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Preface

The Symmetries In Graphs, Maps, And Polytopes Workshop 2014 was the fifth in a
series of workshops, the first of which was organized by Steve Wilson in Flagstaff,
Arizona, in 1998, under the acronym SIGMAC (with the original ‘C’ standing for
Complexes). The initial workshop was followed in 2002 and 2006 by two meetings
held in Aveiro, Portugal, organized by Antonio Breda d’Azevedo, and the fourth
workshop, the first under the name SIGMAP, held in Oaxaca, Mexico, organized by
Isabel Hubard in 2010. The aim of the workshops is to give the worldwide com-
munity of researchers in symmetries of discrete objects and structures the oppor-
tunity to gather together, exchange information and present their newest findings
and advances.

The SIGMAP 2014 Workshop took place during 7–11 July 2014, in the idyllic
environment of the ELIM Conference Centre in the beautiful area of Malvern, UK.
It brought together a total of 62 researchers including a number of Ph.D. students.
The list of invited plenary lecturers consisted of:

• Marston Conder, University of Auckland, New Zealand;
• Shaofei Du, Capital Normal University, Beijing, China;
• Gareth Jones, University of Southampton, UK;
• Roman Nedela, Matej Bel University, Slovakia;
• Primož Potočnik, University of Ljubljana, Slovenia;
• David Singerman, University of Southampton, UK;
• Asia Ivic Weiss, York University, Toronto, Canada;
• Jürgen Wolfart, J.W. Goethe University, Frankfurt, Germany.

The emphasis of the scientific program was on connections between maps,
Riemann surfaces and dessins d’enfants. Gareth Jones, David Singerman and
Jürgen Wolfart jointly delivered a mini-course on these connections. Beside the
mini-course, the daily program consisted of plenary lectures, 34 contributed paper
presentations and many informal discussions held in a collegial and encouraging
atmosphere. Everybody merrily joined in congratulating Jozef Širáň on the occasion

v



of his 60th birthday. The Wednesday conference trip took us to the Worcester
Cathedral and Library and included a short organ recital.

All participants are to be thanked for their valuable contributions and for making
SIGMAP 2014 a successful and memorable event. This volume contains 17
selected papers based on the talks delivered at the workshop, and it represents only
a part of the workshop’s rich scientific program. Despite that, it is representative
of the variety of topics considered and the interactions between them.

Milton Keynes Jozef Širáň
Bratislava Robert Jajcay
December 2015
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Powers of Skew-Morphisms

Martin Bachratý and Robert Jajcay

Abstract Skew-morphisms have important applications in the classification of reg-
ular Cayley maps, and have also been shown to be fundamental in the study of
complementary products of finite groups AB with B cyclic and A ∩ B = {1}. As
natural generalizations of group automorphisms, they share many of their proper-
ties but proved much harder to classify. Unlike automorphisms, not all powers of
skew-morphisms are skew-morphisms again. We study and classify the powers of
skew-morphisms that are either skew-morphisms or group automorphisms and con-
sider reconstruction of skew-morphisms from such powers. We also introduce a
new class of skew-morphisms that generalize the widely studied t-balanced skew-
morphisms and which we call coset-preserving skew-morphisms. We show that, in
certain cases, all skew-morphisms have powers that belong to this class and can
therefore be reconstructed from these.

1 Introduction

The history of skew-morphisms startedwith their introduction in [8] a littlemore than
a decade ago in the context of regular Cayley maps. From their very start, they have
been seen as a very natural generalization of group automorphisms with which they
share a number of important properties, and as such they constitute an essentially
algebraic concept. After a number of applications in topological graph theory, the
algebraic nature of skew-morphisms has been further underlined by discovering the
fundamental role they play in the theory of complementary products of finite groups,
specifically, with regard to products of the form AB, A ∩ B = {1}, with B cyclic
[2, 10].
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J. Širáň and R. Jajcay (eds.), Symmetries in Graphs, Maps, and Polytopes,
Springer Proceedings in Mathematics & Statistics 159,
DOI 10.1007/978-3-319-30451-9_1

1



2 M. Bachratý and R. Jajcay

A skew-morphism of a group G is a permutation ϕ : G → G of the elements of
G that fixes the identity of G and satisfies the identity

ϕ(ab) = ϕ(a)ϕπ(a)(b) for all a, b ∈ G,

where the function π : G → Z is called the power function of the skew-morphism
ϕ and ϕπ(a)(a) is the image of the element a ∈ G under π(a) applications of ϕ.
Clearly, every group automorphism of G is ‘trivially’ a skew-morphism of G with the
constant power function π(a) = 1, for all a ∈ G. This justifies the claim that skew-
morphisms constitute a generalization of group automorphisms. The similarities go
even further. The value π(1G) is necessarily equal to 1 for the identity of G. The set
of the elements of G for which π(a) = 1 forms a subgroup of G, called the kernel
of ϕ and denoted by ker ϕ [8]. The kernel was shown to be non-trivial for all finite
groups G and their skew-morphisms in [2]. This means that every skew-morphism
of a finite group G has a restriction to a non-trivial subgroup of G (its kernel) that is
a group isomorphism. It is an automorphism of the kernel if the kernel is preserved
by ϕ, i.e., ϕ(ker ϕ) = ker ϕ; which is always true for abelian groups G. In addition,
several results from [2] suggest that kernels of the majority of skew-morphisms are
even considerably larger than the lower bound of 2.

Historically, first classes of skew-morphisms which were not automorphisms
were skew-morphisms called anti-automorphisms [19] and their generalizations,
the t-balanced skew-morphisms [1, 14]. The t-balanced skew-morphisms are skew-
morphisms that possess a generating orbit O closed under inverses and that have the
property that their power functions π are constant on O: π(a) = t , for all a ∈ O .
One of the most important features of the t-balanced skew-morphisms is the large
size of their kernels, which are always subgroups of index 2, and are preserved under
the action of their skew-morphisms (unless t = 1, in which case the skew-morphism
is a group automorphism and the kernel covers the entire group). Consequently,
t-balanced skew-morphisms are equal to group automorphisms on all but a half of
the underlying group. Thanks to their closeness to automorphisms, these are the only
skew-morphisms characterized for finite cyclic groups Zn [12].

One of the main sources of motivation for the present paper is based on the sim-
ple observations that all powers of t-balanced skew-morphisms are skew-morphisms
again [1] and that all t-balanced skew-morphisms admit powers which are group
automorphisms [4]. Translating these observations into the language of permutation
actions on the elements of the underlying group yields that the orbits of t-balanced
skew-morphisms are formed by merging orbits of group automorphisms (the intu-
itively clear concept of merging orbits is made precise in [7]). This suggested to
us the possibility of constructing all t-balanced skew-morphisms from the orbits
of automorphisms of their underlying groups. Another source of inspiration came
from the paper [7] that contains a characterization of the skew-morphisms whose
second powers are skew-morphisms again. This lead us toward considering the gen-
eral question of which powers of skew-morphisms are necessarily skew-morphisms.
The resulting classification (included in this paper and also derived in [2]) resulted
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finally in the discovery of a generalization of t-balanced skew-morphisms we call
coset-preserving skew-morphisms.

Coset-preserving skew-morphisms constitute a very interesting classwith perhaps
the most important property being that all skew-morphisms of abelian groups that
have a generating orbit possess non-trivial powers that are coset-preserving skew-
morphisms. This, in analogy with the case of the t-balanced skew-morphisms, yields
that the orbits of all skew-morphisms of abelian groups that possess a generating
orbit are merges of orbits of the coset-preserving skew-morphisms of these groups.
Thus, a complete list of coset-preserving skew-morphisms of a finite abelian group
A provides a ‘basis’ for constructing all skew-morphisms of A. In view of this
observation, and the obvious fact that every skew-morphism of a cyclic group has
at least one generating orbit, the study of coset-preserving skew-morphisms of finite
cyclic groups constitutes a very important step toward the classification of all skew-
morphisms of cyclic groups. While classification of the skew-morphisms of cyclic
groups giving rise to regular Cayley maps can be deduced from the recent paper [3],
classification of all skew-morphisms of cyclic groups still awaits completion.

It should benoted that coset-preserving skew-morphisms are only useful for recon-
structing skew-morphisms that preserve their kernels. Since finite simple groups do
not admit skew-morphisms that preserve their kernels (except for group automor-
phisms) [21], these classes of groups, and non-abelian groups in general, will require
different techniques.

Our paper is organized around the above outlined ideas. Section2 consists of
a summary of results concerning general properties of skew-morphisms and their
connections to Cayley maps. After that comes Sect. 3 that contains our first general-
ization of the t-balanced skew-morphisms which is also our first example of the class
of coset-preserving skew-morphisms—the main topic of our paper. Section4 after
that is devoted to the general problem of powers of skew-morphisms, and the paper
is concluded with Sect. 5 about powers of skew-morphisms that are coset-preserving
and Sect. 6 dealing with coset-preserving skew-morphisms of cyclic groups.

2 Basic Properties of Skew-Morphisms and Their Relation
to Cayley Maps

Let us begin this section with a quick description of the concept of a Cayley map;
further details can be found in [17]. Given a finite group G together with a generating
set X ⊂ G that is closed under taking inverses (x−1 ∈ X , for all x ∈ X ) and does
not contain the identity 1G , the vertex set of the Cayley graph C(G, X) consists of
the elements of G and the edge set contains the pairs {{g, gx} | g ∈ G, x ∈ X}.
Any cyclic permutation P of X determines a Cayley map C M(G, X, P) which is a
2-cell embedding of the Cayley graph C(G, X) in an orientable surface satisfying
the property that the local ordering of the arcs emanating from any vertex g ∈
G agrees with P: the counterclockwise neighbor of the arc (g, x) on the surface
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is the arc (g, P(x)), for all g ∈ G and x ∈ X . Cayley maps proved repeatedly
useful in many different contexts of topological graph theory—most importantly
due to the fact that the permutations of G induced by left multiplications by the
elements of G all give rise to distinct automorphisms of the map C M(G, X, P).
In terms of the action on the set of the arcs of the map, the permutation associated
with an element g ∈ G is the permutation σg(h, x) = (gh, x), where h ∈ G and
x ∈ X . Since the left multiplication action of G is necessarily transitive on the
elements of G, the group GL = { σg | g ∈ G } is a vertex-transitive automorphism
subgroup of Aut (C M(G, X, P)), for any Cayley map C M(G, X, P). The action of
the orientation preserving automorphism group of any orientable map on the set of
the arcs of the map is well-known to be semi-regular (having trivial arc stabilizers). If
the action of the full automorphism group of the map is also transitive (and therefore
regular) on the arc set of the map, the map is called regular. Thus, regular orientable
maps possess the highest possible level of symmetry, and as such constitute a central
concept in the theory of highly symmetric orientable maps.

Since all Cayley maps C M(G, X, P) admit a vertex-transitive automorphism
group, Cayley maps are regular if and only if they also admit a map automorphism
Φ mapping (1G, x) to its counterclockwise neighbor (1G, P(x)). This follows easily
from the fact that Φ preserves the surface around 1G and thus maps all the arcs
emanating from 1G to their immediate neighbors, Φ(1G, x) = (1G, P(x)), for all
x ∈ X . Consequently, the vertex stabilizer of 1G acts transitively on the set of arcs
emanating from 1G which together with the vertex-transitivity of GL yields the arc-
transitivity of the full automorphism group. It only takes a technical calculation to
show that the permutation ϕ induced by Φ on the vertices of C M(G, X, P) (i.e., on
the group G itself) is a skew-morphism of G. Therefore, a CayleymapC M(G, X, P)

is regular if and only if G admits a skew-morphism ϕ preserving X and whose
restriction to X is equal to P . Since X is assumed to generate G and be closed under
inverses, the skew-morphism induced by Φ always has an orbit that generates G
and is closed under inverses. However, not all skew-morphisms have such orbit, and
only the skew-morphisms that have such orbit give rise to regular Cayley maps (with
X consisting of the elements of the orbit and P induced by the cyclic action of the
skew-morphism on X ).

The distribution of inverseswith respect to X and P is the functionχ(x) defined to
be equal to the smallest non-negative integer i with the property Pi (x) = x−1 for all
x ∈ X . This function determines many of the properties of the corresponding skew-
morphism ϕ. In case when χ(x) = 0 for all x ∈ X (i.e., X consists of involutions) or
when |X | is even of the form 2k and χ(x) = k for all x ∈ X , the corresponding map
is called balanced and the corresponding skew-morphism (in case of a regular map)
is a group automorphism of G [18]. Naturally, this is the best understood case. Even
though the question which group automorphisms possess an orbit that generates G
and is closed under inverses turns out to be more complicated than one might expect,
balanced regular Cayley maps have been already classified for a number of classes
of finite groups [15, 18, 20].
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The case P(x−1) = (P−1(x))−1, for all x ∈ X , is another well studied case,
and Cayley maps having this property are called antibalanced [19]. More generally,
Cayley maps with the property P(x−1) = (Pt (x))−1, for all x ∈ X , are called
t-balanced, and, except for the case t = 1 which gives rise to automorphisms, all
have the property that the kernel of the corresponding skew-morphism is of index 2
in the underlying group G, the power function of the skew-morphism has two values
1 and t , and the parameter t must be a square root of 1 modulo the order of the
skew-morphism (as a permutation) [1]. Regular t-balanced Cayley maps have also
been classified for a number of classes of groups [1, 4, 11–14, 16].

As for classifying all regular Cayley maps C M(G, X, P) for a fixed group G,
classification results are very rare. Outside the case of cyclic groups of prime order
which only admit automorphisms [8], only the recent paper [2] contains further
classifications.

Skew-morphisms that give rise to regular Cayley maps have several important
characteristics that are not necessarily shared by all skew-morphisms. This has
sometimes caused confusion as many in the topological graph theory community
only consider the skew-morphisms that give rise to regular maps. For example, it is
easy to see that the kernels of the skew-morphisms that give rise to regular Cayley
maps must be non-trivial [8]. This result was eventually proved for general skew-
morphisms only using relatively strong results from permutation group theory [2].
Similarly, the order of a skew-morphism giving rise to a regular Cayley map must be
equal to the size of one of its orbits (namely, the size of the set X ) [8]. The order of
these skew-morphisms is therefore always smaller than the order of the underlying
group G. An orbit of a skew-morphism ϕ whose length is equal to the order of ϕ

is called a precise orbit, and general skew-morphisms do not have to have a precise
orbit. In fact, as proved by Horoševskiı̌ [5], there are even group automorphisms that
do not have a precise orbit. However, the second result mentioned above, i.e., the
claim that the order of a skew-morphism cannot exceed the order of the underlying
group was also eventually extended to general skew-morphisms in [2].

Even though skew-morphisms play a fundamental role in the theory of regular
Cayley maps, general skew-morphisms are more closely related to complementary
products of groups. If G is a group and K and H are subgroups of G with the
property K ∩ H = {1G}, whose product is equal to G, K · H = G, we say that
G is a complementary product of K and H . In case when H = 〈y〉 is cyclic, the
left multiplication of elements of K by y gives rise to a skew morphism ϕ of K
such that yk = ϕ(k)yπ(k) for all k ∈ K [2]. Conversely, any skew-morphism ϕ of a
group K gives rise to a complementary product K · 〈ϕ〉 called skew product that is a
generalization of the split (semidirect) product [2, 6, 10]. In general, if G = K ·〈y〉 is
a complementary product of finite groups, the order of the associated skew-morphism
ϕ does not have to be equal to the order of y. The orders of ϕ and y are equal if and
only if 〈y〉 does not contain a non-trivial normal subgroup of the product G, in which
case G is isomorphic to the skew product K · 〈ϕ〉 [2].
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3 Generalization of t-Balanced Skew-Morphisms

One of the reasons the class of t-balanced skew-morphisms is the best understood
class of skew-morphisms which are not group automorphisms lies in their ‘close-
ness’ to group automorphisms: every t-balanced skew-morphism is equal to a group
automorphism on a subgroup of index 2. Also, t-balanced skew-morphisms share
many properties of the automorphisms, and always have at least one power equal to
a group automorphism (if t is not equal to −1, this power is non-trivial) [4]. In this
section, we introduce two generalizations of t-balanced skew-morphisms, both of
which prove extremely useful throughout the rest of our paper. First, we introduce
a generalization of the t-balanced skew-morphisms to skew-morphisms that do not
possess a generating orbit closed under taking inverses, and then we introduce a
further generalization we will call coset-preserving skew-morphisms.

In accordance with [2], let Skew(G) denote the set of all skew-morphisms of G.
Unlike the case of automorphisms, this set rarely forms a group under composition.
This makes it necessary to consider the smallest subgroup of Sym(G) that contains
(is generated by) Skew(G); we denote it by SkewGroup(G) and call it the skew-
morphism group of G. Of the class of all finite abelian groups, only the cyclic group
of order 4, the cyclic groups of order n where gcd(n, φ(n)) = 1, and the elementary
abelian 2-groups have the property SkewGroup(G) = Skew(G) = Aut(G) [2].
The only known non-abelian class satisfying these equalities consists of the dihedral
groups of prime degree p > 3 [2, 9], however, the theory of skew-morphisms of non-
abelian groups is much less developed at this time. To give examples of the opposite
kind, considerC3×C3, which has 48 automorphisms and 64 skewmorphisms, which
generate a group of order 40320, isomorphic to S8 [2], and the group D3 which has
12 skew-morphisms, only 6 of which are automorphisms, and the skew-morphisms
generate a subgroup of order 120 [2].

As iswell-known, every power of a group automorphism is a group automorphism.
While this is not the case for skew-morphisms, it is interesting to note that there exist
skew-morphisms with certain powers equal to group automorphisms. Recall that a
t-balanced skew-morphism of G is a skew-morphism that has a generating orbit
X closed under taking inverses and a power function equal to t on all of X . Then
t2 ≡ 1 (mod |X |), and the power function has only two values 1 and t , and hence
a kernel of index 2 [1]. Thus, t-balanced skew-morphisms are the skew-morphisms
that are in a sense the closest to automorphisms: they have the largest possible
kernel not equal to the whole group and only two power values. The kernel of a t-
balanced skew-morphism ϕ is always preserved by ϕ, and therefore any t-balanced
skew-morphisms is equal to a group automorphism on half of the underlying group.
Moreover, the (t + 1)-st power ϕt+1 of a t-balanced skew-morphism ϕ is always a
group automorphisms of the underlying group for all finite abelian groups [4], and
every power of a t-balanced skew-morphism is a t-balanced skew-morphism (or a
group automorphism) [1].

The class of t-balanced skew-morphisms is a goodexample of a class that until now
has only been investigated within the context of regular Cayley maps. Specifically,
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t-balanced skew-morphisms were introduced only in the context of the t-balanced
Cayley maps: maps C M(G, X, P) satisfying the property P(x−1) = (Pt (x))−1,
for all x ∈ X . When trying to generalize t-balanced skew-morphisms to skew-
morphisms that do not possess a generating orbit closed under taking inverses, one
faces an important decision. While in the case of the t-balanced skew-morphisms
all generating orbits closed under inverses are contained in the coset of the kernel
assigned the power function value t , and each orbit is contained in the kernel or
its coset, in case of a general skew-morphism ϕ whose power function only attains
two values 1 and t , ϕ may possess orbits that intersect with both the kernel and
its coset. Thus, skew-morphisms whose power functions only assume two values 1
and t naturally split into two subclasses: those that preserve their kernels and those
that do not. As we will see, these two classes significantly differ. This is why we
choose to restrict the name t-balanced only to those skew-morphisms whose power
functions assume two values and which preserve their kernels. With a slight abuse of
the previously used terminology, from nowon, a skew-morphismϕ (with orwithout a
generating orbit closed under inverses) will be called t-balanced if the power function
of ϕ assumes only the values 1 and t , and ϕ preserves ker ϕ setwise (if t = 1, the
skew-morphism is a group automorphism). These more general t-balanced skew-
morphisms share all the important properties of the t-balanced skew-morphisms that
have a generating orbit closed under taking inverses.

Theorem 1 Let G be a finite group and let ϕ be a t-balanced skew-morphism of G,
t 	= 1. Then t2 ≡ 1 (mod |ϕ|), all powers of ϕ are skew-morphisms, and ϕt+1 is a
group automorphism of G.

Proof Let ϕ be a t-balanced skew-morphism of G, t 	= 1. Then ker ϕ is a subgroup
of G of index 2, preserved by ϕ, and the power function π of ϕ assumes the value
1 on all of ker ϕ, and the value t on the rest of G. To prove the first claim of the
theorem, we employ a formula from [8]:

π(ab) ≡
∑

0≤i<π(a)

π(ϕi (b)) (mod |ϕ|), (1)

for all a, b ∈ G. Let h /∈ ker ϕ and π(h) = t . Necessarily, h2 ∈ ker ϕ, as otherwise
we would have h2 = bh, for some b ∈ ker ϕ, leading to h = b, which contradicts
the choice of h. Thus,

1 = π(hh) ≡
∑

0≤i<t

π(ϕi (h)) ≡ t · t (mod |ϕ|),

since ϕ is assumed to preserve ker ϕ, and therefore also its complement, and all
the images of h under ϕ must belong to the complementary coset of ker ϕ.

