
Discrete Groups and Surface
Automorphisms: A Theorem
of A.M. Macbeath

W.J. Harvey

Abstract This short article re-examines the interaction between group actions in
hyperbolic geometry and low-dimensional topology, focussing in particular on some
contributions of Murray Macbeath to the study of Riemann surface automorphisms.
A brief account is included of a potential extension to hyperbolic 3-manifolds.

1 Introduction

The classical results of Klein, Hurwitz and others on automorphisms of Riemann
surfaces were based on the theory of projective algebraic curves. This contrasts
somewhat with the approach used today, which makes essential use of the uniformi-
sation theorem, covering spaces and the geometry of non-Euclidean crystallographic
groups.Behind all this stands the rigorous theoryof uniformisationwhichwasworked
out in the years before 1910 via Dirichlet’s Principle by Hilbert and Courant and
completed by Koebe and (using other methods) by Poincarë, thus establishing a firm
basis for a systematic geometric account of surface topology. Group actions in the
hyperbolic plane were analysed by Dehn and Nielsen, while the 2-volume book of
Fricke and Klein [5] explored at length the immense range of discrete hyperbolic
plane groups involved in this theory, formulating a classification of Fuchsian groups
into distinct parameter spaces associated with each signature (or geometric type).
At the same time, the formulation of an abstract notion of manifold, signalled by
Weyl’s ground-breaking book on Riemann surfaces [19], now just over a hundred
years old, heralded an upsurge of interest in geometric topology generally and low
dimensional manifolds in particular.

It is worth noting that something of a hiatus in the systematic development of
discrete group actions began in the late 1920s. Thus, after Fricke’s construction of
parameter spaces for Fuchsian groups and the work of Dehn and Nielsen on surface
topology, the problem of moduli for Riemann surfaces remained unresolved until
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the theory of complex analytic deformations was established, first in outline by
Teichmüller from 1938 to 1943, and then in rigorous detail by the school of Lars
Ahlfors and Lipman Bers in the late 1950s. The latter developments will not concern
us here; that material can now be found in many sources, including the collected
works of these two authors, [1] and [4].

2 Hurwitz’s Theorem Revisited

A brief paper of Siegel from 1945 [17] led Murray Macbeath to formulate a
systematic new approach to the study of Riemann surface automorphisms in the
late 1950s. In 1893, A. Hurwitz showed that, for values of the genus g ≥ 2, the
maximum number of automorphisms of a surface is 84(g − 1), a bound attained
by the famous Klein quartic curve of genus 3, with automorphism group the sim-
ple group P SL(2,F7) of order 168. This finite group action had been discovered
by Klein (1879) in the appropriate setting of non-Euclidean plane geometry; for
more details of that fascinating story and some contemporary developments, see [9].
Soon after, Poincaré began his own study of the discrete subgroups of the Lie group
G = P SL(2,R) (which he called Fuchsian, much to Klein’s annoyance), motivated
by his sudden realisation that the groups emerging from his study of uniformisation
by differential equations are these same groups of isometries of the hyperbolic plane,

H 2 = {z = x + iy ∈ C : y > 0}, with the Poincarémetric dsh = |ds|
2y

.

The (sense-preserving) isometry group of H 2 is isomorphic to the group G =
P SL(2,R) acting transitively by fractional linear transformations: if A is a 2 × 2
real matrix with detA �= 0, the corresponding mapping is

TA : z �→ az + b

cz + d
, when A =

[
a b
c d

]
.

The invariant Haar measure of G induces an invariant notion of area μ in the
homogeneous spaceH 2 ∼= G/P SO(2), known as the Gauss-Bonnet area measure;
it coincides (up to amultiplicative constant) with the hyperbolic area element induced
by the Poincaré metric dsh .

For a Fuchsian group, a discrete subgroup Γ of G, the action onH 2 is properly
discontinuous and there is a fundamental domain, which we take here to mean a
closed (Borel-measurable) subset F , with interior F0, satisfying two characteristic
properties:-

(i) F0 ∩ γ F0 = ∅ for γ ∈ Γ with γ �= Id;
(ii)

⋃
γ∈Γ γ F = H 2.
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The Dirichlet region with a chosen centre point p0 not fixed by any group element
is a convenient construction, giving a (convex hyperbolic) polygonal fundamental
domain for each Fuchsian group: one takes the subset of those points of H 2 for
which the distance dh(p, p0) from p to p0 is minimal among the points in the orbit
Γ · p. For full details of these basic concepts of hyperbolic geometry, see for instance
Beardon’s book [2, 12].

For Γ co-compact and torsion-free, i.e. such that the quotient orbit space S =
H 2/Γ is a compact Riemann surface, the hyperbolic areaμ(F) of any fundamental
domain for Γ is a positive number, independent of the choice of fundamental set. In
particular, by the Gauss-Bonnet Theorem, the area of a fundamental set for a group
which has quotient a genus g closed surface is 4π(g − 1) = (−2πχ(S). Siegel
showed in [17] that, within the range of all possible Fuchsian groups in G, there is
a unique group (up to conjugacy) with the smallest positive value for the area.

