urban-scale wireless
networks with a small number of measurements. In: Proceedings of the MobiCom
(2008)

21. Sathiaseelan, A., Mortier, R., Goulden, M., Greiffenhagen, C., Radenkovic, M.,
Crowcroft, J., McAuley, D.: A feasibility study of an in-the-wild experimental pub-
lic access wifi network. In: Proceedings of the ACM DEV (2014)

https://wireless.wiki.kernel.org/en/users/documentation/acs
https://wireless.wiki.kernel.org/en/users/documentation/acs
http://tinyurl.com/mw6gcgs
http://tinyurl.com/mw6gcgs
http://tinyurl.com/o23vvps
http://wifi.comcast.com
http://wifi.comcast.com
http://customer.xfinity.com/help-and-support/internet/wireless-gateway-compare/
http://customer.xfinity.com/help-and-support/internet/wireless-gateway-compare/
https://openwireless.org/
https://openwireless.org/
https://corp.fon.com/en/how-it-works
https://iperf.fr
http://www.measurementlab.net/tools/ndt
http://www.measurementlab.net/tools/ndt

148 D.K. Jha et al.

22. Solutions, S.D.C.: The Chicago tech plan: building a model for cities and technol-
ogy. http://tinyurl.com/p3zvanw

23. Sundaresan, S., Feamster, N., Teixeira, R.: Measuring the performance of user
traffic in home wireless networks. In: Mirkovic, J., Liu, Y. (eds.) PAM 2015. LNCS,
vol. 8995, pp. 305–317. Springer, Heidelberg (2015)

24. Voices, C.: 10 hidden wi-fi hotspots you never knew were there, July 2015. http://
corporate.comcast.com/comcast-voices/free-wifi-hotspots-top-locations

http://tinyurl.com/p3zvanw
http://corporate.comcast.com/comcast-voices/free-wifi-hotspots-top-locations
http://corporate.comcast.com/comcast-voices/free-wifi-hotspots-top-locations

NAT Revelio: Detecting NAT444 in the ISP

Andra Lutu1(B), Marcelo Bagnulo2, Amogh Dhamdhere3, and K.C. Claffy3

1 Simula Research Laboratory, Lysaker, Norway
andra@simula.no

2 University Carlos III of Madrid, Getafe, Spain
3 CAIDA/UC San Diego, San Diego, CA, USA

Abstract. In this paper, we propose NAT Revelio, a novel test suite and
methodology for detecting NAT deployments beyond the home gateway,
also known as NAT444 (e.g., Carrier Grade NAT). Since NAT444 solu-
tions may impair performance for some users, understanding the extent
of NAT444 deployment in the Internet is of interest to policymakers,
ISPs, and users. We perform an initial validation of the NAT Reve-
lio test suite within a controlled NAT444 trial environment involving
operational residential lines managed by a large operator in the UK. We
leverage access to a unique SamKnows deployment in the UK and collect
information about the existence of NAT444 solutions from 2,000 homes
and 26 ISPs. To demonstrate the flexibility of NAT Revelio, we also
deployed it in project BISmark, an open platform for home broadband
internet research. We analyze the results and discuss our findings.

1 Introduction

The Internet Assigned Numbers Authority (IANA) officially announced the
depletion of IPv4 addresses in February 2011. But many Internet services and
applications still require IPv4, motivating the standardization and deployment of
protocols that support more aggressive, i.e., multi-level, sharing of IPv4 addresses
[11], e.g., NAT444 within access ISP networks. NAT444 involves two phases of
address translation, from a private IPv4 address block in the subscriber’s network,
to another local IPv4address block in theprovider’s network, andfinally to globally
routable IPv4 addresses. NAT444 technology adds significant operational com-
plexity that can impede performance or even break applications [6,8]. In particu-
lar, NAT444 removes the control that the residential user usually has to configure
port forwarding over single-level NAT, e.g., for peer-to-peer gaming. NAT444 also
limits the number of ports available per subscriber, threatening the availability of
popular applications that use many ports, e.g., Google Maps [3]. Another compli-
cation of NAT444 is customer identification, since the subscriber no longer maps
to a unique globally routable IP address. Finally, pervasive NAT444 deployment
may slow down the transition to IPv6, promoting the likelihood of the Internet’s
fragmentation between the two protocols. With such potentially negative impacts
of what seems a likely future scenario, it behooves policymakers, ISPs and Internet
users to monitor the extent of NAT444 deployment in the Internet. But like many

c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 149–161, 2016.
DOI: 10.1007/978-3-319-30505-9 12

150 A. Lutu et al.

aspects of Internet structure, systematic measurement and monitoring of NAT444
deployment in the wide area is challenging.

We propose NAT Revelio, a novel test suite methodology for detecting
NAT444 deployments within the ISP access network. In order to detect NAT444
cases, the Revelio test suite aims to determine the location of the device trans-
lating to the globally routable public IP address that identifies the subscriber to
the global Internet. If we find that the subscriber’s home network is not hosting
this device, we conclude that the ISP deploys NAT444. Our approach relies on
detecting network configuration characteristics peculiar to NAT444 deployment
in an access network. We design our solution to be highly versatile and not
require prior knowledge of the setup that we are about to test. In particular, we
target deployment of Revelio on large-scale measurement platforms deployed in
subscriber homes, such as the SamKnows large scale measurements platform [14]
and BISmark [16], an open platform for home broadband internet research.

2 Generic NAT444 Deployment Architecture

We design NAT Revelio [1] to detect a wide range of NAT444 solutions in various
configurations in ISPs, without any prior knowledge on the environment we test.
The Revelio client executes in a device deployed in the home network, such as a
measurement device or a computer. The Revelio client performs six active tests
against different elements, including one or more servers deployed in the public
Internet. In the rest of this section we establish the terminology we use in this
paper and give an overview of possible NAT444 deployment architectures. We
use the latter to explain how we deploy NAT Revelio to detect NAT444 in the
ISPs we test.

There are various NAT444 implementations. We describe next the NAT444
deployment architecture in the context of DSL access technology, although
this maps cleanly to other access technologies, e.g., FTTx, cable. One type of
NAT444 technology is Carrier-Grade NATs (CGN), also known as Large Scale
NAT (LSN). DSL-based CGN devices are available in three configurations: (i)
stand-alone, (ii) Broadband Remote Access Server (BRAS) insertion-card and
(iii) Core Router (CR) insertion card. Also, NAT444 deployments can be distrib-
uted (at each BRAS) or centralized (at the CR). For simplicity of presentation,
we describe a centralized deployment of stand-alone CGN directly connected
to the CR in the ISP access network to explain our detection approach. Other
NAT444 solutions are available [15].

In Fig. 1, we illustrate this NAT444 architecture in DSL networks using the
terminology of the IETF’s Large-Scale Measurement of Broadband Performance
working group (LMAP WG) reference path [4]. The path elements include:

– Subscriber Device: which initiates and terminates communications over
the IP network. In the context of our measurement experiment this is the
measurement device inside the subscriber’s home network that executes the
Revelio client.

NAT Revelio: Detecting NAT444 in the ISP 151

Service
Demarc.

Subsc.
device

Intra IP
Access

GRA
GW

Transit
GRA
GW

Service
Demarc.

Subsc.
device

Intra IP
Access

GRA
GW

Transit
GRA
GW

Fig. 1. Mapping between DSL access configuration and generic LMAP reference path
(a) without NAT444 and (b) with NAT444 (in this case, a stand-alone CGN) in the
access network.

– Private Network: a network of devices the subscriber operates in the home
network, possibly using multiple layers of NAT, each operating different
chunks of RFC1918 private address space.

– Service Demarcation point: where the ISP-managed service begins, usu-
ally the interface facing the public Internet on a residential gateway or modem.

– Intra IP Access: first point in the access network that uses a globally
routable IP address.

– Globally Routable Address Gateway (GRA GW): the point of inter-
connection between ISP’s administrative domain and the rest of the Internet.

Figure 1 illustrates the mapping between the LMAP reference path and a stan-
dard DSL network architecture, both (a) without NAT444 (but with traditional
NAT), and (b) with NAT444 technology, using a stand-alone CGN device that
connects to the CR. The customer premises equipment (CPE) usually performs
the NAT function, translating private addresses in the home network to public
addresses in the access network. The CPE is the Service Demarcation device; its
Internet-facing interface is the Service Demarcation point. The BRAS is the Intra
IP Access point – the first point after the Service Demarcation point that uses a
globally routable IP address. The GRA corresponding to the subscriber maps to
the IP address the ISP configures at the Service Demarcation point.

152 A. Lutu et al.

In the NAT444 configuration in Fig. 1(b) the subscriber uses private addresses
within the home network, prior to the Service Demarcation point. For the address
space used between the Service Demarcation point and the Intra IP Access point,
the access ISP can use private, shared [18], or public (legitimate or stolen/“squat”)
IPv4addresses [3]. In this case, the Intra IPAccesspointmaps to theNAT444device
(the stand-aloneCGN), and theGRA is the IP address at the Intra IPAccess point.

3 NAT Revelio Test Suite

This section describes the tests we use in the proposed test suite, and how we
interpret them to infer the presence of NAT444 solutions in access ISPs.

3.1 NAT Revelio Overview and Design Challenges

Building a test suite for large-scale deployment of NAT444 measurements must
account for possible non-standard configurations. Specifically, we need to account
for cases where the subscriber deploys several levels of NAT within the home
network. In particular, false inferences of NAT444 deployment can occur when we
assume that the Revelio Client is directly connected to the Service Demarcation
device when, in fact, two in-home NAT devices are in the path between the
Subscriber Device and the Service Demarcation point. A naive NAT444 detection
test could falsely assume that the first NAT device is the Service Demarcation
point, and falsely map the second in-home NAT device to an Intra IP Access
point.

Thus, we design NAT Revelio to operate in two phases: (i) Environment
Characterization and (ii) NAT444 Detection. In the first phase, Revelio aims to
establish the location of the Revelio Client within the home network relative
to the Service Demarcation point. In the second phase, Revelio tests for the
presence of NAT444 solutions and interprets the measurement results using the
environment information.

NAT Revelio performs active measurements from a device running the Reve-
lio Client in the subscriber network (see Fig. 1). This step attempts to ascertain
where the IPv4 address translation to the subscriber GRA occurs: in the sub-
scriber home network (CPE) or in the ISP access network (a NAT444 device).

Figure 2 depicts a flow diagram of our test methodology. When deploying
Revelio, we perform all the measurements in the test suite and merge their
results to make an inference regarding the existence of NAT444 in the ISP.

3.2 Environment Characterization Phase

In the Environment Characterization phase Revelio runs three tests to determine
the position of the Service Demarcation point relative to the Subscriber Device
running the Revelio client. This step avoids false positive inferences of NAT444
and ensure accurate results over a wide range of in-home configurations. Figure 2
encloses the environment characterization tests in green rectangles. We use the

NAT Revelio: Detecting NAT444 in the ISP 153

Fig. 2. The NAT Revelio test suite flowchart: measurement actions (sending/receiving
packets) are in blue rectangles; measurement data is in green parallelograms; tests on
retrieved data are in orange rhombuses. Inferences of NAT444 are in red stop blocks.
We use the data we collect in phase 1 of environment characterization for all subsequent
NAT detection test we run in phase 2 (Color figure online).

information we retrieve here to interpret the results of the tests we run in the
subsequent NAT444 Detection phase. Additionally, this phase allows us to detect
the IP addresses configured in the home network of the subscriber and the ones
in the ISP access network.

1. Identify Subscriber’s GRA. First, we use the Session Traversal Utilities for
NAT (STUN) [13] protocol to discover the Globally Routable Address (GRA) that
corresponds to the subscriber. STUN is a standard client-server protocol that
allows a user behind a NAT to learn its public mapped address. We program the
Revelio client to behave as a STUN client that queries an external STUN server
(we use stun.stunprotocol.org), which replies with the GRA of the subscriber.
If the ISP does not deploy NAT444 (Fig. 1(a)), this GRA corresponds to the
address exposed at the Service Demarcation point. If the ISP deploys NAT444
using a topology similar to that of Fig. 1(b), this GRA corresponds to the public
IP address exposed at the Intra IP Access point along the reference path. This
step corresponds to the very first block of the Revelio flowchart in Fig. 2, labeled

154 A. Lutu et al.

STUN Binding Request. The information we retrieve by performing this action
is illustrated in the flowchart by the data block labeled Subscriber GRA.

2. Discover Home NAT Device. Second, we establish whether the Service Demar-
cation device performs NAT. Specifically, we verify that the local IP address of
the Subscriber Device running the Revelio client in the home network is in pri-
vate address space [12]. If the IP address of the Subscriber Device is a public
address, we conclude that the client is not behind a NAT (and, implicitly, not
a NAT444 device either). We further confirm this scenario when comparing the
local IP address to the GRA. If these two match, then there is no NAT device
along the path. We represent this step of the Environment Discovery phase in the
NAT Revelio flowchart with the test block labeled Home NAT device. Depend-
ing on the results of the test, we include in the flowchart a stop block with No
NAT444 (i.e., a negative result), or we move on to the next step in this phase.

3. Locate Service Demarcation Point [Path Analysis]. If the CPE performs NAT,
we test to identify the location of the access link (i.e. the link between the Service
Demarcation point and the first hop in the access network of the ISP) relative
to the Revelio client. We heuristically identify the access link by assuming it is
the first link on the outbound path with a transmission latency at least an order
of magnitude higher than its neighboring links [17].

To quantify per-link latency we use a technique similar to pathchar [7].
Namely, we estimate per-link delay parameters by taking the minimum values
of repeated Round Trip Time (RTT) measurements with different UDP packet
sizes along a path, and assuming negligible queuing and processing delays (sim-
ilar to [7]). To minimize the impact of these measurements on the subscriber’s
network, we gather the data by running traceroute hourly over a period of two
days, using 21 different packet sizes varying from 120 bytes to 1,400 bytes, and
using as a destination a high-availability IP address in Level 3’s network. Lim-
iting the number of packets to 21 per test allows us to complete one run of the
NAT Revelio measurements in 30 s. Running Revelio once per hour for 2 days
results in 48 RTT samples per TTL per packet size. We analyze these values to
estimate per-link propagation delay, and infer that the first link with a ten times
latency increase relative to its neighboring links is the access link. We use the
pathchar result (labeled Service Demarc. Location in the flowchart) in the tests
we perform in the second phase of NAT Revelio.

3.3 NAT444 Discovery Phase

This phase seeks to identify the location of the device performing NAT to the
GRA mapped to the subscriber, namely before or after the Service Demarcation
point. Figure 1(b) depicts the scenario with NAT444 (CGN) deployed in the
DSL access ISP network, after the BRAS and the Core Router. When the ISP
deploys NAT444, the location of the Intra IP Access point changes compared
with the case where the ISP does not use NAT444 (Fig. 1(a)). In Fig. 2, we
depict enclosed in red rectangles the three tests we run for NAT444 detection.

NAT Revelio: Detecting NAT444 in the ISP 155

We perform all three tests and interpret the set of results we obtain together with
the information we collect in the Environment Characterization phase to make
an inference regarding NAT444 deployment in the ISP we measure. To increase
the robustness of the test suite to non-standard architectures, e.g., when the ISP
does not deploy NAT444, but configures private addresses in its access network,
we assign a different confidence level to each test. One strength of Revelio lies
in being able to compare the results of multiple tests for the same subscriber.
To control against false positives, when test results conflict, we give priority to
the negative result, concluding there is no NAT444 deployment in the ISP.

1. Identify Private/Shared Addresses in the ISP Access Network. The first
method in the NAT444 Discovery phase detects the use of private or shared IP
addresses in the access network, between the Service Demarcation point and the
Intra IP Access point. Figure 1(b) depicts an ISP using special address domains
(i.e., private or shared address space) in its access network when a NAT444 solu-
tion is in place. We characterize the path obtained by traceroutes in Phase (1),
step 3, including inferring the position of the Service Demarcation point. We
then check if private or shared addresses are configured along the path toward
the public Internet target which is a router inside Level3, and if so, determine
their location relative to the Service Demarcation point. This discovery helps
us to establish if the private/shared addresses we identify are configured in the
ISP access network. The information allows us to correctly distinguish cases of
multiple levels of NAT in the home network, which can otherwise be easily con-
fused with NAT444 deployment. The flowchart (Fig. 2) represents this step by
including the data block labeled IP Addresses in the Access Network (which gets
as input the location of the Service Demarcation point relative to the Revelio
client) and the two following tests: Private/Shared Addresses in Access Network.

Note that we assign different confidence levels to these two tests. When
we observe shared address space in the ISP, beyond the Service Demarcation
point, we are highly confident of the presence of a NAT444 solution, given that
these addresses are specifically for use in NAT444 deployment. However, when
we observe RFC1918 private addresses beyond the Service Demarcation point,
we give a low confidence level to our results, because the ISP might use pri-
vate address space for its internal infrastructure without deploying NAT444.
Moreover, in the case where NAT Revelio does not detect any private or shared
addresses past the Service Demarcation point, the test suite cannot discard the
possibility of a NAT444 deployment in the ISP. This case can occur when the
ISP configures public addresses (legitimate or stolen “squat” address space) in
the access network as part of a NAT444 deployment.1

2. Invoke UPnP Actions. NAT Revelio runs a series of tests that aim to infer
the hop count between the Service Demarcation device and the device per-
forming the final translation to the subscriber GRA. To check if the Service
1 A common configuration is to assign private or shared address space only to the

interface of the Service Demarcation point attached to the ISP network, while other
elements of the ISP network use public addresses.

156 A. Lutu et al.

Demarcation device is the device translating to the subscriber GRA, we verify
whether the address configured on the Service Demarcation point matches the
subscriber’s GRA.

If the Revelio client directly connects to the Service Demarcation device
(Fig. 1), we leverage the Universal Plug and Play (UPnP) IGP protocol [2] if
supported by the CPE. The Revelio client sends a UPnP client control message
to the CPE that retrieves the IP Address of the WAN interface of the CPE,
which, in this case, maps to the Service Demarcation point. In the case of a
match, we infer that the ISP does not use NAT444. A mismatch between these
addresses means that the ISP does indeed deploy NAT444. We give a high level
of confidence to this result.

Otherwise, if the Subscriber Device running the Revelio client does not con-
nect to the Service Demarcation device, we find ourselves in a non-standard
configuration, where multiple NAT devices are present within the home net-
work. In this case, we cannot draw any conclusion regarding the presence of
NAT444 in the ISP from this test, since the UPnP test retrieves the IP address
of the innermost CPE device within the home network, and not the IP address
at the Service Demarcation point. The NAT Revelio flowchart includes this set
of tests, following the yes branches both for the UPnP Supported and the Revelio
client connected to Service Demarcation device tests, in the NAT444 Discovery
phase in Fig. 2.

3. Traceroute to the Subscriber GRA. We also run traceroute from the Rev-
elio client to the subscriber GRA to measure the hop count between them.
Without NAT444, the GRA is at the Service Demarcation point (Fig. 1(a)),
and all traceroute-responding hops are inside the home network. With NAT444
(Fig. 1(b)), the GRA is at the Intra IP Access point, which is past the Service
Demarcation point. If we already know the location of the Service Demarcation
point relative to the Revelio client (from the first phase), a UDP traceroute to
the GRA distinguishes these two cases.

We assign to the Traceroute to GRA test a high confidence level, since it relies
on no CPE-specific capabilities, nor on the assumption that the ISP configures
private or shared IP addresses in the access network. Nonetheless, this test still
may fail to determine the presence of NAT444 in the ISP, for example when
the ISP actively blocks ICMP packets triggered by the traceroute. Thus, NAT
Revelio cannot conclusively determine the presence of a NAT444 solution in the
ISP. Figure 2 illustrates this possibility in the NAT Revelio flowchart with the
purple inconclusive stop block.

4 Validation and Large-Scale Revelio Measurement
Campaigns

4.1 Revelio Validation in Controlled Environment

With the help of a large UK ISP operator, we tested NAT Revelio on a controlled
set of subscribers included in a trial deployment of a CGN implementation of

NAT Revelio: Detecting NAT444 in the ISP 157

NAT444 within the ISP network. The trial environment consisted of operational
DSL residential lines connected behind a stand-alone CGN NAT444 implemen-
tation. We ran the Revelio client on 6 Subscriber Devices, 2 of which were behind
the NAT444 device. We found that NAT Revelio accurately detected the deploy-
ment configuration of all 6 devices. We explain details of the test results below.

After running the Environment Discovery (Sect. 3.2), we learned that
all six Subscriber Devices running the Revelio Client connected directly to the
Service Demarcation device within the home network.

For the two subscribers connected to the ISP behind a NAT444 solution, all
tests in the NAT444 Discovery (Sect. 3.3) successfully indicated the presence
of NAT444 within the access network. First, after retrieving the CPE’s WAN IP
address which corresponds to the Service Demarcation point address (as per the
test we describe in Sect. 3.3.1), we identified it as shared address space, which is a
clear symptom of NAT444 deployment. Second, we confirmed that the subscriber
GRA did not match the Service Demarcation point address (as per the test we
describe in Sect. 3.3.2), reinforcing evidence of NAT444 deployment. Third, when
verifying how far from the Service Demarcation device the translation to GRA
occurred (as per the test we describe in Sect. 3.3.3), we measured 6 hops between
the Subscriber Devices and the device translating to the GRA. Only the first of
these hops belonged to the home network, leaving 5 hops between the Service
Demarcation device and the device performing translation to the GRA.

NAT Revelio successfully inferred that the other 4 Whiteboxes were not
behind a NAT444 solution after Invoking UPnP Actions (Sect. 3.3.2) and con-
cluding that the IP addresses at the Service Demarcation point matched the
GRA of the subscriber.

To illustrate Revelio’s robustness to non-standard configurations, we also
tested our NAT444 detection approach on 24 residential DSL lines operated by
a large Italian ISP that does not employ NAT444 solutions in its DSL network.
However, in its access network configuration, the ISP does use private IP address
space for its infrastructure. This is a non-standard configuration that can wrongly
mimic the presence of a NAT444 solution in the ISP. Due to the fact that we con-
sider multiple tests to detect NAT444 in the ISP, we were able to discard such
cases on the basis of conflicting results. We found that the first test in NAT444
Discovery (Sect. 3.3.1) indicated the existence of a NAT444 solution in the ISP
based on the detection of RFC1918 address space beyond the Service Demarca-
tion point. Since the operator disabled UPnP on its home routers, we could not
invoke any UPnP actions (Sect. 3.3.2). However, traceroute to the subscriber GRA
(Sect. 3.3.3) showed that the GRA is, in fact, at the Service Demarcation point.
As we mention in Sect. 3.3, when we have conflicting results from Revelio tests,
we give priority to the negative test to avoid false negatives. Thus, we accurately
concluded that the Italian ISP does not have any NAT444 deployment.

4.2 Large-Scale Measurement Campaigns

After the above validation exercise, we experimented with NAT Revelio on two
different large-scale measurement platforms (SamKnows’ UK deployment and
BISmark), targeting multiple ISPs and potential NAT444 solutions.

158 A. Lutu et al.

SamKnows Deployment. We deployed the Revelio Client on a set of SamKnows
Whiteboxes within home networks in the UK. A SamKnows Whitebox is a cus-
tom hardware device that residential users host voluntarily. We ran NAT Reve-
lio from 2,000 Whiteboxes that allowed us to test 26 different ISPs for NAT444
solutions. We had no previous knowledge of the configuration of these ISPs. We
collected results of tests of two different Revelio deployments that we performed
5 months apart, in June 2014 and October 2014. Although they did not cover
the same subscribers, both campaigns yielded similar results, indicating that the
NAT444 deployment did not expand during the five-month period.

The results of June 2014 campaign revealed that out of the approximately
2,000 residential lines we tested, we inferred that 10 different end-users connected
behind a NAT444 solution. The 10 users were spread across 5 different ISPs.
Thus, the proportion of end-users we inferred were behind a NAT444 solution
was 0.5 % of all the residential lines we tested. We were able to validate these
findings with the operators for only for one case.2 The operator in question
validated our inferences for the lines we found to be deployed behind a NAT444
solution.

Analyzing the results from the June 2014 campaign, we inferred that a total
of 90 % of tested end-users were not connected through a NAT444 solution (no
NAT444). The Environment Characterization phase of NAT Revelio helped
us discard 60 % of the cases of in-home cascaded NATs that would have otherwise
emerged as false positives.

In the NAT444 Discovery phase, the Invoking UPnP Actions test
(Sect. 3.3.2) successfully ran on 82 % of the SamKnows Whiteboxes, further
identifying 81.2 % of the tested customers as not configured to use a NAT444
solution. In the other 18 % of the cases, UPnP was not supported by the home
gateway, so we could not run this test. Additionally, the Traceroute to the GRA
(Sect. 3.3.3) independently classified approximately 50 % of the end-users we
tested as not behind a NAT444 deployment. In 9.5 % of observed cases, we could
not draw a conclusion because all tests included in the NAT444 Discovery phase
gave inconclusive results.

The October 2014 deployment covered fewer subscribers (approximately
1,500 SK Whiteboxes) than the one in June 2014 (approximately 2,000 SK
Whiteboxes). We found that 4 ISPs deployed NAT444 solutions. The results we
obtained for 3 of the 5 ISPs were consistent with the results we inferred of the
June 2014 campaign. We detected one additional ISP for which the Subscriber
Device (Whitebox) connected directly to the Service Demarcation Device, but
for which the Service Demarcation point address was a private (Sect. 3.3.2). We
give high confidence to this result.3

2 Attempting to validate our findings, we have contacted all the 5 ISPs, but we have
yet to receive a reply from 4 of them.

3 Attempting to validate this result, we found that several subscribers reported on the
ISP’s online customer support forum that they had identified the presence of the
CGN by detecting the presence of shared address space in the ISP.

NAT Revelio: Detecting NAT444 in the ISP 159

BISmark Deployment. Between 7–9 February 2015, we deployed NAT Revelio on
37 OpenWRT routers that are part of the BISmark measurement platform. Our
BISmark experiment involved fewer vantage points than our SamKnows UK
experiment, but they had much wider geographical distribution. We deployed
the Revelio client in Subscriber Devices hosted in 24 different ISPs active in 13
countries distributed across the five Regional Internet Registries (RIRs). Using
the Revelio test suite, we inferred the presence of NAT444 in three different
ISPs: Vodafone for DSL customers in Italy, Embratel in Brasil and Comcast in
the US. In all three cases, we inferred a NAT444 solution by establishing the
presence of RFC1918 private addresses in the ISP access network (Sect. 3.3.1).
The traceroute to the GRA (Sect. 3.3.3) gave inconclusive results in all three
cases. Also, in the case of Embratel and Comcast, the Revelio client could not
invoke UPnP actions (Sect. 3.3.2). Since an ISP may use RFC1918 addresses in
the access network without deploying a NAT444 solution, we give low confidence
to the latter two results, and mark them as potential false positives. In the case
of the Subscriber Device connected to Vodafone Italia, the Revelio client could
invoke UPnP actions and verify the presence of the NAT444 solution in the ISP.
We give high confidence level to this result, where two Revelio tests detected
NAT444 deployment.

5 Related Work

In recent years, detection of middleboxes, and characterization and assessment
of their impact on the Internet, has become a topic of interest. In particular,
researchers have studied how to identify the presence of middleboxes on the
Internet path, including NAT444 solutions. A recent study proposed NATAn-
alyzer [10], an algorithm capable of discovering previously unknown cascaded
NAT configurations. NATAnalyzer requires control of the client and server sides
of the test, whereas NAT Revelio is a client-side discovery mechanism. NATAn-
alyzer determines the position of the NAT devices using repetitive traceroutes.
First, the test establishes address mappings in NAT devices on the path by run-
ning a traceroute from the end-user side to the server. NATAnalyzer then relies
on fixed NAT state timers to sequentially ensure that the per-hop mappings
expire, while maintaining the rest of the mappings by sending traffic from the
external server towards the client (a NAT configuration that represents a secu-
rity risk and is not recommended). The algorithm does not account for timers
that may differ for multiple NAT configurations across various networks. Revelio
does not rely on any features of NAT devices, treating them as black boxes along
the path.

The Netalyzr [9] tool, initially meant as a networking debugging tool, is
continuously running a survey of the health of the Internet’s edge by detect-
ing anomalous configurations. This survey includes detection of NAT solutions.
Unlike Revelio, Netalyzr is not specifically tailored to detecting NAT444 solu-
tions, and might not be robust to non-standard configurations inside home net-
works.

160 A. Lutu et al.

Tracebox [5] is an extension to the widely used traceroute tool that detects
various types of middlebox interference over an Internet path. The solution is
prone to open issues affecting traceroute. Though this can also potentially impact
Revelio, our test-suite also includes other tests which we can fallback on.

6 Conclusions and Future Work

Despite concerns about its performance impact, NAT444 is part of the technol-
ogy landscape during this ongoing phase of transition from IPv4 to IPv6. In this
paper, we proposed NAT Revelio, a novel methodology and test suite aimed at
accurately detecting NAT444 deployments by running active tests from the home
network. We validate the accuracy of our approach by evaluating the status of a
control set of 6 residential lines tested in a NAT444 deployment trial within the
network of a large UK operator. We tested the robustness of the test suite to a
non-standard configuration by evaluating the status of 24 DSL residential lines
connected to a large Italian ISP that does not deploy NAT444, but uses private
addresses in its access network.

The large scale NAT Revelio distribution across the UK showed that NAT444
solutions are still in early stages of deployment in the UK. However, our results
infer that operators are at least testing these solutions to potentially move them
in production. Using the BISmark platform, we tested 24 additional ISPs active
in 13 countries distributed across the five Regional Internet Registries (RIRs).
We inferred the presence of NAT444 in three different ISPs and proved our
solution to be highly versatile.

For future work, we will expand testing to other regions, where NAT444
solutions are more popular. In particular, we will deploy NAT Revelio in the
SamKnows FCC Measuring Broadband America testbed in the US. We also
plan to tackle the limitations of the proposed methodology, namely by designing
other detection algorithms in the case when assumed CPE capabilities are not
implemented or networks actively block ICMP packets.

Acknowledgments. This work has been partially funded by the European Commu-
nity’s Seventh Framework Program (FP7/2007-2013) grant no. 317647 (Leone). This
work was supported by the U.S. NSF grants CNS-1513283 and CNS-1528148 and CNS-
1111449. We would like to thank Sam Crawford and Andrea Soppera for their feed-
back and numerous discussions while designing NAT Revelio, as well as the support
for the large-scale deployments of Revelio on the SamKnows UK panel. We also thank
Guilherme Martins for his support during the BISmark deployment and Dario Ercole
for his help validating NAT Revelio.

References

1. List of spells in Harry Potter. http://en.wikipedia.org/wiki/List of spells in
Harry Potter. Accessed 04 October 2015

2. UPnP Forum. Universal Plug and Play (UPnP) Internet Gateway Device (IGD)
V 2.0, December 2010. http://upnp.org/specs/gw/igd2/. Accessed 15 June 2014

http://en.wikipedia.org/wiki/List_of_spells_in_Harry_Potter
http://en.wikipedia.org/wiki/List_of_spells_in_Harry_Potter
http://upnp.org/specs/gw/igd2/

NAT Revelio: Detecting NAT444 in the ISP 161

3. Aitken, B.: MC/159 Report on the Implications of Carrier Grade Network Address
Translators. Final Report for Ofcom (2013)

4. Bagnulo, M., Burbridge, T., Crawford, S., Eardley, P., Morton, A.: A Reference
Path and Measurement Points for Large-Scale Measurement of Broadband Perfor-
mance. RFC 7398, February 2015

5. Detal, G., Hesmans, B., Bonaventure, O., Vanaubel, Y., Donnet, B.: Revealing
middlebox interference with tracebox. In: Proceedings of the 2013 Conference on
Internet Measurement Conference, pp. 1–8. ACM (2013)

6. Donley, C., Howard, L., Kuarsingh, V., Berg, J., Doshi, J.: Assessing the Impact
of Carrier-Grade NAT on Network Applications. RFC 7021, September 2013

7. Downey, A.B.: Using pathchar to estimate internet link characteristics. In: Proceed-
ings of the Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM 1999 (1999)

8. Ford, M., Boucadair, M., Durand, A., Levis, P., Roberts, P.: Issues with IP Address
Sharing. RFC 6269, June 2011

9. Kreibich, C., Weaver, N., Nechaev, B., Paxson, V.: Netalyzr: illuminating the edge
network. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, pp. 246–259. ACM (2010)

10. Müller, A., Wohlfart, F., Carle, G.: Analysis and topology-based traversal of cas-
caded large scale NATs. In: Proceedings of the 2013 Workshop on Hot Topics in
Middleboxes and Network Function Virtualization (2013)

11. Perreault, S., Yamagata, I., Miyakawa, S., Nakagawa, A., Ashida, H.: Common
Requirements for Carrier-Grade NATs (CGNs). RFC 6888, April 2013

12. Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., Lear, E.: Address Allo-
cation for Private Internets. RFC 1918, February 1996

13. Rosenberg, J., Mahy, R., Matthews, P., Wing, D.: Session Traversal Utilities for
NAT (STUN). RFC, October 2008

14. SamKnowsTM: Methodology and technical information relating to
theSamKnowsTM testing platform - SQ301-002-EN (2012)

15. Skoberne, N., Maennel, O., Phillips, I., Bush, R., Zorz, J., Ciglaric, M.: IPv4
Address sharing mechanism classification and tradeoff analysis. IEEE/ACM Trans.
Netw. 22(2), 391–404 (2014)

16. Sundaresan, S., Burnett, S., Feamster, N., De Donato, W.: Bismark: a testbed for
deploying measurements and applications in broadband access networks. In: 2014
USENIX Conference on USENIX Annual Technical Conference (USENIX ATC
2014), pp. 383–394 (2014)

17. Sundaresan, S., De Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè,
A.: Broadband internet performance: a view from the gateway. In: ACM SIG-
COMM Computer Communication Review, vol. 41, pp. 134–145. ACM (2011)

18. Weil, J., Kuarsingh, V., Donley, C., Liljenstolpe, C., Azinger, M.: IANA-Reserved
IPv4 Prefix for Shared Address Space. RFC 6598, April 2012

Testbeds and Frameworks

GPLMT: A Lightweight Experimentation
and Testbed Management Framework

Matthias Wachs1(B), Nadine Herold1, Stephan-A. Posselt1, Florian Dold2,
and Georg Carle1

1 Technical University of Munich (TUM), Boltzmannstr. 3, 85748 Garching, Germany
{wachs,herold,posselt,carle}@net.in.tum.de

https://www.net.in.tum.de
2 Chair for Network Architectures and Services, Department for Informatics,

Technical University of Munich (TUM), Munich, Germany
dold@in.tum.de

Abstract. Conducting experiments in federated, distributed, and het-
erogeneous testbeds is a challenging task for researchers. Researchers
have to take care of the whole experiment life cycle, ensure the repro-
ducibility of each run, and the comparability of the results. We present
GPLMT, a flexible and lightweight framework for managing testbeds and
the experiment life cycle. GPLMT provides an intuitive way to formal-
ize experiments. The resulting experiment description is portable across
varying experimentation platforms. GPLMT enables researchers to man-
age and control networked testbeds and resources, and conduct experi-
ments on large-scale, heterogeneous, and distributed testbeds. We state
the requirements and the design of GPLMT, describe the challenges of
developing and using such a tool, and present selected user studies along
with their experience of using GPLMT in varying scenarios. GPLMT is
free and open source software and can be obtained from the project’s
GitHub repository.

Keywords: Testbed management · Experimentation

1 Introduction

Network testbeds are an invaluable tool for researchers developing network pro-
tocols and networked systems to test a novel approach and existing, already
deployed solutions “in the wild”. A large variety of testbeds is available to
researchers. Many of them focus on a specific domain (e.g. wireless experimen-
tation, high-precision measurements, real-world network testbeds), and most of
them use a non-standardized and domain-specific approach to how the testbed is
designed, accessed, managed, and experiments are controlled, requiring manual
adaptation for every experiment. When trying to transfer such an experiment
to a different testbed, the experimenter has to adapt—and most of the time
rewrite—the experiment to be able to transfer the experiment to a different
platform. This makes it difficult to reproduce and confirm experiment results for
both the researcher as well as the research community.

A testbed may be heterogeneous with respect to the hardware and the oper-
ating system, and may be physically distributed across more than one location.
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 165–176, 2016.
DOI: 10.1007/978-3-319-30505-9 13

166 M. Wachs et al.

This allows the researcher to evaluate reliability and portability under close to
real-world conditions. However, an experiment is challenging to manage in a com-
plex testbed. The life cycle of a network experiment comprises tasks such as test-
bed configuration, resource allocation, experiment definition, and deployment.
Many testbed environments, for example PlanetLab, Emulab, or GENI, focus on
testbed configuration and resource allocation but do not consider executing the
experiment itself. The experiment’s execution plan may require assigning differ-
ent tasks to subsets of nodes in a precise timely manner to control the execution.
At the end, the results need to be collected from all nodes. Monitoring and error
handling also have to be considered, as resources may become unavailable, or a
sub-task may fail. At worst, an experiment lasting several days has to be repeated.

Experiment runs often share similarities, but are still set up manually, or with
the help of ad hoc scripts which are rarely reusable. Instead of implementing ad
hoc solutions specific to our particular problems, we decided to realize a flexible
and extensible testbed and experimentation tool, supporting us in our work and
to make it available to the public.

With this work, we present GPLMT, a flexible, lightweight experimenta-
tion and testbed management tool. GPLMT provides an intuitive way for users
to define experiments, supports the full experimentation life cycle, and allows
experiments to be transferred between different testbeds and platforms, ensuring
reproducibility and comparability of experiment results. GPLMT is free software
and its source code is publicly available on the GPLMT website1. In the remain-
der of this paper we will give an overview of GPLMT, state the requirements
and challenges for such a tool, and describe the design and implementation. We
also describe the experiences of users working with GPLMT in various scenarios.

2 GPLMT Features

GPLMT is started on a control node and executes a user-supplied XML-based
experiment description. GPLMT provides an experiment definition language to
define the resources participating in the experiment, the tasks to execute and
including specific order and parallelism, and to assign such tasks to resources.
In addition, it allows the inclusion of files to reuse experiment definitions and to
group resources. GPLMT connects to the nodes via SSH and can be extended
with additional communication backends, runs tasks on the nodes, i.e. platform-
specific binaries or executable scripts, and can transfer files between the con-
troller and the nodes. To simplify the use of PlanetLab, GPLMT supports
importing information about available and assigned nodes from the user’s Planet-
Lab account using the PlanetLab-API. Testbed specific functionality, e.g. setting
link properties in the testbed, can be accessed in GPLMT using external scripts
if the testbed provides an API. GPLMT offers additional features focusing on
handling the intricacies of testbeds: the user can annotate commands with dif-
ferent modes of failure and register arbitrary cleanup actions to, for example,
kill processes and delete temporary files.
1 https://github.com/docmalloc/gplmt.

https://github.com/docmalloc/gplmt

GPLMT: A Lightweight Experimentation 167

3 Requirements and Challenges

In this section, we highlight the requirements for the design of an experimenta-
tion and management tool realizing the features described in Sect. 2 and based on
experiences obtained from conducting different types of experiments with various
testbeds, exchange with the research community and an analysis of possible use
cases varying from managing large scale and unreliable to small virtualization
based testbeds.

Self-Containment. GPLMT is intended as a lightweight tool for researchers
and experimenters. The tool should neither require a complex experimentation
infrastructure, rely on client software like agents installed on testbed nodes nor
have requirements for external services like a database server. The tool shall be
realized as a portable, platform independent stand-alone tool.

Scalability is important for the experimentation tool to support large-scale
testing and experimentation. When conducting experiments with many partic-
ipants, orchestration and controlling of a large number of different nodes is a
challenging task since large delays and setup times have to be prevented.

Resource Restrictions. Experimentation with GPLMT may be limited due to
restrictions in the surrounding environment. Establishing a large number of con-
nections to a large number of nodes has to be realized efficiently. Therefore,
GPLMT has to be aware of resource restrictions in the host environment and reuse
connections and provide rate limiting for new connections being established.

Heterogeneous Testbeds and Nodes. GPLMT has to make experimentation
independent from the testbed platform and the participating nodes. Experiments
have to be executable in heterogeneous environments with different operating
systems and different versions of the operating system.

Fault Tolerance in Unreliable Environments. In real-world and large-scale
network testbeds availability of resources cannot always ensured: not all assigned
nodes and resources may be available or can fail during an experiment and
become available again. GPLMT, therefore, has to cope with unreliable resources
and has to provide automatic error handling and recovery transparent to the
experiment.

High-level Experiment Definition. With GPLMT experiment definition shall
be done on a high level of abstraction, to allow the experimenter to focus on
essential aspects of experiment design and control flow without getting distracted
by implementation details.

Experiment Reproducibility. Experiment reproducibility is essential for con-
firmability of experimental results. GPLMT has to support an experiment flow
making execution independent from participants, resources, testbeds, external
dependencies and state based on a high-level definition of experiments.

Experiment Portability, Reusability and Extensibility. Experiments shall
be transferable to other testbeds infrastructures and allow researchers to share

168 M. Wachs et al.

experiment definitions. Employing an abstraction over the testbed infrastruc-
ture and using a high-level description of an experiment allows an experiment
definition to be reused and to be varied in different scenarios speeding up the
testing process.

Grouping Entities in Experiments. In an experiment, tasks and resources
may be assigned to different groups of nodes. GPLMT shall provide the func-
tionality to group nodes and resources and to assign tasks to such a group.

Nested Task Execution and Synchronization. Within an experiment, tasks
often have to be executed in a specific order or can be executed in parallel.
GPLMT shall provide constructs to allow experimenters to specify the execution
order of tasks. Tasks may also be nested and grouped in such sequential and
parallel constructs. Additional synchronization barriers between the tasks have
to be provided.

Repeatable, Periodic and Scheduled Tasks for Experiments. Often tasks
inside an experiment have to be executed repeatedly or triggered periodically
or at a certain point in time (e.g. for periodic measurements). GPLMT has to
provide constructs to express a looping functionality and to schedule tasks to
be executed at certain point in time or after a certain duration without adding
high complexity.

Error Condition Handling in Experiments. In many cases the experiment
control flow depends on successful or failed execution of tasks, making subse-
quent operations useless or the whole experiment fail. Therefore, GPLMT has to
allow the experimenter to define the expected result of a task and how an error
condition has to be handled. In addition, functionality to define a clean up and
tear down task—executed before the experiment is terminated—is beneficial.

4 GPLMT Design and Implementation

GPLMT is designed as a stand-alone tool running on the so-called GPLMT con-
troller. The GPLMT controller is responsible for orchestrating the whole exper-
iment, i.e. scheduling tasks on the hosts of a testbed, from now on called nodes.
GPLMT manages a connection from the controller to each node. GPLMT does
not require any original services on the nodes, but relies on SSH, and possibly
other protocols in the future. In addition, GPLMT can use the PlanetLab-API to
obtain information about available nodes in the experimenter’s PlanetLab slice.
An experiment is conducted by passing an experiment description in a high-level
description language to GPLMT. The description tells GPLMT which nodes to
connect to, which files to exchange, and which tasks to run.

4.1 Resource Management

In large-scale experiments with many nodes, GPLMT will open a large number
of connections. SSH is particularly resource-intense. The SSH connection setup is

GPLMT: A Lightweight Experimentation 169

computationally expensive due to cryptography and may overload a low-powered
controller or the physical host of a virtualized testbed. A high rate of connection
attempts may stress IDS systems, and may trigger IDS alerts for alleged SSH
scanning.

GPLMT offers two solutions to limit its resource usage: connection reuse and
rate limiting of connection attempts. GPLMT will tunnel all commands to the
same node through a single control connection, but will still try to reconnect when
the connection is lost. GPLMT optionally delays connection attempts, including
reconnects, to not exceed a configurable number of attempts per interval.

4.2 Implementation

The GPLMT controller is implemented in Python 3. Besides a few Python
libraries and the Python interpreter itself, GPLMT only depends on the external
tools which are needed to connect to nodes. Notably, GPLMT wraps OpenSSH,
so all features of OpenSSH are available via a local OpenSSH configuration file.
GPLMT directly uses OpenSSH’s control master feature to reuse connections to
the same node.

5 GPLMT’s Experiment Definition Language

GPLMT provides a domain-specific language to describe the experiment setup
and execution. Its syntax is defined in an XML Schema obtained from a relax-ng
definition. Therefore, terms such as element and attribute refer to the respective
XML objects.

The experiment root element may contain multiple include, targets, and
tasklist elements and a single steps element. A targets element names the
nodes and can also be used to group nodes. tasklist defines a set of commands
to be run. Both definitions are tied together with the steps element, which
states which tasklist is to be executed on which targets and at what time.

Target and tasklist definitions are optional and may also be imported from
other documents. Targets and tasklists are distinguished and referenced by unique
names.

5.1 Targets

A target element names a member node, and specifies how to access the node.
The following types of targets are currently supported:

– local specifies execution on the GPLMT controller itself.
– ssh states that the nodes can be accessed using SSH. The child elements
username and password may provide credentials.

– planetlab specifies a PlanetLab node and accepts the PlanetLab-API-URL,
the slice, and the user name as attributes.

– group specifies a nested target definition, creating a set of nodes (and other
groups) addressable as a single target.

170 M. Wachs et al.

To support parameterization per target, each target definition can contain
multiple export-env elements, which declare an environment variable to be
exported. The value of this variable is then available to tasks on the target.

5.2 Tasklists

The tasklist binds a list of tasks to a name. A task is one of the following
predefined commands:

– get and put are used to exchange files between the controller and the targets.
– run accepts a command to be executed. When a target defines additional

environment variables, those are passed to the command using export-env.
– The par and seq elements contain nested lists of tasks. seq will run those

tasks in order, whereas par will immediately start all sub-tasks in parallel.
– call is used to reference a tasklist to be executed.

tasklist accepts the optional attributes cleanup, timeout, and error, con-
trolling the tasklist’s behavior in case of an error condition. cleanup references
another tasklist to be executed after the current tasklist, even if the current
tasklist aborts due to an error. This can be used to kill stale processes and
delete temporary files or to save intermediate results. timeout specifies the max-
imum amount of time the tasklist is allowed to execute before it is aborted. This
guarantees progress in case a command loops infinitely or dead-locks. on-error
determines how GPLMT continues when a task fails. The following fail modes
are available:

– abort-tasklist aborts the current tasklist and continues with the tasklist
specified by the surrounding context.

– abort-step aborts the current step and continues with the next step. Steps
are explained in Sect. 5.3.

– panic aborts the whole experiment.

5.3 Steps

The language requires exactly one steps element. It may contain multiple step,
synchronize, register-teardown, and repeat elements.

The step element determines which tasklists run on which target. A start
and a stop time can be added to schedule a task for later execution. Times
are either relative to the start of the experiment or absolute wall clock times,
allowing to defer a step until night-time when resources are available. Thus, step
elements form the basic building block for orchestrating the experiment.

Consecutive step elements run in parallel. A synchronize element repre-
sents barrier synchronization, and execution can only continue after all currently
running steps have finished.

register-teardown references a tasklist by name that is executed when
steps finishes. This tasklist is always executed, even if errors lead to the abortion

GPLMT: A Lightweight Experimentation 171

of the experiment. The registered tasklist is intended to contain cleanup tasks
and to transfer experiment results to the controller. The register-teardown
cleanup tasklist only needs to be registered right before the step that allocates
the corresponding resources is issued.

GPLMT’s experiment definition language offers basic loops within steps:
The repeat element loops over the enclosed steps until at least one of the fol-
lowing conditions is satisfied:

– a given number of iterations (iterations)
– a given amount of time has passed (during)
– a given point in time was passed (until)

These are deliberately simple conditions that only allow for decidable loops,
so it can be easily verified by manual inspection (or programmatically) whether
a loop terminates.

5.4 Example

In this section, we present a brief example for a GPLMT experiment to illustrate
how experiments are defined. In this experiment, we use GPLMT, running on the
controller, to generate network traffic on two nodes and capture this traffic using
a third monitoring node. Therefore, nodes A (IP 10.0.0.16) and B (IP 10.0.0.17)
ping each other. The monitor collects all network traffic using tcpdump. At the
end of the experiment, the resulting capture file is transferred to the controller.
Listing 1.1 shows a (slightly abbreviated) description for this experiment.

First of all, an external experiment description containing teardown func-
tionality is included (l. 4). Separating functionality in different files eases reuse
of frequently used targets and tasklists.

The definition for the three nodes A and B and monitor is done in the
targets element (ll. 6–23): nodes A and B are grouped into a target named
pingGroup. To ping each other, these hosts have to know the partner’s IP address
which is provided in the environment variable host.

The experiment workflow is defined in the steps element (ll. 37–45). The
different step elements reference tasklists from the tasklists element (ll. 25–
35). The experiment starts with instructing the monitor node to capture network
traffic using tcpdump (l. 38) using tasklist createPCAP (l. 26). To ensure tcpdump
is terminated at the end of the experiment, the experiment registers tasklist
stopMonitoring (l. 39), imported from a file (l. 4). Both tasklists, createPCAP
and stopMonitoring, are executed in parallel.

The synchronize statement (l. 41) ensures monitoring is started before the
nodes in group pingGroup (ll. 11–22) begin to ping each other (l. 42). Both
nodes execute the same tasklist doPing (ll. 29–31). The shell on respective node
expands the variable host (on l. 27) set to the other host’s IP address (ll. 15,20).

The synchronize statement (l. 43) blocks until the doPing tasklists have
finished (l. 30). The final step (l. 44) copies the captured traffic from the monitor
node to the controller.

172 M. Wachs et al.

Listing 1.1. Example: Generate and Monitor Network Traffic with GPLMT

1 <?xml version="1.0" encoding="utf -8" ?>

2 <experiment >

3
4 <include file="include/teardowns.xml" />

5
6 <targets >

7 <target name="monitor" type="ssh">

8 <user>testaccount </user>

9 <host>monitor.example </host>

10 </target>

11 <target name="pingGroup" type="group">

12 <target name="A" type="ssh">

13 <user>testaccount </user>

14 <host>10.0.0.16 </host>

15 <export -env var="host" value="10.0.0.17" />

16 </target >

17 <target name="B" type="ssh">

18 <user>testaccount </user>

19 <host>10.0.0.17 </host>

20 <export -env var="host" value="10.0.0.16" />

21 </target >

22 </target>

23 </targets >

24
25 <tasklists >

26 <tasklist name="createPCAP">

27 <run>tcpdump -i eth0 -w testrun.pcap &</run>

28 </tasklist >

29 <tasklist name="doPing">

30 <run>ping $host -c 10</run>

31 </tasklist >

32 <tasklist name="getData">

33 <get>testrun.pcap</get>

34 </tasklist >

35 </tasklists >

36
37 <steps >

38 <step tasklist="createPCAP" targets="monitor" />

39 <register -teardown ref="stopMonitoring"

40 targets="monitor" />

41 <synchronize />

42 <step tasklist="doPing" targets="pingGroup" />

43 <synchronize />

44 <step tasklist="getData" targets="monitor" />

45 </steps >

46 </experiment >

GPLMT: A Lightweight Experimentation 173

6 User Studies

In the following section, we present an overview of projects using GPLMT to
show the various different use cases and purposes GPLMT can be used for and
highlight the challenges emerging with respect to both experimentation as well as
using the GPLMT framework. Based on these experiences, we modified GPLMT
in the current version to cope with this challenges.

6.1 The GNUnet Project - Large-Scale Software Deployment
in Heterogeneous Testbeds

GNUnet2 is a GNU free software project focusing on a future, decentralized
Internet. GNUnet develops the GNUnet peer-to-peer (P2P) framework to allow
developers to realize decentralized networking applications.

GNUnet employs GPLMT to deploy the GNUnet framework to a large num-
ber of PlanetLab nodes to be able to test the software under real-world condi-
tions and to support bootstrapping of the network. GNUnet’s requirement was
to compile the latest GNUnet version on PlanetLab nodes directly.

GNUnet used GPLMT to provide the nodes with all software dependencies
required. While running, GNUnet was monitored to analyze the behavior of the
software and the P2P network and to obtain log files in case of a crash. With
GPLMT detailed information for every node could be obtained.

For GNUnet, the major challenge was the unreliability and heterogeneity
of the PlanetLab testbed. With a large number of nodes only a fraction were
accessible and working correctly. PlanetLab nodes only provide outdated soft-
ware and are very heterogeneous both with respect to versions of the operating
system and version of software installed. Nodes also often get unavailable during
operation.

6.2 OpenLab Eclectic - A Holistic Development Life Cycle for P2P
Applications

The OpenLab Eclectic Project3 focused on developing a holistic development
life cycle for distributed systems by closing the gap between the testbed and the
P2P community.

Eclectic used GPLMT to orchestrate, control and monitor networking, P2P
testing, and experimentation on different testbeds. GPLMT’s functionality to
define experiments and to interact with testbeds using an abstraction layer
allowed Eclectic to deploy distributed systems on local systems, HPC systems
like the SuperMUC4 and Internet testbeds like PlanetLab.

The main challenge for Eclectic was to define testbed independent experi-
ments to be able to transfer experiments between different testbeds. GPLMT was
2 https://gnunet.org.
3 http://www.ict-openlab.eu/experiments-use-cases/experiments.html.
4 https://www.lrz.de/services/compute/supermuc/.

https://gnunet.org
http://www.ict-openlab.eu/experiments-use-cases/experiments.html
https://www.lrz.de/services/compute/supermuc/

174 M. Wachs et al.

also used to setup network nodes and collect experimental results. Within this
project, GPLMT was integrated with the Zabbix5 network monitoring solution
to provide an integrated approach for infrastructure monitoring and experiment
scheduling.

6.3 Testbed Management for Attack and Defense Scenarios

Datasets to train and test Intrusion Detection Systems (IDS) under realistic and
reproducible conditions are hard to obtain and generate. Such datasets have to
provide a high diversity of attacks with a high packet frequency but also have
ensure reproducible results and provide a clear labeled information about the
data flows.

At TUM’s chair for network architectures and services, researchers used
GPLMT to generate such datasets with different attack scenarios. To generate
such datasets, a virtualized testbed environment with virtual machines grouped
into attackers, victims and monitoring machines was used. These machines were
used to execute attacks as well as provide defense mechanisms and obtain the
generated network traffic. In addition, this testbed was used to evaluate the
quality of port scanners and port scan detection tools with the results being
collected and interpreted afterwards.

The main challenge was the grouping of the different entities, as well as
the complex interaction and nesting of tasks assigned to the entities. Timing
aspects as well as synchronization were crucial to this setting. The monitoring
and generation of test datasets during the experiment executions was an addi-
tional challenge to be mastered.

6.4 Distributed Internet Security Analysis

In [1], security researchers developed a distributed, PlanetLab-based approach
to conduct large-scale scans of today’s TLS deployment in the wild. They used
PlanetLab nodes to perform distributed scans of large IP ranges and analyzed
the TLS certificates found on hosts. To conduct these scans, GPLMT was used
to deploy the scanning tool used to the PlanetLab nodes, orchestrate the mea-
surements, and obtain results from the nodes.

A major challenge in this use case was long lasting scan experiments in
combination with the large number of parallel SSH connections established to
PlanetLab nodes. The organization’s intrusion detection system detected these
connections as a malicious attack and blocked the control node as the source of
these connections on the network as a consequence.

The main challenge was the large number of connections to the PlanetLab
nodes. First, those connections had to be throttled during the experiment. Apart
from this, the number of connections established had to be managed.
5 http://www.zabbix.com/.

http://www.zabbix.com/

GPLMT: A Lightweight Experimentation 175

7 Related Work

Various different tools exist to manage and control network experiments. A rather
extensive list can be found on the PlanetLab website6. [1] provides a compre-
hensive analysis with respect to quality and usability of such tools, finding most
of them not usable or suitable to be used with respect to today’s network exper-
iments. Many of these tools are outdated and not available anymore (Plush,
Nebula, Plman, AppManager) or were not even made publicly available at all
(PLACS). Some of these tools provide rather basic functionality to invoke com-
mands on remote nodes (pssh, pshell, vxargs) not supporting error conditions
and error handling as well as orchestrating nodes to perform complex and syn-
chronized operations. The Stork project7 provides a deployment tool for Planet-
Lab nodes including configuration. This tool lacks fine-grained execution control
to setup more complex experiments. Gush (GENI User Shell) [2] claims to be an
execution management framework for the GENI testbed. Gush provides exten-
sive methods to define resources but is limited regarding control flow aspects.
Parallel or sequential execution is not possible in a straight forward manner. In
addition, Gush is not longer supported8.

Experimentation frameworks like NEPI [3] require the user to do rather com-
plex adaptations in the source code to extend it with new functionalities and
add support for new platforms. Approaches like OMF [4] focus on the manage-
ment and operation of network testbed infrastructures and federation between
infrastructures not focusing on the experiment part in the life cycle.

The COCOMA framework [5] focuses on providing an experimentation frame-
work for cloud based services to control and execute tests for cloud based services
in a controlled and reproducible manner and to study resource consumption of
such services. [6] proposes an emulated testbed for the domain of cyber-physical
systems. This work focuses more on the testbed implementation and less on the
execution of experiments.

8 Future Work

For future versions, we plan to decouple the GPLMT controller from the experi-
menter’s host and instead run GPLMT as a service on a dedicated control node.
Users would then submit experiments to the experiment queue of a testbed,
which is managed by GPLMT. This would ease the use of shared testbeds. Future
versions of GPLMT may support target types other than SSH and PlanetLab,
for example mobile devices. An intuitive user interface would ease experiment
monitoring and control. This feature was provided based on Zabbix in an earlier
version of GPLMT but is not available at the moment due to a recent refactoring
of the code base.
6 https://www.planet-lab.org/tools.
7 http://www.cs.arizona.edu/stork/.
8 http://gush.cs.williams.edu/trac/gush.

https://www.planet-lab.org/tools
http://www.cs.arizona.edu/stork/
http://gush.cs.williams.edu/trac/gush

176 M. Wachs et al.

9 Conclusion

The focus of GPLMT is to provide a lightweight and convenient way for exper-
imenters to conduct network experiments and manage testbed environments.
Instead of using handcrafted onetime scripts for every experiment, we envision
GPLMT to be flexible tool usable for different scenarios and use cases. Using
a high-level description language GPLMT offers opportunities to share experi-
ment descriptions among researchers and supports closer collaborations between
experimenters. Moreover, GPLMT’s language was designed to support error han-
dling, nested execution flows and different timing aspects to provide a high level
flexibility and adaptability. GPLMT is still under active development and will
be extended in the future. With this work, we want to present GPLMT to the
community and make it available for a broad audience. GPLMT is free software
and can be obtained from the repository9. Both feedback as well as contributions
from the community are highly appreciated.

Acknowledgments. This work has been supported by the German Federal Ministry
of Education and Research (BMBF) under support code 16KIS0145, project SURF.
The authors would like to thank Matthias Jaros, Oliver Gasser for their helpful feed-
back, Omar Tarabai for his work on GPLMT and the integration with Zabbix.

References

1. Jaros, M.: Distribution and orchestration of network measurements on the planet-
lab testbed. Bachelor’s thesis, Technische Universität München, Chair for Network
Architectures and Services, April 2015

2. Albrecht, J., Huang, D.Y.: Managing distributed applications using gush. In:
Magedanz, T., Gavras, A., Thanh, N.H., Chase, J.S. (eds.) TridentCom 2010.
LNICST, vol. 46, pp. 401–411. Springer, Heidelberg (2011)

3. Quereilhac, A., Lacage, M., Freire, C., Turletti, T., Dabbous, W.: Nepi: an inte-
gration framework for network experimentation. In: 19th International Conference
on Software, Telecommunications and Computer Networks (SoftCOM), pp. 1–5,
September 2011

4. Rakotoarivelo, T., Ott, M., Jourjon, G., Seskar, I.: OMF: a control and manage-
ment framework for networking testbeds. ACM Oper. Syst. Rev. (OSR) 43, 54–59
(2010)

5. Ragusa, C., Robinson, P., Svorobej, S.: A framework for modeling and execu-
tion of infrastructure contention experiments. In: 2nd Internation Workshop on
Measurement-based Experimental Research, Methodology and Tools (2013)

6. Genge, B., Siaterlis, C., Fovino, I.N., Masera, M.: A cyber-physical experimenta-
tion environment for the security analysis of networked industrial control systems.
Comput. Electr. Eng. 38(5), 1146–1161 (2012). Special issue on Recent Advances
in Security and Privacy in Distributed Communications and Image processing

9 https://github.com/docmalloc/gplmt.

https://github.com/docmalloc/gplmt

Periscope: Unifying Looking Glass Querying

Vasileios Giotsas(B), Amogh Dhamdhere, and K.C. Claffy

CAIDA, UC San Diego, San Diego, USA
{vgiotsas,amogh,kc}@caida.org

Abstract. Looking glasses (LG) servers enhance our visibility into
Internet connectivity and performance by offering a set of distributed
vantage points that allow both data plane and control plane mea-
surements. However, the lack of input and output standardization and
limitations in querying frequency have hindered the development of auto-
mated measurement tools that would allow systematic use of LGs. In
this paper we introduce Periscope, a publicly-accessible overlay that uni-
fies LGs into a single platform and automates the discovery and use of
LG capabilities. The system architecture combines crowd-sourced and
cloud-hosted querying mechanisms to automate and scale the available
querying resources. Periscope can handle large bursts of requests, with
an intelligent controller coordinating multiple concurrent user queries
without violating the various LG querying rate limitations. As of Decem-
ber 2015 Periscope has automatically extracted 1,691 LG nodes in 297
Autonomous Systems. We show that Periscope significantly extends our
view of Internet topology obtained through RIPE Atlas and CAIDA’s
Ark, while the combination of traceroute and BGP measurements allows
more sophisticated measurement studies.

1 Introduction

Measurement and monitoring tools are essential to many Internet research
and engineering tasks, ranging from topology discovery to detection of secu-
rity threats and network anomalies. However, the development of such tools
is challenged by the decentralized nature of Internet infrastructure. For years,
researchers have attributed measurement artifacts to the limited coverage of
available measurement vantage points [14,17], which has motivated revision of
Internet measurement practices. Large-scale distributed measurement projects
either crowd-source the hosting of traceroute vantage points [1,7,27,28], or lever-
age cooperation from academic networks [25]. Network operators deploy their
own monitoring infrastructure, including Looking Glass (LG) servers, which
enable remote execution of non-privileged diagnostic tools, such as traceroute,
ping or BGP commands, through a web interface. Although the primary pur-
pose of LGs is operational, i.e., to debug connectivity and performance issues,
LGs have also expanded researchers’ cartographic and monitoring capabili-
ties [15,19,20,23,29,30].

LGs have two characteristics that benefit Internet research. First, LGs often
permit the execution of both traceroute and BGP queries, offering data and
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 177–189, 2016.
DOI: 10.1007/978-3-319-30505-9 14

178 V. Giotsas et al.

control plane views from the same location. Second, in contrast to crowd-sourced
traceroute monitors that are deployed at end-hosts (e.g. home clients), LGs are
typically deployed near or at core and border routers. Despite these advantages,
the use of LGs has been sporadic due to design features that limit their use
for scientific studies that require systematic and repeatable measurement. First,
LGs do not form a unified measurement network of homogeneous probes, such
as the RIPE Atlas or Ark infrastructures. Each LG is independently owned
and operated; there is no centralized index of available LGs, nor standardized
querying or output formats. Furthermore, LG command sets change over time,
there is attrition of LG infrastructure, and because LGs are generally intended
for low-frequency (manual) querying, operators often configure query rate limits
to mitigate the risk of DoS attacks against them (or using them).

In this paper we introduce Periscope, a platform that unifies the disparate
LG interfaces into a standardized publicly-accessible querying API that supports
on-demand measurements. The core of the Periscope architecture is a central
controller that coordinates queries from multiple users to prevent concurrent
requests to the same LG from violating rate limits configured by that LG. The
controller dispatches LG requests to crowd-sourced and cloud-hosted querying
instances, which scale as necessary to handle large bursts of queries. A parser
transforms the LG results into a set of standardized output formats (JSON
and iPlane), and aggregates them in a repository for future analysis. A daemon
checks periodically for changes in the HTML interfaces of the LGs, and auto-
matically extracts and updates the LG configurations. The Periscope API and
the repository of raw data are publicly accessible to authenticated users.1

This paper describes the Periscope architecture and how each Periscope
component tackles the challenges related to LG measurements. We compare
Periscope’s querying capabilities and coverage with those of two major mea-
surement platforms (RIPE Atlas and Ark). Finally, we demonstrate the utility
of having colocated BGP and traceroute vantage points with two case studies
involving the validation of IP-to-AS mapping, and the geolocation of border
router interfaces.

2 Architecture

We have four design goals to mitigate four key challenges related to using
deployed LGs for systematic measurement:

– There is no authoritative list of active LGs. Periscope must automatically
discover, extract and validate LG specifications from various sources.

– LGs are volatile, both in terms of availability and specification. Periscope
must detect changes and automatically update LG specifications.

– There is no input/output standardization across LGs, so Periscope must trans-
late query requests to the format supported by each individual LG and the
output of individual LGs to a user-friendly format.

1 A user requests access through email describing the intended use and we issue a
unique security token which he/she uses to sign measurement requests.

Periscope: Unifying Looking Glass Querying 179

Fig. 1. End-to-end workflow to discover
and extract looking glass specifications
from web sources.

Fig. 2. The Periscope architecture,
which sits on top of but does not itself
include the LGs.

– LGs are intended for low-frequency querying and will block clients that exceed
the configured querying rate limitations. Periscope should support multiple
concurrent users without violating any LG limits.

2.1 Workflow of Periscope System

Figure 1 describes the Periscope workflow for integrating LGs into its querying
system, which is repeated every month to update the list of supported LGs.
The starting point of Periscope’s workflow is the discovery of active LG servers,
using public web sources that publish LG URLs, including PeeringDB [5] and
traceroute.org. The system can easily integrate other listings of LG servers as
they become available. Since these sources are non-authoritative, the published
URLs may be stale or unresponsive. A Web Crawler visits each link and filters
out pages that respond with HTTP errors.

To determine whether the collected URLs correspond to LGs, we attempt
to automatically detect whether the HTML source contains web forms of LG
interfaces. The automatic detection utilizes the fact that most LG deployments
are based on open-source projects that determine the structure of the expected
queries, the output format and the corresponding web interfaces [16]. We have
processed seven popular open source projects [2,3,6,10–13] and created a tem-
plate for each implementation, which describes the HTTP elements and the

180 V. Giotsas et al.

Table 1. Template for the input parameters of the Version6 LG [12].

Input name Input type Expected values Meaning

query radio [bgp, trace, ping] [sh ip bgp, traceroute, ping]

addr text * Query target

router select * Router identifier

protocol select [IPv4,IPv6] IP version

HTML parameters that comprise the input and output interfaces. Table 1 shows
an example of such a template.

A Web Scraper extracts the <form> elements from the HTML code of active
LGs and compares the input fields with the corresponding fields of each tem-
plate to test for matches. A match occurs when each input field in the form
is described in the template. It is not necessary for the extracted HTML form
to have all input fields in the template, because some LGs may support only a
subset of commands. For example, the template of Table 1 has three parameters
that must be implemented (query, addr, router) and one optional parameter
(protocol version) which when omitted defaults to IPv4.

When a form matches an LG template, Periscope generates a JSON config-
uration file that describes the interface of the LG, including the request HTTP
method, the input parameters and their permissible values, the mapping of input
combinations to network commands and the HTML elements that enclose the
reply. The JSON configuration is used by the Query Parser to translate measure-
ment requests to the format supported by each LG. When a form does not match
with a template, the Web Scraper searches for LG-specific keywords (such as the
name of network commands), to determine if the form contains LG inputs. If such
keywords are found, we parse the form manually and update the LG templates as
necessary to enable the automatic processing of similar forms in the future.

The final step of the workflow is to test the correctness of the auto-generated
LG configurations. A Health Checker uses the Query Parser to issue measurement
requests and process the replies. If the output is empty or if an HTTP error code
is returned, the Health Checker will signal the error and mark that LG for manual
inspection. The Health Checker runs these tests periodically to detect changes
in LG templates, input parameters, or the response HTTP status.

2.2 Components of Periscope Architecture

Figure 2 illustrates how components of Periscope’s architecture inter-operate to
satisfy measurement requests. Periscope exposes a RESTful API that can be
used to query the available LGs, request new measurements, and retrieve results.
Every request is logged in the Repository which works as a broker between the
API and the rest of the Periscope components.

An LG Client receives measurement requests submitted to the Repository
and translates them to LG queries. The LG Client executes requests through

Periscope: Unifying Looking Glass Querying 181

Selenium [9], a web browser automation suite2 that interacts with the LGs
through a headless (without screen) browser according to the JSON configu-
ration file produced at the end of the Periscope workflow.

If LGs did not impose query rate limits, Periscope could transmit all mea-
surement requests directly to LGs from a single LG client. But most LGs bound
the number of requests a given client IP can submit during a given time interval.
For example, the Telephone LG [11] software logs the time and IP address of
queries in a database, and checks subsequent queries against the last query from
the same IP address; if it is less than a configured timeout (e.g., 1 min), the
LG drops the query. If Periscope had only a single LG Client (or multiple LG
Clients behind the same public IP address), concurrent Periscope users would be
limited to single-user querying frequencies. Although Periscope aims to prevent
query rate violations, we also want to avoid very limited querying frequencies
that would make Periscope impractical. For Periscope to scale to multiple users
while being faithful to the per-user LG query rate, the system runs multiple LG
client instances, using one IP address per end user.

Our first approach of assigning different public IPs to LG clients is by crowd-
sourcing their hosting as User Agents in end-user machines. As of December
2015 we had crowd-sourced 5 Periscope LG Clients. Because the Periscope
client is software-based, we can extend coverage using cloud-hosted Virtual
Machines (VMs), where each VM instance has a public IP address from the
cloud provider’s address space. Periscope uses two cloud platforms: Google Com-
pute Cloud (GCC) and Amazon Web Services (AWS). Each VM Instance hosts
a single LG Client. The elasticity of cloud resources allows Periscope to start
VM instances only when needed to satisfy request volume, and terminate them
when not in use. Periscope needs as many LG Clients as the maximum number
of users that concurrently query a single LG. Periscope first attempts to satisfy
the requests using the active crowd-sourced User Agents; if it needs more agents,
it launches VM instances.

A central Controller assigns measurement requests to LG Clients; it has a
global view of system resources and coordinates execution of LG queries so as to
stay within the LG query limits. The controller manages the number of cloud-
hosted instances, and every crowd-sourced instance sends a keep-alive message
every 5 min to inform the Controller that they can still accept measurements.
When Periscope receives a new measurement request, the Controller decides
when to dispatch it and which Client instance will execute it. The Controller’s
logic is based on two LG-specific variables that restrict the maximum number
of concurrent queries submitted to an LG3:

1. A timeout that expresses the minimum time interval between two consecutive
LG queries by the same user

2 Although most requests can be satisfied with simple HTTP requests, Selenium allows
easier handling of HTTP sessions and cookies.

3 We derived empirically conservative values for the timeout and number of slots for
each LG.

182 V. Giotsas et al.

Data: A set of measurement requests M for lg, and a set of active instances I
Result: Assignment of a client instance i ∈ I ′ ⊇ I for each m ∈ M

1 for m ∈ M do
/* Timestamp of next permitted user query */

2 m.ts ← lastQuery(m.user, lg) + lgTimeout(lg)
/* Queue measurements in asceding m.ts order */

3 mQueue.add(m)

4 end
5 while mQueue �= ∅ do
6 measurement = mQueue.pop()
7 slots ← totalSlots(lg) - activeSlots(lg)

/* Wait until the next measurement can be executed */

8 while (now() < measurement.ts) || (slots < 1) do
9 wait()

10 end
11 assignedInstance ← false
12 for i ∈ I do

/* Timestamp of next permitted instance query */

13 i.ts = lastQuery(i, lg) + lgTimeout(lg)
14 if i.ts > now() + lgTimeout(lg) then
15 assignedInstance ← i
16 break

17 end

18 end
19 if assignedInstance is false then
20 assignedInstance ← newCloudInstance()
21 end

22 end

Algorithm 1. The Controller’s algorithm to assign concurrent
measurement requests for an LG to the appropriate Client instances.

2. A number of query slots that indicate the maximum number of queries that
Periscope will accept for an LG at any given moment.

Essentially, the timeout expresses a user-specific limit while the query slots
impose a user-wide limit. If an LG has no available query slots it cannot be
queried even if a user has not queried this LG for a period longer than the
timeout. Algorithm 1 presents the Controller’s decision process. For each query
request the Controller calculates its execution time based on the timestamp of
the last query from the same user toward the same LG, and the timeout of the
LG (line 3). If the query does not conform to either of the two rate limits, it
is queued inside the Controller (line 9) until the timeout expires and if at least
one slot becomes available. When a query exits the queue, the Controller will
choose an eligible Client instance to execute it. An instance is eligible if it has
not executed a query to the same LG for a period longer than the timeout (line
15). If no active Client instance is eligible to execute the query, the Controller

Periscope: Unifying Looking Glass Querying 183

Fig. 3. Geographical distribution of LG VPs. Fig. 4. CDF of router-level
and city-level VPs per LG

will request a new cloud-hosted instance (line 21). The required number of active
Client instances will therefore depend only on the number of concurrent queries
to the same LG from different users, and not on the total number of active users
or queried LGs.

3 Analysis

3.1 Coverage and Capabilities

As of December 2015 Periscope has extracted LGs for 297 Autonomous Systems.
Periscope had automatically generated the configuration for 262 of these LGs;
35 LGs were not based on any of these initial templates and we parsed them
manually. The LG-to-ASN mapping is not always readily available. In these cases
we determined the IP address of the LG host and mapped it to an ASN using the
longest prefix matching method. To get the IP address of the router that hosts
each LG, we execute traceroutes against a machine under our control on which
we run tcpdump to capture the incoming traceroute packets and extract the
source address. We use the same technique to determine the traceroute protocol
used by each LG. We found that 266 LGs use UDP probes, and 31 LGs use ICMP
Echo Request probes. Whenever an LG supports both protocols, Periscope uses
ICMP traceroute.

Each LG may allow the execution of its commands from different vantage
points (VPs) inside the AS network, such as routers in different cities or routers
that have different purposes (e.g. peering versus transit routers). We apply the
same methodology we used for inferring the ASN of each LG, to geolocate an
LG to a city whenever the LG interface does not reveal this information. After
we determine the IP address of each vantage point, we map it to a city using
NetAcuity’s geolocation database [4]. Figure 3 shows the geographic distribution
of LG vantage points that Periscope automatically parsed: 1,691 VPs distributed
over 501 cities in 76 countries. As shown in Fig. 4, 40 % of the LGs have more than
one city-level vantage point and 20 % of the LGs have ten or more VPs. Figure 5
shows how many VPs support each LG command extracted by Periscope.

184 V. Giotsas et al.

Fig. 5. Number of LG vantage points
that support each command.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Fraction of traces with first hop in different ASN

Fig. 6. CDF of fraction of traces with
first hops (from LG VPs) that belong
to a different AS, these LGs are likely
deployed on border routers.

Over 75 % of the VPs offer both data and control plane measurements; 60 %
of the VPs support IPv6 commands in addition to IPv4. To determine which
of the LG VPs are located in border routers, we check whether the AS of the
first hop is different from the AS of the LG host. We examine the 416 VPs that
sourced at least 1000 traceroutes; of those, 222 had all traces going to an internal
next hop, and 194 LGs had at least one trace that went directly to an IXP hop
or a different ASN – these 194 are likely borders (Fig. 6).

3.2 Comparison of Topological Coverage from LGs and Atlas

To compare the topology visible from our set of LGs, Atlas, and Ark VPs,
we executed a traceroute campaign from each platform toward 2,000 targets in
October 2015. At the time of our measurements, Atlas had 7,292 public probes
in 2,779 different ASes across 160 countries, while Ark hadf 107 probes in 71
ASes across 41 countries.

To get an unbiased set of targets, we first collected the IP addresses found
in the iPlane dataset [25], and executed a ZMap scan to keep only IPs that
responded to both UDP and ICMP probes. We mapped IP addresses to their
owner AS, and for each AS we randomly selected one IP address until we had
a target set of 2,000 IP addresses each in a different AS, and spanning 151
countries [4]. This small sample is not necessarily representative of the global
Internet, but it is required due to the probing rate restrictions on LG and Atlas
infrastructure. We executed measurements from all Atlas probes, more than 6
million traceroutes in 2 months, using an account with elevated probing quota.
With the default rate limit, this probing would have taken five years [8].

We compared the number of ASes, AS links and IXPs (based on a list of
IXP prefixes extracted from PeeringDB [5]) observed in each dataset. Traces
from LG vantage points to the target destinations traversed 3109 ASes, 29525
AS links, and 167 IXPs. The traces from Atlas probes to the same targets tra-
versed 3369 ASes, 55936 AS links, and 171 IXPs, while traces from Ark traversed
1608 ASes, 10237 AS links, and 136 IXPs. Table 2 shows the number of ASes,

Periscope: Unifying Looking Glass Querying 185

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 10 100 1000 10000 100000

C
D

F

Customer Cone

Unique-LG
Unique-Atlas

Unique-Ark
Union

Fig. 7. CDF of the customer cones of
ASes observed in LG, Atlas and Ark
traces. The ASes uniquely observed
in each dataset have significantly dif-
ferent customer cone sizes.