To prove the other two claims, we will use another formula from [8]—one that
deals with powers of skew-morphisms. Like formula (1), it will be used repeatedly
throughout this paper:

ϕ j (gh) = ϕ j (g)ϕπ( j,g)(h), (2)
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where
π( j, g) =

∑

0≤i< j

π(ϕi (g)) (mod |ϕ|), (3)

for all g, h ∈ G and all j ∈ N. Applying formula (2) yields the claims almost
immediately:

ϕ j (gh) = ϕ j (g)ϕπ( j,g)(h) = ϕ j (g)ϕ jπ(g)(h) = ϕ j (g)(ϕ j )π(g)(h)

and

ϕt+1(gh) = ϕt+1(g)ϕ(t+1)π(g)(h) = ϕt+1(g)ϕt+1(h),

for all g, h ∈ G, with the first identity based on the fact that all elements within a
single orbit have the same value ofπ , and the second identity obviouswhenπ(g) = 1
and relying on the identity (t +1)π(g) ≡ (t +1)t ≡ t2 + t ≡ 1+ t (mod |ϕ|)when
π(g) = t . ��

Skew-morphisms of abelian groups always preserve their kernels [1]. The para-
meter t of a skew-morphismwith two power function values that does not preserve its
kernel must satisfy different arithmetic restrictions. Namely, suppose that G is finite,
[G : ker ϕ] = 2, and suppose that ϕ does not preserve ker ϕ. Then there exists an
orbit of ϕ that contains elements from both cosets of ker ϕ, i.e., there exist elements
g, h ∈ G, ϕ(g) = h, and π(g) = 1, π(h) = t ; g belongs to ker ϕ while h does not.
Being of index 2 in G, ker ϕ is normal in G, and thus a(ker ϕ) = (ker ϕ)a, for all
a ∈ G. Hence, hg and gh belong to the same coset of ker ϕ; the complement of ker ϕ
in G. At the same time h2 ∈ ker ϕ again. Applying formula (1) yields:

t = π(hg) ≡
∑

0≤i<t

π(ϕi (g)) (mod |ϕ|),

while

1 = π(hh) ≡
∑

0≤i<t

π(ϕi (h)) (mod |ϕ|).

However,

∑

0≤i<t

π(ϕi (h)) =
∑

0≤i<t

π(ϕi (g)) − π(g) + π(ϕt−1(h)),

and therefore 1 ≡ t −1+π(ϕt−1(h)) (mod |ϕ|). If π(ϕt−1(h))were equal to 1, then
we would get a contradiction t ≡ 1 (mod |ϕ|). Thus, π(ϕt−1(h)) ≡ t (mod |ϕ|),
and therefore

2 ≡ 2t (mod |ϕ|). (4)
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This also means that 2 must divide the order of ϕ. The following example of a skew-
morphism with the above properties has been kindly provided to us by Marston
Conder.

Example 1 Let G be the (non-abelian) direct product D3 ×Z2 of the dihedral group
D3 of order 6 and the cyclic group Z2 of order 2. Denote the generators of D3 by a
and b, of orders 3 and 2, respectively, and let c be the order 2 generator of Z2. Let

ϕ = (a, a2)(b, bc, c)(ab, a2bc, ac, a2b, abc, a2c).

Then ϕ is a skew-morphism of order 6, with kernel K of order 6 generated by
a and b, and with power function value 4 on K c (and 1 on K ). While the order
3 subgroup of K generated by a is preserved by ϕ, K itself is not. The orbit
(ab, a2bc, ac, a2b, abc, a2c) consists of elements with alternating power function
values and is of length 6; which is an even number. Also, the parameter t = 4 satisfies
the identity (4) which takes the form 2 ≡ 2t = 2 · 4 (mod 6).

As mentioned repeatedly already, group automorphisms and t-balanced skew-
morphisms constitute specific examples of a much wider class that is in many ways
the main focus of our paper. We say that a skew-morphism ϕ of a finite group G is
a coset-preserving skew-morphism, if every orbit of ϕ is contained within a single
coset of ker ϕ, or equivalently, π(a) = π(b) for any elements a, b ∈ G that belong
to the same orbit of ϕ.

We close the present section with two results concerning conjugates of skew-
morphisms by automorphisms. The following observation has also been made by
others, but was first brought to the attention of the second author by Kan Hu.

Theorem 2 Let ϕ be a skew-morphism of a finite group G, and let ψ be a group
automorphism of G. Then the conjugate ψϕψ−1 is a skew-morphism of G again.

Proof The calculation is an easy exercise:

(ψϕψ−1)(gh) = (ψϕ)ψ−1(g)ψ−1(h) = ψ(ϕ(ψ−1(g))ϕπ(ψ−1(g))(ψ−1(h)))

= (ψϕψ−1)(g)(ψϕπ(ψ−1(g))ψ−1)(h) = (ψϕψ−1)(g)(ψϕψ−1)π(ψ−1(g))(h). ��

The above observation allows us to restate and generalize one of the implications
of Lemma 2.4 from [13] concerning isomorphic regular Cayley maps with the same
underlying group and the same distribution of inverses. LetM1 = C M(G1, X1, P1)

and M2 = C M(G2, X2, P2) be Cayley maps, and let λi , ρi , i ∈ {1, 2}, be the
corresponding arc-reversing involutions and rotations of the maps defined on their
dart sets by the formulas: λi (g, x) = (gx, x−1), ρi (g, x) = (g, Pi (x)). ThemapsM1

and M2 are isomorphic if there exists a bijection Φ : D(M1) → D(M2) satisfying
the property Φλ1 = λ2Φ and Φρ1 = ρ2Φ.
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Theorem 3 Let M1 = C M(G1, X1, P1) and M2 = C M(G2, X2, P2) be two
Cayley maps of the same order and valency. If there exists a group isomorphism
ψ : G1 → G2 that maps X1 to X2, ψ(X1) = X2, and whose restriction to X1 and
X2 commutes with P1 and P2, P2ψ = ψ P1, then the two maps are isomorphic.

Moreover, if ϕ1 is the skew-morphism corresponding to the map automorphism of
M1 mapping (1G1 , x) to (1G1 , P1(x)), for all x ∈ X1, and ϕ2 is the skew-morphism
corresponding to the map automorphism of M2 mapping (1G2 , x) to (1G2 , P2(x)),
for all x ∈ X2, then ϕ2 = ψϕ1ψ

−1.

Proof Let us assume the existence of a group isomorphism ψ : G1 → G2 with the
property P2ψ = ψ P1. The mappingΦ : D(M1) → D(M2) defined via the formula
Φ(g, x) = (ψ(g), ψ(x)), for all g ∈ G1, x ∈ X1, is a well defined bijection from
D(M1) to D(M2). The following calculations show that Φ is a map automorphism:

Φλ1(g, x) = Φ(gx, x−1) = (ψ(gx), ψ(x−1))

= (ψ(g)ψ(x), ψ(x−1)) = λ2(ψ(g), ψ(x)) = λ2Φ(g, x),

and

Φρ1(g, x) = Φ(g, P1(x)) = (ψ(g), ψ(P1(x)))

= (ψ(g), P2(ψ(x))) = ρ2(ψ(g), ψ(x)) = ρ2Φ(g, x).

Ifϕ1 andϕ2 are the two skew-morphisms described in the statement of the theorem,
the restriction of ϕ1 to X1 is equal to P1, and the restriction of ϕ2 to X2 is equal to
P2. Since P2ψ = ψ P1, the restriction of ϕ2 is a conjugate of the restriction of ϕ1

via the restriction of ψ to X1. The rest of the proof follows from an induction on the
length of the products of the generators in X1 along the lines of the original proof
in [13]. ��

4 Powers of Skew-Morphisms

The set Skew(G) of the skew-morphisms of a finite group G rarely forms a group
under the operation of composition.Moreover, the smallest subgroup of the full sym-
metric group acting on the elements of G that contains Skew(G), SkewGroup(G),
is generally considerably bigger than Skew(G); often close or equal to the largest
group stabilizing the identity of G—the stabilizer of 1G in Sym(G). This does not
necessarily imply that the powers of a single specific skew-morphism cannot be
skew-morphisms again, however, computational evidence suggests that most pow-
ers of general skew-morphisms are not skew-morphisms again.

In the present section, we develop a general theory of powers of skew-morphisms
with the aimof understanding the recursive possibilities of our approach in classifying
skew-morphisms of finite groups.



Powers of Skew-Morphisms 11

In what follows, the i th power of a skew-morphism ϕ of a group G is the permu-
tation ϕi ∈ Sym(G) obtained by composing ϕ with itself i times. Necessarily, all
powers of a skew-morphism ϕ fix the identity 1G , and thus ϕi belongs to the stabilizer
of 1G in Sym(G), for all i . The i th root of a skew-morphism ϕ is a permutation ψ

with the property ψ i = ϕ. It is important to note that a permutation can have many
distinct i th roots, and the roots of a skew-morphism do not necessarily fix 1G (to
mention an extreme case, all permutations of order i constitute an i th root of the
identity mapping).

In the first theorem of this section, we resolve the fundamental question which
powers of skew-morphisms are skew-morphisms themselves. A slightly different
version of this theorem that appears in [2] was discovered independently at about the
same time we proved ours. The theorem is a generalization of a theorem from [7]
which only addresses the second powers of skew-morphisms.

Theorem 4 Let ϕ be a skew-morphism of order |ϕ| = n of a finite group G, and
let i be a positive integer. The power ψ = ϕi is a skew-morphism if and only if, for
every g ∈ G, the equation

i · x ≡ π(i, g) (mod n) (5)

admits a solution.
If ψ = ϕi is a skew-morphism and πψ is its power function, the value πψ(g) is

the smallest positive solution x of (5).

Proof Assume that ψ = ϕi is a skew-morphism with the power function πψ . Then,
using (2),

ψ(gh) = ϕi (gh) = ϕi (g)ϕπ(i,g)(h),

while on the other hand,

ψ(gh) = ψ(g)ψπψ(g)(h) = ϕi (g)(ϕi )πψ(g)(h) = ϕi (g)ϕiπψ(g)(h).

Therefore,

iπψ(g) ≡ π(i, g) (mod n),

for all g ∈ G, and n = |ϕ|; πψ(g) is a solution of (5). Recall that πψ(g) is the smallest
positive integer with the property ψ(gh) = ψ(g)ψπψ(g)(h) [8], and suppose that
0 < j < πψ(g) also satisfies i · j ≡ π(i, g) (mod n). Then

ψ(gh) = ϕi (g)ϕπ(i,g)(h) = ϕi (g)ϕi j (h) = ψ(g)ψ j (h),

for all h ∈ G. This would contradict πψ(g) being the smallest with this property.
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The opposite implication follows along similar lines. If each of the equations
i · x ≡ π(i, g) (mod n) admits a solution, denote the smallest of these solutions by
πψ(g), and note that

ψ(gh) = ϕi (gh) = ϕi (g)ϕπ(i,g)(h) = ϕi (g)ϕiπψ(g)(h) = ϕi (g)(ϕi )πψ(g)(h)

= ψ(g)ψπψ(g)(h),

hence ψ = ϕi is a skew-morphism of G with power function πψ . ��
If ϕ preserves its kernel set-wise and g ∈ ker ϕ, then π(i, g) = i for all i . Hence

the smallest solution to i · x ≡ π(i, g) (mod n) is x = 1. If ψ = ϕi is a skew-
morphism, this yields that ker ϕ ≤ kerψ , an observation already made in [2].

Theorem 1 asserts that skew-morphisms that preserve their kernels of index 2
have the property that all of their powers are skew-morphisms again. This is also
an easy consequence of the above Theorem 4 and, more importantly, this result can
be extended to the much wider class of coset-preserving skew-morphisms we have
defined in the previous section.

Theorem 5 Let ϕ be a coset-preserving skew-morphism of a group G, and let i be
a positive integer. Then ϕi is a coset-preserving skew-morphism for each i .

Proof The property of being a coset-preserving skew-morphism yields that πϕ(g) =
πϕ(ϕi (g)), for all i > 0 and g ∈ G. Thus, πϕ(i, g) = iπϕ(g), for all i > 0 and
g ∈ G, which means that i divides πϕ(i, g) for all i > 0 and g ∈ G. Therefore,
ψ = ϕi is a skew-morphism of G for all i > 0 by Theorem 4.

If g and g′ belong to the same orbit of ψ , they also belong to the same orbit of
ϕ, and therefore πϕ(g) = πϕ(g′). Consequently, πϕ(i, g) = πϕ(i, g′), and therefore,
πψ(g) = πψ(g′), since both values are the smallest solution to the same equation.
Hence, ψ is coset-preserving. ��

Another corollary of Theorem 4 is concerned with general skew-morphisms.

Corollary 1 Let ϕ be a skew-morphism of order n of a group G, and let i be a
positive integer. If n and i are relatively prime, ϕi is a skew-morphism of order n.

Proof If n and i are relatively prime, each of the equations i · x ≡ π(i, g) (mod n)

has a solution regardless of the value of π(i, g). Thus, due to Theorem 4, ϕi is a
skew-morphism of G. A well-known formula yields that the order of ϕi is n

(n,i) , and
(n, i) = 1 when n and i are relatively prime. ��

Based on the above corollary, a skew-morphism ϕ of order n gives rise to at least
φ(n) distinct skew-morphisms, all of them of order n, where φ(n) is the value of
the Euler totient function at n. In the case when n and i are relatively prime, there
exists a j such that j i ≡ 1 (mod n). Hence, ϕ = (ϕi ) j , and therefore ϕ is a power
of each of these φ(n) companion skew-morphisms. Since every power of a group
automorphism is an automorphism, if ϕ is not an automorphism of the underlying
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group, none of these powers is a group automorphism either. Note that n and n−1 are
relatively prime for all n ≥ 2, and hence the inverse permutation to a skew-morphism
is always a skew-morphism. We illustrate the above ideas in a series of examples.
All our examples come from a list of skew-morphisms of cyclic groups maintained
online by M. Conder.

We begin with a simple example of a skew-morphism whose power is not a skew-
morphism.

Example 2 Let ϕ be the skew-morphism

ϕ = (1, 7, 9, 23, 16, 12, 19, 18, 6, 17, 4, 13, 21, 22, 14, 8, 11, 2, 24, 3)(5, 10, 20, 15)

of Z25 of order 20 with the corresponding power function values

[9, 17, 13, 5, 9, 17, 13, 5, 9, 17, 13, 5, 9, 17, 13, 5, 9, 17, 13, 5][1, 1, 1, 1].

Due to Theorem 4, the fifth power

ϕ5 = (1, 12, 4, 8)(7, 19, 13, 11)(9, 18, 21, 2)(23, 6, 22, 24)(16, 17, 14, 3)

is not a skew-morphism since: π(5, 1) = π(1) + π(7) + π(9) + π(23) + π(16) =
9+17+13+5+9 = 53, and there is no solution to the equation: 5x ≡ 53 (mod 20).

Example 3 The permutation � = (1, 7, 13, 3, 9, 15, 5, 11) is a 7-balanced skew-
morphism of Z16 of order 8 with the corresponding power function values

[π(1), π(7), π(13), π(3), π(9), π(15), π(5), π(11)] = [7, 7, 7, 7, 7, 7, 7, 7].

All powers �i , 1 ≤ i ≤ 7 are distinct skew-morphisms by Theorem 5.

The next example shows that the power function of a skew-morphism ϕ and
the power function of its power ϕi , i relatively prime to the order n of ϕ, are not
necessarily the same.

Example 4 The skew-morphism ς = (1, 11, 15, 13, 5, 9, 7, 17, 3)(2, 14, 8)(4, 10,
16) of Z18 of order 9 has the power function

[8, 2, 5, 8, 2, 5, 8, 2, 5][4, 4, 4][7, 7, 7]

while its second power ς2 = (1, 15, 5, 7, 3, 11, 13, 9, 17)(2, 8, 14)(4, 16, 10) is a
skew-morphism with the power function

[5, 2, 8, 5, 2, 8, 5, 2, 8][4, 4, 4][7, 7, 7].

Our last example answers in negative the question whether each skew-morphism
must have a power that is a group automorphism.
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Example 5 The skew-morphism

ζ = (1, 10, 19, 28, 37, 7, 16, 25, 34, 4, 13, 22, 31)(2, 38, 35, 32, 29,

26, 23, 20, 17, 14, 11, 8, 5)

of Z39 has the power function

[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3][9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9]

and order 13. Hence, every power ζ i , 1 ≤ i ≤ 13, is a skew-morphism of order
13. As pointed out in the discussion preceding the above examples, if any of these
powers were a group automorphism, so would have to be ζ .

Clearly, the distribution of the values of the power function throughout the orbits
of a skew-morphism ϕ is very important with regard to the question which powers
of ϕ are skew-morphisms again. It has been shown in [1], that any skew-morphism ϕ

of an abelian group A possessing a generating orbit X closed under taking inverses
is either coset-preserving or X takes the form

x, ϕ(x), ϕ2(x), . . . , ϕ�−1(x),

h1x, ϕ(h1)ϕ(x), ϕ2(h1)ϕ
2(x), . . . , ϕ�−1(h1)ϕ

�−1(x),

h2x, ϕ(h2)ϕ(x), ϕ2(h2)ϕ
2(x), . . . , ϕ�−1(h2)ϕ

�−1(x),

. . .

hk−1x, ϕ(hk−1)ϕ(x), ϕ2(hk−1)ϕ
2(x), . . . , ϕ�−1(hk−1)ϕ

�−1(x),

where h j = ϕ�(h j−1)h1, 1 < j < k, k� = |X |, and ϕ�(hk−1)h1 = 1A. Moreover,
at least the first two rows of this list are necessary, so that k ≥ 2. Each h j is a non-
trivial element of H (for 1 ≤ j < k), and the � elements x, ϕ(x), ϕ2(x), . . . , ϕ�−1(x)

belong tomutually distinct cosets of ker ϕ. This yields, in particular, that the valuesπ

takes on X for a skew-morphism ϕ of an abelian A that gives rise to a regular Cayley
map are either all the same (if ϕ is coset-preserving) or ‘periodic’—repeating in (at
least two) sequences of equal length �. For example, consider the skew-morphisms ϕ

and ς fromExamples 2 and 4. It is easy to see that the periodicity ofπ on X yields the
equalityπ(�, x) ≡ π(�, y) (mod |X |), for all y ∈ X . Moreover,

∑|X |−1
i=0 π(ϕi (x)) ≡

0 (mod |X |) [1], and thus kπ(�, x) ≡ 0 (mod |X |), which finally leads us to the
conclusion that ϕ� is a coset-preserving skew-morphism of A.

The preceding arguments can be summarized in observing that the skew-
morphisms of abelian groups that give rise to regular Cayley maps are either coset-
preserving or have a non-trivial power that is coset-preserving. In this sense, coset-
preserving skew-morphisms are the building stones of all skew-morphisms of abelian
groups that give rise to regular Cayleymaps. In the forthcoming paragraphs, we show
that the same must also be true for skew-morphisms of abelian groups that have a
generating orbit (which, however, is no longer required to be closed under taking
inverses). We build our argument through a series of technical lemmas.
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Lemma 1 Let A be an abelian group, and let ϕ be a skew-morphism of A with the
power function π . Then the following hold:

(i) if a ∈ A and π(a) = π(ϕk(a)) for a positive integer k, then π(ϕik(a)) = π(a)

for all i ≥ 0;
(ii) if a ∈ A and π(a) = π(ϕk(a)) for a positive integer k, then π(b) = π(ϕk(b))

for all b belonging to the orbit Oa of a under ϕ;
(iii) if a, b ∈ A and π(a) = π(b), then π(ϕ j (a)) = π(ϕ j (b)) for all j ≥ 0;
(iv) if a, b ∈ A, π(a) = π(ϕk(a)), and π(b) = π(ϕl(b)), then π(ab) =

π(ϕkl(ab)).

Proof The best way to visualize the statements in this lemma is to compare its
claims to the structure of the generating set X discussed in the paragraph preceding
the lemma.

The identity π(a) = π(ϕk(a)) yields that a and ϕk(a) belong to the same right
coset of the kernel ker ϕ in A. Hence, a = h1g and ϕk(a) = h2g for some g ∈ A
and h1, h2 ∈ ker ϕ.

(i) We proceed by induction on i ≥ 2. First assume i = 2. The calculation
h2g = ϕk(a) = ϕk(h1g) = ϕk(h1)ϕ

k(g) yields ϕk(g) = (ϕk(h1))
−1h2g. Thus,

ϕ2k(a) = ϕk(ϕk(a)) = ϕk(h2g) = ϕk(h2)ϕ
k(g) = ϕk(h2)(ϕ

k(h1))
−1h2g. As

A is abelian, ker ϕ is preserved by ϕ (a well-known result contained for example
in [1]), and we obtain ϕk(h2)(ϕ

k(h1))
−1h2 ∈ H. It follows that ϕ2k(a) and a

belong to the same right coset (ker ϕ)g, and therefore π(ϕ2k(a)) = π(a). The
general induction step proceeds along the same kind of calculations.

(ii) As b belongs to the orbit of a, b = ϕ j (a) for some positive integer j . Hence
b = ϕ j (h1g) = ϕ j (h1)ϕ

j (g). Furthermore, ϕk(b) = ϕk+ j (a) = ϕ j (ϕk(a)) =
ϕ j (h2g) = ϕ j (h2)ϕ

j (g). Since ϕ j (h1) and ϕ j (h2) are both in ker ϕ, the two
calculations show that b and ϕk(b) belong to the same right coset of ker ϕ, and
thus, π(b) = π(ϕk(b)).

(iii) If π(a) = π(b) we have a = h′
1g′ and b = h′

2g′ for some h′
1, h′

2 ∈ ker ϕ and
g′ ∈ A. Hence

ϕ j (a) = ϕ j (h1)ϕ
j (g) and ϕ j (b) = ϕ j (h2)ϕ

j (g).

Since ϕ preserves ker ϕ, the statement follows.
(iv) If π(a) = π(ϕk(a)), a and ϕk(a) belong to the same right coset of ker ϕ,

and ϕk(a) = ha for some h ∈ ker ϕ. Then, ϕk(ab) = ϕk(a)ϕπ(k,a)(b) =
haϕπ(k,a)(b). Furthermore,

ϕ2k(ab) = ϕk(ϕk(ab)) = ϕk(ϕk(a)ϕπ(k,a)(b)) = ϕk(haϕπ(k,a)(b)) =
= ϕk(h)ϕk(aϕπ(k,a)(b)) = ϕk(h)ϕk(a)ϕπ(k,a)(ϕπ(k,a)(b)) =

= ϕk(h)ϕk(a)ϕ2π(k,a)(b) = ϕk(h)haϕ2π(k,a)(b).
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By induction, ϕlk(ab) = h′aϕlπ(k,a)(b), for some h′ ∈ ker ϕ.Applying (i) to the
equationπ(b) = π(ϕl(b)) yieldsπ(b) = π(ϕlπ(k,a)(b)), and thus,ϕlπ(k,a)(b) =
h′′b for some h′′ ∈ ker ϕ. Hence, ϕlk(ab) = h′ah′′b = h′h′′ab. Therefore
π(ab) = π(ϕlk(ab)).