Theorem 1 For all co-compact Fuchsian groups, the minimum value of the invariant
area μ is π/21.

This value corresponds to the triangle group Γ0 = 〈x, y : x2 = y3 = (xy)7 = 1〉.
Nowwe let K < Γ be a subgroup of finite index in a Fuchsian groupwith compact

quotient space. Choosing a finite set of coset representatives, γ1, . . . , γn , we see that
the union of these translates �n

j=1γ j F of a given fundamental domain F for Γ forms
a fundamental domain FK for the subgroup K , and invariance of the measure implies
that

Theorem 2 The index of the subgroup K, [Γ : K ], is equal to the quotient
μ(FK )/μ(F).

This is the Gauss-Bonnet Index Theorem for Fuchsian groups. A simple conse-
quence of this and the result of Siegel is the Hurwitz Theorem: choose a Fuchsian
cocompact group K ∼= π1(S) and let Γ denote the group of all possible lifts to the
universal covering of S of the automorphisms of S. Then Γ contains K as a normal
subgroup, and since |Aut(S)| = [Γ : K ], we obtain at once the following result.

Corollary 3 The order of an automorphism group acting on a genus g Riemann
surface is at most 84(g − 1).

Of course, this is not the end of the story: the same line of reasoning produces the
Riemann-Hurwitz branching formula, involving the genus ofH 2/Γ and the orders
of themaximal periodic generators ofΓ , and there is a natural extension to subgroups
of finite index in arbitrary non-Euclidean crystallographic groups, leading to a vast
catalogue of results analysing the patterns of conformal and anti-conformal group
actions on hyperbolic surfaces.

Macbeath’s paper [10] fills in the details of the above proof and unveils a method
(the ‘Macbeath trick’ mentioned by Marston Conder in his conference talk at
Malvern) for constructing, from a single finite index torsion-free normal subgroup
K �Γ , an infinite sequence Kn, n ∈ N of finite index characteristic normal subgroups
of Γ . For each of these subgroups, the corresponding quotient surface Sn is of course
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a smooth covering of S0 = H 2/K and the finite groups Γ/Kn are automorphism
groups of the surfaces, with orders determined by multiplying by the index just like
the Euler characteristic. This proves the following result, Macbeath’s Theorem.

Theorem 4 If there is a Riemann surface S of genus g ≥ 2 with a group of h(g −1)
automorphisms, where h is a rational number with denominator dividing g −1, then
for infinitely many values of the integer k there is a k-sheeted covering surface Sk of
genus gk with h(gk − 1) automorphisms.

The sequence of characteristic subgroups employed in [10] is defined as the set
of product groups Kn = [K , K ].{K n}, where {K n} denotes the Burnside n-kernel
generated by all n-th powers in K and [K , K ] is the commutator subgroup. It is then
an easy exercise to show that the index of Kn in the surface group K is n2g , so that we
know fromEuler characteristic considerations that Sn has genus gn = n2g(g−1)+1.

If the over-group concerned isΓ0, then the inducedfinite groups are all (by Siegel’s
result) Hurwitz groups acting on the surfaces Sn , that is, we have produced an infinite
family of surfaces with automorphism groups for which the Hurwitz bound on their
order is attained.

The original exposition of this approach to Fuchsian groups and surface auto-
morphisms was presented in a widely circulated set of lecture notes, [11] from the
Summer School in Topology at Dundee in 1961; they can be obtained in pdf format
by email request to this author (bill.harvey@kcl.ac.uk). A very pleasant account by
Macbeath of the whole story, in the context of Klein’s study of his quartic and the
genus 3 action of the simple group of order 168, can be found in [13].

3 Automorphisms and Geometry in Three Dimensional
Hyperbolic Space

Poincaré also initiated the study of hyperbolic 3-space with its analogous metric
structure closely linked to the matrix group P SL(2,C) and conformal geometry on
the boundary 2-sphere, but progress in understanding the topological structure of 3-
manifolds was slow. After the revolutionary geometric ideas, results and conjectures
worked out by W.P. Thurston in the mid-1970s, a furious concentration of research
effort ensued which has swept away most of the topological and group-theoretic
difficulties which confronted 3-manifold topology at that time. In the process, two
crucial facts emerged, the first largely due to the efforts of G. Perelman.

• (Geometrisation.) All compact 3-manifolds possess a natural geometric structure,
modelled on one of the eight geometries that Thurston described.

• (Hyperbolic structure predominates.) By far the majority of compact 3-manifolds
are hyperbolic.
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We can now formulate a very simple topological characterisation of the class
of compact hyperbolic 3-manifolds, thanks to recent breakthrough work by Jeremy
Kahn andVladMarkovic with some essential further topological and group-theoretic
input from I. Agol and from D. Wise.