Fig. 8. Fraction of mismatches between
traceroute and BGP paths, when longest
prefix matching is used to map tracer-
oute IP interfaces to ASes.

Table 2. Number of ASes, AS links and IXPs observed in LG, Atlas, and Ark traces.
Many AS nodes and links are uniquely observed in the LG dataset.

Dataset ASes AS Links IXPs

Observed Unique Observed Unique Observed Unique

LG 3109 809 29525 13969 167 16

Atlas 3369 1464 55936 40620 171 21

Ark 1608 59 10237 1625 136 8

All 4657 - 73348 - 202 -

AS links and IXPs per dataset, including those uniquely observed in each dataset.
Interestingly, close to half (47 %) of AS links seen in the LG traces (13,969 out of
29,525) did not appear in the Atlas or Ark traces, while 26 % (809 out of 3109)
of ASes observed in the LG traces were not in Atlas or Ark traces. Finally, 16
IXPs observed in the LG traces were not observed in Atlas or Ark traces.

We compared ASes in each dataset using the customer cone as a metric of AS
size. The customer cone is the number of ASes in the downstream path of a given
AS, namely the number of ASes that can be reached through a customer, and it
expresses the influence of an AS in the transit market [24]. Figure 7 shows the
distribution of the customer cone sizes of ASes uniquely visible in the LG, Atlas
and Ark datasets. ASes unique to each of the datasets significantly differ in cone
size. LGs tend to capture more peripheral and stub ASes, while Ark and Atlas
capture ASes with larger customer cones, due to the differences in the ASes that
host the VPs of each platform. LGs are typically hosted in large transit providers
that mainly access destination addresses through downstream paths. In contrast,
Atlas and Ark VPs tend to be in eyeball ASes that traverse upstream paths
to reach the same destinations. Comparison of topology visible from the LGs,

186 V. Giotsas et al.

Fig. 9. When BGP community strings annotate the entry point of a route, combining
them with traceroutes can enable city-level geolocation of IP interfaces.

Atlas VPs and Ark VPs reinforces our observation that the LG infrastructure
provides a complementary view of topology compared to that visible from the
existing Atlas and Ark infrastructures.

4 Case Studies

The ability to run BGP and traceroute measurements from the same LG VPs
enables sophisticated studies that may not be feasible without combining control-
plane and data-plane routing data.

4.1 Validation of IP-to-AS Mapping

Validation of IP-to-AS mapping techniques typically requires comparison of BGP
and traceroute paths obtained from VPs inside the same AS [26]. However, even
among the PoPs of one AS, intra-domain routing may induce different paths
to the same destination. Having traceroute and BGP VPs as closely located
as possible, minimizes this risk, and LGs often support both functions from
the same router. To investigate this potential, we used Periscope to study the
accuracy of IP-to-AS translation when using longest prefix match to map IP
interfaces to ASNs. We randomly selected 500 addresses from the experiments
in Sect. 3.1, and executed concurrent traceroute and show ip bgp measurements
from 10 geographically diverse LGs. We sanitized the collected BGP paths by
removing AS loops, private and reserved ASNs, and we discarded traceroute
paths with unresponsive or unresolved interfaces. We compared the sanitized
BGP and traceroute paths toward a given destination, ignoring IXP hops and
repeated AS hops. Most path mismatches derived from traceroute missed the
last AS-level hop that appears in the corresponding BGP path (Fig. 8), which
typically happens when a router interface in a customer AS has an address from
its provider’s IP range [22].

4.2 Geolocation of IP Interfaces of Border Routers

Network operators often use the optional BGP communities attribute to tag a
BGP route with the entry point where it was received by an external peer [18].
However, BGP communities provide only geographical location but not actual

Periscope: Unifying Looking Glass Querying 187

IP interfaces of the border routers. Combining BGP communities with tracer-
oute paths from the same VP allows us to associate the locations encoded in the
communities values to router interfaces, by identifying the interface that corre-
sponds to the border between two ASes (Fig. 9). We applied this technique for
the AS286 LG, by executing simultaneous BGP and traceroute queries toward
the same targets used in Sect. 4.1. We pinpointed 89 border interfaces, between
AS286 and 58 of its AS-level neighbours, in 18 different cities. All of our infer-
ences agreed with DNS-based geolocation [21], but only 66 of the interfaces had
a corresponding hostname. In contrast, only 38 % of the locations derived from
the communities agreed with the NetAcuity database. Through follow-up RTT
measurements we confirmed the errors in the NetAcuity database.

5 Discussion and Future Work

We presented Periscope, a system that provides a unified interface to thousands
of Looking Glass servers hosted by ISPs around the world. Periscope offers the
capability for users to query any LG server without having to interact with
individual LGs themselves, deal with timeouts and rate-limit issues, or develop
code to automate issuing queries and parse LG responses. We showed that the
topological view obtained from Periscope complements Atlas and Ark, serving
as a valuable addition to the set of measurement platforms. Periscope respects
the user-level limitations imposed by LGs, (a minimum time between successive
queries by the same user to a given LG, and a maximum number of concur-
rent queries on the LG), and does not allow users to query at a rate faster
than the LGs allow. Persicope distributes query instances, but measurements
are dispatched through the API and a central Controller, which enforce LG rate
limitations that cannot be overridden by querying instances. Preventing abuse
is important, not only ethically but also because overwhelming the LGs would
likely lead to their decommissioning from public use.

We plan to open Periscope for use by the research and operational community.
We expect that allowing users into the system will be a (somewhat) manual
process initially, mostly to prevent users from gaming the system by registering
multiple user accounts. Beyond that we believe that the system can scale to
many users, primarily because Periscope enforces the same per-user query quotas
that the LGs themselves impose. Consequently, as long as Periscope can employ
more LG clients than the typical number of query slots on a LG, the system can
service user requests at the same rate offered by the LG. CAIDA’s Archipelago [1]
infrastructure already provides 132 active VPs that could be employed as LG
clients. Cloud-hosted and crowdsourced LG clients can augment the set of clients,
and reduce the querying load on each client. We provide documentation on
how to obtain access and use the Periscope API at http://www.caida.org/tools/
utilities/looking-glass-api/.

Acknowledgements. The work was funded by the DHS Science and Technology
Directorate, Cyber Security Division (DHS S&T/CSD) BAA 11-02 and SPAWAR Sys-
tems Center Pacific via contract N66001-12-C-0130, and by Defence R&D Canada

http://www.caida.org/tools/utilities/looking-glass-api/
http://www.caida.org/tools/utilities/looking-glass-api/

188 V. Giotsas et al.

(DRDC) pursuant to an Agreement between the U.S. and Canadian governments for
Cooperation in Science and Technology for Critical Infrastructure Protection and Bor-
der Security. The work represents the position of the authors and not necessarily that
of DHS or DRDC.

References

1. CAIDA Archipelago (Ark). http://www.caida.org/projects/ark/
2. Kewlio Looking Glass. http://sourceforge.net/projects/klg/
3. Multi-Router Looking Glass. http://mrlg.op-sec.us/
4. Netacuity. http://www.digitalelement.com/solutions/
5. PeeringDB. http://www.peeringdb.com
6. RANCID Loooking Glass. http://www.shrubbery.net/rancid/
7. RIPE Atlas. https://atlas.ripe.net/
8. RIPE Atlas rate limits. https://atlas.ripe.net/docs/udm/#rate-limits
9. Selenium browser automation suite. http://www.seleniumhq.org/

10. Stripes Looking Glass. https://www.gw.com/sw/stripes/
11. Telephone Looking Glass. https://github.com/telephone/LookingGlass
12. Version6 Loooking Glass. https://github.com/Cougar/lg
13. Vyatta. https://github.com/MerijntjeTak/vyattaLookingGlass
14. Achlioptas, D., Clauset, A., Kempe, D., Moore, C.: On the bias of traceroute

sampling: or, power-law degree distributions in regular graphs. In: STOC (2005)
15. Augustin, B., Krishnamurthy, B., Willinger, W.: IXPs: mapped?. In: IMC 2009

(2009)
16. Bruno, L., Graziano, M., Balzarotti, D., Francillon, A.: Through the looking-glass,

and what eve found there. In: WOOT (2014)
17. Cohen, R., Raz, D.: The internet dark matter - on the missing links in the AS

connectivity map. In: IEEE INFOCOM 2006, April 2006
18. Donnet, B., Bonaventure, O.: On BGP communities. SIGCOMM Comput. Com-

mun. Rev. 38(2), 55–59 (2008)
19. Giotsas, V., Zhou, S., Luckie, M., Claffy, K.: Inferring multilateral peering. In:

CoNEXT 2013 (2013)
20. He, Y., Siganos, G., Faloutsos, M., Krishnamurthy, S.: Lord of the links: a frame-

work for discovering missing links in the internet topology. IEEE/ACM Trans.
Network. 17(2), 391–404 (2009)

21. Huffaker, B., Fomenkov, M., Claffy, K.: DRoP: DNS-based router positioning. SIG-
COMM Comput. Commun. Rev. 44(3), 5–13 (2014)

22. Huffaker, B., Dhamdhere, A., Fomenkov, M., Claffy, K.: Toward topology dual-
ism: improving the accuracy of AS annotations for routers. In: Krishnamurthy, A.,
Plattner, B. (eds.) PAM 2010. LNCS, vol. 6032, pp. 101–110. Springer, Heidelberg
(2010)

23. Khan, A., Kwon, T., Kim, H.c., Choi, Y.: AS-level topology collection through
looking glass servers. In: IMC 2013 (2013)

24. Luckie, M., Huffaker, B., Claffy, K., Dhamdhere, A., Giotsas, V.: AS relationships,
customer cones, and validation. In: ACM IMC 2013 (2013)

25. Madhyastha, H.V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy,
A., Venkataramani, A.: iPlane: an information plane for distributed services. In:
USENIX NSDI 2006 (2016)

26. Mao, Z.M., Rexford, J., Wang, J., Katz, R.H.: Towards an accurate AS-level tracer-
oute tool. In: ACM SIGCOMM 2003 (2003)

http://www.caida.org/projects/ark/
http://sourceforge.net/projects/klg/
http://mrlg.op-sec.us/
http://www.digitalelement.com/solutions/
http://www.peeringdb.com
http://www.shrubbery.net/rancid/
https://atlas.ripe.net/
https://atlas.ripe.net/docs/udm/#rate-limits
http://www.seleniumhq.org/
https://www.gw.com/sw/stripes/
https://github.com/telephone/LookingGlass
https://github.com/Cougar/lg
https://github.com/MerijntjeTak/vyattaLookingGlass

Periscope: Unifying Looking Glass Querying 189

27. Sánchez, M.A., Otto, J.S., Bischof, Z.S., Choffnes, D.R., Bustamante, F.E.,
Krishnamurthy, B., Willinger, W.: Dasu: pushing experiments to the internet’s
edge. In: USENIX NSDI 2013, April 2013

28. Shavitt, Y., Shir, E.: DIMES: let the internet measure itself. SIGCOMM Comput.
Commun. Rev. 35(5), 71–74 (2005)

29. Shi, X., Xiang, Y., Wang, Z., Yin, X., Wu, J.: Detecting prefix hijackings in the
internet with argus. In: IMC 2012 (2012)

30. Zhang, B., Liu, R., Massey, D., Zhang, L.: Collecting the internet AS-level topology.
ACM SIGCOMM CCR 35(1), 53–61 (2005)

Analyzing Locality of Mobile Messaging Traffic
using the MATAdOR Framework

Quirin Scheitle(B), Matthias Wachs, Johannes Zirngibl, and Georg Carle

Department of Informatics, Chair for Networking Services and Architectures,
Technical University of Munich (TUM), Munich, Germany

{scheitle,wachs,carle}@net.in.tum.de, zirngibl@in.tum.de

Abstract. Mobile messaging services have gained a large share in
global telecommunications. Unlike conventional services like phone calls,
text messages or email, they do not feature a standardized environ-
ment enabling a federated and potentially local service architecture. We
present an extensive and large-scale analysis of communication patterns
for four popular mobile messaging services between 28 countries and ana-
lyze the locality of communication and the resulting impact on user pri-
vacy. We show that server architectures for mobile messaging services are
highly centralized in single countries. This forces messages to drastically
deviate from a direct communication path, enabling hosting and trans-
fer countries to potentially intercept and censor traffic. To conduct this
work, we developed a measurement framework to analyze traffic of such
mobile messaging services. It allows to carry out automated experiments
with mobile messaging applications, is transparent to those applications
and does not require any modifications to the applications.

Keywords: Mobile messaging · Security · WhatsApp · WeChat ·
Threema · TextSecure

1 Introduction

Mobile messaging services like WeChat or WhatsApp see a steady increase in
both active users and messages sent, with a particular success in emerging mar-
kets like China, Brazil or Malaysia [18,30]. Some researchers predict a shift in
communication paradigms with mobile messaging services eradicating classical
forms of electronic communication like email or text messages. As an example,
the number of text messages sent in Germany shrunk by 62% from 2012 to 2014
[6], after it had been growing exponentially for over a decade.

Mobile messaging services and their design strongly differ from classic Inter-
net communication services: established means of communication—like email,
internet telephony or instant messaging—often rely on federated or decentral-
ized architectures, with operators providing services to their customers and from
within their domain.

Mobile messaging services tend to abandon established principles of openness
and federation: messaging services are often realized in a closed, non-federated,
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 190–202, 2016.
DOI: 10.1007/978-3-319-30505-9 15

Analyzing Locality of Mobile Messaging Traffic 191

cloud-centric environment built upon proprietary communication and security
protocols neither standardized nor disclosed to the public.

This paradigm shift puts at risk the user’s freedom and access to secure, con-
fidential and privacy-preserving communication. With such services, the user—
relating to her social network through such applications—strongly depends on
the service provider to not modify or restrict the service. The user’s privacy also
depends on the legislation the operating company is subject to: governments
are often interested in controlling Internet services [14,31] and accessing mes-
sages [9] as well as metadata. The matters of security and privacy move along the
same lines and generally involve a full trust into a closed system, a misleading
assumption as we saw with WhatApp’s announced end-to-end-encryption, which
is supported on Android, but not Apple devices [1], without giving feedback on
encryption status to the user. First attempts to analyze the security properties
of mobile messaging services have for example been made by the EFF with its
Secure Messaging Scorecard [4].

In this work, we analyze the implications of mobile messaging services on the
users and their privacy. Similar to the discussion about a “nation-centric Inter-
net” [32], we set out to understand the communication behavior and patterns
of mobile messaging service by analyzing how local messaging traffic is from a
geographic and legal point of view. We analyze how messaging traffic is routed
through the Internet and which countries could therefore access this traffic. We
compare this path with the direct communication path which could have been
taken between communication partners to quantify the impact of mobile mes-
saging services. For this analysis, we developed an analysis platform and testbed
for mobile applications, called MATAdOR (Mobile Application Traffic Analysis
plattfORm). We use MATAdOR to exchange messages between a large num-
ber of communication partners distributed over the world using different mobile
messaging applications and automatically extract information about the network
path the messages used.

Highlights of our results include: (a) Mobile messaging services largely dis-
tort traffic locality. (b) For Asian users (except Israel), Threema traffic is routed
through the U.S. and hence 5 Eyes accessible. (c) Even South American internal
traffic is routed through North America. (d) Europe-based users can reduce
5 Eyes access by routing messages through Threema’s Switzerland servers.
(e) Except WeChat, mobile messaging services showed globally uniform behavior.

2 Related Work

Several projects worked on analyzing the behavior and communication patterns
of mobile messaging services and the challenges arising when conducting auto-
mated experiments with mobile devices and applications.

Fiadino et al. [7] investigated characteristics of WhatsApp communication
based on a set of mobile network trace data from February 2014. In this set, they
identified every DNS request to WhatsApp and resolved them in a distributed
way through the RIPE Atlas service. They found the corresponding address to

192 Q. Scheitle et al.

be exclusively located in the U.S. and focussed further on Quality of Experience
analysis. Huang et al. [10] did similar work on WeChat, using network traces as
well as controlled experiments. For the latter, they connected phones through
WLAN, but relied on heavy manual work for message sending and traffic analy-
sis. They do not mention a capability to proxy traffic out through remote nodes.
On the collected data, they heavily focus on dissecting the protocol and archi-
tecture. Mueller et al. [16] researched security for a wide set of mobile messaging
services and found many weaknesses, e.g. on the authentication bootstrapping
process. They used a testbed similar to MATAdOR, but had to explicitly con-
figure the mobile device’s proxy settings. Frosch et al. [8] provided a detailed
protocol analysis for TextSecure based on its source code. The life cycle of net-
work experiments, automated experimentation and testbed management is in
the focus of several related projects. The OpenLab Project1 focuses on improv-
ing network experimentation for future distributed and federated testbeds and
to provide tools to researchers. Various tools for supporting testbed setup and
experimentation exist [19], but many are outdated or unavailable. None of these
tools support experimentation with mobile devices or geographic diversion of
network traffic.

[33] provides an extensive list of commercial platforms aiming to integrate
functional mobile application testing in the software development cycle. Many
platforms support the use of real devices and some even provide testing over
mobile carrier networks to ensure functionality. Many solutions are only provided
as a paid service.

3 Analyzing Communication of Mobile Messaging
Applications

In order to analyze the impact of mobile messaging services on traffic locality,
our approach is to compare the network path, defined as direct network path
between communication partners obtained with forward path measurements,
and the application path, defined as the forward path measurements from both
partners to the mobile messaging service’s backend infrastructure.

We use the MATAdOR testbed to send a large number of messages using dif-
ferent mobile messaging services between communication partners distributed all
over the globe. To do so, we use MATAdOR equipped with two mobile devices
and the mobile messaging application under test. MATAdOR tunnels the appli-
cation traffic to PlanetLab nodes as depicted in Fig. 1. We intercept the applica-
tions’ communication and extract the communication endpoints. Based on this
information, we conduct forward path measurements to the mobile messaging
service’s backend servers to obtain the application path and between the nodes
to obtain the network path.

We map the hops in both application path and network path to countries
and analyze which jurisdictions and political frameworks the traffic traverses on

1 http://www.ict-openlab.eu

http://www.ict-openlab.eu

Analyzing Locality of Mobile Messaging Traffic 193

its way between communication partners. As a result, we can give a qualified
analysis how much the application path and the network path differ and if traffic
is confined to a geographic region when both partners are located in this region.

3.1 Experimental Setup

The experimental setup of MATAdOR consists of a dedicated controller node,
two WLAN routers, two Android mobile phones and the PlanetLab proxy nodes
as depicted in Fig. 1. The controller node orchestrates the overall experimenta-
tion process, configures the WLAN routers, configures the Android devices and
instruments them to send messages. Device instrumentation is realized using
the Android Debug Bridge to configure network connections, start applications,
and issue input events to the devices to automate message sending. The routers
spawn two wireless networks and establish tunnels to the respective PlanetLab
nodes. The router’s task is to route, intercept and modify traffic as well as to
automatically parse network traces and start path measurements to targets. To
leverage PlanetLab for this experiment, we use a tool currently under develop-
ment at our chair. This tool is able to transparently proxy traffic over PlanetLab
nodes. It is currently in beta status and pending public release.

Proxy
Node

Proxy
Node

Controller

Router Router

Tunnel Tunnel

USB USBWLAN WLAN

Fig. 1. Overall experiment design.

Phone 1 Phone 2

0s 0s
send message 1

5s 5s
send message 2

10s 10s
send message 3

15s 15s
send message 4

end of experiment
30-620s 30-620s

Fig. 2. Overview of messaging timers

Mobile Phone Configuration. To run the mobile messaging applications, we
use two off-the-shelf, rooted Motorola Moto-E (2nd generation) smartphones
running vanilla Android 5.0.2. For each device we created an individual Google
Play account. To allow control through the Android Debug Bridge (ADB),
devices are connected to the controller using USB. We use XPrivacy2 to set
the phone’s location information according to the location of the specific Plan-
etLab node and iptables to restrict network communication to the specific
mobile messaging application (based on its UID) under test. To prevent geoloca-
tion based on mobile network information, the phones were set to airplane mode
with only WLAN enabled.

Router Configuration. Two GNU/Linux PCs, configured to act as WLAN
access points, provide two dedicated WPA2-protected wireless networks, one to
2 http://repo.xposed.info/module/biz.bokhorst.xprivacy

http://repo.xposed.info/module/biz.bokhorst.xprivacy

194 Q. Scheitle et al.

each mobile phone. Through DHCP, they provide a RFC 1918 private address
and the PlanetLab node’s DNS server to the phones. The routers use tcpdump
to intercept traffic and scapy to automatically process network traces.

Measurement Orchestration. The measurements to conduct are defined as
experiments. Within each experiment MATAdOR executes the respective set of
commands. This involves setting up remote tunnels to two PlanetLab nodes, con-
figuring the network settings on the routers according to the experiment, starting
interception and manipulation software on the routers, configure the phone to
use the wireless network, setting XPrivacy and firewall settings on the phone,
capturing the phone’s screen for later inspection, stepping through the exper-
iment on the phones with ADB automation, parsing the network trace data
automatically, and executing path measurements to all IP addresses found in
the network trace.

Experiment Parametrization. To permit experimentation with different
applications, all required experimental parameters are controlled through
application-specific configuration files. This includes timers between the different
steps of the experiment, blacklists of hosts not to include in path measurements
(e.g. NTP or DNS servers), the text to send in the messages and how many mes-
sages to send with the application. Such messaging timers, depicted in Fig. 2,
are controlled through these configuration files.

Experiment Monitoring and Error Handling. While running experiments,
we have learned that using unaltered applications on physical devices in this
complex setup is prone to errors. We therefore split the overall experiment into
smaller junks to be able to reproduce missing or failing measurements. To be
able to detect and analyze failures, the screen of the mobile devices is captured
for each measurement.

Benefits Using the MATAdOR Testbed. Our approach minimizes effort
and cost using common available off-the-shelf hardware. Since MATAdOR does
not rely on device or run time emulation, simulated network connections,
adapted applications, or the devices being otherwise modified in an unusual way
(e.g. setting an application or device proxy), the testbed environment is trans-
parent to both the phone and apps and looks like a “normal” wireless network.
All steps within the experiment life cycle have been automated. This provides
the possibility to efficiently scale the number of applications and experiments.
MATAdOR provides functionality to easily and automatically intercept all net-
work traffic. It can also transparently redirect network traffic through hosts at
remote locations, appearing to outsiders and the application itself as if the phone
was located at that place. When proxying the phone’s traffic through a remote
location, the phone’s location services are manipulated accordingly.

3.2 Methodology

The goal of our experiment is to collect information about the path that messages
take on the Internet when two communication partners communicate with each

Analyzing Locality of Mobile Messaging Traffic 195

other using a mobile messaging application. In addition, we want to learn about
the regions and countries a message traverses on its way. To do so, we have
to analyze the network path between both communication partners and the
messaging service infrastructure.

In our experiment, we use a set of four carefully selected mobile messaging
services and use their respective applications to exchange messages between the
two mobile phones in our testbed. In a single measurement, we use one spe-
cific mobile messaging application, connect to the mobile messaging service on
both phones and exchange messages between both devices. By doing so, we can
extract the communication endpoints for the mobile messaging service from the
network traffic. We can then perform path measurements to these communi-
cation endpoints from both mobile phones to obtain the network path to the
service provider infrastructure. To get a global view on communication, we tun-
nel traffic through 28 PlanetLab nodes. This way, we can learn the path messages
take for example for a WhatsApp user in Australia communicating with a user
in North America. In addition, we conduct direct path measurements between
both respective PlanetLab nodes to obtain the direct network path.

For the path measurements, we use the standard traceroute tool provided
with GNU/Linux. From the network traces, we extract the protocol (i.e. TCP or
UDP) and port number (e.g. 443) the mobile messaging service uses and apply
these settings to measure the network path to the mobile messaging service
infrastructure. To obtain the path between nodes, we use traceroute with TCP
and a random high port.

Selection of Applications. For this work, we carefully selected four different
mobile messaging services based on different characteristics depicted in Table 1.

Based on their popularity, we picked WhatsApp and WeChat as the two
mobile messaging services built for mobile chat. Due to its high rank in the EFF
Scorecard with respect to security and privacy and being free software with its
source code open to the public, we picked TextSecure as a third application for
this experiment. We chose Threema for its promise of servers based in Switzer-
land and claim of strong privacy for the users. In addition, Threema is one of
the few Europe-based providers. Since all of the previous solutions rely on a cen-
tralized client/server architecture, we select Bleep as a fifth candidate due to its
decentralized peer-to-peer architecture. However, we could not enforce peer-to-
peer behavior in our testbed and observed minute-long delays between messages.
We concluded that peer-to-peer architectures require closer investigation includ-
ing the use of NAT traversal techniques in our framework. For this reason, we
excluded Bleep from the set of applications. We did not further pursue Firechat
as it advertises peer-to-peer behavior only for local mesh networks.

Node Selection. To achieve a global view on messaging communication, we
compiled a list of PlanetLab nodes providing a wide geographical distribution.
The objective for this list was to cover as many regions and countries as possible.
However, PlanetLab does not provide equal coverage in all regions and availabil-
ity of nodes strongly differs across regions. When we conducted our experiment,
PlanetLab featured nodes in 49 countries, but we only found 28 countries with at

196 Q. Scheitle et al.

Table 1. Properties of mobile messaging services and applications.

least one stable and responsive node, providing good coverage for North America,
Europe, Asia and Oceania. For South America only a single node in Argentina
and Brazil was provided, for Africa no nodes could be accessed at all.

For our experiment, we therefore used 4 nodes in the Americas (North
America: 2, South America: 2), 7 nodes in Asia (Eastern Asia: 4, South-Eastern
Asia: 2, Western Asia: 1), 16 nodes in Europe (Eastern Europe: 3, Northern
Europe: 5, Southern Europe: 4, Western Europe: 4) and 2 nodes in Oceania.

Limitations. It is important to note that our path measurements only record
a country as being part of a path if a hop from that country replies to path
measurements. This can be biased by (a) nodes not answering those requests
and (b) countries being passively traversed. Especially the latter is relevant,
as intelligence services are known to also wiretap passively. For example, some
measurements from Switzerland offer direct paths to Hong Kong or the U.S.,
but obviously more countries in between would have passive access to the cables
in-between.

4 Postprocessing Experiment Results

Despite limiting application communication, the resulting network traces
included some irrelevant flows. For this experiment, we solely want to evalu-
ate traffic between the mobile messaging application and the mobile messaging

Analyzing Locality of Mobile Messaging Traffic 197

service’s backend. Therefore we had to classify network flows and assemble a
black- and whitelist of network flows for exclusion or inclusion. Here, we went
through several steps:

First, we limited background traffic by firewalling communication to only
allow the specific mobile messaging application under test to access the network.
Second, we conducted six measurements from America, Europe and Asia with-
out the mobile messaging application running. This resulted in network traces
containing “background noise” we could exclude after manual validation. Third,
we manually inspected several dozens of traces per mobile messaging applica-
tion to determine additional background traffic. The sources for this traffic were
manually added to the filtering blacklist. Fourth, we separated authentication
and other background traffic for every application from messaging traffic through
temporal correlation with message timers.

For Threema, TextSecure and WhatsApp, we found all messaging servers to
be resolved through DNS and to resolve uniformly across the globe, confirming
the results of [7] for WhatsApp. We found WeChat to use both DNS requests
and a custom-built DNS-over-HTTP protocol for name resolution, providing
different name resolution when queried from within or from outside China. This
DNS-over-HTTP uses a 30 min timeout and therefore “contaminates” our name
resolution cache, which we flush after every experiment, typically lasting five
to ten minutes. We therefore built the whitelist for WeChat analysis through
manual analysis. The resulting detailed DNS table can be found online3.

In a last step we automatically processed all traces and classified all addresses
into this black- or whitelist. We manually classified all remaining addresses.

4.1 Mapping Path Measurements to Countries and Regions

To obtain the countries the traffic traverses, both the application path and the
network path were processed to provide a geolocation of the IP addresses. With
some manual corrections, we found the ip2location4 country database to provide
the most accurate results. To not overly rely on that database, we manually
validated the mappings in at least one trace per target subnet and source country.
With respect to known inaccuracies of both reverse DNS labels and geolocation
databases, as described in [11,34], we paid special attention to round-trip times
found in forward path measurements.

To analyze locality with respect to a specific geographic region, we used the
United Nations geoscheme5 to assign countries to regions and subregions. This
scheme relies on 5 regions (Africa, Americas, Asia, Europe, Oceania) which are
further divided into geographic subregions (e.g. for the Americas: Latin America
and the Caribbean, Central America, South America, and Northern America).

3 http://www.net.in.tum.de/pub/mobmes/dnstable.pdf
4 http://www.ip2location.com
5 http://millenniumindicators.un.org/unsd/methods/m49/m49regin.htm

http://www.net.in.tum.de/pub/mobmes/dnstable.pdf
http://www.ip2location.com
http://millenniumindicators.un.org/unsd/methods/m49/m49regin.htm

198 Q. Scheitle et al.

4.2 Mapping Countries to Interest Groups

In addition to geographic locality, we analyzed the possibility of several juris-
dictions and similar entities to access the network traffic. In this analysis, we
defined several interest groups and checked for the different mobile messaging
services if these interest groups can access the traffic. For this analysis we defined
the following interest groups:

– 5 Eyes consisting of: Great Britain, United States, New Zealand, Canada
– European Union consisting of: Austria, Belgium, Bulgaria, Croatia, Cyprus,

Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece,
Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Nether-
lands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, United
Kingdom

– Arab League consisting of: Algeria, Bahrain, Comoros, Djibouti, Egypt, Iraq,
Jordan, Kuwait, Lebanon, Libya, Mauritania, Morocco, Oman, Palestine,
Qatar, Saudi Arabia, Somalia, Sudan

– Russia with the only member Russia
– China with the only member China.

5 Results

With our experiments, running from Sep 30 2015 to Oct 12 2015, we conducted
406 measurements between the 28 PlanetLab nodes using the 4 selected mobile
messaging services, resulting in 1624 measurements in total.

Table 2 shows the path comparisons between application path and network
path. The first columns evaluate the direct measurements between nodes and
show how many % of measurements failed to stay within the region. We found
that all traffic from Israel to other Asian countries is being routed through
Europe and the U.S. As we use seven nodes in Asia, six measurements from
Israel fail to remain within region. Also, with two nodes in South America, the
measurement between those two nodes leaves South America for routing through
North America. As the two in-country measurements stay in the region, the 33 %
understate the effect, caused by the low number of nodes. As a result we highlight
that only Europe and North America feature at least one messenger that keeps
traffic local. Asia traffic for WeChat does not remain local because of Israel’s
aforementioned routing and also because of traffic from Singapore and Thailand
being routed to the Chinese WeChat servers through U.S. IXPs.

Table 3 shows how measurements from a specific region were subject to var-
ious interest groups, both for the network path and for the specific application
path:

Europe to Europe: 72 % of network path measurements within Europe were
accessible to 5 Eyes (by routing through UK). 98 % of measurements were acces-
sible to the European Union, with only measurements internal to Switzerland
and Norway not being accessible. For application paths, Threema reduces the 5

Analyzing Locality of Mobile Messaging Traffic 199

Table 2. Mobile messaging services in almost all cases direct traffic out of region.

Eyes access by 16 % as it effectively proxies traffic through Switzerland, which
enforces continental routing for some routes (e.g. Poland - Switzerland - Spain
as compared to Poland - UK - Spain). 99 % of WeChat measurements within
Europe were accessible to 5 Eyes because of routing through the U.S. Only
the Switzerland internal measurement offered a direct path to Hong Kong. As
Switzerland has a direct path to the U.S. as well, this also explains the one case
where EU can not access TextSecure messages. When using Threema within

Table 3. Mobile messaging services in most cases increase traffic accessibility for inter-
est groups.

200 Q. Scheitle et al.

Switzerland, the application path remains in Switzerland as well, hence the EU
cannot access those measurements.

Oceania to Oceania: As Australia and New Zealand are both members of 5
Eyes, obviously all measurements are accessible to the latter. It is remarkable
that all WeChat traffic, e.g. generated by exile Chinese, is routed through China.

Asia to Asia: At a network level, both 5 Eyes, China and the European Union
can access about 20 % to 40 % of traces sent within Asia. This is largely caused by
the before mentioned Israel routing. 75 % of Threema traffic is 5 Eyes accessible
by routing to Switzerland through the U.S. Also, a large portion of WeChat
traffic (46 %) is accessible to 5 Eyes, both by Israel routing through the U.S. and
by Singapore routing to WeChat’s Chinese backend through an U.S. IXP.

North America to North America: As expected, 100 % of traffic is 5 Eyes
accessible. For Threema, traffic from Canada to Switzerland was again routed
through a direct hop from Miami to Zurich, resulting in two measurements seem-
ing inaccessible to EU.

South America to South America: Measurements from Argentina were
routed through a direct tunnel from Miami to Zurich and hence were not acces-
sible for the EU in our metric. Hence only 2 out of 3 Threema measurements
from South America are accessible for the EU. However, South America’s com-
munication is, independently of the mobile messaging service being used, always
susceptible to 5 Eyes.

Russia and Arab League: None of the measurements did traverse Russia or
the Arab League. We hence excluded those from the table.

6 Summary and Conclusion

We conducted traffic locality measurements between 28 countries for four mobile
messaging services. We found those apps to heavily distort locality of traffic and
hence drastically widen the set of actors able to access it. With a few notable
exceptions, e.g. when using Threema in Switzerland, this has large negative
impact on the users’ privacy. This could be alleviated by decentralizing the
mobile messaging services’ backend infrastructures or even the services them-
selves, using P2P techniques. With this being the first study on this particular
topic, we hope to raise user and operator awareness for this problem. To con-
duct our measurements, we introduced the MATAdOR framework to analyze
messaging traffic characteristics on mobile phones. A detailed overview over the
MATAdOR framework can be found in [35]. We fully release both the MATAdOR
framework and the dataset produced in our measurements through our website6.
This enables future work to easily validate our results or do further analysis, such
as deeper protocol analysis on the apps. Future work might also include analysis
of WeChat’s regional optimization within China, focus on peer-to-peer services

6 http://net.in.tum.de/pub/mobmes/

http://net.in.tum.de/pub/mobmes/

Analyzing Locality of Mobile Messaging Traffic 201

like Bleep, or further dissect protocols of mobile messaging services. To improve
quality of path measurement results, future work could use additional techniques
such as fiber maps [3].

Acknowledgments. We thank Andreas Loibl for early access to his Measurement
Proxy software.

References

1. Brandom, R.: WhatsApp rolls out end-to-end encryption using TextSecure code
(2014). https://www.theverge.com/2014/11/18/7239221/whatsapp-rolls-out-end-
to-end-encryption-with-textsecure. Accessed 14 September 2015

2. Kakao, D.: 2Q15 earnings report, August 2015. http://www.kakaocorp.com/
upload resources/ir/siljeok/siljeok 20150813080737.pdf. Accessed 23 September
2015

3. Durairajan, R., Barford, P., Sommers, J., Willinger, W.: InterTubes: a study of
the US long-haul fiber-optic infrastructure. In: SIGCOMM 2015 (2015)

4. Electronic Frontier Foundation. Secure Messaging Scorecard (2014). https://www.
eff.org/secure-messaging-scorecard. Accessed 14 September 2015

5. Facebook. Messenger at f8, March 2015. http://newsroom.fb.com/news/2015/03/
messenger-at-f8/. Accessed 17 September 2015

6. Federal Network Agency for Electricity, Gas, Telecommunications Post and Rail-
way. Annual report 2014, p. 81 (2014)

7. Fiadino, P., Schiavone, M., Casas, P.: Vivisecting WhatsApp in cellular net-
works: servers, flows, and quality of experience. In: Steiner, M., Barlet-Ros, P.,
Bonaventure, O. (eds.) TMA 2015. LNCS, vol. 9053, pp. 49–63. Springer,
Heidelberg (2015)

8. Frosch, T., Mainka, C., et al.: How Secure is TextSecure? Technical report (2014)
9. Golson, J.: Apple fighting the US government over encrypted iMessages (2015).

http://www.techrepublic.com/article/apple-fighting-the-us-government-on-
turning-over-encrypted-imessages/. Accessed 14 September 2015

10. Huang, Q., Lee, P.P., et al.: Fine-grained dissection of WeChat in cellular networks.
IWQoS (2015)

11. Huffaker, B., Fomenkov, M., Claffy, K.: DRoP: DNS-based router positioning.
ACM SIGCOMM CCR 44(3), 5–13 (2014)

12. Koum, J.: Whatsapp - now serving 900,000,000 monthly active users, September
2015. https://www.facebook.com/jan.koum/posts/10153580960970011. Accessed
23 September 2015

13. Line Corporation. LINE Corporation Announces 2015Q2 Earnings, July 2015.
http://linecorp.com/en/pr/news/en/2015/1043. Accessed 17 September 2015

14. Marlinspike, M.: A Saudi Arabia telecom’s surveillance pitch (2013). http://www.
thoughtcrime.org/blog/saudi-surveillance/. Accessed 14 September 2015

15. McMurchy, L.: Skype connection hub ads provide increased scale for mar-
keters, December 2014. http://advertising.microsoft.com/en/blog/29331/
skype-connection-hub-ads-provide-increased-scale-for-marketers. Accessed 17
September 2015

16. Mueller, R., Schrittwieser, S., et al.: What’s new with WhatsApp & Co.? Revisiting
the security of smartphone messaging applications. In: iiWAS (2014)

https://www.theverge.com/2014/11/18/7239221/whatsapp-rolls-out-end-to-end-encryption-with-textsecure
https://www.theverge.com/2014/11/18/7239221/whatsapp-rolls-out-end-to-end-encryption-with-textsecure
http://www.kakaocorp.com/upload_resources/ir/siljeok/siljeok_20150813080737.pdf
http://www.kakaocorp.com/upload_resources/ir/siljeok/siljeok_20150813080737.pdf
https://www.eff.org/secure-messaging-scorecard
https://www.eff.org/secure-messaging-scorecard
http://newsroom.fb.com/news/2015/03/messenger-at-f8/
http://newsroom.fb.com/news/2015/03/messenger-at-f8/
http://www.techrepublic.com/article/apple-fighting-the-us-government-on-turning-over-encrypted-imessages/
http://www.techrepublic.com/article/apple-fighting-the-us-government-on-turning-over-encrypted-imessages/
https://www.facebook.com/jan.koum/posts/10153580960970011
http://linecorp.com/en/pr/news/en/2015/1043
http://www.thoughtcrime.org/blog/saudi-surveillance/
http://www.thoughtcrime.org/blog/saudi-surveillance/
http://advertising.microsoft.com/en/blog/29331/skype-connection-hub-ads-provide-increased-scale-for-marketers
http://advertising.microsoft.com/en/blog/29331/skype-connection-hub-ads-provide-increased-scale-for-marketers

202 Q. Scheitle et al.

17. Open Whisper Systems. Textsecure, now with 10 million more users,
December 2013. https://whispersystems.org/blog/cyanogen-integration/.
Accessed 23 September 2015

18. Pew Research Center. Mobile messaging and social media 2015 (2015). http://
www.pewinternet.org/files/2015/08/Social-Media-Update-2015-FINAL2.pdf.
Accessed 14 September 2015

19. PlanetLab Central. User tools. https://www.planet-lab.org/tools. Accessed 17
September 2015

20. Reader, R.: Wickr CEO Nico Sell: behind the glasses, January 2015. http://
venturebeat.com/2015/01/13/wickr-ceo-nico-sell-behind-the-glasses/. Accessed
23 September 2015

21. Statista. Number of monthly active viber users, April 2015. http://www.statista.
com/statistics/316423/. Accessed 23 September 2015

22. Statista. We are social. (n.d.). most popular global mobile messenger apps as of
August 2015. http://www.statista.com/statistics/258749/. Accessed 23 September
2015

23. Statista. Number of monthly active WhatsApp users worldwide. http://www.
statista.com/statistics/260819/number-of-monthly-active-whatsapp-users/.
Accessed 23 September 2015

24. Tango. 200 million members!, March 2014. http://www.tango.me/blog/
200-million-members. Accessed 17 September 2015

25. TechCrunch. Chat app kik hits 200m registered users, January 2015. http://
techcrunch.com/2015/01/28/dont-expect-kik-maus/. Accessed 23 September 2015

26. Tencent. 2015Q2 results, August 2015. http://www.tencent.com/en-us/content/
ir/news/2015/attachments/20150812.pdf. Accessed 23 September 2015

27. The European Commission. Case No COMP/M.7217 - FACEBOOK/ WHAT-
SAPP (2014). http://ec.europa.eu/competition/mergers/cases/decisions/m7217
20141003 20310 3962132 EN.pdf

28. The Telegram Team. Telegram reaches 1 billion daily messages, December 2014.
https://telegram.org/blog/billion. Accessed 17 September 2015

29. Threema. If you value security and privacy, September 2014. https://threema.ch/
press-files/1 press info/Press-Info Threema EN.pdf. Accessed 17 September 2015

30. TNS Global. The new social frontier: Instant messaging usage jumpps 12% (2015).
http://www.tnsglobal.com/press-release/new-social-frontier-instant-messaging-
usage-jumps. Accessed 7 October 2015

31. Vodafone. Law enforcement disclosure report 2015 (2015). https://www.vodafone.
com/content/index/about/sustainability/law enforcement.html. Accessed 14
September 2015

32. Wählisch, M., Schmidt, T.C., de Brün, M., Häberlen, T.: Exposing a nation-centric
view on the German internet – A change in perspective on AS-level. In: Taft, N.,
Ricciato, F. (eds.) PAM 2012. LNCS, vol. 7192, pp. 200–210. Springer, Heidelberg
(2012)

33. Wikipedia. Mobile application testing (2015). https://en.wikipedia.org/wiki/
Mobile application testing#Some Mobile Application Testing Tools. Accessed 17
September 2015

34. Zhang, M., Ruan, Y., Pai, V.S., Rexford, J.: How DNS Misnaming Distorts Internet
Topology Mapping. In: USENIX (2006)

35. Zirngibl, J.: Security Analysis of Mobile Messaging Traffic with an Automated Test
Framework. Bachelor’s thesis, Technische Universität München (2015)

https://whispersystems.org/blog/cyanogen-integration/
http://www.pewinternet.org/files/2015/08/Social-Media-Update-2015-FINAL2.pdf
http://www.pewinternet.org/files/2015/08/Social-Media-Update-2015-FINAL2.pdf
https://www.planet-lab.org/tools
http://venturebeat.com/2015/01/13/wickr-ceo-nico-sell-behind-the-glasses/
http://venturebeat.com/2015/01/13/wickr-ceo-nico-sell-behind-the-glasses/
http://www.statista.com/statistics/316423/
http://www.statista.com/statistics/316423/
http://www.statista.com/statistics/258749/
http://www.statista.com/statistics/260819/number-of-monthly-active-whatsapp-users/
http://www.statista.com/statistics/260819/number-of-monthly-active-whatsapp-users/
http://www.tango.me/blog/200-million-members
http://www.tango.me/blog/200-million-members
http://techcrunch.com/2015/01/28/dont-expect-kik-maus/
http://techcrunch.com/2015/01/28/dont-expect-kik-maus/
http://www.tencent.com/en-us/content/ir/news/2015/attachments/20150812.pdf
http://www.tencent.com/en-us/content/ir/news/2015/attachments/20150812.pdf
http://ec.europa.eu/competition/mergers/cases/decisions/m7217_20141003_20310_3962132_EN.pdf
http://ec.europa.eu/competition/mergers/cases/decisions/m7217_20141003_20310_3962132_EN.pdf
https://telegram.org/blog/billion
https://threema.ch/press-files/1_press_info/Press-Info_Threema_EN.pdf
https://threema.ch/press-files/1_press_info/Press-Info_Threema_EN.pdf
http://www.tnsglobal.com/press-release/new-social-frontier-instant-messaging-usage-jumps
http://www.tnsglobal.com/press-release/new-social-frontier-instant-messaging-usage-jumps
https://www.vodafone.com/content/index/about/sustainability/law_enforcement.html
https://www.vodafone.com/content/index/about/sustainability/law_enforcement.html
https://en.wikipedia.org/wiki/Mobile_application_testing#Some_Mobile_Application_Testing_Tools
https://en.wikipedia.org/wiki/Mobile_application_testing#Some_Mobile_Application_Testing_Tools

Web

Scout: A Point of Presence Recommendation
System Using Real User Monitoring Data

Yang Yang(B), Liang Zhang, Ritesh Maheshwari, Zaid Ali Kahn,
Deepak Agarwal, and Sanjay Dubey

LinkedIn, 2029 Stierlin Court, Mountain View, CA 94043, USA
{yyang,lizhang,rmaheshw,zali,dagarwal,sdubey}@linkedin.com

Abstract. This paper describes, Scout, a statistical modeling driven
approach to automatically recommend new Point of Presence (PoP) cen-
ters for web sites. PoPs help reduce a website’s page download time
dramatically. However, where to build the new PoP centers given the
current assets of existing ones is a problem that has rarely been studied
in a quantitative and principled way before; it was mainly done through
empirical studies or through applying industry experience and intuitions.
In this paper, we propose a novel approach that estimates the impact of
the PoP centers by building a statistical model using the real user mon-
itoring data collected by the web sites and recommend the next PoPs to
build. We also consider the problem of recommending PoPs using other
metrics such as user’s number of page views. We show empirically that
our approach works well, by experiments that use real data collected
from millions of user visits in a major social network site.

1 Introduction

Most websites serve dynamic content (e.g. HTML and JSON) from their data
centers and utilize Content Delivery Networks (CDN) for serving cacheable assets
such as Cascading Style Sheets (CSS), JavaScripts, images etc. Reducing the
download time of dynamic content is important to improve the experience of a
typical user visiting the site. One commonly adopted strategy by web companies
to accomplish this is to terminate user’s TCP connection closer to the user by
using Point of Presence centers (PoP).1

Point of Presence Centers, or PoPs, are “small scale data centers” usually
with only a few racks. They act as TCP termination point of client requests
for dynamic content. As shown in Fig. 1, data transfer over PoP to data center
link happens in single round trip time (RTT) due to large congestion control
windows between them. But the data transfer between clients and PoP can take
multiple RTTs since that TCP connection is likely new with a small congestion
control window and the dynamic content size is larger than what can fit in the
smaller congestion window. For users with high RTTs to the data centers, early

1 Another strategy is to use CDNs to deliver dynamic content, but it is less common
due to security, privacy and cost concerns.

c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 205–217, 2016.
DOI: 10.1007/978-3-319-30505-9 16

206 Y. Yang et al.

Fig. 1. An example illustration of how PoPs help in performance. In this paper, we
focus on optimizing PoP location for page download time, which is defined as sum of
first byte time and content download time.

TCP termination at PoPs help improve the overall download time by reducing
the RTT between users and PoPs.

Our estimates (using historical costs from a major social network) show that
building a PoP can be a costly affair: an initial investment of over 1 Million US
dollars and a recurring cost of about US $720000 per year. An important question
then arises: where should the next PoP be built? Note that the ideal location of
the next PoP is dependent on many factors such as: (a) feasibility and cost of
building a PoP in a given location; (b) potential performance improvement for
end-users that will get impacted by the PoP; and (c) other business benefits to
the company for the impacted regions like increased page views, engagement etc.

Traditionally, the selection of PoP locations is based on experience or intu-
ition: web companies often follow their predecessor’s paths to expand their PoP
footprints, or study the network connection for the regions in which they want to
expand businesses to propose new PoP locations. To the best of our knowledge,
the problem of where to build the next PoPs has not been systematically studied
in a quantitative and principled way before.

In this paper we propose Scout, a general purpose PoP recommendation
system for web companies utilizing PoPs as end-user connection termination
points. At a high level, Scout works as follows:

1. Scout takes as input a set of existing PoPs, a set of potential PoP candi-
dates, passively collected real user monitoring (RUM) data from user visits
to the website, and other relevant features such as user’s geographical region,
browser type, the size of the packets to be downloaded etc.

Scout: A PoP Recommendation System Using RUM Data 207

2. Scout uses the RUM data to train a statistical model to predict page download
time using features such as distance between current PoP and end-user, end-
user’s network characteristics, PoP’s network characteristics etc.

3. For each potential PoP in the candidate list, Scout then predicts page down-
load time improvement for end-users who see a net positive gain if assigned
to that PoP.

4. Scout calculates “impact score” for each candidate PoP, and outputs a sorted
list of PoP candidate locations by the score. The impact score is defined to
be either the improvement to the overall site performance, or the impact to
some other business metrics such as total number of page views.

Real User Monitoring (RUM) Data. For the past few years, web companies
have been able to collect client-side performance data for their end-users to ana-
lyze and detect performance issues using the Navigation timing API, which was
recommended by the Web Performance working group of the World Wide Web
Consortium (W3C) in 2012 and implemented by most of the major browsers.
This technique of client-side monitoring is called Real User Monitoring, or RUM.
In this paper, we use client IP address and page download time metrics from
RUM to build our statistical models.

RelatedWork. We believe Scout is a novel approach to an age old problem faced
by most web companies. Scout’s design was motivated by a singular focus on using
only readily available passive measurement data to deliver an end-to-end solution
to PoP selection problem. This sets it apart from previous works [3,5,6,11] in the
literature since most of them have used active measurement techniques and have
tried to solve a piece of puzzle by only trying to estimate RTT. The essential met-
ric for performance of a website is the total page download time. Our work esti-
mates impact of building a PoP using metrics that impact the end-users’ page
download time which albeit includes RTT, but also includes many other impor-
tant features, e.g. size of the webpage (which varies on a per-user basis), the poten-
tial PoP’s peering density, concentration of the website’s end-users around a given
location, improvement in performance for end-users in a given location etc. Most
works in literature have also evaluated their approaches in simulations or a small
set of experimental data. In contrast, our approach uses millions of data samples
from real users of a major social network site with > 400 million members and
billions of page views per month. Finally, active measurement techniques require
significant effort to collect data, whereas we use RUM data which is likely being
already collected by most web companies. Other interesting works in this field that
are orthogonal to our work but related are those (a) optimize how to assign users
to PoPs (once built) [10,12], (b) use statistical modeling to correlate user request
patterns with web server performance [8,15] and (c) study impact of web perfor-
mance on user behavior [1,4,13,14].

2 Scout: A System for Recommending New PoP Centers

Assume a web company already has T number of existing PoP centers, denoted as
p1, ..., pT . We would like to find the optimal location to build the next PoP pT+1

208 Y. Yang et al.

from candidate set P , given p1, ..., pT . Since sometimes a fast-growing company
may want to build multiple new PoPs at the same time, the problem can also
be extended to finding an optimal set of PoP locations with pre-determined size
L, pT+1, ..., pT+L from candidate set P , given p1, ..., pT .

PoP candidate set P is derived using the following constraints: availability
of real estate to house a high density of power and proximity to metro region
fiber, neutrality of PoP/data center operator, and closeness to Internet Exchange
Points (IXP’s) and interconnections. We start our list with the PeeringDB data
[2] that contains about 1400 potential locations worldwide; we remove all IXP
locations where number of ASNs peering at the IXP is below a certain threshold
(e.g. 30). These locations are less desirable since they do not have as many poten-
tial peering partners. At the end our candidate list includes around 400 facilities
where PoPs can be built for better performance. Others may use different selec-
tion criteria for PoP candidate list selection but our PoP recommendation system
should still work in general.

At a high-level, our approach works as follows: (a) We build a statistical
model to predict site speed when a user is allocated to a new candidate PoP
center. (b) For a new candidate PoP center location, we measure the overall
predicted improvement to site speed (impact score) obtained by hypothetically
allocating a set of user visits to the new PoP. Note that only the user visits
which are projected to benefit from the new PoP will be routed to it. We also
assume that new PoPs are built with enough capacity so that load is not a factor.
(c) When we have to recommend multiple PoP center locations simultaneously,
we consider two strategies: a greedy strategy that computes impact score for
each candidate PoP incrementally one at a time; a more computationally inten-
sive strategy computes the impact score obtained by evaluating multiple PoPs
simultaneously. We scale the computation for the latter by using Map-Reduce.

2.1 Site Speed Prediction Model Using RUM

We first describe our probabilistic statistical modeling approach of using a set
of features to predict the total page download time, which equals the sum of
connect time, first-byte time and content download time. The model is learned
from the RUM data collected from user visits connecting to the current PoP cen-
ters. We consider three types of features here: (a) Context features of the user
visit, e.g. time of the day, day of the week, the webpage that the users are visit-
ing, through Secure Sockets Layer (SSL) or not, and so forth; (b) User-specific
features, including user’s geographical locations inferred from their IP addresses,
operating systems, web browser types (e.g. Internet Explorer, or Mozilla Firefox,
or Google Chrome) and versions, the size of packets to be downloaded from the
server (or equivalent features), number of social network connections the user
has, etc.; (c) PoP-specific features, including both the user distance to the PoP
centers and the PoP center distance to the data centers. In this paper we use both
the geographical distance and the network distance (which captures the number
of hops it takes to connect from a user’s original IP address to the PoP cen-
ters). The geographical distance between a user and the PoP center is obtained

Scout: A PoP Recommendation System Using RUM Data 209

by calculating the straight line distance between the user’s inferred geographical
location (from their IP address) and the location of the PoP center. In order to
calculate network distance between user’s origin AS and PoP center, we obtained
route server data for 70 IXP’s globally from Packet Clearing House (PCH), which
consist of all the possible routes from user’s origin ASNs to the peering ASNs;
an ASN connection map can be built such that given any potential PoP center
location with a list of peered ASNs, the minimum number of hops it takes from
the user’s origin AS to connect to the PoP is obtained as the network distance
to the PoP feature. For example, assume a user’s origin ASN is 56203, and the
ASN path to route to the current PoP is “56203 => 7545 => 174 => 10912”.
Then, the network distance feature is 3, since it takes 3 ASN hops to connect
to the PoP’s peering ASN 10912. Based on the data results, we find that the
geographical distance makes the biggest contribution to the final prediction, but
other features are also contributing.

Our Notations. For each user page view i and the PoP center p that the user is
routed to, let yi,p be the observed total page download time, which is the sum of
connection time, first byte time, and content download time. We also denote the
corresponding feature set for observation i and PoP center p as xi,p, a m-dim
column vector. These features including context, user-specific and PoP-specific
features, are used to predict site speed yi,p through a statistical model. Note
that both the total page download time yi,p and the feature set xi,p depend on
the location of the PoP center p. Hence, if the user visit i is routed to a new
PoP center p′ instead of p, the feature set would become xi,p′ , and the impact
to the total page download time would be yi,p′ instead of yi,p.

The Model of Total Page Download Time. Given the feature set xi,p,
one simplest model to predict yi,p is linear regression upon the logarithm of the
response log(yi,p) ∼ N(x′

i,pβ, σ2), where β is a m-dim column vector, and x′
i,pβ

and σ2 are respectively the mean and the variance of the Gaussian distribution.
The logarithm transformation of yi,p is needed since the distribution of total
page download time has a long tail towards the right. Here, we care about the
estimate of β, which can be obtained by using the ordinary least square (OLS)
method as

β̂OLS = arg min
β

N∑

i=1

(log(yi,pobs
) − x′

i,pobs
β)2, (1)

where pobs means the PoP center that the users are routed to in the observed
sample i, and N is the sample size. For feature vector xi,p where p can be any
PoP center location, the expected total page download time can be predicted as
E[log(yi,p)|xi,p] = x′

i,pβ̂OLS .

Quantile Regression. Since the RUM data often include outliers and do not
fit standard parametric distributions, it is customary to measure metrics such as
total page download time through quantiles instead of the arithmetic mean. In
such scenarios, since the model needs to be robust to outliers and the interest is
to measure performance through quantiles such as median rather than the mean,

210 Y. Yang et al.

using quantile regression (QR) [9] is a better approach. Assume the τ -th quantile
of the total page download time yi,p is yi,p(τ), i.e. yi,p(τ) = inf

t
(P [yi,p <= t] >=

τ). The corresponding coefficient vector can be solved by the loss function

β̂QR(τ) = arg min
β

N∑

i=1

ρτ (log(yi,pobs
) − x′

i,pobs
β), (2)

where ρτ (z) = |z(τ − I(z < 0))| for quantile τ ∈ (0, 1), and I(·) is an indicator
function. Given a set of features xi,p, The predicted value of yi,p(τ) is ŷi,p(τ) =
exp(x′

i,pβ̂QR(τ)).

Better Feature Transformations. To model the potential non-linear relation-
ship between the total page download time and some numerical features such
as geographical distance, we apply piece-wise linear spline [7] on these features.
For example, for the geographical distance d, given a set of knots {ξ1, .., ξK},
the piece-wise linear spline is constructed by K + 2 number of basis functions
as h1(d) = 1, h2(d) = d, hk+2(d) = (d − ξk)+, k = 1, ...,K, where (x)+ = x if
x > 0, and 0 when x <= 0.

2.2 Recommend One PoP

In this section, we consider the problem of selecting the next PoP center can-
didate from the candidate set P , assuming we already have K number of PoP
centers running. Our approach can be illustrated as follows:

1. Build a total page download time prediction model M based on the observed
dataset {(xi,pobs

, yi,pobs
), i = 1, . . . , N}. Note that M can be either linear

regression or quantile regression. For linear regression with logarithm trans-
formation of the response, M(xi,p) = exp(x′

i,pβ̂OLS), and for quantile regres-
sion with logarithm transformation of the response, M(xi,p) = exp(x′

i,pβ̂QR).
2. We predict the impact to the total page download time for record i if it is

routed to PoP p ∈ P instead of the current PoP center pobs, by changing the
feature set from xi,pobs

to xi,p. The improvement of the total page download
time can be calculated as Δi(p) = M(xi,p) − M(xi,pobs

).
3. Since it may not be feasible to have personalized PoP center routing in prac-

tice, we group the users to segments by certain attributes, and route all users
who belong to the same segment to the same PoP. The attributes to do such
segmentation can be geographical regions or origin ASNs. For segment I , we
define

Δ(p,I) = Median{M(xi,p), i ∈ I } − Median{M(xi,pobs
), i ∈ I }, (3)

and this is considered as the predicted impact on the median of the total page
download time by routing to future PoP p for segment I .

4. Calculate the impact score for each candidate PoP. Denote the probabil-
ity of a page view request coming from segment I as qI , and

∑
I

qI = 1.

Scout: A PoP Recommendation System Using RUM Data 211

For each segment I , if we route the traffic to PoP p, the predicted impact of
site speed is Δ(p,I). However, if Δ(p,I) < 0, we would choose not to route
to this new PoP given the projected gain is negative. Hence, the impact score
S(p) for PoP p can be defined as

S(p) =
∑

I

max(0,Δ(p,I))qI . (4)

And the best PoP candidate popt is popt = arg maxp∈P S(p).

2.3 Recommend Multiple PoPs Simultaneously

Often we would like to have multiple new PoP recommendations at the same
time, given the existing K number of PoPs. We can certainly run the approach
described in Sect. 2.2 iteratively to obtain the list. However, this greedy app-
roach may not be optimal; jointly considering the combinations of multiple PoP
candidates at the same time can potentially give better impact scores overall.
Assume we want to recommend L new PoPs out of the candidate set P , the
problem to solve becomes

max
{p1,...,pL}⊂P

∑

I

max(0, max
p∈{p1,...,pL}

Δ(p,I))qI (5)

The complexity of solving the optimization problem in (5) is
(|P |

L

)
L, where |P |

is the number of PoP candidates. When |P | and L are large, it will be com-
putationally expensive to solve (5). However, note that the impact scores of all
combinations of {p1, . . . , pL} can be obtained in parallel. In this paper we use
the Map-Reduce infrastructure for the parallelization, where the mappers gen-
erate all the possible combinations and the reducers compute the impact score
for each combination, and finally another Map-Reduce step to sort and generate
the top-K ranked list.

2.4 Recommending PoPs with Other Metrics

We have been using the total page download time improvement as the metric
to recommend new PoPs; however, web sites often look at other downstream
metrics impacted due to improvement in site speed, so sometimes it is desirable
to recommend PoPs based on other business metrics, such as gains in user page
views, engagement, or revenue. Here we illustrate the method by using the total
number of user page views as an example. For each region I , suppose from data
analysis we can learn fI (Δ(p,I)), which is the rate of increase of the number
of page views if median page download time improvement is Δ(p,I) for region
I , where Δ(p,I) is defined earlier in Eq. (3). Examples of such functions can
be seen in Fig. 3. The impact to total number of page views on the site can then
be defined as

PV (p) =
∑

I

fI (Δ(p,I))qI , (6)

212 Y. Yang et al.

3 Experimental Results

In this section we show experimental results to measure predictive performance
of our site speed models and the performance of our PoP recommendation algo-
rithm. We also consider using business metrics such as number of page views on
the site to recommend new PoPs, by studying the gains in such metrics given
the predicted site speed improvements from our data.

Notes of Our Evaluation Strategy. An ideal evaluation approach to evaluate
multiple PoP selection methods is to obtain top recommendations from each
method and install PoPs at the recommended locations, and measure the site
performance gain. However, installing a PoP just for experimentation is usually
not practical and can be really expensive. Since the main challenge is to obtain
an accurate site speed prediction model which can predict the performance gain
after installing a PoP at a certain location, our evaluation mainly focuses on
this aspect, which is described in Sect. 3.2. The PoP selection method described
in Sects. 2.2 and 2.3 given the site speed performance model is quite straight-
forward, hence not much evaluation is needed there.

3.1 Our Data

We use a random sample of RUM data collected from a major social network site
to train the site speed prediction model. The data set contains 4 million samples
of user visits occurred during June 3, 2014 to June 9, 2014. We randomly do a
50:50 split of the data into training data and test sets. The models are estimated
using training data and prediction accuracy is evaluated using test data.

Our candidate set for the new PoP recommendation includes around 400
facility names around of the world from peeringDB, each of which has a list
of available peering ASNs. We use the same period of data that the site speed
prediction model is trained with to recommend the new PoP facility locations.

In Sect. 2.4 we also consider using other user engagement metrics such as
user’s monthly number of page views for the PoP recommendation. To build the
relationship between site speed and user page views (i.e. fI (Δ(p,I))), we used
a random sample of the data in the entire month of June 2014.

3.2 Predictive Performance of Site Speed Model

We show the predictive performance of the total page download time for the
statistical models described in Sect. 2, with the evaluation metric being the pre-
diction error rate of the median page download time. Specifically, for each region
I and PoP p,

error(I , p) =
|Median{ŷi,p,∀i ∈ I } − Median{yi,p,∀i ∈ I }|

Median{yi,p,∀i ∈ I } (7)

Quantile Regression vs. Ordinary Least Squares. To predict the median
page download time, our experiments show that quantile regression is a better

Scout: A PoP Recommendation System Using RUM Data 213

choice versus linear regression using ordinary least squares. In Fig. 2 we show
the performance for both approaches in terms of the prediction error defined
in Eq. (7), where each circle indicates a geographical region, and the size of the
circle indicates the relative sample size of the region. The color of the circle
shows which PoP the region was routed to. There are in total 4 PoP at the
time of the analysis. It is clear that the prediction error of the median page
download time is significantly smaller in the case of quantile regression for the
major regions: all the big circles are above the y = x line. This is mainly caused
by the fact that the distribution of total page download time still has a heavy
right tail even after taking logarithm transformation, so the mean prediction
tends to be noisier than the median prediction. Also note that the prediction
from the quantile regression model is often lower than 5 %, which provides a
good basis for our PoP recommendation algorithm to work well.

Fig. 2. Prediction error percentage of the median page download time comparing ordi-
nary least square (OLS) and quantile regression (QR). The prediction error percentage
in both axises are defined in Eq. (7). Each circle indicates a geo region and the size
of the circle indicates the relative sample size of the region. The color of the circle
indicates which PoP the region is currently routed to. The black line is y = x.

3.3 PoP Recommendation Results

In this section we describe our experiments for recommending new PoPs, based
on the prediction model using quantile regression.

Recommending One PoP. We follow the approach described in Sect. 2.2 to
rank PoP candidates based on their impact scores, considering both the traffic
for each geographical region and the site speed improvement for such region.
Table 1 lists the top 8 recommended PoP facilities given the existing PoPs for
the social network site at the time the study was executed. It is interesting

214 Y. Yang et al.

Table 1. The top-ranked PoP recommendations if only one PoP is recommended.

IXP City Country Impact score

TATA Mumbai India 47.1

TATA Delhi India 45.7

Netmagic Chennai India 41.2

UAE-IX Dubai UAE 38.3

INTERLAN Bucharest Romania 27.1

BIX.BG Sofia Bulgaria 26.2

UA-IX Kiev Ukraine 24.2

BiX Bydapest Hungary 23.6

Table 2. The top-ranked set of PoPs with each set containing 4 recommendations.

Rank City Country PoP impact Total impact

1 Mumbai India 39.9 90.1

Sydney Australia 20.5

Bucharest Romania 20.3

Paris France 9.3

2 Mumbai India 41.6 89.5

Sydney Australia 20.5

Sofia Bulgaria 18.52

Paris France 8.9

3 Delhi India 40.1 89.2

Sydney Australia 20.5

Bucharest Romania 19.2

Paris France 9.4

to see that the top 3 recommended facility locations are all in India, due to the
fact that at the time this study was executed, no PoP existed in this region while
its traffic to the site is quite high.

Recommending Multiple PoPs Simultaneously. Table 2 shows the top-
ranked sets of PoP facilities that was obtained from applying the approach
described in Sect. 2.3 with L = 4. It is interesting to observe that for all the
three sets, the four locations now scatter around the world, with one in Asia,
one in Oceanic, and two in Europe (Places such as Bucharest and Sofia are closer
to Middle East while Paris mainly serve for Europe). It is also interesting to see
that Sydney and Paris did not even show up in Table 1.

Recommending PoPs with Other Metrics. We first describe our approach
to learn fI (Δ(p,I)), which is the rate of increase of the number of page views
if median page download time improvement is Δ(p,I) for region I . Note that

Scout: A PoP Recommendation System Using RUM Data 215

Fig. 3. Page download time improvement vs. increase rate of number of page views

Table 3. Top-ranked PoP recommendations from impact on user page views. The page
view (PV) impact score is a rescaled number, proportional to PV (p) in Eq. (6).

IXP City Country PV impact

TATA Mumbai India 0.296

TATA Delhi India 0.296

UAE-IX Dubai UAE 0.255

Netmagic Chennai India 0.249

BNIX Brussels Belgium 0.241

France-IX Paris France 0.237

IXManchester Manchester UK 0.232

Edge-IX UK UK 0.232

naively looking at the marginal relationship between site speed and the num-
ber of page views can be misleading, since many confounding factors need to
be adjusted. Hence we apply a stratification method to learn the relationship:
(1) construct user segments based on confounding factors such as geographi-
cal region, number of connections etc., (2) for each user segment, estimate a
smoothed curve of number of page views versus total page download time using
locally weighted scatterplot smoothing (lowess), (3) an overall curve of page
download time improvement versus increase of the number of page views is then
obtained by aggregating the curves according to the traffic of each user seg-
ment. Figure 3 shows the learned relationship for several geographical regions. It
is interesting to observe a significant difference in the slopes when we compare
regions such as Great Britain and New York. We show the top-ranked PoPs from

216 Y. Yang et al.

the perspective of impact to the number of page views in Table 3. Comparing to
Table 1, more European locations such as Manchester show up in the list, since
they have a higher predicted impact of the number of page views.

4 Conclusion

In this paper we proposed Scout, a general-purpose Point of Presence (PoP)
recommendation system using statistical modeling of the total page download
time on Real User Monitoring (RUM) data, and it has been driving the selection
of PoPs for a major social network company since developed. Our empirical
experiments on millions of real user data points obtained from a large social
network show very good performance, i.e., the prediction errors are lower than
5 % for most regions, and we have further extended the work from purely using
site speed performance as the metric to other business metrics such as total
number of page views.

Acknowledgments. We are grateful to Samir R. Das for his valuable feedback on an
earlier draft of this paper. We would also like to thank the anonymous reviewers for
their insightful comments.

References

1. Brutlag, J.: Speed matters for google web search. Google, June 2009
2. www.peeringdb.com
3. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network

coordinate system. In: ACM SIGCOMM Computer Communication Review, vol.
34, pp. 15–26. ACM (2004)

4. Dellaert, B.G., Kahn, B.E.: How tolerable is delay?: Consumers’ evaluations of
internet web sites after waiting. J. Interact. Mark. 13(1), 41–54 (1999)

5. Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., Zhang, L.: Idmaps: a
global internet host distance estimation service. IEEE/ACM Trans. Network. 9(5),
525–540 (2001)

6. Gummadi, K.P., Saroiu, S., Gribble, S.D.: King: estimating latency between arbi-
trary internet end hosts. In: Proceedings of the 2nd ACM SIGCOMM Workshop
on Internet Measurment, pp. 5–18. ACM (2002)

7. Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., Tibshirani, R.:
The elements of statistical learning, vol. 2. Springer, New York (2009)

8. Iyengar, A.K., Squillante, M.S., Zhang, L.: Analysis and characterization of large-
scale web server access patterns and performance. World Wide Web 2(1–2), 85–100
(1999)

9. Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005)
10. Krishnan, R., Madhyastha, H.V., Srinivasan, S., Jain, S., Krishnamurthy, A.,

Anderson, T., Gao, J.: Moving beyond end-to-end path information to optimize cdn
performance. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement Conference, pp. 190–201. ACM (2009)

www.peeringdb.com

Scout: A PoP Recommendation System Using RUM Data 217

11. Madhyastha, H.V., Anderson, T., Krishnamurthy, A., Spring, N., Venkataramani,
A.: A structural approach to latency prediction. In Proceedings of the 6th ACM
SIGCOMM Conference on Internet Measurement, pp. 99–104. ACM (2006)

12. Maheshwari, R.: How LinkedIn used PoPs and RUM to make dynamic content
download 25% faster. LinkedIn Engineering Blog (2014)

13. Ramsay, J., Barbesi, A., Preece, J.: A psychological investigation of long retrieval
times on the world wide web. Interact. Comput. 10(1), 77–86 (1998)

14. Sears, A., Jacko, J.A., Borella, M.S.: Internet delay effects: how users perceive qual-
ity, organization, and ease of use of information. In: CHI 1997 Extended Abstracts
on Human Factors in Computing Systems, pp. 353–354. ACM (1997)

15. Squillante, M.S., Yao, D.D., Zhang, L.: Web traffic modeling and web server per-
formance analysis. ACM SIGMETRICS Perform. Eval. Rev. 27(3), 24–27 (1999).
IBM TJ Watson Research Center

Is the Web HTTP/2 Yet?

Matteo Varvello1(B), Kyle Schomp2, David Naylor3, Jeremy Blackburn1,
Alessandro Finamore1, and Konstantina Papagiannaki1

1 Telefónica Research, Barcelona, Spain
matteo.varvello@telefonica.com

2 Case Western Reserve University, Cleveland, USA
3 Carnegie Mellon University, Pittsburgh, USA

http://isthewebhttp2yet.com/

Abstract. Version 2 of the Hypertext Transfer Protocol (HTTP/2) was
finalized in May 2015 as RFC 7540. It addresses well-known problems
with HTTP/1.1 (e.g., head of line blocking and redundant headers) and
introduces new features (e.g., server push and content priority). Though
HTTP/2 is designed to be the future of the web, it remains unclear
whether the web will—or should—hop on board. To shed light on this
question, we built a measurement platform that monitors HTTP/2 adop-
tion and performance across the Alexa top 1 million websites on a daily
basis. Our system is live and up-to-date results can be viewed at [1].
In this paper, we report findings from an 11month measurement cam-
paign (November 2014 – October 2015). As of October 2015, we find
68,000 websites reporting HTTP/2 support, of which about 10,000 actu-
ally serve content with it. Unsurprisingly, popular sites are quicker to
adopt HTTP/2 and 31% of the Alexa top 100 already support it. For
the most part, websites do not change as they move from HTTP/1.1
to HTTP/2; current web development practices like inlining and domain
sharding are still present. Contrary to previous results, we find that these
practices make HTTP/2 more resilient to losses and jitter. In all, we find
that 80% of websites supporting HTTP/2 experience a decrease in page
load time compared with HTTP/1.1 and the decrease grows in mobile
networks.

1 Introduction

HTTP/2 (H2 for short) is the new version of HTTP, expected to replace version
1.1 (H1), which was standardized in 1999. H2 promises to make the web faster
and more efficient by compressing headers, introducing server push, fixing the
head of line blocking issue, and loading page elements in parallel over a single
TCP connection (cf. Sect. 2). Although the standard does not require encrypting
H2 connections with Transport Layer Security (TLS), the major browser vendors
currently only support encrypted H2 [19].

While on paper H2 represents the future of the web, it is unclear whether its
adoption will face a struggle similar to IPv6. As discussed in [5], the adoption of
a new protocol largely depends on the ratio between its benefits and its costs.
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 218–232, 2016.
DOI: 10.1007/978-3-319-30505-9 17

Is the Web HTTP/2 Yet? 219

Modern websites are already designed to deal with H1’s inefficiencies, employing
hacks like spriting, inlining, and domain sharding [18]. While H2 would remove
the need for such hacks, in theory simplifying web development, given their
widespread use it is unclear how much H2 can improve performance over H1.
Furthermore, it is unclear how these practices will affect H2 performance (which
is crucial, since web developers cannot rebuild their sites overnight nor are they
likely to maintain two versions until H1 disappears).

Motivated by these uncertainties, in this work we build a measurement plat-
form that monitors the adoption and performance of H2. Using machines on
PlanetLab [3] and in our labs in Spain and the U.S., we probe the top 1 million
Alexa websites each day to see which support H2. For those that do, we note
which features they use and measure performance with H1 and H2. Results are
published daily at [1].

This paper reports findings from an 11-month measurement campaign, from
November 2014 until October 2015 (cf. Sect. 4). As of October 2015, we find
68,000 websites reporting H2 support, of which only 10,000 actually serve web-
site content over H2. NGINX, a popular web server implementation, currently
powers 71.7 % of the working H2 websites, with LiteSpeed following at 13.7 %
(in contrast to the 98 % they claim1). Our results also show that sites that have
deployed H2 have not significantly altered their content; classic H1 hacks are still
used in the H2 version. For example, inlining (putting CSS styles and JavaScript
code directly in HTML) is still widely used, reducing caching benefits. The same
is true of domain sharding (spreading web objects across multiple domains),
causing H2 to use more TCP connections than necessary. In terms of page load
time, for 80 % of the websites we measured an average reduction in page load
time of 300 and 560 ms when accessed from a wired connection, respectively from
Europe and the USA, 800 ms from a European 4G connection, and 1.6 s from a
European 3G connection. The observed H2 benefits for mobile contradict previ-
ous studies; our analysis suggests that domain sharding, whether intentional or
not, triggers the usage of several TCP connections, making H2 more resilient to
losses and jitter typical of mobile networks.

2 Background and Related Work

H1 is an ASCII protocol that allows a client to request/submit content from/to
a server. H1 is mostly used to fetch web pages, where clients request objects
from a server and the resulting response is serialized over a persistent TCP
connection. H1 provides pipelining to request multiple objects over the same
TCP connection, but the benefits are limited since servers must respond to
requests in order. Thus, an early request for a large object can delay all subse-
quent pipelined requests (head of line blocking). Clients mitigate this by opening
several concurrent TCP connections to the server, which incurs additional over-
head (TCP state on the server, TCP handshake latency, and TLS session setup
1 https://www.litespeedtech.com/http2-ready—To their credit, another 27,000 web-
sites powered by LiteSpeed redirect to an error page that loads over H2.

https://www.litespeedtech.com/http2-ready

220 M. Varvello et al.

in the case of HTTPS [13]). Accordingly, browsers limit the number of simul-
taneous connections to each domain (e.g., 6 in Chrome and 15 in Firefox [22]).
Web developers have responded to this limitation with domain sharding, where
content is distributed across multiple domains, circumventing the per-domain
connection limit. Finally, H1 requires the explicit transmission of headers on a
per request/response basis. Therefore, common headers (e.g., server version) are
retransmitted with each object—particularly wasteful for pages with many small
objects.

SPDY and H2. SPDY is Google’s update to H1. It is binary rather than
ASCII, enabling efficient parsing, lighter network footprint, and reducing sus-
ceptibility to security issues caused by unsanitized input strings. SPDY opens
a single TCP connection to a domain and multiplexes requests and responses,
called streams, over that connection, which reduces the number of TCP/TLS
handshakes and the CPU load at the server. SPDY also introduces content pri-
ority (clients can load important objects like CSS and JavaScript earlier), server
push (the server can push objects before the client requests them), and header
compression (reduces redundant header transmission). H2 builds on SPDY, mak-
ing only relatively small changes. For example, H2 uses HPACK [16] for header
compression, eliminating SPDY vulnerability to the “crime” attack [12].