��
The case (iii) of the above lemma has an interesting consequence. Namely, for any

two elements a, b ∈ A, the set of the power function values assigned to the elements
of Oa and the set of the power function values assigned to the elements of Ob must
be either equal or disjoint. This is once again clearly exhibited in Examples 2 and 4,
but is nevertheless a somewhat unexpected result.

Examples 2 and 4 also show that the length of the repeated sequence of the values
of π may differ from an orbit to an orbit. To reflect this fact, we introduce the
following definition.

Let ϕ be a skew-morphism of an abelian group A, π be its power function, and
a ∈ A. The periodicity of the power function π at a is the smallest positive integer
pa with the property π(a) = π(ϕ pa (a)).

Properties of pa are summarized in the following lemma. Note that (i) means
that all elements belonging to the orbit Oa have the same periodicity. It is therefore
immaterial which element ofOa we choose and thus we can talk about the periodicity
of the orbit Oa .

Lemma 2 Let ϕ be a skew-morphism of an abelian group A with the power function
π . Then the following hold:

(i) pa = pb for each a and b that belong to the same orbit of ϕ;
(ii) for each a ∈ A the number pa divides both |Oa| and |ϕ|;
(iii) if π(a) = π(b), then pa = pb,

(iv) π(a) = π(ϕi (a)) if and only if pa | i .

Proof This lemma is a consequence of Lemma 1.

(i) This result follows fromLemma1 (ii) applied to botha and b, and theminimality
of pa and pb.

(ii) Using Lemma 1 (i), π(a) = π(ϕi pa (a)), for each positive integer i , while
π(a) = π(ϕ|Oa |(a)). The rest follows from the usual argument using the mini-
mality of pa .

(iii) Since π(a) = π(b), Lemma 1 (iii) yields π(ϕk(a)) = π(ϕk(b)), for each
positive integer k. Hence pa and pb are necessarily the same.

(iv) This final claim can be proved using the arguments from (ii).

��
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5 Coset-Preserving Powers

In the previous section, we have focused on the distribution of the power function
values throughout the orbits of a skew-morphism. In this section, we use the infor-
mation gained to show that each skew-morphism of an abelian group that gives rise
to a regular Cayley map or has a generating orbit, and thus specifically each skew-
morphism of a cyclic group, admits a non-trivial power that is a coset-preserving
skew-morphism.

In viewof the power values distribution, coset-preserving skew-morphisms are the
second simplest skew-morphisms after the automorphisms—each orbit of a coset-
preserving skew-morphism consists entirely of elements of the same power value.

We begin the section with a ‘globalization’ of the concept of the periodicity of an
element to the entire skew-morphism. Let pϕ denote the least common multiple of
all pa , a ∈ A. Then, pϕ is the smallest positive integer, such that π(a) = π(ϕ pϕ (a))

for each a ∈ A. In view of Lemma 2 (ii), pϕ necessarily divides the order of ϕ. In
the next few paragraphs, we prove some preliminary results concerning the value pϕ

followed by one of the main results of our paper.
First, a simple result from number theory.

Lemma 3 Let c1, c2, . . . , ck be positive integers, such that c j −ci 	≡ j−i (mod k),
for each 1 ≤ i < j ≤ k. Then k | c1 + c2 + · · · + ck .

Proof Suppose that c1, c2, . . . , ck satisfy the conditions. An easy argument by con-
tradiction shows that the numbers c1−1, , c2−2, , . . . , ck −k are pairwise different
modulo k. Hence, {c1 − 1, c2 − 2, . . . , ck − k} = {0, 1, 2, . . . , k − 1} (mod k)

and therefore c1 − 1+ c2 − 2+ · · · + ck − k ≡ 1+ 2+ 3+ · · · + k (mod k), which
yields c1 + c2 + · · · + ck ≡ 2 · ∑k−1

i=0 i ≡ 0 (mod k). ��
The next lemma is a generalization of a result from [1], where it has been shown for
any skew-morphism ϕ having a generating orbit X closed under inverses that

|ϕ|−1∑

i=0

π(ϕi (g)) ≡ 0 (mod |Oh|),

for all g, h ∈ G.

Lemma 4 Let ϕ be a skew-morphism of order n of an abelian group A, and let a
be an arbitrary element of A. Then pa | π(pa, a′) for all a′ ∈ Oa.

Proof We have already argued that π(pa, a′) = π(pa, a), for all a′ ∈ Oa , and
by the minimality of pa , the values π(a), π(ϕ(a)), . . . , π(ϕ pa−1(a)) are all dif-
ferent. Assume 0 ≤ i < j < pa , and consider the following two-way calcu-
lation. First, ϕ(ϕi (a)ϕ j (a)) = ϕi+1(a)ϕπ(ϕi (a))+ j (a). Similarly, ϕ(ϕ j (a)ϕi (a)) =
ϕ j+1(a)ϕπ(ϕ j (a))+i (a). Since ϕ(ϕi (a)ϕ j (a)) = ϕ(ϕ j (a)ϕi (a)) by commutativity,
we conclude that
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ϕi+1(a)ϕπ(ϕi (a))+ j (a) = ϕ j+1(a)ϕπ(ϕ j (a))+i (a). (6)

We claim that the above equality yields that π(ϕ j (a)) − π(ϕi (a)) 	≡ j − i
(mod pa). To prove our claim via contradiction, assume on the contrary that
π(ϕ j (a)) − π(ϕi (a)) ≡ j − i (mod pa), or that π(ϕ j (a)) ≡ π(ϕi (a)) + j − i
(mod pa). Plugging in into (6) forces

ϕi+1(a)ϕπ(ϕi (a))+ j (a) = ϕ j+1(a)ϕπ(ϕi (a))+ j−i+i (a),

consequently, ϕi+1(a) = ϕ j+1(a), contrary to 0 ≤ i < j < pa . Thus, we can apply
Lemma 3, and conclude that pa | π(pa, a′), for all a′ ∈ Oa . ��

We now have at hand all the necessary ingredients for proving the main theorem
of this section.

Theorem 6 Let ϕ be a skew-morphism of an abelian group A. Then ψ = ϕ pϕ is a
coset-preserving skew-morphism of A.

Furthermore, if a and a′ belong to the same orbit of ϕ, and πψ is the power
function of ψ , then πψ(a) = πψ(a′).

Proof Let a be an arbitrary element of A. Due to our definition of pϕ , pa | pϕ, and
thus, pϕ = r pa for some positive integer r. By Lemma 4, we have pa | π(pϕ, a).

Furthermore, π(pϕ, a) = r · (π(a) + · · · + π(ϕ pa−1(a))) = rπ(pa, a). Hence
pϕ = r pa divides rπ(pa, a) = π(pϕ, a), for each a ∈ A. Theorem 4 asserts that
ψ = ϕ pϕ is a skew-morphism of A. Clearly, ψ preserves the cosets of ker ϕ, and
since the kernel ofψ contains the kernel of ϕ,ψ preserves the cosets of kerψ as well.
If a′ belongs to the orbit of a, π(pϕ, a′) = π(pϕ, a), and hence, πψ(a′) = πψ(a),
as both are equal to the smallest positive solution of the equation pϕx ≡ π(pϕ, a)

(mod |ϕ|) (Theorem 4). ��
This is a good place to summarize and reiterate our results. First, a skew-morphism

ϕ is coset-preserving if and only if pϕ = 1. As for the skew-morphisms that are not
coset-preserving, we have shown that every skew-morphism ϕ of an abelian group
A that is not coset-preserving must have a very specific structure: Any orbit of ϕ

that is not entirely contained in a single coset of ker ϕ consists of elements of several
different cosets which are visited one by one in a uniquely defined order, and any
other orbit of ϕ that contains at least one element from these cosets has this very
same properties. The skew-morphism ϕ pϕ discussed in the above theorem not only
never leaves the cosets of ϕ, but the second part of Theorem 6 asserts that all cosets
of ker ϕ touched by some orbit of ϕ will become a part of a single coset of ker ϕ pϕ ; a
much stronger result than the one in whichwe have argued that the kernel of ϕ pϕ must
be a supergroup of the kernel of ϕ. This observation correlates with our comment
following Lemma 1 where we pointed out that the power function values of distinct
orbits of a skew-morphism ϕ are either identical or disjoint (as sets).

Unlike the case of the skew-morphisms that give rise to regular Cayley maps (i.e.,
have a generating orbit closed under inverses), general skew-morphisms do not have
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to have the property that ϕ pϕ is necessarily non-trivial: If ϕ does not have a precise
orbit, it may contain orbits of relatively prime periodicities, which in turn may cause
pϕ become too big (equal to |ϕ|), and therefore ϕ pϕ may turn out to be trivial.

Our next goal is to find additional assumptions under which we can prove that
the coset-preserving skew-morphism ψ constructed in the previous theorem is a
non-trivial skew-morphism. We will rely on the following lemma.

Lemma 5 Let ϕ be a skew-morphism of an abelian group A. Then for any a, b ∈
A, pab | lcm(pa, pb), and, in particular, pa1a2...al | lcm(pa1 , pa2 , . . . , pal ) for any
a1, . . . , al ∈ A.

Proof Denote k = lcm(pa, pb) and note that k = i pa and k = j pb for some
positive integers i and j . For any positive integer l there exist h, h′ ∈ ker ϕ such that
ϕlpa (a) = ha and ϕlpb (b) = h′b. Furthermore, π(k, a) = π(i pa, a) = iπ(pa, a),
and pa | π(pa, a) (Theorem 4), therefore k = i pa | π(k, a), j pb | π(k, a), and
π(k, a) = j ′ pb for some positive j ′. It follows that

ϕk(ab) = ϕk(a)ϕπ(k,a)(b) = ϕi pa (a)ϕ j ′ pb(b) = h1ah2b = h1h2ab,

for some h1, h2 ∈ ker ϕ. Thus, π(ϕk(ab)) = π(ab), and by Lemma 2, pab | k =
lcm(pa, pb). The general claim of the lemma follows by induction. ��

Consider now the case when a skew-morphism ϕ of an abelian group A has a
generating orbit O (not necessarily closed under inverses). Since pa = pb, for all
a, b ∈ O , and every element of A is a product of elements from O , Lemma 5 yields
that pc | pa for all c ∈ A, and therefore pϕ = pa , where a is any element of O .
It has been shown in [7], that the order of a skew-morphism ϕ with a generating
orbit O is necessarily equal to the size of O . Thus, in this case, pϕ | |O| = |ϕ|. As
discussed above, Theorem 6 is only meaningful if pϕ < |ϕ|, in which case ψ = ϕ pϕ

is a non-trivial coset-preserving skew-morphism of A. In the next theorem, we show
that this is always the case when ϕ possesses a generating orbit.

Theorem 7 Let A be an abelian group, let ϕ be a non-identity skew-morphism of A
with a generating orbitO , and let a ∈ O . Then ϕ pa is a non-identity coset-preserving
skew-morphism of A.

Proof As argued prior to the statement of the theorem, the assumptions yield pa =
pϕ , and thus ϕ pa is a coset-preserving skew-morphism of A by Theorem 6.

To prove that ϕ pa is not the identity mapping, we need to show that pa < |ϕ|.
Once again, by the results of [7], we observe that |O| = |ϕ|. The rest of the proof is
a simple consequence of the Pigeonhole Principle. Since ϕ preserves ker ϕ, which
is a proper subgroup of A, O ∩ ker ϕ = ∅, and therefore the power function values
of the elements in O must all belong to the set {2, 3, . . . , |ϕ| − 1 = |O| − 1}. It
follows that at least two elements of O are assigned the same power function value,
and hence O visits each coset of ker ϕ at least twice, each time in the same order,
and hence pa ≤ |O|

2 < |O| = |ϕ|. ��



20 M. Bachratý and R. Jajcay

While not every skew-morphism of an abelian group has necessarily a generating
orbit, in the case of a single element generated group (i.e., the cyclic group Zn),
every skew-morphism must have at least one generating orbit; for example, the
orbit containing the generator 1. Thus, based on Theorem 7, every non-trivial skew-
morphism of a cyclic group must have a non-trivial coset-preserving power. This
easy consequence is nevertheless fundamental for our further considerations. For
that reason, we state it in the form of a corollary.

Corollary 2 Let ϕ be a non-identity skew-morphism of a cyclic group Zn. Then for
every generator a ∈ Zn, ϕ pa is a non-trivial coset-preserving skew-morphism of Zn.

Thus, every skew-morphism of a cyclic group is either coset-preserving or is a root
of a non-trivial coset-preserving skew-morphism. In the forthcoming paragraphs, we
show that the same must be true for all skew-morphisms of abelian groups that give
rise to regular Cayley maps (i.e., skew-morphisms with a generating orbit closed
under inverses that preserve their kernels).

First note that the coset-preserving skew-morphisms of abelian groups giving rise
to regular Cayley maps have an even more restricted structure.

Lemma 6 If ϕ is a coset-preserving skew-morphism of an abelian group A that
gives rise to a regular Cayley map C M(A, X, P), then ϕ is either t-balanced or a
group automorphism of A.

Proof If a coset-preserving skew-morphism ϕ possesses a generating orbit X that
is closed under inverses, all elements of X belong to the same coset of ker ϕ, and
have therefore the same power function value t . On the other hand, for any x ∈ X ,
x−1 is also in X , and therefore 1 = π(xx−1) = t2 by formula (1), and consequently
π(xy) = 1, for all x, y ∈ X . Thus, xy ∈ ker ϕ, for all x, y ∈ X . Finally, since X
generates all of A, every element of A is a product of elements in X . Since all even
length products of elements in X belong to ker ϕ, and all odd length products belong
to the coset containing X , the index of ker ϕ in A is at most 2. The lemma follows. ��

Very similar arguments lead to the following strong result concerning skew-
morphisms of abelian groups giving rise to regular Cayley maps; the original topic
of interest within the context of Cayley maps.

Theorem 8 Let ϕ be a skew-morphism of an abelian group A that gives rise to
a regular Cayley map C M(A, X, P). Then, ϕ px is either a non-trivial t-balanced
skew-morphism or a non-trivial group automorphism of A, for all x ∈ X.

In the case when A is of odd order, ϕ px is necessarily a group automorphism of A.

Proof If ϕ gives rise to a regular Cayley map, it possesses a generating orbit X that
is closed under inverses. Then, pϕ = px , for all x ∈ X , and Theorem 6 yields that
ψ = ϕ pϕ is a non-trivial coset-preserving skew-morphism of A. The second part of
this very same theorem yields further that all elements of X , whichmay not constitute
a single orbit of ψ anymore, belong nevertheless to the same coset of kerψ . Thus,
a coset of ψ contains a subset that generates A and is closed under inverses, and,
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following the same line of argument as in the proof of the previous lemma, kerψ
has at most two distinct cosets in A. The non-trivial skew-morphism ψ is therefore
either a t-balanced skew-morphism or a group automorphism of A. If A is of odd
order, the index of kerψ in A cannot be 2, and ψ has to be an automorphism. ��

Bothof theprevious corollaries underscore the significanceof the coset-preserving
skew-morphisms of abelian groups. For example, all t-balanced skew-morphisms of
cyclic groups giving rise to regular Cayley maps have already been classified in [12].
Once we complete the classification of all t-balanced skew-morphisms of cyclic
groups, the complete list of skew-morphisms of cyclic groups giving rise to regular
Cayleymapswill be a subset of the set of the roots of the t-balanced skew-morphisms.
In the last section of our paper, we investigate the class of coset-preserving skew-
morphisms of cyclic groups in detail. As t-balanced skew-morphisms form a subset
of the set of coset-preserving skew-morphisms, our results appear to suggest that clas-
sification of skew-morphisms of cyclic groups giving rise to regular Cayley maps
might be within our reach. Classification of the coset-preserving skew-morphisms
of general abelian groups appears however much less likely.

We close this section with a further discussion of properties of coset-preserving
skew-morphisms.

Lemma 7 Let ϕ be a coset-preserving skew-morphism of an abelian group A, and
let π be its power function. Then π is a homomorphism from A into the multiplicative
group Z

#
|ϕ|.

Proof This is an easy-to-prove result that further underlines that coset-preserving
skew-morphisms have a very restrictive structure. Applying formula (1) yields

π(ab) ≡
∑

0≤i<π(a)

π(ϕi (b)) ≡ π(a)π(b) (mod |ϕ|),

since π(ϕi (b)) = π(b), for all i . ��
Lemma 8 Let ϕ be a coset-preserving skew-morphism of an abelian group A, let π

be its power function, and let a ∈ A. If π(a) = π(a−1), then π(a) is a square root
of 1 in Z

#
|ϕ|.

Furthermore, if A is the cyclic group Zn and a is a generator of A, then π(a) =
π(a−1) implies that ϕ is a t-balanced skew-morphism with t = π(a).

Proof Employing Lemma 7 gives

1 = π(aa−1) ≡ π(a)π(a−1) ≡ π(a)2 (mod |ϕ|).

The second claim follows from the structure of Zn: If π(a) = π(−a) = 1,
ϕ is necessarily an automorphism (and therefore t-balanced with t = 1), and if
π(a) = π(−a) 	= 1, a and −a belong to the same right coset of ker ϕ in Zn , hence
2a ∈ ker ϕ, and therefore the index of ker ϕ in Zn is 2. Since skew-morphisms of
abelian groups always preserve their kernels, the orbit of a has no points in common
with ker ϕ, and consists of elements whose power is equal to π(a). ��
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6 Coset-Preserving Skew-Morphisms of Cyclic Groups

As stated in the introduction, the twomain articles concerning classification of skew-
morphisms of cyclic groups are the fundamental paper [3] that contains a very indirect
classification of the skew-morphisms of the cyclic groups that give rise to regular
Cayley maps and the paper [12] that classifies regular t-balanced Cayley maps of
cyclic groups. Due to their interest in regular maps, neither paper deals with general
skew-morphisms, i.e., skew-morphisms that do not possess generating orbits closed
under inverses. In the present section, we focus on the class of coset-preserving
skew-morphisms of cyclic groups regardless of whether they do or do not possess a
generating orbit closed under inverses. As we have shown in the previous section,
every skew-morphism of a cyclic group is a root of some non-trivial coset-preserving
skew-morphism, and thus, we see our efforts as a significant step toward the classi-
fication of all skew-morphisms of cyclic groups.

The key to the classification of coset-preserving skew-morphisms of cyclic groups
lies in finding necessary and sufficient sets of parameters that uniquely determine
such skew-morphisms. Intuitively, every coset-preserving skew-morphism ϕ of Zn

is uniquely determined by its kernel ker ϕ, the action of ϕ on ker ϕ, the image ϕ(1),
and the value of the power function π(1).

Theorem 9 Let ϕ be a non-identity coset-preserving skew-morphism of Zn. Let b be
the smallest non-zero element of ker ϕ, let t be the smallest solution of the equation
ϕ(b) = t · b, let h = ϕ(1) − 1 (mod n), and let p = π(1). The five-tuple of
parameters (n; b, t, h, p) satisfies the following conditions:

(i) the parameters (n; b, t, h, p) uniquely determine ϕ; if ϕ and ϕ′ are coset-
preserving skew-morphisms of Zn, then ϕ = ϕ′ if and only if their correspond-
ing five-tuples are equal;

(ii) b | n and ker ϕ = 〈b〉;
(iii) 1 ≤ t ≤ n

b , (t, n
b ) = 1, and the restriction ofϕ toker ϕ is the right multiplication

by t, i.e., ϕ(g) = tg, for each g ∈ ker ϕ;
(iv) h ∈ ker ϕ and h 	= 0;
(v) the order of p in Z

#
|ϕ| is b;

(vi) tb = ϕ(1) + ϕ p(1) + ϕ p2
(1) + · · · + ϕ pb−1

(1);
(vii) ϕ p−1 restricted to ker ϕ is an identity; ϕ p−1(g) = g, for each g ∈ ker ϕ.

Proof By choosing the smallest parameter in caseswhere theremight existmore than
one solution,wemade sure that the parameters (n; b, t, h, p) are uniquely determined
by the choice of the skew-morphism ϕ. We now prove the seven properties listed in
the theorem, but leave the proof of the most important property (i) for the last.

(ii) The kernel ker ϕ is a subgroup of Zn and every subgroup of Zn is generated by
its smallest non-zero element which in turn must divide n.

(iii) It is well-known (and easy to see) that, if ϕ preserves ker ϕ, the restriction
of ϕ to ker ϕ is a group automorphism of ker ϕ. Thus ϕ(b) = tb, for some
1 ≤ t ≤ n

b relatively prime to the order n
b of ker ϕ.
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(iv) As 1 andϕ(1) belong to the same right coset of ker ϕ,we haveϕ(1)−1 ∈ ker ϕ.

If ϕ(1) were equal to 1, ϕ would be an identity automorphism.
(v) Lemma 7 asserts that π is a homomorphism from Zn into Z

#
|ϕ|, and therefore

π(Zn) is a cyclic multiplicative subgroup of Z#
|ϕ|. The order of π(Zn) is the

number of different values of π on Zn , i.e., the index b of ker ϕ in Zn . Since
π(1) is a generator of π(Zn), the order of π(1) is also b.

(vi) Formulas (1) and (2) imply, for any non-zero element a ∈ Zn ,

ϕ(a) = ϕ(1) + ϕ p(1) + ϕ p2
(1) + · · · + ϕ pa−1

(1). (7)

On the other hand, part (iii) of our theorem asserts that ϕ(b) = tb.
(vii) Let g ∈ ker ϕ, and consider the following calculation:

ϕ(g) + ϕ(1) = ϕ(g + 1) = ϕ(1 + g) = ϕ(1) + ϕ p(g).