Theorem 5 A compact 3-manifold has a hyperbolic structure if and only if it has a
finite covering which fibers over the circle with fibre a compact surface of genus at
least 2 and with pseudo-Anosov holonomy.

An accessible summary treatment of these developmentswhich brings outwell the
range of ideas and work involved can be found in a recent Bourbaki Seminar report
[3]. The key result which drives them appears in [7]. It confirms a remarkable string
of conjectures made by Thurston [18], following his proof that both Hakenmanifolds
and pseudo-Anosov surface bundles over the circle carry hyperbolic structures.

In the present context, it is natural to look for a parallel approach to study automor-
phism groups of (compact) hyperbolic 3manifolds via the structure of 3D hyperbolic
orbifolds. This turns out to be possible in principle, but the combinatorial patterns
which exist have not yet been completely understood. However, for the privileged
class of surface bundles, we can reason as follows.

A compact hyperbolic surface bundle induced by a pseudo-Anosov map ϕ : S →
S is, by definition, a 3-manifold obtained from the product of a surface S of genus
at least 2 with a closed interval by identifying the two end surfaces using ϕ:

Mϕ = S × {0 ≤ t ≤ 1}/{x × 0 ∼ ϕ(x) × 1 for each x ∈ S}.

Now any automorphism of Mϕ must preserve the fibration structure since, by
Macbeath’s method of lifting automorphisms to the universal cover, it is induced by
conjugation with a hyperbolic isometry—equally this follows by Mostow rigidity.
But such an isometry must induce an automorphism of a typical fibre surface S
preserving the holomorphic quadratic form (Teichmüller differential) on S which
determines the hyperbolic axis in H 3 up to conjugacy. Note that any hyperbolic
isometry f of H 3 preserving an axis must be contained in the stabiliser of the axis
and, furthermore, lies in the normaliser ofπ1(Mϕ), a discrete subgroup of P SL(2,C)

which means that f lies in a discrete subgroup of that stabiliser. We can assume for
convenience that this is the vertical axis I at O, the origin in the horizontal plane
C, and it follows that the group of automorphisms of a hyperbolic surface bundle is
very restricted.

Theorem 6 Let M = Mϕ be a smooth hyperbolic surface bundle over the circle
induced by a pseudo-Anosov homeomorphism ϕ : S → S of a genus g surface.
The automorphism group of the fibered hyperbolic 3-manifold M is either cyclic or
dihedral, with order bounded above by a linear function (2g − 1) of the genus of S.

Proof (Sketch.) The stabiliser in P SL(2,C) of an axis A is isomorphic to G(A) =
Z/2×C

∗ and the intersection of this stabiliser with K = π1(M) is cyclic, generated
by some loxodromic element. Note that any discrete subgroup of G(A) is dihedral
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or cyclic. The automorphisms of M , when lifted to the universal covering, generate a
discrete overgroup Γ > K , the normaliser of π1(M), just as in the Riemann surface
case. But in contrast to the case of surfaces, where the (2, 3, 7)—triangle group
Γ0 gives the Hurwitz upper bound, the orbifold fibre surface must in this case be
sufficiently large, in the sense that it contains an essential closed loop and admits a
pseudo-Anosov automorphism. This implies that the fibre subgroup Γ , which must
contain the surface subgroup π1(S) with cyclic or dihedral quotient automorphism
group, has at least 4 generators, and restrictions on the orders of torsion generators
coming from the so-called lcm condition (see [6]) imply that the smallest area Γ (in
terms of Euler-Poincaré characteristic) is a (2, 2, n, m)—group for suitable periods
n, m dividing the index. Hence the index, if the quotient is cyclic, is at most 2g − 1
by a short argument using Theorem 2.2. The argument in the dihedral case is similar
but a little more complicated.

A more detailed discussion and complete proof will be published elsewhere.
Notice that this result does not hold if the fibration is not smooth: an example of a
hyperbolic orbifold fibering in three mutually orthogonal ways, which goes back to
Sullivan (and probably Thurston), is described briefly in Otal’s text [16].

We note, finally, that Macbeath’s result on a sequence of characteristic subgroups
applies here for any given example as in the theorem, to produce an infinite family
of fibered 3-manifolds which cover it and enjoy the same symmetry property.

More general results are known about automorphisms of hyperbolic manifolds in
dimension 3 which chime with dimension 2; for instance a finite volume or compact
hyperbolic 3-manifold may have any finite group as automorphism group. See, for
instance, [8] or [14]. At present, however, a normal form for crystallographic groups
in hyperbolic 3-space is unknown and no general direct analysis of automorphism
groups analogous to the 2D case seems possible. A good account of the basic facts
about 3D hyperbolic volumes can be found inMilnor’s paper [15], and more recently
the smallest volumemanifolds and orbifolds have been determined, both compact and
cusped. Clearly, much remains to be done in analysing the combinatorial structure
of hyperbolic 3-manifolds and their automorphisms.
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