NPN and ALPN. Since SPDY, H1, and H2 all use TLS over port 443, port
number is no longer sufficient to indicate to web servers which application pro-
tocol the client wants to use. The Next Protocol Negotiation (NPN) [4] is a
TLS extension developed by Google as part of its SPDY effort. During the TLS
handshake, the server provides a list of supported application protocols; the
client then chooses the protocol to use and communicates it to the server via
an encrypted message. Application Layer Protocol Negotiation (ALPN) [20] is
a revised version of NPN standardized by the IETF. In ALPN, the client sends
which application protocols it supports to the server, ordered by priority. The
server selects the protocol to use based on the protocols it supports and the
client priority; next, it returns the selected protocol to the client via a plain text
message.

Related Work. Previous work mostly investigate SPDY performance [8,10,11,
15]; to the best of our knowledge, [17] is the only work previous to ours focus-
ing on H2. Although the results of these studies are mostly contradictory, they
converge on reporting poor SPDY (and H2) performance on mobile networks.

Erman et al. [7] measure page load time for the top 20 Alexa websites via
SPDY and H1 proxies in 3G. They find that SPDY performs poorly in mobile
networks since TCP interprets cellular losses and jitter as congestion, causing
unnecessary backoffs. Since SPDY uses fewer TCP connections than H1, its
performance suffers more.

Xiao et al. [23] introduce new measurement techniques to provide a more
robust characterization of SPDY. They show that, in absence of browser depen-
dencies and computation, SPDY tends to outperform H1; however, the gains

Is the Web HTTP/2 Yet? 221

are reduced when dependencies and computation are factored back in (with the
caveat that server push can squeeze additional performance gains from SPDY).

De Saxcè et al. extend this analysis to H2 [17]. Using the top 20 Alexa web-
sites, they investigate H2 performance under various network delay, bandwidth,
and loss using an open-source client and server. Their results confirm those for
SPDY in [23]. Unfortunately, by serving clones of the websites from their own
test server, they ignore the impact of important real-world website properties
like domain sharding.

Our aim is to take the next step in characterizing H2 performance. Our
measurements improve prior art in five ways: (1) we target more websites (1000 s
as opposed to 10 s or 100 s); (2) we measure real servers from real networks
(wired, 3G, and 4G); (3) we test real websites, not clones or synthetic traces;
(4) we build on Chrome reliability to develop an accurate performance estimation
tool; (5) we also study adoption and website structure trends.

3 Measurement Platform

This section describes our measurement platform. We start by summarizing a
set of tools we have deployed, and then explain how we use them together to
monitor H2 deployment and performance.

Prober is a lightweight bash script that identifies which application protocols
a website announces. Prober uses OpenSSL [14] to attempt ALPN and NPN
negotiations and returns either the list of protocols announced by the server
or failure. Next, prober checks for H2 cleartext (H2C) support—that is, H2
without TLS—by including an UPGRADE header in an H1 request.

H2-lite is a lightweight client that attempts to download only the root object
of a website using H2. H2-lite uses the Node.js [2] H2 library [9]. H2-lite
follows HTTP redirects to obtain the root object and reports any protocol errors
encountered along the way. H2-lite also identifies sites with certificate problems,
e.g., self- signed certificates, mismatches between hostname and common name,
or expired/revoked certificates.

Chrome-loader is a Python tool that loads pages using Chrome. It
extracts object sizes and timing information using chrome-har-capturer [6].
Chrome-loader can instruct Chrome to use either H1 or SPDY/H2 (Chrome
does not allow separate control over SPDY and H2). However, using Chrome’s
remote debugging protocol, chrome-loader reports which protocol was used to
retrieve each individual object in a page.

We now describe our measurement platform in detail. It consists of a single
master and many workers; the master issues crawl requests to the workers, which
are deployed on both PlanetLab [3] and machines in our labs (U.S. and Spain).
We use PlanetLab for simple measurements at a large scale and our lab machines
for more complex measurements at a smaller scale and where machine reliability
is important. The master constantly monitors PlanetLab to identify a pool of

222 M. Varvello et al.

candidate machines (at least 500 MB of free memory, CPU load under 30 %, and
no network connectivity issues). We collect measurements in three phases:

Phase I: It discovers, daily, which protocols are supported by the top 1 million
Alexa websites. First, the master launches an instance of the prober on each
PlanetLab worker. The worker is then assigned a unique 100-website list to probe.
When it finishes, it reports results to the master and obtains a new list if one is
available. This approach ensures load balancing among heterogeneous workers
allowing faster workers to complete more tasks. To deal with slow workers, the
master re-assigns uncompleted tasks to new workers after a timeout T (set to
the average task completion time across workers). Phase I terminates when the
tracker has a complete set of results.

Phase II: It verifies, daily, whether the sites that reported H2 support in Phase
I actually serve content over H2. After Phase I, the master launches several
instances of h2-lite and, as above, it dynamically assigns each 100 sites that
reported H2 support in Phase I. Because the H2 library requires more up-to-date
software than is available on PlanetLab, we run h2-lite on 4 machines under
our control, 2 in Barcelona (Spain) and 2 in Cleveland (U.S.). When Phase II
terminates, the master has a list of sites that actually serve content using H2.

Phase III: It fetches both the H1 and H2 version of websites that serve content
via H2 using multiple network locations and access network types (e.g., fiber
and 4G). The master is responsible for selecting the machines to be used and
instructing them which websites to test. The master uses one of three strategies:
(1) regular, where each network location with fiber access is weekly instructed
to test all H2 websites identified by Phase II; (2) lazy, the same as the regular
strategy but a website is tested only if one of these conditions is met: (a) it is a
new website that recently adopted H2, (b) its content significantly changed from
the last time it was tested, or (c) a timeout elapsed since the last test; (3) mobile,
where only mobile-enabled locations are selected, and a subset of websites are
tested based on their Alexa popularity.

To test a website, we fetch it 5 times with H1 and 5 times with either SPDY or
H2 (as discussed above, Chrome does not provide fine-grained control between
SPDY and H2). Fetches are run sequentially to limit the impact of network
load. While testing a website, we run a background ping process to collect sta-
tistics about network latency and packet loss. For the mobile strategy, we force
Chrome to report a mobile user-agent to the server, which may respond with
a mobile version of the website. Before the five trials, an initial “primer” load
is performed. This primer has a double purpose: (1) test whether a website
significantly changed its content since the last time it was tested (used by the
lazy strategy), and (2) ensure that DNS entries are cached at the ISP’s DNS
resolver before the first real trial (to prevent a cache miss on the first trial from
skewing the load time results). Local content and DNS caches are disabled and
each request carries a cache-control header instructing network caches not to
respond.

Is the Web HTTP/2 Yet? 223

We currently have Phase III workers in three different locations: Barcelona
(Spain), Cleveland (USA), and Pittsburgh (USA). Each location consists of three
machines with fiber connectivity. In addition, machines in Spain are connected
to Android phones via USB tethering; each phone is configured to use either
3G or 4G. Because each SIM card has a 4 GB monthly limit, a maximum of
about 200 websites—5 trials per protocol plus the primer—can be tested before
exhausting the available plan. We ran Phase III with the regular strategy from
November 2014 to September 2015, when the widespread deployment of H2 made
it impossible to run Phase III weekly without additional machines. Thus, we
switched to the lazy strategy. Finally, we ran Phase III with the mobile strategy
only once in October 2015. We plan to run the mobile strategy once per month,
as constrained by the mobile data plan.

4 Results

This section presents and analyzes the data collected using our measurement
platform between November 10th, 2014 and October 16th, 2015. We invite the
reader to access fresh data and analysis at [1].

4.1 Adoption

We recorded protocol support announced via ALPN/NPN for 11 months, during
which time we saw support for 44 protocols (34 of which were versions of SPDY).
Table 1 summarizes the evolution over time of the three most popular protocols,
namely H1, SPDY 3.1, and H2; in addition, we also report NPN, ALPN, and
H2C support when available. Each percentage is the maximum observed during
the month; note that announce rates for H1 are underestimated since H1 sites
are not required to use NPN/ALPN. The table also reports the total number
of probed sites. From November 2014 to August 2015, we use the Alexa Top 1
Million list fetched on November 10th, 2014. Beginning in September 2015, we
merge the current Alexa list with our own each day, constantly expanding the
pool of sites we query (1.8 M as of October 16th 2015).

Overview. From November 2014 through August 2015, Table 1 shows mostly
constant H1 and SPDY announce rates, with the exception of a large drop in May
2015 (2.2 and 2.5 percentage points respectively.2) By contrast, the H2 announce
rate grows by 50 %—from 1.4 % to 2.2 %—with most of the growth occurring
after May 2015, when H2 was standardized. As we start expanding the pool of
sites that we probe (September 2015), H1 and SPDY announce rates grow slowly
(SPDY grows from 5.1 % in July to 5.7 % in October), while H2 announce rates
grow more quickly (2.2 % in July to 3.7 % in October). Interestingly, we measured
a 0.1 % drop in SPDY in October (about 2,000 sites) and a 0.6 % increase in H2

2 We did not find a public explanation of this drop, but we verified it was not mea-
surement error.

224 M. Varvello et al.

Table 1. Protocol support from Nov. 2014–Oct. 2015 as percentage of top 1 million
Alexa sites.

Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct.

HTTP/1.1 9.8% 10.2% 10.5% 10.8% 11.2% 11.3% 9.1% 9.7% 10.8% 11.4% 12.1% 12.1%

SPDY/3.1 5.8% 5.9% 6.0% 6.2% 6.3% 6.3% 3.7% 4.1% 5.1% 5.6% 5.8% 5.7%

HTTP/2 1.4% 1.4% 1.3% 1.3% 1.3% 1.3% 1.2% 1.4% 2.2% 2.7% 3.0% 3.6%

NPN 9.8% 10.2% 10.5% 10.8% 11.2% 11.3% 9.1% 9.7% 10.8% 11.4% 12.1% 12.1%

ALPN – – – – – – – – – – 5.1% 5.1%

H2C 0% 0% 0% 0% 0% 0.006% 0.06% 0.2% 1.04% 1.20% 1.38% 1.37%

Tot. sites 1M 1M 1M 1M 1M 1M 1M 1M 1M 1.4M 1.7M 1.8M

(about 10,000 sites). If the trend continues, H2 support will overtake SPDY in
the near future.

NPN, ALPN, and H2C. As of October 2015, 50 % of the sites supporting NPN
also support ALPN. We added ALPN support to our measurement platform in
September 2015; previous manual ALPN tests showed less than 0.5 % adoption.
Although not shown in the table, as of October 2015 there are already 1,200
websites supporting ALPN but not NPN, 20 % more than in September. H2C
announcement also grows quickly, reaching 1.37 % in October 2015 (about 22,000
sites). However, our UPGRADE header tests found only 20–30 sites that actually
support H2C.

H2 Adoption. We now examine H2 adoption in detail. Figure 1(a) shows
the evolution of the number of websites that (1) announce H2 support (H2-
announce), (2) respond using H2, even just to return an error page or redirect
(H2-partial), and (3) actually serve page content with H2 (H2-true, cf. Sect. 3).

Figure 1(a) shows the substantial growth of H2 adoption after its standardiza-
tion (May 2015). The Figure also shows a large difference between “announced”
(H2-announce) and “actual” H2 support (H2-partial and H2-true). However, while
between November 2014 and May 2015 only 5 % of the websites announcing H2
support actually responded using H2 (H2-partial), this increases to 55 % as of
October 2015. We also see that before May 2015, most websites serving content
with H2 are well configured and properly working (i.e., the gap between H2-
partial and H2-true is small). After May, the gap widens considerably: most new
websites supporting H2 show some misconfiguration, like redirecting to an error
page. This trend continues until October 2015 when the gap between H2-partial
and H2-true is suddenly reduced.

Web Server Implementations. In order to further understand the different lev-
els of H2 support noted above, Fig. 1(b) plots the popularity of the web server
implementations powering the H2-true websites. Note that the resolution of this
data is weekly until September 2015 and daily thereafter. For visibility, Fig. 1(b)
shows only the 6 most popular web-server implementations (out of the 53 encoun-
tered). Figure 1(b) shows that, between October 2014 and May 2015, most H2-
true websites are powered by Google web-servers (google frontend, gws, gse and
sffe). Then, in May 2015, two new H2 implementations debut: LiteSpeed and

Is the Web HTTP/2 Yet? 225

Nov Jan Mar May Jul Sep Oct
10

100

1,000

10,000

100,000

N
o.

 o
f d

om
ai

ns
 (

#)

H2−announce
H2−partial
H2−true

(a) H2-announce, H2-partial and H2-
true.

Nov Jan Mar May Jul Sep Oct
10

0

10
1

10
2

10
3

10
4

N
o.

 o
f d

om
ai

ns
 (

#)

litespeed
nginx
google−fe
gws
gse
sffe

(b) Web server implementations.

Fig. 1. H2 adoption over time. November 2014 – October 2015.

NGINX. Their adoption rates are very different; while LiteSpeed websites are
quickly updated—LiteSpeed usage grows from 10 websites to 2,000 within two
months—NGINX websites upgrade more slowly. The combination of fast adop-
tion and the fact that most LiteSpeed websites are H2-partial and not H2-true
suggests that LiteSpeed is used for virtual hosting more than NGINX. Despite
lower overall numbers, NGINX currently powers more than 7,000 H2-true web-
sites (71.7 % of all H2-true websites) compared to LiteSpeed’s 1,300.

Notable Events. Figure 1(a) shows a few events that are worth noting. First, the
number of servers supporting H2 drastically drops over a period of four days
(December 14th–18th). This is because Google, the primary adopter of H2 at
that time, disabled H2 support on their servers (cf. Fig. 1(b)) due to an issue with
SDCH compressed content in Chromium.3 It takes a month for the problem to
be fixed, and H2 support is re-enabled again over four days (January 11th–15th),
likely reflecting a specific roll-out policy for server configuration changes. The
next interesting event happens between May and June 2015, when the number
of H2-partial websites—though they are mostly error pages—doubles from 600 to
1,200. This spike is due to Hawk Host, a virtual web hosting provider, updating
its servers with the latest version of LiteSpeed, which supports H2 (cf. Fig. 1(b)).4

Figure 1(a) also shows a sudden increase in H2 support on October 3rd, caused
by NGINX’s footprint growing 40 % (from 25,000 to 35,000 websites) thanks to
WordPress updating to the latest NGINX release.5 Finally, note that the spikes
in August and September are due to the extension of the pool of websites we
query (cf. Table 1).

3
https://lists.w3.org/Archives/Public/ietf-http-wg/2014OctDec/0960.html.

4
http://blog.hawkhost.com/2015/07/13/http2-more-now-available-at-hawk-host-via-litespeed-
5-0/.

5
NGINX 1.9.5 (September 22nd) was sponsored by Automattic, the creators of WordPress. http://
nginx.org/en/CHANGES.

https://lists.w3.org/Archives/Public/ietf-http-wg/2014OctDec/0960.html
http://blog.hawkhost.com/2015/07/13/http2-more-now-available-at-hawk-host-via-litespeed-5-0/
http://blog.hawkhost.com/2015/07/13/http2-more-now-available-at-hawk-host-via-litespeed-5-0/
http://nginx.org/en/CHANGES
http://nginx.org/en/CHANGES

226 M. Varvello et al.

Takeaway: The H2 adoption trend reflects the broader Internet ecosystem,
where most websites do not control their own technology stacks. There are a few
big players responsible for the spread of new technologies; the average website
owners might not even know they are serving content over H2.

4.2 Website Structure

Number of Objects. Modern web pages are usually composed of several
embedded objects, including images, JavaScripts, and style sheets. During our
11-month measurement campaign, we find no indication of a difference in the
number of objects between pages served with H1 and H2 (cf. Fig. 2(a)). To ver-
ify this quantitatively, we compute the cosine similarity of the object counts for
H1 and H2 every week and find values ranging from 0.96 to 0.98. Thus, at a
macroscopic level, there is no difference in the content composition between the
two protocols. Figure 2(a) also shows that from November 2014 to May 2015,
pages served with H2 are mostly small pages, i.e., 50 % have 10 objects or less.
After May 2015, more complex websites started to support H2; for example, in
October 2015, 50 % of websites have about 60 objects, which is in line with the
average number of objects per webpage reported in [21].

Fig. 2. Content analysis and delivery (Cleveland).

The objects embedded within a web page often reside on another webserver
and the browser must open new TCP connections independent of the application
protocol in use. In addition, the browser must renegotiate which application
protocol to use for each new TCP connection. It follows that even if a website
supports H2, it is possible that only a fraction of its objects are delivered using
H2. Although not shown due to space limitations, we find that half of the websites
actually serve about 50 % of their content using H2. Only 10 % of the websites
serve 100 % of their objects using H2; these websites contain fewer objects and
have an overall smaller size—400 KB on average compared to 1.5MB for all
websites.

Is the Web HTTP/2 Yet? 227

1

10

100

H2 H1

N
o.

 o
f d

om
ai

ns
 p

er
 p

ag
e

(a) Domains per
page.

1

10

100

H2 H1

A
vg

. n
o.

 o
f o

bj
ec

ts
 p

er
 d

om
ai

n

(b) Objects perdo-
main.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Relative inlined CSS/JS size

C
D

F

(c) Relative Inline CSS/JSS size.

Fig. 3. Content analysis and delivery.

Takeaway: There is no significant difference in object composition between the
H1 and H2 versions of a website. Also, 90% of the websites still leverage H1 to
serve a portion of their content.

Number of Connections. We now investigate the number of TCP connections
used to load a website using H1 versus H2. Motivated by the previous result, we
differentiate websites based on how many of their objects are served with H2.
Figure 2(b) shows the Cumulative Distribution Function (CDF) of the number of
TCP connections per website as a function of th, or the fraction of the webpage’s
objects served with H2. In case of H1 we show a single curve as objects are
always served with H1. The data for this plot was collected from our machines
in Cleveland between October 6th–13th (8,492 distinct websites).

We first focus on the H1 curve and the H2 curve obtained with th = 0, where
no websites are filtered. On average, H2 requires half as many TCP connections
as H1; a few websites can even be served via a single TCP connection, but
there are extreme cases where up to 100 connections might be required. As th
increases, the required number of TCP connections decreases; this is intuitive
since H1 and H2 cannot share the same TCP connection. For th = 1, all objects
are served with H2, up to 40 % of the websites only need a single TCP connection
indicating that the websites content is hosted entirely on a single webserver; still,
the remaining 60 % need up to 20 TCP connections. This is a consequence of
the way web content is organized today, where objects might reside on 3rd party
domains. We further analyze this phenomenon next.
Takeaway: H2 does not currently succeed in serving a page using a single TCP
connection: 50% (4,300) of the websites using H2 today use at least 20 TCP
connections.

Page Composition. Websites today try to optimize delivery using several tech-
niques like sharding, inlining, spriting and concatenation (cf. Sect. 1 and [18]).
We see no straightforward way to measure spriting and concatenation, so in this

228 M. Varvello et al.

work we only focus on sharding and inlining. Figure 3 summarizes the results of
this analysis.

Focusing first on domain sharding, Fig. 3(a) reports the distribution of the
number of unique domains per website. The distributions for H1 and H2 are
essentially the same with a median of 18 domains per page each, and outliers of
∼250 unique domains on a single page. This finding is related to the number of
TCP connections opened per page (cf. Fig. 2(b)). While H2 allows multiplexing
object requests over a single TCP connection, most web pages embed objects
from many different domains, thus forcing the use of a larger number of TCP
connections. There are two plausible explanations for this: (1) web masters are
deliberately sharding, and (2) it is just a natural consequence of deep linking (as
opposed to re- hosting) practices that are common across the web.

Next, Fig. 3(b) plots the distribution of the average number of objects per
domain per website. We again find that there is no meaningful difference between
H1 and H2: most domains are used for relatively few objects (median = {3.5,
3.5}, mean = {5.5, 5.4}, top 10th-percentile of {9.7, 9.6}, and a max of {179,
171} for H1 and H2 respectively). This is further evidence of sharding-esque
behavior since web page objects are dispersed over a large number of domains.

Finally, Fig. 3(c) plots the size of inlined CSS/JS relative to the total size of
the main HTML for each website; i.e., what fraction of the total bytes making up
an HTML document are from inlined CSS/JS. We find that there is a long tail
where inlined CSS/JS makes up a considerable portion of the page: about 25 %
of websites’ page contents is more than 25 % inlined CSS/JS. With H1, inlining
can help ensure the page loads faster by not requiring an extra TCP connection;
however this is no longer an issue in H2, so these websites are potentially suffering
a performance hit since inlined content cannot be cached separately by the client.
Takeaway: Most websites exhibit H1 practices like domain sharding and inlining
in H2. Sharding causes H2 websites to use more TCP connections than necessary
and inlining may reduce the utility of caching.

Fig. 4. CDFs of H2 speedup.

Is the Web HTTP/2 Yet? 229

4.3 Performance

Comparison to H1. First, we investigate H2 performance by comparing a
website’s page load time (PLT) when using H1 and H2. There is no standardized
definition of PLT; from a user perspective, it is the time from when the user
enters a URL in the browser to when the page is displayed. Similar to other
studies [7], we approximate PLT as the time from when Chrome starts fetching
the page to the firing of the JavaScript “onLoad” event; this event occurs once the
page’s embedded resources have been downloaded, but possibly before all objects
loaded via scripts are downloaded. We define “H2 speedup” as the difference in
PLT between the H1 and H2 versions of a website; speedup values > 0 indicate
websites that are delivered faster with H2 than H1.

For this analysis, we leverage the data collected from multiple locations and
access networks in the second week of October. From fiber connections, we target
8,492 websites with verified H2 support (cf. Fig. 1(a)) using three network loca-
tions: Barcelona (Spain), Pittsburgh (U.S.), and Cleveland (U.S.). Experiments
using 3G/4G connections are performed at a single location (Barcelona) and we
restrict the list to the 200 most popular websites, as ranked by Alexa, that also
support H2.

Figure 4(a) shows the CDF of H2 speedup at each location, and access net-
work. We start by focusing on fiber access; the figure shows positive speedup
values for 75–85% of the websites depending upon network location. While Pitts-
burgh and Cleveland show very similar H2 speedup values (decreasing the like-
lihood of this being an anomalous observation), speedup values measured from
Barcelona are 10–15% higher. Our latency estimations coupled with the mea-
surements (cf. Sect. 3) show that, on average, the Barcelona experiments suffer
an additional 14 ms in RTT since most target websites are located in the U.S.
Likely, the longer RTT negatively impacts H1 more than H2 due to the hand-
shakes required by the additional TCP connections in H1 (cf. Sect. 4.2).

Next, we focus on a single location (Barcelona) and different network access,
namely fiber, 4G, and 3G ordered by decreasing “speed.” Figure 4(a) shows that
as the access speed decreases, the benefit of adopting H2 also increases: the
average speedup grows from 560 ms on fiber, up to respectively 800 ms on 4G
and 1.6 s on 3G. Latency measurements show that the median RTT more than
doubles from fiber to 4G (46 up to 105 ms), and it grows by an additional 10 %
on 3G (117 ms). This additional latency again negatively impacts H1 more than
H2. Figure 4(a) also shows that an additional 10 % of websites see a performance
degradation, negative speedup, over 3G compared with 4G and fiber. This results
is due to the fact that for 3G and 4G we target Alexa’s 200 most popular websites
that also support H2, which tend to be landing pages and are simpler than the
average website. In this case, the application protocol used has little impact as
PLT is dominated by RTT.
Takeaway: 80% of the websites adopting H2 see an average page load time
reduction of 500 ms (fiber) and 1.6 s (3G). The remaining 20% see an average
page load time increase of 1 s (fiber) and 1.4 s (3G).

230 M. Varvello et al.

Partial Adoption. We now analyze the impact of the fraction of the webpage
served with H2 (th) on H2 speedup (cf. Fig. 2(a)). For this analysis, we focus
on a single location and access network (Cleveland, fiber) since no significant
differences arise across locations and access types. We find that for th < 1 there
is no statistically significant difference between the curves6 and most websites
benefit from even partial H2 adoption. On average, the speedup reduces by
10 % when we consider th = 1 which seems counter-intuitive. This again related
to a simpler object composition of these websites for which H2 benefits result
marginal.
Takeaway: Even partial H2 adoption improves PLT. In fact, the decrease in
PLT for websites using both H1 and H2 is often greater than that for pure H2
websites (though this is likely an artifact of the small subset of websites that are
fully H2, which tend to be very simple).

4.4 Discussion

In December 2015, a notable event shook our measurement infrastructure [1].
CloudFlare, a global CDN and DNS provider, enabled H2 for all its free cus-
tomers.7 This resulted in an additional 80,000 websites announcing H2 support
(H2-announce) of which about 60,000 exhibit true support (H2-true). Note that
CloudFlare uses an in- house version of NGINX, reported as cloudflare-nginx,
which rapidly became the most popular web server implementation supporting
H2.

Such rapid growth in H2-true websites affected Phase III’s feasibility: at such
scale, even the lazy strategy would require over a month to complete. Considering
even further growth moving forward, we can either divide Phase III among our
vantage points or sample the websites to test. We have temporarily suspended
Phase III and are rethinking this component of our infrastructure. In addition,
we are currently collaborating directly with CloudFlare to collect both server
and client side measurements. We will soon report the outcome of an improved
Phase III on [1] as well as in an extension of this work.

5 Conclusion

This work presents a measurement platform to monitor both adoption and per-
formance of H2, the recently standardized update of H1. On a daily basis,
our platform checks the top 1 million Alexa websites for which protocols they
announce support. Next, it checks which websites actually support H2, and, once
a week, tests their content structure and performance from multiple network
locations. Once a month, a popular subset of these websites is also tested from
3G and 4G networks. Results are updated daily at [1]. In this paper, we report
our initial findings from an 11 month measurement campaign, from November

6
Two sample Kolmogorov-Smirnov tests provided no support to reject the null hypothesis.

7
https://www.cloudflare.com/http2/.

https://www.cloudflare.com/http2/

Is the Web HTTP/2 Yet? 231

2014 until October 2015. We find 68,000 websites already announcing H2 sup-
port, out of which 10,000 serve actual content, i.e., not an error page or redirect.
An in-depth analysis of the content being served reveals that classic H1 hacks
are still present with H2. In performance, we find that 80 % of the websites load
faster with H2 than H1. The average decrease in page load time is 300–560 ms
from multiple locations with a fiber access, and up to 1.6 s from a European 3G
connection.

References

1. Is the Web HTTP/2 Yet?. http://isthewebhttp2yet.com
2. Node.js. https://nodejs.org/
3. Planetlab. http://planet-lab.org
4. Langley, A.: TLS Next Protocol Negotiation. https://technotes.googlecode.com/

git/nextprotoneg.html
5. Akhshabi, S., Dovrolis, C.: The evolution of layered protocol stacks leads to an

hourglass-shaped architecture. In: Proceedings of the ACM SIGCOMM, Toronto,
Canada, August 2011

6. Cardaci, A.: Chrome har capturer. https://github.com/cyrus-and/chrome-har-
capturer

7. Erman, J., Gopalakrishnan, V., Jana, R., Ramakrishnan, K.: Towards a SPDYier
mobile web?. In: Proceedings of the ACM CoNEXT, Santa Barbara, CA, December
2013

8. White, G., Mule, J.-F., Rice, D.: Analysis of spdy and tcp initcwnd. https://tools.
ietf.org/html/draft-white-httpbis-spdy-analysis-00

9. Molnár, G.: node-http2. https://github.com/molnarg/node-http2
10. Google: Spdy whitepaper. http://www.chromium.org/spdy/spdy-whitepaper
11. Podjarny, G.: Not as spdy as you thought. http://www.guypo.com/not-as-spdy-

as-you-thought/
12. Rizzo, J., Duong, T.: The crime attack. In: Ekoparty (2012)
13. Naylor, D., Finamore, A., Leontiadis, I., Grunenberger, Y., Mellia, M., Munafò, M.,

Papagiannaki, K., Steenkiste, P.: The cost of the “S” in HTTPS. In: Proceedings
of the ACM CoNEXT, Sydney, Australia, December 2014

14. OpenSSL: OpenSSL: The Open Source Toolkit for SSL/TLS. https://www.openssl.
org/

15. Padhye, J., Nielsen, H.F.: A comparison of spdy and http performance. Technical
report (2012)

16. Peon, R., Ruellan, H.: Hpack - header compression for http/2. https://tools.ietf.
org/html/draft-ietf-httpbis-header-compression-12

17. Saxcè, H.D., Oprescu, I., ChenSaamer, Y.: Is HTTP/2 really faster than
HTTP/1.1?. In: Proceedings ot he IEEE Global Internet Symposium (GI), Hong
Kong, CH, April 2014

18. Stenberg, D.: HTTP2, background, the protocol, the implementations and the
future. http://daniel.haxx.se/http2/http2-v1.9.pdf

19. Stenberg, D.: HTTP2 Explained. http://http2-explained.haxx.se/content/en/
part5.html

20. Friedl, S., Popov, A., Langley, A., Stephan, E.: Transport layer security
(tls) application-layer protocol negotiation extension. https://tools.ietf.org/html/
rfc7301

http://isthewebhttp2yet.com
https://nodejs.org/
http://planet-lab.org
https://technotes.googlecode.com/git/nextprotoneg.html
https://technotes.googlecode.com/git/nextprotoneg.html
https://github.com/cyrus-and/chrome-har-capturer
https://github.com/cyrus-and/chrome-har-capturer
https://tools.ietf.org/html/draft-white-httpbis-spdy-analysis-00
https://tools.ietf.org/html/draft-white-httpbis-spdy-analysis-00
https://github.com/molnarg/node-http2
http://www.chromium.org/spdy/spdy-whitepaper
http://www.guypo.com/not-as-spdy-as-you-thought/
http://www.guypo.com/not-as-spdy-as-you-thought/
https://www.openssl.org/
https://www.openssl.org/
https://tools.ietf.org/html/draft-ietf-httpbis-header-compression-12
https://tools.ietf.org/html/draft-ietf-httpbis-header-compression-12
http://daniel.haxx.se/http2/http2-v1.9.pdf
http://http2-explained.haxx.se/content/en/part5.html
http://http2-explained.haxx.se/content/en/part5.html
https://tools.ietf.org/html/rfc7301
https://tools.ietf.org/html/rfc7301

232 M. Varvello et al.

21. The http archive: http://httparchive.org
22. Tuan, N.A.: Maximum concurrent connections to the same domain for browsers.

http://sgdev-blog.blogspot.com.es/2014/01/maximum-concurrent-connection-to-
same.html

23. Wang, X.S., Balasubramanian, A., Krishnamurthy, A., Wetherall, D.: How speedy
is spdy. In: Proceedings of the NSDI, Seattle, WA, April 2014

http://httparchive.org
http://sgdev-blog.blogspot.com.es/2014/01/maximum-concurrent-connection-to-same.html
http://sgdev-blog.blogspot.com.es/2014/01/maximum-concurrent-connection-to-same.html

Modeling HTTP/2 Speed from HTTP/1 Traces

Kyriakos Zarifis1(B), Mark Holland2, Manish Jain2, Ethan Katz-Bassett1,
and Ramesh Govindan1

1 University of Southern California, Los Angeles, USA
kyriakos@usc.edu

2 Akamai Technologies, Cambridge, USA

Abstract. With the standardization of HTTP/2, content providerswant
to understand the benefits and pitfalls of transitioning to the new stan-
dard. Using a large dataset of HTTP/1.1 resource timing data from pro-
duction traffic on Akamai’s CDN, and a model of HTTP/2 behavior, we
obtain the distribution of performance differences between the protocol
versions for nearly 280,000 downloads. We find that HTTP/2 provides
significant performanceimprovements in the tail, and, for websites for
which HTTP/2 does not improve median performance, we explore how
optimizations like prioritization and push can improve performance, and
how these improvements relate to page structure.

1 Introduction

HTTP/2 will soon supplant HTTP/1.1 as the IETF standard for the delivery
of web traffic and is already supported by major browsers and some content
providers [12]. The design of HTTP/2 has been motivated by concerns about
the performance of HTTP/1.1. The aspect of web performance most relevant
to end-users is page load time (PLT), which has been shown to correlate with
content provider revenue, so content providers have gone to great lengths to
optimize it. HTTP/2 is a step in that direction: it multiplexes objects on a
single TCP connection, permits clients to specify priorities, and allows servers
to push content speculatively.

Several prior studies have shown mixed results on the performance difference
between HTTP/1.1 and HTTP/2 [7,11,14]. The relative performance of these
two protocols has been hard to assess because modern web pages have complex
dependencies between objects, and can contain objects hosted on different sites.
Many of these prior studies are focused on lab environments, and some have not
used real browsers as test agents, which can restrict visibility into browser-side
tasks like resource parsing, execution or rendering time.

This has motivated us to study the performance of HTTP/2 using data
collected from live page views by real end-users. Our study uses HTTP/1.1
Resource Timing [2] data collected from a broad set of customers on a major
CDN (Akamai). The data we collect consists of detailed timing breakdowns for
the base page and each embedded resource on a small sample of all page views.

c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 233–247, 2016.
DOI: 10.1007/978-3-319-30505-9 18

234 K. Zarifis et al.

Contributions. The first contribution of this paper is a model, called rt-h2,
that takes the resource timing data for a single HTTP/1.1 page view, and esti-
mates the difference in page load times for that page view between HTTP/1.1
and HTTP/2. To do this, rt-h2 models four important components of HTTP/2:
multiplexing, push, prioritization, and frame interleaving. rt-h2 also contains a
model of TCP that is reasonably accurate for Web transfers.

Our second contribution is to explore the PLT differences between HTTP/1.1
and HTTP/2 from nearly 280,000 page views of customers of Akamai. Of these,
we select 55 distinct websites which have a significant number of instrumented
page views and explore the relative performance under zero packet loss. In this
setting, page structure and the diversity of the client base (in terms of loca-
tion, browser type, etc.) should determine performance. We found that roughly
60 % of the time HTTP/2 has smaller PLT and 28 % of the time it has negli-
gible impact, but there are websites for which more often than others it leads
to performance degradation. We explored two optimizations, prioritization and
push. Push provided more improvement for cases where HTTP/2 was already
beneficial, and both helped the cases that saw degradation with HTTP/2.

Taken together, our findings indicate that CDNs should start experimenting
with HTTP/2 at scale, as it can have benefits for many clients of their customers.

2 Background and Approach

A typical web page consists of tens of resources fetched from many different
servers. Many of these objects have dependencies between them. A base page
HTML file is downloaded before sub-resources can be requested. Once sub-
resources are downloaded and parsed, they can trigger the downloads of other
resources. The user-perceived latency in loading a web page is a complex combi-
nation of the time taken to download, parse and render (if needed) its resources.

HTTP/1.1. The original HTTP/1.0 specification only allowed for one response-
request stream to be transferred per TCP connection. HTTP/1.1 added the
ability to re-use connections, but required that there be only one request in
flight on a TCP channel at a time. It also added pipelining, which is rarely
employed [1], so we ignore it in this paper.

Subsequent optimizations enabled parallel downloads by opening multiple
concurrent connections to the server. Browsers typically limit themselves to six
parallel connections per hostname. To leverage this to achieve faster downloads,
domain sharding, is used to partition objects across different hostnames.

HTTP/2. HTTP/2 allows multiple, concurrent requests to be outstanding on
the same TCP connection. This prevents the case where a resource that the
browser is ready to load is forced to wait for an idle connection. It also allows for
explicit prioritization of the delivery of resources. For example, when a server
has received a request for both an image and a Javascript object, and it has both
ready to deliver, the protocol allows (but does not mandate) that the Javascript
be given priority for the connection. This prioritization facilitates parallelization

Modeling HTTP/2 Speed from HTTP/1 Traces 235

of client processing and downloading. It also provides a mechanism for a server to
push content to a client without receiving a request from it. While the standard
does not specify best practices for pushing objects, the intent of this mechanism
is to enable servers to keep the pipe to the client as busy as possible.

Page Load Time. Both HTTP/1.1 and HTTP/2 contain performance opti-
mizations whose goal is to reduce PLT. Recent web performance studies have
converged upon an operational definition of PLT [10], which is when the browser
fires the onLoad event.

Understanding Relative Performance: Challenges. HTTP/2 contains sev-
eral optimizations that should result in better performance than HTTP/1.*, but
these performance benefits may not always be realized in practice. First, while
mechanisms for prioritization and push are defined in the standard, actual per-
formance improvements may depend upon the specific policies that Web servers
implement for these optimizations. Second, interactions with TCP can limit the
performance advantages of HTTP/2. Compared with when objects are retrieved
over parallel connections, the congestion window on a single multiplexed chan-
nel grows more slowly. Moreover, parallel connections are more forgiving of loss:
when a drop occurs in a stream, it will only trigger recovery on that stream.

Our Approach. We use Resource Timing [2] data collected using Javascript
from a broad set of customers on Akamai’s CDN. When enabled by a customer,
Akamai servers insert a small body of Javascript into 1 % of this customer’s
pages as they are delivered to end users. The script triggers the monitoring of
per-resource timing information, which includes the start/end timestamps for:
DNS lookup, TCP connection setup, TLS handshake if any, request sent to the
server, and start and end from response from the server [2]. The script then
encodes that information into a trie structure and delivers it to an Akamai
back-end system. Over a selected one-week period we observed data for about
44,000 distinct base-page hostnames and 3.4 million distinct base-page URLs.

Unlike prior work [7,11,14], our data consists of detailed timing breakdowns
for the base page and each embedded resource from real clients. From this infor-
mation, we obtain realistic network delays and browser side processing and ren-
dering delays for the complete set of resources in a page, and are able to assess
PLTs as reported by browser onLoad events.

However, our dataset captures HTTP/1.* downloads, so the primary chal-
lenge we face in the paper is how to predict the page load performance for this
dataset under HTTP/2. Using a real HTTP/2 deployment on the CDN is, at
the moment, not an option, because of the complexity and scale of the endeavor.
So, we resort to using a model of HTTP/2, as described in the next section.

3 The RT-H2 Model

Input. The input to rt-h2 is the Resource Timing (RT) data for a single
HTTP/1.1 download of a website from a real client. The input can be visu-
alized as a waterfall. Figure 1 (left) illustrates a simplified waterfall for a page

236 K. Zarifis et al.

Fig. 1. Transformation of an HTTP/1.1 waterfall to an HTTP/2 waterfall (Color figure
online).

downloaded via HTTP/1.1, containing seven objects: a base HTML page, one
CSS file, 3 Javascript files and 3 images. The HTML file is downloaded first and
it is parsed as it is being downloaded. So, even before 1.html completes, the
browser has determined that 2.css, 3.js and 4.png need to be downloaded
next. These three resources depend on 1.html, and that HTML page is said to
be a parent of these resources. However, not all of these resources can be imme-
diately downloaded: most browsers limit the number of parallel connections to
a given website, and Fig. 1 (left) shows a simplified example with at most two
parallel connections. Therefore, only the download of 2.css is initiated, and
other objects are blocked until 1.html has downloaded.

The waterfall diagram also illustrates three other important features that can
be gleaned from RT data. First, when 3.js completes, it triggers the download
of 5.js. The time between the completion of 3.js’s download and the request
for 5.js represents the processing time for 3.js. The processing time for 5.js
is also visible since that Javascript triggers the downloads of two images 6.png
and 7.png. Second, 5.js is an example of 3rd-party content (3PC). Examples of
3PC include ads, tags, analytics, and external JavaScript files that can trigger
the download of other 3PC or origin content. Finally, the dashed line in Fig. 1
runs through objects that represent the critical path in the waterfall. The critical
path of the waterfall demarcates objects whose download and processing times
determine the PLT. The browser’s OnLoad() event is triggered after 6.png is
downloaded, so 6.png and its ancestors are on the critical path.

The waterfall also explicitly contains four kinds of download timing infor-
mation. The blue boxes (Request), mark the time from when the object was
requested by the client to the time when the first byte of the object was received.
The red boxes (Download), mark the time from when the first byte of the object
was received by the browser, to when the last byte of the object was received.
The gray boxes (Blocked) represent the duration of time between when an object
could have been retrieved and when the request was actually made. The green
boxes (3PC) demarcate the retrieval of third-party content.

Real waterfalls have the same elements as in Fig. 1, but can be significantly
more complex, with hundreds of objects, several levels of dependencies, and
multiple sources of third-party content.

Output. The output of rt-h2 is a transformed version of the input waterfall
produced by applying the features of HTTP/2 on a real HTTP/1.1 waterfall
and the percentage change in PLT, which we denote ΔPLT .

Modeling HTTP/2 Speed from HTTP/1 Traces 237

Fig. 2. rt-h2 Components

Components of RT-H2. Both HTTP protocol versions are complex, and
HTTP/2 contains many optional features with unspecified policies or best prac-
tices. rt-h2 is designed to be able to explore what-if scenarios of different com-
binations of policies or optional features. It models HTTP/2 in a layered fashion
and has several components, as shown in Fig. 2. We describe each of these below.

Multiplexing. In HTTP/2, a client maintains a single TCP channel with any
one server, on which resources are multiplexed. rt-h2’s multiplexing compo-
nent, which operates at the object level, analyzes the input waterfall to deter-
mine which objects can be multiplexed. With HTTP/2, any resource with a
URI covered by the certificate of the origin can reuse the same channel. rt-h2
parses resource URLs and looks for patterns resembling the base page URL.
Because strict string matching does not cover all the cases (www.example.com
and img.xmpl.com can in fact be the same origin), we also assume that any
hostname that serves more than 5 resources in the same download must be ori-
gin content. The output of the multiplexing component is a collection of sets of
objects that can be multiplexed by HTTP/2 because they come from the same
server.

Browser-cached resources are not included in the multiplexer’s output. RT
data does not explicitly mark cached resources, so rt-h2 determines an object
is cached if its retrieval time in the original waterfall is less than 10 ms. For
cached objects, rt-h2 preserves the timing from the original waterfall. rt-h2 also
preserves the duration of 3PC resources which are not on the origin connection.

Push. This component emulates the ability of an HTTP/2 server to proactively
send resources to a client without the client having to request them. Push can
keep the pipe to the client full. For example, in Fig. 1 (left), 2.css, 3.js and
4.png could be served by an HTTP/2 server as soon as 1.html is requested,
rather than waiting for the client to request them.

While HTTP/2 specifies a push mechanism, it does not specify what poli-
cies to use for pushing. We have implemented a push policy, ideal-push, which
assumes that the server can assess which objects the client might request after
downloading the base HTML file. This is idealized, since there can be dynamic
content, e.g. Javascript can be executed at the browser, and its output can at
best be over-approximated by the server (for example, by static program analy-
sis). However, ideal-push gives an upper bound on HTTP/2 push performance.

Prioritization. The last object-layer component of rt-h2 is a component that
assigns priorities to objects. This prioritization represents a way for browsers to
control the way a TCP channel is shared across multiplexed resources. As with
push, the HTTP/2 specification defines the mechanism for assigning priorities,

www.example.com

238 K. Zarifis et al.

but does not mandate a specific scheduling policy; rt-h2 can explore different
prioritization policies. A basic type of prioritization enforced by today’s browsers
assigns relative bandwidth resources to Javascript, CSS and HTML files before
other file types since these files need to be processed by the browser and can
trigger downloads of other objects. In this paper, we explore a prioritization
policy which further preferentially prioritizes Javascript, CSS or HTML files
that are on the critical path. In practice, browsers could guess this prioritization
by extracting critical paths from historical traces of page downloads.

Interleaving. HTTP/2 permits interleaving of objects, and this component imple-
ments this capability. Among objects that can be multiplexed together at a given
time, it interleaves 16K chunks (frames) of these objects in FIFO order.

TCP Module. The core of rt-h2 is a custom, discrete-event, TCP simulator
which simulates TCP-CUBIC’s congestion window growth [9]. When determin-
ing what data to transmit, the TCP module supplies the interleaving mod-
ule with a desired number of bytes B that can be transmitted at each tick of
the simulator. The latter, in turn, consults the multiplexing, prioritization, and
push modules and determines which frames of which objects need to be served,
such that the total size of the frames is less than B. This is repeated until all
objects are served. The simulator clock ticks every RTT, changing the window
appropriately. We assume that connections are not bandwidth-limited, based
on the observation that for most (>90 %) of the traces, the HTTP/2 multi-
plexed payload was small enough (<1 MB) to easily fit within several client-edge
RTTs without exceeding the client’s BW cap, assuming a 5 Mbps connection. In
this paper, we only present results assuming no loss, to focus on the impact of
page structure and other page characteristics on HTTP/2. As shown in previous
work [14], loss affects HTTP/2 more negatively than HTTP/1.1 due to the single
channel. We did extend our model to incorporate loss. Specifically, we give each
packet an equal chance of getting dropped (1 % or 2 % in our experiments). If
one or more packets within one window are dropped, we assess a 77 % chance of
causing a retransmission time-out [8] and increment the time counter appropri-
ately. Our results were consistent with previous work [14], so we omit them for
brevity.

Preprocessing the Input. The HTTP/1.1 waterfall input to rt-h2 was produced
by a client running an unknown TCP stack version, and for which we know
HTTP layer request latency, but not TCP characteristics like loss. To compare
the two protocols on an even footing, we run the HTTP/1.1 waterfall through the
TCP module, without any HTTP/2 features on, then use the resulting waterfall
as input to the HTTP/2 model, and estimate ΔPLT based on those two. This way,
any inaccuracies in the TCP model impact both protocols equally. For the results
presented here, the loss rate is always set to zero and the RTT is inferred from
the download trace. Note that different client characteristics (TCP stack version,
browser optimizations) could affect the actual download slightly differently. We
do not try to infer all the client characteristics for each download. Instead we
come up with a generic model that captures the most popular TCP stack and

Modeling HTTP/2 Speed from HTTP/1 Traces 239

known client behaviors, and assume that implementation details do not affect
the outcome significantly, especially in large numbers.

Other Details. RT data does not include object sizes. We use a separate dataset to
obtain object sizes, and, for objects not listed in this dataset, we download them
to obtain size. To compute the output waterfall, we need dependencies between
objects: for this, we use techniques similar to those used in prior work [13].

Running a Waterfall Through RT-H2. Figure 1 shows how rt-h2 trans-
forms an input waterfall to its HTTP/2 equivalent. 3.js is prioritized over
2.css. As a result, the simulation returns an earlier completion time for it than
its original end time, and adjusts its dependent resources accordingly, shifting
5.js and its 2 children to the left. The request for 6.png and 7.png are requested
on the same channel, maintaining their distance from the end of 5.js, which
corresponds to processing time. The difference between the end times of the
respective last resources is calculated, and the onLoad event is shifted accord-
ingly. The ΔPLT is defined as the % change between the times of the two onLoad
events.

4 Validation

Methodology. In this section, we validate the rt-h2 model against PLT differ-
ences obtained from real traces for ground truth. The goal of validating rt-h2
is to understand whether the model’s estimates for ΔPLT are comparable to
those observed in a realistic experiment. We set up an Akamai CDN server in a
lab and configured it to serve 8 real websites both via HTTP/1.1 and HTTP/2.
These 8 websites are the most popular ones in the CDN among those who have
opted-in to resource timing monitoring and already use HTTPS.

We validate rt-h2 against those websites as follows: using Chrome, we down-
load each web page through the CDN server 100 times via HTTP/1.1 and 100
times via HTTP/2. For each HTTP/1.1 download we generate a resource tim-
ing beacon that is used as input to our tool, generating 100 estimated HTTP/2
waterfalls, and we obtain the estimated ΔPLT from those. We repeat this process
for 3 RTT values (20 ms, 50 ms, 100 ms). This is the induced round-trip between
the test client and the CDN edge server, which serves all of the pages’ (cacheable)
origin content. Since the base HTML file is not cached on the CDN because cus-
tomers want to generate pages dynamically, the client request for that file is
forwarded to the customer’s origin server, the latency to which is variable.

Figure 3 shows an example of this process for one of the target web pages.
There are 3 groups of 4 lines, each group representing a different RTT. Solid lines
correspond to PLTs of real downloads, dashed lines correspond to their modeled
equivalents. Blue lines are HTTP/1.1 and red lines are HTTP/2. Specifically, in
each RTT group, the blue dashed line corresponds to the CDF of PLTs after
passing the 100 waterfalls through the model but without applying the HTTP/2
features (so, simply passing them through our TCP model), and the red dashed
lines corresponds to the CDF of estimated PLTs after applying HTTP/2. We

240 K. Zarifis et al.

Fig. 3. Example of validation on a real page for 3 RTT values (Color figure online).

want the difference between the dashed lines (model) to be similar to that of the
solid lines (ground truth), which means that the distribution transformation of
the PLTs in our model after applying HTTP/2 was similar to the transformation
of PLTs that the real downloads observed switching from HTTP/1.1 to HTTP/2.
In this example, which corresponds to p1 in Table 1, the accuracy of the model is
very good for RTTs of 20 ms and 50 ms, but slightly worse for 100 ms (predicted
ΔPLT = −18 %, when in reality HTTP/2 reduced the PLT by 11 % (ΔPLT =
−11 %)).

Note that there is no 1-1 mapping between ground truth and experiment
data points. HTTP/1.1 and HTTP/2 downloads were interleaved, to distribute
network effects uniformly, but treating two adjacent HTTP/1.1 and HTTP/2
downloads as a pair has disadvantages: No two downloads are exactly equal, even
if back-to-back, both because network characteristics are ephemeral, and because
different resources (in numbers or variations, e.g. ads) can be downloaded each
time. For this reason, we chose to look at aggregate distributions of sufficiently
many samples rather than arbitrarily created pairs. The goal was not to validate
exactly how one specific download would change via HTTP/2 and how accurately
the model would predict that (because it is hard to produce exactly the same
download for a live page over the real Internet), but rather to see how the
distribution of PLTs of 100 downloads of a page changes via HTTP/2, and
validate that the model tracks that distribution change fairly accurately.

Table 1 shows the ground truth and predicted ΔPLT (%) for the 8 target
pages. The values shown are the medians of each set of the 100 runs. The model
estimates the overall impact of HTTP/2 on page load time of the test page
very accurately for zero loss, upon which most of our results are based. For all
estimations, the model always correctly estimates that the impact of HTTP/2
is positive, the difference between ground truth and estimated ΔPLT is within
20 % of the PLT, for 3/4 of them it is within 10 %. The accuracy can decrease for
higher RTTs (100 ms). However, we note that such high RTT values to Akamai’s
CDN edge are rarely observed. In the run with the lowest accuracy (p2, RTT =
50 ms), which has a median PLT of 2493 ms for HTTP1.1, the model predicted
2310.5 ms instead of the actual 2010 ms for HTTP/2. In this worst case the model
is 200 ms off but still correctly predicts that HTTP/2 is faster. Given that this
low accuracy happens less often for lower RTTs (which are more realistic) and

Modeling HTTP/2 Speed from HTTP/1 Traces 241

considering the simplicity of the model, these validation results are encouraging
for using the model to draw conclusions on larger scale data.

Table 1. ΔPLT (%) prediction. For each page (p1-p8) and RTT value, “Real” indicates
the ground truth PLT % change, and “Model” indicates the PLT % predicted by rt-h2.

RTT ΔPLT p1 p2 p3 p4 p5 p6 p7 p8

20 ms Real −10.5 −12.0 −50.9 −2.6 −18.0 0.1 −15.4 −8.2

Model −7.8 −11.0 −53.2 −6.3 −11.8 −1.3 −2.3 −9.5

50 ms Real −9.3 −24.0 −97.7 −6.3 −23.5 −4.4 −11.4 −10.1

Model −8.7 −7.2 −84.0 −9.9 −18.1 −4.6 −2.4 −21.6

100 ms Real −15.2 −31.1 −104.4 −6.9 −32.7 −5.8 −14.6 −16.1

Model −9.8 −33.3 −92.6 −15.0 −19.2 −14.2 −6.1 −24.9

5 Results

5.1 Methodology

Dataset. The RT data contains page views sampled at 1 % from Akamai cus-
tomers who have opted in this measurement. Each sample produces a waterfall.
We run rt-h2 on two sets of waterfalls. The first is an aggregate dataset of
278,178 waterfalls spanning 56,851 unique URLs and 2,759 unique hostnames,
corresponding to about 24 h worth of data. We then extracted a per-website
dataset of 126,919 waterfalls drawn from the aggregate dataset. These waterfalls
correspond to page views of 55 distinct websites. Each website has an average
of 2,350 waterfall samples, with a minimum of 180 and a maximum of over
26,000. Intuitively, each website’s collection of waterfalls represents a sample
of the clients of that website, that use various browsers and devices, from geo-
graphically diverse locations. These 55 websites are the most popular of Akamai’s
customers that have opted in to the measurement and contain, on average, 111
objects per page, with the minimum and maximum being 5 and 500 respectively.

Metrics. Our primary metric is ΔPLT . For the aggregate dataset, we are inter-
ested in the ΔPLT distribution across all waterfalls. For the per-website dataset,
we explore first-order statistics (min, max, mean, median and the top and bottom
deciles). We focus particularly on the 90th percentile of the ΔPLT distribution,
since tail performance is increasingly important for content providers.

Experimental Settings. We first understand the performance of basic
HTTP/2, and then explore the impact of two optimizations: prioritization and
push.

The prioritization scenario was motivated by our observation that default
HTTP/2 multiplexing can result in critical objects being downloaded later than

242 K. Zarifis et al.

they could, which can happen when many equal priority files are sent simultane-
ously. This what-if scenario asks: What would the ΔPLT distribution look like if
we knew how to prioritize objects that are on the critical path? This is somewhat
hypothetical, since the browser or server would need to know the optimal order.
We are exploring ways to make this possible, but this scenario gives us an upper
bound on the performance improvement.

The push what-if scenario is based on our observation of the considerable
idle network time until the base HTML file is available at the browser. This
scenario asks: What would the ΔPLT distribution look like if the server pushed
content speculatively? Ideal push pushes all non-cached objects, and assumes an
omniscient server which can predict what resources the client will need.

Network Conditions. Much prior attention has focused on the impact of net-
work conditions on HTTP/2 [7,11,14]. Our evaluation of the impact of loss
on HTTP/2 provided similar findings to previous work [14], so we omit it for
brevity. Our primary evaluations, presented here, are under no loss settings, in
which rt-h2’s TCP module does not simulate loss. By removing loss as a fac-
tor, the ΔPLT results are, to a large extent, impacted by page structure and its
interplay with TCP window growth and RTT.

5.2 Evaluation

Basic HTTP/2, Aggregate Dataset. Figure 4 plots the distribution of
ΔPLT s across the aggregate dataset. Recall that this contains nearly 280K water-
falls. Of these, almost 60 % benefit from HTTP/2 (negative ΔPLT). For another
28 % of the samples, the performance of the two protocols is identical, and
HTTP/2 actually hurts performance for the rest. We discuss the possible rea-
sons for some of these below, but these results paint a nuanced picture: HTTP/2
does improve performance for a majority of waterfalls, but despite better pro-
tocol design, web page PLTs can largely be determined by page structure and
dependencies.

Basic HTTP/2, Per-Website Dataset. The aggregate dataset provides
a macroscopic view of HTTP/2 performance, but looking at the per-website
dataset provides more interesting insights. Figure 5 shows the fraction of times
each website experienced a negative (green), positive (red), or zero (blue) ΔPLT .

Fig. 4. Overall impact of HTTP/2 on PLTs over 280K input waterfalls at zero loss.

Modeling HTTP/2 Speed from HTTP/1 Traces 243

For a given website, each waterfall represents a page view by a client. This figure
shows that different downloads of the same page may be impacted differently by
HTTP/2. Several factors contribute to this: the RTT of a client, the variability
of user agents, devices and processing times, and the impact of customizations
and dynamic content mean that no two waterfalls are likely to be the same.

However, Fig. 5 hides the magnitude of the ΔPLT s on each website, so we
resort to a different view of this result. Figure 6 plots some first order statistics
of the ΔPLT s, for each website. The bottom and top whiskers indicate the 10th
and 90th percentile respectively, the bottom and top of a bar indicates the 25th
and 75th percentile, and the dark dot shows the median.

For all websites except 2, HTTP/2 improves PLT at the 75th percentile. In
other words, for these websites, at least 75 % of the downloads would see a benefit
by using HTTP/2. For nearly two-thirds of the websites, the 90th percentile of
clients would see a benefit. For nearly half the websites (28 out of 55), the 10th
percentile of clients see a ΔPLT of 10 % or more. Taken together, these results
present an interesting view of HTTP/2 performance: under no-loss conditions,
the structure of most websites is such that multiplexing provides benefits.

But why is it that, for a third of the websites, the upper quartile of waterfalls
are negatively impacted by HTTP/2? One hypothesis was that the clients of
these websites had a qualitatively different RTT distribution than those of other
websites (HTTP/2 is known to degrade with RTT [4]). However, plotting the
distribution of RTTs (omitted for space) showed no obvious correlation between
the distribution of first-order statistics of the RTTs and those of the ΔPLT s.

Other potential reasons for performance differences across websites could
be differences in macroscopic Web page characteristics such as total payload of
resources in the waterfall, number, total payload and number of resources served
from the origin domain (which get multiplexed), number of cached resources,
number of 3PC resources, critical path length, number of 3PC resources on
critical path, number of js/css/html files served from the origin (and thus get

Fig. 5. Fraction of times a website
experienced bad(red) / zero(blue) /
good(green) PLT change (Color figure
online)

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 10 20 30 40 50

Δ(
P

LT
)

(%
)

Web Page #

Fig. 6. ΔPLT distributions for each
website at zero loss. Each candlestick
shows 10/25/50/75/90th %ile.

244 K. Zarifis et al.

Fig. 7. Impact of Prioritization on the (i) ΔPLT distribution across all samples of all
pages (left) and (ii) 90th percentile of the ΔPLT of each page (right).

prioritized in that channel) and device type. None of these seemed to directly
correlate with the observed ΔPLT s.

So, we resorted to a methodology that explores the impact of optimizations
like prioritization and push, based on observed patterns in manually examined
waterfalls, focusing on those that stood out in terms of HTTP/2 impact. Each
optimization focuses on one aspect of page structure, and we wanted to see if
negative HTTP/2 impact could be explained by some of these.

Prioritization, Per-Website Data. Figure 7 shows the results of the priori-
tization what-if scenario. Recall that this scenario was motivated by the obser-
vation that some pages download many critical objects (e.g. Javascripts), which
in turn trigger many other downloads. Basic HTTP/2 does not prioritize these,
so can delay the download of a resource that is on the critical path.

After applying prioritization, only 2 websites still see a negative impact from
HTTP/2 at the 90 %th percentile (at most 10 % of the time). Figure 7 (right)
shows the increase or decrease in the 90th percentile: for the third of the websites
for which basic HTTP/2 can perform badly in the upper quartile, prioritization
provides significant gains, improving the 90th percentile ΔPLT s by up to 4 %.
We notice that prioritization does not affect the 90th percentile of the websites
in the middle of the figure, for which the impact of HTTP/2 was already almost
always positive. Figure 7 (left) shows that across all waterfalls, prioritization
slightly improves the ΔPLT distribution but also removes the tail of negative
impacts.

Push, Per-Website Data. Another reason why HTTP/2 performs worse than
HTTP/1.1 is a structural one. We have found examples where HTTP/2 multi-
plexes 6 or fewer objects. In such cases, using parallel connections can be better,
since each of those (up to 6 for most browsers) starts with an initial window of 10,
whereas HTTP/2 uses a single TCP channel with the same congestion window.
We have seen a similar effect with domain sharding. When a website is sharded
across 3 domains and HTTP/2 multiplexes 18 objects or fewer, HTTP/1.1 wins.
This indicates that these websites may have been optimized for HTTP/1.1.

Figure 8 shows performance using ideal push. As with prioritization, ideal
push provides benefits at the 90th percentile except for 3 websites. However,
relative to prioritization, it improves the median performance of each website
significantly and only 7 out of 55 websites do not see more than 10 % gain for

Modeling HTTP/2 Speed from HTTP/1 Traces 245

the top 10th percentile of samples. This more pervasive improvement is visible
in the change in the aggregate CDF (Fig. 8 (left)), where now only 3–4% of
waterfalls see a negative performance impact from HTTP/2.

Fig. 8. Impact of Push on the (i) ΔPLT distribution across all samples of all pages
(left) and (ii) 90th percentile of the ΔPLT of each page (right).

Putting it all Together. Figure 9 plots the overall impact of the optimizations
on the aggregate dataset. This results in gains with HTTP/2 for nearly 70 % of
the waterfalls, equal performance for most of the rest, and only about 1 % of
the waterfalls seeing worse performance. The fraction of waterfalls with high
performance gains is much higher, thanks in large part to push.

In summary, our results suggest that HTTP/2’s features provide good per-
formance gains for most of the websites. For about a third, the top quartile’s
PLT performance worsens with HTTP/2, but this can be fixed with a combina-
tion of prioritization and push. Prioritization addresses structural issues in the
waterfall that cause this worse performance, and push does that too, but also
increases the gains for HTTP/2 across the board by utilizing idle network time.

6 Related Work

Several prior studies have assessed the performance of SPDY [4–6], the precursor
to HTTP/2. The approach of recording and replaying a website, used in many
of those, misses out on unreplayable parts of a download, and does not expose
the variability across many downloads of the same page due to personalization,

Fig. 9. Impact of HTTP/2 with optimizations on PLTs

246 K. Zarifis et al.

localization and dynamic content [11,14]. Our work uses traces from real page
views, so contains actual processing and rendering delays, and realistic client
distributions. Furthermore, by using a model, we are able to explore several
what-if scenarios on a very large dataset at fairly fast speed.

Prior work [3,7] has also focused on impact of SPDY specifically on cellular
networks. The results are ambiguous, with some showing PLT decrease by 23 %
and others highlighting that the single channel suffers more often from spuri-
ous retransmissions. Our work is complementary, and we have left the focus on
mobile devices for future work.

Our work would benefit from the help of a tool that calculates object rela-
tionships, like the browser plug-in wProf [13]. Unfortunately wProf calculates
dependencies in real-time, which can not be used at the scale of traces that we
are dealing with. A similar tool could be used to share structures and critical
paths of targeted websites, which can inform optimal prioritization.

7 Conclusion

While HTTP/2 standardization is complete, the conditions under which
HTTP/2 improves over the existing standard are not yet completely under-
stood. Our work adds to this understanding by analyzing a large dataset of
instrumented HTTP/1.1 page views using a model called rt-h2 that estimates
ΔPLT from this dataset. We find that HTTP/2’s basic features can improve the
90th percentile ΔPLT for nearly two thirds of the websites. Push and priori-
tization extend this further to cover all websites. Our work reveals aspects of
page structure in our dataset that determine the efficacy of push and prioriti-
zation. Much work remains, however, including potentially enriching our model,
exploring to what extent our estimated ΔPLT s manifest themselves in CDNs,
and finding methods to achieve the forms of prioritization and push we consider
in this paper.

Acknowledgments. We thank our shepherd, Srikanth Sundaresan, and the reviewers
for their helpful comments. Kyriakos Zarifis performed this work while employed tem-
porarily at Akamai. This work was funded in part by the National Science Foundation
(NSF) under grant number CNS-1413978.

References

1. HTTP Pipelining Not So Fast (Nor Slow!). http://www.guypo.com/http-pipe
lining-not-so-fast-nor-slow/

2. Resource Timing Specification. http://www.w3.org/TR/resource-timing/
3. SPDY Performance on Mobile Networks. https://developers.google.com/speed/

articles/spdy-for-mobile
4. SPDY whitepaper. https://www.chromium.org/spdy/spdy-whitepaper
5. Cherif, W., Fablet, Y., Nassor, E., Taquet, J., Fujimori, Y.: Dash fast start using

HTTP/2. In: NOSSDAV (2015)

http://www.guypo.com/http-pipelining-not-so-fast-nor-slow/
http://www.guypo.com/http-pipelining-not-so-fast-nor-slow/
http://www.w3.org/TR/resource-timing/
https://developers.google.com/speed/articles/spdy-for-mobile
https://developers.google.com/speed/articles/spdy-for-mobile
https://www.chromium.org/spdy/spdy-whitepaper

Modeling HTTP/2 Speed from HTTP/1 Traces 247

6. El-Khatib, Y., Tyson, G., Welzl, M.: Can SPDY really make the web faster? In:
IFIP Networking Conference (2014)

7. Erman, J., Gopalakrishnan, V., Jana, R., Ramakrishnan, K.K.: Towards a
SPDY’ier mobile web? In: CoNEXT (2013)

8. Flach, T., Dukkipati, N., Terzis, A., Raghavan, B., Cardwell, N., Cheng, Y., Jain,
A., Hao, S., Katz-Bassett, E., Govindan, R.: Reducing web latency: the virtue of
gentle aggression. In: SIGCOMM (2013)

9. Ha, S., Rhee, I., Xu, L.: CUBIC: a new tcp-friendly high-speed TCP variant.
Operating Syst. Rev. 42, 64–74 (2008)

10. Meenan, P.: How fast is your web site? Commun. ACM 56, 49–55 (2013)
11. Padhye, J., Nielsen, H.F.: A comparison of SPDY and HTTP performance. Tech-

nical report, July 2012
12. Varvello, M., Schomp, K., Naylor, D., Blackburn, J., Finamore, A., Papagiannaki,

K.: To HTTP/2, or not to HTTP/2, that is the question. In: PAM (2016)
13. Wang, X.S., Balasubramanian, A., Krishnamurthy, A., Wetherall, D.: Demystifying

page load performance with wprof. In: NSDI (2013)
14. Wang, X.S., Balasubramanian, A., Krishnamurthy, A., Wetherall, D.: How speedy

is SPDY? In: NSDI (2014)

Behind Box-Office Sales: Understanding
the Mechanics of Automation Spam

in Classifieds

Andrew J. Kaizer(B), Minaxi Gupta, Mejbaol Sajib, Anirban Acharjee,
and Qatrunnada Ismail

School of Informatics and Computing, Indiana University, Bloomington, USA
akaizer@indiana.edu

Abstract. In spite of being detrimental to user experiences, the
problem of automated messages on online classified websites is wide-
spread due to a low barrier of entry and limited enforcement-of-rules
against such messages. Many of these messages may appear legitimate,
but turn into spam when they are posted redundantly. This behavior
drowns out other legitimate users from having their voices heard. We
label this problem as automation spam – legitimate messages that are
posted at a rate that overwhelms normal posts. In this paper, we char-
acterize automation on a popular classifieds website, Craigslist, and find
that 2/3rd of the posts with URLs are automated. Automation is most
prevalent in categories dominated by businesses, such as Tickets, Cars by
Dealer, and Real Estate, with 67–92 % of the posts with URLs exhibit-
ing automation. Even in categories with less automation, intermittent
automation still overwhelms non-automated users, demonstrating that
no category is safe.

1 Introduction

Various ills, including spam, malware, blackhat search engine optimization, and
fraudulent product or video promotion, plague the modern web. While most of
these issues receive the necessary attention from the research and operational
communities, a lesser discussed ill is a special type of spam exemplified on online
classified websites, forums, blogs, and online social networks (OSNs), etc. where
legitimate content is forcefully pushed en masse onto users. While the content of
these messages is reasonably related to the topic at hand, their spamminess is a
result of the automation behind it which leads to a deluge that drowns out other
users’ posts. An example of this type of spam, referred to as automation spam
subsequently, is an automated user posting a large number of advertisements
of cars for sale in the automobile category of a classifieds website that drown
posts of other legitimate users in that category. Even as a buyer finds the first
automated post to be pertinent to their activity, their patience would wear thin

c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 248–260, 2016.
DOI: 10.1007/978-3-319-30505-9 19

Behind Box-Office Sales 249

after the many such posts are presented to them – this makes automation spam
a threat to the very utility of classifieds forums.

Automation spam is typically a result of software that allows a user to specify
an advertisement(s) to post onto a website and then automatically post those
messages, multiple times, on behalf of the user based on some posting crite-
ria (number of times to post, when to post, etc.). These automation tools ulti-
mately disrupt normal users from seeing content they want to see and as a result
automation tools are strictly forbidden or strongly discouraged in the world
of online classifieds due to its potential to turn into spam. Among the largest
classified websites – Craigslist.org, eBayClassifieds.com, ClassifiedAds.com, and
Backpage.com – the terms of service are clear in this regard. Craigslist, which
commands an Alexa rank of 10 in the U.S., clearly states a no automation pol-
icy: “It is expressly prohibited to post content to Craigslist using any automated
means...” [1]. Classifiedads.com has users agree not to use any form of auto-
mated device or computer program in their postings [2]. Even though automa-
tion is clearly restricted or forbidden, its use is still widespread because users
often engage in this behavior to save time and effort while letting their posts be
seen more often than competitors.

Given this unexplored category of spam, our key contribution in this paper
is a characterization of automation spam in the context of a popular classifieds
website, Craigslist. To this end, we collect all posts for 13 of the largest U.S.
cities in 117 categories of Craigslist for a period of three weeks. Automation
spam is then identified using a carefully chosen post rate threshold that identifies
obvious circumvention of the post rate limit on Craigslist. Since Craigslist lacks
public user accounts, we use URLs to group posts together into automated spam
campaigns that share a common URL resource.
The key characteristic observations from applying our automation threshold to
2.4 million Craigslist posts with URLs are:

63% of all Craigslist Posts Containing a URL are Automated. The most
consistent automation appears in categories dominated by businesses. Examples
include Tickets, Cars by Dealer, and Real Estate. In these categories, 67–92 %
of posts with URLs are automation spam, drowning non-automated posts and
creating a perverse incentive for more people to resort to automation to keep
their posts visible and to overwhelm the competition.

While Automation is Low in Categories Dominated by individuals,
such as Cars by Owner and Electronics, it Still Overwhelms These
Categories Intermittently: 12–43 % of posts containing URLs are still auto-
mated in categories dominated by individuals.

Most of the Automated Posts Can be Grouped Under Campaigns
and These Campaigns are Localized in Categories, but Span Multi-
ple cities: Consequently, all the 13 cities in our data set witness similar levels
of automation, in that 16–27 % posts (56–80 % of those containing URLs) are
automated. For example, a campaign spanning cities might just focus on Cars
by Dealer and Auto Parts categories.

www.Craigslist.org
www.eBayClassifieds.com
www.ClassifiedAds.com
www.Backpage.com
www.Classifiedads.com

250 A.J. Kaizer et al.

Levels of Automation Range from Naive to Sophisticated: On the naive
end are automators that allow campaigns where all posts contain URLs belonging
to just one domain. On the sophisticated end are automators for campaigns
that rotate through a large number of domains, use extensive redirections for
accounting and hiding purposes, and provide templates so sellers can easily avail
their automation services.

2 Data Collection

We collected posts from 117 of the Craigslist categories every fifteen minutes over
three weeks using the RSS feeds provided by Craigslist. This includes categories
under “community”, “housing”, “for sale”, “services”, “jobs”, and “gigs”. Fur-
thermore, we focused on 13 major metropolitan regions in the United States,
shown in Table 1 which describes the number of posts with URLs observed
per city and the amount of automation observed. These locations were selected
because they are among the most actively visited portions of the Craigslist web-
site during data collection.
Table 1. Number of posts observed and the automation
rates of posts with a URL over 21 days broken down by
city.

City Total
posts

With
URL

Automated-
post % URL

Dallas 773,185 261,383 80.07 %
Boston 527,163 156,112 78.24 %
Chicago 564,744 185,749 73.88 %
Atlanta 527,671 158,838 72.57 %
Portland 561,809 147,880 71.79 %
Seattle 537,040 166,706 70.91 %
Washington D.C. 564,224 179,862 70.29 %
Phoenix 729,927 204,656 68.01 %
San Diego 710,381 175,380 67.93 %
New York 631,164 229,889 67.83 %
Las Vegas 218,937 71,371 63.74 %
San Francisco Bay 683,284 217,396 61.55 %
Los Angeles 889,433 256,723 56.97 %

For each post, we col-
lect the following infor-
mation: Craigslist URL
for the post, post ID,
post date and local time,
post title, post body, and
the Craigslist email han-
dle which is unique to
each post. Additionally,
we know the category
and city in which the
post appeared. Each indi-
vidual post collected is
inserted into a database
table if it meets the fol-
lowing criteria: the post
ID, post time, and post
title are unique. These
criteria were selected as
they allow ignoring dupli-
cate posts while still cap-
turing any new posts.

Specifically, Craigslist allows reposts, so a post with the same post ID but dif-
ferent date or time is not a duplicate.

3 Identifying Automation Spam

In order to identify automation spam to be used in the characterization process,
we first grouped all posts that shared a common external URL together, which

Behind Box-Office Sales 251

we refer to as a campaign. Then, to identify automation spam, we applied a two
step approach involving post rate and post count to ensure we focused only on
automation spam and not on organic human posts. We discuss each aspect of
identifying automation spam in more detail in each subsection.

3.1 Campaigns: Unpopular and Popular

We found that the external URLs used to identify campaigns fell into two broad
categories that required different approaches to identify: Unpopular and popular
domains. In the first category are URLs that lead to unpopular domains, where
automators often rotated large numbers of such domains in an attempt to keep
URLs unique and evade detection mechanisms related to URLs. Interestingly,
irrespective of the number of domains, the IP addresses used to host them were
most often just a single IP address. We refer to the IPs for one automation
spam campaign as an IP group subsequently in the paper. Grouping IPs at a
general prefix level could be used to try and catch a larger number of IPs into
each campaign, but the campaigns we encountered would not benefit from this
approach as they were concentrated on a single IP address.

The second category of external URLs include popular domains, including
OSNs such as Facebook and image sharing websites. Here, the automated mes-
sages were often leading visitors to OSN pages of the business or using product
pictures uploaded to image sharing websites. This category of URL is different
from the unpopular domains in that the domain itself cannot be used to detect
automation without the risk of false positives because the domain serves a wide
variety of users with most users not using the popular service for automation.
For this reason, our identification process uses the full URLs for all popular
domains in the Alexa top 1 million to identify specific URLs that appear fre-
quently in posts.

3.2 Identifying Automation: Post Rate and Post Volume

The post rate step inspects if a campaigns violated the post rate limitations
in place for individual users that aims to prevent individual user spam. For
the online classified site of Craigslist at the time of data collection, this limit
was to allow a single account to post up to three times per minute, which was
established as our minimum threshold.

The post volume step applies a more stringent filter to identify automation
spam that violated the post rate step by focusing on particular behavior that
impacts users the most. In particular, this paper only considers campaigns that
posted an average of 24 times a day. This distinction ensures that our inspection
of campaigns explores high volume campaigns that hurt a user’s experience while
also avoiding capturing posts from individual users.

4 Characterization of Automated Spam

Table 2 presents an overview of the collected data. Over the data collection period
of three weeks between May 11th though June 1st, we observed 7,311,013 million

252 A.J. Kaizer et al.

Table 2. 20 % of all posts (63 % of those with URLs) on Craigslist are automation
spam

Post type Count Percentage (%)

No URL 4,898,618 67.01 %

Contains URL, is automated 1,517,500 20.75 %

Contains URL, is not automated 894,895 12.24 %

distinct post IDs, of which 2,412,395 (33 %) million had an external URL. Our
algorithm classified 1,517,500 distinct post IDs as automation spam – almost
63 % of all posts with a URL present. We manually verified the classification of
spam campaigns to ensure that we did not penalize any legitimate campaigns.

We identified 1109 automated campaigns. Of the automated campaigns, 760
belonged to popular domains and 349 to IP groups belonging to unpopular
domains. The campaigns for popular domains had 494,063 – 20.48 % of posts
with a URL – post IDs that were classified as automation spam with an average
number of 895 posts per campaign and a median of 198. A total of 1,100,720 –
45.63 % of posts with a URL – posts were classified as automation spam using
the IP group, with an average number of posts per campaign of 3,358 and a
median of 1,249. This implies that automation spam campaigns whose URLs led
to unpopular domains post at a rate 3.9 times higher than those whose URLs
lead to popular domains on an average. Note that the total posts for automation
spam campaigns whose URLs lead to popular and unpopular domains are greater
than the total automation campaigns, albeit by a small amount. This is because
a small percentage of automated posts contain URLs for both popular as well
as unpopular domains.

4.1 Automation by Categories

Table 3 shows the top-10 Craigslist categories with most number of posts during
our 3-week data collection period and the percentage automation in each. In
general, the categories can be divided as industry-based versus individual-based.
Industry-based categories are dominated by organizations or businesses that typ-
ically have an online presence, such as a website to sell products. Real Estate,
Cars by Dealer, Tickets, and Apartments categories fall in this grouping. Specif-
ically, Real Estate and Cars by Dealer are both organized and well established
industries which have a large number of products with high values to be sold.
The Apartments category has companies that have multiple properties with a
revolving number of openings and there is an incentive to fill openings as quickly
as possible. Finally, the Ticket resale business has been covered by the New York
Times as a $4.5 billion industry that aggressively tries to sell their products [3].

Behind Box-Office Sales 253

Table 3. 10 largest Craigslist categories and their
automation rates among all posts and only posts with
a URL.