It follows that ϕ p(g) = ϕ(g), or equivalently, ϕ p−1(g) = g.
(i) The orbit of the element 1 under ϕ is uniquely determined by the parameters

h and t by means of the following equation:

ϕm(1) = 1 + h + th + t2h + · · · + tm−1h, (8)

that holds for all m ≥ 1. We prove the equation by induction on m. Since
ϕ(1) = 1+h, the basis of our induction holds true. Now suppose that ϕm(1) =
1 + h + th + t2h + · · · + tm−1h, for some m ≥ 1. Then

ϕm+1(1) =
= ϕ(1 + (h + th + t2h + · · · + tm−1h)) = ϕ((h + th + t2h + · · · + tm−1h) + 1) =

= ϕ(h + th + t2h + · · · + tm−1h) + ϕ(1) = th + t2h + · · · + tmh + 1 + h =
= 1 + h + th + t2h + · · · + tmh,

which proves the induction claim. Plugging the parameters (n; b, t, h, p) into
the equations (8) and (7) allows for a deterministic calculation of ϕ(a), for
all a ∈ Zn . Thus, ϕ is uniquely determined by the parameters (n; b, t, h, p).

Finally, if the five-tuples associated with two skew-morphisms ϕ, ϕ′ differ in
at least one number, it is easy to see that the two skew-morphisms differ as
permutations.

��
We refer to the five-tuple (n; b, t, h, p) as the parameters of the coset-preserving

skew-morphism ϕ. While the conditions from Theorem 9 are necessarily satisfied by
every five-tuple of parameters of a coset-preserving skew-morphism, unlesswe prove
that the above conditions are also sufficient, the set of all five-tuples satisfying the
conditions (ii) through (vii) may contain five-tuples that do not belong to any skew-
morphisms. It is not hard to see, however, that a five-tuple (n; b, t, h, p) corresponds
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to a skew-morphism if and only if the mapping ϕ : Zn → Zn built in accordance
with formulas (8) and (7):

ϕ(0) = 0;
ϕm(1) = 1 + h + th + t2h + · · · + tm−1h, for all 1 ≤ m < r;
ϕ(a) = ϕ(1) + ϕ p(1) + ϕ p2

(1) + · · · + ϕ pa−1
(1), for all a ∈ Zn, a 	= 0, 1;

is a well-defined coset-preserving skew-morphism of Zn . This means that one way
to construct all coset-preserving skew-morphisms of Zn is to create the (finite) list
of all five-tuples (n; b, t, h, p) satisfying conditions (ii) through (vii) together with
their corresponding mappings defined as above, and then choosing those mappings
from the list that are skew-morphisms of Zn .
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8. R. Jajcay and J. Širáň, Skew morphisms of regular Cayley maps, Discrete Math. 244, 167–179

(2002).
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António Breda d’Azevedo, Domenico A. Catalano, Ján Karabáš
and Roman Nedela

Abstract In a classical result of 1972 Singerman classifies the inclusions between
triangle groups. We extend the classification to a broader family of triangle and
quadrangle groups forming a particular subfamily of Fuchsian groups. With two
exceptions, each inclusion determines a finite bipartite map (hypermap) on a 2-
dimensional spherical orbifold that encodes the complete information and gives a
graphical visualisation of the inclusion. A complete description of all the inclusions
is contained in the attached tables.

1 Introduction

The search for inclusions between triangle groups, andmore generally betweenFuch-
sian groups, was motivated by the theory of Riemann surfaces and algebraic geom-
etry. Triangle and quadrangle groups are particular instances of Fuchsian groups,
which are finitely generated discrete subgroups of P SL(2,R), the group of confor-
mal automorphisms of the upper-half plane. Inclusions of Fuchsian groups played
an important rôle in the investigation of Teichmüller spaces, see for instance Green-
berg [10, Theorem 1]. Later Singerman extended some of Greenberg’s results and
obtained a complete list of normal inclusions between Fuchsian groups having the
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same Teichmüller space dimension. In addition, he gives all non-normal inclusions
between triangle groups [14, 15]. Another motivation for looking at inclusions of
Fuchsian groups in triangle groups comes from the connection between algebraic
curves over complex numbers, Riemann surfaces and dessins d’enfant, established
explicitly by a result of Belyı̆ [1], see also [17]. It follows that every hypermap
endows its underlying closed orientable surface with a complex structure by lifting
the complex structure of the Riemann sphere via a Belyı̆ function, a meromorphic
function ramified above at most three points (located at 0, 1 and ∞). A natural ques-
tion arises: Under which conditions do two hypermaps determine the same Riemann
surface? In certain circumstances, inclusions of Fuchsian groups in triangle groups
with spherical quotients correspond to Riemann-surface-preserving transformations
of hypermaps, see [5, 16].

The main aim of this paper is to present a complete list of finite index inclusions
P < Q, with both P and Q being either a triangle or a quadrangle group (with finite
periods). In what follows, we give an outline of the proof followed by instructions
how to read the attached census.

2 Generalised Quadrangle Groups and Constellations

Quadrangle groups. By a generalised quadrangle group wemean a Fuchsian group
Q with presentation

Q(k, l, m, n) = 〈x, y, z, w | xk = yl = zm = wn = xyzw = 1〉 ,

where k, l, m, n are positive integers satisfying 1
k + 1

l + 1
m + 1

n < 2 . Clearly, at most
one of k, l, m, n can be equal to one. Therefore a generalised quadrangle group is
either a triangle or a quadrangle group. Inwhat follows,we assume that the parameters
k, l, m, and n are ordered in a non-decreasing order. This is motivated by the fact
that a permutation of the parameters (or of the generators) in the above presentation
gives an isomorphic copy of Q(k, l, m, n). In particular, the group Q(1, l, m, n) is
just the triangle groupΔ(l, m, n). Inclusions between triangle groups were classified
by Singerman in [15] and they are listed in Appendix (see Tables1 and 2).

Constellations. Let P = Q(p, q, r, s) and Q = Q(k, l, m, n) be two generalised
quadrangle groups and let P be a subgroup of index N in Q. We write P <N Q. The
meaning of the parameters N , p, q, r , s, k, l, m, and n will be fixed throughout the
whole paper. There is an induced action of Q on the (right) cosets of P represented by
four permutations πx , πy , πz , πw corresponding to the images of the four generators
of Q in the natural homomorphism into the symmetric group Sym(N ). In accordance
with Lando and Zvonkin [13, Chap. 1], we call the four-tuple C = [πx , πy, πz, πw]
a constellation (or a 4-constellation) of degree N and the sequence [λx , λy, λz, λw]
of partitions of N , where each λa is the cycle structure of the permutation πa , the
passport of the constellation C . The monodromy group Mon(C ) of the constellation
C is the group 〈πx , πy, πz, πw〉 ≤ Sym(N ). By definition, the action of Mon(C ) is
transitive on the set {1, 2, . . . , N } and πxπyπzπw = 1. We write the cycle structure
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of a permutation in the exponential notation: for instance, the permutation � =
(1, 2, 3)(4, 5)(6, 7, 8)(9)has the cycle structure [1.2.32]. For convenience, each cycle
structure in a passport in the census is ordered in a non-decreasing order.

Two constellations C = [πx , πy, πz, πw] and C ′ = [π ′
x , π

′
y, π

′
z, π

′
w] of degree N

are equivalent if there exists α ∈ Sym(N ) such that the corresponding permutations
are simultaneously conjugated by α. In particular, if P < Q and P ′ < Q are two
inclusions of generalised quadrangle groups, then the associated constellations are
equivalent if and only if the subgroups P and P ′ are conjugate in Q. In fact, an inclu-
sion P < Q determines a constellation C = [πx , πy, πz, πw] which corresponds
to a Q-marked hypermap P = (Q/P; x P∗, y P∗, z P∗), where P∗ is the core of
P in Q and πx , πy , πz are the actions of x P∗, y P∗, z P∗ on the N cosets of P
in Q respectively (see [3] for definitions). Replacing Θ by Q in [3, Theorem 19],
we have that two Q-marked hypermaps P and K = (Q/K ; x K ∗, yK ∗, zK ∗),
corresponding to the inclusions P < Q and K < Q respectively, are isomorphic
if and only if P and K are conjugate in Q, say K = Pg , for some g ∈ Q; the
isomorphism is the conjugation morphism ιg : Q/P → Q/K , Pq 
→ Qgqg . If
ψ1 : Q/P → {1, 2, . . . , N } and ψ2 : Q/K → {1, 2, . . . , N } are the bijections to
their transversals, then α = ψ−1

1 ιgψ2 is the permutation that makes the constellations
corresponding toP and K equivalent.

Our approach will follow the one outlined in Singerman’s classification of inclu-
sions between triangle groups [15]. The census is obtained in two steps. First, we
find all admissible sets of parameters N ; p, q, r, s; k, l, m, n satisfying the Riemann-
Hurwitz equationwith additional numerical constrains. Each such numerical solution
gives rise to a passport. Secondly, for each passport we either find all equivalency
classes of constellations with that passport, or we show that such a constellation does
not exist. Both steps are computer-assisted. As a byproduct, we confirm Singerman’s
classification of triangle group inclusions. More details follow.

Numerical solution. If we have an inclusion between generalised quadrangle
groups P <N Q with parameters N ; p, q, r, s; k, l, m, n, then the Riemann-Hurwitz
formula holds true

N =
2 −

(
1
p + 1

q + 1
r + 1

s

)

2 − (
1
k + 1

l + 1
m + 1

n

) . (1)

Our aim is to determine all possible solutions N ; p, q, r, s; k, l, m, n with their
associated passports. To do this, the following two well known facts are useful:

• elements of finite order in P SL(2,R) are elliptic,
• any element g of finite order in a Fuchsian group is conjugate to a power of an
elliptic generator h; in symbols g � h.

Let a, b, c, d be the generators of P of orders p, q, r , s, respectively. If P < Q,
then one of the following four cases (up to a group isomorphism) happens:

Case 1. a, b, c, d � w, which implies p|n, q|n, r |n and s|n,
Case 2. a � z and b, c, d � w, which implies p|m and q|n, r |n and s|n,
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Case 3. a, b � z, and c, d � w, which implies p|m, q|m and r |n, s|n
Case 4. a � y, b � z and c, d � w, which implies p|l, q|m and r |n, s|n.
Remark It might appear that the case a � x , b � y, c � z and d � w is missing,
however (1) implies N = 1, that is, P = Q in this case.

Using an argument by Singerman [14, Theorem 1], if there is a constellation
associated to one of the aforementioned cases, then it has one of the following
passports, according to the case it belongs to:

Case1.

[
k

N
k , l

N
l , m

N
m ,

n

p
· n

q
· n

r
· n

s
· n

N−( n
p + n

q + n
r + n

s )
n

]
,

Case2.

[
k

N
k , l

N
l ,

m

p
· m

N− m
p

m ,
n

q
· n

r
· n

s
· n

N−( n
q + n

r + n
s )

n

]
,

Case3.

[
k

N
k , l

N
l ,

m

p
· m

q
· m

N−( m
p + m

q )
m ,

n

r
· n

s
· n

N−( n
r + n

s )
n

]
,

Case4.

[
k

N
k ,

l

p
· l

N− l
p

l ,
m

q
· m

N− m
q

m ,
n

r
· n

s
· n

N−( n
r + n

s )
n

]
,

where all of the fractions appearing in the above passports are integers. We adopt the
convention that factors with zero exponent in passports are vacuous (and are not to
be taken as equal to 1). For instance, n

r · n
s · n0 should be interpreted as n

r · n
s and not

as n
r · n

s · 1, which has a different meaning in a passport.
Each passport which belongs to one of the above four cases with parameters

satisfying (1) will be called admissible. Admissible passports may or may not be
passports of constellations.

By definition, the length of each cycle ofπx (resp.πy ,πz andπw) in a constellation
is a divisor of k (l, m, and n, respectively). A cycle of a permutation πx , πy , πz or
πw will be called singular if its length is strictly less then the order k, l , m or
n of the corresponding generator x , y, z or w. If p �= 1, that is, if P is not a
triangle group, then each admissible passport has exactly four cycle lengths that
are proper divisors of k, l, m or n. If P is a triangle group (p = 1), then by [15,
Proposition 5 and Theorem 1], Q is a triangle group as well, or equivalently k = 1.
In this case there are exactly three singular cycles in the constellation associated
with the inclusion P < Q. The four types of passports are distinguished by their
respective distributions of the singular cycles between the four permutations.

As we already mentioned, not every admissible passport can be realised by an
inclusion P <N Q. To determine the inclusions that realise admissible passports,
we used computer algebra systems Magma [2] and GAP [9]. With the exception
of two families described in Table3, each inclusion P <N Q has the parameter k
equal to 1, which means that Q is a triangle group. In this case Q can be viewed
as a group of orientation preserving automorphisms of an infinite regular hypermap
(or bipartite map) U on the hyperbolic plane with hypervertices (black vertices) of
valency l, hyperedges (white vertices) of valency m and hyperfaces of valency n
(faces of valency 2n). Then P is a group of automorphisms of U and the quotient
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U/P is a hypermap on the Riemann sphere (P is a Fuchsian group of signature
(0; {p, q, r, s})), more precisely, the quotient hypermap lies on a spherical orbifold
with exactly 4 or 3 singular points corresponding to the singular cycles of the con-
stellation associated with the inclusion P < Q.

Dessins d’enfant. When Q is a triangle group, k = 1 and therefore πx = 1. Then
the inclusion P <N Q gives rise to a 4-constellation C that can be reduced to the
3-constellation [πy, πz, πw]. This can be regarded as a spherical hypermap H on
the set {1, 2, . . . , N }, whose hypervertices and hyperedges are the orbits of πy and
πz , respectively. The hyperfaces of H are the orbits of πw.

There exists a regular branched covering from the universal infinite hypermap
U = U(l, m, n) on the hyperbolic plane onto the spherical hypermapU/P eitherwith
exactly four branched points with indexes p, q, r, s, or with exactly three branched
points with indexes q, r, s, located at some hypervertices, hyperedges or hyperfaces.
This hypermap (on the spherical orbifold) with the additional information about
the branched points and their respective indices will be called a dessin d’enfant or
simply a dessin. It is more precise to talk about a hypermap on an orbifold with
signature (0; {p, q, r, s}), or with signature (0; {q, r, s}) when p = 1, rather than
simply talking of a “hypermap”. There is a one-to-one correspondence between the
singular cycles of πy , πz , and πw and the branched points of the associated dessin.

Recall that the monodromy group Mon(C ) of the constellation associated to
an inclusion P <N Q acts transitively on {1, 2, . . . , N }. Moreover, Mon(C ) acts
regularly on {1, 2, . . . , N } if and only if P �N Q is a normal inclusion. In this case
the associated dessin is also called regular.

Families of inclusions. The inclusions may form infinite families parametrised by
one, two or three integer parameters in the signatures (corresponding to the number
of zero exponents in the factors of the respective passport). All the inclusions of an
infinite family share the same (non-parametrised) passport. Note that each member
of an infinite family is represented by the same hypermap in the census. An inclusion
not belonging to an infinite family is called sporadic.

Although there are infinitely many inclusions, the number of admissible passports
is finite. Each admissible passport gives rise to a finite number of constellations (or
dessins), since the index N of any inclusion is finite and bounded by 84 (theRiemann-
Hurwitz bound). Thus, the identification of all dessins associated to quadrangle group
inclusions is a finite problem.

More details (and proofs) on the classification of inclusions of generalised quad-
rangle groups will be discussed in the forthcoming paper [6].

3 How to Read the Census

The attached tables contain the complete list of inclusions P <N Q between gener-
alised quadrangle groups. Two inclusions P <N Q and P ′ <N Q are distinguished
up to conjugation in Q; if P ′ = Pg for some g ∈ Q, then P <N Q and P ′ <N Q
give equivalent constellations and so the two inclusions are essentially the same.
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Each conjugacy class of inclusions P <N Q of generalised quadrangle groups
forms one entry in the census. Excluding Table3 (explained below), the correspond-
ing row displays the following data:

• the associated passport λ = [λy, λz, λw] (up to a permutation of its entries),
• the number of realisations, which is equal to the number of non-conjugate sub-
groups of Q isomorphic to P ,

• the non-isomorphic dessins with passport λ up to mirror images,
• the monodromy group, or a structure description of the monodromy group, or the
prime factor decomposition of its size [8, 9].

If two dessins form a chiral pair, only one member of the pair is depicted. Thus the
number of the depicted dessins may not match the displayed number of realisations
in the row.

The three cycle structures in a passport describe the following:

1. first item in a passport gives the sequence of hypervertex valencies (degrees of
black vertices),

2. the second item gives the sequence of hyperedge valencies (degrees of white
vertices), and

3. the third item gives the sequence of hyperface valencies.

However, there are 6 possible passports formed by permuting the entries of any
given passport and therefore, each dessin D may be in principle associated with 5
(or 11, ifD is chiral) additional non-isomorphic dessins. There is no essential reason
to prefer any particular choice of one of these dessins for the census. The criteria
we took into account were “aesthetic”—to indicate some symmetry of a dessin—or
“space constraint”—a dual image of a dessin sometimes fits better into the reserved
space—or we chose a dessin that was “triangulation resembling”.

In Table3 (when Q is not a triangle group) the corresponding row displays:

• the associated passport λ = [λx , λy, λz, λw] (up to a permutation of its entries),
• the associated constellation (since there is only one),
• an alternative picture based on Δ2-marked hypermaps [4]; these have blue, green
and white vertices whose valencies (number of incidences of pairs of blue and
green coloured edges (b, g), in counter-clockwise order) give the first, the second
and the third entry of the passport (the last entry corresponds to face-valencies),

• the monodromy group.

The entries of the census are organised into six tables. In each table, the inclusions
(entries) are ordered by their indices in a non-decreasing order. The first two tables
(Tables1 and 2) include the case of normal and non-normal inclusions of triangle
groups classified by Singerman [15]. Table3 contains the two families of inclusions
between (pure) quadrangle groups, while Table4 gives a classification of normal
inclusions of quadrangle groups in triangle groups. Table5 lists the infinite families
of non-normal inclusions of quadrangle groups in triangle groups. The longest table
is Table6, which contains the classification of the sporadic inclusions of quadrangle
groups in triangle groups.
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A lot of information on inclusions can be dug from the tables. For instance:

• the indices of the inclusions cover all the integers from 2 to 22, additional integers
covered are 24, 26, 27, 28, 29, 30, 36, 37, 44, 45, 52, 60;

• the largest possible index is 60, realised by six inclusions of Q(7, 7, 7, 7) in
Δ(2, 3, 7);

• the largest number of non-conjugate realisations (16) is achieved by the inclusion
Q(2, 3, 7, 7) < Δ(2, 3, 7) of index 44;

• the number of realisations of an inclusion varies from 1 to 16. There are inclusions
such that each of their realisations is chiral, such that each of their realisation is
reflexible, and those that have both chiral and reflexible realisations.

For the sake of completeness, in Table7 we collect all the solutions of (1) with
the respective admissible passports for which there is no inclusion. Additional infor-
mation on the inclusions of the generalised quadrangle groups can be found at the
web page [7].
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Appendix

Triangle Groups Inclusions

See Tables1 and 2.

Table 1 Normal inclusions of triangle groups

(a)

(b)

(c)
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Table 2 Non-normal inclusions of triangle groups

(A)

(B)

(C)

(D)

(continued)
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Table 2 (continued)

(E)

(F)

(G)

(H)

(I)

(J)

(K)
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Normal Inclusions of Quadrangle Groups

See Tables3 and 4.

Table 3 Inclusions of quadrangle groups in quadrangle groups

Table 4 Infinite families of normal inclusions of quadrangle groups in triangle groups

(f1)

(f2)

(f3)

(f4)

(f5)

(f6)
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Non-normal Inclusions of Quadrangle Groups

See Tables5 and 6.

Table 5 Infinite families of non-normal inclusions of quadrangle groups in triangle groups

(continued)
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Table 5 (continued)

(continued)
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Table 5 (continued)

(continued)
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Table 5 (continued)

(continued)
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Table 5 (continued)

(continued)
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Table 5 (continued)

Table 6 Sporadic non-normal inclusions of quadrangle groups in triangle groups. (There are no
sporadic normal inclusions)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)
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Numerical Solutions with No Corresponding Inclusions

See Table7.