Category Total
posts

With
URL

Automated
post
%URL

Cars by Dealer 1,075,163 619,037 77.08 %
Tickets 747,435 707,025 92.95 %
Furniture 599,052 114,967 43.30 %
Cars by Owner 410,130 31,726 11.92 %
Auto Parts 360,301 41,932 24.47 %
Apartments 336,680 202,650 66.89 %
General for Sale 269,752 25,886 17.24 %
Electronics 243,203 28,330 11.49 %
Real Estate 239,705 186,841 74.01 %
Mobile Phones 177,792 16,448 29.30 %

Three of these industry-
based categories, Car by
Dealer, Real Estate, and
Apartments, already have
a rich history of using
paper classified ads and
have recognized the utility
of online classifieds. Unsur-
prisingly, all industry-based
categories have 40–88% of
all posts that are automa-
tion spam. The number is
even higher when consid-
ering automation in posts
with URLs, with 67–92 %
of posts with URLs being
automated.

Individual-based cate-
gories are ones that have

individuals selling items. Posting classifieds may not be their primary occupa-
tion. In fact, many rely on Craigslist directly and do not have a web presence or
even use external URLs to sell their content, as such our algorithm would avoid
grouping them due to a lack of an external URL, avoiding a false negative risk.

To understand the importance of the industry versus individual categories,
consider the difference between Cars by Dealer and Cars by Owner categories.
Cars sold through a dealer make heavy use of external URLs that link back
to their website with more product details and, of course, more products to be
viewed – this explains the high rate of external URLs and automation observed
(44.38 %). Cars sold by their owner, however, are a one-time event; the owner
has a single vehicle to sell and is not going to automate their one or two classified
posts or create a website to sell this single vehicle. In this case, the individual
is better served by using the features provided directly by Craigslist and leav-
ing another avenue for potential buyers to contact them, such as providing a
phone number or email address. Due to these reasons, we find much lower rates
of automation in categories like Cars by Owner, General for Sale, Electronics,
Mobile Phones, Auto Parts, and Furniture categories.

Even though there are fewer posts with a URL in the individual categories,
this does not mean the rate of automation is equally low. Instead the percentage
of all posts with a URL that was considered automation spam ranged from 12–
43 %. This value is lower than the industry-based categories, but is still high
enough that somewhere between 1 out of every 8 posts and 1 out of every 2.5
posts are automation spam if they contain a URL.

Intermittent Automation can Overwhelm Low Automation
Categories: Interestingly, even in categories where the overall level of automa-
tion appears to be low, overwhelming automation can still occur. Consider the

254 A.J. Kaizer et al.

furniture category which has 8.31 % of its posts labeled as automation spam. If
we break the result down by city to see the maximum amount of automation
observed on the first page that has 100 posts – the page everyone sees when they
look at a category – we observe an alarming amount of automation at certain
times. For example, Boston’s Furniture category had 95 of the top 100 posts
automated, Dallas had 82 of 100, and of the rest of the cities we collected data
on, only Washington D.C. had a maximum rate below 50, at 38. This phenom-
enon is widespread across most categories and strongly points to the fact that
intermittent automation can overwhelm any category, even those that appear to
have lower rates of automation.

Automation Drowns Human Posts in High Automation Categories: In
categories where automation is high, automation can completely and consistently
drown out posts made by humans. For example, the Tickets category is almost
entirely automation spam posts, implying that an individual user who wants to
sell tickets has little chance of being seen by a large audience. Similarly, auto
dealerships or real estate offices that do not engage in automation risk their
classifieds postings being drowned out by their competitors that use automators.
In both of these cases 75 % of all posts with a URL in them were considered
to be from an automation spam source. This provides a perverse incentive for
more people to use automators to keep their posts visible, thereby leading to an
exacerbation of the problem.

The following are a few other interesting facts about automation:

If automation in the Tickets and Cars by Dealer Categories were to be
Curtailed, the Number of Posts we Observed Would have Plummeted
by over 1.1. million, leaving only about 400,000 automation spam posts across
every other category! This implies that even a limited application of our algo-
rithm to the higher traffic categories could alleviate most of the automation, in
turn allowing real human users’ posts to be more fairly viewed.

The Level of Automation Outside of the Top-10 Traffic Categories
is Low, Averaging 4.5% with no Category Exceeding 23%. We have
found that this does not preclude users from being overwhelmed by negative
automation, but rather that the automation that does exist is more bursty and
erratic. However, no category is spared from having human users drowned out
by automation at some point on a daily basis.

Most of the Automation Spam Campaigns are Localized into Related
Categories, but Span Across Multiple Cities. For example, we found a
campaign that occurred in two cities – Portland and Seattle – and was observed
in the Car by Dealer, Auto Parts, and Car by Owner categories. Another cam-
paign was observed in all cities but only the Ticket category. There appears to
be very little automation common across all categories, but rather a wide variety
of automation that targets particular categories.

Behind Box-Office Sales 255

4.2 Automation by Campaigns

As stated earlier, automation campaigns were rarely spread across many cate-
gories but instead focused on a handful of related categories, most often one.
For example, if a campaign was observed in Tickets, it was unlikely to also be
observed in the automotive categories. This observation makes it interesting to
examine the behavior of top campaigns, the knowledge about which can be used
to develop specialized solutions for specific tactics used by different campaigns.
Indeed, we revealed different tactics and techniques employed by the various
campaigns. Specifically, campaigns were of three types:

Table 4. Top-10 largest automation spam campaigns

Campaign Category Posts % Automated

FrontPage
Tickets

Tickets 144,918 100 %

Ticket
Network

Tickets 90,486 99.98 %

TicketTrail Tickets 81,846 92.36 %
Excellent

Stubs
Tickets 40,054 100 %

.Info Cars by
Dealer

38,067 100 %

SimpleTicket
Solutions

Tickets 31,640 100 %

Nondescript
Domains

Cars by
Dealer

31,095 100 %

CuttingEdge
Tickets

Tickets 39,051 76.46 %

Market
Leader

Real
Estate

30,293 96.88 %

Moxie Cars by
Dealer

28,695 100 %

Bare-Bones: Bare-bones
campaigns are those in
which an automator was
used that only makes auto-
mation spam easy by auto-
matically posting ads to
Craigslist. No additional
features are present.

Middle-Man: Middle man
campaigns are those that
automatically post ads to
Craigslist and allows a
client to track which ads
are being clicked on by hav-
ing an intermediate URL
that serves to redirect
the user to their end
destination. Before the redi-
rection occurs, the middle-
man service records
statistics about what URL
was selected so the client
can view how different ads
are performing.

Full-Featured: A full-
featured service is one

where a client purchases a whole suite of services: Automated posting, URL
tracking, web domain hosting, website templates, and other related services.

Table 4 details the ten largest automation spam campaigns observed in our
data. Recall that our algorithm first groups posts with external URLs by IP
group (for unpopular domains) and URLs (for popular domains) and then applies
criteria for inferring automation. The campaigns in Tickets occupy six of the top-
10 spots, with Cars by Dealer following with three spots. Next, we describe the
biggest campaigns, one each in Tickets, Cars by Dealer, and Real Estate.

256 A.J. Kaizer et al.

Campaign in Tickets: FrontPageTickets. This campaign was exclusive to
the Tickets category and was tied to just one domain: frontpagetickets.com,
which is a popular domain with an Alexa ranking of 517,000 globally and 100,000
in the United States. This campaign has two features that allowed our approach
to easily link directly to the source of the automation and be certain of the
judgment. The first feature is that external URL in the posts links directly to
the service in question. The link does not redirect to another domain. A second
feature is the consistent inclusion of links to the same three Facebook pages.

Fig. 1. Hourly post rate: FrontPageTickets campaign

Hourly post rates for this
campaign is shown in Fig. 1.
The post rate is consistently
sustained during all hours,
even at night, with mas-
sive spikes occurring occa-
sionally. The automation is
confirmed by the volume of
posts, which far exceed a
human’s ability to post, and
the observation that the post
rate did not slow or cease
during night time - which
would be expected due to
the diurnal nature of human activity. Other facts about this campaign include:

This campaign appears 144,918 times in our data, accounting for
1.98% of all posts observed over three weeks.

The top-3 minute-by-minute post rates were: 51, 45, and 44. This is
almost one classified ad posted per second, which is not possible without automa-
tion.

Campaign in Cars by Dealer: .Info. This campaign relies on 38,067 unpop-
ular .info domains that serve as a group of redirection services. A sample of the
domains in this redirection campaign include flawcross.info, trailint.info, and
catrating.info. The names of these domains do not appear to have any relation-
ship to automotives and only served as redirects. The importance of grouping
unpopular domains via IP Groups becomes apparent when we inspected this
campaign: of the 38,067 posts classified as part of this IP group, we observed
38,067 FQDNs, implying that every classified post in this campaign used a unique
domain name. If we had targeted automation only at URL granularity, we would
have missed this campaign.

More generally, redirection style campaigns of this type operate by acting
as a middle-man between the actual target and the source. Here, Craigslist is
the source that links to the middleman automator which then redirects to the
target URL(s). In this specific campaign each top-level domains has a unique
subdomain that acts as the direction code – e.g. t4vg4b.flawcross.info. The use

www.frontpagetickets.com
www.flawcross.info
www.trailint.info
www.catrating.info
www.t4vg4b.flawcross.info

Behind Box-Office Sales 257

of redirection automators is clever: it allows tracking to identify which posts are
producing actionable leads and allows the middle-man to defeat any frequency-
based analysis Craigslist may be doing to identify automation by URL.

Fig. 2. Hourly post rate: .Info campaign

Where the FrontPageT-
ickets campaign was
described as consistent, this
campaign was more erratic
and bursty as shown in
Fig. 2. It was rarely active
during the overnight hours,
often suddenly going dark
between the hours of 00:00
and 06:00 local time, per-
haps to mimic the human
diurnal pattern. It would
then ramp up again around
07:00AM for its most active
hour, representing the major-
ity of the higher spikes observed.

Other facts about this campaign include:

The 38,067 posts belonging to this campaign account for 0.52% of all
posts observed over three weeks.

The top three minute-by-minute post rates were: 26, 21, and 21. This
is almost one classified posted every three seconds in a single minute, which is
not possible for a human being.

Campaign in Real Estate: Market Leader. The real estate-based campaign
observed in our data came from a variety of domains, both popular and unpopu-
lar. There were 833 distinct domains that appeared in this campaign. Investigat-
ing these 833 domains shows that they are hosted and managed through a single
company called Market Leader. This company sells a unified management pro-
gram for real estate websites and web services which includes a website template,
lead generator (automator for Craigslist), and features related to management
of the client’s services [4].

By offering a full scale solution, this type of automator inadvertently allows
their services to have too much homogeneity, making it easier to link the different
domains together in two ways. The first is that the websites managed by the
Market Leader service all appear on the same IP and therefore are part of the
same IP group. Secondly, since the websites are provided via a template, they all
share features that can be used to validate that the IP grouping our approach
generates is correctly grouping domains from the exact same source together.
The two most visible features are a common login/sign-up link at the top of
the webpage and a “powered by market leader” notice on the footer of the
webpage.

258 A.J. Kaizer et al.

Fig. 3. Hourly post rate: Market Leader campaign

This campaign exhib-
ited a nearly perfect diur-
nal pattern, as shown in
Fig. 3. The posting rate is
slower when the day begins,
picks up until reaching a
peak at the middle of the
day, and then declines into
the evening hours. The peri-
ods of time where there is
a sharp spike in the post-
ing rate is what leads our
algorithm to consider 96 %
of the all posts from this campaign as suspected automation. These spikes
are often in the early afternoon, but sometimes occurring as late as between
17:00–19:00 or as early as 10:00–12:00 local time. The spike behavior also stands
out because it violates the normal behavior observed in aggregate for all posts
observed on a majority of the days. Other facts about this campaign include:

The 29,348 posts from this campaign account for 0.40% of all posts
observed over three weeks.

The top three minute-by-minute post rates were: 46, 45, and 41. This
is almost one classified posted every second in a single minute.

5 Related Work

Most research on classified websites has focused on the spam aspect of the specific
categories rather than exploring the automation angle. Tran et al. focused on
distinguishing between spam and advertising posts on Craigslist [5] and found
that the traditional methods of spam detection failed due to a lack of linkage
between posts. Instead they utilized domain knowledge of the categories the
spam appeared in; e.g. information about automobile prices in the automotive
category. Compared to Tran et al.’s domain specific application, our approach
focused on all categories of Craigslist.

Other spam work has focused on dynamic spam URL detection on services.
Research by [6,7] found that due to limited attacker resources, infrastructure
would have to be reused in spam/malicious links on Twitter, especially for link
redirection services. We extend this knowledge to the realm of non-malicious
automated tools where automators would reuse the same domain infrastructure,
but modify the subdomains in order to appear as if they were part of a different
ad and not related to anyone else who used that automator’s redirection service.
Other research in identifying spam through Twitter users lack of web presence
in the URLs they tweet achieved a 74 % level of fraudulent account detection [8].
We use a similar concept by using domain popularity in order to better establish
if the website is popular enough to justify a high post volume.

Behind Box-Office Sales 259

An additional concern with most anti-spam solutions is their reliance on
account information. For example, in the OSN space [9] used information related
to message similarity, ratio of URLs in messages, number of friends, etc. to deter-
mine if an account is generating spam messages or is a real user. Likewise, [10]
identified that many spam accounts on Twitter were generated in blocks and
had nonsensical usernames. While our approach to identifying automation spam
does not have access to accounts, due to the lack of publicly visible accounts, col-
laboration with providers could provide such details so that automated accounts
can be identified more easily.

6 Conclusion

Our work in this paper shows that automation is widespread on Craigslist
with 63 % of posts with URLs being automation spam. For occasional sellers
or those users not resorting to automation, automation can become a nightmare
if infringements of a website’s terms of service are not properly dealt with. Over-
all, characterizing automation on Craigslist suggests that websites – especially
those with a lower barrier of entry – will have to weigh the risks of automation
and how to regulate it to protect their users. Ultimately, we have provided a
first step towards identifying automation spam, which can be used help curtail
these issues and improve user experience for everyone who uses these services.

Future work is still needed on two fronts: Identifying automation spam
that does not contain a URL and creating a system that could be deployed
to detect automation spam in real-time. Identifying automation spam without
URLs would need to rely on content-based information: Phone numbers, email
addresses, identifying common content by n-gram analysis, etc. This content-
based approach could then be combined with our IP group based approach
to provide a complementary set of features with which to identify automation
spam with and without URLs. A real-time approach to detecting automation
spam would then need to determine what specific IP group and content-based
features provide the most coverage in identifying automation spam that could
also be calculated in real-time.

Finally, a key research challenge in this line of research is the lack of readily
accessible data sets to test and validate results. In order to develop a ground
truth dataset, manual human effort was needed to label the posts as either
automation spam or not-automation spam. We took this approach to verify our
results, which is the same manual style approach that Jindal, et al. took in man-
ually labeling reviews on Amazon as spam or non-spam for their spam analy-
sis [11]. However, even after manual analysis of posts for automation behavior,
there is still the fact to consider that our approach is only interested in captur-
ing automation spam. As a result, other spam on Craigslist may exist that has
characteristics we were not directly investigating, i.e. there could be traditional
content spam in classified posts - e.g. illegal pharmaceutical companies.

The use of a system that does both IP grouping and content-based analy-
sis, described above, would help to identify this traditional spam and automa-
tion spam. Using these complementary features would also help to identify spam

260 A.J. Kaizer et al.

that tries to evade IP group detection as IP group based approaches can be
defeated if the IP and URL used are changed frequently enough to prevent cre-
ating groupings. Content-based features, however, are more likely to keep simi-
larity between postings: The same or similar post content is likely to be used to
describe the same product/service that is for sale. As a result, using both sets
of features is likely to capture miscreants who try to evade either IP group or
content-based approaches.

References

1. Craigslist TOU, “Craigslist terms of use” (2013). http://www.craigslist.org/about/
terms.of.use

2. Classifiedads, “Terms and conditions” (2013). http://www.classifiedads.com/info.
php?terms

3. Davidson, A.: The secret science of scalping tickets (2013). http://www.nytimes.
com/2013/06/09/magazine/the-secret-science-of-scalping-tickets.html

4. MarketLeader, “One single, seamless real estate solution for your success | market
leader”, July 2013. http://www.marketleader.com/one-solution

5. Tran, H., Hornbeck, T., Ha-Thuc, V., Cremer, J., Srinivasan, P.: Spam detection
in online classified advertisements. In: Workshop on Web Quality. ACM (2011)

6. Lee, S., Kim, J.: WarningBird: a near real-time detection system for suspicious
URLs in twitter stream. IEEE Trans. Dependable Secure Comput. 10, 183–195
(2013)

7. Thomas, K., Grier, C., Ma, J., Paxson, V., Song, D.: Design and evaluation of a
real-time URL spam filtering service. In: IEEE Security and Privacy (2011)

8. Flores, M., Kuzmanovic, A.: Searching for spam: detecting fraudulent accounts via
web search. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp.
208–217. Springer, Heidelberg (2013)

9. Stringhini, G., Kruegel, C., Vigna, G.: Detecting spammers on social networks. In:
Computer Security Applications. ACM (2010)

10. Verkamp, J.-P., Gupta, M.: Five incidents, one theme: twitter spam as a weapon
to drown voices of protest. In: USENIX FOCI, vol. 22 (2014)

11. Jindal, N., Liu, B.: Opinion spam and analysis. In: International Conference on
Web Search and Data Mining. ACM (2008)

http://www.craigslist.org/about/terms.of.use
http://www.craigslist.org/about/terms.of.use
http://www.classifiedads.com/info.php?terms
http://www.classifiedads.com/info.php?terms
http://www.nytimes.com/2013/06/09/magazine/the-secret-science-of-scalping-tickets.html
http://www.nytimes.com/2013/06/09/magazine/the-secret-science-of-scalping-tickets.html
http://www.marketleader.com/one-solution

DNS and Routing

Towards a Model of DNS Client Behavior

Kyle Schomp1(B), Michael Rabinovich1, and Mark Allman2

1 Case Western Reserve University, Cleveland, OH, USA
kyle.schomp@case.edu

2 International Computer Science Institute, Berkeley, CA, USA

Abstract. The Domain Name System (DNS) is a critical component
of the Internet infrastructure as it maps human-readable hostnames into
the IP addresses the network uses to route traffic. Yet, the DNS behavior
of individual clients is not well understood. In this paper, we present
a characterization of DNS clients with an eye towards developing an
analytical model of client interaction with the larger DNS ecosystem.
While this is initial work and we do not arrive at a DNS workload model,
we highlight a variety of behaviors and characteristics that enhance our
mental models of how DNS operates and move us towards an analytical
model of client-side DNS operation.

1 Introduction

The modern Internet relies on the Domain Name System (DNS) for two main
functions. First, the DNS allows people to leverage human-friendly hostnames
(e.g., www.cnn.com) instead of obtuse IP addresses to identify a host. Second,
hostnames provide a layer of abstraction such that the IP address assigned to
a hostname can vary over time. In particular, Content Distribution Networks
(CDNs) employ this late binding to direct users to the best content replica.
Previous work shows that DNS lookups precede over 60 % of TCP connections
[14]. As a result, individual clients issue large numbers of DNS queries. Yet,
our understanding of DNS query streams is largely based on aggregate popula-
tions of clients—e.g., at an organizational [6] or residential level [3]—leaving our
knowledge of individual client behavior limited.

This paper represents an initial step towards understanding individual client
DNS behavior. We monitor DNS transactions between a population of thousands
of clients and their local resolver such that we are able to directly tie lookups
to individual clients. Our ultimate goal is an analytical model of DNS client
behavior that can be used for everything from workload generation to resource
provisioning to anomaly detection. In this paper we provide a characterization
of DNS behavior along the dimensions our model will ultimately cover and also
anecdotally show promising modeling approaches.

Note, one view holds that DNS is a “side service” and should not be directly
modeled, but rather can be well understood by deriving the DNS workload from

This work was funded in part by NSF grant CNS-1213157.

c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 263–275, 2016.
DOI: 10.1007/978-3-319-30505-9 20

http://www.cnn.com

264 K. Schomp et al.

applications such as web browsing and email transmission. However, deriving a
DNS workload from application behavior is at best difficult because (i) client
caching policies impact what DNS queries are actually sent in response to an
application event, (ii) some applications selectively use pre-fetching to lookup
names before they are needed and (iii) such a derivation would entail under-
standing many applications to pull together a reasonable DNS workload. There-
fore, we take the approach that focusing on the DNS traffic itself is the most
tractable way to understand—and eventually model—name lookups.

To motivate the need for a model, we provide an exemplar from our previous
work. In [14], we propose that clients should directly resolve hostnames instead of
using a recursive resolver. Ideally, an evaluation of this end system-based mech-
anism would be conducted in the context of end systems themselves. However,
the best data we could obtain was at the level of individual households—which
we know to include multiple hosts behind a NAT. Therefore, the results of our
trace-driven simulations are at best an approximation of the impact of the mech-
anism we were investigating. Our results would have been more precise had we
been able to leverage a model of individual client DNS behavior.

Broadly, the remainder of this paper follows the contours of what a model
would capture. We first focus on understanding the nature of the clients them-
selves in Sect. 3, finding that while most are traditional user-facing devices, there
are others that interact with the DNS in distinct ways. Next we observe in Sect. 4
that DNS queries often occur closely-spaced in time—e.g., driven by loading
objects for a single web page from disparate servers—and therefore we develop
a method to gather together queries into clusters. We then assess the num-
ber and spacing of queries in Sect. 5 and finally tackle the patterns in what
hostnames individual clients lookup in Sect. 6. We find that clients have fairly
distinct “working sets” of names, and also that hostname popularity has power
law properties.

2 Dataset

Our dataset comes from two packet taps at Case Western Reserve University
(CWRU) that monitor the links connecting the two data centers that house
all five of the University’s DNS resolvers—i.e., between client devices and their
recursive DNS resolvers. We collect full payload packet traces of all UDP traffic
involving port 53 (the default DNS port). The campus wireless network situ-
ates client devices behind NATs and therefore we cannot isolate DNS traffic to
individual clients. Hence, we do not consider this traffic in our study (although,
future work remains to better understand DNS usage on mobile devices). The
University Acceptable Use Policy prohibits the use of NAT on its wired networks
while offering wireless access throughout the campus, and therefore we believe
the traffic we capture from the wired network does represent individual clients.
Our dataset includes all DNS traffic from two separate weeks and is partitioned
by client location—in the residential or office portions of the network. Details of
the datasets are given in Table 1 including the number of queries, the number of
clients that issue those queries, and the number of hostnames queried.

Towards a Model of DNS Client Behavior 265

Table 1. Details of the datasets used in this study.

Dataset Dates Queries Clients Hostnames

Feb:Residential Feb. 26–Mar. 4 32.5 M 1359 (IPs) 652 K

Feb:Residential (filter) Feb. 26–27, Mar. 2–4 16.4 M 1262 (MACs) 505 K

Feb:Residential:Users 15 M 1033 499 K

Feb:Residential:Others 1.11 M 229 7.94 K

Feb:Office Feb. 26–Mar. 4 232 M 8770 (IPs) 1.98 M

Feb:Office (filter) Feb. 26–27, Mar. 2–4 143 M 8690 (MACs) 1.87 M

Feb:Office:Users 118 M 5986 1.52 M

Feb:Office:Others 25.0 M 2704 158 K

Jun:Residential Jun. 23–Jun. 29 11.7 M 345 (IPs) 140 K

Jun:Residential (filter) Jun. 23–26, 29 6.22 M 334 (MACs) 120 K

Jun:Residential:Users 5.81 M 204 116 K

Jun:Residential:Others 408 K 130 4.13 K

Jun:Office Jun. 23–Jun. 29 245 M 8335 (IPs) 1.61 M

Jun:Office (filter) Jun. 23–26, 29 133 M 8286 (MACs) 1.52 M

Jun:Office:Users 108 M 5495 1.42 M

Jun:Office:Others 25.0 M 2791 63.1 K

Validation: During the February data collection, we collect query logs from
the five campus DNS resolvers to validate our datasets1. Comparing the packet
traces and logs we find a 0.6 % and 1.8 % loss rates in the Feb:Residential and
Feb:Office datasets, respectively. We believe these losses are an artifact of our
measurement apparatus given that the loss rate is correlated with traffic volume.

Tracking Clients: We aim to track individual clients in the face of dynamic
address assignment. Simultaneously with the DNS packet trace, we gather logs
from the University’s three DHCP servers. Therefore, we can track DNS activity
based on MAC addresses. Note, we could not map 1.3 % of the queries across
our datasets to a MAC address because the source IP address in the query never
appears in the DHCP logs. These likely represent static IP address allocations.
Further, without any DHCP assignments we are confident that these IPs repre-
sent a single host.

Filtering Datasets: We find two anomalies that skew the data in ways that are
not indicative of user behavior. First, we find roughly 25 % of the queries request
the TXT record for debug.opendns.com (The next most popular record repre-
sents less than 1 % of the lookups!). We find this query is not in response to users’
actions, but is automatically issued to determine whether the client is using the
OpenDNS resolver (indicated in the answer) [1]. We observe 298 clients querying
this record, which we assume use OpenDNS on other networks or used OpenDNS
in the past. We remove these queries from further analysis. The second anomaly
1 We prefer traces over logs due to the better timestamp resolution (msec vs. sec).

http://www.debug.opendns.com

266 K. Schomp et al.

involves 18 clients whose prominent behavior is to query for debug.opendns.com
and other domains repeatedly without evidence of accomplishing much work.
The campus information technology department verified that these clients serve
an operational purpose and are not user-facing devices. Therefore, we remove
the 18 clients as they are likely unique to this network and do not represent
users. We do not attempt to further filter misbehaving hosts—e.g., infected or
misconfigured hosts—as we consider them part of the DNS workload (e.g., since
a resolver would be required to cope with their requests).

Timeframe: To more directly compare residential and office settings we exclude
Saturday and Sunday from our datasets.

Table 1 shows the magnitude of our filtering. We find commonality across
the partitions of the data, so we focus on the Feb:Residential:Users dataset for
conciseness and discuss how other datasets differ as appropriate.

Table 2. Feb:Residential clients that fit markers for general purpose devices.

Marker Clients %

All 1262 100 %

Google analytics 983 78 %

Search engine 1010 80 %

Google 1006 80 %

Any other 602 48 %

Gmail 881 70 %

LDAP login 840 66 %

Any 1033 82 %

3 Identifying Types of Clients

Since our focus is on characterizing general purpose user-facing devices, we aim to
separate them from other types of end systems. We expect general-purpose sys-
tems are involved in tasks, such as (i) web browsing, (ii) accessing search engines,
(iii) using email, and (iv) conducting institutional-specific tasks2. Therefore, we
develop the following markers to identify general-purpose hosts:

Browsing: A large number of web sites embed Google Analytics [8] in their
pages, thus there is a high likelihood that regular users will query for Google
Analytics hostnames on occasion.

Searching: We detect web search activity via DNS queries for the largest search
engines: Google, Yahoo, Bing, AOL, Ask, DuckDuckGo, Altavista, Baidu,
Lycos, Excite, Naver, and Yandex.

2 In our case, this is campus-life tasks, e.g., checking the course materials portal.

http://www.debug.opendns.com

Towards a Model of DNS Client Behavior 267

Email: CWRU uses Google to manage campus email and therefore we use
queries for mail.google.com to indicate email use.

Institutional-Specific Tasks: CWRU uses a single sign-on system for authen-
ticating users before they perform a variety of tasks and therefore we use
queries for the corresponding hostname as indicative of user behavior.

Table 2 shows the breakdown of the clients in the Feb:Residential dataset.
Of the 1,262 clients we identify 1,033 as user-facing based on at least one of the
above markers. Intuitively we expect that multiple markers likely apply to most
general purpose systems and in fact we find at least two markers apply to 991 of
the clients in our dataset. Results for our other datasets are similar.

We next turn to the 229 clients (≈ 18%) that do not match any of our mark-
ers for user-facing clients. To better understand these clients we aggregate them
based on the vendor portion of their MAC addresses. First, we find a set of ven-
dors and query streams that indicate special-purpose devices: (i) 48 Microsoft
devices that query for names within the xboxlive.com domain, which we con-
clude are Xbox gaming consoles, (ii) 33 Sony devices that query for names
within the playstation.net domain, which we conclude are Sony Playstation
gaming consoles, (iii) 16 Apple devices that have an average of 11 K queries—
representing 96 % of their lookups—for the apple.com domain, even though the
average across all devices that lookup an apple.com name is 262 queries, which
we conclude are Apple TV devices and (iv) 7 Linksys devices that issue queries
for esuds.usatech.com, which we conclude are transaction systems attached to
the laundry machines in the residence halls (!).

In addition to these, we find devices that we cannot pinpoint explicitly, but
do not in fact seem to be general-purpose client systems. We find 41 Dell devices
that differ from the larger population of hosts in that they query for more PTR
records than A records. A potential explanation is that these devices are servers
obtaining hostnames for clients that connect to them (e.g., as part of sshd ’s
verification steps or to log client connects). We also identify 12 Kyocera devices
that issue queries for only the campus NTP and SMTP servers. We conclude
that these are copy machines that also offer emailing of scanned documents.

For the IP addresses that do not appear in the DHCP logs (i.e., addresses
statically configured on the hosts), we cannot obtain a vendor ID. However, we
note that 97 % of the queries and 96 % of the unique domain names from these
machines involve CWRU domains and therefore we conclude that they serve
some administrative function and are not general purpose clients. The remaining
61 devices are distributed among 42 hardware vendors. In the remainder of the
paper we will consider the general purpose clients (Users) and the special purpose
clients (Others) separately, as we detail in Table 1. We find that our high-level
observations hold across all of the Users datasets, and thus present results for
the Feb:Residential:Users dataset only.

http://www.mail.google.com
http://www.xboxlive.com
http://www.playstation.net
http://www.apple.com
http://www.apple.com
http://www.esuds.usatech.com

268 K. Schomp et al.

4 Query Clusters

Applications often call for multiple DNS queries in rapid succession—e.g., as part
of loading all objects on a web page, or prefetching names for links users may
click. In this section, we quantify this behavior using the DBSCAN algorithm [4]
to construct clusters of DNS queries that likely share an application event. The
DBSCAN algorithm uses two parameters to form clusters: a minimum cluster
size M and a distance ε that controls the addition of samples to a cluster. We
use the absolute difference in the query timestamps as the distance metric. Our
first task is to choose suitable parameters. Our strategy is to start with a range
of parameters and determine whether there is a point of convergence where
the results of clustering do not change greatly with the parameters. Based on
the strategy in [4], we start with an M range of 3–6 and an ε range of 0.5–
5 s—note that M = 2 simplifies to threshold based clustering, but does not
produce a point of convergence. We find that 96 % of the clusters we identify
with M = 6 are exactly found when M = 3 and hence at M = 3 we have
converged on a reasonably stable answer which we use in the subsequent analysis.
Additionally, we find that for ε ∈ [2.5, 5], the total number of clusters, the
distribution of cluster sizes, and the assignment of queries to clusters remain
similar irrespective of ε value and therefore use ε = 2.5 s in our analysis. We
define the first DNS query per cluster as the root and all subsequent queries
in the cluster as dependents. In the Feb:Residential:Users dataset, we find 1 M
clusters that encompass 80 % of the roughly 15 M queries in the dataset.

To validate the clustering algorithm we first inspect the 67 K unique host-
names the algorithm labels as noise. We find a variety of hostnames with the
most frequent being: WPAD [7] queries for discovering proxies, Google Mail
and Google Docs, software update polling (e.g., McAfee and Symantec), heart-
beat signals for gaming applications (e.g., Origin, Steam, Blizzard, Riot), video
streaming (e.g., Netflix, YouTube, Twitch), and the Network Time Protocol
(NTP). All of these names can intuitively come from applications that require
only sporadic DNS queries, as they are either making quick checks every once in
a while, or are using long-lived sessions that leverage DNS only when starting.

To validate the clusters themselves, we observe that there are frequently
occurring roots. Indeed, the 1 M clusters have only 72 K unique roots, with
the 100 most frequently occurring roots accounting for 395 K (40 %) of the
clusters. Further, the 100 most popular roots include popular web sites (e.g.,
www.facebook.com, www.google.com). These are the type of names we would
expect to be roots in the context of web browsing. Another common root is
safebrowsing.google.com [9], a blacklist directory used by some web browsers to
determine if a given web site is safe to retrieve. This is a distinctly different type
of root than a popular web site because the root is not directly related to the
dependents by the page content, but rather via a process running on the clients.
This in some sense means SafeBrowsing-based clusters have two roots. While
use of SafeBrowsing is fairly common in our dataset, we do not find additional
prevalent cases of this “two roots” phenomenon. From a modeling standpoint

http://www.facebook.com
http://www.google.com
http://www.safebrowsing.google.com

Towards a Model of DNS Client Behavior 269

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100

Count per metric (log scale)

C
D

F
 p

e
r

c
lu

s
te

r
SLDs Hostnames Queries

Fig. 1. Number of queries, hostnames,
and SLDs per cluster.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 1 10 100 1K 10K

Mean queries sent per day (log scale)

C
D

F
 p

e
r

c
lie

n
t

Feb:Residential:Others Feb:Residential:Users

Fig. 2. Queries issued by each client
per day.

we have not yet determined whether “two roots” clusters would need special
treatment.

Figure 1 shows the distribution of queries per cluster. While the majority of
clusters are small, there are relatively few large clusters. We find that 90 %
of clusters contain at most 26 queries for at most 22 hostnames. Addition-
ally, we find 90 % of the clusters encompass at most 10 SLDs. The largest
cluster spans 95 s and consists of 9,366 queries for names that match to
the 3rd level label. The second largest cluster consists of 6,211 queries for
myapps.developer.ubuntu.com—which is likely a Ubuntu bug.

5 Query Timing

Next we tackle the question of when and how many queries clients issue. We
begin with the distribution of the average number of queries that clients issue
per day, as given in Fig. 2. We find that clients in Users issue 2 K lookups per day
at the median and 90 % of clients in Users issue less than 6.7 K queries per day.
The Others datasets show greater variability where relatively few clients generate
the lion’s share of queries—i.e., the top 5 % of clients produce roughly as many
total DNS queries per day as the bottom 95 % in the Feb:Residential:Others
dataset.

A related metric is the time between subsequent queries from the same client,
or inter-query times. Figure 3 shows the distribution of the inter-query times.
The “Aggregate” line shows the distribution across all clients. The area “90 %”
shows the range within which 90 % of the individual client inter-query time dis-
tributions fall. The majority of inter-query times are short, with 50 % of lookups
occurring within 34 ms of the previous query. However, we also find a heavy tail,
with 0.1 % of inter-query times being over 25 min. Intuitively, long inter-query
times represent off periods when the client’s user is away from the keyboard (e.g.,
asleep or at class). The Others datasets show wide ranging behavior suggesting
that they are less amenable to succinct description in an aggregate model.

http://www.myapps.developer.ubuntu.com

270 K. Schomp et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.001 0.01 0.1 1 10 100

Inter−query time in seconds (log scale)

C
D

F
 p

e
r

in
te

r−
q

u
e

ry
 t

im
e

90% Aggregate

Fig. 3. Time between queries from the
same client in aggregate and per client.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1ms 10ms 100ms 1s 10s 100s

Time (log scale)

C
D

F

Intra−cluster time Cluster duration Inter−cluster time

Fig. 4. Duration of clusters, inter-
cluster query time and intra-cluster
query time.

For the Users dataset, we are able to model the aggregate inter-query time
distribution using the Weibull distribution for the body and the Pareto distribu-
tion for the heavy tail. We find that partitioning the data at an inter-query time
of 22 s minimizes the mean squared error between the data and the two analyti-
cal distributions. Next, we fit the analytical distributions—split at 22 s—to each
of the individual client inter-query time distributions. We find that while the
parameters vary per client, the empirical data is well represented by the ana-
lytical models as the mean squared error for 90 % of clients is less than 0.0014.
Thus, parameters for a model of query inter-arrivals will vary per client, but the
distribution is invariant.

Next, we move from focusing on individual lookups to focusing on timing
related to the 1 M lookup clusters that encompass 12 M (80 %) of the queries
in our dataset (see Sect. 4). Figure 4 shows our results. The “Intra-cluster time”
line shows the distribution of the time between successive queries within the
same cluster. This time is bounded to ε = 2.5 s by construction, but over 90 %
of the inter-arrivals are less than 1 s. On the other hand, the line “Inter-cluster
time” shows the time between the last query of a cluster and the first query of
the next cluster. Again, most clusters are separated from each other by much
more than ε time, the minimum separation by construction. The line “Cluster
duration” shows the time between the first and last query in each cluster. Most
clusters are short, with 99 % less than 18 s. Additionally, we find that most of
client DNS traffic occurs in short clusters: 50 % of clustered queries belong to
clusters with duration less than 4.6 s and 90 % are in clusters with duration less
than 20 s. For the Others datasets, a smaller percentage of DNS queries occur in
clusters—e.g., 60 % in the Feb:Residential:Others dataset.

6 Query Targets

Finally, we tackle the queries themselves including relationships between queries.

Towards a Model of DNS Client Behavior 271

1E−7

1E−6

1E−5

1E−4

1E−3

1E−2

1E−1

1E+0

1 10 100 1K 10K 100K

Index of name, sorted (log scale)

Fr
ac

tio
n

of
 to

ta
l q

ue
rie

s
(lo

g
sc

al
e)

90% Aggregate

Fig. 5. Fraction of queries issued for
each hostname per client.

1E−3

1E−2

1E−1

1E+0

1 10 100 1K 10K 100K

Index of name, sorted (log scale)

F
ra

c
ti
o

n
 o

f
c
lie

n
ts

 (
lo

g
 s

c
a

le
)

SLDs Hostnames

Fig. 6. Fraction of clients issuing
queries for each hostname and SLD.

Popularity of Names: We analyze the popularity of hostnames using two
methods—how often the name is queried across the dataset and how many clients
query for it. Figure 5 shows the fraction of queries for each hostname (with the
hostnames sorted by decreasing popularity) in the Feb:Residential:Users dataset.
Per Sect. 5, we plot the aggregate distribution and a range that encompasses 90 %
of the individual client distributions. Of the 499 K unique hostnames within our
dataset, 256 K (51 %) are looked up only once. Meanwhile, the top 100 hostnames
account for 28 % of DNS queries. Figure 6 shows the fraction of clients that query
for each name. We find that 77 % of hostnames are queried by only a single
client. However, over 90 % of the clients look up the 14 most popular hostnames.
Additionally, 13 of these hostnames are Google services and the remaining one
is www.facebook.com. The plot shows similar results for second-level domains
(SLDs), where 66 % of the SLDs are looked up by a single client.

The distributions of both queries per name and clients per name demon-
strate power law behavior in the tail. Interestingly, the Pearson correlation
between these two metrics—popularity by queries and popularity by clients—is
only 0.54 indicating that a domain name with many queries is not necessar-
ily queried by a large fraction of the client population and vice versa. As an
example, updatekeepalive.mcafee.com is the 19th most queried hostname but
is only queried by 8.1 % of the clients. At the same time, 55 % of the clients
query for s2.symcb.com, but in terms of total queries this hostname ranks as
only the 1215th most popular. This phenomenon may be partially explained by
differences in TTL. The record for s2.symcb.com has a one hour TTL—limiting
the query frequency. Meanwhile, updatekeepalive.mcafee.com has a 1 min TTL.
Given this short TTL and that the name implies polling activity, the large num-
bers of queries from a given client is unsurprising. Thus, a model of DNS client
behavior must account for the popularity of hostnames in terms of both queries
and clients.

The heavy tails of the popularity distributions represent a large fraction of
DNS transactions. However, we cannot disregard unpopular names—even those

http://www.facebook.com
http://www.updatekeepalive.mcafee.com
http://www.s2.symcb.com
http://www.s2.symcb.com
http://www.updatekeepalive.mcafee.com

272 K. Schomp et al.

queried just once—because together they are responsible for the majority of DNS
activity therefore impacting the entire DNS ecosystem (e.g., cache behavior).

Co-occurrence Name Relationships: In addition to understanding popular-
ity, we next assess the relationships between names, as these have implications
on how to model client behavior. The crucial relationship between two names
that we seek to quantify is frequent querying for the pair together. We begin
with the request clusters (Sect. 4) and leverage the intuition that the first query
within a cluster triggers the subsequent queries in the cluster and is therefore
the root lookup. This follows from the structure of modern web pages, with a
container page calling for additional objects from a variety of servers—e.g., an
average web page uses objects from 16 different hostnames [10].

Finding co-occurrence is complicated due to client caching. That is, we cannot
expect to see the entire set of dependent lookups each time we observe some
root lookup. Our methodology for detecting co-occurrence is as follows. First, we
define clusters(r) as the number of clusters with r as the root across our dataset
and pairs(r, d) as the number of clusters with root r that include dependent
d. Second, we limit our analysis to the case when clusters(r) ≥ 10 to reduce
the potential for false positive relationships based on too few samples. In the
Feb:Residential:Users dataset, we find 7.1 K (9.9 %) of the clusters meet these
criteria. Within these clusters we find 7.5 M dependent queries and 2.2 M unique
(r, d) pairs. Third, for each pair (r, d), we compute the co-occurrence as C =
pairs(r, d)/clusters(r)—i.e., the fraction of the clusters with root r that include
d. Co-occurrence of most pairs is low with 2.0 M (93 %) pairs having a C much
less than 0.1. We focus on the 78 K pairs that have high C—greater than 0.2.
These pairs include 98 % of the roots we identify, i.e., nearly all roots have at least
one dependent with which they co-occur frequently. Also, these pairs comprise
28 % of the 7.5 M dependent queries we study.

We note that intuitively dependent names could be expected to share labels
with their roots—e.g., www.facebook.com and star.c10r.facebook.com—and this
could be a further way to assess co-occurrence. However, we find that only 27 %
of the pairs within clusters with co-occurrence of at least 0.2 share the same SLD
and 11 % share the 3rd level label as the cluster root. This suggests that while
not rare, counting on co-occurring names to be from the same zone to build
clusters is dubious. As an extreme example, Google Analytics is a dependent of
1,049 unique cluster roots, most of which are not Google names.

Finally, we cannot test the majority of the clusters and pairs for co-occurrence
because of limited samples. However, we hypothesize that our results apply to
all clusters. We note that the distribution of the number of queries per cluster in
Fig. 1 is similar to the distribution of the number of dependents per root where
the co-occurrence fraction is greater than 0.2. Combining our observations that
80 % of queries occur in clusters, 28 % of the dependent queries within clusters
have high co-occurrence with the root, and the average cluster has 1 root and
10 dependents, we estimate that at a minimum 80 ∗ 0.28 ∗ 10/11 = 20 % of DNS
queries are driven by co-occurrence relationships. We conclude that co-occurrence

http://www.facebook.com
http://www.star.c10r.facebook.com

Towards a Model of DNS Client Behavior 273

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Min cos similarity for same client on consecutive days

C
D

F
 p

e
r

c
lie

n
t

Hostnames SLDs

Fig. 7. Cosine similarity between the
query vectors for the same client.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Max cos similarity between clients for any day(s)

C
D

F
 p

e
r

c
lie

n
t

p
a

ir

Hostnames SLDs

Fig. 8. Cosine similarity between the
query vectors for different clients.

relationships are common, though the relationships do not always manifest as
requests on the wire due to caching.

Temporal Locality: We next explore how the set of names a client queries
changes over time. As a foundation, we construct a vector Vc,d for each client c
and each day d in our dataset, which represents the fraction of lookups for each
name we observe in our dataset. Specifically, we start from an alphabetically
ordered list of all hostnames looked up across all clients in our dataset, N . We
initially set each Vc,d to a vector of |N | zeros. We then iterate through N and
set the corresponding position in each Vc,d as the total number of queries client
c issues for name Ni on day d divided by the total number of queries c issues on
day d. Thus, an example Vc,d would be < 0, 0.25, 0, 0.5, 0.25 > in the case where
there are five total names in the dataset and on day d the client queries for the
second name once, the fourth name twice and the fifth name once. We repeat
this process using only the SLDs from each query, as well.

We first investigate whether clients’ queries tend to remain stable across days
in the dataset. For this, we compute the minimum cosine similarity of the query
vectors for each client across all pairs of consecutive days. Figure 7 shows the
distribution of minimum cosine similarity per client in the Feb:Residential:Users
dataset. In general, the cosine similarity values are high—greater than 0.5 for
80 % of clients for unique hostnames—indicating that clients query for a similar
set of names in similar relative frequencies across days. Given this result, it is
unsurprising that the figure also shows high similarity across SLDs.

Next we assess whether different clients query for similar sets of names. We
compute the cosine similarity across all pairs of clients and for all days of our
dataset. Figure 8 shows the distribution of the maximum similarity per client
pair from any day. When considering hostnames, we find lower similarity values
than when focusing on a single client—with only 3 % showing similarity of at
least 0.5—showing that each client queries for a fairly distinct set of hostnames.
The similarity between clients is also low for sets of SLDs, with 55 % of the pairs
showing a maximum similarity less than 0.5. Thus, clients query for different

274 K. Schomp et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1K 10K

Mean names queried per day (log scale)

C
D

F
 p

e
r

c
lie

n
t

SLDs Hostnames

Fig. 9. Mean hostnames and SLDs
queried by each client per day.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1K

Stack Distance (log scale)

C
D

F
 p

e
r

c
lie

n
t

Median Mean

Fig. 10. Mean and median stack dis-
tance for each client.

specific hostnames and distinct sets of SLDs. These results show that a client
DNS model must ensure that (i) each client tends to stay similar across time
and also that (ii) clients must be distinct from one another.

A final aspect we explore is how quickly a client repeats a query. As we
show in Fig. 2, 50 % of the clients send less than 2 K queries per day on average.
Figure 9 shows the distribution of the average number of unique hostnames that
clients query per day. The number of names is less than the overall number of
lookups, indicating the presence of repeat queries. For instance, at the median,
a client queries for 400 unique hostnames and 150 SLDs each day. To assess
the temporal locality of re-queries, we compute the stack distance [12] for each
query—the number of unique queries since the last query for the given name.
Figure 10 shows the distributions of the mean and median stack distance per
client. We find the stack distance to be relatively short in most cases—with over
85 % of the medians being less than 100. However, the longer means show that
the re-use rate is not always short. Our results show that variation in requerying
behavior exists among clients, with some clients revisiting names frequently and
others querying a larger set of names with less frequency.

7 Related Work

Models of various protocols have been constructed for understanding, simulating
and predicting traffic (e.g., [13] for a variety of traditional protocols and [2] as
an example of HTTP modeling). Additionally, there is previous work on char-
acterizing DNS traffic (e.g., [6,11]), which focuses on the aggregate traffic of a
population of clients, in contrast to our focus on individual clients. Finally, we
note—as we discuss in Sect. 1—that several recent studies involving DNS make
assumptions about the behavior of individual clients or need to analyze data for
specific information before proceeding. For instance, the authors of [5] model
DNS hierarchical cache performance using an analytical arrival process, while in
[14], the authors use simulation to explore changes to the resolution path. Both
studies would benefit from a greater understanding of DNS client behavior.

Towards a Model of DNS Client Behavior 275

8 Conclusion

This work is an initial step towards richly understanding individual DNS client
behavior. We characterize client behavior in ways that will ultimately inform an
analytical model. We find that different types of clients interact with the DNS
in distinct ways. Further, DNS queries often occur in short clusters of related
names. As a step towards an analytical model, we show that the client query
arrival process is well modeled by a combination of the Weibull and Pareto dis-
tributions. In addition, we find that clients have a “working set” of names that
is both fairly stable over time and fairly distinct from other clients. Finally,
our high-level results hold across both time and qualitatively different user
populations—student residential vs. University office. This is an initial indication
that the broad properties we illuminate hold the promise to be invariants.

References

1. OpenDNS. http://www.opendns.com/
2. Barford, P., Crovella, M.: Generating representative web workloads for network

and server performance evaluation. In ACM SIGMETRICS (1998)
3. Callahan, T., Allman, M., Rabinovich, M.: On modern DNS behavior and proper-

ties. ACM SIGCOMM Comput. Commun. Rev. 43(3), 7–15 (2013)
4. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for dis-

covering clusters in large spatial databases with noise. In: AAAI International
Conference on Knowledge Discovery and Data Mining (1996)

5. Fofack, N.C., Alouf, S.: Modeling modern DNS caches. In: ACM International
Conference on Performance Evaluation Methodologies and Tools (2013)

6. Gao, H., Yegneswaran, V., Chen, Y., et al.: An empirical re-examination of global
DNS behavior. In: ACM SIGCOMM (2013)

7. Gauthier, P., Cohen, J., Dunsmuir, M.: The web proxy auto-discovery proto-
col. IETF Internet Draft (work in progress) (1999). https://tools.ietf.org/html/
draft-ietf-wrec-wpad-01

8. Websites using google analytics. http://trends.builtwith.com/analytics/
Google-Analytics

9. Google safe browsing. https://developers.google.com/safe-browsing
10. HTTP archive. http://httparchive.org
11. Jung, J., Berger, A.W., Balakrishnan, H.: Modeling TTL-based internet caches.

In: IEEE International Conference on Computer Communications (2003)
12. Mattson, R.L., Gecsei, J., Slutz, D.R., Traiger, I.L.: Evaluation techniques for

storage hierarchies. IBM Syst. J. 9(2), 78–117 (1970)
13. Paxson, V.: Empirically derived analytic models of wide-area TCP connections.

IEEE/ACM Trans. Netw. 2(4), 316–336 (1994)
14. Schomp, K., Allman, M., Rabinovich, M.: DNS resolvers considered harmful. In:

ACM Workshop on Hot Topics in Networks (2014)

http://www.opendns.com/
https://tools.ietf.org/html/draft-ietf-wrec-wpad-01
https://tools.ietf.org/html/draft-ietf-wrec-wpad-01
http://trends.builtwith.com/analytics/Google-Analytics
http://trends.builtwith.com/analytics/Google-Analytics
https://developers.google.com/safe-browsing
http://httparchive.org

Detecting DNS Root Manipulation

Ben Jones1(B), Nick Feamster1, Vern Paxson2,3, Nicholas Weaver2,
and Mark Allman2

1 Princeton University, Princeton, USA
bj6@cs.princeton.edu

2 International Computer Science Institute, Berkeley, USA
3 University of California, Berkeley, USA

Abstract. We present techniques for detecting unauthorized DNS root
servers in the Internet using primarily endpoint-based measurements
from RIPE Atlas, supplemented with BGP routing announcements from
RouteViews and RIPE RIS. The first approach analyzes the latency to
the root server and the second approach looks for route hijacks. We
demonstrate the importance and validity of these techniques by measur-
ing the only root server (“B”) not widely distributed using anycast. Our
measurements establish the presence of several DNS proxies and a DNS
root mirror.

1 Introduction

The integrity and availability of many forms of Internet communication rely on
replies from the DNS root name servers. Entities operating unauthorized root
servers can completely control the entire Internet name space for any systems
within their sphere, including blocking access to sites by disrupting their name
resolution, or arbitrarily interposing on communication by redirecting through
man-in-the-middle proxies. In this paper, we present some techniques for assess-
ing the prevalence of unauthorized root servers.

We develop techniques to detect several scenarios where clients cannot direct
queries to the authorized DNS root servers. We call this phenomenon DNS root
manipulation, regardless of whether correct DNS results are returned, because
such servers can provide adversarial responses. Countries such as China [3],
Pakistan [12,18], and Turkey [1] already manipulate DNS to impose censorship,
sometimes incidentally affecting DNS resolution for other countries [2,8]. We
are interested in similar cases where an attacker can control where DNS packets
are sent, thereby preventing access to the root. Given the size of this threat,
we focus on attackers who manipulate all DNS root-server replicas, rather than
those who subvert only a subset of them.

As deployed today, the DNS root comprises 13 server addresses run by
12 organizations, designated a.root-servers.net . . . m.root-servers.net.
DNS resolvers have the IP addresses for these 13 logically distinct entities
hardwired into their configurations, grounding DNS resolution. All but one

c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 276–288, 2016.
DOI: 10.1007/978-3-319-30505-9 21

Detecting DNS Root Manipulation 277

Fig. 1. Attackers can manipulate access to the DNS root with (1) an in-path DNS
proxy, (2) DNS injection, or (3) changes to Internet routing to false DNS root servers.

of these servers uses anycast to route the corresponding IP address to mul-
tiple servers around the Internet. The number of topologically distinct repli-
cas for each anycasted root server range from two (h.root-servers.net) to
150 (l.root-servers.net).

Threat Model. Figure 1 illustrates three ways that an attacker can imple-
ment DNS root manipulation. Although some malware has controlled DNS
lookups directly on end-systems [10], that approach presumably presents dif-
ficult scaling issues to conduct in a widespread fashion. In this paper, we focus
on network-based manipulation. The first method interposes a middlebox to
intercept DNS traffic bound for root servers. For smaller networks, a transpar-
ent proxy achieves both control as well as potential performance improvements
by caching queries. Transparent proxies are easy to implement because DNS
operates over UDP, which is connectionless; thus, proxies do not need extensive
state. Second, an attacker may observe DNS requests and inject responses before
legitimate responses return. Finally, an attacker can compromise IP routing to
redirect traffic for the DNS root servers to a false root replica—analogous to the
anycast technology used for legitimate root replicas.

In all three cases, the attacker controls DNS responses, providing complete
control over DNS. Due to the scale and complexity required to manipulate
queries to the root servers, we assume that an entity seeking to subvert the
DNS root servers would do so across all 13 logical servers to obtain unambigu-
ous control. Additionally, our techniques assume that an in-path device does not
selectively choose which DNS requests to manipulate.

Approach. As discussed in Sect. 3, our approach identifies some unauthorized
root servers by examining side effects introduced by putting infrastructure in
place to handle DNS root lookups. Specifically, we examine the latency and
routing from various points around the Internet to the one non-anycasted root
server, b.root-servers.net, which in the absence of unauthorized manipula-
tion should reflect its singular location in Los Angeles, USA. We use the roughly
8,000-node RIPE Atlas [23] measurement platform for large-scale measurements.
We complement our active probing with BGP routing table snapshots from
RouteViews [26] and RIPE RIS [22].

278 B. Jones et al.

We develop methods to cast a wide net and demonstrate their validity by
finding several instances of DNS root manipulation. We find one ISP that redi-
rects clients at the IP layer to an unauthorized root replica. Further, we find
several ISPs prevent direct access to the authorized root servers by interpos-
ing on DNS lookup with proxies. Our methods give us confidence that we have
detected most, if not all, DNS root mirrors from our vantage points, though we
do not cover all ASes and we may underestimate DNS proxies. Section 2 sketches
related work in examining the fidelity of DNS resolution. We then discuss our
measurement approach in Sect. 3, and apply our approach in Sect. 4. We discuss
future work in Sect. 5 and summarize in Sect. 6.

2 Related Work

Several previous efforts have explored DNS manipulation, measured DNS root
servers, and looked for prefix hijacking.

DNS Manipulation. Dagon et al. found corrupt DNS resolvers by measur-
ing open resolvers [10]. This effort focused on finding compromised hosts rather
than DNS root manipulation and found that 2 % of resolvers provided incor-
rect queries and 0.4 % provided misleading answers. Closer to our work, Weaver
et al. used the Netalyzr end-system network measurement platform to explore
DNS manipulation [28] and characterize home network DNS resolution [13,27].
Between them, these two studies have characterized DNS manipulation from
both the server and the client side but did not focus on root replicas.

DNS Root Measurement. Several studies of the DNS root infrastructure
examine performance issues, particularly for anycast. Unfortunately, these works
are often out of date (some over 10 years old) or measure from only a few
vantage points [5,15,16,24,25]. Ballani et al. explored the DNS root anycast
deployment using open resolver measurements, but made no attempt to find
unauthorized roots [6]. Liang et al. also explored the DNS root, but focused on
typical performance rather than exploring oddly low response times [14]. We
also focus on using these measurements to find unauthorized roots, which Liang
et al. mention but do not explore.

Prefix Hijacking. Several studies have explored prefix hijacking, theoretically
and practically. Ballani et al. showed that ASes are theoretically capable of
hijacking a large fraction of the IP space, especially if they are a tier-1 ISP [7].
Nordström et al. defined several potential attacks against BGP and suggested
where new countermeasures were needed [19]. The past several years have also
seen several studies of hijacking attacks in the wild, such as the Pakistani miscon-
figuration that prevented users around the world from accessing YouTube [20],
and protecting important infrastructure, like the DNS root [9]. We use these
methods to look for BGP attacks against the DNS root.

Detecting DNS Root Manipulation 279

3 Measurement Method

To infer whether clients receive responses from an unauthorized root replica
instead of the actual DNS root, we examine both latency (as evident from
responses that return more quickly than they should, according to the distance to
B root) and server identity (as evident from HOSTNAME.BIND replies, tracer-
outes, and BGP routes).

Table 1. Data sources used to investigate possible manipulation.

Measurements Dates Manipulation

RIPE Atlas

Ping July 6–13, 2014 Root mirrors

HOSTNAME.BIND July 22, 2014 Proxies & Root mirrors

Traceroutes July 6, 2014 Proxies & Root mirrors

BGP

RIPE RIS July 6–13, 2014 Root mirrors

RouteViews July 7, 2014 Root mirrors

We use two different approaches to observe potential DNS root manip-
ulation: (1) direct end-system measurements using RIPE’s Atlas infrastruc-
ture (about 8,000 nodes in 2,755 distinct ASes over 189 countries); and (2)
control-plane analysis via BGP monitoring. For each platform, Table 1 shows
what measurements were collected, when they were collected, and the types of
manipulation that can be detected from each measurement. We analyzed a week
of measurements from the RIPE Atlas platform, spanning July 6–13, 2014. We
received one HOSTNAME.BIND measurement from each of 6,135 Atlas probes
and about 2,500 ping measurements from each of 6,546 Atlas probes. For reasons
we could not determine, the dataset does not include all Atlas probes listed as
currently deployed, but we use data from the 5,929 Atlas probes providing both
measurements.

3.1 Anomalous Response-Time Latency

To look for transparent DNS proxies, we draw upon the ongoing ICMP ping
measurements that by default the RIPE Atlas nodes make to each of the DNS
roots every 240 s (four minutes) [21], analyzing in particular the ping times to
the singular B root. Additionally, we time HOSTNAME.BIND DNS queries sent
to B root. In the absence of a DNS proxy, we expect these response times to be
similar. In the presence of a DNS proxy, we expect the DNS response time to be
much lower because the DNS query will not go all the way to the authoritative B
root DNS server. The latency difference would be evident in DNS injection and
difficult for an attacker to mask. A strong attacker who can intercept DNS traffic

280 B. Jones et al.

could of course transform DNS replies instead of answering requests directly, and
hence produce the expected latency from querying the corresponding authorized
root servers.

3.2 Anomalous Server Identity

We next sketch three methods to establish the identity of the DNS root server
and its position in the network.

HOSTNAME.BIND Queries. To identify anomalous server identities, we
issue HOSTNAME.BIND queries from Atlas probes—special DNS queries that
ask a DNS server to identify itself. HOSTNAME.BIND replies from the correct B
root follow the pattern bx, where x ranges from 0 to 9. Invalid or null responses
may indicate that the replies did not come from the actual root server. We also
explored using the EDNS NSID extension [4], another DNS server identification
protocol, but the extension does not provide additional information for our pur-
poses, and is not supported by B root. It would be difficult for a DNS proxy
to fake the HOSTNAME.BIND response because for responses to appear valid,
they would need to be customized based on the root to which the original request
was sent. This mode of operation would make the proxy more complex and is
not supported by default software, making its use unlikely. A DNS root mirror
might instead falsify the response of the singular B, but we did not observe such
scenarios.

Traceroutes. We look for DNS root mirrors by analyzing the ongoing UDP
traceroutes conducted from RIPE Atlas nodes to the B and L roots1 every 1800 s
(30 min) [21].2 We use traceroutes to identify potential root mirrors by (1) check-
ing the ASN on the penultimate hop before reaching B root and (2) comparing
traceroutes from the Atlas probe to B and L roots. By checking the ASN on the
penultimate hop, we can verify that the traffic left the Atlas probe’s AS and
that the probe’s traffic took a valid route to B root. We assume that an attacker
would have difficulty falsifying all of the traceroute hops to the root servers.

Similarly, we hypothesized that an attacker might use a single root mirror to
serve multiple DNS roots to avoid replicating the same functionality. To detect
root mirror reuse, we check how many hops match between traceroutes to B and
L roots. (We again assume that an attacker would have difficulty falsifying all
traceroute hops to the root servers.)

BGP Routing Tables and Updates. We also looked for evidence of manip-
ulating routing to alter the topological location of the root servers. Private
routes can occasionally leak to the public Internet, as when Pakistan censored
YouTube [20]. Brown et al. found anecdotal evidence of DNS censorship in China
affecting the DNS root for other countries [8].

1 We L root selected solely for convenience.
2 The UDP query packets are not DNS requests, nor do they use the DNS service

port.

Detecting DNS Root Manipulation 281

If a hijacked route propagates outside the targeted network, the announce-
ment may appear in public BGP databases. To explore this possibility, we exam-
ine BGP data from University of Oregon’s RouteViews project [26] and RIPE’s
Routing Information Service (RIS) [22] for the same time period as the RIPE
Atlas data. Both RouteViews and RIS collect public peering data from exchange
points around the world by pulling the data from route servers at regular inter-
vals. We analyzed the data by checking RIBs for B root’s prefix, and checking if
the AS path or prefix differed from real announcements. We speculated that an
AS might perform a hijacking attack (directed at either their internal BGP net-
work or at other ASes) by interjecting themselves into the AS path or announcing
a more specific prefix.

4 Results

We applied the techniques from Sect. 3 to look for evidence of DNS root manipu-
lation. Analyzing anomalous latencies and HOSTNAME.BIND replies identified
a modicum of DNS root manipulation; the routing and traceroute data did not
yield any additional evidence of such manipulation.

4.1 In-Path DNS Proxies

We identified eleven HOSTNAME.BIND responses that did not match the
expected bx pattern discussed in Sect. 3.2. One of these coincides with a DNS
mirror in China, which we discuss in Sect. 4.2. We find that the other ten HOST-
NAME.BIND responses from other root servers yielded identical results, sug-
gesting that the Atlas probes reside behind a hidden DNS proxy. Only one ISP
with such a DNS proxy hosted multiple Atlas probes, but three of the four
Atlas probes on that network exhibited correct HOSTNAME.BIND responses,
suggesting that the proxy may reflect user configuration rather than ISP deploy-
ment. For the other nine instances, the use of DNS proxies appears to reflect an
intentional decision, because several HOSTNAME.BIND responses correspond
to the name of the ISP. This manipulation may be used to improve performance.
For example, an Atlas probe hosted by Wananchi, a Kenyan ISP, received a
response purportedly from B root that identifies the server dns3.wnanchi.com
in 14 ms—as opposed to 318 ms for ping measurements to B root.

Using the ping data, we looked for minimum ping times that were less than
the minimum speed-of-light propagation delay from RIPE Atlas nodes to B root.
These measurements should not be affected by any hidden DNS proxies because
we base them on ICMP ping packets; they should also not reflect unrelated
network failures (which can only increase latency, assuming we eventually receive
a reply). To determine whether to deem a ping RTT as implausibly low, we
geolocated each Atlas probe and restricted our analysis to low ping times from
Atlas probes outside of North and South America. We compared Atlas’s own
geolocation information with MaxMind’s [17] geolocation of the Atlas probe’s
externally visible IP address (as determined by Atlas’s servers). This process

282 B. Jones et al.

yields only one source of geolocation for 1,388 Atlas probes (22.6 %); we find
inconsistent location information for another 106 Atlas probes (1.7 %), which we
do not use for our analysis.

−200 −100 0 100 200 300 400

(ping - HOSTNAME.BIND) times

Zambia

South Africa

Nigeria

Kenya

Angola

Pr
ob

e
L

oc
at

io
n

Fig. 2. Difference in response times between pings and HOSTNAME.BIND queries to
B root. DNS response times significantly lower than ping times suggest the presence of
a DNS proxy like the one the arrow points to.

These measurements detected the same ten DNS proxies as the HOST-
NAME.BIND measurements we describe above by looking at the difference in
response time between DNS queries and pings to B root. The fact that two inde-
pendent techniques detected the same ten DNS proxies increases our confidence
in the result.

Figure 2 shows the difference in response time between DNS queries and pings
to B root for a representative sample of African countries. We observe a slightly
smaller ping response time, except for the previously discussed DNS proxy in
Kenya. These results are representative of the rest of our dataset; only eleven
Atlas probes have DNS response times more than 50 ms faster than their ping and
ten of these eleven Atlas probes are behind DNS proxies. The remaining Atlas
device, which is not behind the root mirror, appears to reflect a network change
between the ping and DNS measurements because both the ping and DNS query
response time are over 350 ms. Our results are qualitatively consistent with those
of Weaver et al. [27], which found that 1.4 % of Netalyzr clients resided behind
hidden DNS proxies, although we observe one-tenth of that previously observed
rate.

4.2 Rogue DNS Root Mirrors

One HOSTNAME.BIND response did not match the expected format from B
root but did not appear to be a DNS proxy. We identified this response as an
unauthorized DNS root replica in China and confirmed its presence with pings
and traceroutes.

We explored the minimum response time to B root by continent, highlighting
four clear outliers, one of which is shown in Fig. 3. As mentioned, one outlier was

Detecting DNS Root Manipulation 283

0 50 100 150 200

RTT to B Root in ms

0

50

100

150

200
R

T
T

to
L

R
oo

ti
n

m
s Consistent Location

Inconsistent Location

Fig. 3. Response times to B root (unicast from USA) and L root (150 anycast sites)
from 184 RIPE Atlas probes geolocated to Asia. The arrow points to the DNS root
mirror, a clear outlier.

a DNS root mirror, but the other three outliers were measurement errors. Despite
these outliers, we are confident in our timing data because Fig. 3 demonstrates
that the response times were generally consistent, even when geolocation was
problematic (the plot also includes responses that were discarded for inaccurate
geolocation). We continued exploring the outliers by validating our geolocation
information with traceroutes. As a result of this validation, we discarded an Atlas
probe in New York that erroneously geolocated to Switzerland. (The traceroute
showed that the first hop was only a few milliseconds away and included “us”
as part of the router name.)

When further analyzing the ping responses for the remaining outliers, we
found that aside from the DNS root mirror itself, the other two outliers were
measurement errors due to improper handling of ICMP error messages. For
example, an Atlas probe in Belgium received many ping responses with a TTL
of 255 and a response time around 5 ms followed by duplicate responses with a
TTL of 44 and a response time around 168 ms. The TTL of 255 indicates that
the first hop router sent an ICMP error message which the RIPE Atlas platform
interpreted as an ICMP ECHO reply.

We determined that the fourth outlier was an unauthorized root mirror in
the China Education and Research Network. The Atlas probe could ping B root
in 1.2 ms and a HOSTNAME.BIND query produced an invalid response with a
response time of 16 ms. The Atlas probe experienced infrequent network issues
with 8 pings (0.11 %) over 100 ms, but Fig. 4 demonstrates that the pings were
otherwise consistent. Both RIPE Atlas and MaxMind geolocated the Atlas device
to China, and all hops on a traceroute to B root are in the same ASN. Addition-
ally, the Atlas probe could directly communicate with a (non-root) authoritative
DNS server under our control, so the Atlas probe does not appear to be behind
a DNS proxy. The presence of so many measurements makes it more likely that
this RIPE Atlas probe is behind a DNS root mirror.

284 B. Jones et al.

Jul 06 2014

Jul 07 2014

Jul 08 2014

Jul 09 2014

Jul 10 2014

Jul 11 2014

Jul 12 2014
0

20

40

60

80

100
R

es
po

ns
e

T
im

e
(m

s)

Fig. 4. 2,519 pings to B root from a Chinese Atlas probe are consistently, impossibly
low, indicating a root mirror.

4.3 Traceroutes

We analyzed traceroutes to B and L roots and did not find any evidence of DNS
root mirrors. We analyzed these traceroutes by noting the penultimate hop on
the path to B root and comparing the traceroutes between B and L roots.

Validating Paths to B Root. To understand the penultimate router in the
path to B root, we explored 4,333 traceroutes from 1,948 Atlas probes to B root.
These totals do not include traceroutes that did not successfully complete or that
contained any errors or packet drops. We found that the penultimate router for B
root was in AS 226 (Los Nettos) for 1,647 Atlas probes (3,488 traceroutes), in AS
2153/2152 (California State University) for 295 Atlas probes (814 traceroutes),
in AS 4 (ISI) for two Atlas probes (22 traceroutes), in AS 8121 (Layer 42) for
1 Atlas probe (5 traceroutes), in AS 34168 (Rostelecom) for one Atlas probe
(2 traceroutes), and in AS 2914 (NTT Communication) for one Atlas probe
(1 traceroute). The dataset included traceroutes from five Atlas probes identified
as behind DNS proxies above, and in each case the Atlas probe transited through
Los Nettos.

Los Nettos and California State University were the most prevalent routes
and easily verified as legitimate given that Los Nettos is an advertised BGP
neighbor of ISI (B root administrators) and ISI is located at the University of
Southern California. The Layer 42 and NTT Communications cases can also
be validated because they are different ASes than the ASes hosting the probes.
Finally, the Atlas probe for Rostelecom is also hosted in Rostelecom, but the
traceroute has 230 ms of latency, which suggests the Atlas probe is talking to
the real root.

Comparing Paths Between B and L Roots. We hypothesized that if an
attacker manipulated the DNS roots, they would likely redirect multiple roots
to a single instance to avoid duplication. To evaluate this hypothesis, we analyzed
4,342 traceroute pairs to B and L roots from 1,292 Atlas probes. We removed
all traceroutes that did not complete successfully or that contained an error

Detecting DNS Root Manipulation 285

or drop, then matched B and L root traceroutes that originated from the same
Atlas probe within 30 min.

We compared traceroutes by iterating over each hop in the L root traceroutes,
then checking if any IP at the hop appeared at any hop in the L root traceroute.
If the L root traceroute IP appeared in the B root traceroute, we marked the
hop as matching. After performing the measurements, computed the fraction of
matching hops by dividing by the number of hops in the L root traceroute.

These methods revealed no evidence of root manipulation. The closest tracer-
oute pair had a matching hop fraction of 0.85 (12/14 hops matched). If manip-
ulation were taking place, we would have expected the traceroutes to match
exactly. The dataset also included 5 Atlas probes previously marked as DNS
proxies, and their highest matching hop fraction was 0.8 (12/15 matching hops).
These results are consistent with the absence of DNS root mirrors.

4.4 BGP Routing Table Manipulation

We analyzed BGP routing table snapshots for B root and found no evidence of
hijacked routes. We analyzed BGP data from 13 RIPE RIS route servers Internet
exchange points (IXPs) as geographically diverse as London and Japan. We
supplemented this with data from the University of Oregon’s RouteView’s route
servers in an additional nine IXPs around the world. We did not observe any
prefix hijacking of B root. Our analysis is consistent with the general expectation
that unauthorized root replicas are quite rare, even though we are not guaranteed
to see a prefix hijack of B root.

5 Future Work

We have enumerated a few methods for measuring DNS root manipulation, but
future work could expand these measurements, as follows.

Anomalous Response Times. We could extend our anomalous response time
measurements using open resolvers as our edge network vantage points, as well
as accurate geolocation information to extend these techniques beyond B root.
We could determine the likely closest anycast instance for each DNS root replica
using the provided geolocation information [11] (accurate to the city level), but
we would also need to accurately locate open resolvers. We could then force each
open resolver to contact the root by querying a non-existent top level domain
(TLD) and measuring the response time. If the client receives a response in
less time than the speed-of-light propagation delay to the closest root instance,
then we know that a root mirror or DNS proxy is in use. Unfortunately, we have
already demonstrated that collecting such geolocation data is difficult and would
be the primary challenge to extending our work.

Anomalous Server Identity. We could also extend techniques to identify
anomalous server identities with server-side analysis. We could better identify
DNS proxies by sending queries for a DNS zone we control and ensuring that

286 B. Jones et al.

(1) the authoritative server receives the query and (2) the client receives the
correct response. We could ensure that the queries always hit our server and are
never cached by including a nonce and always returning the same value (e.g.,
an A record for 1.1.1.1 or a SERVFAIL). We would also ideally also collect
data from the vantage point of the roots and query for randomly generated,
non-existent TLDs from Atlas probes and open resolvers. Such a configuration
would reveal whether our measurement machines reached the root, providing
strong conclusions about DNS root manipulation.

6 Summary

We extended earlier findings on hidden DNS proxies [27] and potential root-
server manipulation [8] to develop a method for detecting DNS root manipula-
tion. To do so, we used two measurement techniques. First, we use RIPE Atlas
probes to conduct pings, HOSTNAME.BIND queries, and traceroute measure-
ments. Second, we examine BGP routing table snapshots for evidence of route
hijacks.

We cast a wide net to validate our methods—2,755 access networks in
189 countries and 22 IXPs—but we found only a modicum of tampering with
access to B root. Our measurements located ten hidden DNS proxies, most likely
deployed for performance purposes and self-identifying to an associated ISP, and
one root replica in China. Even the latter is not widely deployed: only one out of
the 24 RIPE Atlas probes in China encountered it. Although DNS root manip-
ulation is rare, it is clearly important to detect it when it does occur. We have
demonstrated that our methods can detect such manipulation. Given China’s
willingness to tamper with the DNS root [8], we expect that these methods will
continue to be useful for detecting root manipulation.

Acknowledgments. This research was supported in part by NSF awards CNS-
1540066, CNS-1602399, CNS-1223717, CNS-1237265, and CNS-1518918. Ben Jones
is also partially supported by a senior research fellowship from the Open Technology
Fund. Any opinions, findings, and conclusions or recommendations are those of the
authors and do not necessarily reflect the views of the sponsors.

References

1. Anderson, C., Winter, P., Roya.: Global network interference detection over the
RIPE atlas network. In: 4th USENIX Workshop on Free and Open Communica-
tions on the Internet (FOCI 2014). USENIX Association, San Diego, August 2014

2. Anonymous.: The Collateral Damage of Internet Censorship by DNS Injection.
SIGCOMM Comput. Commun. Rev., 42(3), 21–27 (2012)

3. Anonymous.: Towards a comprehensive picture of the great firewall’s DNS cen-
sorship. In: 4th USENIX Workshop on Free and Open Communications on the
Internet (FOCI 2014). USENIX Association, San Diego, August 2014

4. Austein, R.: DNS Name Server Identifier (NSID) Option, August 2007. https://
tools.ietf.org/html/rfc5001

https://tools.ietf.org/html/rfc5001
https://tools.ietf.org/html/rfc5001

Detecting DNS Root Manipulation 287

5. Ballani, H., Francis, P.: Towards a global IP anycast service. In: Proceedings of the
Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications, SIGCOMM 2005, pp. 301–312. ACM, New York (2005)

6. Ballani, H., Francis, P., Ratnasamy, S.: A measurement-based deployment proposal
for IP anycast. In: Proceedings of the 6th ACM SIGCOMM Conference on Internet
Measurement, IMC 2006, pp. 231–244. ACM, New York (2006)

7. Ballani, H., Francis, P., Zhang, X.: A study of prefix hijacking and interception
in the internet. In: Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, SIGCOMM 2007,
pp. 265–276. ACM, New York (2007)

8. Brown, M.A., Madory, D., Popescu, A., Zmijewski, E.: November 2010.
http://research.dyn.com/wp-content/uploads/2014/07/DNS-Tampering-and-
Root-Servers.pdf

9. Bush, R., Mankin, A., Massey, D., Pei, D., Wang, L., Wu, F., Zhang, L., Zhao,
X.: Protecting the BGP routes to top level DNS servers, June 2002. https://www.
nanog.org/meetings/nanog25/presentations/massey.ppt

10. Dagon, D., Lee, C., Lee, W., Provos, N.: Corrupted DNS resolution paths: the rise
of a malicious resolution authority. In: Proceedings of 15th Network and Distrib-
uted System Security Symposium (NDSS), San Diego, CA (2008)

11. DNS Root Servers. root-servers.org (2015). http://root-servers.org/
12. Khattak, S., Javed, M., Khayam, S.A., Uzmi, Z.A., Paxson, V.: A look at the

consequences of internet censorship through an ISP lens. In: Proceedings of the
Conference on Internet Measurement Conference, IMC 2014, pp. 271–284. ACM,
New York (2014)

13. Kreibich, C., Weaver, N., Nechaev, B., Paxson, V.: Netalyzr: illuminating the edge
network. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, IMC 2010, pp. 246–259. ACM, New York (2010)

14. Liang, J., Jiang, J., Duan, H., Li, K., Wu, J.: Measuring query latency of top level
DNS servers. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp.
145–154. Springer, Heidelberg (2013)

15. Liston, R., Srinivasan, S., Zegura, E.: Diversity in DNS performance measures.
In: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurment,
IMW 2002, pp. 19–31. ACM, New York (2002)

16. Liu, Z., Huffaker, B., Fomenkov, M., Brownlee, N., Claffy, K.C.: Two days in the
life of the DNS anycast root servers. In: Uhlig, S., Papagiannaki, K., Bonaventure,
O. (eds.) PAM 2007. LNCS, vol. 4427, pp. 125–134. Springer, Heidelberg (2007)

17. MaxMind, Inc. GeoIP2 Country (2015). https://www.maxmind.com/en/
geoip2-country-database

18. Nabi, Z.: The anatomy of web censorship in Pakistan. In: Presented as part of
the 3rd USENIX Workshop on Free and Open Communications on the Internet.
USENIX, Berkeley (2013)

19. Nordström, O., Dovrolis, C.: Beware of BGP attacks. SIGCOMM Comput. Com-
mun. Rev. 34(2), 1–8 (2004)

20. RIPE. YouTube Hijacking: A RIPE NCC RIS case study (2008). https://www.
ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-
ris-case-study

21. RIPE. Built-In Measurements (2015). https://atlas.ripe.net/docs/built-in/
22. RIPE. Routing Information Service (RIS) (2015). https://www.ripe.net/

data-tools/stats/ris
23. RIPE. What is RIPE Atlas? (2015). https://atlas.ripe.net/about/

http://research.dyn.com/wp-content/uploads/2014/07/DNS-Tampering-and-Root-Servers.pdf
http://research.dyn.com/wp-content/uploads/2014/07/DNS-Tampering-and-Root-Servers.pdf
https://www.nanog.org/meetings/nanog25/presentations/massey.ppt
https://www.nanog.org/meetings/nanog25/presentations/massey.ppt
http://root-servers.org/
https://www.maxmind.com/en/geoip2-country-database
https://www.maxmind.com/en/geoip2-country-database
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-stud
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-stud
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-stud
https://atlas.ripe.net/docs/built-in/
https://www.ripe.net/data-tools/stats/ris
https://www.ripe.net/data-tools/stats/ris
https://atlas.ripe.net/about/

288 B. Jones et al.

24. Sarat, S., Pappas, V., Terzis, A.: On the use of anycast in DNS. In: Proceedings of
15th International Conference on Computer Communications and Networks, 2006,
ICCCN 2006, pp. 71–78, October 2006

25. Sekiya, Y., Cho, K., Kato, A., Somegawa, R., Jinmei, T., Murai, J.: Root and
ccTLD DNS server observation from worldwide locations. In: Proceedings of Pas-
sive and Active Measurement 2003, April 2003

26. University of Oregon. RouteViews Project (2015). http://www.routeviews.org/
27. Weaver, N., Kreibich, C., Nechaev, B., Paxson, V.: Implications of Netalyzrs DNS

measurements. In: Proceedings of the First Workshop on Securing and Trusting
Internet Names (SATIN), Teddington, United Kingdom (2011)

28. Weaver, N., Kreibich, C., Paxson, V.: Redirecting DNS for ads and profit. In:
Presented as part of the 1st USENIX Workshop on Free and Open Communications
on the Internet. USENIX (2011)

http://www.routeviews.org/

Behind IP Prefix Overlaps in the BGP
Routing Table

Quentin Jacquemart1(B), Guillaume Urvoy-Keller1, and Ernst Biersack2

1 University of Nice Sophia Antipolis, CNRS, I3S, UMR 7271,
06900 Sophia Antipolis, France

{quentin.jacquemart,guillaume.urvoy-keller}@unice.fr
2 Eurecom, Sophia Antipolis, France

erbi@e-biersack.eu

Abstract. The IP space has been divided and assigned as a set of IP
prefixes. Due to the longest prefix match forwarding rule, a single
assigned IP prefix can be further divided into multiple distinct IP spaces;
resulting in a BGP routing table that contains over half a million dis-
tinct, but overlapping entries. Another side-effect of this forwarding rule
is that any anomalous announcement can result in a denial of service
for the prefix owner. It is thus essential to describe and clarify the use
of these overlapping prefixes. In order to do this, we use Internet Rout-
ing Registries (IRR) databases as semantic data to group IP prefixes
into families of prefixes that are owned by the same organization. We
use BGP data in order to populate these families with prefixes that are
announced on the Internet. We introduce several metrics which enable
us to study how these families behave. With these metrics, we detail
how organisations prefer to subdivide their IP space, underlining global
trends in IP space management. We show that there is a large amount
of information in the IRR that appears to be actively maintained by a
number of ISPs.

1 Introduction

The IP space has been divided into a set of IP prefixes that are assigned to
organizations by RIRs (Regional Internet Registries). These organizations can
choose to further divide the IP prefixes they were assigned in smaller IP spaces
that they can use as independent networks. This is possible because packets are
routed according to the longest prefix match rule. In other words, any traffic
will always be forwarded to the smallest IP space (i.e. the most specific prefix)
containing the destination IP address. This can be useful in order to do traf-
fic engineering, e.g. to make sure off-site servers are reachable from the global
Internet. At the same time, the recent attack against Spamhaus demonstrated
that announcing more specific prefixes is an effective DoS (Denial of Service)
attack [12]. Even in the case of misconfigurations, large-scale repercussions can
be disastrous [9].

The BGP (Border Gateway Protocol) routing table currently contains over
half a million entries. With so many entries, it is improbable that there is no
overlap among them. As a result, it is essential to describe and understand the
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 289–301, 2016.
DOI: 10.1007/978-3-319-30505-9 22

290 Q. Jacquemart et al.

uses of overlapping prefixes from a BGP point of view. A way of doing this would
be to create pairs of overlapping prefixes, and then compare them together. As an
example, let us consider the three overlapping prefixes a/8, a.b/16, and a.b.c/24.
How relevant is the study of the three pairs of these prefixes? If the organization
to which the /8 has been assigned is an ISP, the /16 prefix might have been sold
to one of its customer; and it is solely this customer who decided to create the
/24 subnet. Hence, the comparison between the /8 and the /24 is not meaningful.
Conversely, if the organization behind the /8 prefix is not an ISP, the /16 prefix
is likely not a sub-allocation, but the result of network engineering.

Therefore, by trying to simply compare pairs of overlapping prefixes, we
overlook assignment policies. Namely, IP blocks are assigned by RIRs to organi-
zations. These organizations then use their IP space as they see fit. An ISP, for
example, will most likely sell a part of its IP space to customers, who, in turn,
will use the (sub) IP space as they see fit. As a result, simply comparing any
pair composed of any overlapping prefix disregards the fact that different entities
may administer the prefixes. In order to overcome this problem, we use the prefix
assignment information included in IRR (Internet Routing Registry) databases
in order to cluster overlapping BGP prefixes into families of prefixes. Prefixes
inside these families are then guaranteed to be under the control of a single
organization. Consequently, their comparison can be done without ambiguity.

In this paper, we present a method to group BGP prefixes into a set of
prefix families with the help of the contents of the IRR databases. These fam-
ilies are composed of two types of prefixes: children prefixes, which are BGP
announcements that are not included as-is in the IRR databases; and family
fathers, which are included in the IRR databases. We define a set of metrics to
analyse the behaviour of these families that shed light on how an organization
sub-divides its own IP space into smaller networks for its own use. We look at a
few real-world examples of families, and show that the behaviour inside groups
of families of tier-1 ISPs, tier-3 ISPs, and private corporations, is comparable. At
the same time, we investigate the distributions of prefixes inside BGP and inside
the IRR databases, and offer possible reasons for their large size difference.

2 Data Sources

2.1 IRR Databases

We were able to secure access to the IRR databases of the five RIRs: AfriNIC,
ARIN, APNIC, LACNIC, and RIPE. These databases contain information
directly provided by network operators, on a voluntary basis, about their rout-
ing policies and announcements. They are composed of different objects that
represent, among other things, people, IP address allocation, and AS numbers.
We extract information from the inetnum objects, which contain “details of an
allocation or assignment of IPv4 address space” [1].

Table 1 details the number of entries that we extracted from each database
on August 1st, 2014. Because some RIRs include information about special-use
IP space (e.g. the private IP space) for user friendliness, we discard 0.07 % of

Behind IP Prefix Overlaps in the BGP Routing Table 291

Table 1. Number of CIDR
IP prefixes extracted from
IRR databases per RIR on
August 1st, 2014

RIR Parsed prefixes

AfriNIC 72,516

APNIC 1,432,154

ARIN 2,696,539

LACNIC 322,828

RIPE 3,846,706

Total 8,370,743

Filtered 8,364,909

Table 2. Quick guide to the metrics defined for the
analysis

Name Meaning

announced father prefix is in IRR and BGP

unannounced father prefix only in IRR

child prefix only in BGP

announced family at least the father or one child
prefix is seen in BGP

nbr. children nbr. of internal assignments
(i.e. dividing IP space)

nbr. subfamilies nbr. of external assignments
(i.e. delegating IP space)

overlap ratio fraction of father’s IP space
used by either children, or
subfamilies

overall entries. Finally, we obtain 8,364,909 distinct IP prefixes from the IRR
databases.

The accuracy of IRR databases is widely debated among the community. For
example, [10] underlines the inconsistencies among the distributed content of the
database, as well as the varying level of accuracy depending on the considered
database and object. However, by comparing the origin AS inside the IRR with
the one in BGP, [7] shows that around 90 % of autonomous systems register at
least a subset of their BGP prefixes in the IRR database, making the informa-
tion it contains valuable. In the end, even though IRR information needs to be
considered with a grain of salt, we demonstrated in [13] that it provides a unique
insight into BGP ground truth information.

2.2 BGP Data

Our source of BGP data is RIPE RIS [8]. We parse binary files that contain a
dump of the BGP messages exchanged between the RIPE collector router and its
BGP peers. We focus on update messages, that contain prefix announcements
and withdrawals, as well as the AS path to the prefix. The AS path is an attribute
that contains the list of ASNs (Autonomous System Numbers) which need to be
crossed before reaching the destination. The last number in this list is known as
the origin AS, i.e. the AS in which the prefix resides.

We process BGP update messages according to RFC4271. Namely, we main-
tain an adjacency table for each of our peers. A prefix is reachable if at least one
of our peers has announced it; and is not reachable once every peer that had
announced it has withdrawn it. In this way, we are able to build our own BGP
routing table, which is dynamically updated as BGP messages flow between
routers.

292 Q. Jacquemart et al.

We selected RIPE’s Amsterdam collector (rrc00) as our data feeder. It is
the best-connected RIPE collector, with over 40 geographically diversified peers.
The selected time window for the analysis was the whole month of August 2014,
where we counted 629,595 distinct IP prefixes.

3 Methodology

3.1 Definitions

In Sect. 1, we stated why simply comparing overlapping prefixes together does
not produce meaningful results. Instead, we use a combination of semantic data
that we extract from the IRR database, and routing information that we get
from BGP. In this section, we present how we group these elements into families
of prefixes that are composed of a family father, of children, and of subfamilies.

a.b/16

BGP
IRR

 a.b.0/18 a.b.128/18 a.b.192/18

a.b.0.0/24 a.b.1.0/24

Family 1
announced
2 children

1 subfamily

Family 2
announced
2 subfamilies

Family 3
announced - 1 origin AS

Family 4
unannounced

Fig. 1. Example of constitution of families and subfamilies

Each prefix included in the IRR database is always the father of a family.
Consequently, we have as many distinct families as the number of filtered IRR
prefixes (see Table 1). Because most of these prefixes overlap, some family fathers
completely include some other family fathers. This situation leads to subfamilies.
A subfamily is a family whose father is completely included in the IP space
generated by another family’s father.

For example, there are 4 distinct families in Fig. 1, because the prefixes
a.b/16, a.b.0/18, a.b.0.0/24, and a.b.1.0/24 are included in the IRR database.
Incidentally, these 4 prefixes are the fathers of their families. However, some of
these fathers overlap. As a result, in Fig. 1, Family 2 is a subfamily of Family
1, because the father of Family 2 is more specific than the father of Family 1.
Similarly, Family 3 and Family 4 are subfamilies of Family 2. However, neither
Family 3 nor Family 4 is a subfamily of Family 1 because Family 2 “hides” them
from Family 1. This accounts for the fact that a.b.0/18 has been delegated to

Behind IP Prefix Overlaps in the BGP Routing Table 293

another entity (because it has an IRR entry). In other words, the organization
responsible for Family 2 is the one in charge to further subdivide this IP space.

Once the families have been put together, we populate them with BGP data.
A prefix seen in BGP is either a family father, or a prefix more specific than
a family father. In the first case, there is nothing left to do: a father already
belongs to the family it defines. In the second case, the prefix is added to the
family as a child prefix. A child is a prefix seen in BGP that is more specific than
the family father, but not declared in the IRR database as having been assigned
to another entity. The child is consequently managed by the organization linked
with the IRR record of its family father.

Continuing with the example depicted in Fig. 1, three family fathers are
announced in BGP: a.b/16, a.b.0/18, and a.b.0.0/24. Moreover, two non-IRR
prefixes (a.b.128/18 and a.b.192/18) are also announced. Since they are both
more specific than a.b/16, they are added as children in Family 1.

To summarize, we use the prefixes in the IRR database as a binding link
between an organization in the real-world, and one or several BGP prefixes. An
IRR prefix induces a family, which contains a certain number of children (BGP
prefixes).

3.2 Metrics

In this section, we present the metrics that will be used in Sect. 4 to analyze
prefix families.

The number of children in a family indicates the number of assignments
that have been done internally in this family. In other words, this is the number
of distinct IP zones that exist in this family, each possibly leading to different
locations, but which should all be under the authority of the same organization.
We put this number in relation with the number of aggregated children in a
family, which is the number of prefixes resulting from an aggregation process on
the children prefixes. Both sets of prefixes generate the exact same IP space, but
the aggregated set does so with the minimal number of prefixes. Consequently,
a difference in the number of children and the number of aggregated children
indicates that internal assignments were done with contiguous IP blocks. For
example, in Fig. 1, Family 1 has 2 children: a.b.128/18 and a.b.192/18. These
prefixes define IP addresses that are contiguous, and they are aggregated as
a.b.128/17. Thus, Family 1 has only 1 aggregated child.

The number of subfamilies in a family indicates the number of prefixes
that have been delegated to other entities. This number is a constant in our
method, because it results from the contents of the IRR database. We put this
number in relation with the number of announced subfamilies, i.e. the num-
ber of subfamilies that were actually announced in BGP. We consider that a
family is announced at time t if either the family father or one of the fam-
ily child is announced in BGP at t. As an example, Fig. 1 depicts Family 2,
which has 2 subfamilies. However, since a.b.1.0/24 is not announced in BGP
(and has no child), it is marked as unannounced. Consequently, Family 2 only
has 1 announced subfamily. Please note that we use the term “unannounced”

294 Q. Jacquemart et al.

to refer to the fact that a prefix is not seen as-is from the BGP control plane;
it does not imply that the prefix is not used, or that no host is connected using
an IP address included in this prefix. The prefix can be routed by a less specific
announcement (resulting, for example, from a route aggregation).

The children overlap ratio is the ratio of the number of IP addresses
available to family children divided by the number of IP addresses available to
the family father. In the same fashion, the subfamily overlap ratio is the ratio
of the number of IP addresses available to the announced subfamilies divided
by the number of IP addresses available to the family father. For example, the
children overlap ratio for Family 1 of Fig. 1 is 0.5, and the subfamily overlap
ratio is 0.25.

Because the information contained in this section is quite dense, Table 2
provides a summary of the metrics that have been defined; and which can be
used as a quick reference guide while going through the results presented in
Sect. 4.

4 Results

4.1 BGP Vs IRR Database

In this section, we briefly compare the prefixes inside the IRR database and the
prefixes announced in BGP.

In Sect. 2, we saw that we parsed over 8 · 106 IP prefixes from the IRR, and
just a little less than 630 k from the BGP control plane. When we compared the
distribution of the number of prefixes in both sources according to their mask
length, we saw that the number of prefixes in both sources was comparable for
/24’s and larger prefixes. For smaller prefixes (i.e. prefixes with a mask length >
/24), there is at least a factor 100 of difference in the number of entries. In other
words, only 1 % of IRR prefixes were seen as-is from the BGP control plane,
meaning that only 1 % of families whose father is more specific than a /24 prefix
are announced. This phenomenon can be explained by two reasons. First, these
prefixes have a long mask, and BGP good practices indicate that prefixes longer
than /24 s should not be propagated [5], and confirming previous experiments on
that topic [3]. Second, IRR database entries are not restricted to BGP users. Any
assignment of IP blocks, for example by an ISP, is a potential entry in the IRR
database, even though the ISP and its customer are not connected via BGP (but,
for example, via DSL or cable). This also explains the high number of /32 entries
in the IRR database (i.e. single IP addresses): these may be dedicated servers,
and an entry in the IRR provides the rightful technical contact information. For
unannounced families, there is a difference between the owner of the IRR prefix
and the (BGP) manager of the prefix. The manager of the prefix is generally
the ISP of the owner, the one that makes sure that the network is adequately
connected. The owner of the prefix is the organization actually hosting machines
on the IP addresses within the prefix, which is what the IRR entry specifies. For
example, one of Eurecom’s prefix is 193.55.113.0/24, which is announced from

Behind IP Prefix Overlaps in the BGP Routing Table 295

8 16 24 32
8

16

24

32
Distribution of children prefixes

Mask length of family father

M
as

k
le

ng
th

 o
f c

hi
ld

re
n

pr
ef

ix
es

Fig. 2. Distribution of children prefix
mask length depending on family father
mask length

8 16 24 32
8

16

24

32
Distribution of subfamily fathers prefixes

Mask length of family father

M
as

k
le

ng
th

 o
f s

ub
fa

m
ilie

s
fa

th
er

s

Fig. 3. Distribution of subfamily fathers
prefix mask length depending on family
father mask length

our provider, Renater, as an aggregated /15 prefix. However, the inetnum object
for the prefix points to Eurecom, even though it is maintained by Renater.

We now focus on the relative size of children and subfamilies in a family.
Figure 2 plots the distribution of the mask length of children prefixes according
to the mask length of the family father. The x axis represents the mask length
of the family father, and the y axis represents the mask length of the child.
The plot data is the histogram of the distribution: the thicker the line is at a
coordinate, the more prefixes there are of this size. As we can see, the bulk of
the distribution is around children with a mask length of 24, regardless of the
father. The fact that the distribution of children prefixes does not depend on the
size of the father is surprising. Indeed, one would expect larger families to divide
their IP space into bigger zones. The sparsity of available IPv4 addresses could
explain this observation since RIRs and, consequently, ISPs prefer to distribute
smaller blocks.

Figure 3 plots the distribution of the mask length of subfamily fathers prefixes
according to the mask of the family father. Here, the bulk of the distribution
is around /29, regardless of the mask length of the family father. This raises
the question of why these assignments appear to be so popular. In our view,
a /29 prefix contains 6 usable IP addresses, which, in today’s Internet, is just
enough for a small-to-medium size corporation: a couple of IP addresses for
publicly accessible servers, plus a couple more for NAT gateways. As tier-3 ISPs
typically offer Internet access to a number of SMEs, this could naturally result
in a predominance of /29 assignments.

Finally, we have 194,465 families announced in BGP. This amounts to only
2.32 % of the total number of families from the IRR database. The results that
we present now apply only to those announced prefixes; nothing else can be said
about the other ones strictly from a BGP point of view. Moreover, the figures
in the remainder of this section always plot the time-weighted average of the
specified metrics. As a result, plots of discrete metrics show continuous values.

296 Q. Jacquemart et al.

For example, a plot showing 0.1 child could mean that there was a single child,
but 10 % of the time.

4.2 Children and Subfamilies

In this section we study the number of children and subfamilies a family has.
We look at the IP space occupied by children and subfamilies; and we look at
the correlation between children and subfamilies.

Figure 4 plots the number of children per family, and the number of aggre-
gated children per family. It shows that only around 25 % of families have, on
average one or more children, while the probability of having a large number of
children decreases very rapidly. Comparing with the number of aggregated chil-
dren, we see that in 16 % of cases, the families have one aggregated child. This
means that, for 16 % of families, the IP space dedicated to children is contiguous.
This indicates that prefix owners prefer to assign contiguous IP space in order to
avoid fragmentation (which may lead to more complex and error-prone network
configurations).

Figure 5 plots the number of subfamilies per family. The plot indicates that,
in the IRR database, only 17 % of families have at least one subfamily. This can
be explained by the rather large number of very-specific assignments (masks ≥
/29) in the IRR database: these prefixes are directly allocated to end networks,
not to networks providers. On the other hand, only 6 % of announced families
have at least a child, with 1 % of them having less than a child on average.

Figures 4 and 5 underline that the vast majority of announced families have
neither children nor subfamilies. Table 3 shows the proportion of announced fam-
ilies, according to having children or subfamilies. 73 % of families do not have
children or subfamilies. In other words, for 73 % of the announced families, the
prefixes announced in BGP match the prefixes that were assigned, as shown in
the IRR database. No further sub-allocation was done by the end-user, either
internally (i.e. using child prefixes), or externally (i.e. subfamilies).

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of children

C
C

D
F

Average number of children per family

Prefixes
Aggregated prefixes

Fig. 4. Number of children per family

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

Number of subfamilies

C
C

D
F

Average number of subfamilies per family

IRR
Announced

Fig. 5. Number of subfamilies per family

Behind IP Prefix Overlaps in the BGP Routing Table 297

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Overlap ratio

C
D

F
Overlap of family father prefix

By children
By subfamilies
Total

Fig. 6. Prefix overlap within a
family

Table 3. Announced families

Child Subfamily Count %

N N 141,883 72.96 %

N Y 1,930 0.99 %

Y N 42,734 21.96 %

Y Y 7,918 4.07 %

Announced families 194,465 100 %

Furthermore, there is no correlation between the number of children and
the number of subfamilies. The Pearson correlation coefficient, as well as the
Spearman correlation coefficient have values between 0.14 and 0.25, depending
on if we include or not families without any child or subfamily. In other words,
a lot of children implies neither few, and neither a lot of subfamilies; and vice
versa. We further study these two dimensions (number of children, and number
of subfamilies) in Sect. 4.3, where we present case studies.

Because we study the relationships between overlapping prefixes, we must
limit our analysis to the 27 % of families that do have children, subfamilies, or
both (see Table 3). Consequently, the results presented in the remainder of this
section only apply to these 27 % of (announced) families.

We now focus on the fraction of IP space of the family father that was
allocated to children or to subfamilies. Figure 6 plots the children overlap ratio
and the family overlap ratio. It shows that there is no overlap by subfamilies
for about 80 % families. This is because, as indicated in Table 3, in most cases,
there is no subfamily when there are children. In contrast, children can occupy
a much larger fraction of the family father IP space, up to 100 % in 45 % of the
cases.

Figure 6 also plots the sum of both of these ratios for the families. Inter-
estingly, this ratio exceeds 1 for a few cases. Effectively, this means that, for
about 3 % of families, children prefixes and subfamily prefixes overlap the family
father more than once. Consequently, they also overlap each other. An exam-
ple from the real world for this situation is the following one. The IRR database
lists five prefixes: 5.102.0.0/19, 5.102.{0,8,16,24}.0/21. All these prefixes are also
announced in BGP, plus two more: 5.102.{0,16}.0/20. As a result, the /19 fam-
ily has four subfamilies that fully overlap the family father, and two children,
which also fully overlap the family father. All prefixes are originated by a single
AS, and belong to the same organization (a tier-3 ISP). It is worth noting that
the time-weighted average values of these metrics were over 0.9 in both cases,
indicating that this configuration was not transient.

298 Q. Jacquemart et al.

Table 4. Real-world case studies

Business type Name #fathers #children #subfamilies

Tier-1 ISP AT&T 64 363 582,863

Cogent 39 87 1,416

DeutscheTlkm 26 5 58,055

NTT 152 466 2,744

TeliaSonera 9 0 247

Tier-3 ISP Belgacom 15 0 3,710

Comcast 66 119 14,945

Free 15 8 3,864

Rogers 36 187 23,778

Tele2 29 4 2,852

Private Corp. Amazon 18 1 15

Apple 2 196 1

BBC 2 2 61

DHL 2 21 0

eBay 5 1 0

HSBC 5 6 0

Microsoft 40 86 3

OVH 43 9 27,489

Philips 8 0 0

Sony 3 2 0

Yandex 49 18 2,191

4.3 Real-World Case Studies

We consider in this section a few real-world cases to illustrate the typical rela-
tionship that can exist between the business of a company and the breakdown
of its prefixes into subfamilies and children. We pick 21 companies – listed in
Table 4 – that can be classified into three categories: tier-1, tier-3 and private cor-
porations. The classification is approximate because companies acting as tier-1
providers can also run a tier-3 business at the same time, i.e. directly connect-
ing end-users/small companies to the Internet. This is, for instance, the case of
AT&T and Deutsche Telekom.

When looking at ISPs, and regardless of their size (i.e. tier-1 or tier-3), we
observe a trend of having a large number of subfamilies and a comparatively
smaller number of children. The sheer number of subfamilies suggests that ISPs
routinely insert information about prefix delegation in the IRR database. This is
in line with expectations: ISPs typically offer Internet access to other companies,
and thus assign a set of IPs to its clients. Doing so, the ISPs choose to push this
information into the IRR database, because it can be used for administrative

Behind IP Prefix Overlaps in the BGP Routing Table 299

purposes. We also observe again the trend that only a small fraction of these
families are announced in BGP. This is because ISPs mostly provide Internet
connectivity local businesses or home users, that would reap no benefit from the
complexity and overload of running a BGP router.

For private corporations, the number of children is much higher than the
number of subfamilies. We attribute this to corporations considering internal
network policies as private information, thus not wanting to reveal additional
company information it in the IRR database (e.g. branch office location). We see
two noticeable exceptions: Yandex and OVH. Yandex operates the largest search
engine in Russia, along with a number of additional services (cloud storage, etc.).
The reason for the large number of subfamilies might be due to Yandex pushing
up information concerning client companies (e.g. in the case of Web hosting
service) in the IRR. The case of OVH is easier to diagnose: OVH offers PaaS
and IaaS services, and reports in the IRR database the set of addresses assigned
to each clients, just like an ISP would do.

5 Related Work

Previous work in this area can be divided into two categories: works that analyze
the BGP routing table growth; and works that aim at validating BGP routing
announcements using IRR data.

The evolution of the BGP routing table has been studied many times, most
famously by [6], which reports on the growth of the routing table size from the
mid 1990’s to today. The analysis also includes AS number usage, average AS
path length, and other typical BGP aspects. Other papers, such as [2], investigate
the reasons behind this growth, and classify the prefixes inside the routing table
depending on the reason for which they need to be announced. The methodol-
ogy used by [4] to study the evolution of aggregation practices over time may
bear some similarity to ours, but differs in several key aspects. Most notably,
[4] provides limited prefix grouping methodology, where we make active use of
the semantic information found in the IRR databases in order to group prefixes
into families that are owned by the same organization. We consequently consider
assignments made at the edge of the network by tier-2/tier-3 ISPs. We better
illustrate and explain the relationships between the overlapping prefixes inside
these families, whereas [4] focuses more on the dynamics of the BGP announce-
ment and their consequences on BGP router processes. As a result, our methods
are not directly comparable, even though the BGP-sides of the analyses exhibit
similar global trends.

Validation of routing data based on IRR databases entries has been
attempted to make the BGP infrastructure more robust. For example, [11] used
IRR data to build a tool that informs network administrators of an anomaly
that should be further investigated. More recently, [7] studied the validity of the
association between a prefix and its origin AS in the IRR. The overall conclu-
sion of this type of work is that the quality of the data inside IRR databases is
highly dependent on the RIR. However, it also appears that more recent studies

300 Q. Jacquemart et al.

suggest that the IRR provides information that can be used in order to improve
the security level of BGP.

6 Conclusion and Future Work

In this paper, we detailed how we use assignment data from the IRR database as
semantic anchor points in order to cluster prefixes from the BGP routing table
into families, inside of which we can non-ambiguously study the overlap among
these prefixes.

We showed that the IRR database contains many times more prefixes than
the BGP routing table. This is particularly true for prefixes with a mask length
longer than 24. At the same time, we found that only 2.32 % of the families
induced by these IRR entries were effectively seen from BGP. We attribute this
difference to the fact that IRR entries are not restricted to BGP players, but
can exist due to any IP assignment. For example, there are single IP addresses
(i.e. /32 prefixes) with an IRR entry for administrative reasons.

We showed that 74 % of the announced families do not have children. This
means that, for these families, only the prefix that was assigned is announced
in BGP, which does not lead to (additional) routing table entries. It is also
in accordance with the standard BGP good-practice of always announcing the
assigned prefix. For about 15 % of all families – but about half of the families
with children or subfamilies – this practice is not met, which means that these
families are part of the dormant IP space, which appears to be more vulnerable
to malicious prefix hijacking attacks, as demonstrated by [14].

A key take-away from our study is that a joint analysis of BGP and the IRR
database sheds light on the way the IRR is used, and also enables to uncover
different types of business practices. For instance ISPs (large, or small) are more
likely to register their customer in the IRR database, leading to a greater number
of subfamilies than children. Clients of ISPs being, most of the time, relatively
small, the most popular flavour of subfamily is a prefix of mask length 29, which
constitutes enough addresses for a small business. In our view, this implies that
ISPs devote a lot of energy to populate and maintain their IRR entries. We
argue that this is a proof that ISPs find the information in the IRR valuable.
Consequently, even though IRR information is not perfect, it cannot be dismissed
as entierly stale, inaccurate, and/or bogus. It provides a unique (administrative-
level) insight into IP networks, and can help better understand a number of
routing phenomenons, as we demonstrated in [13].

We see different possible ways of extending the scope of this work. First, we
will study the AS-level relationship between father prefixes, their children, and
between families and their subfamilies. Second, we would like to further study
unannounced families. A first clue to know how much of that information is stale
would be perform IP-level measurements, such as traceroutes, in order to see how
the IP-level topology for addresses within the unannounced family differs from
the topology inside the announced family. A complementary result from this
experiment would be further validating the prefix/organization mappings that
are available in the IRR.

Behind IP Prefix Overlaps in the BGP Routing Table 301

References

1. APNIC: Using Whois: Quick Beginners Guide. http://www.apnic.net/apnic-info/
whois search/using-whois/guide

2. Bu, T., et al.: On characterizing BGP routing table growth. Comput. Netw. 45,
45–54 (2004)

3. Bush, R., Hiebert, J., Maennel, O., Roughan, M., Uhlig, S.: Testing the reachability
of (new) address space. In: Proceedings of the 2007 SIGCOMM Workshop on
Internet Network Management, INM 2007, pp. 236–241 (2007)

4. Cittadini, L., Muhlbauer, W., Uhlig, S., Bush, R., Francois, P., Maennel, O.: Evo-
lution of internet address space deaggregation: myths and reality. IEEE J. Sel. A.
Commun. 28(8), 1238–1249 (2010)

5. Hu, X., Mao, Z.: Accurate real-time identification of ip prefix hijacking. In: IEEE
Symposium on Security and Privacy, May 2007

6. Huston, G.: BGP Reports. http://bgp.potaroo.net/
7. Khan, A., Kim, H., Kwon, T., Choi, Y.: A comparative study on IP prefixes and

their origin ases in BGP and the IRR. Comput. Commun. Rev. 43, 16–24 (2013)
8. Ripe, N.C.C.: Routing Information Service. http://www.ripe.net/ris/
9. Ripe, N.C.C.: YouTube Hijacking: A RIPE NCC RIS case study, March

2008. http://www.ripe.net/internet-coordination/news/industry-developments/
youtube-hijacking-a-ripe-ncc-ris-case-study

10. Siganos, G., Faloutsos, M.: Analyzing bgp policies: methodology and tool. In:
INFOCOM 2004, vol. 3, pp. 1640–1651, March 2004

11. Siganos, G., Faloutsos, M.: Neighborhood watch for internet routing: can we
improve the robustness of internet routing today?. In: IEEE INFOCOM (2007)

12. Toonk, A.: Looking at the spamhaus DDOS from a BGP perspective,
March 2013. http://www.bgpmon.net/looking-at-the-spamhouse-ddos-from-a-
bgp-perspective/

13. Vervier, P.A., Jacquemart, Q., Schlamp, J., Thonnard, O., Carle, G., Urvoy Keller,
G., Biersack, E., Dacier, M.: Malicious BGP hijacks: appearances can be deceiving.
In: IEEE International Conference on Communications, ICC CISS 2014, Sydney,
Australia, June 2014

14. Vervier, P.A., Thonnard, O., Dacier, M.: Mind your blocks: on the stealthiness of
malicious BGP hijacks. In: Network and Distributed System Security Symposium,
NDSS 2015, 8–11 February 2015, San Diego, California, USA, February 2015

http://www.apnic.net/apnic-info/whois_search/using-whois/guide
http://www.apnic.net/apnic-info/whois_search/using-whois/guide
http://bgp.potaroo.net/
http://www.ripe.net/ris/
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
http://www.bgpmon.net/looking-at-the-spamhouse-ddos-from-a-bgp-perspective/
http://www.bgpmon.net/looking-at-the-spamhouse-ddos-from-a-bgp-perspective/

Characterizing Rule Compression Mechanisms
in Software-Defined Networks

Curtis Yu1, Cristian Lumezanu2(B), Harsha V. Madhyastha3,
and Guofei Jiang2

1 University of California, Riverside, USA
2 NEC Labs America, Princeton, USA

lume@nec-labs.com
3 University of Michigan, Ann Arbor, USA

Abstract. Software-defined networking (SDN) separates the network
policy specification from its configuration and gives applications control
over the forwarding rules that route traffic. On large networks that host
several applications, the number of rules that network switches must
handle can easily exceed tens of thousands. Most switches cannot han-
dle rules of this volume because the complex rule matching in SDN
(e.g., wildcards, diverse match fields) requires switches to store rules
on TCAM, which is expensive and limited in size.

We perform a measurement study using two real-world network traf-
fic traces to understand the effectiveness and side-effects of manual and
automatic rule compression techniques. Our results show that not using
any rule management mechanism is likely to result in a rule set that
does not fit on current OpenFlow switches. Using rule expiration time-
outs reduces the configuration footprint on a switch without affecting
rule semantics but at the expense of up to 40 % increase in control chan-
nel overhead. Other manual (e.g., wildcards, limiting match fields) or
automatic (e.g., combining similar rules) mechanisms introduce negligi-
ble overhead but change the original configuration and may misdirect
less than 1 % of the flows. Our work uncovers trade-offs critical to both
operators and programmers writing network policies that must satisfy
both infrastructure and application constraints.

1 Introduction

Software-defined networking (SDN) enables flexible and expressive network man-
agement by separating the policy specification from configuration. Applications
and operators work with abstract network views [19] and specify policies using
an API. A centralized controller program translates the high-level policies into
low-level configurations—expressed as forwarding rules—and installs them into
the switch memory using a specialized protocol, such as OpenFlow [16].

To maintain network performance, the set of forwarding rules installed at
a switch must fit into the switch’s memory. Two factors complicate this. First,
as more applications adopt SDN, the number of rules required to express their

c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 302–315, 2016.
DOI: 10.1007/978-3-319-30505-9 23

Characterizing Rule Compression Mechanisms in Software-Defined Networks 303

policies on every switch grows, similar to how BGP tables have grown with the
spread of the Internet. Researchers have observed that an average top-of-rack
(ToR) switch would have to hold around 78 K rules with the default expira-
tion timeout [5,12]. Second, switches store wildcard rules in TCAM, which is
expensive and limited in size. Most programmable switches can hold only a few
thousand wildcard-based rules.

There are two general approaches to ensure that application policies do not
result in too many rules: compression and caching. Network control programs
can reduce the number of rules manually (by relying on programmers to employ
OpenFlow constructs such as rule expiration timeouts or wildcards [5,27]) or
automatically (by eliminating redundant rules or combining rules with related
patterns). Compression may limit the expressivity of the configuration as it
changes the original rule space. In addition, when rules are generated in response
to traffic, it is difficult to predict how many rules we need a priori to tune
the compression accordingly. Another approach is to cache the most popular
rules in TCAM and rely on additional (software) switches or the controller to
manage traffic not matching the cached rules [13]. This preserves the original
configuration but may introduce additional devices and delay in the data plane
of packets matching less popular rules.

In this paper, we use two sets of real world network traffic data to study
the effectiveness and side-effects of manual and automatic rule compression.
We seek to answer the following questions: should SDN rely on programmers to
employ mechanisms that reduce the number of rules installed on switches and
if so, what are the most effective such mechanisms? or can SDN benefit from
an automated rule reduction system that sits between the controller and switches
and optimizes how rules are installed on switches? Our work explores trade-offs
critical to both operators and programmers writing network policies that must
satisfy both infrastructure and application constraints.

First, we show how existing mechanisms that programmers and applications
employ, such as reducing rule expiration timeout, using wildcards, or limiting
the match fields, manage the rules on a switch (Sect. 4). Lowering rule time-
outs can reduce the number of rules by 41–79 %, as compared to the default
operation, but at the expense of increasing the utilization on the constrained
controller-to-switch channel by up to 40 %. Even such high compression rates
may be insufficient for most OpenFlow switches on the market. Using wildcards
or limiting the match fields can further improve the configuration footprint but
also limits the expressivity of the configuration as the original rule semantics
change.

Second, we show that automatic rule compression can benefit SDN. We intro-
duce and evaluate a simple mechanism that encodes rules using binary trees to
identify and combine similar rules (Sect. 5). This reduces the configuration size
on a switch by as much as 62 % compared to normal operation and at little
change in network overhead. However, such benefit comes at a cost: aggres-
sive automatic rule compression can also result in some flows (<1 %) being
misdirected.

304 C. Yu et al.

2 Motivation

In this section, we discuss how programmable switches store rules and implement
rule matching. We also review related research work and potential solutions for
reducing the number of rules. To keep the discussion simple, we consider Open-
Flow as the de facto protocol for installing and managing switch configurations.

2.1 Rules and Memory

A network’s configuration consists of the forwarding rules installed at the
switches. Every rule consists of a bit string (with 0, 1, and * as characters)
that specifies which packets match the rule, an action (to be performed by the
switch on matched packets), and a set of counters (which collect statistics). Pos-
sible actions include “forward to physical port”, “forward to controller”, “drop”,
etc. Each rule has two expiration timeouts: a soft one, counted from the time of
the last packet that matched the rule, and a hard one, from the time when the
rule was installed.

Table 1. Several OpenFlow switches specify the maximum number of forwarding rules
that they store. Each rule can contain any subset of the 12 fields specified in the
OpenFlow v1.0 specification [22], which is used by most switches on the market. The
HP 3800’s fact sheet specifies the maximum number of routing, rather than OpenFlow,
entries; a routing entry can be considered an OpenFlow entry with matches only on
layer 3 fields.

Switch Max # rules Source

NEC PF5820 750 [1]

HP ProCurve 5406zl 1500 [5]

Pronto 3290 4000 [2]

HP 3800 10 k (routing) [10]

NEC PF5240 64 k–160 k [1]

IBM G8264 97 k [11]

Implementation details of how rules are stored and matched is left to the
discretion of each switch vendor [24]. A common approach is for switches to store
wildcard rules in TCAM and exact match rules in SRAM. TCAM is fast and
can support wildcards efficiently. However, since it is also expensive and power
hungry, its size on switches is limited. On the other hand, SRAM is cheaper and
is available in higher capacity, but has a higher lookup latency because it is often
off-chip and uses search structures (e.g., hash tables and tries) to locate entries.

Switch vendors do not advertise the details of their OpenFlow implemen-
tation. In addition, the number of OpenFlow rules that a switch can store
in hardware is not always fixed and depends on how rules are formed (e.g.,
whether they have wildcards, what fields they match on). We studied the pub-
lic datasheets for six popular OpenFlow switches and compiled their published

Characterizing Rule Compression Mechanisms in Software-Defined Networks 305

OpenFlow table limits in Table 1. Unless otherwise noted, the numbers cor-
respond to 12-tuple OpenFlow rules. Independent measurements and personal
communication with vendors indicate that the values are representative for cur-
rent OpenFlow switches [3,24]. Prior work [5,12] has observed that a typical
ToR data center switch may store roughly 78 K rules, an order of magnitude
larger than most switches in the table. Although architectural and algorithmic
advances in switch design may extend the memory limits further (e.g., by using
memory other than TCAM or by making software lookups faster), reducing the
configuration size to begin with is still essential to preserve flexibility and mini-
mize the cost of lookups.

2.2 Managing Configuration Size

There are two types of solutions to manage configuration size: architectural-
based and software-based. Architectural-based solutions seek to optimize the
performance of a switch through various architectural design changes [2], but
are slow to develop and integrate. Software-based methods seek to reduce the
size of the configuration that can be stored on current architectures. We focus
on software-based configuration size management and discuss the two main
approaches: compressing the rule set and caching the more popular rules. In
this paper, we study compression-based techniques.

Compression. Compression-based mechanisms are automatic (i.e., without
programmer involvement) or manual (i.e., require actions from the programmer).

Manual. Personal communication with SDN operators and previous work [5,
27] indicate several OpenFlow-based mechanisms to reduce the flow table size
on a switch. These methods limit the number of rules by having existing rules
cover more traffic [5] (e.g., using wildcards rather than exact matches, using
fewer match fields) or cover the same traffic for shorter periods of time (e.g.,
setting smaller rule expiration timeouts). However, this also results in a less
expressive configuration because it reduces the ability to implement complex
policies, such as multipathing [21]. Furthermore, wildcards and longer timeouts
reduce visibility into the network as they increase the coarseness of the statistics
that switches gather about flows.

Automatic. Rule management has been studied in the context of IP routing
table compaction [25], with the goal of restricting the usage of TCAM [15,23].
While some of these methods (e.g., [15]) use binary trees to identify similar rules
(like the approach we present later in Sect. 5), existing methods work on a “single
IP to out port” action and are not easily applicable to OpenFlow rules, which
may have as many as 12 different match fields to be aggregated at once. The
TCAM Razor approach uses decision trees and multi-dimensional topological
transformations to efficiently compress packet-classification rules [14,17], but
cannot easily adapt to incremental rule changes. To the best of our knowledge,
none of these methods have been implemented in an OpenFlow-based network.

306 C. Yu et al.

Policy composition and arbitration frameworks such as Frenetic [7], Net-
Core [18], and PANE [8] manage application policies to ensure that there are no
conflicting or overlapping rules. vCRIB [20] intelligently places rules on differ-
ent OpenFlow switches while being aware of the resources that the rules utilize.
Although these systems can optimize the rules they place on switches (e.g., by
eliminating redundancies), their focus is on managing the policies installed across
the network, rather than on reducing the configuration size on any single switch.

Caching. Rather than compressing the rule set, Katta et al. propose to keep
only the more popular rules in TCAM and use additional (software) switches or
the network controller to manage the traffic that does not match on the cached
rules [13]. This approach preserves the semantics of the original rule space at
the expense of additional devices or delay on the data path of a subset of the
traffic.

3 Method and Data

We use two traces of real-world network traffic to characterize the effective-
ness of manual and automatic rule compression techniques in reducing the flow
table size.

Data. We use a packet trace from a campus network and a flow-level trace from
a nation-wide research network. Our goal is to assess the potential of rule com-
pression mechanisms when regular network traffic traverses OpenFlow devices.
Thus, our traces are not collected from OpenFlow-based networks, whose traffic
may already be adapted to the programmabile nature of the network. The first
dataset, Campus, was collected by Benson et al. [4] at an edge switch of a large
US campus network in Jan 2010 and contains 115 K flows over two hours. The
second dataset, Abilene, contains 1 % sampled Netflow data from the Internet2
network, collected at the Washington, DC router in Feb 2013. The trace con-
tains around 12 M flows over three hours. For anonymity, the IP addresses in the

 64

 256

 1024

 4096

 16384

 65536

 262144

 20 40 60 80 100 120 140

N
um

be
r

of
 c

on
cu

rr
en

t r
ul

es

Time (minutes)

TO = ∞ TO = 60s TO = 30s TO = 5s

(a)

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 0 20 40 60 80 100 120 140 160

A
ve

ra
ge

 n
um

be
r

of
 c

on
cu

rr
en

t r
ul

es

Time (minutes)

/32 /28 /24 /20 /16

(b)

Fig. 1. (a) Maximum number of concurrent rules as we vary the timeout after which
rules expire and (b) average number of rules over time as we vary the IP prefix size
from /32 to /16.

Characterizing Rule Compression Mechanisms in Software-Defined Networks 307

Abilene trace have their last 11 bits zeroed out. These two datasets are typical
for two important OpenFlow switch usage scenarios: at the edge and at the core
of a network.

Rule Generation. Since neither of the two networks where the traces were
collected is OpenFlow-enabled, we simulate the operation of an OpenFlow net-
work to determine the set of rules that would be installed to handle the traffic.
We first identify all five-tuple flows (src IP, dst IP, src port, dst port, protocol)
in each dataset and assume that each flow must be handled by one rule (i.e.,
with no wildcards). We create matches on five fields rather than all 12 supported
by existing OpenFlow switches because these are the fields for which our traces
include information. We assume a switch with a single flow table, conforming to
OpenFlow v1.0, which is implemented on most switches on the market.

Table 2. Comparison of various rule management methods. For each method, we show
for both datasets the maximum number of concurrent rules and the 95th percentile
value (across minutes) of operations per second. Percentages for number of rules and
ops/sec are in comparison to the default OpenFlow operation of using a 60 s timeout (for
the manual techniques) and to the IP-only rules with 60 s timeout (for the automatic
aggregation).

Campus Abilene

rules ops/sec # rules ops/sec

no mgmt. 60 s timeout 115K 46 12M 1255

11K 176 100.5K 2800

Timeouts (Sect. 4.2)

- 30 s 7,982 (–27%) 200 (+14%) 53K (–47%) 2,914 (+1.2%)

- 10 s 6,757 (–39%) 233 (+32%) 29K (–71%) 3,214 (+12%)

- 5 s 6,509 (–41%) 247 (+40%) 21K (–79%) 3,631 (+26%)

Match fields (Sect. 4.3)

- dest-only 7,052 (–36%) 73 (–59%) 75K (–26%) 1,949 (–32%)

- IP-only 4,460 (–59%) 125 (–29%) 53K (–47%) 1,215 (–58%)

Wildcard (IP granularity) (Sect. 4.4)

- \24 8479 (–23%) 69 (–61%) - -

- \16 8225 (–25%) 66 (–63%) 100K (–0%) 2,784 (–3%)

- \8 8218 (–25%) 66 (–63%) 99K (–1.5%) 2,752 (–4%)

IP-only, 60 s 4,460 125 53K 1,215

Simple aggregation (Sect. 5.1)

T = 100% 3,568 (–20%) 121 (–3%) 46K (–13%) 1,277 (+5%)

Aggressive aggregation (Sect. 5.2)

T = 25% 1,695 (–62%) 69 (–45%) 40K (–24%) 1,189 (–2%)

T = 50% 2,676 (–40%) 85 (–32%) 43K (–19%) 1,234 (–1%)

T = 75% 3,122 (–30%) 106 (–15%) 45K (–15%) 1,265 (0%)

308 C. Yu et al.

As the data sets do not have any information about the actual out port
number used for every flow, we use the following heuristics to determine the
action of each rule. Since the Abilene dataset contains next-hop IP information,
we associate every next-hop IP with a unique out port. For the Campus data set,
we simulate a 24-port switch, where every flow is assigned to an out port based
on its destination IP prefix. We assume a reactive OpenFlow deployment (i.e.,
the installation of the rule corresponding to a flow is triggered by the first packet
in the flow and its removal by the timeouts), as it offers a dynamic model for
rule management and a worst case scenario for evaluation (because it maximizes
the total number of rules that are generated).

Evaluation Metrics. To measure the effectiveness of rule reduction techniques,
we use the maximum value across time of the total number of rules installed
on the switch at any moment in time. To measure the side effects of reducing
the number of rules, we measure the rate of controller-to-switch operations (to
estimate overhead).

4 Manual Rule Management

In this section, we study manual solutions for reducing the number of rules on an
OpenFlow switch. These are solutions that programmers must proactively use in
their code. We derive them from personal communication with SDN operators
and previous work [5,27]. These mechanisms limit the time a rule stays on the
switch (through rule expiration timeouts), the space occupied by a rule on the
switch (by reducing the number of fields to match on), or the total number of
rules (by using wildcards).

4.1 Not Managing Rules

Figure 1(a) shows the number of concurrent rules that would have to be held
on an OpenFlow switch that forwards the flows in the Campus dataset. We
assume rules do not expire (TO = ∞) and contain exact matches on all five
fields mentioned in Sect. 3. Since rules never expire, their number is continually
increasing as new flows arrive, reaching a maximum of 115,323 rules at the end
of the trace. We repeat the experiment for the Abilene data and find that it
generates more than 12 M rules. Recall however that the Abilene IPs have their
last 11 bits zeroed, therefore the rules are essentially wildcard rules; the number
of exact match rules will be much higher. These numbers exceed the maximum
number of flows supported by all but one of the OpenFlow switches described
in Table 1.

4.2 Timeouts

We vary the soft timeout for each rule from 5 s to 60 s (the default timeout value
in OpenFlow). Rules with short timeouts are expunged sooner and may need to

Characterizing Rule Compression Mechanisms in Software-Defined Networks 309

be reinstalled if there are subsequent packets matching the rule. Large timeouts
keep the rule in memory longer and are suited for long flows with lower packet
arrival rates. Figure 1(a) and Table 2 show that, as the soft timeout becomes
smaller, the number of concurrent rules decreases and the rate of operations
increases. Current switches typically handle around 275 operations (i.e., rule
installations or deletions) a second [5] and could support the 95th percentile
operation load in the Campus dataset but not in the Abilene trace.

4.3 Match Fields

Having fewer match fields should decrease the memory footprint of an Open-
Flow rule. We consider two smaller matches: on IP-only (source and destination,
no ports) and on destination-only (destination IP and port, no source). Table 2
shows that both destination-only and IP-only matches lower the number of con-
current rules by at least 26 %, as compared to 5-tuple rules with 60 s timeout.
Though these rule savings are significant, the maximum number of concurrent
rules with the Abilene trace is still quite high compared to the memory capacity
of three of the OpenFlow switches in Table 1. While fewer rules result in a lower
rate of operations on the switch, since the flow arrival is not uniform, the 95th

percentile rate of operations per second in the Abilene trace is over 4x higher
than the threshold of 275.

4.4 Wildcards

Wildcard-based rules cover a larger part of the flow-space and thus, fewer rules
are necessary. However, they limit (1) the expressivity of the configuration
because they cannot perform fine-grained matching (e.g., for multipathing [21]),
and (2) the application’s visibility into the network because the controller cannot
request statistics on the individual flows that match the rule.

r4: r5: r3:r2:

r1:

src tree

dst tree

r4: r5:

r7:

r4:r5:

r7:

r4:r5:

r3:

r1:

r2:

r4: r5:

r6:r1:

r4:r5:

r1:

r6:

(a) (b) (c)

Fig. 2. Simple binary tree aggregation. For simplicity, we represent the subtrees cor-
responding to the last two bits of source and destination IPs. See Fig. 3 for example
rules mapped on these subtrees (Color figure online).

310 C. Yu et al.

r4:1.1.1.0

r5:1.1.1.1

r1:1.1.1.0/31

r2:1.1.1.2

r3:1.1.1.3

Src Rules

r2:2.1.1.0

r3:2.1.1.0
r1:2.1.1.0/31

r5:2.1.1.1

r4:2.1.1.3

Dst Rules

r6:1.1.1.2/31

r6:2.1.1.0

r4:1.1.1.0

r5:1.1.1.1

r1:1.1.1.0/31

r6:1.1.1.2/31

r6:2.1.1.0 r1:2.1.1.0/31

r5:2.1.1.1

r4:2.1.1.3

r7:1.1.1.0/30

r7:2.1.1.0/31

r4:1.1.1.0

r5:1.1.1.1

r7:1.1.1.0/30

r5:2.1.1.1

r4:2.1.1.3

r7:2.1.1.0/31

Fig. 3. Examples of rules mapping to the subtrees in Fig. 2 (Color figure online).

To evaluate the effect of wildcards on the flow table size, we consider the
original 5-tuple rules, as well as the destination-only and IP-only rules. For each
rule, we introduce wildcards in the rightmost bits of IP addresses, effectively
reducing them to prefixes. Figure 1(b) and Table 2 show that the average number
of rules over each minute decreases as we vary the IP prefix size from /32 to /16.
The savings (23 % in the Campus data) come at the expense of more policy
violations (30 % of packets are forwarded differently). Combining wildcards with
fewer match fields further reduces the number of rules, but not always sufficiently
enough to fit into the memory of all switches in Table 1. The reduction in number
of rules is lesser in the Abilene data because it includes only /21 addresses. As
with limiting the match fields, using wildcards reduces the expressivity of the
installed configuration and our ability to retrieve information about the original
rule set (e.g., counters) as the rule semantics change.

4.5 Summary

The most consistently effective way to reduce the number of rules is by lower-
ing rule expiration timeouts. Although it introduces a large network overhead
because of the increased control channel operation rate, it preserves the original
rule semantics and the controller’s ability to query the counters of the original
rules. Other approaches limit the control channel overhead at the expense of
changing the original rule semantics.

No manual rule compression method is a panacea: as Table 2 shows, even in
the best case compression scenario, the number of rules for Abilene cannot fit
on half of the switches in Table 1. In reality, the type of traffic and the goal of
network operators, in addition to rule compression algorithms, play a large role
in determining how to fit the configuration on switches.

5 Automatic Rule Management

We now consider the scenario where the OpenFlow controller uses an automatic
mechanism to reduce the number of rules. To the best of our knowledge there is
no existing mechanism for rule space compression for SDN controllers. Existing
rule compression approaches focus on IP routing table compaction [15,23] or

Characterizing Rule Compression Mechanisms in Software-Defined Networks 311

minimizing packet classifiers in TCAM [6,17]. They use binary trees or decision
trees to identify redundant and similar rules and focus on simple IP-based rules
or on how to optimize ranges that cannot be stored as a simple prefix. Their
applicability to OpenFlow is not clear yet as OpenFlow rules are more com-
plex (up to 12 matching fields) [14]. Furthermore, IP-based rule management
techniques cannot easily adapt to incremental rule changes.

To understand the potential of automatic rule compression, we propose a sim-
ple approach, based on the work of Liu [15], that uses binary trees to identify
and aggregate related rules. In doing so, our goal is to provide a simple com-
pression baseline. We do not seek to either introduce a novel OpenFlow table
compaction method or to fully replicate and compare with previous rule aggre-
gation methods built for IP-based rules. Evaluating these approaches within the
scope of OpenFlow is subject to future work.

5.1 Simple Aggregation

To reduce the memory footprint of the configuration installed on a switch, we
automatically aggregate similar rules into a single rule. A network controller
can accomplish this by intercepting all OpenFlow control messages and storing
the state of all switches in-memory. On a rule install to a switch, the controller
adds the rule to its in-memory state for the switch and checks for aggregation. If
aggregation is not possible, the controller simply installs the rule into the switch.
Otherwise, it sends an aggregated rule and deletes all rules that are covered by
it. Similarly, on a rule removal, the controller checks to see if it is part of any
aggregated ruleset and appropriately reinserts rules as necessary.

To build a proof of concept implementation of rule reduction and demon-
strate its effectiveness, we use binary trees [26] to store and aggregate rules on a
particular switch. Because we use binary trees, we are limited to only IP-based
rules. We are currently exploring other possibilities that can accommodate more
header fields.

For every switch, we maintain two binary trees: one based on source IP
addresses and the other based on destination IP addresses. Every node corre-
sponds to a source or destination address prefix. When the controller wants to
install a rule r to a switch, it adds the rule action to both the source and des-
tination trees at the nodes corresponding to the source and destination prefix
included in r.

Given this binary tree based representation of rules installed at a switch,
we aggregate rules as follows. Consider a new rule r added at nodes s and d in
the source and destination trees, respectively. We can potentially aggregate if
r has the same action as another rule r′ and if r′ satisfies one of the following
conditions in both the source and destination trees: (1) r and r′ are at the same
node in the tree, (2) r′ is r’s parent, or (3) r and r′ are siblings. Moreover,
in the case that r is aggregated up to its parent in either tree, we recursively
continue checking upwards in the source and destination trees to see if further
opportunities for aggregation exist.

312 C. Yu et al.

Figures 2 and 3 show a three-level sub-tree representing the last two bits
of the IP space, along with example rules. Different colors represent different
rule actions. First, rules r2 and r3 are aggregated into r6 because they (a) have
the same associated action (blue), (b) are at the same node in the destination
tree, and (c) are siblings in the source tree. Thereafter, recursive checks for
aggregation find that r1 and r6 can be aggregated into r7. On the other hand,
though r4 and r5 have the same action (red) and are siblings in the source tree,
they cannot be aggregated since they do not satisfy any one of criteria (1), (2),
and (3) mentioned above.

5.2 Aggressive Aggregation

As described so far, we can aggregate a rule r up to its parent node only if
there exists another rule with the same action at r’s sibling. This limits the
ability to aggregate similar rules when two rules are not at the same node or
share a parent, but share a common ancestor. For example, in Fig. 2, although
r4 and r5 could not be aggregated because they do not have a common parent in
the destination tree, they could potentially be aggregated up to their common
grandparent.

However, unless we place any restrictions, aggregating rules with common
ancestors could result in the aggregation of very dissimilar rules. For example,
two rules that are at the leftmost and rightmost nodes in either tree (as dissimilar
as they can get), can be aggregated up to their common ancestor—the root. In
such cases, the aggregated rule will span a very large part of the IP address
space, and matched packets will be associated with an action that is perhaps
not intended by the application policy.

To limit the aggressiveness of aggregation with common ancestors, we use a
threshold T . We install an aggregated rule at a node in the source or destination
tree only if the controller has already inserted rules that are associated with at
least T % of the leaves in the subtree rooted at the node. For example, in Fig. 2,
we could aggregate r4 and r5 into the root of the destination tree if T ≥ 50%.

One of the side-effects of aggressive aggregation is that it can violate appli-
cation policies. When threshold-based aggregation is used, an aggregated rule
may match packets that are not covered by rules previously installed by the
controller. In the absence of the aggregated rule, these packets would trigger a
PacketIn message sent to the controller, to which the controller may have cho-
sen to insert a rule with a different action than the aggregated rule. Later, we
evaluate the extent to which policy violations occur and the trade-offs involved
in eliminating them.

5.3 Evaluation

Table 2 shows the results of our measurement.

Rule Savings of Simple Aggregation. Figure 4 shows how the rule savings
vary with the use of wildcards i.e., reducing the IP prefix size (ignore the lines

Characterizing Rule Compression Mechanisms in Software-Defined Networks 313

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 20 22 24 26 28 30 32

M
ax

 n
um

be
r

of
 c

on
cu

rr
en

t r
ul

es

IP prefix size

Baseline
T = 100%
T = 75%
T = 50%
T = 25%

 0

 10000

 20000

 30000

 40000

 50000

 60000

 10 12 14 16 18 20

M
ax

 n
um

be
r

of
 c

on
cu

rr
en

t r
ul

es

IP prefix size

Baseline
T = 100%
T = 75%
T = 50%
T = 25%

)b()a(

Fig. 4. Maximum number of concurrent rules needed to cover the (a) Campus and (b)
Abilene flows, as we vary the value of T and use wildcards.

for T < 100 % for now). In the Abilene dataset, as we decrease the prefix size, the
potential for aggregation increases. Without aggregation, specifying rules at /16
granularity (rather than /21) reduces their number to only around 40 K (com-
pared to slightly over 50 K). In contrast, when using aggregation, the maximum
number of rules is further reduced by third (to around 25 K). The savings are
even bigger for the Campus data set: up to 62 % savings when aggregating at
/28 prefix).

Overhead of Simple Aggregation. Aggregation may increase the number
of switch operations, because one rule addition or deletion performed by the
controller can translate to several operations at the switch. This is reflected
in the Abilene data where the operation rate increases slightly by 5 % (see
Table 2). However, when we have many aggregations, we may also save opera-
tions because we delete an aggregated rule from the switch only when all rules it
aggregates are deleted. Since the Campus data has more rule savings (and implic-
itly more higher-in-the-tree aggregations), the number of operations decreases
slightly by 3 %.

Is Aggressive Aggregation Effective? Table 2 and Fig. 4 show that aggres-
sive aggregation can reduce dramatically the number of rules (by 62 % for Cam-
pus and 24 % for Abilene) and the rate of switch operations (45 % for Campus
and 2 % for Abilene). Using a threshold has only limited effect on the wildcarded
Campus rules. When the prefix size is big, the savings are significant (up to
62 % with /28 prefix and 75 % threshold). However, because the IPs in the Cam-
pus data are more similar, most rules are already aggregated when the prefix
size decreases enough (less than /24) and using a threshold cannot yield further
savings.

We measure policy violations as the percentage of flows that are forwarded
with a different action when we aggregate rules compared to a deployment where
there is no aggregation. The fraction of flows for which rule aggregation leads
to an incorrect output action is low. When the threshold is 25 % i.e., we install
an aggregate rule in a node even when only a quarter of the leafs in its subtree

314 C. Yu et al.

have an associated rule, less than 1 % of the Abilene flows could be misdirected.
The number of policy violations decreases with higher thresholds. There are no
violations for Campus, as the set of output actions is less varied than for Abilene.

5.4 Summary

Automatically aggregating similar rules reduces their number by up to 20 % com-
pared to IP-only rules with 60 s timeout at negligible changes in control channel
overhead. Operators or programmers can further increase efficiency (up to 62 %
rule reduction) if they allow a small part of the traffic (under 1 %) to be directed
to other destinations. While this is unacceptable for most applications, it may
be a solution for dedicated network deployments where any of a set of destina-
tions is acceptable (e.g., load balancers, firewalls, anycast). As Table 2 shows,
for many cases, it is more effective to use small timeouts than any automatic
aggregation.

6 Conclusions and Future Work

Our real-world traces study shows that simple OpenFlow-based mechanisms,
such as lowering rule expiration timeouts, are effective in managing the configu-
ration size on OpenFlow switches although may increase (sometimes unaccept-
ably) the utilization of the switch-to-controller channel. Other manual (using
wildcards) or automatic (aggregating similar rules) mechanisms may reduce the
size of the rule set even higher but curtail the expressiveness of the high-level pol-
icy and may, in a small number of cases, misdirect some packets. Understanding
these trade-offs is important to SDN operators and programmers that must write
network policies that satisfy both infrastructure and application constraints.

Our ongoing and future work spans two directions. On one hand, we are
studying the adaptability of existing IP-based rule compression mechanisms [17]
to OpenFlow. We are exploring the use of R-trees [9] to extend our ability
to identify and aggregate rule similar in fields other than IP addresses (e.g.,
protocol).

References

1. NEC OpenFlow switches. http://www.openflow.org/wp/switch-NEC/
2. Pronto OpenFlow switches. http://www.openflow.org/wp/switch-Pronto/
3. Appelman, M., Boer, M.D.: Performance analysis of OpenFlow hardware. Techni-

cal report, University of Amsterdam (2012)
4. Benson, T., Akella, A., Maltz, D.: Network traffic characteristics of data centers

in the wild. In: IMC (2010)
5. Curtis, A.R., Mogul, J.C., Tourrilhes, J., Yalag, P., Sharma, P., Banerjee, S.:

Devoflow: scaling flow management for high-performance networks. In: SIGCOMM
(2011)

6. Dong, Q., Banerjee, S., Wang, J., Agrawal, D., Shukla, A.: Packet classifiers in
ternary CAMs can be smaller. In: ACM Sigmetrics (2006)

http://www.openflow.org/wp/switch-NEC/
http://www.openflow.org/wp/switch-Pronto/

Characterizing Rule Compression Mechanisms in Software-Defined Networks 315

7. Foster, N., Harrison, R., Freedman, M.J., Monsanto, C., Rexford, J., Story, A.,
Walker, D.: Frenetic: a netowrk programming language. In: ACM IFIP (2011)

8. Freguson, A.D., Guha, A., Liang, C., Fonseca, R., Krishnamurthi, S., Networking,
P.: An API for application control in SDNs. In: SIGCOMM (2013)

9. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIG-
MOD (1984)

10. HP 3800. http://h17007.www1.hp.com/us/en/networking/products/switches/HP
3800 Switch Series/index.aspx

11. IBM OpenFlow switches. http://www.openflow.org/wp/ibm-switch/
12. Kandula, S., Sengupta, S., Greenberg, A., Patel, P., Chaiken, R.: The nature of

datacenter traffic: measurement and analysis. In: IMC (2009)
13. Katta, N., Alipourfad, O., Rexford, J., Walker, D.: Infinite CacheFlow in software-

defined networks. In: HotSDN (2014)
14. Kogan, K., Nikolenko, S., Culhane, W., Eugster, P., Ruan, E.: Towards efficient

implementation of packet classifiers in SDN/OpenFlow. In: HotSDN (2013)
15. Liu, H.: Routing table compaction in ternary CAM. IEEE Micro 22(1), 55–64

(2002)
16. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,

J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks.
ACM SIGCOMM CCR 38, 69–74 (2008)

17. Meiners, C.R., Liu, A.X., Torng, E., Razor, T.: A systematic approach towards
minimizing packet classifiers in TCAMs. IEEE/ACM Trans. Netw. 18(2), 490–500
(2010)

18. Monsanto, C., Foster, N., Harrison, R., Walker, D.: A compiler and run-time system
for network programs. In: ACM POPL (2012)

19. Monsanto, C., Reich, J., Foster, N., Rexford, J., Walker, D.: Composing software-
defined networks. In: NSDI (2013)

20. Moshref, M., Yu, M., Sharma, A., Govindan, R.: Scalable rule management for
data centers. In: NSDI (2013)

21. Openflow multipath proposal. http://www.openflow.org/wk/index.php/Multipath
Proposal

22. Openflow switch specification, 1.0.0. http://www.openflow.org/documents/open
flow-spec-v1.0.0.pdf

23. Ravikumar, V.C., Mahapatra, R.N.: TCAM architecture for IP lookup using prefix
properties. IEEE Micro 24(2), 60–69 (2004)

24. Rotsos, C., Sarrar, N., Uhlig, S., Sherwood, R., Moore, A.W.: OFLOPS: an open
framework for OpenFlow switch evaluation. In: Taft, N., Ricciato, F. (eds.) PAM
2012. LNCS, vol. 7192, pp. 85–95. Springer, Heidelberg (2012)

25. Sarrar, N., Wuttke, R., Schmid, S., Bienkowski, M., Uhlig, S.: Leveraging locality
for FIB aggregation. In: IEEE Globecom (2014)

26. Wang, R., Butnariu, D., Rexford, J.: OpenFlow-based server load balancing gone
wild. In: Hot-ICE (2011)

27. Yu, M., Rexford, J., Freedman, M.J., Wang, J.: Scalable flow-based networking
with DIFANE. In: ACM SIGCOMM (2010)

http://h17007.www1.hp.com/us/en/networking/products/switches/HP_3800_Switch_Series/index.aspx
http://h17007.www1.hp.com/us/en/networking/products/switches/HP_3800_Switch_Series/index.aspx
http://www.openflow.org/wp/ibm-switch/
http://www.openflow.org/wk/index.php/Multipath_Proposal
http://www.openflow.org/wk/index.php/Multipath_Proposal
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf

IXPs and MPLS

Blackholing at IXPs: On the Effectiveness
of DDoS Mitigation in the Wild

Christoph Dietzel1,2(B), Anja Feldmann1, and Thomas King2

1 TU Berlin, Berlin, Germany
christoph@inet.tu-berlin.de
2 DE-CIX, Frankfurt, Germany

Abstract. DDoS attacks remain a serious threat not only to the edge
of the Internet but also to the core peering links at Internet Exchange
Points (IXPs). Currently, the main mitigation technique is to blackhole
traffic to a specific IP prefix at upstream providers. Blackholing is an
operational technique that allows a peer to announce a prefix via BGP
to another peer, which then discards traffic destined for this prefix. How-
ever, as far as we know there is only anecdotal evidence of the success of
blackholing.

Largely unnoticed by research communities, IXPs have deployed
blackholing as a service for their members. In this first-of-its-kind study,
we shed light on the extent to which blackholing is used by the IXP
members and what effect it has on traffic.

Within a 12 week period we found that traffic to more than 7, 864
distinct IP prefixes was blackholed by 75 ASes. The daily patterns
emphasize that there are not only a highly variable number of new
announcements every day but, surprisingly, there are a consistently high
number of announcements (> 1000). Moreover, we highlight situations
in which blackholing succeeds in reducing the DDoS attack traffic.

1 Introduction

Distributed Denial of Service (DDoS) attacks are and will continue to be a serious
threat to the Internet. Indeed, the intensity and the dimension of such attacks
is still rising, in particular due to amplification and reflection attacks [7,32,33].
DDoS attacks impact not only edge networks but can also overwhelm cloud
services [36] or congest backbone peering links at Internet Exchange Points
(IXP) [30]. Various DDoS detection and defense mechanisms strive to dimin-
ish the impact of attack traffic on the victim’s infrastructure while minimiz-
ing the collateral damage to legitimate traffic. While there has been some
progress towards limiting amplification [19], DDoS attacks remain a major secu-
rity challenge as new protocol or implementation weaknesses are identified almost
daily [38].

Various taxonomies [18,23,37] distinguish between proactive (preventive) and
reactive techniques. Among the reactive defenses, we distinguish between source-
based, destination-based, and network-based [39] mechanisms depending on where
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 319–332, 2016.
DOI: 10.1007/978-3-319-30505-9 24

320 C. Dietzel et al.

they are deployed. In this paper, we focus on how blackholing – a network-based
reactive defense mechanism – is used at IXPs.

The term blackhole originates in physics and describes an object with such
a strong gravitation that nothing can escape from it. In networking it refers to
situations where IP packets are silently discarded, often due to misconfigura-
tion. Indeed, since the late-1980s, blackholing has been used – on a per device
basis – to counter DDoS attacks [13]. In 2002, Greene [12] proposed to extend
blackholing to routers within an Autonomous System (AS) via iBGP communi-
ties, see RFC 3882. In eBGP, an AS is able to communicate to another AS for
which prefix the packets should be dropped via BGP communities [5]. In 2009,
Kumari and McPherson extended the community ranges to include dropping by
source addresses, see RFC 5635. Major Internet Service Providers (ISP), e.g.,
DT, NTT, and Hurricane Electric, use blackholing within their network and
have been offering blackholing services since between 2005 and 2007 to their
customers [9,15,27].

However, the use of eBGP blackholing services by a DDoS victim is not
trivial as the victim has to contact its direct neighbors. The signaling has to
be done on a per neighbor basis. IXPs simplify this by acting as a proxy. They
offer a public peering infrastructure and the major IXPs have more than 500
member ASes. Due to this multiplication factor, IXPs are in principle convenient
locations for blackholing. First ad hoc uses of blackholing occurred around 2010.
The blackholing feature is now available at some major IXPs such as DE-CIX,
MSK-IX, NETIX, NIX.CZ, and TPIX [8,25,26].

In this paper, we rely on three month’s worth of routing and traffic mea-
surements from one of the largest IXPs worldwide to examine the extent of
blackholing usage and its effectiveness. We find a significant number of black-
holes announced, mainly /32 but also less specific. Indeed, the usage considerably
depends on the prefix length and the announcing member AS. Furthermore, we
reveal that blackholing succeeds in reducing DDoS attack traffic.

2 Blackholing at IXPs

Blackholing is used as a DDoS mitigation strategy inside a single or between
multiple ASes. Consequently, the victim AS announces the attacked destination
IP prefix upstream network via BGP. Traffic towards these prefixes is discarded
upstream, usually at the upstream AS ingress point. This reduces the amount
of traffic not only for the destination network but also for all upstream ASes.

Historically, blackholing was implemented at the edge routers of an AS. How-
ever, over time it was moving from the edge (customer or provider networks) to
the core of the Internet (ISPs and IXPs).

IXPs: IXPs are shared and settlement free peering platforms that operate a
switching fabric to interconnect its members’ networks. Among the member
ASes that exchange traffic are typically a wide range of network types, e.g.,
Tier-1 ISPs, regional providers, hosters, content providers, CDNs, and even
IXP resellers. Many IXPs offer route servers as a free value-added service [31].

Blackholing at IXPs: On the Effectiveness of DDoS Mitigation in the Wild 321

Fig. 1. DDoS attack at IXP member before/during blackholing.

It greatly simplifies the BGP session management for their connected members.
Therefore, route servers collect routing information in a centralized manner and
redistribute them to connected member routers.

If an IXP-connected network (AS) is hit by a massive DDoS attack that
causes large amounts of ingress traffic over the IXP link, either the network itself
or the network interconnection link is at risk of congestion. As a last resort, either
operators of the targeted AS can trigger blackholing for its own prefixes or black-
holing is triggered on the behalf of the prefix owner, e.g., through its upstream
AS. Both scenarios render the attacked network unreachable for attackers and
for everyone else.

Explanatory Example Scenario: Fig. 1 depicts the traffic flow process at an
IXP prior (A) and after (B) the activation of blackholing. The initial situation
is that a member (AS1) receives traffic from its peers and while AS2 sends
solely legitimate traffic (1), AS3 traffic contains significant amounts of DDoS
traffic (2). Now AS1’s IXP-connected router advertises the attacked prefix –
usually a more specific – for blackholing towards the route server (3). This can
be done either explicitly, i.e., using a BGP next hop with a predefined blackholing
IP address, or implicitly, i.e., via a well-known BGP community. The community
is then translated to the next hop blackholing IP address at the route server.
All connected members receive the BGP update, learn the new BGP next hop
address for the announced prefix, choose it as best path since it is more specific,
and send their traffic to the blackholing IP.

The IXP handles this IP address and resolves it by means of the ARP into
a predefined blackholing MAC address. All Ethernet frames with this destina-
tion MAC are discarded via ACL at the IXP layer-2 ingress switch interfaces
(4). Note, this process is non-transparent for the traffic source, e.g., attacker.
All other announced prefixes remain unaffected (5), but may do not suffer from
congestions anymore. In cases where the DDoS traffic is mainly coming from a
certain member’s networks, the so-called policy control feature of route servers
can be used to limit blackholing only to those ASes. In general, policy con-
trol allows the definition of white- and blacklists for BGP announcements by a

322 C. Dietzel et al.

well-defined set of BGP communities. These communities are interpreted by the
route server.

Blackholing Usage: The implementation of blackholing at IXPs is beneficial
because: (i) route servers disentangle the configuration process for triggering
blackholing. A single route update can address all members at once. (ii) The
large number of networks that meet at the IXP also increase the effectiveness.
(iii) Given the central position in the Internet, blackholing at IXPs allows the
alleviation of the impact closer to the attack source. (iv) It can protect the
intermediate networks on the path through the Internet, but it is far enough
from the source to be efficient.

However, while blackholing at IXPs shields member networks and the links
from congestions, it cannot distinguish between legitimate and malicious traffic.
All packets destined for the defined IP prefix are dropped and, thus, it is not
reachable from all upstream networks on the data path.

Moreover, after detecting a massive DDoS attack, the operator must trigger
blackholing. This is a manual process where the router configuration must be
adjusted in order to announce via BGP an IP prefix under attack. Typically,
a more specific IP prefix is announced to limit the impact on benign traffic to
the minimum. The triggering AS is not necessarily the owner of the IP prefix.
Thus, the announcing member must register this prefix in the IRR database to
be accepted by the IXP.

3 Data Sources

In this paper, we rely on the following datasets from one of the largest European
IXPs [6]. This IXP serves around 600 members and peaks to over 4 Tbit/s in
2015.

We used 5-minute interval snapshots from a publicly accessible looking glass
at the IXP route servers to gather the BGP announcements for long-term con-
trol plane analysis. The announcements for blackholing can be discriminated
by means of a well-defined next hop IP. Due to the sampling frequency, only
announced prefixes that were active at these moments can be captured. Short-
term new and withdrawn announcements are not caught. If a previously active
prefix was absent in one measurement we considered it as a new announce-
ment when it reappears. The data covers a 3-month period from December 2014
onward. From this dataset we identify 22,994 blackholing BGP announcements
(after excluding measurement and looking glass outages, etc.)

To understand the impact of blackholing on the traffic flow, we rely on IPFIX
data from the IXPs switching fabric for the same period. IPFIX at the IXP is
configured to randomly capture 1 out of 10,000 packets on every member link.
The IPFIX data contains the MAC and IP addresses, IP protocol identifier,
TCP/UDP port numbers, and length of the captured packets. For statements
about traffic volumes we extrapolate from the sampled flows.

In addition we use route server and IPFIX data for policy control verification
and a case study from July 2015.

Blackholing at IXPs: On the Effectiveness of DDoS Mitigation in the Wild 323

4 Blackholing: A Usage Analysis

In this section, we elaborate on how blackholing is used in the wild from a con-
trol plane perspective. For the remainder of this paper the term “announcement”
refers to BGP announcements that trigger blackholing. Additionally, all nota-
tions about IP prefixes refer to blackholed IP prefixes if not otherwise stated.

4.1 A Prefix View of Blackholing

The IXP’s route server accepts BGP advertised blackholes with a prefix length n,
with /32 ≤ n ≤ /8. We find that only prefixes ≥ /18 are announced by the IXP
members. Figure 2(a) shows the distribution of unique announcements (y-axis in
log-scale) per prefix length. The mode on the far right indicates that mainly /32
prefixes are blackholed, indeed more than 97% of all announcements. Another
mode is between /24 and /30, which accounts for 2.5%. Prefixes with the length
of ≤ /23 account for a very small fraction, namely 9 announcements (0.5%). In
summary, mostly host routes are used for blackholing.