Table 7 Admissible passports for which there is no inclusion (Forbidden passports)

Numerical solution Passport Notes

(m, 3m, n, n) <4
(1, 2, 3m, 2n)

[1.3, 22, 22] m = 1 : Δ(3, n, n) ≮
Δ(2, 3, 2n)

(n, 3n, 3n, 3n) <6
(1, 3, 3, 3n)

[13.3, 32, 32]

(2, n, 4n, 4n) <6 (1, 2, 4, 4n) [12.4, 23, 2.4]
(4, 4, n, 2n) <6 (1, 2, 4, 4n) [12.4, 23, 2.4]
(1, 2n, 3n, 6n) <6 (1, 2, 3, 6n) [1.2.3, 23, 32]
(5, n, n, n) <6 (1, 2, 5, 2n) [1.5, 23, 23]
(2, n, n, n) <6 (1, 2, 4, 2n) [23, 23, 2.4]
(n, 5n, 5n, 5n) <8
(1, 2, 4, 5n)

[13.5, 24, 42] n = 1 : Δ(5, 5, 5) ≮
Δ(2, 4, 5)

(3, 3, 3n, 5n) <8 (1, 2, 3, 15n) [3.5, 24, 12.32]
(2n, 3n, 3n, 6n) <8
(1, 2, 4, 6n)

[1.22.3, 24, 42]

(2, n, n, 4n) <9 (1, 2, 3, 4n) [1.42, 1.24, 33]
(2, 2n, 5n, 5n) <9
(1, 2, 3, 10n)

[22.5, 1.24, 33]

(2, n, n, n) <9 (1, 2, 3, 3n) [33, 1.24, 33]
(3, n, 2n, 6n) <10 (1, 2, 3, 6n) [1.3.6, 25, 1.33]
(3, n, 3n, 3n) <10 (1, 2, 3, 6n) [22.6, 25, 1.33]
(3, n, n, 2n) <10 (1, 2, 3, 4n) [2.42, 25, 1.33]
(3, 3n, 4n, 4n) <10
(1, 2, 3, 12n)

[32.4, 25, 1.33]

(3n, 7n, 21n, 21n) <12
(1, 2, 3, 21n)

[12.3.7, 26, 34]

(2n, 3n, 12n, 12n) <12
(1, 2, 3, 12n)

[12.4.6, 26, 34]

(2n, 7n, 7n, 14n) <12
(1, 2, 3, 14n)

[1.22.7, 26, 34]

(4n, 5n, 10n, 20n) <12
(1, 2, 3, 20n)

[1.2.4.5, 26, 34]

(3n, 5n, 5n, 15n) <12
(1, 2, 3, 15n)

[1.32.5, 26, 34]

(3n, 3n, 4n, 12n) <12
(1, 2, 3, 12n)

[1.3.42, 26, 34]
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Table 7 (continued)

Numerical solution Passport Notes

(n, 3n, 3n, 3n) <12
(1, 2, 3, 6n)

[23.6, 26, 34]

(6n, 10n, 15n, 15n) <12
(1, 2, 3, 30n)

[22.3.5, 26, 34]

(3n, 4n, 4n, 6n) <12
(1, 2, 3, 12n)

[2.32.4, 26, 34]

(3, 5, 5, 5) <8 (1, 2, 5, 6) [2.6, 24, 13.5]
(2, 2, 6, 6) <8 (1, 2, 4, 6) [12.6, 24, 22.4]
(5, 5, 5, 5) <9 (1, 3, 3, 5) [14.5, 33, 33]
(2, 4, 4, 4) <9 (1, 3, 3, 4) [33, 33, 13.2.4]
(2, 7, 7, 7) <10 (1, 2, 4, 7) [2.42, 25, 13.7]
(2, 3, 6, 6) <10 (1, 2, 4, 6) [2.42, 25, 12.2.6]
(8, 8, 8, 8) <12 (1, 2, 4, 8) [14.8, 26, 43]
(1, 3, 7, 7) <16 (1, 2, 3, 7) [12.72, 28, 1.35] Δ(3, 7, 7) ≮ Δ(2, 3, 7)

(3, 5, 5, 5) <16 (1, 2, 3, 10) [23.10, 28, 1.35]
(2, 3, 4, 4) <16 (1, 2, 3, 8) [22.4.8, 28, 1.35]
(2, 5, 5, 5) <18 (1, 2, 4, 5) [2.44, 29, 13.53]
(2, 2, 8, 8) <18 (1, 2, 3, 8) [12.42.8, 29, 36]
(5, 5, 5, 5) <18 (1, 2, 3, 10) [24.10, 29, 36]
(2, 4, 4, 4) <18 (1, 2, 3, 8) [23.4.8, 29, 36]
(2, 4, 4, 8) <21 (1, 2, 3, 8) [1.22.82, 1.210, 37]
(2, 3, 8, 8) <22 (1, 2, 3, 8) [12.4.82, 211, 1.37]
(3, 4, 4, 4) <22 (1, 2, 3, 8) [23.82, 211, 1.37]
(3, 9, 9, 9) <24 (1, 2, 3, 9) [13.3.92, 212, 38]
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Some Unexpected Consequences
of Symmetry Computations

Marston D.E. Conder

Abstract This paper gives some instances of experimental computations involving
the action of groups on graphs and maps with a high degree of symmetry, that
have led to unexpected theoretical discoveries. These include new presentations for
3-dimensional special linear groups, a closed-form definition for the binary reflected
Gray codes, a new theorem on groups expressible as a product of an abelian group
and a cyclic group, and some revealing observations about the genus spectrum of
particular classes of regular maps on surfaces.

1 Introduction

There is no doubt that the use of high-speed computers and the development of special
purpose software have had an enormous impact on mathematics and its applications.
They have also stimulated debate on the nature of proof, the reliability of computer
hardware, and the acceptability of computer-based arguments. The 1970s proof by
Appel and Haken (and Koch) of the Four Colour Theorem [1, 2] is an interesting
example—where some mathematicians were more concerned with the possibility of
machine error in analysing 1,936 sub-configurations (or human error in feeding them
to the computer) than the possibility of human error in classifying those sub-cases
in the first place. The Appel-Haken proof has since been superseded by another by
Robertson, Sanders, Seymour and Thomas [22], in which both the generation and
analysis of a smaller set of 633 reducible configurations are achieved by computation.

But of course the use of computers goes far beyond helping us prove things.
Computer-assisted experimentation or generation of small cases can help us get a
clear picture of a mathematical situation, or reveal patterns that might otherwise not
easily be seen, and point theway to new discoveries and theoremswith computer-free
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(and somehowmore acceptable) proofs. They can even reveal completely unexpected
phenomena. This paper reports on several instances where this has happened, in the
context of finitely-presented groups and their actions on graphs and maps.

The consequences include new presentations for 3-dimensional special linear
groups (in Sect. 2), a closed-form definition for the binary reflected Gray codes
(Sect. 3), a new theorem on groups expressible as a product of an abelian group and
a cyclic group, and revealing observations about the genus spectrum of particular
classes of regular maps on surfaces (Sect. 4). In each case, it is unlikely the discovery
would have been made without the results of the computer-based experimentation
or generation of small examples.

These instances underline not only the important role of computing, but also the
value of the software that has been developed for enabling such discoveries. In that
respect, the author would like to thank (among many others responsible for the wide
and helpful range of computational tools now available for handling groups and
related structures), both John Cannon for his part in creating Magma [5] and its
predecessor Cayley, and Derek Holt for his development of a fast procedure for
finding normal subgroups of small finite index in a finitely-presented group.

2 Arc-Transitive Cubic Graphs and SL(3,Z)

An automorphism of a graph is any bijection of its vertex-set preserving adjacency,
and under composition, such bijections form a group known as the automorphism
group of the graph.Agraph is called arc-transitive (or symmetric) if its automorphism
group has a single orbit on ordered pairs (u, v) of adjacent vertices, and s-arc-
transitive if its automorphism group has a single orbit on directed walks of the form
v0 − v1 − v2 − · · · − vs−1 − vs in which any three consecutive vertices are distinct.
Note that any connected arc-transitive graph is necessarily regular.

A remarkable theorem of Tutte (1947) shows that every finite arc-transitive graph
of valency 3 is at most 5-arc-transitive; see [23]. In fact there are exactly seven classes
of such graphs, which may be classified by the largest value of s for which the graph
is s-arc-transitive (1 ≤ s ≤ 5) and the existence or otherwise of an involutory
automorphism reversing a given edge; see [18] or [12]. Associated with each class
is an amalgamated free product of two small finite groups (corresponding to the
stabilizers of a vertex and an edge, with the arc-stabilizer subgroup amalgamated).
The resulting seven groups are commonly denoted by G1, G2

1, G2
2, G3, G4

1, G4
2

and G5.
Several new examples of arc-transitive 3-valent graphs were found by Biggs and

Conway, using amethodof inserting additional relations into someof these grouppre-
sentations, where the new relation corresponds to particular circuits of given length
in the graph; see [4]. In particular, associated with a class of 4-arc-transitive graphs
containing a circuit of length 12 is the group obtained by inserting an additional
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relator into the group G4
1. This group, denoted by 4+(a12) in [4], can be presented

as follows:

4+(a12) = 〈 a, b, σ | σ 2 = (σa)2 = (σb)2 = (a−1b)2 = (a−2b2)2 = 1,

a3b−3a3 = bab, a3bσa4 = ba2b, a12 = 1 〉

An open problem described in [4] was to determine whether or not the above
group is infinite. Standard computational techniques at the time were not particularly
helpful; for example, this group has no subgroup H of small finite index with infinite
abelian quotient H/[H, H ].

In attempting to prove it is infinite, the author of the current paper found (with
somedumb luck) a normal subgroup of index 336generated by eight conjugates of the
element a6. From this it was easy to construct an 8-dimensional matrix representation
of the group, in which the image of a particular element has infinite order, and hence
to prove the group is infinite. But the story does not end there.

UsingCayley to analyse certain finite images of the matrix group so constructed,
the author found that reductionmodulo prime p gives an 8-dimensional matrix group
of order 2p3(p3 − 1)(p + 1) for p = 2, 3, 5, 7 and 11. This happens to be twice the
order of the groupSL(3, p), and that fortunate (and somewhat surprising) observation
led to the discovery and computer-free proof of the following:

Theorem 1 The group 4+(a12) is isomorphic to SL(3,Z).C2, the group of all 3× 3
integer matrices of determinant 1 extended by its inverse-transpose automorphism.

The author’s proof (given in [7]) uses the Steinberg presentation for SL(3,Z).
The underlying reason for the isomorphism has a connection with finite projective

planes. As pointed out by Peter Neumann (in a personal communication), a 3-valent
graph can be naturally associated with any finite projective plane Π , by taking the
quadrangles (sets of four points, no three of which are collinear) and quadrilaterals
(sets of four lines, no three of which are copunctual) of Π as its vertices, and joining
any quadrangle to each of the three quadrilaterals given by its partitions into two
pairs of opposite points. One may take this further, to prove that the existence of a
circuit of length 12 corresponds to the Desargues axiom. It would be interesting to
study this connection further.

The above isomorphism also leads to the following, as proved in [13]:

Corollary 1

(a) The group SL(3,Z) has presentation 〈 x, y, z | x3 = y3 = z2 = (xz)3 =
(yz)3 = (x−1zxy)2 = (y−1zyx)2 = (xy)6 = 1〉 , and

(b) For each odd integer k > 1, the group SL(3,Zk) has presentation

〈 x, y | x3 = y3 = (xy)6 = (x−1yx−1y−1xy)2 = (xy−1xyxy−1x−1y−1)k

= ((xy−1xyxy−1x−1y−1)(k−1)/2xy)4 = 1〉 .
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Fig. 1 The modified
Sierpinski gasket
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3 Sierpinski’s Gasket and Binary Gray Codes

Sierpinski’s gasket is another name for Pascal’s triangle mod 2. This played a role in
the construction of a family {Xn} of arc-transitive 4-valent graphs inwhich the orders
of vertex-stabilisers in vertex-transitive subgroups of Aut Xn of smallest possible
order form a strictly increasing sequence; see [16].

The author and his PhD student Cameron Walker devised a construction for
such a family from a sequence of certain finitely-presented groups, and some small
degree permutation representations of these groups, obtained with the help of the
LowIndexSubgroups facility inMagma [5]. In analysing the output of the com-
putations, Cameron Walker observed an interesting pattern in the transpositions of
the permutations induced by a number of the involutory generators.

The transpositions that occurred for a particular representation all came from a
partition of the degree of the representation into (disjoint) pairs, and the pattern arose
from considering which of the transpositions occurred in the permutations induced
by each generator. (For example, the permutations (5, 6), (3, 4)(5, 6) and (1, 2)(3, 4)
involve the three transpositions (1, 2), (3, 4) and (5, 6), and can be represented by
the strings 001, 011 and 110, respectively.) Then following a helpful discussion
with his colleague Joel Schiff who was writing a book on cellular automata, the
author found that this pattern can be obtained from Sierpinski’s gasket by repeating
(or ‘doubling’) every entry, as illustrated in Fig. 1 (with a pair of ‘x’s replacing each
‘1’, and a pair of blank spaces replacing each ‘0’).

Observation and identification of this pattern was critical to proving the existence
of the family of graphs in [16].

But again the story does not end there.
A Gray code of length n is a sequence of n-bit strings (words) on some alphabet,

such that each word differs from the next in just one position. A noted family of
such codes, called the Binary reflected Gray codes Gn , can be defined inductively:
G1 consists of the words 0 and 1 (in that order), and then once Gn−1 is known, the
code Gn can be defined by listing the words of Gn−1 with each word prefixed by
0, then re-writing them in reverse order with each word prefixed by 1 instead. For
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Fig. 2 Binary Gray codes in
the modified Sierpinski
gasket

0 x 1 0
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

1 x x 1 1 0 0
2 x x 0 1 1 0

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
3 x x x x 1 1 1 1 0 0 0 0
4 x x
5 x x x x 0 0 1 1 1 1 0 0
6 x x x x 0 1 1 0 0 1 1 0

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
7 x x x x x x x x 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
8 x x
9 x x x x
10 x x x x
11 x x x x x x x x 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
12 x x x x
13 x x x x x x x x 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
14 x x x x x x x x 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

example, G3 = (000, 001, 011, 010, 110, 111, 101, 100). Such codes are used in
combinatorics, signal processing, and calculation of correlation coefficients (for a
variable subset).

A subsequent chance observation (made by the author after seeing a talk on Gray
codes) was that words of the binary reflected Gray codes of small length occur in
certain sections of the modified Sierpinski gasket. This is illustrated in Fig. 2. From
the top of the figure, take the horizontal bands of depth 1, 2, 4, 8 (demarcated by the
dashed lines), and then notice that replacing each ‘x’ by a ‘1’ and each blank by a
‘0’ reveals copies of the strings from the codes G1, G2, G3 and G4.

Some further computational experiments and theoretical analysis showed that
this holds more generally, via deletion of specified rows of the modified gasket
(namely those obtained by taking horizontal bands of depth 2k for k = 0, 1, 2, 3, . . . ,
from the top, and then in the band of depth 2k , retaining only the rows in positions
1, 2, 4, . . . , 2k , measured from the bottom of the band).

In turn this led to the following, first ever closed-form definition for the words of
the binary reflected Gray codes (see [8]):

Theorem 2 For 1 ≤ j ≤ n and 1 ≤ k ≤ 2n, the j th letter of the kth word of the
binary Gray code of length n is the parity (modulo 2) of the binomial coefficient
C(2n − 2n−j − 1, [2n − 2n−j−1 − k/2]), where [ · ] is the integer floor function.

A proof is easy by induction: show the given binomial coefficients satisfy the
required reflective property of the code Gn , and use induction on the length n.

The significant point here is that the theorem might not have been found at all
without the use of group-theoretic computation to investigate a seemingly unrelated
class of finitely-presented groups. But also it would be interesting to know if there
is a deeper connection between binomial coefficients and the Gray codes (or related
objects such as Hamilton paths in hypercubes).
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4 Regular Maps

Regular maps are generalisations of the Platonic solids (viewed as tessellations of the
sphere) to surfaces of higher genus. Their formal studywas initiated byBrahana in the
1920s [6] and continued by Coxeter (see [17]) and others much later. Regular maps
on the sphere and the torus and other orientable surfaces of small genus are now well
understood, but until recently, the situation for surfaces of higher genus was some-
thing of a mystery. In particular, some long-standing questions have remained open
about the genera of orientable surfaces that carry no rotary map without reflectional
symmetry or that carry no regular map without multiple edges.

A map is an embedding of a connected graph or multigraph into a surface, such
that each component (or face) of the complement is simply-connected. The genus
and the Euler characteristic of the map M are defined as the genus and the Euler
characteristic of the supporting surface. The topological dual of M (denoted by M∗)
is obtained from M by interchanging the roles of vertices and faces in the usual way.

An automorphism of a map is an adjacency- and incidence-preserving bijection
from the map to itself, taking vertices to vertices, edges to edges, and faces to faces.
By connectedness, every automorphism of the map is uniquely determined by its
effect on any flag (an incident vertex-edge pair (v, e) taken together with a chosen
side along the edge e).

Amap M is called regular if its automorphism groupAut(M) acts regularly on the
set of all flags, and an orientable map M is called orientably-regular (or sometimes
rotary) if the group G = Auto(M) of all its orientation-preserving automorphisms
acts regularly on the set of oriented edges (or arcs) of M . An orientably-regular map
that admits an orientation-reversing automorphism is called reflexible (and is then
regular), while otherwise it is said to be chiral.

In every regular or orientably-regular map M , the faces have constant size k (say)
and the vertices have constant valency m (say), and the map M is then said to have
type {k, m}. Moreover, for any incident vertex-edge-face triple (v, e, f ), there is a
k-fold rotation X about the face f and an m-fold rotation Y about the vertex v,
such that XY is an involutory rotation about the edge e. By connectedness, X and
Y generate either Auto(M) in the orientable case, or Aut(M) in the non-orientable
case. Thus either Auto(M) or Aut(M) is a quotient of the ordinary (k, m, 2) triangle
group Δo(k, m, 2) = 〈 x, y, z | xk = ym = z2 = xyz = 1 〉, under an epimorphism
taking x to X and y to Y . The dual M∗ is also regular, with the roles of X and Y
interchanged, and the map M (or its dual M∗) is reflexible if and only if the group
generated by X and Y admits an automorphism of order 2 taking X to X−1 and Y
to Y −1.

Conversely, given any epimorphism θ from Δo(k, m, 2) to a finite group G with
torsion-free kernel, a map M can be constructed using (right) cosets of the images
of 〈x〉, 〈y〉 and 〈z〉 as vertices, faces and edges, with incidence given by non-empty
intersection, and then G acts regularly on the ordered edges of M by (right) multi-
plication. From this point of view the study of regular maps is simply the study of
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smooth quotients of triangle groups—with ‘smooth’ here meaning that the orders of
the generators x, y and z are preserved.

Deep connections exist between maps and other branches of mathematics, how-
ever, which go far beyond group theory, and include hyperbolic geometry, Riemann
surfaces and, rather surprisingly, number fields and Galois theory, based on obser-
vations made by Belyı̆ and Grothendieck; see [21] for example.

But here we concentrate on just three recent developments.
One is in the study of regular Cayley maps. A Cayley graph C(A, S) for a group

A with respect to some generating subset S is the graph with vertex-set A and edge-
set {{u, ux} : u ∈ A, x ∈ S}, and a regular Cayley map is an embedding of a
Cayley graph C(A, S) as an orientably-regular map in such a way that the Cayley
group A preserves the embedding, or equivalently, an orientably-regular map whose
automorphism group has a subgroup acting regularly on vertices. (An easy example
is the spherical embedding of the 3-cube, which is a Cayley graph for the dihedral
group of order 8.) Any such embedding is determined by an ordering of the elements
of the generating set S ∪ S−1 for the group A, and may be associated with a skew
morphism of A; see [11] for further details.

If M is a regular Cayley map for an abelian group A, then the Cayley group A acts
regularly on the vertex-set of M , and so the group Auto(M) is expressible in the form
Auto(M) = A〈Y 〉, with A∩〈Y 〉 = {1}. In a computational investigation of examples
of such maps (carried out with the help of Magma), the author discovered that in
all small cases, the derived subgroup of Auto(M) is isomorphic to a subgroup of A.
A theorem of Itô [20] on the product of two abelian groups ensures that Auto(M) is
metabelian, but this is a much stronger conclusion. There being no obvious reason
for this phenomenon, the author sought advice from group-theoretic colleagues on
the special case where A is cyclic, and a helpful answer from Marty Isaacs and
subsequent joint work with him led to the following extension of Itô’s theorem
(in which the ‘rank’ is the minimum cardinality of a generating set):

Theorem 3 If the group G is a product AB of two abelian subgroups A and B, such
that at least one of A and B is finite, and at least one of A and B is cyclic, then
rank(G ′/G ′ ∩ A) ≤ rank(B) and rank(G ′/G ′ ∩ B) ≤ rank(A).

Also if G is finite then G ′/(G ′ ∩ A) is isomorphic to a subgroup of B/(A ∩ B),
and G ′/(G ′ ∩ B) is isomorphic to a subgroup of A/(A ∩ B). See [10] for a proof of
the above theorem and further details.

The second development is quite significant. Recently Derek Holt and his stu-
dent David Firth developed a computational procedure for finding normal subgroups
of small index in finitely-presented groups [19], and this has been implemented in
Magma. In 2006 the author used the new procedure to find all normal subgroups of
appropriately small finite index in triangle groups, in order to extend the census of all
regular maps of small Euler characteristic χ(M) to the range −200 ≤ χ(M) < 0;
see [9]. This not only improved the previous range (−28 ≤ χ(M) < 0) by a con-
siderable margin, but also led to many new discoveries and revealed patterns in the
genus spectrum of various kinds of regular maps never seen before.
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For example, this work showed for the first time that an orientable surface could
carry no (reflexible) regular map without multiple edges in its underlying graph. In
fact this happens for genus 20, 32, 38, 44, 62, 68, 74, 80 and 98, and for many higher
genera as well, of the form p +1 where p is a prime congruent to 1 mod 6. Similarly,
it revealed a sequence of genera (also of the form p +1 for various primes) such that
every orientably-regular map on a surface of one of those genera is reflexible, and
thereby exhibiting a sequence of gaps in the genus spectrum of orientably-regular
maps that are chiral. These observations (and others by the author in joint work with
Jozef Širáň and Tom Tucker) led to a complete, computer-free classification of all
orientably-regular maps M of genus g ≥ 0 for which g − 1 and |Auto(M)| are
relatively prime, and as a four-part corollary, the following:

Theorem 4 (a) If p is a prime such that p − 1 is not divisible by 3, 5 or 8, then
every orientably-regular map of genus g = p + 1 is reflexible;

(b) If M is an orientably-regular but chiral map of genus g = p + 1, where p is
prime, and p − 1 is not divisible by 5 or 8, then either M or its topological dual
M∗ has multiple edges;

(c) If M is a reflexible orientably-regular map of genus g = p +1, where p is prime
and p > 13, then either M or M∗ has multiple edges, and if p ≡ 1 mod 6, then
both M and M∗ have multiple edges; and

(d) There exists no non-orientable regular map of genus p + 2 where p is a prime
congruent to 1 mod 12, except when p = 13.