Due to the employment of the policy control feature at the route server,
prefixes are not necessarily announced to all peers. We randomly sampled the
route server’s RIB four times with a seven day interval. On average 25% of all
announcements carry a policy control community that limits its propagation.

10

1000

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
prefix length [bits]

nu
m

be
r

of
 a

nn
ou

nc
em

en
ts

 [l
og

 1
0]

10

1000

Dec 01 Dec 15 Jan 01 Jan 15 Feb 01 Feb 15 Mar 01
date

nu
m

be
r

of
 a

nn
ou

nc
em

en
ts

 [l
og

 1
0]

active /32 active /31−/18 new /32 new /31−/18

(a) Announcements by prefix length. (b) Avg. active and new announcements per day.

Fig. 2. Prefix views of blackholing.

To understand if the blackholing usage changed over time, Fig. 2(b) shows the
announcements per day, clustered by prefix length over a three-month period.
We distinguish between new announcements per day and active on average per
day. Unexpectedly, we find that the total number of active announcements is

324 C. Dietzel et al.

0.000

0.025

0.050

0.075

10m 1h 6h 24h 72h 7d 14d 40d 90d
duration [log 10]

fr
ac

tio
n

of
 to

ta
l a

nn
ou

nc
em

en
ts

prefixes

/32

/31−/25

/24−/18

1

10

100

1 2 3 4 5 6 7 8 9 A B C D E F G H I K L M N O P Q R S T
member AS

nu
m

be
r

of
 n

ew
 a

nn
ou

nc
em

en
ts

 p
er

 p
re

fix
 [l

og
 1

0]
(a) Fraction of all announcement spermin-
utes binnedbyprefix.

(b) Announcement frequency perprefix
[log 10].

Fig. 3. Prefix and AS view of blackholing.

almost stable. In particular, the /18 − /31 prefix cluster contains eight /24
announcements that are active over the entire measured period. Unfortunately,
we did not get a response from the operator to fathom the intention for the
long lasting announcements. For announcements between /25 – /30, we again
see permanently announced prefixes that are active for a period of several weeks.
Since the announcements with prefixes of the /18 - /31 are only short-lived, they
do not impact the average number of active ones. In contrast, the most prevalent
prefix class, the /32s, varies significantly. It ranges from an average minimum of
994 to a maximum of 1, 463 and a mean of 1, 195 for all active announcements.

The number of new announcements per day differ notably compared to the
averages. They show significant variations. From no activities over several days to
large numbers of new announcements during one day for all but the /32. Indeed,
focusing on the peak on January 27th, we see a total of 415 newly announced
unique prefixes. All prefixes are announced simultaneously by the same AS at 6
A.M. and last for about 10 minutes. The number of new announcements for the
/32 prefixes varies between 102 and 1211.

Next, we consider the durations and remove all announcements where we did
not capture either the beginning or the end. We cluster these announcements
(100%) by prefix length and show in Fig. 3(a) the histogram of announcement
durations in minutes using log-scale. The majority of long announced prefixes
are /32s. Altogether, the largest fraction (0.1 of all prefixes) is announced for
about five minutes. The two clusters with the less specific prefixes (/18 – /24
fraction of 0.004 and /25 – /31 with 0.015) have few announcements longer
than five minutes. Their longest announcements last for 57.39 days. The /32
prefixes are again more diverse. Notably, around 9% of the announcements
are active for about 10 minutes while 38.5% last longer than 240 minutes.

Blackholing at IXPs: On the Effectiveness of DDoS Mitigation in the Wild 325

Interestingly, multiples of 1 hour are more dominant. The longest duration we
observe is 76.31 days.

The operational background for such observation is that the members’ mon-
itoring capabilities for blackholing are limited. As soon as a prefix is announced
for blackholing, the announcing AS is not aware of the amount of traffic that
is dropped. Hence, some members turn blackholing off and on within a short
period of time in order to check whether the DDoS attack is still on-going.

4.2 An as View of Blackholing

To understand how the 75 different ASes (12% of member ASes) use blackholing
we take a closer look at the announcements from a member AS perspective.
These ASes are categorized according to Peering DB: Network Service Providers
(NSP) 50%, Cable/DSL/ISP 25%, and Content Providers 19%. The NSPs are
overrepresented compared to IXP-wide 42%, while the latter two accord to those.

The ASes announced 7, 864 unique prefixes, of which 10% were announced
once and around 15% between two and three times. 47 ASes announced fewer
than 50 prefixes in total and were excluded to focus on the blackholing-heavy
ASes. We then focus on the remaining 28 ASes. The mean of all announcements
for the same prefixes across all remaining ASes is 3.13 with a median of only 1.
Figure 3(b) shows the number of announcements per unique prefix by AS in a
boxplot. Overall, the median is almost always lower than 10. Looking at the
details we find that, despite the prevailing low announcing frequencies, there are
also AS-wide high frequencies. Surprisingly, outliers spread from 10 to 100. The
observed maximum number of a unique announced prefix is 623. This observation
may provide further evidence for an operational procedure where blackholing is
switched on and off many times for the very same IP prefix within a short time
frame.

To check if the frequently announced prefixes have an impact over the total
time span that they are active, we accumulate the duration for all unique prefixes
of our selected ASes. Figure 4(a) shows these values at the y-axis with the same
ASes as in Fig. 3(b). We find that the majority of ASes announce prefixes for a
duration longer than 1 hour but less than 7 days. Nevertheless, we observe some
ASes that either announce their prefixes primarily over a short or long period of
time.

Figures 3(b) and 4(a) expose no clear correlation between frequency and dura-
tion of announcements for the same AS. On the one hand some ASes announce
the same prefix frequently for short times, and on the other hand some ASes
announce blackholing only once for a short duration. However, also the contrary
can be observed: frequent and once for a longer duration. This indicates that
there is no common operational procedure for triggering blackholing. This is not
surprising as DDoS attacks often differ from attack to attack. Thus, operators
respond to each attack individually.

Nevertheless, we want to see if there are operational patterns: one would
expect either more announcements during daytime working hours, or during
peak hours. Neither is the case and the behavior differs by AS. For some, we

326 C. Dietzel et al.

10m

1h

6h

24h

72h

7d

14d

40d

90d

1 2 3 4 5 6 7 8 9 A B C D E F G H I K L M N O P Q R S T
member AS

ac
tiv

e
an

no
un

ce
m

en
t d

ur
at

io
n

su
m

 p
er

 p
re

fix
 [m

in
 in

 lo
g

10
]

(a) # active duration per prefix [log 10].

10

100

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
day time [hour]

nu
m

be
r

of
 n

ew
 a

nn
ou

nc
em

en
ts

 [l
og

 1
0]

(b) Selected ASes: announcements by time.

Fig. 4. AS views of blackholing.

see clear patterns, e.g., see Fig. 4(b). Here, the number of new announcements
is substantially smaller but the variance is higher at night.

5 Blackholing Impact on Traffic

To study the effectiveness of blackholing on the data plane, we correlate the
actual traffic with the BGP announcements on the control plane. Figure 5(a)
depicts the bit rates of the blackholed traffic at the IXP during our three month
observation period. It shows per day the hourly maximum and hourly average
in Mbit/s. The per day maximum varies from 50 to 1, 000 Mbit/s with a peak
at 2, 100 Mbit/s. At first glance, this may seem small especially when compared
to the average traffic rates at this IXP. However, keep in mind that this is the
traffic that is discarded and should only effect short time-scale DDoS attacks.
Moreover, as soon as the blackhole is in effect, this regulates traffic volume. For
TCP, blackholing disables connections and for UDP the sender might notice the
blackhole and therefore throttle the attack. Another reason is what we plot: the
average across a full hour. Indeed, the daily averages (dashed line) are up to 10
times smaller than the daily maxima (solid line).

Given the large number of blackholing announcements, see Sect. 4, we next
determine how many of these prefixes actually receive traffic. We find that in
those hours with more than 1 Mbit/s average blackhole traffic, a mean of 81 and
a maximum of 871 IPs receive traffic. Thus, we conclude that typically only a
small number of IPs receive a substantial amount of blackholed traffic.

To assess the impact of blackholing we next examine the temporal correlation
of blackhole announcements with traffic. We focus on two case studies: (Case
Study I) an event that lasted a relatively short time period and (Case Study II)
one lasting longer and involving a larger traffic volume.

Blackholing at IXPs: On the Effectiveness of DDoS Mitigation in the Wild 327

10

100

1000

Dec 15 Jan 01 Jan 15 Feb 01 Feb 15 Mar 01
date

m
bi

t p
er

 s
ec

on
d

/ h
os

t I
P

s
[lo

g
10

]

mbits max mbits

(a) Blackholed traffic for 3 month period.

1.3

13

133

1333

6:15 6:30 6:42 6:56 7:15
time

m
bi

t p
er

 s
ec

on
d

[lo
g

10
]

blackholing traffic regular traffic

(b) Traffic volumes for Case Study I.

Fig. 5. Traffic volumes over time.

Case Study I: Fig. 5(b) is an example where the blackholed prefixes are in the
range /19 – /29. This AS (AS k in Figs. 3(b) and 4(a)) announced 415 prefixes for
blackholing — all at the same time. Overall, the blackhole was active for roughly
10 min (dashed vertical line). Figure 5(b) shows the traffic volume as received by
the AS for all these blackholed prefixes for 60 minutes, namely, ∼30 min before
the first blackhole announcement, during the blackhole, and ∼20 min afterwards.
In addition, we show the traffic for the same prefixes that is discarded, as well
as the times when the blackhole announcements are made (vertical line). Right
after the blackhole is announced the traffic that the AS receives drops by roughly
a factor of 100. The blackholed traffic (dotted lines) is smaller than the “missing”
traffic due to the reasons mentioned above. After the blackhole is deactivated
the traffic volume rises to a level that is close to the previous one. The difference
is roughly 300 Mbit/s. We also conclude that the objective of the blackhole was
achieved as there were no further blackhole announcements for these prefixes by
this AS.

One could expect that the amount of traffic that is blackholed is the same
as the reduction of the regular traffic. This is not the case and explanations are:
(i) Depending on the BGP router configuration, it cannot be guaranteed that a
particular peer accepts more specific prefixes than /24. (ii) The AS under attack
may take other corrective actions besides blackholing at IXPs. For instance,
blackholing at upstreams, moving traffic from peering to transit, or activating
DDoS traffic filtering services (e.g., CloudFlare or Prolexic). (iii) If the black-
holed traffic contains a large fraction of TCP traffic and these TCP connections
are broken by the blackhole, this can reduce the data traffic drastically.

Case Study II: Fig. 6(a) shows the same data but for another AS for a six day
period from 26th of July 2015 onwards. We picked this case study as it involved
substantial amounts of traffic, an interesting application (port) mix, and a single
IP — a /32 prefix (to bh/32 and to /32 legend in Fig. 6(a)). In addition, the plot

328 C. Dietzel et al.

contains the traffic to the covering /16 prefix (to /16) as well as the overall traffic
for this AS (to AS).

0

5000

10000

15000

Jul 26 Jul 27 Jul 28 Jul 29 Jul 30 Jul 31 Aug 01
date

m
bi

t p
er

 s
ec

on
d

on
 h

ou
rly

 a
vg

to bh /32 to AS to /32 to /16

(a) Traffic over time for different subsets. (b) Distribution of dst ports over time.

Fig. 6. Traffic and port mix for Case Study II.

Notice the radical increase in traffic shortly before the blackhole announce-
ment. The traffic to the AS spikes from roughly 6 Gbit/s to 17.6 for an AS with
an aggregated port capacity of 20 Gbit/s. The plot highlights that the root cause
is in the non-blackholed /16 and in particular in the /32 that is then blackholed.
The blackhole announcement for this /32 is highly effective as the regular traffic
for the IP as well as for the /16 and the AS drops significantly immediately after
the announcement. Note, that we can still see traffic to the /32 because not nec-
essarily all peers accept more specific announcements than /24. We also notice
the peak in the blackholed traffic for the /32, which increases to 3.2 Gbit/s.
Thus, the blackhole reduces the traffic to the AS and the prefixes by about one
third. Over the next days the traffic to the IP gradually decreases while the non-
blackholed traffic to the /16 and /32 shows clear daily patterns. We captured
several updates for the blackholed prefix. The blackhole is not revoked, but just
updated with different communities which are not honored by the IXP’s route
server.

To understand why the blackhole is effective, we plot in Fig. 6(b) the relative
transport TCP/UDP port distribution for the traffic to the AS. Over the whole
period port 80 (http), 1194 (OpenVPN), 443 (https), 5055, 6969 (BitTorrent)
are the most prominent ports. Accordingly, the plot is a stacked barplot with
these ports and other ports at the bottom.

Initially, the traffic share of http is ∼ 30%. But with the blackhole trigger
event the OpenVPN traffic drastically increases. Indeed, it constitutes about
50 % of all traffic to this AS. As time passes and the blackhole takes effect the port
mix slowly converges to the initial distribution. The dominance of OpenVPN is
also reflected in the blackholed traffic for the blackholed IP. 99.9% of the traffic

Blackholing at IXPs: On the Effectiveness of DDoS Mitigation in the Wild 329

is UDP and involves port 1194. Thus, this change of ports is also reflected in the
distribution of transport protocols.

We find that blackholing is effective in numerous situations. However, the
observed volumes of traffic depend on numerous factors, e.g., prefix length,
announcement duration, general traffic utilization, attack pattern, and/or pol-
icy control settings. We also highlight that the traffic mix can vary significantly
between non-blackholed and blackholed traffic.

6 Related Work

While this work focuses on blackholing, a network-based reactive measure to
diminish massive DDoS attacks in the core of the Internet, this section summa-
rizes other reactive DDoS defense mechanisms and highlights other measurement
studies.

Source-based defense techniques are deployed near the source of an attack
and aim to impede service of intermediate and destination networks. Common
mechanisms are IP source address filtering and heuristics on ingress/egress traffic
flows [1,10,22].

Alternatively, destination-based DDoS mitigation attempts to combat
attacks near the victim-end of the Internet. Common places for their deploy-
ment are edge routers or access routers of the destined AS. Proposed mecha-
nisms include adaptive rate limiting [16,21], network reconfiguration [3,4,35],
and traceback [2,34]. Additionally, a multitude of filtering techniques such as
time-based [14], history-based [29], and hop count-based [17] have been intro-
duced.

Whereas source-based DDoS defense often suffers from its limited scope
and the lack of a representative fraction of the attack traffic to be efficient,
destination-based approaches come in too late on the path through the Inter-
net. Thus, they jeopardize the destination AS or even intermediate networks.
Network-based approaches seek to overcome these drawbacks and are deployed
inside intermediate networks. They mainly incorporate distributed or trust-based
detection and already presented reconfiguration or filtering mechanisms, e.g.,
[11,24,28].

Despite the large body of available approaches, effective reactive techniques
that are deployed in practice are rare. Thus, there is a demand for defense
techniques which are efficient, easy and quick to apply, and which ensure the
continuing availability of the services, system, or network. However, none of the
mentioned taxonomies for DDoS defense techniques [18,23,37] takes blackholing
into consideration.

Although blackholing has not been examined to date, other recent mea-
surement studies focus on attack amplification potential [7,20,32,33,38] and on
progress towards diminishing their impact [19].

330 C. Dietzel et al.

7 Summary and Future Work

In this paper, we perform a first study on the usage of blackholing at an IXP in
the wild. We find that not only is blackholing frequently used with about 23, 000
announced blackholes over our measured period of 3 months, but also that they
have a considerable prefix size — up to /18. While short-lived blackholes are
prevalent, we also spot others that lasted for months. Moreover, we observe an
apparently stable number of active blackholing announcements (about 1200).

The frequent usage of blackholing on the control plane correlates with signif-
icant amounts of blackholed traffic on the data plane. Using two case studies we
show that blackholing successfully reduces the amount of traffic. This empha-
sises that blackholing at IXPs can be a very useful tool to diminish massive
DDoS attacks. Indeed, our analysis of the application (port) mix of one of the
blackhole incidents indicates that blackholing is successful in reducing unusual
OpenVPN traffic, likely a DDoS attack.

In general, IXPs are great locations for countering DDoS attacks via black-
holing, as the IXP infrastructure is a multiplication factor. Still, blackholing is
a relatively new feature and there is room for increased efficacy, e.g., effective
monitoring and reporting, partially retracting blackholing, as well as common
operation practices at the ASes (acceptance of more specific than /24 prefixes),
and transitive blackholing. Moreover, the blackholed data can be used to better
mitigate attacks in the Internet.

Acknowledgments. We thank all our colleagues for their feedback, and the review-
ers for their suggestions. This work is supported by European Unions Horizon 2020
research and innovation programme under the ENDEAVOUR project (grant agree-
ment 644960) and by the German Federal Ministry of Education and Research (BMBF
Grant 01IS14009D BDSec).

References

1. Abdelsayed, S., Glimsholt, D., Leckie, C., Ryan, S., Shami, S.: An efficient filter
for denial-of-service bandwidth attacks. In: GOLBECOM (2003)

2. Adler, M.: Trade-offs in probabilistic packet marking for IP traceback. JACM
52(2), 217–244 (2005)

3. Agarwal, S., Dawson, T., Tryfonas, C.: DDoS Mitigation via Regional Cleaning
Centers. Technical report, Sprint ATL Research Report (2003)

4. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay net-
works. In: ACM SOSP (2001)

5. Battles, T., McPherson, D., Morrow, C.: Customer-triggered real-time blackholes.
In: NANOG 30 (2004)

6. Chatzis, N., Smaragdakis, G., Böttger, J., Krenc, T., Feldmann, A.: On the benefits
of using a large IXP as an internet vantage point. In: ACM IMC (2013)

7. Czyz, J., Kallitsis, M., Gharaibeh, M., Papadopoulos, C., Bailey, M., Karir, M.:
Taming the 800 pound gorilla: the rise and decline of NTP DDoS attacks. In: ACM
IMC (2014)

Blackholing at IXPs: On the Effectiveness of DDoS Mitigation in the Wild 331

8. DE-CIX: DE-CIX Blackholing Support. www.de-cix.net/products-services/de-cix-
frankfurt/blackholing/

9. Deutsche Telekom: AS3320 BGP Communities, August 2005. www.onesc.net/
communities/as3320/AS3320 BGP Communities v1.1.pdf

10. Gil, T.M., Poletto, M.: MULTOPS: A data-structure for bandwidth attack detec-
tion. In: USENIX Security Symposium (2001)

11. Gonzalez, J.M., Anwar, M., Joshi, J.: A trust-based approach against ip-spoofing
attacks. In: IEEE PST (2011)

12. Greene, B.R.: Remote triggering black hole filtering. Cisco Systems (2002)
13. Greene, B.R., Smith, P.: Cisco ISP Essentials. Cisco Press, Indianapolis (2002)
14. Hu, Y., Choi, H., Choi, H.-A.: Packet filtering to defend flooding-based DDoS

attacks. In: Advances in Wired and Wireless Communication (2004)
15. Hurricane Electric: Customer Blackhole Community (2006). www.he.net/adm/

blackhole.html
16. Ioannidis, J., Bellovin, S.M.: Implementing Pushback: Router-Based Defense

Against DDoS Attacks. Columbia University Academic Commons (2002)
17. Jin, C., Wang, H., Shin, K.G.: Hop-count filtering: an effective defense against

spoofed DDoS traffic. In: ACM CCS (2003)
18. Keshariya, A., Foukia, N.: DDoS defense mechanisms: a new taxonomy. In:

Garcia-Alfaro, J., Navarro-Arribas, G., Cuppens-Boulahia, N., Roudier, Y. (eds.)
DPM 2009. LNCS, vol. 5939, pp. 222–236. Springer, Heidelberg (2010)

19. Kührer, M., Hupperich, T., Rossow, C., Holz, T.: Exit from hell? reducing the
impact of amplification DDoS attacks. In: USENIX Security Symposium (2001)

20. MacFarland, D.C., Shue, C.A., Kalafut, A.J.: Characterizing optimal DNS ampli-
fication attacks and effective mitigation. In: Mirkovic, J., Liu, Y. (eds.) PAM 2015.
LNCS, vol. 8995, pp. 15–27. Springer, Heidelberg (2015)

21. Mahajan, R., Bellovin, S.M., Floyd, S., Ioannidis, J., Paxson, V., Shenker, S.:
Controlling high bandwidth aggregates in the network. ACM SIGCOMM CCR
(2002)

22. Mirkovic, J., Prier, G., Reiher, P.: Source-end DDoS defense. In: IEEE NCA (2003)
23. Mirkovic, J., Reiher, P.: A taxonomy of DDoS attack and DDoS defense mecha-

nisms. In: ACM SIGCOMM CCR (2004)
24. Mizrak, A.T., Savage, S., Marzullo, K.: Detecting compromised routers via packet

forwarding behavior. IEEE Netw. 22(2), 34–39 (2008)
25. MSK-IX: Protection against DDoS-attacks by blackholing. www.msk-ix.ru/eng/

routeserver.html#blackhole
26. NETIX: Blackholing. www.netix.net/services/14/NetIX-Blackholing
27. NTT Communications: Terms and conditions for use of global IP network services,

August 2007. http://www.ntt.net/english/library/pdf/terms.pdf
28. Park, K., Lee, H.: On the effectiveness of route-based packet filtering for distributed

DoS attack prevention in power-law internets. In: ACM SIGCOMM CCR (2001)
29. Peng, T., Leckie, C., Ramamohanarao, K.: Protection from distributed denial of

service attacks using history-based IP filtering. In: IEEE ICC (2003)
30. Prince, M.: The DDoS that almost broke the internet, March 2013. www.blog.

cloudflare.com/the-ddos-that-almost-broke-the-internet/
31. Richter, P., Smaragdakis, G., Feldmann, A., Chatzis, N., Boettger, J., Willinger,

W.: Peering at peerings: on the role of IXP route servers. In: ACM IMC (2014)
32. Rossow, C.: Amplification hell: revisiting network protocols for DDoS abuse. In:

NDSS (2014)

www.de-cix.net/products-services/de-cix-frankfurt/blackholing/
www.de-cix.net/products-services/de-cix-frankfurt/blackholing/
www.onesc.net/communities/as3320/AS3320_BGP_Communities_v1.1.pdf
www.onesc.net/communities/as3320/AS3320_BGP_Communities_v1.1.pdf
www.he.net/adm/blackhole.html
www.he.net/adm/blackhole.html
www.msk-ix.ru/eng/routeserver.html#blackhole
www.msk-ix.ru/eng/routeserver.html#blackhole
www.netix.net/services/14/NetIX-Blackholing
http://www.ntt.net/english/library/pdf/terms.pdf
www.blog.cloudflare.com/the-ddos-that-almost-broke-the-internet/
www.blog.cloudflare.com/the-ddos-that-almost-broke-the-internet/

332 C. Dietzel et al.

33. Ryba, F., Orlinski, M., Wählisch, M., Rossow, C., Schmidt, T.: Amplification and
DRDoS Attack Defense - A Survey and New Perspectives. arXiv preprint (2015).
arxiv:1505.07892

34. Savage, S., Wetherall, D., Karlin, A., Anderson, T.: Network support for IP trace-
back. IEEE/ACM Trans. Netw. 9(3), 226–237 (2001)

35. Shi, E., Stoica, I., Andersen, D.G., Perrig, A.: OverDoSe: A Generic DDoS Pro-
tection Service Using an Overlay Network. Computer Science Department (2006)

36. Sipgate: The Sipgate DDoS Story, October 2014. https://medium.com/@sipgate/
ddos-attacke-auf-sipgate-a7d18bf08c03

37. Specht, S.M., Lee, R.B.: Distributed denial of service: taxonomies of attacks, tools,
and countermeasures. In: ISCA PDCS, pp. 543–550 (2004)

38. van Rijswijk-Deij, R., Sperotto, A., Pras, A.: DNSSEC and its potential for DDoS
attacks: a comprehensive measurement study. In: ACM IMC (2014)

39. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against distrib-
uted denial of service (DDoS) flooding attacks. IEEE Com. Surv. Tutorials 15(4),
2046–2069 (2013)

http://arxiv.org/abs/1505.07892
https://medium.com/@sipgate/ddos-attacke-auf-sipgate-a7d18bf08c03
https://medium.com/@sipgate/ddos-attacke-auf-sipgate-a7d18bf08c03

Dissecting the Largest National Ecosystem
of Public Internet eXchange Points in Brazil

Samuel Henrique Bucke Brito(B), Mateus A.S. Santos,
Ramon dos Reis Fontes, Danny A. Lachos Perez,

and Christian Esteve Rothenberg

Information and Networking Technologies Research
and Innovation Group (INTRIG), School of Electrical and Computer Engineering,

University of Campinas (UNICAMP), Sao Paulo, Brazil
{shbbrito,msantos,ramonrf,dlachosp,chesteve}@dca.fee.unicamp.br

Abstract. Many efforts are devoted to increase the understanding
of the complex and evolving Internet ecosystem. Internet eXchange
Points (IXP) are shared infrastructures where Autonomous Systems (AS)
implement peering agreements for their traffic exchange. In recent years,
IXPs have become an increasing research target since they represent an
interesting microcosm of the Internet diversity and a strategic vantage
point to deliver end-user services. In this paper, we analyze the largest set
of public IXPs in a single country, namely the IX.br project in Brazil. Our
in-depth analyses are based on BGP data from all looking glass servers
and provide insights into the peering ecosystem per IXP and from a
nation-wide perspective. We propose a novel peering affinity metric well-
suited to measure the connectivity between different types of ASes. We
found lower values of peering density in IX.br compared to more mature
ecosystems, such as AMS-IX, DE-CIX, LINX, and MSK-IX. Our final
contribution is sharing the 15 GB dataset along all supporting code.

Keywords: IXP · BGP · Autonomous system · Inter-domain routing

1 Introduction

Internet eXchange Points (IXP) are a relevant approach to promoting the Inter-
net development in terms of connectivity and performance. IXP facilities, located
at strategic places throughout nations, allow dozens or hundreds of Autonomous
Systems (AS) to interconnect and agree on their traffic exchange. The increased
participation of ASes at IXPs is contributing to the critical role of IXPs as tacti-
cal infrastructures in the overall Internet ecosystem [3]. The motivation of ASes
to peer at IXPs is mainly due to cost savings and performance benefits [13].
With video traffic representing 50 % (and growing) of the total Internet traf-
fic, peering at IXPs allows a better distribution of content closer to end users
and reducing transit costs. During the 2014 Soccer World Cup1, Brazilian IXPs
1 https://labs.ripe.net/Members/emileaben/internet-traffic-during-the-world-cup-

2014.

c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 333–345, 2016.
DOI: 10.1007/978-3-319-30505-9 25

https://labs.ripe.net/Members/emileaben/internet-traffic-during-the-world-cup-2014
https://labs.ripe.net/Members/emileaben/internet-traffic-during-the-world-cup-2014

334 S.H.B. Brito et al.

Table 1. Traffic of some of the world’s largest public IXPs (August 28, 2015).

IXP Country Members Maximum Throughput (Gbps) Average Throughput (Gbps)
Daily Monthly Yearly Daily Monthly Yearly

(01) DE-CIX Germany 600+ 3,603.10 3,854.80 3,875.10 2,375.90 2,299.20 1,964.90
(02) AMS-IX Netherlands 731 3,620.00 - 3,872.00 2,358.00 - 2,013.00
(03) LINX United Kingdom 630 2,472.00 2,530.00 2,575.00 1,844.00 1,631.00 1,507.00
(04) MSK-IX Russia 384 1,409.26 1,417.01 1,569.64 924.73 788.26 778.82
(05) NL-ix Netherlands 527 1,080.00 - - 871.56 - -
(06) IX.br Brazil 715 989.90 1,070.00 653.51 656.67 610.85 451.27
(07) HKIX Hong Kong 225 436.43 468.12 485.18 305.02 302.84 245.51
(08) SIX USA, Canada 200 398.68 411.22 411.22 304.89 288.53 239.61
(09) JPIX Japan 138 315.54 - - 200.00 - -
(10) JINX South Africa 24 15.90 20.80 11.10 8.60 8.30 6.00
(01) http://www.de-cix.net/about/statistics/ (02) https://ams-ix.net/technical/statistics

(03) https://www.linx.net/pubtools/trafficstats.html (04) http://www.msk-ix.ru/network/traffic.html

(05) https://www.nl-ix.net/network/traffic/ (06) http://ix.br/cgi-bin/all

(07) http://www.hkix.net/hkix/stat/aggt/hkix-aggregate.html (08) http://www.seattleix.net/agg.htm

(09) http://www.jpix.ad.jp/en/technical/traffic.html (10) http://stats.jinx.net.za/showtotal.php

played a critical role in delivering the traffic and are expected to be again an
important infrastructural piece during the 2016 Olympic Games.

The nature and services of an IXP largely depend on its business and opera-
tional model, i.e., the entity owning/operating an IXP may have different vision,
incentives, regulatory and commercial considerations. Following the approxi-
mate classification of [3], we can distinguish “for-profit” and “non-profit” IXPs,
which can be further divided into “cooperative” and “managed” non-profit IXPs
(e.g., DE-CIX, AMS-IX, LINX). The latter, mainly found in Europe, are consid-
ered among the most vibrant and innovative IXPs [3]. In the US, the predominant
business model of IXPs is private, for profit.

The case of Brazil, which leads Latin America by operating more than half
of the IXPs in the region, follows an interesting approach that may inspire other
countries, especially developing regions. Brazilian IXPs are part of an overarch-
ing project called IX.br (also known as PTTMetro) and adopt a non-profit busi-
ness model managed and fully funded by NIC.br, the Brazilian Internet Steering
Committee that takes care of DNS registry services, IP allocation, in addition
to government-funded Internet development activities. Since 2006, Brazil has
grown from 4 IXPs to the current 25 in operation –with 16 new locations under
evaluation2, especially in the north, west and central regions where there is a
concerning deficit of rich Internet connectivity compared to the south, south-
east, and northeast. The IX.br expansion plan aims at attracting ISPs (access
providers) to those isolated areas with poor connectivity by offering IXP incen-
tives (fee free usage). As shown in Table 1, IX.br is among the world’s top ten
IXPs in terms of traffic. PTT-SP (in Sao Paulo) alone is among the top five
largest in terms of number of members (700+)3.

In this paper, we present the first empirical analysis of the Brazilian IXP
ecosystem and bring out an extensive data collection and analysis work consid-
ering all public IXPs operating in Brazil. After classifying all AS participants,

2 According to NIC.br, there are currently 45 candidates interested in hosting the
new IXPs. Interested entities, be it commercial or not, are only requested to operate
neutrally and free of fees to IXP participants.

3 http://ix.br/particip/sp.

http://ix.br/particip/sp

Dissecting the Largest National Ecosystem of Public IEPs 335

we generate AS-level connectivity graphs (per IXP and nation-wide) to sustain
the analytic studies on the observed topologies, shedding light on the peering
density, advertised routes (AS-PATH), average vertices’ degree, path depth, and
traffic engineering practices based on AS-Prepend.

Another contribution is proposing peering affinity as a metric to evaluate
the peering density between different types of ASes. Our publicly available4

dataset –currently the largest one in the context of the Latin America IXPs–
has more than 15 GB of data and the information from all 25 Brazilian pub-
lic IXPs, including the member classification, IPv4/v6 BGP tables, supporting
spreadsheets, connectivity matrices, as well as all coding and supporting tools
(e.g. scripts, gnuplot, Neo4j, NetworkX) we use.

2 Methodology: Data In, Knowledge Out

Our workflow to gather data and generate outputs (knowledge) is as follows. The
first step is to access every Brazilian IXP via telnet to its publicly accessible LG
(lg.<code>.ptt.br) that mirrors the route server. Once connected by telnet at
each IXP LG, the second step is to query BGP to collect the following data:
(i) BGP tables (both IPv4 and IPv6), (ii) list of BGP AS-PATH, and (iii)
community codes. The raw dataset with the output of these BGP queries is
first stored locally as simple text files (step 3), and then parsed/pre-processed
(step 4). Finally, the datasets go through a set of analytic functions (steps 5
and 6) implemented with two different graph-oriented tools. The manual and
time-consuming task described in steps 1, 2 and 3 were automated through the
developed framework consisting of a set of scripts to automatically access every
Brazilian IXP by telnet and save the outputs from the different BGP queries in
the corresponding text files.

Our analytic framework uses two different tools for the job of generating and
dissecting the AS-level graphs based on the input BGP data: (1) NetworkX5 soft-
ware for complex networks, and (2) Neo4j6 graph-oriented database. As inputs
to both tools we used the adjacency matrices generated from the files extracted
from each IXP LG. We generated an AS-level connectivity graph for each IXP
and a nation-wide graph based on interconnecting all IXPs through their com-
mon AS members. In all graphs, nodes (vertices) are ASes as observed in the
BGP AS-PATH attribute and edges represent the BGP connectivity.

3 Analyses and Discussion of the Results

Due to space limitations, we focus our analysis mainly on the nation-wide graph
(column called “Brazil”) and four representative IXPs: (i) small IXP (PTT-DF)
located in the capital Brasilia, (ii) medium (PTT-MG), (iii) medium-to-large

4 https://github.com/intrig-unicamp/ixp-ptt-br.
5 https://networkx.github.io/.
6 http://neo4j.com/.

https://github.com/intrig-unicamp/ixp-ptt-br
https://networkx.github.io/
http://neo4j.com/

336 S.H.B. Brito et al.

Table 2. Profile of ASes at Brazilian IXPs as of March 25, 2015. The Brazil column
includes absolute numbers whereas individual IXPs reflect only percentiles.

Classification Brazil (a) DF MG RJ RS SP

1. Internet provider 743 (65.1% ± 20%) 37.5% 55.9% 51.9% 68.0% 73.1%

1.1 Transit provider 98 (8.6% ± 09%) 20.8% 14.7% 19.2% 5.0% 5.6%

1.2 Access provider 645 (56.5% ± 21%) 16.7% 41.2% 32.7% 63.0% 67.5%

2. Services provider 115 (10.1% ± 07%) 8.3% 8.8% 17.3% 5.0% 12.5%

2.1 Content provider 37 (3.2% ± 06%) 0.0% 2.9% 5.8% 3.0% 4.7%

2.2 Hosting provider 78 (6.8% ± 05%) 8.3% 5.9% 11.5% 2.0% 7.8%

3. Public organization 140 (12.3% ± 21%) 37.5% 20.6% 15.4% 11.0% 4.4%

3.1 Public university 20 (1.8% ± 19%) 0.0% 0.0% 0.0% 2.0% 1.1%

3.2 Government 100 (8.8% ± 13%) 33.3% 17.6% 13.5% 8.0% 2.2%

3.3 Other 20 (1.8% ± 03%) 4.2% 2.9% 1.9% 1.0% 1.1%

4. Private organization 144 (12.6% ± 09%) 16.7% 14.7% 15.4% 16.0% 10.0%

4.1 Private university 8 (0.7% ± 03%) 0.0% 2.9% 0.0% 4.0% 0.0%

4.2 Private company 119 (10.4% ± 09%) 16.7% 8.8% 15.4% 10.0% 8.9%

4.3 Other 17 (1.5% ± 09%) 0.0% 2.9% 0.0% 2.0% 1.1%

(a) Average of ALL 25 Brazilian IXPs.

(PTT-RJ), and (iv) large (PTT-RS). However, raw data and results for every
IXP are available in the public repository.

One noteworthy observation is the validity of the results of two IXPs, namely
PTT-SP and PTT-PR. BGP data collected from both IXP LGs revealed that
filters are being applied to the exported routing tables, a fact confirmed by IX.br
representatives due to performance and scalability issues of the LG servers in
operation. For this reason, most of the analyses do not include these IXPs.

3.1 Members Classification: Who Is Who?

A first effort to organize our dissection was manually classifying all 1,142 ASes
at IX.br. Actually there are 715 unique members registered at IX.br, but there
are 1,142 ASes considering the overlap of members peered at multiple IXPs7.
Our “ground truth” attempt to classify the type of ASes present at IXPs is
relevant for an accurate view on the current profile of the members interested in
peering in every region of Brazil. The classification task was executed following
a manual approach by members of our research group and included individual
cross-validation actions. In addition to whois services of both NIC.br (Brazil) and
LACNIC (Latin America), content from the AS Web sites was used to sort each
AS into the categories presented in Table 2. Again, the complete dataset with
the individual classification of all ASes can be found in our public repository.

The tables ahead include a column called “Brazil” with the average and
confidence intervals of the results considering all IX.br IXPs. The high values of
7 Although IX.br is a national project, we highlight that a member peered at one IXP

of IX.br is not connected to the members of other IXPs.

Dissecting the Largest National Ecosystem of Public IEPs 337

the Brazil-wide standard deviation confirm the heterogeneity of IXPs, as their
sizes end up being a relevant factor for many of the observed metrics.

Access Providers Dominate. Looking at the AS type profiling in Table 2,
despite some variations in the percentile values, we observe that the majority of
IXPs members are access providers of local coverage. This is an expected result
given the economic incentives of access providers to exchange the maximum
amount of traffic as possible through multilateral agreements at IXPs, thereby
reducing the transit costs of upstream links. The increasing presence of smaller
access providers at IXPs has a positive impact on the prices ISPs apply to their
downstream customers, contributing to a scenario of local competition between
multiple access providers. Like in most developing countries, the average quality
of Internet connectivity in Brazil is still low compared to developed nations. The
public IXP initiative is contributing to revert this situation by keeping traffic
regionalized and reducing the distance between endpoints, and may be more
importantly providing an incentive-rich environment for innovation and healthy
IP connectivity market practices. These seem to be the factor behind ISPs,
mostly access providers, extending their reach to include locations with poor
connectivity options. Without the cost-attractive infrastructure of the IXPs,
access providers would need to rely on transit providers, resulting in higher
costs and fewer competition in the access provider arena –arguably the most
interested type of AS in open peering.

In the Capital Things are Different. The only exception to the dominance
of access providers happens at PTT-DF IXP where the presence of government
and public organizations is high, a regional particularity at the federal capital
of Brazil. Among the PTT-DF members we can highlight the Federal Senate,
Federal Police, Serpro, Dataprev, Telebras, and others.

Few but Heavy Content Providers. A relative low participation of content
providers was observed at IXPs of different Brazilian regions, such as newspapers,
magazines, radio and television stations, etc. The majority of content providers
are companies that operate Content Delivery Networks (CDN) responsible for
a large fraction of the traffic. This result highlights the fact that few Brazilian
content providers are exploring the benefits of IXP peering due to cost savings
and reduced hop distance to eyeball ISPs. We recognize as a plausible reason
the common practice of content providers relying on CDN providers to deliver
their content closer to the users of a wider geographical span (including interna-
tionally), as opposed to IXPs that bring more localized benefits.

Low Presence of Private Companies. This fact can be explained by the main
motivation of private companies to increase their redundancy through multi-
homed connections with larger ASes (telcos). These telcos can reach the whole
Internet in contrast to IXPs with more restricted reachability towards their local
region. While the amount of private companies at IXPs is low, the observed
peering density (amount of open peering with all types of ASes) is relatively
high, according to the results to be presented in Sect. 3.2.

338 S.H.B. Brito et al.

Majority Incentives Lead to the Predominance of Open Peering. Based
on the IX.br records, currently, 97.72 % of ASes opt for open peering through
multilateral agreement –a high fraction in harmony with the spirit and efforts on
public, open policies conducted by NIC.br. Only 2.28 %, mainly transit providers,
choose private peering based on bilateral agreements, once large telcos sell transit
to local access providers and hence lack economic incentives to openly exchange
traffic except with ASes of similar size and nature. Small, regional ISPs are
mostly customers that already buy transit somewhere else, recalling that one
requirement of IX.br free usage of their IXPs is that ASes are not allowed to
rely on the IXP connectivity as the only Internet access. Despite 97.72 % of mem-
bers opted for multilateral peering in IX.br official records, this high percentage
reflects just a contractual term. In practice this does not mean that an AS will
effectively exchange traffic with all other members of an IXP, which explains the
low peering density we found in our analyses. Considering the experiences from
more mature IXPs in Europe, we may conjecture that the current high fraction
of open peering is due to IX.br ASes still being in a “learning” phase seeking
peering relationships with a very open approach.

Low AS Presence at Multiple IXPs. The broad majority (83.68 %) of ASes
(759 of 907) are peered to only one IXP. This result can be expected because
ASes choose to peer at IXPs mostly to benefit only from local traffic, so they are
commonly multi-homed through at least one transit or access ISP to reach the
entire Internet. The set of ASes peering at more than one IXP is mostly composed
of access providers that sell services in more than one region. Again, the access
providers motivation in exploiting open peering as much as possible is clear: cost
savings by avoiding transit links sold by big telecommunication operators. Large
ASes can be identified by their simultaneously peering practices in over half of
all IXPs (14 to 23) and are predominantly two big telecom operators that we
consider transit providers in the national landscape, namely NET and GVT, in
addition to public organizations managing the DNS root servers (ICANN), a
national Internet performance measurement service (NIC.br), and RNP.

Table 3. Peering density at IX.br (Brazil) and European more mature IXPs.

Description Brazil (a) DF MG RJ RS DE-CIX MSK-IX

Peering links 126 57 79 271 1,952 - -

Density (%) 44.2 % ± 23 % 20.7 % 34.2 % 21.3 % 63.4 % 79 % 95 %
(a) Average of 23 Brazilian IXPs without filters, that is, excluding PTT-PR and PTT-SP.

3.2 Peering Density: How Much Peering?

We consider density of peering as the ratio between the quantity of active BGP
connections (peering links) of the n ASes at an IXP and the sum of all possible
peers (n∗(n−1)/2). The observed peering density (Table 3) shows wide dispersion
in different regions and peering density below 50 % points to the potential to
expand direct traffic exchange between current IXP members.

Dissecting the Largest National Ecosystem of Public IEPs 339

1.1

1.2

2.1
2.2

3.2

4.1
4.2
4.3

1.1 1.2 2.1 2.2 3.2 4.1 4.2 4.3 Σ

(a) PTT-MG

1.1

1.2

2.1
2.2
3.1

3.2

3.3
4.1

4.2

4.3

1.1 1.2 2.1 2.2 3.1 3.2 3.3 4.1 4.2 4.3 Σ

(b) PTT-RS

Fig. 1. Peering Matrices indicating the level of connectivity between ASes sorted by
category: (a) PTT-MG is a medium size IXP and (b) PTT-RS is a large size IXP.

1.1 1.2 2.1 2.2 3.1 3.2 3.3 4.1 4.2 4.3

1.1

1.2

2.1

2.2

3.1

3.2

3.3

4.1

4.2

4.3

 0

 0.5

 1

 1.5

 2

Pe
er

in
g

Af
fin

ity

Fig. 2. Peering Affinity (PA): matrix of all Brazilian IXPs, where the amount of peering
follows a color scale and both axes are grouped in a symmetrical fashion by AS type.

We find lower values of peering density in IX.br compared to those pre-
sented in previous works regarding other more mature ecosystem of IXPs, such
as AMS-IX, DE-CIX, LINX and MSK-IX. While the average percentage of peer-
ing density in IX.br is around 40 %, more mature IXPs exhibit an average peering
density between 79–95 % [6]. This study confirms our observation that there is a
relevant empty space for peering between ASes exchanging traffic at IX.br. One
possible explanation to the lower peering density is that IX.br is still young com-
pared to more mature IXPs such as the above-mentioned European IXPs. While
IX.br started its first IXP (PTT-SP) in 2004, the peering initiative in Europe
started in the early 90 s –the oldest IXP of IX.br has only half the lifetime of the
largest European IXPs. Another fact could be the relatively limited market that
national ASes get through IX.br given that the traffic patterns in Brazil show
strong international components.

Who Peers with Whom? Tell me Your AS Type... To analyze the inter-
AS connectivity, we generated a peering matrix for every IXP in the spirit of
an adjacency matrix, where x and y axis contain all IXP members (ASes) in a
symmetrical fashion. We also considered a unified matrix with all the IXPs to
provide a wider view on the nature of peering in the national landscape, i.e.,
integrating all individual IXPs.

340 S.H.B. Brito et al.

Figure 1 depicts the individual peering matrices of two IXPs. A gray pixel
(bit 1) indicates the existence of peering between two ASes while a white pixel
(bit 0) indicates the absence of peering. The last column illustrates a scale of
the amount of connections between an individual AS with other ASes of each
respective category previously presented in Table 2, where darker shades mean
more connections. The horizontal and vertical lines traversing the graphics are
the boundaries between AS categories. We can visually identify through the long
vertical and horizontal lines that some ASes (mostly from access ISP 1.2 cat.)
tend to peer more with all types of ASes.

In order to quantify (and not just visualize) the amount of peering between
different types of ASes, we propose Peering Affinity (PA) as a cross-AS-type
peering metric defined as follows. Let P and Q be sets of ASes such that each set
represents a single profile, including the case in which both sets are the same.
Let c(ASi, ASj), such that ASi ∈ P and ASj ∈ Q, be the connection function:

c(ASi, ASj) =
{

1 if ASi and Aj are peers
0 otherwise

Then, the peering affinity function in respect to P and Q, PA(P,Q), is:

PA(P,Q) =

∑
ASi∈P

∑
ASj∈Q c(ASi, ASj)

|P | + |Q|
We opt to divide by the sum of vertices resulting in a scale from 0 to 2

instead of dividing by their product because it returns a more convenient scale
to highlight the differences in peering degree. Taking as example the peering
affinity between members of categories 1.2 (Access Providers) and 2.1 (Content
Providers), the amount of connections between all peered ASes of categories 1.2
and 2.1 totals 98, divided by the number of vertices of both categories (236),
returns 0.42 as the cross-AS-type peering affinity metric.

Figure 2 presents the result of the nation-wide analysis regarding peering
affinity with the color scale being a function of the ratio between the sum of
connections (peering between ASes) and the number of vertices of both crossed
categories. We can observe a relatively high density of peering between ISPs,
either transit or access providers. We also observe high density between public
organizations, more specifically from the government. The availability of PTT-
DF in the federal capital is certainly an enabler to the increased connectivity
between many government agencies.

To the best of our knowledge, our peering density analysis is the first one
that considers a set of peering matrices where ASes are grouped together by
their type. When crossing the peering matrices in Fig. 1 with the numbers of
Table 3, we find coherent results that reinforce our methodology.

3.3 Vertice Degree: How Many Peers?

We now turn our attention to the vertices’ degree (both distribution and average
values) in each IXP graph. By doing so, we aim at revealing and understanding
the behavior of the ASes in terms of the amount of neighboring peers.

Dissecting the Largest National Ecosystem of Public IEPs 341

(a) PTT-DF (b) PTT-MG (c) PTT-RS

Fig. 3. Average degree

(a) PTT-DF (b) PTT-MG (c) PTT-RS

Fig. 4. Degree distribution

Figures 3 and 4 show the vertices’ degree of the following IXPs graphs: PTT-
DF (small size), PTT-MG (medium size), and PTT-RS (large size). Figure 4
plots the degree distribution for all ASes. Since the amount of vertices is large
and diverse on an individual AS granularity, Fig. 3 sorts ASN in the x axis in a
growing fashion and presents the average degree for a group of ASes in bins of
8,000 ASN along the 95% confidence interval. In sought of connectivity patterns,
we discovered that nodes with higher degrees tend to correspond to older ASes
based on the incremental assignment of AS numbers (ASN). This approach sug-
gests that ASes registered for longer time (smaller ASN) exhibit higher connec-
tivity, a coherent result considering that vertices with higher degrees commonly
correspond to telecommunications operators with more adjacencies because of
the nature of their transit business and their longer time in operation.

3.4 Depth/Diameter: How Far Are You?

As advertised prefixes traverse BGP domains, ASNs are added to the list of ASes
(AS-PATH) to avoid routing loops. By counting the ASN that exist on every
AS-PATH announce we can quantify the amount of AS-level hops to reach an
advertised prefix from every IXP.

Figure 5(a) shows the observed depth from routes advertised by IXPs mem-
bers based on the AS-PATH attribute. Depth values equal to 1 mean the AS-
PATH is composed of only one AS, i.e., ASes directly connected to IXPs and
advertising their own prefixes. The remaining routes –with depth higher than
1– correspond to those learned by IXP members from other ASes, which means

342 S.H.B. Brito et al.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

3 4 5 6 7 8

Fr
ec

ue
nc

y
(%

)
DF
MG
RJ
RS

(a) Isolated Depth

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

C
D

F

Filter effect

DF
MG
RJ
RS
SP

(b) Accumulated Depth

Fig. 5. Depth of AS-PATH

these routes are not directly advertised by adjacent IXP members. The frac-
tion of routes of depth equal to 1 and 2 is very low compared to the remaining
route advertisements and are therefore omitted in Fig. 5(a) for the sake of visual
clarity. To provide an accurate view on the AS-level distances (i.e., real path
depth), redundant information was removed, for instance, duplicated ASNs due
to AS-Prepend practices (further discussed in Sect. 3.5) were filtered.

By observing all IXPs together, we found that average depth of all routes
advertised at IXPs varies between 4 and 6, with the higher concentration of
routes being of depth equal to 5. We can conclude that 8 is the highest meaningful
depth, that is, the most distant sources of AS announcements reaching IXPs are
8 AS hops far away, recalling that each hop means an entire AS –not a single
router as traceroute would reveal. Prior studies regarding the Internet topology
found an almost constant path length of 4 hops [4], while in our analysis we found
an average diameter of 4–6 (majority equals to 5). Regarding this difference we
recall that many routes have to leave the country toward international content,
as already observed to happens in Africa [8].

As mentioned earlier, the results of PTT-SP and PTT-PR shall be carefully
considered due to filtering practices. We include PTT-SP in Fig. 5(b) precisely
to illustrate the effect of route filtering and how the resulting out of the curve
observations may compromise this kind of Internet measurement research.

3.5 Traffic Engineering with AS-Prepend

The default behavior of BGP is preferring shorter routes, i.e., prefixes advertised
with less ASNs in the AS-PATH attribute. A common “traffic engineering” prac-
tice referred to as AS-Prepend consists of ASes adding their own ASN multiple
times to turn the resulting AS-PATH attribute less attractive (larger depth)
regarding the reachability to a given prefix [2]. AS-Prepend is regarded as a
BGP “knob” for inbound traffic engineering, often criticized and even consid-
ered harmful because it may compromise the integrity of routing information8.
8 https://www.ripe.net/ripe/meetings/regional-meetings/manama-2006/BGPBCP.

pdf.

https://www.ripe.net/ripe/meetings/regional-meetings/manama-2006/BGPBCP.pdf
https://www.ripe.net/ripe/meetings/regional-meetings/manama-2006/BGPBCP.pdf

Dissecting the Largest National Ecosystem of Public IEPs 343

Table 4. Statistics on AS-prepend viewed through IXPs.

Metric description Brazil (a) DF MG RJ RS

Routes 832,989 559,159 434,264 1,150,905 1,947,453

Routes with AS-Prepend 295,909 127,184 245,129 294,663 1,710,070

AS-Prepend X Routes (%) 30.8% ± 22% 22.7% 56.4% 25.6% 87.8%

ASes at Graph 43,333 47,176 46,939 47,632 48,351

ASes with AS-Prepend 7,305 6,206 8,629 8,890 10,803

AS-Prepend X ASes (%) 16.1% ± 04% 13.2% 18.4% 18.7% 22.3%

Members Advertising 18 24 22 51 79

Members Advertising with AS-Prepend 6 7 6 19 36

AS-Prepend X Members (%) 22.5% ± 19% 29.2% 27.3% 37.3% 45.6%

(a) Average of 23 Brazilian IXPs without filters, that is, excluding PTT-PR and PTT-SP.

The results of Table 4 show that AS-Prepend also is commonly used at IXPs
as it is used in Internet. Note that while the second set of rows in the table refers
to all ASes (be them IXP members or not) observed from IXPs’ graphs, the last
set of rows reflects only prepend practices from IXP members. We observe a
larger amount of AS-Prepend practices per AS at IXPs, a fact pointing to the
traffic engineering needs of IXP peering links.

When looking at the numbers in Table 4 it is worth to recall the difference
between two distinct concepts present in BGP tables: (i) number of routes, and
(ii) number of prefixes. While the full BGP table currently features around
512,000 prefixes, it is usual to find at IXPs BGP tables with millions of entries
due to the advertisement of multiple routes towards the same prefix.

4 Related Work

Many efforts have been devoted towards a better understanding of the complex
Internet ecosystem and IXPs have become attractive research targets because
they represent a relevant microcosm of Internet diversity [1,5,9–12,14].

Closest to our work is a recent study characterizing the nature of Inter-
net connectivity in Africa [7], specifically focused on JINX (Johannesburg) and
KIXP (Nairobi), two major IXPs in Africa. The authors measured the presence
of local ISPs in various African IXPs and which of them chose to interconnect
at these exchanges. An interesting result was finding that 66.8 % of the paths
between residential users and Google leave the continent, mainly because local
ISPs are not present at these IXPs or because they are not peered between each
other. The individual peering matrices for JINX and KIXP inspired our peering
density analysis (Sect. 3.2), which lead to our proposed peering affinity metric
based on a peering matrix grouped by AS types applied to individual IXPs and
to the national-wide public IXP ecosystem.

344 S.H.B. Brito et al.

5 Conclusion and Future Work

This paper presents the first effort to comprehend the peering ecosystem of the
largest set of public IXPs in a single country, which happens to be in Brazil.
We developed a analytics framework that allows scalable in-depth analyses of all
Brazilian IXPs BGP data. Our studies move beyond traditional sets of individual
peering matrices to include a single national-wide AS graph. Sorting ASes by
their category, we propose a novel metric called peering affinity to quantify the
amount of peering between different types of ASes.

Equally important to the analysis effort presented in this paper is to recognize
some limitations of research work when building AS-level topologies [9]. It is
important to highlight that information collected from public servers do not
represent the totality of traffic exchange, but only a fraction of everything that
can be publicly observed, specifically the multilateral peering at IXPs.

Our ongoing extensions of this work include a temporal analysis based on
datasets over a longer period (different snapshots) that will allow a deeper under-
standing of the dynamic aspects and evolution of the IX.br ecosystem.

Acknowledgements. This work was supported by the Innovation Center of Ericsson,
Brazil. The authors would like to thank Antonio Moreiras (NIC.br) and Antonio Galvao
Filho (IX.br) for their help in accessing all LGs. We also thank Giovanni Comarela and
Steve Uhlig for their insightful comments on earlier versions of the paper.

References

1. Ager, B., Chatzis, N., Feldmann, A., Sarrar, N., Uhlig, S., Willinger, W.: Anatomy
of a large european IXP. In: sIGCOMM 2012, Helsinki, Filand, 13–17 August 2012

2. Caesar, M., Rexford, J.: BGP routing policies in ISP networks. IEEE Netw. 19(6),
5–11 (2005). ISSN 0890–8044

3. Chatzis, N., Smaragdakis, G., Feldmann, A., Willinger, W.: On the importance
of internet eXchange points for today’s internet ecosystem. In: ACM SIGCOMM
Computer Communications Review (CCR) (2013)

4. Dhamdhere, A., Dovrolis, C.: Ten years in the evolution of the internet ecosystem.
In: iMC 2008, Vouliagmeni, Greece, 20–22 October 2008

5. Durairajan, R., Sommers, J., Barford, P.: Layer1-informed internet topology mea-
surement. In: iMC 2014, Vancouver, BC, Canada, 05–07 November 2014

6. Giotsas, V., Zhou, S., Luckie, M., Claffy, K.: Inferring multilateral peering. In:
coNEXT 2013, Santa Barbara, California, USA, 9–12 December 2013

7. Gupta, A., Calder, M., Feamster, N., Chetty, M., Calandro, E., Katz-Bassett, E.:
Peering at the internet’s frontier: a first look at ISP interconnectivity in africa. In:
Faloutsos, M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 204–213.
Springer, Heidelberg (2014)

8. Gupta, A., et al.: SDX - a software defined internet exchange. In: sIGCOMM 2014,
Chicago, USA (2014)

9. Haddadi, H., Bonaventure, O.: Recent advances in networking. In: ACM SIG-
COMM eBook Chapter 1: Internet Topology Research Redux, Vol. 1, August 2013

Dissecting the Largest National Ecosystem of Public IEPs 345

10. Khan, A., et al.: AS-level topology collection through looking glass servers. In: iMC
2013, Barcelona, Spain, 23–25 October 2013

11. Lodhi, A., Larson, N., Dhamdhere, A., Dovrolis, C., Claffy, K.: Using peeringDB
to understand the peering ecossystem. In: ACM SIGCOMM CCR, April 2014

12. Luckie, M., et al.: AS relationships, customer cones, and validation. In: iMC 2013,
Barcelona, Spain, 23–25 October 2013

13. Norton, W.B.: The Internet Peering Playbook: Connecting to the Core of the
Internet. drPeering Press, USA (2014)

14. Richter, P., Smaragdakis, G., Feldmann, A., Chatzis, N., Boettger, J., Willinger,
W.: Peering at peerings: on the role of IXP route servers. In: iMC 2014, Vancouver,
BC, Canada, 05–07 November 2014

traIXroute: Detecting IXPs
in traceroute paths

George Nomikos(B) and Xenofontas Dimitropoulos

Foundation of Research and Technology Hellas (FORTH), Heraklion, Greece
{gnomikos,fontas}@ics.forth.gr

Abstract. Internet eXchange Points (IXP) are critical components of
the Internet infrastructure that affect its performance, evolution, secu-
rity and economics. In this work, we introduce techniques to augment
the well-known traceroute tool with the capability of identifying if
and where exactly IXPs are crossed in end-to-end paths. Knowing this
information can help end-users have more transparency over how their
traffic flows in the Internet. Our tool, called traIXroute, exploits data
from the PeeringDB (PDB) and the Packet Clearing House (PCH) about
IXP IP addresses of BGP routers, IXP members, and IXP prefixes. We
show that the used data are both rich, i.e., we find 12,716 IP addresses
of BGP routers in 460 IXPs, and mostly accurate, i.e., our validation
shows 92–93 % accuracy. In addition, 78.2 % of the detected IXPs in
our data are based on multiple diverse evidence and therefore help have
higher confidence on the detected IXPs than when relying solely on IXP
prefixes. To demonstrate the utility of our tool, we use it to show that
one out of five paths in our data cross an IXP and that paths do not
normally cross more than a single IXP, as it is expected based on the
valley-free model about Internet policies. Furthermore, although the top
IXPs both in terms of paths and members are located in Europe, US
IXPs attract many more paths than their number of members indicates.

1 Introduction

A few hundred IXPs worldwide host more than one hundred thousand
interconnections between Autonomous Systems (ASes) [10,14,20]. As critical
components of the Internet infrastructure, IXPs influence its expansion [16],
performance [11], and security [7]. However, their centralized nature is also a
limitation that can be exploited for mass surveillance of Internet users or for
targeted attacks. Although IXPs exist since the early days of the Internet, they
have recently attracted intense interest from the academic community in part
because the last decade the Internet topology is flattening [16,18,21,23], which
implies an even more central role for IXPs.

In this work we extend the well-known and widely-used traceroute tool with
the capability of inferring if and where an IXP was crossed. This is useful not
only for end-users in having more transparency over where their traffic goes,
but also for operators in troubleshooting end-to-end paths and for researchers
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 346–358, 2016.
DOI: 10.1007/978-3-319-30505-9 26

traIXroute: Detecting IXPs in traceroute paths 347

in understanding the evolving IXP ecosystem. Our tool, called traIXroute,
detects IXPs based on data from the PeeringDB (PDB) and the Packet Clearing
House (PCH). In particular, it uses the (i) exact IP addresses of BGP routers
connected to IXP subnets; (ii) IXP member ASes; (iii) IXP prefixes; and (iv) IP
addresses to AS mappings; and combines multiple information to detect IXPs
with higher confidence than simply relying on IXP prefixes.

Our second contribution is that we evaluate the coverage and accuracy of the
IXP router IP addresses, which we denote with a triplet {IP address −→ IXP,
AS}, in PDB and PCH. We find in total 12,716 triplets for 460 IXPs worldwide.
Using the exact router IXP addresses along with checking the IXP membership
of the two adjacent ASes, we classify 78.2 % of the IXP paths. Therefore, in most
cases we can detect an IXP with strong evidence. In addition, we find that 92–
93 % of the triplets {IP address −→ IXP, AS} extracted from PDB and PCH are
consistent with the corresponding information extracted from live BGP sessions
of route collectors at IXPs.

Third, to illustrate how traIXroute can be useful, in particular for
researchers in Internet measurement studies, we use it to answer the following
questions: (i) how often paths cross IXPs? (ii) which IXPs attract most paths?
and (iii) how many IXPs are encountered per path? We apply traIXroute on
31.8 million traceroute probes collected from the ark measurement infrastruc-
ture [1]. We find that approximately one out of five paths crossed an IXP and
that IXP-paths normally cross no more than a single IXP. The IXP hop is located
on average near the 6th hop at the middle of the route. Finally, we show that
the top IXPs in terms of paths differ in part from the top IXPs in terms of AS
members.

The rest of this paper is structured as follows. In the next section, we discuss
the related work and provide background into the problem of detecting IXPs in
traceroute paths. Next, in Sect. 3 we describe traIXroute and its IXP detection
techniques. In Sect. 4, we evaluate the coverage and accuracy of the data used
by traIXroute and discuss the hit rate of its detection rules. Finally, in Sect. 5
we outline our IXP measurement study using traIXroute and in Sect. 6 we
conclude.

2 Related Work and Background

Previous studies have examined the problem of mapping traceroute paths to
AS-level paths [15,25]. Mapping IP addresses to ASes is not straightforward
because routers can reply with source IP addresses numbered from a third-party
AS. These studies ignore hops with IXP IP addresses. These addresses are used
to number BGP router interfaces connected to the IXP subnet and it is hard to
identify to which AS they belong.

Besides, a group of previous studies, starting with Xu et al. [27] and then
followed by He et al. [22] and Augustin et al. [13], focus on inferring participating
ASes and peerings at IXPs from targeted traceroute measurements. Compared
to these studies, our goal is different: we build a general-purpose traceroute

348 G. Nomikos and X. Dimitropoulos

tool, while they aim at discovering as many peering links as possible. The basic
methodology developed in [27] and then significantly extended in [13,22] detects
IXPs based on assigned IP address prefixes and uses various heuristics to infer
peering ASes. The seminal work of Augustin et al. [13] exploited also data for
BGP routers at IXP, but by querying 1.1K BGP Looking Glass servers, which
had significant processing cost. In contrast, we extract corresponding data from
PDB and PCH, with low processing cost, and show that they are both rich and
mostly accurate.

Recently, Giotsas et al. [19] introduced techniques to identify the physical
facility where ASes interconnect using targeted traceroute measurements and a
combination of publicly available facility and IXP based information.

Our starting point in this work is that observing an IP address from
an IXP prefix is not sufficient evidence to conclude that the IXP was
crossed. This happens for multiple reasons: (i) the available IXP IP address
prefix data may be inaccurate; (ii) IXPs could use allocated addresses not only
in the IXP subnet but also in other operational subnets; and (iii) third-party
IP addresses from IXP subnets. To illustrate the latter consider the following
example (cf. Fig. 1). A router connected to the IXP fabric could reply to tracer-
oute probes using a source IP address from any of its interfaces, including the
interface on the IXP subnet. Traceroute paths that do not cross the IXP, like
the dotted one in Fig. 1, can include a reply with a source IP address from the
IXP subnet. Therefore, the path appears to have an IP address from an IXP
subnet, even if the IXP is not crossed. Our goal is to detect paths that cross the
IXP fabric, like the dashed one in Fig. 1.

AS X
AS Y

AS ZAS W

IXP

Fig. 1. Example IXP connected to four ASes. The dotted traceroute path could include
a reply with an IXP IP address, even if the IXP is not crossed. Our goal is to identify
paths that cross the IXP, like the dashed one.

To be more confident that an IXP is crossed, we exploit specific information
about the IP addresses of BGP router interfaces connected to the IXP subnet.
This data enable us also to associate IP addresses to ASes and IXPs. Further-
more, we check if the ASes before and after the IXP IP address are members

traIXroute: Detecting IXPs in traceroute paths 349

of the candidate IXP based on the IXP membership data from PCH and PDB,
which have not been explored in the previous studies for this purpose.

3 traIXroute Design and Heuristics

In this section, we first outline the design of traIXroute and then its IXP
detection heuristics.

3.1 traIXroute Design

traIXroute is written in python and operates like traceroute. It can be
configured to use either the standard traceroute tool in the background or
the scamper tool [24], which implements the Paris traceroute technique [12].
It has a modular design and can be easily extended with new IXP data and
detection rules. An example of the output of traIXroute is shown in Fig. 2.
In this example the Vienna IX is detected between hops 5 and 6. The tool also
prints the AS that corresponds to each hop based on simple origin AS lookups.
traIXroute exploits three datasets to identify IXPs in traceroute paths which
can be updated automatically from the command line:

1. IXP Memberships Dataset: We use IXP membership data from the
PeeringDB (PDB) [4] and the Packet Clearing House (PCH) [3]. They
provide: (1) exact IP addresses of router interfaces connected to the IXP
network; and (2) the ASes which these routers belong to. Therefore, this
dataset provides an association from IXP IP addresses to ASes and IXPs,
i.e., a triplet of the form {IP address −→ IXP, AS}, which we mainly exploit
in our heuristics.

2. IXP IP Address Prefixes Dataset: We use, in addition, two datasets
of IPv4 address prefixes assigned to IXPs. The first is provided by PDB,
while we extract the second from PCH. These addresses are typically used to
number the interfaces of the BGP routers connected to the IXP subnet. We
organize the dataset in the form {IP prefix −→ IXP} to map IP addresses
to IXPs.

Fig. 2. Example output of traIXroute.

350 G. Nomikos and X. Dimitropoulos

3. Routeviews Prefix to AS mappings Dataset: We use IP address prefix
to AS mappings, i.e., {IP prefix −→ AS}, provided by CAIDA [5] based on
data from RouteViews [9], to associate IP addresses to ASes. Also, we filter
the IANA reserved IP addresses, which should not be announced to BGP,
to protect from route leaks and other misconfigurations. When encounter-
ing multi-origin-as [28] IP addresses, we check the IXP membership of all
the ASes.

PCH and PDB do not use consistent identifiers for IXPs and therefore if one
naively matched the IXP identifiers would introduce artifacts. For this reason, we
merge the two datasets by matching the IXP IP addresses, prefixes and names.
We ignore matched records that include inconsistent attributes. In addition, we
filter data for IXPs marked as inactive.

3.2 IXP Detection

Next, we describe our methodology to detect and identify at which hop we cross
an IXP in traceroute paths. When observing an IP address from an IXP subnet,
we ask what information we know, based on our data, for this and the adjacent
IP addresses. In particular, to infer an IXP crossing we follow three steps:

(Step 1) - Does the IP Address Match an Exact BGP Router IP
Address from an IXP Subnet? In this case, we have a specific triplet {IP
address −→ IXP, AS}, which gives us also additional information about the
AS of the router on the IXP. If an exact router IP address is not matched,
then we check if an IXP prefix is matched, like in previous works [13,22]. How-
ever, in this case we do not have any information about the AS that owns
the router. If an IP address in the k-th hop of a traceroute path IPk belongs
to the interface of a router connected to the IXP subnet, then we denote this
with IPk

inf−−→ IXP,ASk, where IXP is the IXP and ASk the AS of the router.
Otherwise, if we can associate IPk only with an IXP IP prefix, then we denote
this with IPk

prf−−→ IXP .

(Step 2) - Are the Adjacent ASes Members of the IXP? We map the IP
addresses 1-hop adjacent to the observed IXP IP address to ASes and, consider-
ing also the AS of the IXP IP address (if this information is available), we check
the IXP membership of the ASes. We distinguish four possible cases: (i) both
ASes are members, (ii)-(iii) only the AS in the left or right of the IXP IP address
is a member; and (iv) none of the ASes is an IXP member. Our assessment is
based on the available data about the ASes from triplets and from mapping IP
addresses to ASes using the Routeviews Prefix to AS mappings Dataset. Such
mappings could be wrong [25], therefore we do not consider this evidence alone
conclusive. In addition, if ASk is a member of the IXP based on IXP member-
ship data then we denote this with ASk ∈ IXP .

(Step 3) - Is the IXP Link Crossed Before or After the IXP IP
Address? We check this when sufficient information about the ASes is available.

traIXroute: Detecting IXPs in traceroute paths 351

Table 1. IXP detection rules for a single IXP IP address, based either on IXP interface
(inf) or prefix-level (prf) data, between two non-IXP addresses. The rows give the data
attributes per hop to check in order to detect an IXP. Rules 1.1 to 1.3 use stronger
evidence than Rules 1.4 to 1.7.

Table 2. IXP detection rule for two subsequent IXP IP addresses based on IXP inter-
face (inf) data. The rows give the data attributes per hop which are checked to deduce
an IXP.

Our heuristics are applied on a traceroute path in a sliding window fashion,
where the length of the window is three. By carefully reasoning about all possible
combinations of evidence from Steps 1 and 2 that exist for three subsequent hops,
we formulated 16 cases. Each case corresponds to a detection rule. For brevity,
we next discuss only the cases (8 in total) that appeared with frequency higher
than 1 % in the matched IXP paths. The remaining cases are still supported
in traIXroute. In Table 1 we show our detection rules for the most typical
scenario, when we observe a single IXP IP address between two non-IXP IP
addresses. We also consider the special case, shown in Table 2, when we observe
two adjacent IP addresses from an IXP subnet. In most cases, we can deduce
the exact link where the IXP was crossed, which we denote in Tables 1 and 2
as a or b. We split the rules into strong and weak evidence rules and order them
based on their frequency, as shown in the last column of the tables (cf. Sect. 4).

352 G. Nomikos and X. Dimitropoulos

Table 3. Various statistics about the PDB and PCH IXP datasets.

Statistics PDB PCH

of IXPs 509 466

of IXP address prefixes 312 343

of IXP membership triplets 12,323 3,580

of IXPs with membership data 448 (88 %) 343 (74 %)

% of IXPs in top-50 with membership data 100 % 62 %

of IXPs with IP prefix data 272 (53 %) 299 (64 %)

% of IXPs in top-50 with IP prefix data 92 % 96 %

Rules 1.1 to 1.3 match the IP addresses of routers on the IXP subnet, extract
information about the adjacent ASes, and find that both ASes are members of
the IXP. In the Rules 1.1 and 1.2 the IXP is crossed in the first hop. The Rule
1.2 is otherwise the same with the Rule 1.1, but without information for ASk+2.
Finally, the Rule 1.3 is also identical otherwise, but with ASk+2 �= ASk+1. These
three rules check multiple criteria and exploit data about triplets, which give also
an association from IP addresses to ASes with high accuracy (cf. Sect. 4.2). We
therefore consider that these rules rely on stronger evidence than the Rules 1.4
to 1.7.

The Rules 1.4 and 1.5 do not match a triplet, but only an IXP prefix. In
addition, we find that one of the two adjacent ASes is a member of the IXP. Based
on this evidence, we consider that an IXP may have been crossed. However, we
have much weaker evidence than when Rules 1.1-1.3 hold. traIXroute marks
these cases as potential IXP crossing. Similarly, the Rules 1.6 and 1.7 match an
IP address from a triplet, however only one or none of the adjacent ASes is a
member of the IXP. We also have weaker evidence in these detections.

Finally, the Rule 2 in Table 2 finds two consecutive IP addresses that match
triplets from the same IXP. The ASes in the triplets are also found members of
the IXP. We consider this also as strong evidence for IXP detection, since mul-
tiple evidence indicate so. This is a particularly interesting case, as it indicates
that the IXP fabric may have been crossed twice. In other words, we observe in
few cases a type of “ping pong” routing over the IXP fabric.

4 Evaluation

In this section, we evaluate and validate our methodology. We downloaded the
IXP Memberships Dataset and the IXP IP Address Prefixes Dataset from PDB
and PCH on January, the 10th 2015. Our Routeviews Prefix to AS mappings
Dataset was downloaded from CAIDA on January, the 20th 2015.

4.1 Data Coverage and Hit Rates

PDB includes membership data for 448 (88 %) out of the 509 IXPs in the data-
base. Similarly, PCH provides membership data for 343 (74 %) out of the 466

traIXroute: Detecting IXPs in traceroute paths 353

IXPs it includes. PDB and PCH provide membership data for 100 % and 62 %,
accordingly, out of the top-50 IXPs (sorted by the number of their AS members).
Besides, 312 of the IXPs in PDB and 343 of the IXPs in PCH provide IXP IP
address prefixes. After merging, the combined dataset has 475 address prefixes
for 417 IXPs and a total of 12,716 IXP membership triplets {IP address −→
IXP, AS} for 460 IXPs, i.e., an increase of 38.5 % and 3.2 %, correspondingly,
with respect to the largest individual dataset. These statistics along with other
details are summarized in Table 3. For comparison, the April 2009 experiment
reported by Augustin et al. [13] found triplets for 119 IXPs by querying 1.1 K
BGP Looking Glass servers.

We then discuss the hit rate of the rules in Tables 1 and 2 in our traIXroute
probes to shed more light onto the methodology. The strong evidence Rules 1.1
to 1.3 collectively account for 76.86 % of the detected IXPs, which shows that in
most cases we can detect IXPs, while satisfying multiple criteria: (i) we observe
an exact IP address of a BGP router on the IXP subnet; and (ii) we find that both
ASes are members of the candidate IXP. Rule 1.1 is by far the most frequent
as it matches 65.57 % of the detected IXPs. This indicates that the available
datasets from PDB and PCH about exact IXP router addresses are rich enough
to match most IXP addresses observed in traceroute measurements.

Rules 1.4 to 1.7 collectively account for 19.02 % of the matches. These rules
rely on weaker evidence. The Rules 1.4 and 1.5, in particular, which rely on
IXP prefixes match 13.25 % of the cases. We observe that IXP prefixes add a
moderate amount of weak evidence matches compared to the IXP membership
data.

Rule 2 hits in 1.36 % of the detected IXPs. This illustrates that in a few cases,
the IXP fabric maybe crossed twice. This points to inefficient routing due to the
BGP path selection process that relies on AS-level paths and ignores layer-2
topologies. In this case, the layer-2 IXP fabric is likely crossed back and forth,
consuming resources.

Besides, we explored a number of other rules, which we do not show in
Tables 1 and 2 because they matched in less than 1 % of the cases. From these
rules, we confirmed (as expected) that the IXP link is almost always before the
observed IXP address. This is because routers typically reply with the IP address
of the inbound interface. In just 0.71 % of the cases we observed the IP address,
which matched an IXP triplet, to belong to the same AS with the preceding IP
address. Another interesting observation is that when an IP address matches an
IXP prefix, but not an IXP triplet, then in only 2.98 % of the matches both of the

Table 4. Consistency of IXP router IP addresses in PDB and PCH with data from 87
BGP Route Collectors located at IXPs

Statistics PDB PCH

of (IXP-AS) tuples in intersection with BGP 4,655 3,073

% of tuples (IXP-AS) with consistent IP addresses 93.4 % 92.1 %

354 G. Nomikos and X. Dimitropoulos

adjacent ASes are members of the IXP. In contrast, the corresponding number
for matched IXP triplets is 81.79 %. This supports further the point that triplets
help to detect IXPs more reliably than IXP prefixes.

4.2 Data Accuracy and Validation

The data in PDB are primarily self-reported by IXP and ISP operators, while
the data in PCH are based primarily on live BGP Route Collectors that PCH
operates in multiple IXP sites, where it is an IXP member and peers with other
ASes. The PDB data are often used by network operators for checking and
configuring their routers. A recent study [26] showed that 99 % of the valid (i.e.,
that conform to the correct format) IP addresses reported in PDB matched the
IP addresses used by BGP routers, based on a sample submitted by network
operators for 256 routers. We validate further the accuracy of the used PDB
and PCH IXP membership data based on BGP feeds from the Route Collectors
of PCH.

We parse BGP routing table dumps downloaded on January, the 31st 2015
from 87 Route Collectors operated by PCH. Route Collectors on IXPs peer with
members of the IXP to provide a live view of their routing announcements. They
are therefore an excellent reference for validation because their attributes, e.g.
IP addresses and AS numbers, are used in live BGP sessions. For each routing
table entry, we extract the next hop IP address and the first AS in the AS
path. We then compare the extracted data with the corresponding information
from PDB and PCH. We find that 93.4 % of the 4,655 {IXP -AS} tuples, which
are common between PDB and BGP, have consistent IP addresses. Accordingly,
92.1 % of the 3,073 {IXP -AS} tuples, which are common between PCH and
BGP, have consistent IP addresses. This data is summarized in Table 4. This
high degree of consistency shows that triplets {IP address −→ IXP, AS} from
PDB and PCH are a valid source of information for detecting IXPs in traceroute
paths. The inconsistent part could result from stale or incomplete information
in PDB and PCH. Triplets with stale IP addresses will not help, but will not
also introduce problems in detecting IXPs with our methodology. Finally, we
note that although the triplets we exploit have a reasonable level of accuracy,
their completeness is hard to assess. This is a limitation for our work. However,
our analysis is encouraging because we find 12,716 triplets for 460 IXPs after
merging the PDB and PCH data.