Part (d) was known previously (see [3]). The full proof (which is remarkably
short, and includes a new proof of part (d)) is given in [14].

Finally, the consequence of Theorem 3 about the structure of the quotients
G ′/(G ′ ∩ A) and G ′/(G ′ ∩ B) was instrumental in the very recent complete classi-
fication of all regular Cayley maps for cyclic groups; see [15].
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A 3D Spinorial View of 4D Exceptional
Phenomena

Pierre-Philippe Dechant

Abstract We discuss a Clifford algebra framework for discrete symmetry groups
(such as reflection, Coxeter, conformal and modular groups), leading to a surprising
number of new results. Clifford algebras allow for a particularly simple description
of reflections via ‘sandwiching’. This extends to a description of orthogonal trans-
formations in general by means of ‘sandwiching’ with Clifford algebra multivectors,
since all orthogonal transformations can be written as products of reflections by the
Cartan-Dieudonné theorem. We begin by viewing the largest non-crystallographic
reflection/Coxeter group H4 as a group of rotations in two different ways—firstly
via a folding from the largest exceptional group E8, and secondly by induction from
the icosahedral group H3 via Clifford spinors. We then generalise the second way by
presenting a construction of a 4D root system from any given 3D one. This affords
a new, spinorial, perspective on 4D phenomena, in particular as the induced root
systems are precisely the exceptional ones in 4D, and their unusual automorphism
groups are easily explained in the spinorial picture; we discuss the wider context of
Platonic solids, Arnold’s trinities and the McKay correspondence. The multivector
groups can be used to perform concrete group-theoretic calculations, e.g. those for
H3 and E8, and we discuss how various representations can also be constructed in
this Clifford framework; in particular, representations of quaternionic type arise very
naturally.

1 Introduction

Reflections are the building blocks for a large class of discrete symmetries that are
of interest in both pure and applied mathematics. Coxeter groups, root systems and
polytopes are intimately related to Lie groups and algebras, as well as to the geometry
of various dimensions. The geometry of three dimensions has manifold obvious
implications for physics, chemistry and biology; in particular, in our recent work
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we were interested in the role of icosahedral symmetry to virus structure, fullerenes
and quasicrystals [13–15]. Lie groups and algebras, as well as their root lattices and
Coxeter/Weyl groups are also ubiquitous in high energy physics [4, 20, 21, 27].
As we shall see later, even conformal and modular groups fall into this category of
discrete groups; the relevant areas in mathematical physics include conformal field
theory [30] and Moonshine phenomena [17–19, 32].

In this reflection framework one always has an inner product on the n-dimensional
vector space in question; one can thus in fact always construct the corresponding
2n-dimensional Clifford algebra, which contains the original n-dimensional vector
space as a subspace. This is particularly useful, as Clifford algebra allows a dramatic
simplificationwhen it comes to handling reflections.Wehave explored such aClifford
algebra framework in [6, 7, 9, 10] from the puremathematics perspective; this has led
to a number of conceptual and computational simplifications, as well as some very
profound results on the nature of four-dimensional (4D) geometry and its interplay
with the geometry of three dimensions (3D), in particular that of rotations. Here we
present an account of this work tailored to finite group theorists, exploring various
pure connections, as well as presenting newwork on group and representation theory.

This paper is organised as follows. Section2 introduces root systems, reflection
and Coxeter groups, and their graphical representations. In Sect. 3 we present some
Clifford algebra background, in particular the unique reflection prescription and the
resulting versor formalism via the Cartan-Dieudonné theorem. We discuss two ways
of viewing the reflection group H4 as a group of rotations—in Sect. 4 we discuss H4

as a subgroup of E8; in Sect. 5 we consider the group of 120 multivectors generated
by the simple root vectors of H3 via multiplication in the Clifford algebra. This is the
binary icosahedral group 2I , and its multivector components are exactly the roots
of H4. We then generalise this observation: this yields a remarkable theorem which
induces a 4D root system from every 3D root system in a constructive way (Sect. 6).
We discuss this construction—which uses Clifford spinors—and its relation to the 4D
Platonic solids along with their peculiar symmetries, as well as the wider context of
Arnold’s trinities and theMcKay correspondence, which this construction puts into a
wider framework. In Sect. 7we revisit someof the earlier group-theoretic calculations
and show how Clifford multivectors can be used to construct more conventional
matrix representations; in particular, certain representations of quaternionic type of
a number of specific groups arise uniformly in this construction. We conclude with
a summary and possible further work in Sect. 8.

2 Root Systems and Reflection Groups

In this section, we introduce reflection/Coxeter groups as generated by their root
systems. Let V be an n-dimensional Euclidean vector space endowed with a positive
definite bilinear form (·|·). A root system is a collectionΦ of non-zero vectors (called
root vectors) satisfying the following two axioms:
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1. Φ only contains a root α and its negative, but no other scalar multiples:Φ ∩Rα =
{−α, α} for everyα ∈ Φ.

2. Φ is invariant under all reflections corresponding to root vectors. That is, if sα

is the reflection of V in the hyperplane with normal α, we require that sαΦ =
Φ for every α ∈ Φ.

For a crystallographic root system, a subsetΔ ofΦ, called simple roots α1, . . . , αn , is
sufficient to express every element of Φ via Z-linear combinations with coefficients
of the same sign.Φ is therefore completely characterised by this basis of simple roots.
In the case of the non-crystallographic root systems H2, H3 and H4, the same holds for
the extended integer ring Z[τ ] = {a + τb|a, b ∈ Z}, where τ is the golden ratio τ =
1
2 (1+√

5) = 2 cos π
5 , and σ is its Galois conjugate σ = 1

2 (1−√
5) (the two solutions

to the quadratic equation x2 = x + 1). For the crystallographic root systems, the
classification in terms of Dynkin diagrams essentially follows the one familiar from
Lie groups and Lie algebras, as their Weyl groups are the crystallographic Coxeter
groups. A mild generalisation to so-called Coxeter-Dynkin diagrams is necessary
for the non-crystallographic root systems, where nodes correspond to simple roots,
orthogonal roots are not connected, roots at π

3 have a simple link, and other angles
π
m have a link with a label m. The Cartan matrix of a set of simple roots αi ∈ Δ is
defined as the matrix Ai j = 2(αi |α j )/(α j |α j ). For instance, the root system of the
icosahedral group H3 has one link labelled by 5 (via the above relation τ = 2 cos π

5 ),
as does its four-dimensional analogue H4. A plethora of examples of diagrams is
presented later, in Table2 in Sect. 5.

The reflections in the second axiom of the root system generate a reflection group.
A Coxeter group is a mathematical abstraction of the concept of a reflection group
via involutory generators (i.e. their square is the identity, which captures the idea
of a reflection), subject to mixed relations that represent m-fold rotations (since two
successive reflections generate a rotation in the plane spanned by the two roots).
A Coxeter group is a group generated by a set of involutory generators si , s j ∈ S
subject to relations of the form (si s j )

mi j = 1withmi j = m ji ≥ 2 for i �= j . The finite
Coxeter groups have a geometric representation where the involutions are realised
as reflections at hyperplanes through the origin in a Euclidean vector space V , i.e.
they are essentially just the classical reflection groups. In particular, then the abstract
generator si corresponds to the simple reflection si : λ → si (λ) = λ − 2 (λ|αi )

(αi |αi )
αi in

the hyperplane perpendicular to the simple root αi . The action of the Coxeter group
is to permute these root vectors, and its structure is thus encoded in the collection
Φ ∈ V of all such roots, which in turn form a root system.

We nowmove onto the Clifford algebra framework, which affords a uniquely sim-
ple prescription for performing reflections (and thus any orthogonal transformation)
in spaces of any dimension and signature. For any root system, the quadratic form
mentioned in the definition always allows one to enlarge the n-dimensional vector
space V to the corresponding 2n-dimensional Clifford algebra. The Clifford algebra
is therefore a very natural object to consider in this context, as its unified structure
simplifies many problems both conceptually and computationally (as we shall see in
the next section), rather than applying the linear structure of the space and the inner
product separately.
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3 Clifford Versor Framework

Clifford algebra can be viewed as a deformation of the (perhaps more familiar)
exterior algebra by a quadratic form—though we do not necessarily advocate this
point of view; they are isomorphic as vector spaces, but not as algebras, and Clifford
algebra is in fact much richer due to the invertibility of the algebra product, as
we shall see. The geometric product of Geometric/Clifford Algebra is defined by
xy = x · y + x ∧ y—where the scalar product (given by the symmetric bilinear
form) is the symmetric part x · y = (x |y) = 1

2 (xy + yx) and the exterior product
the antisymmetric part x ∧ y = 1

2 (xy − yx) [16, 22–24]. It provides a very compact
and efficient way of handling reflections in any number of dimensions, and thus by
the Cartan-Dieudonné theorem in fact of any orthogonal transformation. For a unit
vector α, the two terms in the above formula for a reflection of a vector v in the
hyperplane orthogonal to α simplify to the double-sided (‘sandwiching’) action of
α via the geometric product

v → sαv = v′ = v−2(v|α)α = v−2
1

2
(vα+αv)α = v−vα2−αvα = −αvα. (1)

This prescription for reflecting vectors in hyperplanes is remarkably compact (note
that α and −α encode the same reflection and thus provide a double cover). Via
the Cartan-Dieudonné theorem, any orthogonal transformation can be written as the
product of reflections, and thus by performing consecutive reflections each given via
‘sandwiching’, one is led to define a versor as a Clifford multivector A = a1a2 · · · ak ,
that is the product of k unit vectors ai [23]. Versors form amultiplicative group called
the versor/pinor group Pin under the single-sided multiplication with the geometric
product, with inverses given by ÃA = AÃ = ±1, where the tilde denotes the reversal
of the order of the constituent vectors Ã = ak · · · a2a1, and the ±-sign defines its
parity. Every orthogonal transformation A of a vector v can thus be expressed by
means of unit versors/pinors via

A : v → v′ = A(v) = ± ÃvA. (2)

Unit versors are double-covers of the respective orthogonal transformation, as A and
−A encode the same transformation. Even versors R, that is, products of an even
number of vectors, are called spinors or rotors. They form a subgroup of the Pin group
and constitute a double cover of the special orthogonal group, called the Spin group.
Clifford algebra therefore provides a particularly natural and simple construction of
the Spin groups. Thus the remarkably simple construction of the binary polyhedral
groups in Sect. 6 is not at all surprising from a Clifford point of view, but appears to
be unknown in the Coxeter community, and ultimately leads to the novel result of
the spinor induction theorem of (exceptional) 4D root systems in Sect. 6.

The versor realisation of the orthogonal group is much simpler than conven-
tional matrix approaches. Table1 summarises the various action mechanisms of
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Table 1 Versor framework for a unified treatment of the chiral, full, binary and pinor polyhedral
groups

Continuous group Discrete subgroup Multivector action

SO(n) Rotational/chiral x → R̃x R

O(n) Reflection/full x → ± Ãx A

Spin(n) Binary Spinors R under (R1, R2) → R1R2

Pin(n) Pinor Pinors A under (A1, A2) → A1 A2

multivectors: a rotation (e.g. the continuous group SO(3) or the discrete subgroup,
the chiral icosahedral group I = A5) is given by double-sided action of a spinor R,
whilst these spinors themselves formagroupunder single-sided action/multiplication
(e.g. the continuous group Spin(3) ∼ SU (2) or the discrete subgroup, the binary
icosahedral group 2I ). Likewise, a reflection (continuous O(3) or the discrete sub-
group, the full icosahedral group the Coxeter group H3) corresponds to sandwiching
with the versor A, whilst the versors single-sidedly form a multiplicative group (the
Pin(3) group or the discrete analogue, the double cover of H3, which we denote
Pin(H3)). In the conformal geometric algebra setup one uses the fact that the con-
formal group C(p, q) is homomorphic to SO(p + 1, q + 1) to treat translations as
well as rotations in a unified versor framework [5, 8, 9, 16, 24]. [8, 9] also discuss
reflections, inversions, translations and modular transformations in this way.

Example 1 The Clifford/Geometric algebra of three dimensions Cl(3) is spanned
by three orthogonal—and thus anticommuting—unit vectors e1, e2 and e3. It also
contains the three bivectors e1e2, e2e3 and e3e1 that all square to −1, as well as
the highest grade object e1e2e3 (trivector and pseudoscalar), which also squares
to −1. Therefore, in Clifford algebra various geometric objects arise that provide
imaginary structures; however, there can be different ones and they can have non-
trivial commutation relations with the rest of the algebra.

{1}︸︷︷︸
1 scalar

{e1, e2, e3}︸ ︷︷ ︸
3 vectors

{e1e2 = I e3, e2e3 = I e1, e3e1 = I e2}︸ ︷︷ ︸
3 bivectors

{I ≡ e1e2e3}︸ ︷︷ ︸
1 trivector

. (3)

4 H4 as a Rotation Rather Than Reflection
Group I: From E8

The largest exceptional Coxeter group E8 and the largest non-crystallographic
Coxeter group H4 are closely related. This connection between E8 and H4 can be
shown via Coxeter-Dynkin diagram foldings on the level of Coxeter groups [31] or
as a projection relating the root systems [14, 29]. On the level of the root system
this is due to the existence of a projection which maps the 240 roots of E8 onto the
120 roots of H4 and their τ -multiples. We now consider the Dynkin diagram folding
picture in more detail.
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Fig. 1 Coxeter-Dynkin diagram folding from E8 to H4. Note that deleting nodes α1 and α7 yields
corresponding results for D6 → H3, and likewise for A4 → H2 by further removing α2 and α6

We take the simple rootsα1 toα8 of E8 as shown in Fig. 1, and consider theClifford
algebra in 8D with the usual Euclidean metric. The simple reflections corresponding
to the simple roots are thus just given via sandwiching sαv = −αvα as in Eq. (1).
The Coxeter element w is defined as the product of all these eight simple reflections,
and in Clifford algebra it is therefore simply given by the corresponding (s)pinor
W = α1 · · · α8 acting via sandwiching. Its order, the Coxeter number h (that is, the
smallest h such that W h = ±1), is 30 for E8.

As illustrated in Fig. 1, one can define certain combinations of pairs of reflections
(corresponding to roots on top of each other in the Dynkin diagram folding), e.g.
sa1 = sα1sα7 etc., and in a Clifford algebra sandwiching way these are given by
the products of root vectors a1 = α1α7, a2 = α2α6, a3 = α3α5 and a4 = α4α8

(which is essentially a partial folding of the usual alternating folding used in the
construction of the Coxeter plane with symmetry group I2(h)). It is easy to show
that the subgroup with the generators sai in fact satisfies the relations of an H4

Coxeter group [3, 31]: because of the Coxeter relations for E8 and the orthogonality
of the combined pair the combinations sa are easily seen to be involutions, and the
3-fold relations are similarly obvious from the Coxeter relations; only for the 5-fold
relation does one have to perform an explicit calculation in terms of the reflections
with respect to the root vectors. This is thus particularly easy by multiplying together
vectors in the Clifford algebra, rather than by concatenating two reflection formulas
of the usual type—despite containing just two terms, concatenation gets convoluted
quickly, which is not the case in the multiplication of multivectors.

Since the combinations sa are pairs of reflections, they are obviously rotations in
the eight-dimensional space, so this H4 group acts as rotations in the full space, but as
a reflection group in a 4D subspace. The H4 Coxeter element is given by multiplying
together the four combinations ai—its Coxeter versor is therefore trivially seen to
be the same as that of E8 (up to sign, since orthogonal vectors anticommute) and the
Coxeter number of H4 is thus the same as that of E8, 30. The projection of the E8

root system onto the Coxeter plane consists of two copies of the projection of H4

into the Coxeter plane, with a relative factor of τ .

5 H4 as a Rotation Rather Than Reflection
Group II: From H3

In the previous section we have considered certain generators and multivectors in
the algebra. We now consider the whole (s)pinor group generated by the simple
reflections of H3. The simple roots are taken as α1 = e2, α2 = − 1

2 ((τ − 1)e1 +
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e2 + τe3), and α3 = e3. Under free multiplication, these generate a group with 240
elements (pinors), and the even subgroup consists of 120 elements (spinors), for
instance of the form α1α2 = − 1

2 (1 − (τ − 1)e1e2 + τe2e3) and α2α3 = − 1
2 (τ −

(τ − 1)e3e1 + e2e3). These are the double covers of I = A5 and H3 = A5 × Z2,
respectively. With these groups of multivectors one can perform standard group
theory calculations, such as finding inverses and conjugacy classes. The spinors
have four components (1, e1e2, e2e3, e3e1); by taking the components of these 120
spinors as a set of vectors in 4D one obtains the 120 roots in the H4 root system.
This is very surprising from a Coxeter perspective, as one usually thinks of H3 as a
subgroup of H4, and therefore of H4 as more ‘fundamental’; however, one now sees
that H4 does not in fact contain any structure that is not already contained in H3,
and can therefore think of H3 as more fundamental. We will present a general and
uniform construction explaining and systematising this fact in the next section.

From a Clifford perspective it is not surprising to find this group of 120 spinors,
which is the binary icosahedral group, since aswe have seenClifford algebra provides
a simple construction of the Spin groups. This spinor group, the binary icosahedral
group 2I , has 120 elements and 9 conjugacy classes, and calculations in the Clifford
algebra are very straightforward; standard approaches would have to somehowmove
from SO(3) rotation matrices to SU (2)matrices for the binary group—here both are
treated in the same framework. The fact that the rotational icosahedral group I (given
by double-sided action of spinors R as R̃x R) has five conjugacy classes and it being
of order 60 imply that this group has five irreducible representations of dimensions
1, 3, 3̄, 4 and 5 (since the sum of the dimensions squared gives the order of the group∑

d2
i = |G|). The nine conjugacy classes of the binary icosahedral group 2I of order

120 (given by the spinors R under algebra multiplication) imply that this acquires a
further four irreducible spinorial representations 2s , 2′

s , 4s and 6s .
The binary icosahedral group has a curious connection with the affine Lie algebra

E+
8 (which also applies to the other binary polyhedral groups and the affine Lie alge-

bras of ADE-type) via the so-called McKay correspondence [28], which is twofold.
First, we may define a graph by assigning a node to each irreducible representation
of the binary icosahedral group with the following rule for connecting nodes: each
node corresponding to a certain irreducible representation is connected to the nodes
corresponding to those irreducible representations that are contained in its tensor
product with the irrep 2s . For instance, tensoring the trivial representation 1 with 2s

trivially gives 2s and thus the only link 1 has is with 2s ; 2s ⊗ 2s = 1 + 3, such that
2s is connected to 1 and 3, etc. The graph that is built up in this way is precisely
the Dynkin diagram of affine E8, as shown in Fig. 2. The second connection is the

1 2s 3 4s 5 6s 4

3̄

2′
s

Fig. 2 The graph depicting the tensor product structure of the binary icosahedral group 2I is the
same as the Dynkin diagram for the affine extension of E8, E+

8
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following observation: the Coxeter element is the product of all the simple reflections
α1 · · · α8 and its order, the Coxeter number h, is 30 for E8. This also happens to be
the sum of the dimensions of the irreducible representations of 2I . This extends to
all other cases of polyhedral groups and ADE-type affine Lie algebras, as shown in
the second and third columns in Table2 and in Fig. 3.

6 The General Construction: Spinor Induction and the 4D
Platonic Solids, Trinities and McKay Correspondence

In this section we systematise the above observation. Starting with any 3D root
system, we present a construction that yields a 4D root system; the intermediate
steps involve Clifford spinor techniques. We begin by an auxiliary result.

Proposition 1 (O(4)-structure of spinors) The space of Cl(3)-spinors R = a0 +
a1 I e1 + a2 I e2 + a3 I e3 can be endowed with a 4D Euclidean norm |R|2 = R R̃ =
a2
0 +a2

1 +a2
2 +a2

3 induced by the inner product (R1, R2) = 1
2 (R1 R̃2+ R2 R̃1) between

two spinors R1 and R2.

This allows one to reinterpret the group of 3D spinors generated from a 3D root
system as a set of 4D vectors, which in fact can be shown to satisfy the axioms of a
root system as given above.

Theorem 1 (Induction Theorem) Any 3D root system gives rise to a spinor group
G which induces a root system in 4D.

Proof It is sufficient to check the two axioms for the root system Φ consisting of the
set of 4D vectors given by the 3D spinor group:

1. By construction, Φ contains the negative of a root R since spinors provide a
double cover of rotations, i.e. if R is in a spinor group G, then so is −R , but no
other scalar multiples (normalisation to unity).

2. Φ is invariant under all reflections with respect to the inner product (R1, R2) in
Proposition 1 since R′

2 = R2 − 2(R1, R2)/(R1, R1)R1 = −R1 R̃2R1 ∈ G for
R1, R2 ∈ G by the closure property of the group G (in particular −R and R̃ are
in G if R is).

Since the number of irreducible 3D root systems is limited to (A3, B3, H3), this
yields a definite list of induced root systems in 4D; this turns out to be (D4, F4, H4),
which are exactly the exceptional root systems in 4D. In fact, the two triples may be
regarded as trinities in Arnold’s sense, originally applying to the trinity (R,C,H)

and later extended to projective spaces, Lie algebras, spheres, Hopf fibrations etc.
[1, 2]. Arnold’s original link between our trinities (A3, B3, H3) and (D4, F4, H4)

was extremely convoluted, and our construction presents a novel direct link between
the two.
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Fig. 3 Web of connections putting the original McKay correspondence and trinities into a wider
context. The connection between the sum of the dimensions of the irreducible representations di
of the binary polyhedral groups and the Coxeter number of the Lie algebras actually goes all the
way back to the number of roots in the 3D root systems (12, 18, 30)—these then induce the binary
polyhedral groups (linked to McKay) and the 4D root systems via the Clifford spinor construction

These root systems are intimately linked to the Platonic solids—there are 5 in
three dimensions and 6 in four dimensions: A3 is the root system relevant to the
tetrahedron, B3 generates the symmetries of the cube and octahedron (which are
dual under the exchange of faces and vertices), and H3 describes the symmetries of
the dual pair icosahedron and dodecahedron (the rotational subgroup is denoted by
I = A5).