Finally, as an extra validation step we cross-checked the Routeviews Prefix
to AS mappings Dataset from CAIDA with the IP to ASN mapping service of
Team Cymru [6] and found that the two mappings were fully consistent.

5 Use Case: IXPs in Traceroute Paths

Having evaluated and validated our approach, we next do a preliminary analysis
of what we can learn about IXPs using an IXP-informed traceroute tool. We use
traceroute paths collected from CAIDA’s Ark measurement infrastructure [8],

traIXroute: Detecting IXPs in traceroute paths 355

Table 5. Statistics about IXPs in 27.85 million probed traceroute paths. The results are
grouped into teams to show the consistency of the computed statistics across vantage
points.

Statistics Team 1 Team 2 Team 3

%Paths with IXPs 17.65 % 17.44 % 23.64 %

Avg. # of IXPs per IXP path 1.02 1 1.05

Avg. # of hops per path 14.77 14.37 14.06

Avg. IXP hop 6.68 6.35 5.40

Avg. # of ASes per path 4.48 4.17 4.33

which at the time of our experiments had 107 monitors distributed around the
globe (split into three teams of similar size). The monitors rely on the scamper
tool [24] configured with the Paris traceroute technique [12] to mitigate artifacts
due to load balancing. We use one full cycle of measurements collected on Janu-
ary, the 20th 2015, which includes an ICMP-paris probe to each globally routed
/24 block. Each probe is assigned to a team. We process the output of scamper
with traIXroute to detect IXPs. We repeat our experiments with data from
the three teams to check for the consistency of our results across different vantage
points. In addition, we process the collected paths to remove probes without any
reply or with loops. The number of probes after pre-processing dropped from to
31.8 million to 27.8 million probes.

In Table 5 we first report the fraction of traceroute paths which go through
an IXP. The monitors are located in a mix of academic and corporate insti-
tutions [2]. We first observe that the fraction of paths that cross an IXP is
17.44 %, 17.65 % and 23.64 % in the three teams. We observe a slightly larger
fraction in the 3rd team, because one of the monitors in this team is located
in an IXP (AMS-IX). Despite this, our results are mostly consistent across the
three teams: Approximately one out of five paths in our datasets go through an
IXP. Furthermore, in paths that go through an IXP we observe 1 to 1.05 IXPs
per path. This is interesting because it confirms the expectation based on the
valley-free model [17] that up to one peering link, and therefore one IXP1, is
crossed in an end-to-end path. Even if BGP allows much more complex policies
and the Internet IXP ecosystem evolves continuously, Internet paths in our mea-
surements largely conform to the well-known valley-free model. Furthermore, we
observe that paths cross on average between 14.06 to 14.77 hops, and the IXP
hop is located near the middle, i.e., on average between hop 5.4 and 6.68 for
the different teams. For completeness, we also compute the number of ASes the
paths cross, which ranges between 4.17 and 4.48 ASes.

Top IXPs in Terms of Paths. We next analyze which IXPs attract most
paths and how the number of paths an IXP attracts compares with the number
of their member ASes. In Table 6 we show the top-10 IXPs in terms of paths,

1 IXPs links are typically used for settlement-free peering relationships.

356 G. Nomikos and X. Dimitropoulos

Table 6. Top IXPs sorted by the number of paths that cross them. For each IXP, we
show the minimum and maximum number of paths that cross it over the three probing
teams; and the number of AS members.

IXP name Min-max # of paths over teams # of member ASes

1. AMS-IX 277 K – 570 K 630

2. LINX 182 K – 234 K 526

3. DE-CIX Frankfurt 133 K – 215 K 520

4. Equinix Palo Alto 119 K – 134 K 116

5. Equinix Chicago 73 K – 80 K 145

6. Equinix Ashburn 43 K – 91 K 217

7. NAP of The Americas 45 K – 90 K 112

8. Equinix Los Angeles 37 K – 60 K 76

9. CoreSite - California 30 K – 58 K 195

10. Netnod Stockholm 33 K – 44 K 104

Paths per IXP

IX
P

 M
e

m
b

e
rs

Distribution fit
CI 95%
South America
North America
Australia
Africa
Asia
Europe

100 101 102 103 105 106 107

101

102

103

104

Fig. 3. Scatterplot of number of AS members vs. number of paths per IXP along with
fitted line and 95 % confidence intervals (CI). IXPs are grouped by continent. The
correlation is 0.8.

the min and max numbers of paths over the three teams, and number of their
members. We first observe that the top-3 IXPs, namely AMS-IX, LINX, and
DE-CIX, are the same both in terms of paths and members. These IXPs are
located in Europe; 5 of the following IXPs are located in the US and 4 of these
are run by Equinix, i.e., the largest IXP corporation in the US. Finally, one IXP
in South America and one more European close the top-10. We note that in
Table 6 the 570 K paths that cross the AMS-IX, is an outlier due to a single ark
monitor located in AMS-IX. Despite this, the ranking does not change if we only
consider the other teams of monitors.

traIXroute: Detecting IXPs in traceroute paths 357

Besides, below the top-3 IXPs we observe significant variance between the
number of IXP members and the number of IXP paths. Figure 3 illustrates how
the number of IXP members correlates with the number of paths. The overall
correlation coefficient is 0.8. We observe that the top-3 IXPs are close to the 95-
percentile confidence intervals, which means that compared to the average they
have more members than paths. In contrast, many US IXPs have more paths
than their number of members indicates. Notably, Equinix Palo Alto is in the
4th position with a small difference in terms of paths from DE-CIX, although
the latter has 520 members and the former only 116.

6 Conclusions

Internet users, network operators, and researchers would benefit if they were
able to know from which IXPs packets go through. To help towards this goal, in
this paper we introduce a tool that extends the commonly used traceroute
with techniques to detect IXPs. Our techniques rely on data about the exact IP
addresses of BGP router interfaces connected to the IXP subnet, i.e., triplets
{IP address −→ IXP, AS}, extracted from the PeeringDB and the Packet
Clearing House. This data has not been previously explored for identifying
IXPs. We show that they are both rich, i.e., we find 12,716 triplets for 460 IXPs,
and accurate, i.e., our validation shows 92–93 % accuracy. We also incorporate in
our heuristics an IXP membership check for the adjacent ASes to have stronger
evidence that an IXP was crossed. To demonstrate the utility of traIXroute,
we use it to show that approximately one out of five paths cross an IXP in our
data. In addition, in most cases, we observe not more than one IXP per path,
which is located near the middle. Furthermore, we observe that although the
top IXPs both in terms of paths and members are located in Europe, US IXPs
attract many more paths than their number of members indicates. In the future,
we plan to investigate how traIXroute could help Internet users to have more
control over their paths.

Acknowledgements. This work has been funded by the European Research Coun-
cil Grant Agreement no. 338402. We would like to thank Pavlos Sermpezis, Laurent
Vanbever, Michalis Bamiedakis and the anonymous reviewers for their helpful com-
ments.

References

1. Archipelago Measurement Infrastructure. http://www.caida.org/projects/ark/
2. CAIDA Monitors: The Archipelago Measurement Infrastructure. http://www.

caida.org/data/monitors/monitor-map-ark.xml
3. Packet Clearing House - Internet Exchange Directory. https://prefix.pch.net
4. PeeringDB. http://www.peeringdb.com
5. Routeviews Prefix to AS mappings Dataset (pfx2as) for IPv4. http://www.caida.

org/data/routing/routeviews-prefix2as.xml
6. Team Cymru, IP to ASN mapping. http://www.team-cymru.org/IP-ASN-mapping.

html

http://www.caida.org/projects/ark/
http://www.caida.org/data/monitors/monitor-map-ark.xml
http://www.caida.org/data/monitors/monitor-map-ark.xml
https://prefix.pch.net
http://www.peeringdb.com
http://www.caida.org/data/routing/routeviews-prefix2as.xml
http://www.caida.org/data/routing/routeviews-prefix2as.xml
http://www.team-cymru.org/IP-ASN-mapping.html
http://www.team-cymru.org/IP-ASN-mapping.html

358 G. Nomikos and X. Dimitropoulos

7. The DDoS That Almost Broke The Internet. http://blog.cloudflare.com/the-ddos-
that-almost-broke-the-internet

8. The IPv4 Routed /24 Topology Dataset. http://www.caida.org/data/active/ipv4
routed 24 topology dataset.xml

9. The Route Views Project. www.routeviews.org
10. Ager, B., Chatzis, N., Feldmann, A., Sarrar, N., Uhlig, S., Willinger, W.: Anatomy

of a large european ixp. In: Proceedings of ACM SIGCOMM (2012)
11. Ahmad, M.Z., Guha, R.: Studying the effect of internet exchange points on internet

link delays. In: Proceedings of Spring Simulation Multiconference (2010)
12. Augustin, B., Friedman, T., Teixeira, R.: Multipath tracing with paris traceroute.

In: Proceedings of IEEE End-to-End Monitoring Techniques and Services Work-
shop (2007)

13. Augustin, B., Krishnamurthy, B., Willinger, W.: Ixps: mapped?. In: Proceedings
of ACM IMC (2009)

14. Chatzis, N., Smaragdakis, G., Feldmann, A., Willinger, W.: There is more to ixps
than meets the eye. In: Proceedings of SIGCOMM CCR (2013)

15. Chen, K., Choffnes, D.R., Potharaju, R., Chen, Y., Bustamante, F.E., Pei, D.,
Zhao, Y.: Where the sidewalk ends: extending the internet as graph using tracer-
outes from p2p users. In: Proceedings of ACM SIGCOMM CoNEXT (2009)

16. Dhamdhere, A., Dovrolis, C.: The internet is flat: modeling the transition from a
transit hierarchy to a peering mesh. In: Proceedings of ACM ICPS (2010)

17. Gao, L., Rexford, J.: Stable internet routing without global coordination. In: Pro-
ceeidngs of ACM SIGMETRICS (2000)

18. Gill, P., Arlitt, M., Li, Z., Mahanti, A.: The flattening internet topology: natural
evolution, unsightly barnacles or contrived collapse? In: Claypool, M., Uhlig, S.
(eds.) PAM 2008. LNCS, vol. 4979, pp. 1–10. Springer, Heidelberg (2008)

19. Giotsas, V., Smaragdakis, G., Huffaker, B., Luckie, M., Claffy, K.: Mapping peering
interconnections to a facility. In: Proceedings of ACM SIGCOMM CoNEXT (2015)

20. Giotsas, V., Zhou, S., Luckie, M., Claffy, K.: Inferring multilateral peering. In:
Proceedings of ACM SIGCOMM CoNEXT (2013)

21. Gregori, E., Improta, A., Lenzini, L., Orsini, C.: The impact of IXPs on the AS-
level topology structure of the internet. Comput. Commun. 34, 68–82 (2011)

22. He, Y., Siganos, G., Faloutsos, M., Krishnamurthy, S.: Lord of the links: a frame-
work for discovering missing links in the internet topology. IEEE/ACM ToN 17,
391–404 (2009)

23. Labovitz, C., Iekel-Johnson, S., McPherson, D., Oberheide, J., Jahanian, F.: Inter-
net inter-domain traffic. In: ACM SIGCOMM CCR (2011)

24. Luckie, M.: Scamper: a scalable and extensible packet prober for active measure-
ment of the internet. In: Proceedings of ACM IMC (2010)

25. Mao, Z.M., Rexford, J., Wang, J., Katz, R.H.: Towards an accurate as-level tracer-
oute tool. In: Proceedings of ACM SIGCOMM (2003)

26. Snijders, J.: PeeringDB Accuracy: Is blind faith reasonable? NANOG 58 (2013)
27. Xu, K., Duan, Z., Zhang, Z.-L., Chandrashekar, J.: On properties of internet

exchange points and their impact on AS topology and relationship. In: Mitrou,
N.M., Kontovasilis, K., Rouskas, G.N., Iliadis, I., Merakos, L. (eds.) NETWORK-
ING 2004. LNCS, vol. 3042, pp. 284–295. Springer, Heidelberg (2004)

28. Zhao, X., Pei, D., Wang, L., Massey, D., Mankin, A., Wu, S.F., Zhang, L.: An
analysis of bgp multiple origin as (moas) conflicts. In: Proceedings of ACM SIG-
COMM Internet Measurement Workshop (2001)

http://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
http://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
www.routeviews.org

A Brief History of MPLS Usage in IPv6

Yves Vanaubel1(B), Pascal Mérindol2, Jean-Jacques Pansiot2,
and Benoit Donnet1

1 Université de Liège, Liège, Belgium
yves.vanaubel@ulg.ac.be

2 Université de Strasbourg, Strasbourg, France

Abstract. Recent researches have stated the fast deployment of IPv6.
It has been demonstrated that IPv6 grows much faster, being so more
and more adopted by both Internet service providers but also by servers
and end-hosts. In parallel, researches have been conducted to discover
and assess the usage of MPLS tunnels. Indeed, recent developments in
the ICMP protocol make certain categories of MPLS tunnels transparent
to traceroute probing. However, these studies focus only on IPv4, where
MPLS is strongly deployed.

In this paper, we provide a first look at how MPLS is used under IPv6
networks using traceroute data collected by CAIDA. At first glance,
we observe that the MPLS deployment and usage seem to greatly differ
between IPv4 and IPv6, in particular in the way MPLS label stacks are
used. While label stacks with at least two labels are marginal in IPv4 (and
mostly correspond to a VPN usage), they are prevalent in IPv6. After a
deeper analysis of the label stack typical content in IPv6, we show that
such tunnels result from the use of 6PE. This is not really surprising
since this mechanism was specifically designed to forward IPv6 traffic
using MPLS tunnels through networks that are not fully IPv6 compliant.
However, we show that it does not result from non dual-stack routers
but rather from the absence of native IPv6 MPLS signaling protocols.
Finally, we investigate a large Tier-1 network, Cogent, that stands out
with an original set-up.

Keywords: IPv6 · 6PE · Network discovery · MPLS · LDP · RSVP-
TE · Traceroute

1 Introduction

During the last years, IPv6 has drawn the attention of the research community.
For instance, Dhamdere et al. [1] showed that IPv6 is differently deployed over
the world (IPv6 is more present in Europe than in the USA), while the routing
dynamics and the path performance are largely identical between IPv4 and IPv6.
More recently, Czyz et al. [2] showed that IPv6 networks are becoming mature

B. Donnet—This work is partially funded by the European Commission funded
mPlane ICT-318627 project.

c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 359–370, 2016.
DOI: 10.1007/978-3-319-30505-9 27

360 Y. Vanaubel et al.

and entering now a production mode. Further, on September, 24th, 2015, the
ARIN IPv4 free pool reached zero, effectively triggering full IPv4 depletion. The
ARIN is now unable to provide any IPv4 block except for those requiring a small
block in order to ease the IPv6 transition [3]. We believe this should accelerate
the global IPv6 adoption.

In parallel to this IPv6 interest, MPLS has been more and more investigated
by the research community. For instance, Sommers et al. [4] examined the char-
acteristics of MPLS deployments that are explicitly identified using RFC4950
extensions. Donnet et al. [5] provided algorithms for detecting MPLS tunnels
depending on the way MPLS routers react to the ttl-propagate and RFC4950
options. Others looked at the MPLS usage. Pathak et al. [6] quantified the addi-
tional delay caused by MPLS when used for traffic engineering (TE) reasons.
More recently, Vanaubel et al. [7] evaluated the MPLS usage in the light of tran-
sit path diversity, showing that the basic usage for scalability purpose (e.g., with
LDP) seems predominant, with or without path diversity and that TE is well
represented in a subset of specific ASes. None of those works investigated MPLS
under IPv6.

As the deployment of IPv6 is growing and the interest in MPLS is stronger,
we aim, in this paper, to investigate the state of MPLS deployment under IPv6.
In particular, we are interested in knowing how operators are using MPLS in
IPv6 and whether this usage differs from the one in IPv4. To achieve this goal,
we rely on an IPv6 traceroute dataset collected by CAIDA between 2009 and
2015. From this dataset, we extract tunnels [5] and show that, in parallel to
an increase in the IPv6 deployment, there is, along the time, an increase in the
MPLS usage in IPv6. This usage, as we show it latter in the paper, is essentially
oriented for 6PE purpose (i.e., either for connecting IPv6 islands together or
using LDP for IPv4 to build tunnels carrying both IPv6 and IPv4 traffic on dual
stack MPLS routers). We also investigate the particular case of Cogent, a large
Tier-1 ISP having both a very prominent position in the dataset and a very
particular behavior in regards to 6PE.

The remainder of this paper is organized as follows: Sect. 2 provides the
required background for this paper. Section 3 presents our findings. Finally,
Sect. 4 concludes this paper by summarizing its main achievements.

2 Background

2.1 MPLS Overview

The Multiprotocol Label Switching (MPLS) [8] was originally designed to speed
up the forwarding process. In practice, this was done with one or more 32 bits
label stack entries (LSE) inserted between the frame header (Data-link layer)
and the IP packet (Network layer). A given packet may carry out several LSEs
at the same time. In this case, the packet is said having a stack of labels. Each
LSE is made of four fields: a 20-bit label value used for forwarding the packet to
the next router, a 3-bit Traffic Class field for quality of service (QoS), priority,
and Explicit Congestion Notification (ECN) [9], a 1-bit bottom of stack flag

A Brief History of MPLS Usage in IPv6 361

Fig. 1. 6PE usage of MPLS. PE routers are dual-stack, while LSRs are IPv4 only
routers.

(when set the current label is the last in the stack [10]), and an 8-bit time-to-live
(LSE-TTL) field having the same purpose as the IP-TTL field [11].

MPLS routers, called Label Switching Routers (LSRs), exchange labelled
packets over Label Switched Paths (LSPs). The first MPLS router (Ingress Label
Edge Router, or Ingress LER, i.e., the tunnel entry point) adds the label stack,
while the last MPLS router (Egress Label Edge Router, or Egress LER, i.e., the
tunnel exit point) removes the label stack. In some cases, and in particular with
Cisco routers, the LSE stack may be removed by the penultimate MPLS router
(penultimate hop popping, PHP) to reduce the MPLS overhead. The Egress LER
then performs a classic IP lookup and forwards the traffic, reducing so the load
on the Egress LER (especially if the Egress LER is shared among several LSPs).
This means that, when using PHP, technically speaking, the MPLS tunnel exit
is one hop before the Egress LER. In its most basic operation, LSPs are con-
structed along best effort routes using the Label Distribution Protocol (LDP [12]).
More specific LSPs may be constructed for Traffic Engineering purposes, using
an extension of the RSVP protocol, RSVP-TE [13]. In these two cases, the label
stack contains only one LSE. A more complex usage is for Virtual Private Net-
works (VPN [14]), where LSPs are constructed using either LDP or RSVP-TE,
and an additional LSE at the bottom of the label stack is used to specify a
Virtual Routing Table at the Egress. In this case, the bottom of the stack is
constant along an LSP, while the top of the stack is modified at each hop, as in
the previous cases.

2.2 MPLS in IPv6

MPLS can be used in IPv6-only networks in the same way as it is used in IPv4
networks (see George and Pignatoro [15] for a discussion on gaps remaining
between IPv4 and IPv6). Indeed most routing protocols and label distribution
protocols [16,17] have now their IPv6 version. However this has not always been
the case. Moreover, providers do not activate IPv6 capabilities even when they
are available in their hardware and software. Therefore, specific mechanisms have
been devised to deliver IPv6 traffic across networks where there is either no IPv6
routing (IPv4 only networks) or where some mechanisms are not IPv6-aware such
as LDP [12,16].

362 Y. Vanaubel et al.

Thus, one of the MPLS usage under IPv6 is to connect IPv6 islands through
an IPv4 core network that is unaware of IPv6. This mechanism is called 6PE [18]
and is illustrated in Fig. 1. This is done through the usage of Provider Edge
(PE) routers that are dual-stack and that are located at the edge of the IPv4
domain. Each PE router receives IPv6 prefixes from the Customer Edge (CE)
router in the IPv6 domain. IPv6 reachability is exchanged between 6PEs via
multiprotocol-iBGP, MP-BGP.

When 6PE was released, the main objective was to ensure IPv6 connectivity
on top of MPLS core routers that are not IPv6-aware. That situation drove the
need for two labels in the data plane (due to the potential usage of PHP in
particular): (i), the top label is the transport label, which is assigned hop-by-
hop [12,13] and, (ii), the bottom label is a label assigned by BGP and advertised
by iBGP between the PE routers. Quoting RFC4798 [18], “This label advertised
by the egress 6PE Router with MP-BGP MAY be an arbitrary label value, which
identifies an IPv6 routing context or outgoing interface to send the packet to, or
MAY be the IPv6 Explicit Null Label”. This last label has a value of 2 [10].

In that context, the PE routers that perform 6PE are the Ingress and Egress
LERs. Note that today, now that global IPv6 deployment is more common, 6PE
is also interesting for core LSRs with dual-stack routers and IPv6 connectivity.
This is useful to build LSP for IPv6 without using an IPv6 label distribution
protocol (LDP for IPv6 [16] has been finalized only recently), and/or for sharing
the same LSP for IPv4 and IPv6 traffic, reducing so the control plane churn. Our
analysis will show that this specific behavior is the most common in practice.

2.3 Revealing MPLS Tunnels

MPLS routers may send ICMP time-exceeded messages when the LSE-TTL
expires (in both IPv4 and IPv6). In order to debug networks where MPLS is
deployed, routers may also implement RFC4950 [19], an extension to ICMP
allowing a router to embed an MPLS LSE in an ICMP time-exceeded message.
In that case, the router simply quotes the MPLS LSE (or the LSE stack) of the
received packet in the ICMP time-exceeded message. RFC4950 is particularly
useful for operators as it allows them to verify the correctness of their MPLS
tunnels and TE policy.

If the Ingress LER copies the IP-TTL value to the LSE-TTL field rather
than setting the LSE-TTL to an arbitrary value such as 255, LSRs along the
LSP will reveal themselves when using traceroute via ICMP messages even if
they do not implement RFC4950. Operators can configure this action using the
ttl-propagate option provided by the router manufacturer [11] (while, to the
best of our knowledge, the RFC4950 is just a matter of implementation and
cannot be deactivated on recent routers supporting it). These mechanisms are
identical for IPv4 and IPv6.

In this paper we focus on explicit MPLS tunnels, i.e., tunnels that can be
fully revealed via traceroute as they implement both TTL propagation (they
are seen in traces) and RFC4950 (they are seen as LSRs providing their LSE).
Note that in the case of 6PE, if the TTL of a traceroute packet expires inside

A Brief History of MPLS Usage in IPv6 363

Table 1. Raw IPv6 statistics and deployment over 7 years of data (January, 1st of each
year), where “VPs” gives the number of probing monitors, “Traces” the amount of
traceroute performed, “prefixes” the number of probed prefixes, “ASes” the amount
of different ASes in the dataset, “Addresses” the number of pure IPv6 addresses, IPv4-
mapped IPv6 addresses and addresses involved in MPLS IPv6 tunnels, and “Tunnels”
provides the number of unique MPLS tunnels encountered (note that “Complete Tun-
nels” refer to tunnels where all LSRs responded to traceroute probes).

Year Probing Addresses Tunnels

VPs Traces Prefixes ASes v6 v4 map’d
v6

MPLS Raw Complete

2009 5 7,765 2,128 988 4,009 0 14 47 68 %

2010 8 17,472 3,550 1,363 6,331 21 48 59 52 %

2011 13 51,636 8,347 2,365 12,307 211 199 1,235 22 %

2012 21 154,791 18,589 3,918 23,225 704 680 2,783 42 %

2013 25 256,725 25,891 4,992 33,239 370 1,468 14,366 45 %

2014 29 772,461 32,391 6,224 43,309 719 2,526 49,232 77 %

2015 29 1,181,139 38,901 8,181 58,150 420 3,098 50,805 85 %

Fig. 2. Raw number of IPv6 traces
traversing at least one MPLS tunnel.

Fig. 3. IPv6 MPLS tunnels length
distribution

the IPv4 core, the IPv4 router may be unable to send an ICMPv6 error message.
In this case, the traceroute will be incomplete and the non-responding hop will
be replaced by a *. If the router has no IPv6 connectivity but is IPv6-aware, it
may send an ICMPv6 message, using a so-called IPv4-mapped IPv6 address [20]
as source address. The error message is then propagated towards the Egress LER
using MPLS, and then propagated through IPv6 routing.

3 Evaluation

3.1 Dataset

For evaluating the deployment of MPLS under IPv6, we use the IPv6 Archipe-lago
dataset [21]. The data is collected by performing ICMP-based ParisTraceroute

364 Y. Vanaubel et al.

measurements [22], using scamper [23]. Each vantage point probes all announced
IPv6 prefixes (/48 or shorter) once every 48 h by targeting a single random des-
tination in each prefix. Some vantage points might, in addition, probe the first
address (i.e., ::1) in a prefix.

Table 1 provides raw statistics about the IPv6 dataset. We collected the
probing campaign made every January 1st since 2009. From this dataset, we
extracted the various traces, explicit MPLS tunnels, and performed an IP2AS
mapping using Team Cymru.1 As already stated by others [1,2], we observe a
slow deployment of IPv6 between 2009 and 2013, compensated by a fast increase
between 2014 and 2015. MPLS deployment in IPv6 follows that tendency, the
peak of MPLS tunnels being reached in 2014 and 2015. In the following sub-
section, we will focus on data collected between January, 1st 2014 and August,
1st 2015. For that period of time, we take into account the first measurement
snapshot of each month, leading to 20 measurement cycles.

Figures 2 and 3 provide basic statistics about MPLS deployment in IPv6.
In particular, Fig. 2 gives the raw number of traceroute (between January,
1st 2014 and August, 1st 2015) that traverses at least one MPLS tunnel. If the
quantity of traces increases over time, on the contrary, the amount of traces
involved in an MPLS tunnel remains quite stable. Compared to IPv4 [4,5,7],
traceroute are traversing much less MPLS tunnels: on the order of 7–8% in
IPv6 against (at least) 40 % for IPv4. Note that the drop observed, in terms of
number of traces seen, in early 2015, is due to less active vantage points.

Figure 3 gives the tunnel length distribution for four measurement snapshots,
including Ingress and Egress LER in the length distribution. This means that a
length of 3 corresponds to a tunnel with a single LSR. We observe that the tunnel
length oscillates between 3 and 21. More interestingly, the tunnel length seems
to decrease over time, i.e., tunnels observed in 2015 are shorter than tunnels in
2014. This is due to the fact that MPLS tunnels of AS174 (Cogent) disappear
from the dataset around October 2014, and Cogent made use of long tunnels.2

While encountering a few longer tunnels, MPLS IPv6 tunnels length distribution
follows observations made in IPv4 [4,5].

3.2 Label Stack Size Distribution

In this section, we study the characteristics of IPv6 MPLS tunnels compared to
IPv4 ones. First, we are interested in the typical LSE size used by both data
planes (i.e., the number of MPLS labels contained at each single LSR). The
methodology we follow is quite simple: for each LSR of each tunnel, we count
the number of labels contained in the stack and, on this basis, we map each
tunnel to the maximum number of labels revealed by each of its LSRs. For
short MPLS tunnels, it allows for mapping them to their most likely usage. For
instance, and for IPv4 data plane, a short tunnel made of three LSRs such that
we find the sequence 1,2,1 (in term of LSE sizes) we claim that such a tunnel

1 http://www.team-cymru.org/.
2 The impact of AS174 in IPv6 has already been discussed in the past [24,25].

http://www.team-cymru.org/

A Brief History of MPLS Usage in IPv6 365

is likely to be used for VPN purposes so that we retain the maximum value of
two to map it to a 2-label LSP. Note that, in such a case, the bottom label is
constant (i.e., the same from end-to-end) in order to denote the outgoing VRF
(Virtual Routing and Forwarding) to use at the Egress LER.

Figure 4 shows the LSE size distribution over time, between January, 1st,
2014 and August, 1st, 2015. Globally speaking, we observe a different behavior
between IPv4 (Fig. 4(a)) and IPv6 (Fig. 4(b)). Indeed, under IPv4, the major-
ity of tunnels (around 80 %) exhibits a single LSE (this results is aligned with
Sommers et al. observations [4]) while, in IPv6, the majority of tunnels (around
80 % also during the first half of the considered period) exhibits at least two
labels.3 This result may appear really surprising since there is no obvious reason
that justifies a more extensive use of VPN in IPv6 than in IPv4.

Figure 5 deeper investigates the LSE typical content in IPv6. In particular, it
looks at the label value at the bottom of the stack. As explained in Sect. 1, if the
value is 2, it suggests a usage of 6PE where core LSRs are dual-stack capable.

Figure 5 clearly depicts a shift around October 2014. Before that date, tunnels
with a label stack are observed almost as often with a bottom label 2 as with
another bottom label. After October 2014, things are crystal clear: the majority
of tunnels (more than 80 %) having a LSE stack use a bottom label of 2, meaning
the usage of this type of 6PE is prevalent.

For tunnels with bottom label 2, we remove this bottom label, and compare
the series of remaining labels with series of labels from tunnels found in IPv4
MPLS traces (in the same period).4 We find out that a match is present in more
than 40 % of the cases meaning that the same IPv4 LSP is used for IPv6 traffic
reinforcing so our assumption about the 6PE usage.

The radical behavior change depicted in Fig. 5 is very surprising at the first
glance. To explain it, we investigate the different ASes we encountered in the
dataset around this date. Before October 2014, around 50 % of the tunnels belong
to AS174 (Cogent). In November 2014, this AS disappears from the MPLS
dataset while it remains visible through numerous non MPLS IPs. Almost all
tunnels belonging to this Tier-1 network have a 2-label stack, but never use the
bottom label 2. This is the reason why we have such a behavior modification in
Fig. 5. The usage of label stack for Cogent is investigated in details in Sect. 3.3
since it is almost only specific to this AS.

Figure 6 looks at the architecture of the network core in case of dual-stack 6PE
usage (i.e., bottom label 2). We observe a tiny proportion of 6PE tunnels that map
IPv4 addresses into IPv6 ones (black region in Fig. 6). We understand this as a
case where core LSRs are IPv6 aware (i.e., they are dual-stack) but do not have
public IPv6 addresses. In order to be able to reply to probes (i.e., generating ICMP
time-exceeded messages), they map their IPv4 address in a “fake” IPv6 one.

Most dual-stack 6PE tunnels we observed in the dataset have an IPv6 core
(LSRs are dual-stack and have public IPv6 addresses). However, this 6PE usage

3 The drop around October 2014 in IPv6 is due to the drastic decrease of MPLS usage
by Cogent in the dataset. We show in details in Sect. 3.3 that Cogent has been a
heavy user of LSE stacks but then got rid of MPLS.

4 These IPv4 MPLS traces were also downloaded from the Archipelago dataset.

366 Y. Vanaubel et al.

Fig. 4. LSE stack size distribution over time.

Fig. 5. Distribution of the value in the
bottom stack LSE in IPv6.

Fig. 6. 6PE core architecture.

corresponds to the case where LSPs are deployed with LDPv4. That is, the
same LSPv4 generally built with LDP and attached to a given IPv4 loopback
destination on the Egress LER is used for both IPv4/v6 traffics. The bottom
label 2 indicates to the Egress LER that the traffic is made of IPv6 packets
rather than IPv4 ones (where the LSP is made of the same series of top labels
without the bottom label). However, note that in practice and at the origin,
6PE has been used to ensure connectivity between IPv6 islands with a tunnel
having a pure IPv4 core. In this case, LSRs are not IPv6 aware (no dual-stack
and no IPv6 addresses). In such an architecture, IPv4 LSRs will not respond
to IPv6 probes of traceroute, and the traces in our dataset are incomplete
(several * appear between 6PEs). Unfortunately, we are not able to differentiate
such a behavior from IPv6 nodes that simply not respond to the probes. The
proportion of this type of 6PE tunnels is therefore underestimated in this paper.

3.3 The Cogent Case

The Cogent case is particularly interesting and quite intriguing. It has both
a very prominent position in the dataset (Cogent is one of the largest Tier-1,
in particular it has the second highest AS rank according to CAIDA5) and,

5 See http://as-rank.caida.org/.

http://as-rank.caida.org/

A Brief History of MPLS Usage in IPv6 367

most of all, an MPLS IPv6 behavior completely different from other ASes we
observed. This can be seen in Fig. 5 where around October 2014 Cogent more or
less disappears from CAIDA MPLS traces and at the same time the proportion
of stacks with bottom label 2 rises sharply.

First, the fact that MPLS traces are almost absent from Cogent after this
date may either be due to a change in the configuration of its routers or, more
simply, that the operator gets rid of MPLS. We conduct some tests to understand
whether Cogent removes ttl-propagate at Ingress LERs to make MPLS tunnels
invisible or not. This type of phenomenon has already been observed for IPv4
MPLS (look at Vanaubel et al. [7] and the specific study on Level3). For this
purpose, we pick a subset of MPLS traces obtained before October 2014 and try
to find similar pure IP traces after this date (i.e., we check whether the same
sequence of IP addresses between Ingress and Egress LER exists before and after
that date or if the two edge routers seem directly connected after). As a result,
we find equivalent traces before and after, the only difference being that MPLS
labels disappear after October 2014. We can conclude that Cogent just gets rid
of MPLS (as they did in IPv4 two years before). To verify this conclusion, we
contacted a Cogent network administrator who confirmed this first result.

The second, and most interesting fact is that, although most of its LSPs
have a stack size greater or equal than 2, they never use a bottom label of 2 (the
default value for 6PE), on the contrary to the dominant usage in other ASes
(see Sect. 3.2). Note that RFC4798 [18] does not mandate the use of label 2 as
bottom label but that BGP at the Egress router associates a label to each IPv6
prefix and announces it to its iBGP peers. Therefore, a 6PE implementation
could choose any other arbitrary label for 6PE, or choose a different label for
each prefix or set of prefixes.

After the analysis of Cogent stacks, it appears that the bottom label is not
fixed (Cogent does not simply use another arbitrary value than 2) but varies
greatly. In fact numerous different bottom labels can be found on LSPs con-
necting the same (Ingress, Egress) pair. For instance, we find one case where 38
distinct bottom labels are in use for a given pair. In theory, this could be 38
distinct VPNs or, more probably, the Egress could be using a distinct bottom
label for each (group of) IPv6 prefix. Hopefully, our Cogent contact helped us to
eliminate the VPN case (indeed, considering only the measurements perspective,
nothing distinguishes VPN from 6PE, the general principle of using a bottom
label being the same): Cogent simply did not use this technology but only 6PE
before shutting down MPLS for IPv6 in October 2014.

One purpose of distinct bottom labels may be load sharing: in a network using
Equal Cost Multipath (ECMP), packets arriving at a router with two equal cost
routes for the destination are distributed along these routes according to a packet
header hash. In a network using MPLS and ECMP, LSPs constructed by LDP
signaling may make use of multiple paths, building several LSPs between the
same pair of LSRs. In the case of Cogent, it is apparent that ECMP is in use in
the core network. For example in the case of the Egress router having 38 distinct
bottom labels, after removing the bottom label, there still exists 8 distinct LSPs
between this pair of routers (considering IP addresses and top labels).

368 Y. Vanaubel et al.

For IPv4 packets, the hash function considers at least the IP addresses in
order to guarantee the same route for all packets of the same flow (avoiding
so ordering issues with TCP). The same can be done with IPv6 packets, but
it is more costly due to the IPv6 addresses length. Moreover in the case of
6PE, routers in the core may be totally IPv6 ignorant. In this case using the
bottom label to split the load makes sense (this usage is for example mentioned in
Cisco documentation [26]). Note that the conjunction of many routes (ECMP),
hence top labels and many distinct 6PE bottom labels result in a large number
of distinct LSPs when taking into account the full label stack. This partially
explains why Cogent is so prevalent in terms of unique IPv6 MPLS tunnels in
the dataset we consider besides its shere size. Several mechanisms have been
proposed to allow MPLS networks to benefit from the use of multiple paths,
such as Kompella et al. [27]. There have been also proposals to allow RSVP-TE
to make a direct use of multiple ECMP paths [28].

Table 2. LPR [7] applied to some Cogent IPv6 2014 data.

09/2014 10/2014 11/2014

Mono-LSP 23.1 % 30.8 % 0 %

Multi-FEC 3.4 % 2.7 % 0 %

Mono-FEC 58.6 % 52.3 % 0 %

Unclassified 14.9 % 14.2 % 0 %

To investigate further and retrieve the root cause of this variety of label
stacks, we apply the Label Pattern Recognition (LPR) algorithm [7] on top
labels of the Cogent IPv6 MPLS traces to quantify the usage of LDP (for IGP-
BGP scalability purposes – Mono-FEC in Table 2) and/or RSVP-TE (for traffic
engineering purposes – Multi-FEC in Table 2). To distinguish LSPs built through
LDP and RSVP-TE, LPR analyses LSPs going through the same Ingress-Egress
pair. If two LSPs have been built through LDP, the incoming top labels should be
identical at converging routers. On the contrary, the incoming top labels should
be different if these LSPs have been built through RSVP-TE. There is also the
possibility that both protocols are used, building different LSPs according to the
intended service. Our analysis (already apparent in the case of the Egress with
38 distinct LSPs), shows that the top-label is mostly generated by LDP (Mono-
FEC line in Table 2). Therefore our interpretation is that the bottom-label is
assigned by the Egress-router on a per IPv6 prefix basis using a variant of 6PE,
in order to make a more efficient use of ECMP, while the top-label (i.e. the LSP
itself) is built using LDP for IPv4.

4 Conclusion

The recent years have seen an increasing deployment and usage of IPv6. With
the recent IPv4 depletion, this increase is going faster and we expect to see more

A Brief History of MPLS Usage in IPv6 369

and more IPv6 networks in a near future. In this paper, we focused on a specific
aspect of the IPv6 deployment related to MPLS: how is MPLS deployed and
used under IPv6? Is its usage strongly different from the one in IPv4? Based on
traceroute collected by CAIDA, we tried to answer these questions.

Our first observations pointed out that the MPLS technical usage seems to
strongly differ between IPv4 and IPv6. In particular, in the way label stacks
are used, we discovered that under IPv4, stacks of more than one label are not
that frequent while they are the norm under IPv6. However, we showed that
this difference is not due to an increase in VPN BGP MPLS usage. Indeed, we
explained that IPv6 MPLS mostly uses 6PE tunnels that are built using an IPv4
signaling protocol (in particular LDP for IPv4). This allows one to deploy MPLS
for IPv6 across a network where some routers are not dual-stack, or where LDP
is not available for IPv6 (the IPv6 version was only recently released). Therefore
this can be seen as a transition mechanism, and it will be interesting to see the
evolution of this usage as more and more networks become fully IPv6 compliant.
The special case of the Cogent network also brought some light on the use of
ECMP multipath in conjunction with MPLS. We argued that this network uses
a specific form of 6PE to ease the way that IPv6 routers select their outgoing
interfaces.

References

1. Dhamdhere, A., Luckie, M., Huffaker, B., Claffy, K., ELmokashfi, A., Aben, E.:
Measuring the deployment of IPv6: topology, routing, and performance. In: Pro-
ceedings of ACM Internet Measurement Conference (IMC), November 2012

2. Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Mea-
suring IPv6 adoption. In: Proceedings of ACM SIGCOMM, August 2014

3. American Registry for Internet Numbers (ARIN): IPv4 depletion, September 2015.
https://www.arin.net/resources/request/ipv4 countdown.html

4. Sommers, J., Eriksson, B., Barford, P.: On the prevalence and characteristics of
MPLS deployments in the open Internet. In: Proceedings of ACM Internet Mea-
surement Conference (IMC), November 2011

5. Donnet, B., Luckie, M., Mérindol, P., Pansiot, J.J.: Revealing MPLS tunnels
obscured by traceroute. ACM SIGCOMM Comput. Commun. Rev. 42(2), 87–93
(2012)

6. Pathak, A., Zhang, M., Hu, Y.C., Mahajan, R., Maltz, D.: Latency inflation with
MPLS-based traffic engineering. In: Proceedings of ACM Internet Measurement
Conference (IMC), November 2011

7. Vanaubel, Y., Mérindol, P., Pansiot, J.J., Donnet, B.: MPLS under the micro-
scope: revealing actual transit path diversity. In: Proceedings of ACM Internet
Measurement Conference (IMC), October 2015

8. Rosen, E., Visanathan, A., Callon, R.: Multiprotocol label switching architecture.
RFC 3031, Internet Engineering Task Force, January 2001

9. Andersson, L., Asati, R.: Multiprocotol label switching (MPLS) label stack entry:
EXP field renamed to traffic class field. RFC 5462, Internet Engineering Task
Force, February 2009

https://www.arin.net/resources/request/ipv4_countdown.html

370 Y. Vanaubel et al.

10. Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y., Farinacci, D., Li, T., Conta, A.:
MPLS label stack encoding. RFC 3032, Internet Engineering Task Force, January
2001

11. Agarwal, P., Akyol, B.: Time-to-live (TTL) processing in multiprotocol label
switching (MPLS) networks. RFC 3443, Internet Engineering Task Force, January
2003

12. Andersson, L., Minei, I., Thomas, T.: LDP specifications. RFC 5036, Internet Engi-
neering Task Force, October 2007

13. Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., Swallow, G.: RSVP-TE:
extensions to RSVP for LSP tunnels. RFC 3209, Internet Engineering Task Force,
December 2001

14. Muthukrishnan, K., Malis, A.: A core MPLS IP VPN architecture. RFC 2917,
Internet Engineering Task Force, September 2000

15. George, W., Pignataro, C.: Gap analysis for operating IPv6-only MPLS networks.
RFC 7439, Internet Engineering Task Force, January 2015

16. Asati, R., Pignataro, C., Raza, K., Manral, V., Papneja, R.: Updates to LDP for
IPv6. RFC 7552, Internet Engineering Task Force, June 2015

17. De Clercq, J., Ooms, D., Carugi, M., Le Faucheur, F.: BGP-MPLS IP virtual
private network (VPN) extension for IPv6 VPN. RFC 4659, Internet Engineering
Task Force, September 2006

18. De Clercq, J., Ooms, D., Prevost, S., Le Faucheur, F.: Connecting IPv6 islands
over IPv4 MPLS using IPv6 provider edge routers (6PE). RFC 4798, Internet
Engineering Task Force, February 2007

19. Bonica, R., Gan, D., Tappan, D., Pignataro, C.: ICMP extensions for multiprotocol
label switching. RFC 4950, Internet Engineering Task Force, August 2007

20. Hinden, R., Deering, S.: IP version 6 addressing architecture. RFC 4291, Internet
Engineering Task Force, February 2006

21. CAIDA: The CAIDA UCSD IPv6 topology dataset, September 2015. http://www.
caida.org/data/active/ipv6 allpref topology dataset.xml

22. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,
Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with Paris traceroute.
In: Proceedings of ACM Internet Measurement Conference (IMC), October 2006

23. Luckie, M.: Scamper: a scalable and extensible packet prober for active measure-
ment of the Internet. In: Proceedings of ACM Internet Measurement Conference,
November 2010

24. Giotsas, V., Luckie, M., Huffaker, B., Claffy, K.: IPv6 AS relationships,clique,
and congruence. In: Proceedings of Passive and Active Measurement Conference
(PAM), March 2015

25. Leber, M.: IPv6 Internet broken, Cogent/Telia/Hurricane not peering,
October 2009. Nanog Mailing-list. http://mailman.nanog.org/pipermail/nanog/
2009-October/014017.html

26. Cisco: Cisco IOS IPv6 provider edge router (6PE) over MPLS,
October 2015. http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/
products data sheet09186a008052edd3.html#wp39913

27. Kompella, K., Drake, J., Amante, S., Henderickx, W., Yong, L.: The use of entropy
labels in MPLS forwarding. RFC 6790, Internet Engineering Task Force, November
2012

28. Kompella, K., Hellers, M., Singh, R.: Multi-path label switched paths signaled
using RSVP-TE. Internet Draft (Work in Progress) draft-kompella-mpls-rsvp-
ecmp-06, Internet Engineering Task Force, March 2015

http://www.caida.org/data/active/ipv6_allpref_topology_dataset.xml
http://www.caida.org/data/active/ipv6_allpref_topology_dataset.xml
http://mailman.nanog.org/pipermail/nanog/2009-October/014017.html
http://mailman.nanog.org/pipermail/nanog/2009-October/014017.html
http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products_data_sheet09186a008052edd3.html#wp39913
http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products_data_sheet09186a008052edd3.html#wp39913

Scheduling and Timing

An Empirical Study of Android Alarm Usage
for Application Scheduling

Mario Almeida1(B), Muhammad Bilal1, Jeremy Blackburn2,
and Konstantina Papagiannaki2

1 Universitat Politecnica de Catalunya, Barcelona, Spain
mario.almeida@est.fib.upc.edu

2 Telefonica Research, Barcelona, Spain

Abstract. Android applications often rely on alarms to schedule
background tasks. Since Android KitKat, applications can opt-in for
deferrable alarms, which allows the OS to perform alarm batching to
reduce device awake time and increase the chances of network traffic
being generated simultaneously by different applications. This mecha-
nism can result in significant battery savings if appropriately adopted.

In this paper we perform a large scale study of the 22,695 most popular
free applications in the Google Play Market to quantify whether expec-
tations of more energy efficient background app execution are indeed
warranted. We identify a significant chasm between the way application
developers build their apps and Android’s attempt to address energy
inefficiencies of background app execution. We find that close to half of
the applications using alarms do not benefit from alarm batching capa-
bilities. The reasons behind this is that (i) they tend to target Android
SDKs lagging behind by more than 18 months, and (ii) they tend to
feature third party libraries that are using non-deferrable alarms.

1 Introduction

Todays mobile devices support a diverse set of functionality, much of which is
not dependent on active user interaction. Many tasks are performed in the back-
ground, which has very clear impact on battery life and mobile data usage [4].
The impact is substantial enough that reducing and mitigating it has been the
focus of a significant amount of research and development.

A promising set of solutions aim to shape applications’ traffic [3,5,8,9,12,16],
but suffer from severe limitations. These techniques ignore application-protocol
interactions and lack integration with applications and OSes, often increasing
energy consumption due to retransmissions and/or signaling issues [17] in real-
world scenarios. Other works [4,14,15,17] highlight the need for better applica-
tion knowledge and/or integration with OS/platforms.

Alarms are Android’s integrated application execution scheduling mechanism
(used, e.g., for background network activity) and are a primary vehicle for exe-
cuting the traffic shaping techniques. Alarms are so critical to the functionality

c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 373–384, 2016.
DOI: 10.1007/978-3-319-30505-9 28

374 M. Almeida et al.

of Android that they have been a hot topic at the last two Google IO confer-
ences and a popular target for energy concerns1,2. One way Android mitigates
Alarms’ negative impact is batching, which can reduce total device awake time
while increasing the chance that traffic from different applications can occur
simultaneously. As of KitKat, developers can opt-in to have their alarms be
deferrable which makes batching by the OS easier.

Unfortunately, the success of batching depends on the correct usage of alarm
APIs by applications: apps themselves determine the deferrability, trigger time,
and repetition interval of alarms. This leads to the situation Park et al. [13]
discovered in their study of 15 Android applications: alarms are often unneces-
sarily set as non-deferrable. However, it is totally unclear how widespread such
a practice is and thus its impact on the efficacy of alarm scheduling is unknown.

Since there is no indication that alarms will cease to be the preferred applica-
tion level scheduling mechanism within Android, future design and development
should be informed with an understanding of how developers use the current
alarm APIs. Thus, in this paper we perform a large-scale study of 22,695 real
applications from the Google Play Market (to the best of our knowledge, the
largest such study to date) in order to find evidence of alarm API adoption
delays and their impact on the performance of the Android OS; more specifi-
cally, the effectiveness of alarm batching in Android. We investigate how many
apps use alarms, what type of alarms they use, differences in alarm usage by
application category, and whether alarms are being used by apps themselves or
by 3rd party libraries. We find that a shocking 46 % of apps with alarms do
not take advantage of Android alarm scheduling capabilities due to either tar-
geting old SDK versions or their use of 3rd party libraries. We further discuss
and analyze the problems behind Android SDK adoption and propose possible
directions for improving alarm batching across applications.

2 Android Alarms

Alarms are the primary mechanism Android provides to allow applications to
schedule background activities. Alarms come in two flavors: (1) time critical
alarms, and (2) non-time critical. The first type is called an exact alarm, and
the second is known as an inexact or deferrable alarm. The OS is expected
to execute exact alarms on schedule, but can delay the execution of deferrable
alarms. Deferrable alarms are particularly interesting due to the manner in which
Android can leverage them to improve power efficiency. For example, batching
alarms to multiplex network activity of multiple applications can reduce the
wake up frequency of the device’s radio.

Decisions related to what type of alarms to use are left to the application
developers since, in theory, only they have the insight necessary to assess the
impact a delayed alarm will have on their app. Unfortunately, developers will
often optimize for profit (e.g., ensuring fresh ads are retrieved/displayed as often
1 GIO’15, Doze - http://goo.gl/KEJURc.
2 GIO’14, Project Volta - https://goo.gl/aebnwF.

http://goo.gl/KEJURc
https://goo.gl/aebnwF

An Empirical Study of Android Alarm Usage for Application Scheduling 375

Table 1. Behavior of alarms based on the Target SDK level. We note that although
our dataset was collected before SDK 23 was available, the continuing effort put into
the alarm API highlights the critical nature of Android Alarms.

Alarm API SDK < 19 SDK = 19–22 SDK = 23

set Exact Inexact Inexact

setRepeating Exact Inexact Inexact

setInexactRepeating Inexact Inexact Inexact

setExact NA Exact Exact

setWindow NA Inexact Inexact

setAndAllowWhileIdle NA NA Inexact

setExactAndAllowWhileIdle NA NA Exact

as possible) and usability rather than energy efficiency. A second wrinkle with
alarm types is that developers are free to define what Android SDK their app
targets. If the device the application is installed on has a different SDK than
the targeted one, a compatibility mode applies which in some cases can alter
the app’s behavior. This can have interesting consequences for alarms because
the default functionality for a given Alarm API call might differ between SDK
versions (see Table 1). E.g., if the targeted SDK version is less than 19, all API
calls but setInexactRepeating create exact alarms. For SDK 19+, a new call to
explicitly create exact alarms is introduced, and the behavior for the previously
existing calls is changed to create inexact alarms.

Therefore, applications with exact alarms are those which: (1) have target
SDK lower then 19 and use set or setRepeating calls or (2) use setExact.

Applications with inexact alarms are those which: (1) target ≥ SDK 19 and
use set or setRepeating calls or (2) use setInexactRepeating or setWindow
calls. It is important to note, however, that despite being able to create inexact
alarms for SDK < 19, alarm batching across applications is only available for
devices with Android KitKat (SDK 19) or higher [1].

Alternatively, Android apps can also use a new alternative designed to facil-
itate correct implementation of alarms and to reduce alarm occurrences based
on app requirements: the JobInfo API. The JobInfo API provides new triggering
conditions based on, for example, network (metered/unmetered) and device state
(e.g., idle/charging), backed by more sophisticated retry mechanisms to avoid
unnecessary execution, in turn allowing tuning apps with respect to battery con-
sumption. The JobInfo APIs were introduced 6 months prior to our experiments
(SDK 21), however, none of the apps in our dataset made use of them.

3 Results

3.1 Dataset

To understand the use of alarms in Android apps, we crawl Google Play and
download up to 564 of the most popular free apps for each Google Play category.

376 M. Almeida et al.

Removing duplicates we are left with 22,695 unique apps. Although studying
the most popular apps is clearly biased, it is justified for two reasons. First,
these apps are more likely to be optimized than the least popular apps due to
their associated revenues. Second, since these apps account for the majority of
downloads, they are more representative of what users actually have on their
mobile devices. This is evidenced by Viennot et al. [18] who found that the top
1 % of most downloaded apps account for over 81 % of the total downloads in
November 30, 2013. To the best of our knowledge, our dataset (May 2015) should
account for around 1.5 % of the total apps of the market in 2015 (AppBrain3

claims around 1.5 Million apps in the first quarter of 2015).
For each of the 22,695 apps, we extract their manifest; an XML file that

contains application meta-data, such as the application package name, compo-
nents, permissions, etc. Three of the properties listed in the manifest are the
minimum, maximum, and target SDK. The target SDK is the Android API
level (e.g., Android 4.4 Kitkat has an API level of 19) that the application was
developed for, and, as discussed earlier, determines the types of alarms available
to the developer. By default, apps that do not define a target SDK have their
target default to the minimum SDK.

3.2 Static Analysis

Since the focus of this study is understanding how alarms are being used by
apps, we perform static analysis on the apps we crawled. We first decompile
each of the apps, which provides us with assembly-like code (smali). We then
statically analyze the smali code to locate occurrences of Android Alarm API
calls. In our database, each occurrence of an alarm/jobinfo API call is regis-
tered along with the respective application, alarm API, smali file name, line and
annotations to the method where it occurs. Since some free apps are likely to
have ads [6], opposed to their paid version, we can analyze the API call location
and correlate it with the ad libraries (Sect. 3.5). Annotations are useful since
specific methods can use the TargetAPI annotation to denote that they want
to execute the method in compatibility mode. For apps, the meta-data (target
SDK, internet usage, category) is registered. In particular, we are interested in
correlating target Android SDKs with the number of alarm API calls and their
usage within different apps and app categories.

3.3 Impact of Target SDK on Alarms

As mentioned previously, the target SDK of an application can significantly affect
the behavior of its alarms. As a first step towards understanding the impact
of the chosen target SDK, we plot the distribution of SDK targets from our
dataset in Fig. 1. It shows that despite the efforts of Google to promote the use
of their newer SDKs (e.g., Google IO conferences, extensive documentation and
application design guidelines), the majority of the popular apps target SDKs

3 http://www.appbrain.com/stats/number-of-android-apps.

http://www.appbrain.com/stats/number-of-android-apps

An Empirical Study of Android Alarm Usage for Application Scheduling 377

0

5

10

15

20

01
 (2

00
8−

09
)

02
 (2

00
9−

02
)

03
 (2

00
9−

04
)

04
 (2

00
9−

09
)

05
 (2

00
9−

10
)

06
 (2

00
9−

12
)

07
 (2

01
0−

01
)

08
 (2

01
0−

05
)

09
 (2

01
0−

12
)

10
 (2

01
1−

02
)

11
 (2

01
1−

02
)

12
 (2

01
1−

05
)

13
 (2

01
1−

07
)

14
 (2

01
1−

10
)

15
 (2

01
1−

12
)

16
 (2

01
2−

07
)

17
 (2

01
2−

11
)

18
 (2

01
3−

07
)

19
 (2

01
3−

10
)

20
 (2

01
4−

06
)

21
 (2

01
4−

11
)

22
 (2

01
5−

03
)

Target Android SDK (Date)

%
 A

pp
s

Ta
rg

et
in

g
SD

K

Fig. 1. Percentage of apps that define each Android SDK as the target SDK in their
manifests. NB: We were unable to extract the target SDK from 1.5 % of apps in our
dataset.

Table 2. Fraction of apps with exact and inexact alarms grouped by SDK version.
Dates represent the release dates of each Android SDK. Note that an application can
make use of both exact and inexact alarms.

Alarm type SDK < 19 SDK >= 19

AlarmInexact 8.49 % 52.91 %

AlarmExact 44.05 % 2.31 %

Alarm 46.06 % 53.49 %

that were released more than 18 months ago (up to and including SDK 19,
represent 71.6 %). Close to half (48 %) the apps target SDKs lagging behind by
more than 21 months.

From the perspective of alarms, we note that 47.23 % of apps have a tar-
get SDK lower than 19; i.e., they are still going to use the older alarm API
behavior with defaults oriented towards exact alarms. Out of the 22+K apps
in our dataset, 47.25 % use alarms. Of the apps that use alarms, we see that
53.49 % have target SDK versions above 19, while 46.06 % target older SDKs
(Table 2). As annotations can affect the targeted APIs on a per method basis,
we confirmed that only 2 % of the apps with SDK < 19 had occurrences of the
TargetAPI annotation in methods containing alarm calls.

The major apparent difference between SDK < 19 apps and SDK ≥ 19 apps
is the flip-flop in usage of exact and inexact alarms: only 2.31 % of apps targeting
SDKs ≥ 19 define exact alarms in contrast to the 44.05 % of apps targeting <
19. We note that this change might not necessarily be the result of developers
being aware of the impact of exact alarms, but rather an end result of targeting
newer SDKs.

The reason behind Android being so conservative with maintaining the pre-
vious alarm behavior even in newer versions of Android is to avoid apps from
becoming unstable when updating. Since only 2.31 % of the apps targeting SDKs
≥ 19 use the exact alarm API call, if we would consider the hypothesis that apps
with target SDK ≥ 19 updated from an older SDK, it is probable that either
most apps did not have exact time constraints after all or that the ones that

378 M. Almeida et al.

Table 3. Example of popular and regularly updated apps with more than one million
downloads and with target SDK older than 19 months (as of May 2015).

Application SDK Downloads Version

es.lacaixa.mobile.android.newwapicon 17 1M-5M 2.0.17

com.cg.tennis 14 10 M–50 M 1.6.0

com.linkedin.android 15 10 M–50 M 3.4.8

com.rovio.angrybirds 18 100 M–500 M 5.0.2

com.cleanmaster.security 17 100 M–500 M 2.5.1

com.shazam.android 16 100 M–500 M 5.3.4

com.instagram.android 16 500 M–1000 M 6.20.2

do willingly avoided updating their SDKs. If the first is true, then Android is
being very conservative with their approach regarding alarms batching behav-
ior, which has a big impact on the power consumption of devices. Although we
did not study apps update rates, it would have been interesting to determine
if the second case holds by, for example, determining how many of these apps
were updated after the release of Android API level 19. Our intuition is that
even regularly updated apps often do not update their SDK. As an example, in
Table 3, we show a few well known apps which, by the time of our study, had
target SDKs lower than 19. Which means that these apps are unable to utilize
the new energy efficient alarm APIs provided by the latest Android SDKs.

Even if the device is supported and up-to-date, apps can target old versions of
the Android SDKs, which can have a negative impact on the overall performance
of the device. Our results clearly demonstrate that there is slow adoption of new
SDK versions by application developers. More importantly, we see that despite
the efforts to make Android more energy efficient with respect to alarm handling
(e.g., through JobInfo and the introduction of inexact alarms), backwards com-
patibility (a necessary evil at this point due to fragmentation), lack of developer
awareness about new SDK benefits, and misuse of alarms by developers makes
it hard to succeed.

3.4 Type of Alarms Depending on App Category

Considering the conservative behavior of Android regarding non-deferrable
alarms, we now wonder which type of apps require exact alarms. To this end, we
explore how different categories (as retrieved from Google Play) of apps make
use of alarms (Fig. 2).

Surprisingly, categories of apps such as widgets (80 %), wallpapers (63 %)
and personalization (60 %) have a bigger fraction of apps with alarms than
communication (59 %) and social categories (55 %). While having more alarm
definitions does not necessarily mean that there will be more alarm occurrences
during runtime, we found that, for example, there are 308 widget apps defining
repeating alarms (setRepeating and setInexactRepeating) (in Sect. 3.6 we

An Empirical Study of Android Alarm Usage for Application Scheduling 379

62.9
80

35.4
40.5
33.8
59.5
38.8
46.8
44.2
48.4
56.4
17.6
53.9
38.8
36.1
38.9
67.2
60.3
45.6
54.3
50.6
55.1
50

45.2
33.7
43.9
53.9

24.5
30.3
19.1
17.9
15.6
32.1
18.5
21.7
18

23.5
26.2
9.9
22.7
15.1
19.6
14.7
29.1
30.4
14.4
27.1
22.7
17.8
21.6
17.5
11.9
19
35

45.1
63.7
19.1
27.1
20.4
33

23.5
31.9
28.8
28.1
35.5
7.9

36.1
26.1
20

30.7
42.6
33.7
33.6
34.2
32.6
41.7
30.9
31.5
25

28.1
25

APP_WALLPAPER

APP_WIDGETS

BOOKS_AND_REFERENCE

BUSINESS

COMICS

COMMUNICATION

EDUCATION

ENTERTAINMENT

FINANCE

GAME

HEALTH_AND_FITNESS

LIBRARIES_AND_DEMO

LIFESTYLE

MEDIA_AND_VIDEO

MEDICAL

MUSIC_AND_AUDIO

NEWS_AND_MAGAZINES

PERSONALIZATION

PHOTOGRAPHY

PRODUCTIVITY

SHOPPING

SOCIAL

SPORTS

TOOLS

TRANSPORTATION

TRAVEL_AND_LOCAL

WEATHER

Alar
m

Alar
mExa

ct

Alar
mIne

xa
ct

(a) All categories

59.9

48.6

49.7

38

43.1

68.3

38.2

3.44 3.44

52.6

32.7

46.5

48.8

64.7

45.6

53.5

63.4

37.7

39.6

24.7

23.7

25.1

17.1

23

37.9

17.7

6.52 6.52

32.5

15.6

18.9

20.3

31.8

18.2

22.9

26.4

19.8

19.6

41.2

26.9

27

22.2

25.3

37.5

23.8

3232

22.5

17.3

29.8

30.2

35

30.1

32.6

38.5

22.8

25.4

GAME_ACTION

GAME_ADVENTURE

GAME_ARCADE

GAME_BOARD

GAME_CARD

GAME_CASINO

GAME_CASUAL

GAME_EDUCATIONAL

GAME_FAMILY

GAME_MUSIC

GAME_PUZZLE

GAME_RACING

GAME_ROLE_PLAYING

GAME_SIMULATION

GAME_SPORTS

GAME_STRATEGY

GAME_TRIVIA

GAME_WORD

Alar
m

Alar
mExa

ct

Alar
mIne

xa
ct

(b) Game apps

Fig. 2. Percentage of apps per category (avg. 523 apps) that have any kind of alarms,
have exact alarms and inexact alarms. Due to the high amount of Game categories,
(a) groups this categories into GAME. Note that an application can make use of both
exact and inexact alarms.

manually analyze some of these apps). Regarding time critical alarms, the five
application categories with most apps with exact alarms are respectively: casino
games (37.9 %), weather (35 %), family games (32.5 %), communication (32.1 %)
and role-playing games (31.8 %). Finally, the average number of alarms defined
by apps per category is shown in Fig. 3.

The widgets category not only has the largest number of apps with alarms
and one of the highest time critical alarms usage (30.3 %), but also it also has the
highest average number of alarms (4.9) defined within an application. The ana-
lyzed apps had up to 70 alarm definitions4, e.g., Whatsapp defines 28 alarms,
Instagram 11 and Facebook only 2. Again, we point that although Facebook
has only 2 alarm definitions, its alarms are actually very frequent during run-
time (Sect. 3.6).

4 com.ecare.android.womenhealthdiary.

380 M. Almeida et al.

1

10

40
70

GA
M

E_
ED

UC
AT

IO
NA

L
GA

M
E_

FA
M

ILY
ED

UC
AT

IO
N

GA
M

E_
M

US
IC

FI
NA

NC
E

GA
M

E_
PU

ZZ
LE

M
ED

IA
_A

ND
_V

ID
EO

GA
M

E_
W

OR
D

GA
M

E_
TR

IV
IA

TR
AN

SP
OR

TA
TI

ON
GA

M
E_

RA
CI

NG
CO

M
IC

S

GA
M

E_
SP

OR
TS

GA
M

E_
CA

RD
GA

M
E_

BO
AR

D
SP

OR
TS

GA
M

E_
AR

CA
DE

W
EA

TH
ER

PH
OT

OG
RA

PH
Y

TR
AV

EL
_A

ND
_L

OC
AL

SH
OP

PI
NG

GA
M

E_
CA

SU
AL

LI
FE

ST
YL

E

GA
M

E_
AD

VE
NT

UR
E

LI
BR

AR
IE

S_
AN

D_
DE

M
O

GA
M

E_
CA

SI
NO

GA
M

E_
RO

LE
_P

LA
YI

NG

EN
TE

RT
AI

NM
EN

T

NE
W

S_
AN

D_
M

AG
AZ

IN
ES

GA
M

E_
ST

RA
TE

GY
GA

M
E

SO
CI

AL

M
US

IC
_A

ND
_A

UD
IO

GA
M

E_
SI

M
UL

AT
IO

N

HE
AL

TH
_A

ND
_F

IT
NE

SS
M

ED
IC

AL

BO
OK

S_
AN

D_
RE

FE
RE

NC
E

AP
P_

W
AL

LP
AP

ER
GA

M
E_

AC
TI

ON
BU

SI
NE

SS

PE
RS

ON
AL

IZ
AT

IO
N

CO
M

M
UN

IC
AT

IO
N

TO
OL

S

PR
OD

UC
TI

VI
TY

AP
P_

W
ID

GE
TS

N
um

be
r o

f d
ef

in
ed

 a
la

rm
s

Fig. 3. Average number of alarms per application for each Google Play category. Error
bars depict the maximum number of alarms for each category.

3.5 The Impact of 3rd Party Libraries

From our experience while studying apps, we have also seen that many apps
have a big proportion of 3rd-party content. For example, consider Skype, only
about 36.4 % of its code is actually Skype-specific functionality, while 31.8 %
accounts for 3rd-party SDKs (e.g., roboguice, jess, qik, android support) and
32.8 % belongs to ads/analytics (e.g., flurry, Microsoft ads).

Hence one important aspect to check is whether defined alarms are native to
the application itself or if they originate from 3rd party libraries. We analyzed
the package names of the files where the alarms were detected and compared
them to 93 ads and analytics libraries available for Android, retrieved from a
public list provided by AppBrain5. The library package names and matches were
manually confirmed to eliminate false positives.

Figure 4 shows the number of apps where alarms defined by these
ads/analytics libraries were found. Alarms of ads/analytics libraries found in less
than 10 apps are omitted (e.g., cellfish, inmobi, mopub). Although our approach
might not cover all possible ads/analytics libraries, we were able to detect that
10.65 % of the unique apps (22.55 % of apps with alarms) have alarms defined
by third-party ads/analytics, and around 10.42 % of all alarm API calls found
belong to these libraries.

Finally, considering the number of alarms defined across all apps, we have
discovered that 31.5 % of all alarms are repeating, while nearly 40.5 % of alarms
are non-deferrable. Regarding 3rd-party ads and analytics libraries, their alarms
account for 10.4 % of all alarm occurrences. From these occurrences, 72.6 % of
them are repeating and 22.3 % of them are non-deferrable. Even though we only
explored ads/analytics, given the large coverage of these 3rd-party libraries,
optimizing their resource consumption and having them use inexact alarms

5 http://www.appbrain.com/stats/libraries/ad.

http://www.appbrain.com/stats/libraries/ad

An Empirical Study of Android Alarm Usage for Application Scheduling 381

1

10

100

1000

ad
man

ag
er am

am
az

on
/in

sig
hts

ap
pb

rai
n

ap
ptr

ac
ke

r
be

e7

do
mob

ge
tja

r

gm
s/a

na
lyt

ics

po
ck

etc
ha

ng
e

rev
mob

sp
on

so
rpa

y

su
pe

rso
nic

tap
co

nte
xt

tap
joy

ub
ee

urb
an

air
sh

ip

Ads/Analytics libraries that define alarms

N
um

be
r o

f u
ni

qu
e

ap
ps

Fig. 4. Number of apps with alarms defined by third-party ads/analytic libraries.

(e.g., using TargetAPI annotation) would certainly lead to appreciable gains
in terms of energy consumption.

3.6 Occurrence of Alarms at Execution Time

To confirm the impact of alarms on Android KitKat (SDK 19), the first to
introduce batching by default, we perform two experiments. The experiments
use two different sets of 30 apps. The first set is the top 30 most popular free
apps of the Google Play market. The second set is the 30 apps with the largest
number of setRepeating alarm definitions that also target SDK lower than 19.
The latter was chosen since these alarms should be deferred if the target SDKs
were set to ≥ 19 and notably includes apps with >1 K to >500 M downloads.

For each experiment we flash a new Android firmware (KitKat), install the
30 apps and create new accounts with no contacts/friends when needed (e.g.,
Gmail, Facebook, Twitter, etc.). All apps were started once to ensure Android
gives them permission to execute on reboot if required, and then the phone is left
on for around 30 min. We then reboot the phone, turn off its screen, and let it
run for around 3 h. Finally, we gather the alarm and wakeup counts as reported
by Android Dumpsys (adb shell dumpsys alarm) for the installed apps. Both
experiments were repeated to confirm the patterns we observed.

There were a total of 261 alarms registered by the apps in our first experi-
ment. Only 53 (20 %) caused the device to wakeup and we found no significant
correlation between the number of registered alarms and the number of alarms
that woke the device (r = 0.11, p = 0.55). That said, we were quite surprised to
find that the two Facebook apps (messenger and the regular app) were respon-
sible for the majority of wakeups (15 per hour). Upon closer examination, we
determined that they were waking the phone to maintain a connection to a
message queue, even though the accounts used had literally zero social activity.

A total of 1,041 alarms were registered by apps in our second experiment.
Of these, 636 (61 %) woke up the device and we found a strong and signifi-
cant correlation between the number of registered alarms and the number of

382 M. Almeida et al.

alarms that woke the device (r = 0.86, p < 0.01). The worst offending applica-
tion was the social network Spoora (10 K–50 K downloads) which registers only
setRepeating alarms and also has its SDK target set to 9. Spoora was respon-
sible for 372 wakeups and is a clear example of the negative impact of careless
alarm usage which could be easily mitigated by simply targeting a newer SDK.
Interestingly, this type of scenario is not unique to less popular apps: Norton
Security and Antivirus (10 M–50 M downloads) has a target SDK of 17 and
caused 141 wakeups.

From these two experiments we have clear evidence that poor alarm API
usage can cause substantial impact on the device, and it is not limited to small
time developers. In particular, our results highlight how even a simple misconfig-
uration (i.e., setting a target SDK too low) can have significant negative impacts
in execution behavior. In the future, we intend to run similar experiments on a
larger scale, taking direct battery measurements, manually modifying the tar-
get SDK to quantify exactly how the impact on battery consumption changes
between target SDKs, and more closely examining the relationship between
alarm type declaration and registration/wakeups.

4 Discussion and Conclusion

Research on energy efficiency in mobile devices tends to propose solutions focused
on batching activity to amortize the cost of waking up the mobile device and its
radio. The efficiency of such solutions depends on the ability of the operating sys-
tem to schedule background activity at the most appropriate time. In Android,
alarms are a popular mechanism to schedule background activities. To under-
stand apps’ usage of alarms, we crawled the Google Play store and downloaded
over 22 thousand of the most popular apps.

We found that nearly 50 % of apps define their alarms to be non-deferrable by
the operating system, thus hamstringing Android’s ability to optimize scheduling
at all. When examining the prevalence of alarms, we found that they existed
across all categories of apps with some having up to 70 alarms declared. For
apps with alarms, 22.5 % have them defined by 3rd party ads/analytics libraries
they use, and these libraries account for at least 10.4 % of all declared alarms.
We also showed the inefficiencies of alarms by manually analyzing 60 apps at
runtime, finding apps waking up the device an inordinate number of times.

While Android fragmentation has been studied in the past [7,10,11], it was
generally approached from the perspective of the wide distribution of Android
versions, heterogeneous hardware, and lack of updates. In this work we have
revealed another facet of this problem: even if the device is supported and up-
to-date, apps often target old versions of the Android SDKs, which can have a
negative impact on the overall performance of the device. Via static analysis, we
discovered that a substantial number of apps’ alarms are non-deferrable due to
targeting older versions of the Android SDK and that by simply changing the
target SDK to > 19 these apps would likely benefit from advanced OS alarm
scheduling mechanisms. Furthermore, while previous work [10] which studied a

An Empirical Study of Android Alarm Usage for Application Scheduling 383

much smaller set of 10 open-source apps found that 28 % of method calls were
outdated with a median lag time of 16 months, we also show that in the case of
alarms, close to half the API calls are outdated by more than 18 months.

Ads and analytics are a particularly interesting subject of study since they
have been shown to have a big impact on energy consumption [6]. We found that
the majority of alarms related to ads and analytics are repeating, meaning that
they most likely result in background operations that might have no real end-
user benefit. This seems to be a problem that is core to Android in particular,
since iOS does not have a direct analogue to alarms and has an extremely limited
background execution environment [2]. Since from our experience a large pro-
portion of Android apps make use of third-party code, future large-scale studies
of energy consumption, optimization, and alarm usage should focus on common
third-party libraries.

When we examined alarm usage at runtime we discovered that the implica-
tions of the static analysis held true for the most part. The apps with the highest
number of defined alarms were in fact executing the alarms at an exceedingly
high rate. In one egregious case, a single application was responsible for 372
wakeups in a 3 h period.

This work serves as an initial large-scale look into alarms and their impact.
Overall, our findings indicate that research on energy efficiency on mobile devices
needs to incorporate an understanding around the use of alarms. Deeper exam-
inations into the use and abuse of Android alarms should provide more fruitful
insight and solutions, leading to increased energy efficiency and device perfor-
mance.

References

1. Alarmmanager. http://goo.gl/ncrGaO
2. iOS Developer Library: Background execution. https://goo.gl/xZd16w
3. Athivarapu, P.K., Bhagwan, R., Guha, S., Navda, V., Ramjee, R., Arora, D.,

Padmanabhan, V.N., Varghese, G.: RadioJockey: mining program execution to
optimize cellular radio usage. In: Proceedings of the 18th Annual International
Conference on Mobile Computing and Networking (2012)

4. Aucinas, A., Vallina-Rodriguez, N., Grunenberger, Y., Erramilli, V., Papagiannaki,
K., Crowcroft, J., Wetherall, D.: Staying online while mobile: the hidden costs. In:
Proceedings of the Ninth ACM Conference on Emerging Networking Experiments
and Technologies (2013)

5. Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy
consumption in mobile phones: a measurement study and implications for network
applications. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement Conference (2009)

6. Gui, J., Mcilroy, S., Nagappan, M., Halfond, W.G.: Truth in advertising: the hidden
cost of mobile ads for software developers. In: Proceedings of the 37th International
Conference on Software Engineering (2015)

7. Han, D., Zhang, C., Fan, X., Hindle, A., Wong, K., Stroulia, E.: Understanding
android fragmentation with topic analysis of vendor-specific bugs. In: 19th Working
Conference on Reverse Engineering (2012)

http://goo.gl/ncrGaO
https://goo.gl/xZd16w

384 M. Almeida et al.

8. Higgins, B.D., Reda, A., Alperovich, T., Flinn, J., Giuli, T.J., Noble, B., Watson,
D.: Intentional networking: opportunistic exploitation of mobile network diversity.
In: Proceedings of the Sixteenth Annual International Conference on Mobile Com-
puting and Networking (2010)

9. Liu, H., Zhang, Y., Zhou, Y.: TailTheft: leveraging the wasted time for saving
energy in cellular communications. In: Proceedings of the Sixth International Work-
shop on MobiArch (2011)

10. McDonnell, T., Ray, B., Kim, M.: An empirical study of API stability and adop-
tion in the android ecosystem. In: Proceedings of the 2013 IEEE International
Conference on Software Maintenance (2013)

11. Mulliner, C., Oberheide, J., Robertson, W., Kirda, E.: PatchDroid: scalable third-
party security patches for android devices. In: Proceedings of the 29th Annual
Computer Security Applications Conference (2013)

12. Nguyen, N.T., Wang, Y., Liu, X., Zheng, R., Han, Z.: A nonparametric bayesian
approach for opportunistic data transfer in cellular networks. In: Wang, X., Zheng,
R., Jing, T., Xing, K. (eds.) WASA 2012. LNCS, vol. 7405, pp. 88–99. Springer,
Heidelberg (2012)

13. Park, S., Kim, D., Cha, H.: Reducing energy consumption of alarm-induced wake-
ups on android smartphones. In: Proceedings of the 16th International Workshop
on Mobile Computing Systems and Applications (2015)

14. Qian, F., Wang, Z., Gao, Y., Huang, J., Gerber, A., Mao, Z., Sen, S., Spatscheck,
O.: Periodic transfers in mobile applications: network-wide origin, impact, and
optimization. In: Proceedings of the 21st International Conference on World Wide
Web (2012)

15. Shi, C., Joshi, K., Panta, R.K., Ammar, M.H., Zegura, E.W.: CoAST: collaborative
application-aware scheduling of last-mile cellular traffic. In: Proceedings of the 12th
Annual International Conference on Mobile Systems, Applications, and Services
(2014)

16. Vergara, E.J., Nadjm-Tehrani, S.: Energy-aware cross-layer burst buffering for
wireless communication. In: Proceedings of the 3rd International Conference on
Future Energy Systems: Where Energy, Computing and Communication Meet
(2012)

17. Vergara, E.J., Sanjuan, J., Nadjm-Tehrani, S.: Kernel level energy-efficient 3g back-
ground traffic shaper for android smartphones. In: Proceedings of the 9th Interna-
tional Wireless Communications and Mobile Computing Conference (2013)

18. Viennot, N., Garcia, E., Nieh, J.: A measurement study of google play. In: The
2014 ACM International Conference on Measurement and Modeling of Computer
Systems (2014)

Network Timing and the 2015 Leap Second

Darryl Veitch1(B) and Kanthaiah Vijayalayan2

1 Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
Darryl.Veitch@uts.edu.au

2 Melbourne School of Engineering, University of Melbourne, Melbourne, Australia

Abstract. Using a testbed with reference timestamping, we collected
timing data from public Stratum-1 NTP servers during the leap second
event of end-June 2015. We found a wide variety of anomalous server-
side behaviors, both at the NTP protocol level and in the server clocks
themselves, which can last days or even weeks after the event. Out of 176
servers, only 61% had no erroneous behavior related to the leap second
event that we could detect.