Likewise, the 4D Coxeter groups describe the symmetries of the 4D Platonic
solids, but this time the connection is more immediate since the root systems are
actually Platonic solids themselves: D4 is the 24-cell (self-dual), an analogue of the
tetrahedron, which is also related to the F4 root system, and the H4 root system is the
Platonic solid the 600-cell. Its dual, the 120-cell obviously has the same symmetry.
The root system A3

1 generates the root system A4
1, which constitutes the vertices of

the Platonic solid 16-cell, with the 8-cell as its dual. There is thus an abundance of
root systems in 4D that are related to the Platonic solids, and in fact the only one not
equal or dual to a root system is the 5-cell with symmetry group A4—which of course
could not be a root system, as it has an odd number (5) of vertices. This abundance
of root systems in 4D can in some sense be thought of as due to the accidentalness of
this construction. In particular, the induced root systems are precisely the exceptional
(i.e. they do not have counterparts in other dimensions) root systems in 4D: D4 has



A 3D Spinorial View of 4D Exceptional Phenomena 91

the triality symmetry (permutation symmetry of the three legs in the diagram) that
is exceptional in 4D, F4 is the only F-type root system, and H4 is the largest non-
crystallographic root system. In contrast, in arbitrary dimensions there are only An

(n-simplex), and Bn (n-hypercube and n-hyperoctahedron).
Not only is there an abundance of root systems related to the Platonic solids as

well as their exceptional nature, but they also have unusual automorphism groups, in
that the order of the groups grows as the square of the number of roots. This is also
explained via the above spinor construction by means of the following result (which
is simply guaranteed by closure of the spinor group under group multiplication,
reversal and multiplication by −1):

Theorem 2 (Spinorial symmetries) A root system induced via the Clifford spinor
construction of a binary polyhedral spinor group G has an automorphism group that
trivially contains two factors of the respective spinor group G acting from the left
and from the right.

This systematises many case-by-case observations on the structure of the automor-
phism groups [25, 26]. For instance, the automorphism group of the H4 root system
is 2I ×2I ; in the spinor picture, it is not surprising that 2I yields both the root system
and the two factors in the automorphism group.

We noted earlier that the binary polyhedral spinor groups and the ADE-type
affine Lie algebras are connected via the McKay correspondence [28], for instance
the binary polyhedral groups (2T, 2O, 2I ) and the Lie algebras (E6, E7, E8)—for
these (12, 18, 30) is both the Coxeter number of the respective Lie algebra and the
sum of the dimensions of the irreducible representation of the polyhedral group.

However, the connection between (A3, B3, H3) and (E6, E7, E8) via Clifford
spinors does not seem to be known. In particular, we note that (12, 18, 30) is exactly
the number of rootsΦ in the 3D root systems (A3, B3, H3), which feeds through to the
binary polyhedral groups and via theMcKay correspondence all the way to the affine
Lie algebras. Our construction therefore makes deep connections between trinities
and puts the McKay correspondence into a wider framework, as shown in Table2
and Fig. 3. It is also striking that the affine Lie algebras and the 4D root systems
trinities have identical Dynkin diagram symmetries: D4 and E+

6 have triality S3, F4

and E+
7 have an S2 symmetry and H4 and E+

8 only have S1, but are intimately related
as explained in Sect. 4.

7 Group and Representation Theory with Clifford
Multivectors

The usual picture of orthogonal transformations on an n-dimensional vector space
is via n × n matrices acting on vectors, immediately establishing connections with
representations. The above spinor techniques are somewhat unusual; however, it is
easy to construct representations in this picture. Orthogonal transformations in the
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2n-dimensional Clifford algebra leave the original n-dimensional vector space invari-
ant; one can therefore consider various representation matrices acting on different
subspaces of the Clifford algebra such as—but not limited to—the original vector
space.

The scalar subspace of the Clifford algebra is one-dimensional. Double-sided
action of spinors R gives the trivial representation, since R̃1R = R̃ R = 1, and
likewise pinors A give the parity.

The double-sided action of spinors R on a vector x in the n-dimensional vector
space gives an n × n-dimensional representation, which is just the usual SO(n)

representation in terms of rotation matrices; similar applies to pinors and O(n). For
instance, for the spinor examples considered above,α1α2 andα2α3, the corresponding
rotation matrices with the spinors acting as R̃x R are

1

2

⎛

⎝
τ τ − 1 −1

1 − τ −1 −τ

−1 τ 1 − τ

⎞

⎠ and
1

2

⎛

⎝
τ 1 − τ −1

1 − τ 1 −τ

1 τ τ − 1

⎞

⎠ .

The characters χ(g) are obviously 0 and τ in these cases, and correspond to two
different conjugacy classes of the icosahedral group, as shown in Table3. For a
general spinor R = a0 + a1 I e1 + a2 I e2 + a3 I e3 one has

1

2

⎛

⎝
a20 + a21 − a22 − a23 −2a0a3 + 2a1a2 2a0a2 + 2a1a3
2a0a3 + 2a1a2 a20 − a21 + a22 − a23 −2a0a1 + 2a2a3

−2a0a2 + 2a1a3 2a0a1 + 2a2a3 a20 − a21 − a22 + a23

⎞

⎠ and 3a20 − a21 − a22 − a23 ,

so one can read off the character directly from the spinor components. If the spinors
were acting as Rx R̃ (or alternatively one considers α2α1 and α3α2), then the rotation
matrices would be given by

1

2

⎛

⎝
τ 1 − τ −1

τ − 1 −1 τ

−1 −τ 1 − τ

⎞

⎠ and
1

2

⎛

⎝
τ 1 − τ 1

1 − τ 1 τ

−1 −τ τ − 1

⎞

⎠ ,

with the same characters as before. One sees that the first example are 3-fold rotations
and the second are 5-fold rotations; swapping the action of the spinor changes to the
contragredient representation: if R is in 12C5 then R̃ is in 12C2

5 , and they both have
the same character τ—i.e. one exchanges the 3 and the 3̄ by this operation.

Table 3 Character table for the icosahedral group I .

I 1 20C3 15C2 12C5 12C2
5

1 1 1 1 1 1

3 3 0 −1 τ σ

3̄ 3 0 −1 σ τ

4 4 1 0 −1 −1

5 5 −1 1 0 0
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However, rather than restricting oneself to the n-dimensional vector space, one can
also define representations by 2n ×2n-matrices acting on the whole Clifford algebra.
Likewise, one can define 2(n−1) × 2(n−1)-dimensional representations as acting on
the even subalgebra. For instance, for the spinors considered above which have
components in (1, e1e2, e2e3, e3e1), multiplication with another spinor will reshuffle
these components (1, e1e2, e2e3, e3e1); this reshuffling can therefore be described by
a 4 × 4-matrix. For the examples used above, for the two specific spinors α1α2 and
α2α3 multiplying a generic spinor R = a4 + a1 I e1 + a2 I e2 + a3 I e3 from the left
reshuffles the components (a1, a2, a3, a4) with the matrices given as

1

2

⎛

⎜⎜⎝

−1 τ − 1 0 −τ

1 − τ −1 −τ 0
0 τ −1 τ − 1
τ 0 1 − τ −1

⎞

⎟⎟⎠ and
1

2

⎛

⎜⎜⎝

−τ 0 1 − τ −1
0 −τ −1 τ − 1

τ − 1 1 −τ 0
1 1 − τ 0 −τ

⎞

⎟⎟⎠ ,

with characters−2 and−2τ . Of course there is a corresponding set ofmatrices where
the spinor acts by right multiplication.

Thesematrices are part of a representation of the icosahedral group of the so-called
quaternionic type. Other polyhedral groups also have representations of quaternionic
type, which seems to be regarded as deeply significant yet appears to be poorly under-
stood. Since the 3D unit spinors (1, e1e2, e2e3, e3e1) are isomorphic to the quaternion
algebra, the appearance of quaternionic representations is not very surprising from
a Clifford algebra point of view. In fact, the above construction constructs the rep-
resentations of quaternionic type in a uniform way, for any of the polyhedral groups
(though irreducibility is a separate issue). The existence of these representations is
therefore linked to the existence of the Clifford algebras and the structure of the Spin
groups. These representations are therefore also much clearer in the Clifford algebra
framework.

One can easily verify the quaternionic nature of the above representation and the
corresponding cases for the other polyhedral groups. Representations of quaternionic
type χ are characterised by ||χ ||2 = 1

|G|
∑

g∈G |χ(g)|2 = 4; with real and complex
type representations having 1 and 2 on the right-hand side, respectively. It is straight-
forward to calculate the corresponding 120 4 × 4 matrices and confirm that indeed
||χ ||2 = 480/120 = 4, in analogy with the two computational examples above. In
fact it is easily shown that the representation matrix that belongs to a general spinor
R = b4 + b1 I e1 + b2 I e2 + b3 I e3 is given by

⎛

⎜⎜⎝

b4 b3 −b2 b1
−b3 b4 b1 b2
b2 −b1 b4 b3

−b1 −b2 −b3 b4

⎞

⎟⎟⎠ and χ = 4b4,

such that the character is just given by four times the scalar component of the spinor.
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The more general ways of constructing representations outlined above hold in
any dimension, and because of the characterisation of Clifford algebras as matrix
algebras over (R,C,H), one expects these to yield a mixture of representations of
real, complex and quaternionic type.

8 Conclusion

In this paper, we have discussed a Clifford algebra framework for certain discrete
groups, based on the simple prescription for performing reflections in Clifford alge-
bra. In fact, the Clifford algebra framework is more natural, as the existence of a
quadratic form on the vector space considered in the context of root systems means
that the corresponding Clifford algebra is always implicit. The reflection symmetries
are the building blocks for many discrete symmetries that are interesting for applica-
tions also in mathematical physics and biology. However, the framework itself has
led to new insights in pure mathematics, as regards the interplay of the geometry of
dimensions three and four, Trinities and theMcKay correspondence, as well as group
and representation theory. It remains to explore the implications of these results in
pure and applied mathematics; this has been begun in pure mathematics in [6, 7], but
there could also be interesting consequences in high energy physics, where 4D root
systems are ubiquitious in String Theory, M-Theory and Grand Unified Theories. In
particular, recently I was also able to derive the E8 root system consisting of 240
roots via an analogous Clifford construction of a double cover of the full icosahedral
group H3 of order 120 [11, 12] and using a certain reduced inner product due to
Wilson [33].

Acknowledgments I would like to thank Reidun Twarock, Anne Taormina, David Hestenes,
Anthony Lasenby, John Stillwell, Jozef Siran, Robert Wilson and Ben Fairbairn.
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Möbius Inversion in Suzuki Groups
and Enumeration of Regular Objects

Martin Downs and Gareth A. Jones

Abstract We compute the Möbius function for the subgroup lattice of the simple
Suzuki group Sz(q), and use it to enumerate regular objects such asmaps, hypermaps,
dessins d’enfants and surface coverings with automorphism groups isomorphic to
Sz(q).

1 Introduction

Hall’s theory of Möbius inversion in groups [13] allows one to enumerate various
objects associated with a given finite group G. In particular, it shows that the (nec-
essarily finite) number nΓ (G) of normal subgroups N of a finitely generated group
Γ with Γ/N ∼= G is given by

nΓ (G) = 1

|Aut G|
∑

H≤G

μG(H)|Hom(Γ, H)|, (1)

where μG is the Möbius function on the lattice of subgroups of G, defined recur-
sively by ∑

K≥H

μG(K ) = δH,G . (2)

(Here δH,G is the Kronecker delta function, equal to 1 or 0 as H = G or H < G.)
This equation arises from noting that

nΓ (G) = |Epi(Γ, G)/Aut G| = |Epi(Γ, G)|/|Aut G|,
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where Aut G acts semi-regularly by composition on the set Epi(Γ, G) of epimor-
phisms Γ → G, and then applying Möbius inversion to the equation

|Hom(Γ, G)| =
∑

H≤G

|Epi(Γ, H)|. (3)

For example, if Γ = Fk , the free group of finite rank k, then (1) becomes

nΓ (G) = 1

|Aut G|
∑

H≤G

μG(H)|H |k, (4)

giving the number dk(G) of orbits of Aut G on generating k-tuples for G. A similar
principle applies to the enumeration of torsion-free normal subgroups of Γ with
quotient G: one simply counts the smooth homomorphisms and epimorphisms Γ →
H , that is, those preserving the orders of torsion elements.

In certain categories C, the objects O can be identified with the permutation rep-
resentations of a particular group Γ , and the regular objects (the connected objects
with maximum symmetry) correspond to the representations of Γ as a regular per-
mutation group G ∼= AutO , or equivalently to the normal subgroups N of Γ with
Γ/N ∼= G. For instance, in the case of coverings of a suitably ‘nice’ topological
space X we take Γ = π1X , the fundamental group of X . For maps or hypermaps,
we take Γ to be a free product V4 ∗ C2 or C2 ∗ C2 ∗ C2, and for oriented maps
or hypermaps its even subgroup C∞ ∗ C2 or F2. For example d2(G), as given by
Eq. (4), is

• the number of isomorphism classes of orientably regular hypermaps with auto-
morphism group G;

• the number of regular unbranched coverings of the sphere minus three points (or
of the torus minus one point) with covering group G;

• the number of regular dessins (in Grothendieck’s terminology [11]) with automor-
phism group G.

Implementing Eq. (1) for a specific group G depends on knowing the value of
μG(H) for each subgroup H ≤ G. Sometimes, though, nΓ (G) can be calculated
without directly using the Möbius function of G. For instance, in the case where G
is a Suzuki group Sz(2e), nΓ (G) has been calculated for orientably regular maps of
type {4, 5} by Silver and the second author [19], and for regular maps and polytopes
by Hubard and Leemans [15] and by Kiefer and Leemans [22]. These results were
achieved without the knowledge of the complete Möbius function; essentially, in
each case the authors used a restricted form of Möbius inversion, concentrating
mainly on subgroups H ∼= Sz(2 f ) where f divides e. The aim of this paper is to
use the case G = Sz(2e) to illustrate the advantage of invoking Hall’s theory in
full; the above results are recovered in a more unified manner; more importantly, the
theory allows the enumerations of a significantly broader range of regular objects
with automorphism group G, compared with those previously known. In doing this,
we first have to determine μG , and a full derivation of this will be presented in this
paper.
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The Suzuki groupsG = Sz(q) = 2B2(q), where q = 2e for some odd e > 1, form
a family of finite simple groups. These groups, discovered in 1960 by Suzuki [29,
30], are important for several reasons: their low dimension, as subgroups of GL4(q),
and their doubly transitive action on Tits ovoids, make them objects of great interest
in finite geometry [25] and in the theory of finite permutation groups [16, Sect. XI.3];
moreover, as the only non-abelian finite simple groups of order coprime to 3 they
often need to be treated as exceptional cases when proving theorems by inspection,
as in the work of Breuillard, Green and Tao [1] on expanders.

After explaining the connections between certain categories C and groups Γ in
Sect. 2, and discussing various techniques for evaluating |Hom (Γ, H)| in Sect. 3, we
describe the Suzuki groups G = Sz(q) and their subgroups H in Sect. 4. We give
the values of μG(H) in Table1 in Sect. 4.4, with a proof in Sects. 5–7. Specifically,
this table gives the values of μG(H) and |NG(H)| for a set T of representatives H
of the conjugacy classes of subgroups of G on which μG can take non-zero values.
This information is sufficient for applications of Eq. (1): since |Aut G| = e|G|, this
now takes the form

nΓ (G) = 1

e

∑

H∈T

μG(H)|Hom(Γ, H)|
|NG(H)| . (5)

The second aim of this paper is to apply this equation to enumerate regular objects
in various categories with automorphism groups isomorphic to Sz(q). For example,
it follows that for the Suzuki groups G we have

d2(G) = 1

e

∑

f |e
μ

(
e

f

)
2 f (24 f − 23 f − 9),

whereμ is the classicalMöbius functiononN, givenbyμ(n) = (−1)k ifn is a product
of k distinct primes, and μ(n) = 0 otherwise. The value of this formula therefore
gives the number of regular objects with automorphism group G itemised earlier.
Similar formulae, enumerating regular maps and hypermaps of various types, normal
subgroups of Hecke groups, and regular coverings of orientable and non-orientable
surfaces, are given in Sect. 8, and in more detail for the smallest simple Suzuki group
Sz(8) in Sect. 9.

2 Categories and Groups

We will consider some categories C for which there is a group Γ = ΓC such that
the set R(G) = RC(G) of regular objects in C with automorphism group G is in
bijective correspondence with the set N (G) = NΓ (G) of normal subgroups of Γ

with quotient group G (see [18] for further details). We will call Γ the parent group
of C. In particular, if Γ is finitely generated and G is finite then these two sets have
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the same finite cardinality

r(G) = rC(G) := |RC(G)| = n(G) = nΓ (G) := |NΓ (G)|, (6)

so that Eq. (1) gives

rC(G) = 1

|Aut G|
∑

H≤G

μG(H)|Hom(Γ, H)|. (7)

2.1 Maps, Hypermaps and Groups

A map M is regular (in the category M of all maps) if its automorphism group
G = AutM = AutMM acts transitively on vertex-edge-face flags, or equivalently
on the faces of the barycentric subdivision B of M . In this case G is generated
by automorphisms ri (i = 0, 1, 2) which change (in the only possible way) the
i-dimensional component of a particular flag, while preserving its j-dimensional
components for each j 	= i . If M has type {m, n} in the notation of [3, Chap.
8], meaning that its faces are all m-gons and its vertices all have valency n, these
generators satisfy

r2i = (r0r1)
m = (r0r2)

2 = (r1r2)
n = 1.

It follows that there is an epimorphism θ : Γ → G, Ri 
→ ri , where

Γ = ΓM = 〈R0, R1, R2 | R2
i = (R0R2)

2 = 1〉, (8)

so M determines a normal subgroup N = ker θ of Γ with Γ/N ∼= G. Conversely,
each such normal subgroupdetermines a regularmapM withAutM ∼= G. Two such
maps are isomorphic if and only if they correspond to the same normal subgroup, so
the setR(G) = RM(G) of regular maps with automorphism group G is in bijective
correspondence with the set N (G) = NΓ (G). If G is finite then the preceding
argument gives

rM(G) = 1

|Aut G|
∑

H≤G

μG(H)|Hom(Γ, H)|. (9)

This group ΓM, a free product of its subgroups 〈R0, R2〉 ∼= V4 and 〈R1〉 ∼= C2,
can be regarded as the extended triangle groupΔ[∞, 2,∞], generated by reflections
in the sides of a hyperbolic triangle with angles 0, π/2, 0. Other triangle groups play
a similar role for related categories. For example, the extended triangle group

Γ = Δ[n, 2, m] = 〈R0, R1, R2 | R2
i = (R0R1)

m = (R0R2)
2 = (R1R2)

n = 1〉
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is the parent group for maps of all types {m ′, n′} dividing {m, n} (meaning that m ′
divides m and n′ divides n). For maps of type {m, n} one must restrict attention to
normal subgroups N of Γ such that R0R1 and R1R2 have images of orders m and n
in Γ/N .

For the category H of hypermaps, where hyperedges may be incident with any
number of hypervertices and hyperfaces, we delete the relation (R0R2)

2 = 1 from
the presentation (8), giving the group

ΓH = Δ[∞,∞,∞] ∼= C2 ∗ C2 ∗ C2.

For hypermaps of types dividing (p, q, r), we use the extended triangle group

Δ[p, q, r ] = 〈R0, R1, R2 | R2
i = (R0R1)

r = (R0R2)
q = (R1R2)

p = 1〉.

The parent groups for the categoriesM+ andH+ of oriented maps and hypermaps
are the orientation-preserving subgroups of index 2 in ΓM and ΓH, generated by the
elements X = R1R0, Y = R0R2 and Z = R2R1 satisfying XY Z = 1. These are the
triangle groups

ΓM+ = Δ(∞, 2,∞) = 〈X, Y, Z | Y 2 = XY Z = 1〉 ∼= C∞ ∗ C2

and

ΓH+ = Δ(∞,∞,∞) = 〈X, Y, Z | XY Z = 1〉 ∼= C∞ ∗ C∞ ∼= F2.

For oriented maps of types dividing {m, n}, or oriented hypermaps of types dividing
(p, q, r), we use the triangle groups Δ(n, 2, m) and Δ(p, q, r), restricting attention
to torsion-free normal subgroups for maps and hypermaps of these exact types.
Similarly, for the categoriesMk andM

+
k of maps and of oriented maps in which all

vertices have valency dividing k we use the parent groups ΓMk = Δ[k, 2,∞] and
ΓM+

k
= Δ(k, 2,∞) ∼= Ck ∗ C2. (See [20] for further background.)

2.2 Reflexibility

The regular objects in the categories M+ and H+ are often referred to as orientably
regular, since they need not be regular as objects in the larger categories M and
H. Let H be an orientably regular hypermap of type (p, q, r), corresponding to a
normal subgroup N of ΓH+ = F2 with F2/N ∼= AutH+H ∼= G for some group G.
Then the following are equivalent:

• H is regular in the category H of all hypermaps;
• H has an orientation-reversing automorphism;
• N is normal in ΓH = C2 ∗ C2 ∗ C2;
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• some (and hence each) pair of generators from the canonical generating triple
x, y, z for G is inverted by an automorphism of G.

If these conditions hold we say that H is reflexible; otherwise it is chiral, and H
and its mirror image H form a chiral pair, isomorphic in H but not in H+.