Keywords: Leap second · NTP · Stratum-1 server · Network
measurement · LI bits · UTC

1 Introduction

Timekeeping is central to network measurement. It is a service typically provided
by a computer operating system, whose system clock is synchronized, through
timestamp exchange over the Network Time Protocol (NTP), to a remote ref-
erence. In the timeserver hierarchy, a Stratum-s timeserver synchronizes to a
Stratum s−1. Anchoring the system are the Stratum-1 servers, which have local
access to reference hardware such as a GPS receiver or atomic clock. These roots
of the timing forest ‘hierarchy’ can be PCs, or dedicated network appliances.

Network timing distributes Coordinated Universal Time (UTC). This is a
discontinuous time standard: jumps known as leap seconds are inserted (roughly
every two years) in order to keep the timescale in step with the solar day. Leap
seconds are propagated through the server hierarchy, but it is well known to
system administrators and others that this process is far from perfect, and can
cause havoc with system clocks and the host systems themselves.

In this paper we examine the behavior of a set of public Stratum-1 servers
during the leap second event of end-June 2015. Our objective is to determine
which servers perform as expected, both from the server-clock accuracy and
protocol points of view, and to characterise the deviations. We find that behav-
ior which is far from ideal is quite common, and there are many examples of
extremely poor behavior, for example servers which never incorporate the leap
second, or never inform their clients of it. Ideal behavior, as far as we can mea-
sure it given the resolution of our dataset, occurs in only 61% of the servers we
study. Given their role in the foundation of the timing system, these Stratum-1
findings are bad news for the public timing system as a whole.
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 385–396, 2016.
DOI: 10.1007/978-3-319-30505-9 29

386 D. Veitch and K. Vijayalayan

Our conclusions are based on measurements using reference timestamps from
a GPS synchronized DAG packet capture card, and an analysis methodology
capable of disambiguating network events from server behavior. Although it has
limitations, most notably the fact that we are only capturing a subset of all
public Stratum-1’s, we know of no prior study of leap second events which has
the detail or precision of what we present here. We intend to make our data
available to the community.

The paper is organized as follows. Section 2 provides background on time
standards, leap seconds and NTP, and discusses prior work. Section 3 describes
our testbed, the selection of servers, what the datasets are and how they were
collected. Section 5 outlines the analysis procedure we employed to characterize
the nature of the leap second behavior of the servers, even in the face of significant
noise. Our results are detailed in Sect. 5, and finally, Sect. 6 discusses the import
of our findings.

2 Background

2.1 Time Standards and Leap Seconds

The primary international time standard is the Temps Atomique International
(TAI). It is based on combining the (relativistically corrected) outputs of
high precision atomic clocks in over 300 National Laboratories, including the
USA’s National Institute for Standards and Technology (NIST), and Australia’s
National Measurement Institute (NMI). The TAI is a continuous time scale,
with each second a standard SI second, and with epoch (origin) at HH:MM:SS
= 00:00:10, 1st January 1972. It is best to think of TAI as a real number, in
units of seconds, since that epoch. Universal Time (UT1) is a descendant of
Greenwich Mean Time, a continuous time scale whose unequal seconds allow
synchronization to the solar day. Because the Earth’s rotation is slowing, UT1
is falling progressively further behind TAI.

The primary time standard used for general timekeeping is Coordinated Uni-
versal Time (UTC). This is a discontinuous time scale with epoch at tTAI=−10 s,
best thought of as TAI to which jumps of exactly 1 s have been infrequently
applied in order to keep UTC close (within 0.9 s) to UT1. Within UTC, a positive
leap second manifests as a downward jump, slowing the clock down with respect
to TAI. Leap seconds, when needed, are added at the end of the last minute of a
month, typically June or December. Negative leap seconds are defined but have
never been used.

Realizations of both TAI and UTC are maintained by the Bureau interna-
tional des poids et mesures (BIPM). The timing standards body is the Inter-
national Telecommunications Union (ITU), but it is the International Earth
Rotation and Reference Systems Service (IERS) that decides on leap seconds,
and announces them months in advance via its biannual “Bulletin C”.

In this paper we focus on the leap second added at the end of June 30,
2015. The leap event was completed at 00:00:00 July 1st UTC when TAI was
t∗TAI = 1435708836 sec, and t∗UTC = t∗TAI − 36. For convenience, we plot all
timeseries against a timescale “t”, which is tTAI with its origin reset to t∗TAI.

Network Timing and the 2015 Leap Second 387

2.2 Leap Seconds and NTP

The NTP hierarchy distributes UTC. Stratum-1 servers learn of leap seconds
through various mechanisms depending on the reference time source. The most
common is GPS, which supports UTC and makes complete leap second informa-
tion available. A commonly used alternative, used for example by many UNIX
operating systems, is to include a ‘leap-seconds’ text file as part of NTP config-
uration. This file, which lists leap second event times as well as an expiry date,
is maintained by NIST and is available from [1].

The main mechanism by which servers of higher strata learn of leap seconds
is via their server (or peer). The NTP packet header has a 2-bit Leap Indicator
(LI) field. RFC 5905 (NTP version 4), specifies that servers set LI = 01 in
response packets when a (positive) leap second is scheduled in the last minute
of the current month. Obsoleted RFCs 1305 (NTP v3) and 4330 (SNTP v4)
instead state .. in the last minute of the current day. The language in the RFCs
is ambiguous, as it confuses describing under what circumstances LI should be set
(to 01), with how far in advance to do so. A consistent reading across RFC 5905
and RFC 4330/1305 is that LI should be set in each server response packet during
the entire month (5905) or day (4330/1305) of a scheduled leap. Alternatively,
there may have been no intention to specify how far in advance to set it. Most
informal sources state that warnings are issued in the prior 24 h in common
implementations. We discuss this further below.

The fact that UTC jumps backwards is inherently problematic. It is complex
and confusing, may break software reliant on monotonic time, and is fertile
ground for bugs. This is exacerbated by the fact that the detail of how time
should be kept during leap second events is not standardized: approaches vary
by operating system, OS version, and NTP version. Note that by ‘leap second
event’ here we mean the entire second just before the jump itself, since over this
interval clock software must do something non-standard to account for the leap,
including allowing the corresponding minute to have 61 s. A useful reference
here is [2]. As described in [3], using the ntpd daemon (the incumbent clock
synchronization algorithm for client system clocks developed by David Mills [4])
with the -x option disables the sudden leap second adjustment and so avoids a
number of problems, but results in convergence times to post-leap UTC of the
order of 10’s of hours.

2.3 Prior Work

There are many informal reports available on-line detailing implementation
issues with leap seconds, describing bad behavior of client systems, related oper-
ating system bugs and configuration problems, and providing recommendations
for system administrators. For example contemporary issues in Linux (includ-
ing recommendations to simply shutdown NTP and restart around leap second
events) can be found in [3,5,6]. RFC 7164 provides an overview of implemen-
tation issues in relation to POSIX. A recent paper by Burnicki [2] (see also
the related presentation [7]) gives a useful description of how leap seconds are

388 D. Veitch and K. Vijayalayan

disseminated, and alternative proposals for how to deal with them in end sys-
tems, including several ‘slewing’ variants, where a sudden jump is replaced by a
period of modified clock rate. This includes the slewing scheme included in NTP
for Windows, and that proposed recently by Google.

There is very little peer-reviewed work on Stratum-1 server behavior, and
still less on leap-seconds. The closest work appears to be that of Malone [8],
a web page which gives two graphs looking at LI values, of a similar set of
servers to ours, about the 2015, 2012, 2008 and 2005 leap second events. While
informative, the results are coarse grained, with scant methodological detail, and
do not extend to the server clocks themselves.

3 The Experiment: Testbed, Server List, and Data Set

The experiment ran over 22.3 days from June 29 to July 21, 2015. In it a single
host ran multiple independent RADclock [9] daemon instances. RADclock is an
alternative clock synchronization algorithm with high accuracy and robustness
[10]. Each instance emitted an NTP timing request packet every τ = 64 s to
its chosen server. Packets were timestamped to 200ns precision or better by a
DAG3.7GP capture card [11] via a passive tap just outside the host, synchronized
to a roof-mounted Trimble Acutime 2000 GPS receiver.

For an NTP packet i which completes its round-trip from the client to server
and back, and is successfully matched on return, we obtain a 4-tuple stamp of
UTC timestamps {Ta,i, Tb,i, Te,i, Tf,i}. Here Tb,i, Te,i are made by the server and
are extracted from the returning NTP packet, as are the LI bits and the server
Stratum field from the NTP header. For this experiment the configuration was
such that the DAG timestamps Ta,i, Tf,i ignore the leap second, and so are
on a continuous timescale (‘pre-leap UTC’) over the experiment.

Our server list is based on the public Stratum-1 url list maintained at ntp.org,
and contains 176 servers. Of these, 156 were listed as OpenAccess at ntp.org at
some time between Sep. 2011 and June 2015, and resolved to a unique IP address
which responded to NTP requests, during the experiment. To this we added 9
public and 6 private (3 from NMI and 3 in our lab) Australian Stratum-1 servers,
and 5 used by CAIDA Ark monitors [12].

4 Methodology

From the timestamp data we estimate, for each server, the time series of round-
trip time Ri = Tf,i − Ta,i, server change: Ci = (D↑

i − D↓
i)/2, and server error

Ei = Ci + Li. Here D↑
i = Tb,i − Ta,i and D↓

i = Tf,i − Te,i are the estimated
outgoing and incoming delays, and Li = L(Te,i), where L(t) is a step function
rising from 0 to 1 at t = t∗TAI. The series Ci (resp. Ei) consists of errors in
the server clock with respect to the DAG timescale (resp. UTC), together with
‘noise’ due to path routing changes and congestion. We use Ri, which is entirely
independent of server timestamps and of the leap second event, to judge path
conditions independently of server behavior.

Network Timing and the 2015 Leap Second 389

Fig. 1. Introduction to server behavior and the methodology for TEB determination.
Left column: Good server; Middle: Bad server due to delayed leap; Right: Bad server
with delayed leap plus post-leap instability resulting in a much larger TEB.

We illustrate our methodology through the examples appearing in Fig. 1. The
server assigned the left column is well behaved, and so the top plot shows the
leap behavior in Ci one would expect. More precisely, the detected leap position
(black circle) at t = 51.7 s is at the first stamp past t = 0, and the previous
stamp was at t = −13.5, before t = 0 as required. These values were determined
through inspecting Ei (middle plot), whose variability is steady about t = 0 in
a sub-ms band, showing no evidence of perturbations about the leap. Note that
Ei is centred about 5.2ms rather than zero due to path asymmetry, not server
error. The level shift event in Ri at around 26min does not appear in Ei as it
results from a symmetric path change.

The middle column exhibits a server where the leap occurs neatly, but is
t = 26.2min late. We call this delay the Time to Expected Behavior (TEB).
After the leap Ei is 2ms higher than it was before t = 0, however inspection
of Ri (and its median-filtered version, the black curve) in this zone reveals it
to be due to a path change affecting path asymmetry, rather than additional
leap-induced server errors. Hence the naive TEB value associated to the main
jump is taken as the final value.

The right column shows a server where not only is the initial leap late, but
there are additional errors beyond it of a few ms in amplitude (visible in Ei

but hidden in Ci) resulting in TEB = 75.8min. The Ri plot confirms that
this ‘monotonic recovery’ event in Ei does not result from path effects but is
associated with the leap event at the server.

Each server was closely examined using the above approach to determine
a TEB value which genuinely reflected recovery from the leap second event,
rather than any other cause. More precisely, for each server the TEB was set
to correspond to the earliest time at which the variations in Ei following a leap
fell below the magnitude of the path noise as revealed by Ri. The precise stamp

390 D. Veitch and K. Vijayalayan

Fig. 2. A cumulative distribution function of TEB across all servers. Red stars denote
Bad servers. All servers with TEB < 64 s (left of dashed line), are Good. The black
circles are LI-Bad, that is Bad with respect to LI behavior (see Sect. 5.2.)

at which this occurs was selected ‘by eye’ taking into account the degree of
short term variability of each time series. In a small number of cases, the nature
and/or amplitude of the variability due either to path changes, congestion, or
server errors unrelated to the leap event, make the exact value of TEB hard to
evaluate, however we are confident that the resulting error is of the order of a
few percent even in these cases.

5 Results

5.1 Server Clock Behavior

We label a server clock as ‘Good’ (else ‘Bad’), with respect to its leap second
response, when there is no hard evidence of incorrect behavior. That is when Ei is
constant for all stamps both before and after t = 0, up to the observed variability
as calibrated by Ri. The value of this constant reflects path asymmetry, and is
close to zero relative to minimum RTT. Since the per-server periodic packet
flows have random phase with respect to each other, for such servers we expect
to find TEB values uniformly distributed in [0, τ]. A consequence is that actual
detection resolutions can be both higher or lower than the (unfortunately low)
τ/2 = 32 s average case. Note that lower values of τ would have run the risk of
appearing as an attack on the server.

Figure 2 records the distribution of TEB values over servers in the form of
the empirical F (x) = Pr(TEB ≤ x). The values require a log scale as they are
spread over the entire 22 day experiment duration, including 2 cases where the
leap never occurred (TEB set to trace duration). A single server jumped early,
at t = −0.164 s, and could not be plotted. All 112 servers with TEB∈ [0, τ] (left

Network Timing and the 2015 Leap Second 391

Fig. 3. Examples of Bad servers with more extreme behavior (black circle = TEB).
We show Ci plots, as these have a range over 1 second and are thus well suited to
contextualize extreme errors. Note that correctness of the displayed TEB values cannot
be ascertained from this view. For that we require a zoomed view, such as Ei provides.

of the dashed vertical line in plot) are, not surprisingly, Good, and inspection
in a linear plot showed they are uniformly distributed as expected, the smallest
being TEB = 0.13 s. However, of the 131 Good servers, 19 have larger TEB
values because the server did not respond for an interval extending beyond [0, τ].
Although values a little beyond t = τ could indicate congestion losses or server
overload, larger values imply a problem. Thus, for example, whereas TEB = 20 s
for a Good server is consistent with a sampling resolution of τ = 64 s and does
not imply in any way that the server failed to leap for 20 s, TEB = 100 s for a
Good server suggests that the server was not behaving ideally (perhaps offline
as part of leap second management or failure), over this entire period.

The 45 Bad servers display a wide variety of behaviors. The ‘delayed but oth-
erwise clean’ leap behavior encountered in the middle column of Fig. 1 is found
in 15 cases, with a median delay at TEB = 22min. For 5 other servers an initial
delay was accompanied by a significant period where the server did not respond,
but nothing more complex. The final 25 cases displayed more extreme behavior
including multiple jumps, failure to jump, and post-leap instability occuring over
periods ranging from hours to weeks. Figure 3 displays the Ci plots for a number
of these. The bottom right plot deserves special mention. It shows a server whose
delayed but clean leap at TEB = 9.0 s occurs in the context of persistent and
severe underlying server errors, which in fact are present throughout the entire
experiment. A number of both Good and Bad servers display server errors unre-
lated to their performance during the leap event. A detailed analysis of broader
server anomalies is beyond the scope of this paper. In [13] we perform such a
study based on different and longer datasets from a subset of the servers studied
here.

392 D. Veitch and K. Vijayalayan

5.2 Protocol Behavior

The most significant fact about the protocol compliance is that 41 of the 176
servers (24%) failed to set the LI bits correctly in any of the packets received
during the course of the experiment. NTP clients relying on these servers as a
reference, and their own clients lower in the hierarchy, would not have received
the warning about the impending leap second, and would therefore have failed to
insert it themselves, resulting in persistent errors and potentially serious conse-
quences, unless they received word by some other means (such as via a majority
of peers, or the leap-seconds file).

Of the 135 servers that did set the LI bits correctly, many did not do so in
an ideal manner. Consider first the times at which the servers ceased their leap
warnings. A total of 18 servers (13%) continued to set the LI bit after t = 0. Of
these only 8 had ceased after an hour, two continued for 12 days! and a further
2 for a week. Even a single packet with LI set received after t = 0 however has
the potential to cause the client to insert an additional leap second at the end of
the new month, July in this case. Presumably implementations will attempt to
disregard warnings received just after leap events to allow for delays in packet
arrival from the server(s), however they may not succeed, in particular if the
warnings continue indefinitely.

Now consider the times when the servers began to send warnings. As pointed
out earlier, it is not clear from the NTP standard when warnings should in
fact begin, however 24 h seems to be commonly used/supposed, in particular
in SNTPv4 implementations (RFC 4330) which are still very common. In fact
in 6 out of the 135 cases we found that warnings began exactly 6 months in
advance! (We know this thanks to a complementary dataset we collected at that
time. Interestingly, this happens to correspond to 00:00:00 Jan 1st, the other
common time when leap seconds can be scheduled.). These extreme cases aside,
the warning start times of the remaining 135 − 6 = 129 servers do cluster about
24hrs, as shown in the histogram of Fig. 4. We see that in most cases ample
warning is given, provided the systems in question are up. There is no evidence
of warnings beginning a month in advance as, perhaps, suggested by RFC 5905.

Our results are consistent with the findings of Malone [8] for the same 2015
leap second event, who also reports that most leap second warnings begin close
to 24 h in advance, and that around 60% to 80% of servers set the bits to the
right value, namely LI = 01, for a positive leap second. He also comments that
most servers had ceased their warnings by an hour after the event, in agreement
with our findings here.

5.3 Overall Behavior

A natural question to ask is, how many servers are ‘perfect’? meaning that
there is no evidence of errors of any kind with respect to the expected leap
second behavior, neither in the accuracy of the server clock timestamps, nor in
the protocol compliance.

Network Timing and the 2015 Leap Second 393

Fig. 4. Histogram of LI warning start times relative to t = 0 (excluding the 6 cases
where warnings began exactly 6 months in advance).

To answer this question we must first define more precisely what we mean
by protocol compliance. We define the warning start time to be Good if it falls
in the interval [−24 × 3600,−3072] s. Here we assume that a client is using the
maximum polling period to its server of τ = 1024 s, and allow for 2 consecutive
packet losses (3 × 1024 = 3072) in order to define the last safe time at which a
server should begin delivering warnings. In terms of the warning end time, we
define behavior to be Good when no warnings are received after t = 3 s, to allow
for worst case delay of a packet sent from the server at t = 0− to the client.
Finally, we consider that a server is ‘LI-Good’ if it sends LI warnings in a way
which is Good in each of the above two respects.

In Sect. 5.1 we reported that there were 131 Good servers, and using the above
definition we find that there are 115 LI-Good servers. The intersection of these,
the ‘Perfect’ servers, is 108 strong, or 61% of the total of 176 in the list. Note that
of the Perfect servers, 97 (90%) are among the servers with TEB < 64 s from
Fig. 2. Finally, we should not forget that Perfect should not be taken literally.
It actually means that we found no hard evidence of failure in our sampled
data. In fact, as explained earlier, a number of Good servers have suspiciously
large TEB values indicative of a server with poor availability, which is not ideal
server behavior, and of course our sampling resolution prevents us from detecting
servers with errors that were corrected quickly.

Although we have assembled our server list from sources either known to be
Stratum-1, or claiming to be through their presence on the list at ntp.org, it turns
out that not all of them are. In fact a considerable number drop their Stratum-
1 status every now and again (the S-varying group), and a small number were
never Stratum-1 over the duration of the experiment. Table 1 gives a breakdown,
and shows, for each stratum grouping separately, what percentages fall into the
Good, LI-Good, and Perfect performance categories. The differences are smaller

394 D. Veitch and K. Vijayalayan

than one might imagine, with the S1-always servers doing a little better than the
others in terms of protocol compliance, but, counterintuitively, worse in terms
of clock accuracy. It should be noted however that the samples sizes are small.
In particular there is not a significant difference between the two most populous
and closely related categories, S1-always and S-varying, in either of the Good
and LI-Good groups.

Table 1. Breakdown of different server groups that set LI bits into Good, LI-Good,
and Perfect subsets. Four measured stratum-level groups appear on the left, and two
National Laboratory groups on the right. The varying stratum category (S-varying)
consists of servers which are usually Stratum-1 but sometimes not.

S1-always S2-always S3-always S-varying NMI NIST

Size 122 14 3 37 3 10

Good 72% 86% 67% 76% 100% 80%

LI-Good 66% 50% 67% 65% 100% 100%

Perfect 64% 50% 67% 54% 100% 80%

A breakdown of two National Laboratory groups is also given in Table 1 on
the right hand side. This is interesting as we expect them to have the highest
standards, and in the case of NIST, a large client base. For NMI on the other
hand only registered clients are allowed – these are not public servers. Though
both NMI and NIST servers showed excellent protocol compliance, 2 of 10 NIST
servers in the list fell down on clock performance. Moreover, most of the NIST
servers exhibited server anomalies unrelated to the leap second event, whereas
none of the NMI servers did. This is in agreement with our findings in [13].

5.4 System Dependence

Information on the hardware and software platforms underlying the servers on
the list is available at ntp.org, however it is incomplete, potentially out of date,
and far from uniform. We are in the process of seeking out and contacting the
server administrators in order to obtain a more complete picture of variables
such as the nature of the reference timing source, the origin of the server hard-
ware (commercial appliance or commodity), and operating system (proprietary,
Linux or BSD), and NTP version and configuration. It is not possible to report
on this in detail here, however it seems clear that, in agreement with the obser-
vations of Nelson in 1999 [14], that by far the most common reference source is
GPS. We also find that NTPv4 is more prevalent than NTPv3, and that both
commerical and commodity servers are well represented. The administrators and
their organisations span a broad range, from National Laboratories in the US,
Australia, Sweden, Russia and elsewhere, to time enthusiasts making servers
available out of personal interest. Many of the servers on the list participate in
the public ntppool.

Network Timing and the 2015 Leap Second 395

6 Discussion

It is difficult to say how much influence the servers in our list have on public net-
work based timekeeping, in particular since the advent, since late 2013, of NTP
amplified reflection attacks [15], have caused administrators to block the server
query commands that would have made a crawl of their clients and peers possi-
ble. Certainly they are only a minority of the total number of publicly accessible
servers, given that Minar’s 1999 survey discovered 957 Stratum-1 servers [14].
On the other hand our list contains several servers from National Laboratories,
notably NIST, that can be expected to be well known with sizable client bases,
as well as many others which participate in the widely used ntppool. We believe
that it reasonable to claim that the deficiencies we have detailed in the paper,
where only 61% of servers are behaving (as far as we can tell) correctly, and
many behave in a very damaging way, can have a considerable impact.

Responding to leap seconds reliably is a complex affair, as it is a function of
many interactions of software and hardware of different generations and prove-
nance. The fact that in 2015 there are still so many issues, even in Stratum-1
servers, is a testament to this fact. For this reason it has been debated for some
time within the ITU whether leap seconds should be abandoned entirely. In fact
the ITU considered this question at the World Radiocommunication Conference
(WRC-15) meeting in November 2015 (after this paper was submitted to PAM
2016). The outcome was that more study was needed, and a report on future
time scales, including the fate of the leap second, will be considered by WRC-23
in 2023. The approach of this paper can be used as the basis of a broader study
of future leap second events leading up to 2023, as well as to track the health of
network timing infrastructure more generally.

Acknowledgment. Partially supported by Australian Research Council’s Link-
age Projects funding scheme #LP120100073, in partnership with Symmetricom
(now Microsemi).

References

1. NIST. ftp://time.nist.gov/pub/leap-seconds.3629404800
2. Burnicki, M.: Technical aspects of leap second propagation and evaluation. In:

Requirements for UTC and Civil Timekeeping on Earth Colloquium. Science and
Technology Series, vol. 115. Univelt Inc., San Diego (2015)

3. Lichvar, M.: Five different ways to handle leap seconds with NTP.
http://developerblog.redhat.com/2015/06/01/five-different-ways-handle-leap-seco
nds-ntp/

4. Mills, D.L.: Computer Network Time Synchronization: The Network Time Proto-
col. CRC Press Inc., Boca Raton (2006)

5. Elsins, M.: HANDLING THE LEAP SECOND - LINUX. http://www.pythian.
com/blog/handling-the-leap-second-linux/

6. redhat, How to clear the Leap Second Insertion flag after it has been received?.
https://access.redhat.com/articles/199563/

ftp://time.nist.gov/pub/leap-seconds.3629404800
http://developerblog.redhat.com/2015/06/01/five-different-ways-handle-leap-seconds-ntp/
http://developerblog.redhat.com/2015/06/01/five-different-ways-handle-leap-seconds-ntp/
http://www.pythian.com/blog/handling-the-leap-second-linux/
http://www.pythian.com/blog/handling-the-leap-second-linux/
https://access.redhat.com/articles/199563/

396 D. Veitch and K. Vijayalayan

7. Burnicki, M.: Technical aspects of leap second propagation and evaluation. In:
FOSDEM (2015). http://nwtime.org/leap-second-resources/

8. Malone, D.: Leap Second (2015). http://www.maths.tcd.ie/∼dwmalone/time/
leap2015/

9. RADclock Project webpage. http://www.synclab.org/radclock/
10. Veitch, D., Ridoux, J., Korada, S.B.: Robust synchronization of absolute and dif-

ference clocks over networks. IEEE/ACM Trans. Netw. 17, 417–430 (2009)
11. Endace, Endace Measurement Systems. DAG series PCI and PCI-X cards. http://

www.endace.com/networkMCards.htm
12. Archipelago monitor locations. http://www.caida.org/projects/ark/locations/
13. Vijayalayan, K., Veitch, D.: Rot at the roots? Examining public timing infrastruc-

ture. In: Proceedings of IEEE INFOCOM 2016, San Francisco, CA, USA, 10–15
April 2016

14. Minar, N.: A Survey of the NTP Network (1999). http://alumni.media.mit.edu/
∼nelson/research/ntp-survey99/html/

15. Czyz, J., Kallitsis, M., Gharaibeh, M., Papadopoulos, C., Bailey, M., Karir, M.:
Taming the 800 pound gorilla: the rise and decline of NTP DDoS attacks. In:
Proceedings of IMC 2014, IMC 2014, pp. 435–448. ACM, New York (2014)

http://nwtime.org/leap-second-resources/
http://www.maths.tcd.ie/~dwmalone/time/leap2015/
http://www.maths.tcd.ie/~dwmalone/time/leap2015/
http://www.synclab.org/radclock/
http://www.endace.com/networkMCards.htm
http://www.endace.com/networkMCards.htm
http://www.caida.org/projects/ark/locations/
http://alumni.media.mit.edu/~nelson/research/ntp-survey99/html/
http://alumni.media.mit.edu/~nelson/research/ntp-survey99/html/

Can Machine Learning Benefit Bandwidth
Estimation at Ultra-high Speeds?

Qianwen Yin(B) and Jasleen Kaur

University of North Carolina at Chapel Hill, Chapel Hill, USA
qianwen@cs.unc.edu

Abstract. Tools for estimating end-to-end available bandwidth (AB)
send out a train of packets and observe how inter-packet gaps change over
a given network path. In ultra-high speed networks, the fine inter-packet
gaps are fairly susceptible to noise introduced by transient queuing and
bursty cross-traffic. Past work uses smoothing heuristics to alleviate the
impact of noise, but at the cost of requiring large packet trains. In this
paper, we consider a machine-learning approach for learning the AB from
noisy inter-packet gaps. We conduct extensive experimental evaluations
on a 10 Gbps testbed, and find that supervised learning can help realize
ultra-high speed bandwidth estimation with more accuracy and smaller
packet trains than the state of the art. Further, we find that when train-
ing is based on: (i) more bursty cross-traffic, (ii) extreme configurations
of interrupt coalescence, a machine learning framework is fairly robust
to the cross-traffic, NIC platform, and configuration of NIC parameters.

1 Introduction

End-to-end available bandwidth (AB) is important in many application domains
including server selection [1], video-streaming [2], and congestion control [3].
Consequently, the last decade has witnessed a rapid growth in the design of AB
estimation techniques [4–6]. Unfortunately, these techniques do not scale well
to upcoming ultra-high speed networks [7]1. This is because small inter-packet
gaps are needed for probing higher bandwidth —such fine-scale gaps are fairly
susceptible to being distorted by noise introduced by small-scale buffering.

Several approaches have been proposed to reduce the impact of noise [8–10],
most of which apply smoothing techniques to “average-out” distortions. Due to
the complex noise signatures that can occur at fine timescales, these techniques
need to average out inter-packet gaps over a large number of probing packets—
this impacts the overhead and timeliness of these techniques.

In this paper, we ask: can supervised machine learning be used to auto-
matically learn suitable models for mapping noise-afflicted packet gaps to AB
estimates? We design a learning framework in which the sender and receiver
side inter-packet gaps are used as input features, and an AB estimate is the
output. Extensive evaluations are conducted, and find that a machine learning

1 We focus on 10 Gbps speed in this paper, and use jumbo frames of MTU=9000B.

c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 397–411, 2016.
DOI: 10.1007/978-3-319-30505-9 30

398 Q. Yin and J. Kaur

framework can indeed be trained to provide robust bandwidth estimates, with
much higher accuracy and using much smaller number of probing packets than
the state of the art.

In the rest of this paper, we describe the challenges of AB estimation at ultra
high-speed, and the state-of-art in Sect. 2. We introduce our machine learning
framework in Sect. 3, and our data collection methodology in Sect. 4. In Sect. 5,
we experimentally evaluate our approach, and conclude in Sect. 6.

2 State of the Art

2.1 Background: Available Bandwidth Estimation

Main-stream bandwidth estimation tools adopt the probing rate model [11],
which sends out streams of probe packets (referred to as pstreams) at a desired
probing rate, by controlling the inter-packet send gaps as: gsi = pi

ri
, where gsi is

the send gap between the ith and i-1 th packets, ri is the intended probing rate,
and pi is the size of ith packet. The estimation logic is based on the principle
of self-induced congestion— if ri > AB, then qi > qi−1, where qi is the queu-
ing delay experienced by the ith packet at the bottleneck link, and AB is the
bottleneck available bandwidth. Assuming fixed routes and constant processing
delays, this translates to gri > gsi , where gri is the receive gap between the ith and
i-1 th packets. Most tools send out multiple packets (Np) at each probing rate,
and check whether or not the receive gaps are consistently higher than the send
gaps. They try out several probing rates and search for the highest rate rmax

that does not cause self-induced congestion. There are two dominant strategies
for searching for rmax:

Feedback-Based Single-Rate Probing: The sender relies on iterative
feedback-based binary search. The sender sends all packets within a pstream
at the same probing rate, and waits for receiver feedback on whether the receive
gaps increased or not. It then either halves or doubles the probing rate for the
next stream accordingly. Pathload is the most prominent of such tools [4].

Multi-rate Probing: The sender uses multi-rate probing without relying on
receiver feedback—each pstream includes N = Nr ×Np packets, where Nr is the

Fig. 1. Inter-Packet Gaps Nr = 4, Np = 16

Can Machine Learning Benefit Bandwidth Estimation at Ultra-high Speeds? 399

number of probing rates tried out. The sender then looks for the highest probing
rate that did not result in self-congestion. Figure 1(a) illustrates a multi-rate
pstream with Nr = 4, Np = 16. The receive gaps are consistently larger than the
send gaps since the third probing rate, so the second probing rate (rmax) is taken
as an estimate of the AB. Multi-rate probing facilitates the design of light-weight
and quick tools [7]. Pathchirp is the most prominent of such tools [5].

2.2 Challenge: Noise in Ultra High Speed Networks

End-to-end bandwidth estimation tools face three major challenges at ultra high-
speed: accurately creating fine-scale inter-packet gaps at the sender, dealing with
the presence of noise along the path, and precisely timestamping packet arrival
at the receiver.2 To address the first challenge, we use the framework described
in [10], in which approporiate-sized IEEE 802.3x PAUSE frames — “dummy”
frames that get dropped by the first switch on the path, are inserted for creating
fine-scale inter-packet gaps. We focus on the remaining two challenges in this
paper.

Fig. 2. BASS-denoised gaps

Any resource that is shared can be tem-
porarily unavailable, even if it is not a bottle-
neck resource over larger timescales—a packet
may have to wait in a transient queue at such
a resource. In ultra-high speed networks, the
magnitude of distortions created by queuing-
induced noise are comparable to (or even
larger than) the changes in inter-packet gaps
that need to be detected for bandwidth esti-
mation. [10] identifies two main noise sources:

Bursty Cross-Traffic at Bottleneck Resources. If the cross-traffic that
shares a bottleneck queue varies significantly at short timescales, then all packets
sent at a given probing rate may not consistently show an increase in receive
gaps. For instance, Fig. 1(b) plots the inter-packet gaps observed right after the
bottleneck queue, for the same pstream as in Fig. 1(a). Due to the bursty cross-
traffic, the receive gaps are consistently larger than the send gaps only for the
4th probing rate (resulting in an over-estimation of AB).

Transient Queuing at Non-bottleneck Resources. Even though a resource
may not be a network bottleneck, it can certainly induce short-scale transient
queues when it is temporarily unavailable while serving competing processes or
traffic. Interrupt Coalescence is a notable source of such noise [8,14]. It is turned
on by default at receivers, forcing packets to wait at the NIC before being handed
to OS for timestamping, even if the CPU is available—the waiting time (a.k.a

2 The first and third can be well addressed with specialized NICs [12], or with recent
advances in fast packet I/O frameworks such as netmap [13]. In this study, however,
we focus on end systems with standard OSes and commodify network hardwares.

400 Q. Yin and J. Kaur

interrupt delay) can be significant compared to the fine-scale gaps needed in
ultra high-speed networks. Figure 1(c) plots the inter-packet gaps observed at
the receiver (gri) for the pstream in Fig. 1(a). We find that these gaps are dom-
inated by a “spike-dips” pattern—each spike corresponds to the first packet
that arrives after an interrupt and is queued up till the next interrupt (thus
experiencing the longest queuing delay). The dips correspond to the following
packets buffered in the same batch. With the “spike-dips” pattern, an consis-
tently increasing trend of queuing delays will not be observed in any pstream,
leading to persistent over-estimation of AB.

2.3 State of the Art: Smoothing Out Noise

Several approaches have been proposed to deal with the impact of noise on band-
width estimation [4,8–10]. In general, all of these approaches employ denoising
techniques for smoothing out inter-packet receive gaps, before feeding them to
the bandwidth estimation logic. The recently-proposed Buffering-aware Spike
Smoothing (BASS) [10] has been shown to outperform the others on 10 Gbps
networks with shorter streams, and is summarized below.

BASS works by detecting boundaries of “buffering events” in recvgaps— each
“spike” and the following dips correspond to packets within the same buffering
event. Based on the observation that the average receiving rate within a buffering
event is the same as that observed before the buffering was encountered, BASS
recovers this quantity by carefully identifying buffering events and smoothing
out both sendgaps and recvgaps within each. The smoothed gaps are then fed
into an AB estimation logic. Figure 1(c) plots the BASS-smoothed gaps for the
pstream in Fig. 2. In [10], BASS was used within both single-rate and multi-rate
probing frameworks. For single-rate probing, BASS helped achieve bandwidth
estimation accuracy within 10 %, by using pstreams with at least 64 packets. For
multi-rate probing, BASS-smoothed gaps were fed to a variant of the Pathchirp
bandwidth estimation logic, and estimation accuracy of mostly within +/–10 %
was achieved using multi-rate pstreams with N=96 packets and 50 % probing
range3.

For many applications of bandwidth estimation, that need to probe for band-
width regularly and frequently, large probe streams pose a significant issue in
terms of timeliness, overhead and responsiveness— both the duration for which
each pstream overloads the network, and the total time needed to collect AB
estimates, increase linearly with N (when Nr is fixed). Even a 96-packet pstream
can last several milliseconds in a gigabit network—such a duration is too long
in the context of ultra-high speed congestion control [3].

3 A Learning Framework for Bandwidth Estimation

It is important to note that noise can distort gaps within a pstream with several
different signatures, each with its own magnitude of gap-distortion, and each
3 Probing range is given by: rN

r1
− 1.

Can Machine Learning Benefit Bandwidth Estimation at Ultra-high Speeds? 401

with its own timescale and frequency at which it manifests itself (as exemplified
in Fig. 1(b) and (c)). When simple smoothing heuristics are used by the state
of the art for dealing with such diversity in noise, they result in an underfit
model—expectedly, these techniques need to smooth over a large number of
probe packets in order to be robust. The main hypothesis of this work is that
machine learning (ML) can improve our understanding of the noise signature in
gaps, with even shorter probe streams than the state of the art.

In this paper, we propose to use supervised learning to automatically derive
an algorithm that estimates AB from the inter-packet send and receive gaps
of each pstream. Such an algorithm is referred to as a learned “model”. We
envision that the model is learned offline, and then can be incorporated in other
AB estimation processes. Below, we briefly summarize the key components of
this framework.

Input Feature Vector. The input feature vector for a pstream is constructed
from the set of send gaps and receive gaps, {gsi } and {gri }. Fourier transforms
are commonly used in ML applications, when the input may contain information
at multiple frequencies [15,16]—as discussed before, this certainly holds for the
different sources of noise on a network path. Hence, we use as a feature vector,
the fourier-transformed sequence of send and receive gaps for a pstream of length
N : x = FFT (gs1, ..., g

s
N , gr1, ..., g

r
N).

Output. The output, y, of the ML framework is the AB evaluation. For single-
rate pstreams, the AB estimation can be formulated as a classification problem:
y = 1 if the probing rate exceeds AB, otherwise y = 0. For multi-rate pstreams,
it can be formulated as a regression problem, in which y = AB.

Learning Techniques. We consider the following ML algorithms—ElasticNet
[17],which assumes apolynomial relationshipbetweenx and y;RandomForest [18],
AdaBoost [19] and GradientBoost [20], which ensemble multiple weak models into
a single stronger one; Support Vector Machine(SVM) [21], which maps x into a
high dimensional feature space and constructs hyperplanes separating y values in
the training set.4

Training-and-Testing. The success of any ML framework depends heavily on
good data collection—data that is accurate as well as representative. Section 4
describes our methodology for generating hundreds of thousands of pstreams
under a diverse set of conditions—it also describes how we collect the ground-
truth of AB, ABgt, for each pstream. The knowledge of ABgt allows us to com-
pute an expected value, yexp, of the output of the ML framework—both for
single-rate as well as multi-rate pstreams.

4 Our evaluations revealed that models trained with ElasticNet and SVM result in
considerable inaccuracy. For brevity, we don’t present their results.

402 Q. Yin and J. Kaur

We use data from the above pstreams to “train” each of the learning tech-
niques, and then “test” them on pstreams not included in the training set. In
each experiment in Sect. 5, we generate more than 20000 pstreams, of which
10000 are used for training and the remaining for testing.5

Metrics. Each “test” that is run on a pstream, yields an estimate of the output,
y. For single-rate pstream, the accuracy of the model is quantified by the decision
error rate, which is the percentage of pstreams, for which: y �= yexp. For multi-
rate pstream, we quantify relative estimation error as: e = y−ABgt

ABgt
.

4 Data Collection

Fig. 3. Testbed topology

The success of a ML frame-
work depends on its ability to
work with a diverse and repre-
sentative set on input data. We
use a carefully-designed experi-
mental methodology for obtain-
ing such data. A salient feature
of our methodology is that all
evaluations are performed on a
10 Gbps testbed.

Testbed. We use the dedicated network illustrated in Fig. 3 in this study. The
switch-to-switch path is a 10 Gbps fiber path. The two end hosts involved in
bandwidth estimation are connected to either side of the switches using 10 Gbps
Ethernet. The testbed includes an additional 10 pairs of hosts, each equipped
with a 1 Gbps NIC, that are used to generate cross traffic sharing the switch-
to-switch link. For each experiment, we collect packet traces on the switch-to-
switch link using fiber splitters attached to an Endace DAG monitoring NIC
which provides timestamps at 10 ns accuracy.

Pstream Generation. We use the Linux kernel modules implemented in [10]
for sending and receiving pstreams. An iperf client is first used to generate data
segments with an MTU size of 9000 bytes. A sender-side Linux Qdisc sched-
uler then turns the stream of these data segments into pstreams of a specified
size and average probing rate. Inter-packet sendgaps are enforced by inserting
appropriately-sized Ethernet PAUSE frames sent at link speed. [10] shows that
these modules ensure gap accuracy within 1µs, even when probing at 10 Gbps.
At the receiver, packet arrival timestamps are recorded in an ingress Qdisc with
microsecond precision. In each experiment summarized in Sect. 5, more than
20000 pstreams are generated, with their average probing rate ranging from
5 Gbps to 10 Gbps.
5 In our Python implementation with scikit-learn [22] library, we use its automatic

parameter tuning feature for all ML methods, and use 5-fold cross-validation to
validate our results.

Can Machine Learning Benefit Bandwidth Estimation at Ultra-high Speeds? 403

Calculating. ABgt The first and last packet from every pstream are located
in the packet trace, the bytes of cross traffic between those two packets are
counted and then cross traffic throughput is computed. ABgt, the groundtruth
of AB for that pstream is calculated by subtracting cross traffic throughput from
the bottleneck capacity.

Cross Traffic Generation: Incorporating Diversity in Burstiness. One
major source of noise considered in this paper is fine-timescale burstiness in
cross-traffic encountered at the bottleneck. In order to incorporate diversity in
such burstiness in our data set, we generate serveral cross-traffic models.

BCT: We first ran a modified version of SURGE [23] program to produce bursty
and synthetic web traffic between each pair of cross-traffic generators. An impor-
tant consideration is that to study the impact of other factors, cross traffic should
be consistently repeated across experiments. Thus, we record packet traces from
each of the SURGE senders, and then replay these in all experiments on the
same host using tcpreplay [24]. We denote the aggregate traffic of the replayed
traces as “BCT”. The average load of BCT is 2.4 Gbps.

SCT: We then generate a smoother version of BCT by running a token bucket
Qdisc on each sending host. The resultant aggregate is referred to as “SCT”.

Table 1. Cross traffic burstiness

Label Burstiness 5–95 % Gbps

BCT 1.15–3.94
SCT 1.78–3.31
UDP range ∼ 0.51
UNC1 2.23–4.05
UNC2 1.84–3.77
UNC3 2.31–4.29

CBR: To obtain the least bursty cross-traffic
(constant bit-rate, CBR) on the switch-to-
switch link, we use iperf to create UDP flows
between host pairs. We experiment with CBR
traffic generated at 50 different rates, ranging
from 1 Gbps to 5 Gbps.

UNC1-3: We also use three 5 min traces col-
lected at different times on a 1 Gbps egress
link of the UNC campus network. For each
trace, we run a corresponding experiment in
our testbed, in which the trace is replayed
concurrently by 10 cross-traffic senders (with random jitter in their start times).
We label the resultant aggregate traffic aggregates as UNC1, UNC2, and UNC3,
respectively. The average load of UNC1 is 3.10 Gbps, UNC2 is 2.75 Gbps, and
UNC3 is 3.28 Gbps.

Table 1 quantifies the burstiness of each of the above traffic aggregates, by
listing the 5th and 95th percentile load offered by each on the bottleneck link. In
most experiments reported in Sect. 5, we use BCT as the cross-traffic—Sect. 5.2
considers the others too.6

6 Note that replayed traffic retains the burstiness of original traffic aggregate, but does
not retain responsiveness of individual TCP flows. However, the focus of this paper
is to evaluate denoising techniques for accurate AB estimation —this metric is not
impacted by the responsiveness of cross traffic, but only by its burstiness.

404 Q. Yin and J. Kaur

Incorporating Diversity in Interrupt Coalescence. Section 5 describes
how we also experiment with diversity in the other major source of noise—
receiver-side interrupt coalescence. We rely on two different NIC platforms in
this evaluation: NIC1, a PCI Express x8 Myricom 10 Gbps copper NIC with
the myri10ge driver, and NIC2, an Intel 82599ES 10 Gbps fiber NIC.

5 Evaluation

The two major sources of noise considered in this study are cross-traffic bursti-
ness and receiver-side interrupt coalescence. In this section, we first present
experiments conducted under conditions (BCT cross-traffic, and default con-
figuration of interrupt coalescence on NIC1) similar to those used to evaluate
BASS. Later, we explicitly control for, and consider the impact of cross-traffic
burstiness and interrupt coalescence.

5.1 Performance with BCT, and Default Interrupt Coalescence

BASS has been shown to yield good bandwidth estimates on 10 Gbps networks,
when used with single-rate pstreams of length N = 64, and multi-rate pstreams
with N = 96, Nr = 4 [10]. In this section, we first evaluate our ML model under
similar conditions, and then consider even shorter pstreams.

Fig. 4. Model Accuracy (single-rate, N=64)

Single-Rate Probing: We
first train models of dif-
ferent ML algorithms with
N = 64, and test them
on pstreams probing at
9 discrete rates, ranging
from 5–9 Gbps (with BCT,
the average AB is around
7.6 Gbps). The bandwidth-
decision errors observed at
each rate are plotted in
Fig. 4. We find that (unlike BASS) each of the three ensemble methods leads
to negligible error when probing rate is far below or above avail-bw. When prob-
ing rates are close to the AB, both BASS and the ML models encounter more
ambiguity. AdaBoost and GradientBoost perform comparable to BASS. Ran-
domForest performs worse than the two boosting methods, which agrees with
the findings in [25].7 In the rest of the paper we focus our discussion on Gradi-
entBoost.
7 Each weak model in RandomForest is learned on a different subset of training data.

The final prediction is the average result of all models. AdaBoost and GradientBoost
follow a boosting approach, where each model is built to emphasize the training
instances that previous models do not handle well. The boosting methods are known
to be more robust than RandomForest [25], when the data has few outliers.

Can Machine Learning Benefit Bandwidth Estimation at Ultra-high Speeds? 405

Fig. 5. BASS (single-rate) Fig. 6. GradientBoost (single-rate)

We then consider shorter pstreams by reducing N to 48 and 32, respectively,
and compare the accuracy in Figs. 5 and 6. We find that the performance of
BASS degrades drastically with reduced N : for N = 32 error rate can exceed
50 % when the probing rate is higher than 8 Gbps! Although GradientBoost also
yields more errors with smaller N , the error rate is limited to within 20 % even
with N = 32.

Multi-rate Bandwidth Estimation. We next train models with multi-rate
pstreams of N = 96, Nr = 4 and probing range 50 %. Figure 7 plots the distri-
butions of relative estimation error using BASS and the learned GradientBoost
model—ML significantly outperforms BASS by limiting error within 10 % for
over 95 % pstreams! We further reduce N to 48 and 32, and find that N = 48
maintains similar accuracy as N = 96, while N = 32 leads to some over-
estimation of bandwidth.

Fig. 7. Multi-rate: estimation error

Based on our experiments so far,
we conclude that our ML framework
is capable of estimating bandwidth with
higher accuracy and small pstreams
than the state of the art, both with
single-rate as well as multi-rate prob-
ing techniques. In what follows, we
focus on multi-rate probing with N =
48 and Nr = 4.

We next consider the impact of
prominent sources of noise, namely,
cross-traffic burstiness, and receiver-
side interrupt coalescence. It is worth noting that the literature is lacking in
controlling for and studying the following factors, each of which is a significant
one for ultra-high-speed bandwidth estimation—this is a novelty of our evalua-
tion approach.

406 Q. Yin and J. Kaur

5.2 Impact of Cross-Traffic Burstiness

We repeat the experiments from Sect. 5.1, with BCT replaced by each of the other
five models of cross-traffic. Figure 8 plots the results—the boxes plot the 10–90 %
range of the relative estimation error, and the extended bars plot the 5–95 %
ranges. The left two bars for each cross-traffic type compare the performance
of BASS and our ML model. We find that the performance of both BASS and
our ML model is relatively insensitive to the level of burstiness in cross-traffic.
However, in each case, ML consistently outperforms BASS.

Fig. 8. Test with Same/Smoother
traffic

Fig. 9. Train with Smoother traffic

In the above experiments, the ML model was trained and tested using
pstreams that encounter the same type of cross-traffic model. In practice, it
is not possible to always predict the cross-traffic burstiness on a given network
path. We next ask the question: how does our ML framework perform when
burstiness encountered in the training vs testing phases are different? Intuitively,
a model learned from bursty cross-traffic is more likely to handle real-world cases
where traffic is bursty; however, it is more subjective to overfitting — the model
may try to “memorize” the noisy training data, leading to poor performance for
conditions with smoother traffic.

Training with Smoother Traffic. We next employ the models trained with
each cross-traffic type to test pstreams that encounter the more bursty BCT in
Fig. 9. We find that, ML outperforms BASS in all cases; but models learned with
smoother traffic lead to higher errors than the one learned with BCT. This is to
be expected—bursty traffic introduces a higher degree of noise. We conclude that
it is preferable to train an ML model with highly bursty cross-traffic, to prepare
it for traffic occurring in the wild.

Testing with Smoother Traffic. We use the model trained with BCT, to
predict AB for pstreams that encounter other types of cross-traffic. In Fig. 8, we
find that the BCT-derived model gives comparable accuracy as the one trained

Can Machine Learning Benefit Bandwidth Estimation at Ultra-high Speeds? 407

with the same cross-traffic type as the testing set. Thus, a model learned from
more bursty cross traffic is robust to testing cases where cross traffic is less bursty.

5.3 Impact of Interrupt Coalescence Parameter

Fig. 10. Impact of ICparams in training set

Interrupt coalescence by a
NIC platform is typically
configured using two types of
parameters (ICparam): “rx-
usecs”, the minimum time
delay between interrupts, and/
or “rx-frames”, the number
of packets coalesced before
NIC generates an interrupt.
By default, NICs are config-
ured to use some combination
of both of these parameters—
our experiments presented so
far use the default configura-
tion on NIC1, which roughly boils down to a typical interrupt delay of about
120µs.

Different ICparam lead to different “spike-dips” patterns in the receive gaps,
in terms of the heights of the spikes, as well as the distances between neighbor-
ing spikes. We next study the impact of having different ICparam in the training
vs testing data sets—a model learned with one parameter may fail on pstreams
that encounter another. We first apply the previously learned ML model (with
ICparam=default) to testing scenarios when rx-usecs is set to a specific value—
ranging from 2µs to 300µs. Figure 10 compares the estimation accuracy of BASS
and the ML model (left two bars in each group). The box plots the 10 %–90 %
relative error, and the extended bar plots the 5 %–95 % error. We find that BASS
severely over-estimates AB when interrupt delay is significant (rx-usecs ≥ 200µs),
while the ML model yields better accuracy. This highlights the model of carefully
studying the impact of ICparam—this factor was not considered in the BASS eval-
uations in [10]. We also find that the ML model consistently under-estimates AB
when rx-usecs=300µs.

Machine learning performs best when the training set is representative of
conditions encountered during testing. To achieve this, we create a training set
that for each ICparam, include 5000 pstream samples that encounter it—we
denote this as “ALL-set”. As shown in Fig. 10, the model learned from “ALL-
set” reduces error to within 10 % for most pstreams that encounter extreme
rx-usecs values. In practice, however, all possible configurations of ICparam at
a receiver NIC may not be known. We next ask: does there exist a model, which
is trained with only a limited set of ICparams, but which manages to apply to all
configurations? To study this, we minimize the training set to only include two
extreme values (2 us and 300 us), in addition to the default setting. We refer to
this set as “3sets”. Figure 10 shows that “3sets” is sufficient to train an accurate
ML model, which provides similar accuracy as “ALL-set”.

408 Q. Yin and J. Kaur

5.4 Robustness and Portability Across NICs

Fig. 11. Interrupting Behavior on NIC2

Different NIC platforms may interpret
and implement interrupt coalescence
differently. For instance, NIC-2 relies
an adaptive interrupt behavior, even
though it allows us to specify “rx-
usecs” and “rx-frames”. Figure 11 illus-
trates that on this NIC by plotting
the distribution of number of frames
coalesced per interrupt—we find that
“rx-frames” takes no effect when rx-
usecs ≤ 12µs. But “rx-usecs” is not
respected once it exceeds 12µs; the dis-
tribution mainly depends on rx-frames.
This unpredictability is quite different from what we observed on NIC1—we next
study if our ML framework will work on such a NIC as well.

Fig. 12. Impact of ICparams on NIC-2

We repeat the experi-
ments of Sect. 5.3, but use
NIC2 instead of NIC1 for
collecting both the training
and testing data. We con-
sider the following ICparams
for NIC-2: rx-usecs from 2 to
10µs, and rx-frames from 2
to 20 (rx-usecs=100). Mod-
els are learned from train-
ing sets consisting of different
combinations of ICparams
in training scenarios, namely,
the “Default”, “All-set”, and the “3sets”(default,rx-frames=2 and rx-
frames=20). Figure 12 plots the estimation errors for these three environments.
We find that compared with Fig. 10, the estimation error is generally higher on
NIC-2 than NIC-1, presumably due to greater unpredictability in its interrupt-
ing behavior. As before, the “3sets” on NIC-2 outperforms BASS significantly,
and gives comparable accuracy as “All-set”—which agrees with our observation
with NIC-1.

Cross-NIC Validation. To investigate the portability of a learned model
across NICs, we next perform a cross-NIC validation: the model trained with
data collected using one NIC is tested on data collected on a different NIC. We
use only ICparam=3sets, and plot the results in Fig. 13(a) and (b). In general,
we find that the cross-NIC models generally give comparable accuracy as models
trained on the NIC itself. The notable exceptions occur for extreme values of
ICparam— rx-usecs=300 µs on NIC1 and rx-frames=20 in NIC2.

Can Machine Learning Benefit Bandwidth Estimation at Ultra-high Speeds? 409

Fig. 13. Cross-NIC evaluation

5.5 Implementation Overhead

Table 2. Per-pstream evaluation overhead

Single-
rate N=48

BASS Random
forest

AdaBoost Gradient
boost

CPU
Time(s)

1.7e-6 2.1e-6 1.0e-4 7.7e-6

Memory - 3.8 MB 3.3 MB 248 KB
Multirate

N=48
BASS Random

forest
AdaBoost Gradient

boost
CPU

time(s)
8.1e-6 2.5e-5 6.3e-5 7.2e-6

Memory - 237 MB 2.5 MB 260 KB

The benefits of our ML
framework are achieved
at the cost of system
overhead in the test-
ing phase8—the whole
model has to be loaded
into memory, resulting
in more memory usage;
also, the estimation time
in testing phase increases
with model complexity.
Table 2 lists the memory
and CPU cost incurred
by different models
trained with ICparam=3sets, for generating a single estimate. The memory
usuage shown is the relative increment compared with BASS. We find that
GradientBoost reports similar costs for both single-rate and multi-rate probing
frameworks. For multi-rate probing, it takes comparable CPU usuage as BASS,
and only 260 KB more memory, which is negligible for modern end hosts with
gigabits of RAM.

Although the above numbers are implementation-specific, it is important
to understand the implementation complexity. In our evaluations, the offline-
learned GradientBoost model consists of 100 base estimators, each with a deci-
sion tree with height less than 3— the memory cost of maintaining 100 small
trees, as well as the time complexity in tree-search (upper-bounded by 300 com-
parisons), are both affordable in modern end-systems, in both user and kernel
space. In practice, network operators can program the training process with any
preferred ML library and store the learned model. The stored model contains
8 Since models are trained off-line, the training overhead is not of concern.

410 Q. Yin and J. Kaur

parameters that fully define the model structure —thus, it can be easily ported
to other development platforms. Even a Linux kernel module, such as the ones
used in bandwidth-estimation based congestion-control [3], can load the model
during module initialization, and can faithfully reconstruct the entire model in
order to estimate AB.

6 Conclusion

In this paper we apply ML techniques to estimate bandwidth in ultra-high speed
networks, and evaluate our approach in a 10 Gbps testbed. We find that super-
vised learning helps to improve estimation accuracy for both single-rate and
multi-rate probing frameworks, and enable shorter pstreams than the state of
the art. Further experiments show that: (i) a model trained with more bursty
cross traffic is robust to traffic burstiness; (ii) the ML approach is robust to inter-
rupt coalescence parameters, if default and extreme configurations are included
in training; and (iii) the ML framework is portable across different NIC plat-
forms. In further work, we intend to conduct evaluations with more NICs from
different vendors, and investigate the practical issues of generating training traf-
fic in different networks.

References

1. Dykes, S.G., et al.: An empirical evaluation of client-side server selection algo-
rithms. In: INFOCOM 2000 (2000)

2. Aboobaker, N., Chanady, D., Gerla, M., Sanadidi, M.Y.: Streaming media con-
gestion control using bandwidth estimation. In: Almeroth, K.C., Hasan, M. (eds.)
MMNS 2002. LNCS, vol. 2496, pp. 89–100. Springer, Heidelberg (2002)

3. Konda, K.: RAPID: shrinking the congestion-control timescale. In: INFOCOM.
IEEE (2009)

4. Jain, D.: Pathload: a measurement tool for end-to-end available bandwidth. In:
PAM (2002)

5. Ribeiro, V., et al.: pathchirp: Efficient available bandwidth estimation for network
paths. In: PAM, vol. 4 (2003)

6. Cabellos-Aparicio, A., et al.: A novel available bandwidth estimation and tracking
algorithm. In: NOMS. IEEE (2008)

7. Shriram, A., Kaur, J.: Empirical evaluation of techniques for measuring available
bandwidth. In: INFOCOM. IEEE (2007)

8. Kang, S.-R., Loguinov, D.: IMR-pathload: robust available bandwidth estimation
under end-host interrupt delay. In: Claypool, M., Uhlig, S. (eds.) PAM 2008. LNCS,
vol. 4979, pp. 172–181. Springer, Heidelberg (2008)

9. Kang, S.R., Loguinov, D.: Characterizing tight-link bandwidth of multi-hop paths
using probing response curves. In: IWQoS. IEEE (2010)

10. Yin, Q., et al.: Can bandwidth estimation tackle noise at ultra-high speeds?. In:
ICNP. IEEE (2014)

11. Strauss, J., et al.: A measurement study of available bandwidth estimation tools.
In: The 3rd ACM SIGCOMM Conference on Internet Measurement (2003)

Can Machine Learning Benefit Bandwidth Estimation at Ultra-high Speeds? 411

12. Lee, K.-S.: SoNIC: precise realtime software access and control of wired networks.
In: NSDI (2013)

13. Rizzo, L.: netmap: A novel framework for fast packet I/O. In: USENIX Annual
Technical Conference, pp. 101–112 (2012)

14. Prasad, R., Jain, M., Dovrolis, C.: Effects of interrupt coalescence on network
measurements. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, pp.
247–256. Springer, Heidelberg (2004)

15. Dietterich, T.G.: Machine-learning research (1997)
16. Nguyen, T.T., et al.: A survey of techniques for internet traffic classification using

machine learning. Commun. Surv. Tutor. 10(4), 56–76 (2008)
17. Zou, H., et al.: Regularization, variable selection via the elastic net. J. R. Stat.

Soc.: Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)
18. Liaw, A., et al.: Classification and regression by randomforest. R News 2(3), 18–22

(2002)
19. Freund, Y., et al.: A decision-theoretic generalization of on-line learning and an

application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)
20. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.

Stat. 29(5), 1189–1232 (2001)
21. Cortes, C., et al.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
22. Pedrogosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.

Res. 12, 2825–2830 (2011)
23. Barford, P., Crovella, M.: Generating representative web workloads for network and

server performance evaluation. ACM SIGMETRICS Perform. Eval. Rev. 26(1),
151–160 (1998)

24. Turner, A.A., Bing, M.: Tcpreplay (2005)
25. Dietterich, T.: An experimental comparison of three methods for constructing

ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn.
40(2), 139–157 (2000)

Author Index

Acharjee, Anirban 248
Agarwal, Deepak 205
Allman, Mark 263, 276
Almeida, Mario 373
Amann, Johanna 3, 16

Baerts, Matthieu 57
Bagnulo, Marcelo 149
Belding, Elizabeth 83
Biersack, Ernst 289
Bilal, Muhammad 373
Blackburn, Jeremy 42, 218, 373
Bonaventure, Olivier 57
Brito, Samuel Henrique Bucke 333
Buchmann, Alejandro 70
Bustamante, Fabián E. 136

Carle, Georg 165, 190
Claffy, K.C. 149, 177
Cuozzo, Fabio 70

De Coninck, Quentin 57
Dhamdhere, Amogh 149, 177
Dietzel, Christoph 319
Dimitropoulos, Xenofontas 346
Dold, Florian 165
Donnet, Benoit 359
Dubey, Sanjay 205

Ensafi, Roya 124
Eugster, Patrick 70

Falahrastegar, Marjan 30
Feamster, Nick 111, 124, 276
Feldmann, Anja 319
Finamore, Alessandro 218
Flack, Martin 95
Fontes, Ramon dos Reis 333
Frömmgen, Alexander 70

Giotsas, Vasileios 177
Goel, Utkarsh 95
Govindan, Ramesh 233

Grover, Sarthak 124
Gupta, Minaxi 248

Haddadi, Hamed 30
Heidemann, John 16
Herold, Nadine 165
Hesmans, Benjamin 57
Heuschkel, Jens 70
Holland, Mark 233

Ismail, Qatrunnada 248

Jacquemart, Quentin 289
Jahnke, Patrick 70
Jain, Manish 233
Jha, Dipendra K. 136
Jiang, Guofei 302
Jones, Ben 276

Kahn, Zaid Ali 205
Kaizer, Andrew J. 248
Kalavri, Vasiliki 42
Katz-Bassett, Ethan 233
Kaur, Jasleen 397
King, Thomas 319

Ludin, Stephen 95
Lumezanu, Cristian 302
Lutu, Andra 149

Madhyastha, Harsha V. 302
Maheshwari, Ritesh 205
Mérindol, Pascal 359
Mortier, Richard 30
Mühlhäuser, Max 70

Naylor, David 218
Nomikos, George 346

Pansiot, Jean-Jacques 359
Papagiannaki, Konstantina 42, 218, 373
Paxson, Vern 276
Perez, Danny A. Lachos 333
Posselt, Stephan-A. 165

Rabinovich, Michael 263
Rothenberg, Christian Esteve 333
Rula, John P. 136

Sajib, Mejbaol 248
Santos, Mateus A.S. 333
Scheitle, Quirin 190
Schmitt, Paul 83
Schomp, Kyle 218, 263
Schweizer, Immanuel 70
Sommer, Robin 3
Steiner, Moritz 95
Sundaresan, Srikanth 111

Teixeira, Renata 111

Uhlig, Steve 30
Urvoy-Keller, Guillaume 289

Vanaubel, Yves 359
Varvello, Matteo 42, 218
Veitch, Darryl 385
Vigil, Morgan 83
Vijayalayan, Kanthaiah 385

Wachs, Matthias 165, 190
Weaver, Nicholas 276
Wittie, Mike P. 95

Yang, Yang 205
Yin, Qianwen 397
Yu, Curtis 302

Zarifis, Kyriakos 233
Zhang, Liang 205
Zhu, Liang 16
Zirngibl, Johannes 190

414 Author Index

	Preface
	Organization
	Contents
	Security and Privacy
	Exploring Tor's Activity Through Long-Term Passive TLS Traffic Measurement
	1 Introduction
	2 Related Work
	3 Background
	3.1 Tor Node Types
	3.2 Tor Node Communication
	3.3 The ICSI SSL Notary

	4 Methodology
	5 Tor Server Connections
	5.1 Tor Consensus Information
	5.2 Connection Classification
	5.3 Connection Durations

	6 Server Characteristics
	6.1 Tor Server Versions
	6.2 Server Cipher Suites

	7 Discussion and Conclusion
	References

	Measuring the Latency and Pervasiveness of TLS Certificate Revocation
	1 Introduction
	2 Data Collection
	3 OCSP use in Applications and Hosts
	4 Latency of OCSP
	4.1 OCSP Delay in Network Traffic
	4.2 OCSP Server Delay
	4.3 OCSP Overhead in TLS
	4.4 Effectiveness of OCSP Caching

	5 OCSP in Action: Revoked Certificates
	6 Related Work
	7 Conclusion
	References

	Tracking Personal Identifiers Across the Web
	1 Introduction
	2 User Tracking
	2.1 Methodology and Data Collection
	2.2 Nature of ID-Sharing Groups

	3 Effect of User Profile
	4 Related Work
	5 Conclusion
	References

	Like a Pack of Wolves: Community Structure of Web Trackers
	1 Introduction
	2 Background and Dataset
	2.1 Dataset
	2.2 Web Tracking as a Graph Problem

	3 Trackers' Position in the Graph
	3.1 In the Referer-Hosts Graph
	3.2 In the Hosts-Projection Graph

	4 Classifying Trackers
	4.1 Classification via Neighborhood Analysis
	4.2 Classification via Label Propagation

	5 Related Work
	6 Conclusion
	References

	Mobile and Cellular
	A First Analysis of Multipath TCP on Smartphones
	1 Introduction
	2 Multipath TCP and Related Work
	3 Dataset
	4 Characterization of the Trace
	5 Analysis
	5.1 Establishment of the Subflows
	5.2 Subflows Round-trip-times
	5.3 Multipath TCP Acknowledgements
	5.4 Utilization of the Subflows
	5.5 Reinjections and Retransmissions
	5.6 Handovers

	6 Conclusion
	References

	Crowdsourcing Measurements of Mobile Network Performance and Mobility During a Large Scale Event
	1 Introduction
	2 Methodology and Data Set
	3 Active Measurement: Location
	3.1 User Density and Movement
	3.2 Location Accuracy and Bluetooth Beacons

	4 Active Measurement: HTTP Load Times
	4.1 General Overview
	4.2 Carrier Analysis
	4.3 Network Type
	4.4 Web Page Analysis

	5 Additional Measurements
	5.1 Active Measurement: DNS Lookup
	5.2 Active Measurement: Traceroute
	5.3 Passive Measurement: Traffic Stats

	6 Related Work
	7 Discussion and Future Work
	References

	A Study of MVNO Data Paths and Performance
	1 Introduction
	2 Background
	3 Data Collection
	3.1 Carriers and Phones
	3.2 Traceroute and Location Data

	4 Network Analysis
	4.1 Round Trip Times (RTT)
	4.2 Location-Specific RTTs
	4.3 Autonomous System Paths and Hop Counts
	4.4 Geographic Path Analysis

	5 Related Work
	6 Discussion and Conclusion
	References

	Detecting Cellular Middleboxes Using Passive Measurement Techniques
	1 Introduction
	2 Related Work
	3 Data Collection Methodology
	4 Detecting CTPs from Client and Server-Side Latency
	5 Detecting CTPs from Packet Loss on the Server-Side
	6 Detecting CTPs from TCP SYN Characteristics
	7 Discussion
	8 Conclusions
	References

	The Last mile
	Home Network or Access Link? Locating Last-Mile Downstream Throughput Bottlenecks
	1 Introduction
	2 HoA: Design, Implementation, and Deployments
	2.1 Design Choices
	2.2 Network Metrics
	2.3 Detection Algorithm
	2.4 Calibration
	2.5 Limitations
	2.6 Deployments

	3 Results
	3.1 Prevalence of Last-Mile Bottlenecks
	3.2 Wireless Bottlenecks Within a Home

	4 Related Work
	5 Conclusion
	References

	A Case Study of Traffic Demand Response to Broadband Service-Plan Upgrades
	1 Introduction
	2 Related Work
	3 Method and Data
	3.1 Method
	3.2 Data

	4 Results
	4.1 Traffic Demand Per Subscriber
	4.2 Prime-Time Ratio
	4.3 Peak-to-Average Ratio

	5 Conclusion
	References

	eXploring Xfinity
	1 Introduction
	2 Community Wifi Networks
	2.1 Xfinity WiFi - a Provider-Enabled Community WiFi

	3 Characterization of Xfinity WiFi Network
	3.1 Data and Methodology
	3.2 Deployment and Coverage
	3.3 Availability
	3.4 Network Performance

	4 Cross Traffic Interference
	4.1 Methodology
	4.2 Experimental Results
	4.3 WiFi Compatibility Issues

	5 Related Work
	6 Conclusion
	References

	NAT Revelio: Detecting NAT444 in the ISP
	1 Introduction
	2 Generic NAT444 Deployment Architecture
	3 NAT Revelio Test Suite
	3.1 NAT Revelio Overview and Design Challenges
	3.2 Environment Characterization Phase
	3.3 NAT444 Discovery Phase

	4 Validation and Large-Scale Revelio Measurement Campaigns
	4.1 Revelio Validation in Controlled Environment
	4.2 Large-Scale Measurement Campaigns

	5 Related Work
	6 Conclusions and Future Work
	References

	Testbeds and Frameworks
	GPLMT: A Lightweight Experimentation and Testbed Management Framework
	1 Introduction
	2 GPLMT Features
	3 Requirements and Challenges
	4 GPLMT Design and Implementation
	4.1 Resource Management
	4.2 Implementation

	5 GPLMT's Experiment Definition Language
	5.1 Targets
	5.2 Tasklists
	5.3 Steps
	5.4 Example

	6 User Studies
	6.1 The GNUnet Project - Large-Scale Software Deployment in Heterogeneous Testbeds
	6.2 OpenLab Eclectic - A Holistic Development Life Cycle for P2P Applications
	6.3 Testbed Management for Attack and Defense Scenarios
	6.4 Distributed Internet Security Analysis

	7 Related Work
	8 Future Work
	9 Conclusion
	References

	Periscope: Unifying Looking Glass Querying
	1 Introduction
	2 Architecture
	2.1 Workflow of Periscope System
	2.2 Components of Periscope Architecture

	3 Analysis
	3.1 Coverage and Capabilities
	3.2 Comparison of Topological Coverage from LGs and Atlas

	4 Case Studies
	4.1 Validation of IP-to-AS Mapping
	4.2 Geolocation of IP Interfaces of Border Routers

	5 Discussion and Future Work
	References

	Analyzing Locality of Mobile Messaging Traffic using the MATAdOR Framework
	1 Introduction
	2 Related Work
	3 Analyzing Communication of Mobile Messaging Applications
	3.1 Experimental Setup
	3.2 Methodology

	4 Postprocessing Experiment Results
	4.1 Mapping Path Measurements to Countries and Regions
	4.2 Mapping Countries to Interest Groups

	5 Results
	6 Summary and Conclusion
	References

	Web
	Scout: A Point of Presence Recommendation System Using Real User Monitoring Data
	1 Introduction
	2 Scout: A System for Recommending New PoP Centers
	2.1 Site Speed Prediction Model Using RUM
	2.2 Recommend One PoP
	2.3 Recommend Multiple PoPs Simultaneously
	2.4 Recommending PoPs with Other Metrics

	3 Experimental Results
	3.1 Our Data
	3.2 Predictive Performance of Site Speed Model
	3.3 PoP Recommendation Results

	4 Conclusion
	References

	Is the Web HTTP/2 Yet?
	1 Introduction
	2 Background and Related Work
	3 Measurement Platform
	4 Results
	4.1 Adoption
	4.2 Website Structure
	4.3 Performance
	4.4 Discussion

	5 Conclusion
	References

	Modeling HTTP/2 Speed from HTTP/1 Traces
	1 Introduction
	2 Background and Approach
	3 The RT-H2 Model
	4 Validation
	5 Results
	5.1 Methodology
	5.2 Evaluation

	6 Related Work
	7 Conclusion
	References

	Behind Box-Office Sales: Understanding the Mechanics of Automation Spam in Classifieds
	1 Introduction
	2 Data Collection
	3 Identifying Automation Spam
	3.1 Campaigns: Unpopular and Popular
	3.2 Identifying Automation: Post Rate and Post Volume

	4 Characterization of Automated Spam
	4.1 Automation by Categories
	4.2 Automation by Campaigns

	5 Related Work
	6 Conclusion
	References

	DNS and Routing
	Towards a Model of DNS Client Behavior
	1 Introduction
	2 Dataset
	3 Identifying Types of Clients
	4 Query Clusters
	5 Query Timing
	6 Query Targets
	7 Related Work
	8 Conclusion
	References

	Detecting DNS Root Manipulation
	1 Introduction
	2 Related Work
	3 Measurement Method
	3.1 Anomalous Response-Time Latency
	3.2 Anomalous Server Identity

	4 Results
	4.1 In-Path DNS Proxies
	4.2 Rogue DNS Root Mirrors
	4.3 Traceroutes
	4.4 BGP Routing Table Manipulation

	5 Future Work
	6 Summary
	References

	Behind IP Prefix Overlaps in the BGP Routing Table
	1 Introduction
	2 Data Sources
	2.1 IRR Databases
	2.2 BGP Data

	3 Methodology
	3.1 Definitions
	3.2 Metrics

	4 Results
	4.1 BGP Vs IRR Database
	4.2 Children and Subfamilies
	4.3 Real-World Case Studies

	5 Related Work
	6 Conclusion and Future Work
	References

	Characterizing Rule Compression Mechanisms in Software-Defined Networks
	1 Introduction
	2 Motivation
	2.1 Rules and Memory
	2.2 Managing Configuration Size

	3 Method and Data
	4 Manual Rule Management
	4.1 Not Managing Rules
	4.2 Timeouts
	4.3 Match Fields
	4.4 Wildcards
	4.5 Summary

	5 Automatic Rule Management
	5.1 Simple Aggregation
	5.2 Aggressive Aggregation
	5.3 Evaluation
	5.4 Summary

	6 Conclusions and Future Work
	References

	IXPs and MPLS
	Blackholing at IXPs: On the Effectiveness of DDoS Mitigation in the Wild
	1 Introduction
	2 Blackholing at IXPs
	3 Data Sources
	4 Blackholing: A Usage Analysis
	4.1 A Prefix View of Blackholing
	4.2 An as View of Blackholing

	5 Blackholing Impact on Traffic
	6 Related Work
	7 Summary and Future Work
	References

	Dissecting the Largest National Ecosystem of Public Internet eXchange Points in Brazil
	1 Introduction
	2 Methodology: Data In, Knowledge Out
	3 Analyses and Discussion of the Results
	3.1 Members Classification: Who Is Who?
	3.2 Peering Density: How Much Peering?
	3.3 Vertice Degree: How Many Peers?
	3.4 Depth/Diameter: How Far Are You?
	3.5 Traffic Engineering with AS-Prepend

	4 Related Work
	5 Conclusion and Future Work
	References

	traIXroute: Detecting IXPs in traceroute paths
	1 Introduction
	2 Related Work and Background
	3 traIXroute Design and Heuristics
	3.1 traIXroute Design
	3.2 IXP Detection

	4 Evaluation
	4.1 Data Coverage and Hit Rates
	4.2 Data Accuracy and Validation

	5 Use Case: IXPs in Traceroute Paths
	6 Conclusions
	References

	A Brief History of MPLS Usage in IPv6
	1 Introduction
	2 Background
	2.1 MPLS Overview
	2.2 MPLS in IPv6
	2.3 Revealing MPLS Tunnels

	3 Evaluation
	3.1 Dataset
	3.2 Label Stack Size Distribution
	3.3 The Cogent Case

	4 Conclusion
	References

	Scheduling and Timing
	An Empirical Study of Android Alarm Usage for Application Scheduling
	1 Introduction
	2 Android Alarms
	3 Results
	3.1 Dataset
	3.2 Static Analysis
	3.3 Impact of Target SDK on Alarms
	3.4 Type of Alarms Depending on App Category
	3.5 The Impact of 3rd Party Libraries
	3.6 Occurrence of Alarms at Execution Time

	4 Discussion and Conclusion
	References

	Network Timing and the 2015 Leap Second
	1 Introduction
	2 Background
	2.1 Time Standards and Leap Seconds
	2.2 Leap Seconds and NTP
	2.3 Prior Work

	3 The Experiment: Testbed, Server List, and Data Set
	4 Methodology
	5 Results
	5.1 Server Clock Behavior
	5.2 Protocol Behavior
	5.3 Overall Behavior
	5.4 System Dependence

	6 Discussion
	References

	Can Machine Learning Benefit Bandwidth Estimation at Ultra-high Speeds?
	1 Introduction
	2 State of the Art
	2.1 Background: Available Bandwidth Estimation
	2.2 Challenge: Noise in Ultra High Speed Networks
	2.3 State of the Art: Smoothing Out Noise

	3 A Learning Framework for Bandwidth Estimation
	4 Data Collection
	5 Evaluation
	5.1 Performance with BCT, and Default Interrupt Coalescence
	5.2 Impact of Cross-Traffic Burstiness
	5.3 Impact of Interrupt Coalescence Parameter
	5.4 Robustness and Portability Across NICs
	5.5 Implementation Overhead

	6 Conclusion
	References

	Author Index