IfH is reflexible then G̃ := AutHH ∼= ΓH/N is a semidirect product of G by a
complement C2 generated by the image ri ∈ G̃ of any Ri (i = 0, 1, 2). The elements
of G̃ \ G act by conjugation on the normal subgroup G; if one of them induces an
inner automorphism then they all do, and we say that H is inner reflexible. In this
case, ri induces conjugation by some g ∈ G, so c := ri g centralises G and hence c2 is
in the centre Z(G) of G. If Z(G) is trivial then G̃ = G×C whereC = 〈c〉 ∼= C2, and
there is a non-orientable regular hypermap H̃ = H /C ∈ RH(G) with orientable
double cover H ; this gives a monomorphism H 
→ H̃ , from the inner reflexible
maps inRH+(G) toRH(G). If, in addition, G has no subgroup of index 2, then each
hypermap in RH(G) is non-orientable, with an inner reflexible orientable double
cover inRH+(G), so this monomorphism is a bijection. This proves the first part of
the following result; the second part is obvious:

Proposition 1 (a) For any finite group G with trivial centre and no subgroup of
index 2, the inner reflexible hypermaps in RH+(G) are the orientable double covers
of the hypermaps in RH(G); there are rH(G) of them.

(b) If, in addition, Out G has odd order, then every reflexible hypermap in RH+(G)

is inner reflexible, and there are rH(G) of them.

Every non-abelian finite simple group G satisfies (a), and the Suzuki groups also
satisfy (b) (see Sect. 4.2(2)). The functionH 
→ H̃ preserves types of hypermaps,
so the above proposition also applies to maps.

2.3 Covering Spaces

Under suitable conditions (namely, that X is path connected, locally path con-
nected, and semilocally simply connected [27, Chap. 13]), the equivalence classes
of unbranched coverings Y → X of a topological space X form a category C in
which the connected objects correspond to the conjugacy classes of subgroups of
the fundamental group Γ = π1X ; among these, the regular coverings correspond
to the normal subgroups N of Γ , with covering group isomorphic to Γ/N . If, in
addition, X is a compact Hausdorff space, then Γ is finitely generated [27, p. 500],
so one can use the methods described earlier to count regular coverings of X with
a given finite covering group. In particular, this applies if X is a compact manifold
or orbifold. Indeed, the categories of maps and hypermaps described above can be
regarded as obtained in this way from suitable orbifolds X , such as a triangle with
angles π/p, π/q, π/r for hypermaps of type dividing (p, q, r), or a sphere with
three cone-points of orders p, q, r in the oriented case. Similarly, Grothendieck’s
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dessins d’enfants [10, 11] are the finite coverings of a sphere minus three points, so
their parent group is its fundamental group F2.

3 Counting Homomorphisms

In order to apply this method to a specific pair of groups Γ and G, one needs to
be able to count homomorphisms Γ → H for certain subgroups H ≤ G. Given
a presentation for Γ with generators Xi and defining relations R j (Xi ) = 1, this
amounts to counting the solutions (xi ) in H of the equations R j (xi ) = 1. For certain
groups Γ , such as free products of cyclic groups, this calculation is straightforward;
in some other cases, the character table of H gives this information, as illustrated
by the following three theorems, the first of which is due to Frobenius [8] (see [28,
Theorem 7.2.1] for a proof of a generalisation of this).

Theorem 2 Let Ci (i = 1, 2, 3) be conjugacy classes in a finite group H. Then the
number of solutions of the equation x1x2x3 = 1 in H, with xi ∈ Ci for i = 1, 2, 3,
is given by the formula

|C1||C2||C3|
|H |

∑

χ

χ(x1)χ(x2)χ(x3)

χ(1)
(10)

where xi ∈ Ci and χ ranges over the irreducible complex characters of H.

If Γ is the triangle group

Δ(m1, m2, m3) = 〈X1, X2, X3 | Xm1
1 = Xm2

2 = Xm3
3 = X1X2X3 = 1〉

of type (m1, m2, m3) for some integers mi , then |Hom(Γ, H)| can be found by
summing (10) over all choices of triples of conjugacy classes Ci of elements of
orders dividing mi . Similarly, the number of smooth homomorphisms Γ → H can
be found by restricting the summation to triples of classes of elements of order equal
to mi .

When Γ is an orientable surface group, that is, the fundamental group

Πg = π1Sg = 〈Ai , Bi (i = 1, . . . , g) |
g∏

i=1

[Ai , Bi ] = 1〉

of a compact orientable surfaceSg of genus g ≥ 1, with [a, b] denoting the commu-
tator a−1b−1ab, the following theorem of Frobenius [8] and Mednykh [26] is useful
(see [17] for applications):

Theorem 3 In any finite group H, the number of solutions (ai , bi ) of the equation∏g
i=1[ai , bi ] = 1 is given by the formula
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|H |2g−1
∑

χ

χ(1)2−2g (11)

where χ ranges over the irreducible complex characters of H.

The formula in (11) gives |Hom(Πg, H)| in terms of the degrees χ(1) of the
irreducible characters of H . When Γ is a non-orientable surface group

Π−
g = 〈Ai (i = 1, . . . , g) |

g∏

i=1

A2
i = 1〉

of genus g ≥ 1, the corresponding result, due to Frobenius and Schur [9], is as
follows:

Theorem 4 In any finite group H, the number of solutions (ai ) of the equation∏g
i=1 a2

i = 1 is given by the formula

|H |g−1
∑

χ

c g
χ χ(1)2−g (12)

where χ ranges over the irreducible complex characters of H.

Here cχ = |H |−1 ∑
h∈H χ(h2) is the Frobenius-Schur indicator of χ , equal to

1,−1 or 0 as χ is respectively the character of a real representation, the real character
of a non-real representation, or a non-real character.

4 The Suzuki Groups and Their Subgroups

For the rest of this paper, G will denote a Suzuki group Sz(q). This section is based
mainly on Suzuki’s description of these groups in [30]; see also [16, Sect. XI.3]
and [31, Sect. 4.2] for further information. We have largely followed Suzuki’s nota-
tion for elements and subgroups, except that we use the symbol F for the subgroup
denoted in [30] by H (a Frobenius group of order q2(q − 1)), while we use H for an
arbitrary subgroup of G. Also, our notation for certain cyclic subgroups, namely A1

and A2 in Sect. 4.1, differs from that used by Suzuki; our usage better respects the
subgroup structure.

The method used for calculating the values of μG is as follows. Hall [13, The-
orem 2.3] showed that, in any finite group G, a subgroup H satisfies μG(H) = 0
unless H is an intersection of maximal subgroups of G. In our case, with G = Sz(q),
instead of directly determining the set I of such intersections, we first describe, in
Sect. 4.3.3, a more convenient setS of subgroups of G such that every subgroup in
I is conjugate to a subgroup in S (see Theorem 6). Since μG is invariant under
conjugation, it sufficient to find its values onS ; then the set T appearing in Eq. (5)
is simply the subset of S on which μG can take non-zero values.
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For each pair of subgroups H, K ∈ S , we determine in Table2 (Sect. 7) the
number N (H ; K ) of conjugates of K containing H . Since μG(K ) = 0 for all
K /∈ S , Eq. (2) gives

μG(H) = −
∑

H<K∈S
N (H ; K )μG(K ) (13)

where H ∈ S \ {G}. This allows μG(H) to be calculated recursively, starting with
μG(G) = 1 and then using the values of μG(K ) for the subgroups K ∈ S properly
containing H .

4.1 The Definition of the Suzuki Groups

Let F = F(e) be the finite field Fq of q = 2e elements for some odd e ≥ 1, and let
θ be the automorphism α 
→ αr of F where r = √

2q = 2(e+1)/2, so that θ2 is the
Frobenius automorphism α 
→ α2.

For any α, β ∈ F let (α, β) denote the 4 × 4 matrix

(α, β) =

⎛

⎜⎜⎝

1
α 1

αθ+1 + β αθ 1
αθ+2 + αβ + βθ β α 1

⎞

⎟⎟⎠ .

Since (α, β)(γ, δ) = (α + γ, αγ θ + β + δ), these matrices (α, β) form a group
Q = Q(e) of order q2, with identity element (0, 0).

For each κ ∈ F
∗ := F \ {0} let aκ denote the 4× 4 diagonal matrix with diagonal

entries ζi where ζ θ
1 = κ1+θ , ζ θ

2 = κ , ζ3 = ζ−1
2 and ζ4 = ζ−1

1 . These matrices form a
cyclic group A0 = A0(e) ∼= F

∗ of order q − 1. Since

a−1
κ (α, β)aκ = (ακ, βκ1+θ ),

the group F = F(e) generated by Q and A0 in GL4(q) is a semidirect product of a
normal subgroup Q by a complement A0, so it has order q2(q − 1).

We define G = G(e) to be the subgroup of GL4(q) generated by F and the 4× 4
matrix with entries 1 on the minor diagonal and 0 elsewhere (denoted by τ in [30]).
This is the Suzuki group associated with Fq , usually denoted by Sz(q) or 2B2(q). It
is, in fact, the subgroup of the symplectic group Sp4(q) = B2(q) fixed by a certain
automorphism of order 2.

In its natural action g : [v] 
→ [vg] on the projective space P
3(F), G acts as a

doubly transitive permutation group of degree q2 + 1 on the ovoid

Ω = Ω(e) = {[αθ+2 + αβ + βθ , β, α, 1] | α, β ∈ F} ∪ {∞} ⊂ P
3(F),
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where

∞ := [1, 0, 0, 0] ∈ P
3(F).

The subgroup G∞ of G fixing ∞ is F . This acts as a Frobenius group on
Ω \ {∞}: its Frobenius kernel is Q, acting regularly on Ω \ {∞}, and A0 is a
Frobenius complement G∞,ω, fixing a second point

ω := [0, 0, 0, 1] ∈ Ω

and acting semiregularly on Ω \ {∞, ω}. Thus the stabiliser of any three points in
Ω is the identity subgroup I , so G acts on Ω as a Zassenhaus group.

There are cyclic subgroups of G of mutually coprime odd orders

2e ± 2(e+1)/2 + 1 = q ± r + 1,

contained in Singer subgroups of GL4(q): note that since r = √
2q , it follows that

q + r + 1 and q − r + 1 are coprime and

(q + r + 1)(q − r + 1) = q2 + 1,

which divides q4 − 1. Take any subgroup of order a1(e) := q + r + 1 or q − r + 1,
depending on which is divisible by 5, and denote it by A1 = A1(e); similarly take
any subgroup of order a2(e) = q + r + 1 or q − r + 1 not divisible by 5, and denote
it by A2 = A2(e). (This rule for indexing A1 and A2 differs from that used in [16,
30], where the rule is that |A1(e)| > |A2(e)| for all e.)

4.2 Basic Properties of Suzuki Groups

Here we record some basic properties of G; see [16, 30] for proofs.

1. G has order q2(q2 + 1)(q − 1), and is simple if e > 1. (The group G(1) is
isomorphic to AGL1(5), of order 20.)

2. Aut G is a semidirect product of Inn G ∼= G by a cyclic group of order e acting
as the Galois group GalF on matrix entries, so |Aut G| = e|G|.

3. Any two subgroups of G conjugate to Q intersect trivially, and any two subgroups
conjugate to F have their intersection conjugate to A0.

4. Q is a Sylow 2-subgroup of G of order q2 and of exponent 4. The centre Z of Q
consists of the identity and the involutions of Q (the matrices (0, β) for β ∈ F),
with Z and Q/Z elementary abelian of order q.

5. Z A0
∼= F/Z ∼= AGL1(q), with A0 acting regularly by conjugation on the non-

identity elements of Z and of Q/Z .
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6. The involutions of G are all conjugate, as are the cyclic subgroups of order 4;
however an element of order 4 is not conjugate to its inverse.

7. All elements of G except those in a conjugate of Q have odd order. Each maximal
cyclic subgroup of G of odd order is conjugate to A0, A1 or A2; the intersection
of any two of them is trivial.

8. A non-identity element of G has two fixed points on Ω , one fixed point, or none
as it is conjugate to an element of A0, of Q or of Ai for i = 1, 2, or, equivalently,
as it has order dividing q − 1, 4 or q2 + 1.

4.3 Some Particular Subgroups

Here we list some particular subgroups of G, in the anticipation that any subgroup
H not conjugate to a member of the list satisfies μG(H) = 0, and can therefore be
ignored in the enumerations mentioned in Sect. 1.

4.3.1 Subgroups Associated with Subfields

If f divides e then restricting matrix entries to the subfield F( f ) of F of order 2 f

yields a subgroup G( f ) = Sz(2 f ) of G. This acts doubly transitively, with degree
22 f + 1, on the subset Ω( f ) of Ω defined over F( f ). Since the point ∞ is defined
over the prime field F(1), its stabiliser in G( f ) is F( f ) := F ∩ G( f ), which acts
faithfully on Ω( f ) \ {∞} as a Frobenius group with kernel Q( f ) := Q ∩ G( f ) =
{(α, β) | α, β ∈ F( f )} and complement A0( f ) := A0 ∩ G( f ) = {aκ | κ ∈ F( f )∗}.
(Note that since r and r + 1 are coprime to q − 1, we have aκ ∈ G( f ) if and only
if κ ∈ F( f )∗.) Let Z( f ) denote the centre of Q( f ), an elementary abelian group of
order 2 f . If f and h are divisors of e, and f divides h, then

G( f ) ≤ G(h), F( f ) ≤ F(h), Q( f ) ≤ Q(h), Z( f ) ≤ Z(h), A0( f ) ≤ A0(h).

For each odd integer f ≥ 1, let a1( f ) and a2( f ) denote the unique member of
the pair 2 f ± 2( f +1)/2 + 1 which respectively is and is not divisible by 5. It is easy
to show that

ai ( f ) = 2 f − (−1)iχ( f )2( f +1)/2 + 1

for i = 1, 2, where χ( f ) := 1 or −1 as f ≡ ±1 or ±3 (mod 8). If e is an odd
multiple of f , a simple argument using modular arithmetic [7, Sect. 2.3.1] shows
that ai ( f ) divides ai (e) for i = 1, 2. This implies that for i = 1, 2, the cyclic group
Ai (e) of G has a subgroup Ai ( f ) of order ai ( f ) for each f dividing e; furthermore, if
f |h|e then Ai ( f ) ≤ Ai (h). Note, however, that Ai ( f ) is not necessarily a subgroup
of G( f ), though it is conjugate to such a subgroup.
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We have now identified seven families of subgroups of G, each forming a lattice
isomorphic to the lattice Λ(e) of divisors of e, a fact that is useful in evaluating μG .
In the next subsection we will identify three others.

4.3.2 The Normalisers of Some Subgroups

The normaliser B0 of A0 in G is a dihedral group of order 2(q −1); it is the subgroup
G{∞,ω} of G preserving the subset {∞, ω} ofΩ , with its subgroup A0 fixing these two
elements and its involutions transposing them. Let us choose a particular involution
c ∈ B0 and, for each f dividing e, define

B0( f ) := 〈A0( f ), c〉 ≤ B0,

a dihedral group of order 2(2 f − 1) (so B0(1) ∼= C2). If f > 1, then B0( f ) is
self-normalising whereas the normaliser of A0( f ) is B0.

For i = 1, 2 the normaliser Bi of Ai in G is a semidirect product of Ai and a
cyclic group of order 4 generated by an element ci satisfying c−1

i aci = a2e
for all

a ∈ Ai . For each f dividing e let

Bi ( f ) := 〈Ai ( f ), ci 〉 ≤ Bi ,

so |Bi ( f )| = 4ai ( f ), with B2(1) ∼= C4. If i = 1 or f > 1 then Bi ( f ) is self-
normalising, whereas the normaliser of Ai ( f ) is Bi .

By their construction, these groups Bi ( f ) are (abstract) Frobenius groups of
degree ai ( f ), and they satisfy Bi ( f ) ≤ Bi (h) for i = 0, 1 and 2 whenever f | h | e.

4.3.3 An Important Set of Subgroups

For each f dividing e, we have defined the following subgroups of G, with the
symbols ( f ) usually omitted when f = e:

G( f ), F( f ), Q( f ), Z( f ), Bi ( f ), Ai ( f ) (i = 0, 1, 2). (14)

LetS denote the set consisting of the subgroups in (14) for all f dividing e. The con-
jugacy class in G of any of these groups will be denoted by changing the appropriate
italic capital letter to the corresponding script capital; thus G ( f ),F , . . . denote the
conjugacy classes containing G( f ), F , and so on.

We note the following coincidences, conjugacies (denoted by ∼) and isomor-
phisms:

G(1) ∼ B1(1) ∼= AGL1(5), F(1) = Q(1) ∼ B2(1) ∼= C4,

B0(1) ∼ Z(1) ∼= C2, A2(1) = A0(1) = I.
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In addition, if 3 divides e then

B1(1) = B1(3), A1(1) = A1(3) ∼= C5.

Apart from these, any two distinct terms in (14) represent non-conjugate subgroups
of G. In view of their special role in the following calculations, we will denote
the class A2(1) = A0(1) by C1, the class B0(1) = Z (1) by C2, and the class
F (1) = Q(1) = B2(1) by C4, since these consist of the cyclic subgroups of G of
orders 1, 2 and 4.

4.4 The Möbius Function of a Suzuki Group

We can now present our main result in the form of Table1, which gives the non-zero
values of μG(H) for the subgroups H of G; any subgroups H not appearing in
Table1 (such as Q( f ) and Z( f ) for f > 1) satisfy μG(H) = 0, and can therefore
be ignored in applying equations such as (1).

Because of the conjugacies listed in Sect. 4.3.3, some conjugacy classes appear
‘under an alias’: for instanceF (1) appears asB2(1), and if 3 divides e thenG (1) and
B1(1) appear asB1(3). In the second column, ai ( f ) = 2 f − (−1)iχ( f )2( f +1)/2+1
for i = 1, 2 (see Sect. 4.3.1). In the third column, the values of |NG(H)| are given
for applications of Eq. (5). In the final column, μ is the classical Möbius function on
N, defined by

∑

m|n
μ(m) = δn,1

Table 1 Information about the subgroups H with non-zero values for μG(H)

Conjugacy class of H |H | |NG(H)| μG(H)

G ( f ), 1 < f | e 22 f (22 f + 1)(2 f − 1) |H | μ(e/ f )

F ( f ), 1 < f | e 22 f (2 f − 1) |H | −μ(e/ f )

B0( f ), 1 < f | e 2(2 f − 1) |H | −μ(e/ f )

A0( f ), 1 < f | e 2 f − 1 2(q − 1) 2 (2e−1)
(2 f −1)

μ(e/ f )

B1( f ), 1 < f | e 4a1( f ) |H | −μ(e/ f )

B2( f ), 1 < f | e 4a2( f ) |H | −μ(e/ f )

B2(1) = C4 4 2q −2eμ(e)

B0(1) = C2 2 q2 −22e−1μ(e)

A0(1) = C1 1 |G| |G|μ(e)
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for all n ∈ N, with the consequence thatμ(n) = (−1)k or 0 as n is or is not a product
of k distinct primes for some k ≥ 0. Our aim is to show that the final column of this
table is correct, by proving the following theorem:

Theorem 5 Let G be a Suzuki group Sz(2e) for some odd e > 1, and let H be a
subgroup of G. If μG(H) 	= 0 then μG(H) is as given by Table1.

5 Subgroups H with µG(H) �= 0

As a first step towards proving Theorem 5, in this section we find some necessary
conditions for a subgroup H of G to satisfy μG(H) 	= 0.

5.1 Maxint Subgroups

If G is any finite group, we shall say that a subgroup H of G is maxint if it is the
intersection of a set of maximal subgroups of G (when H = G this set is empty). The
set of maxint subgroups of G will be denoted byI . Hall proved in [13, Theorem 2.3]
that if H /∈ I then μG(H) = 0, so in determining μG one may restrict attention
to the subgroups H ∈ I . Since μG is preserved under conjugacy, it is sufficient to
consider a set of representatives of the conjugacy classes of subgroups in I . The
main step in the proof of Theorem 5 is to show that if G is a Suzuki group G(e) then
the set S defined in Sect. 4.3.3 contains such a set of representatives:

Theorem 6 If H ∈ I then H is conjugate in G to a subgroup in S , that is, I is
contained in the union of the conjugacy classes

G ( f ), F ( f ), Q( f ), Z ( f ), Bi ( f ), Ai ( f )

of subgroups of G, where f divides e and i = 0, 1 or 2.

The rest of this section is devoted to a proof of this theorem. We will use the
following criterion for a subgroup H of G to be in I . Let M denote the set of
all maximal subgroups of G, and let M (H) denote the set of those containing a
particular subgroup H of G. Then the following, valid for any finite group G, is
evident:

Lemma 1 Let H ≤ G. Then

H ≤
⋂

M∈M (H)

M,

with equality if and only if H ∈ I .
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5.2 Maximal Subgroups

We will systematically apply Lemma 1 to the various subgroups H of G, using the
following result:

Proposition 7 The set M of maximal subgroups of G is given by

M =
⋃

e/ f prime

G ( f ) ∪ F ∪ B0 ∪ B1 ∪ B2.

This result is an immediate consequence of the following classification, due to
Suzuki [30, Theorems 9 and 10]:

Proposition 8 If H ≤ G then either H ∈ G ( f ) for some f dividing e, or H is a
subgroup of a group in F or in Bi for some i = 0, 1 or 2.

In the first case H is either simple or isomorphic to G(1) ∼= AGL1(5), and in the
second case H is solvable. Finite solvable groups H all satisfyHall’s theorems [12] on
the existence and conjugacy ofHallπ -subgroups for any setπ of primes, generalising
Sylow’s theorems for single primes. We will use this fact several times, mainly with
π the set 2′ of odd primes.

Since G( f ) ∈ S for each f dividing e, it follows from Proposition 8 that, in
proving Theorem 6, it is sufficient to assume that H is a subgroup of a group in F
or Bi for i = 0, 1 or 2. We will deal with these cases in turn.

In preparation for applying Lemma 1 in the first case, we will consider how the
various maximal subgroups of G intersect F .

5.3 Point-Stabilisers in Maximal Subgroups

Recall that F is the stabiliser in G of the point ∞ ∈ Ω . If H ≤ F then

⋂

M∈M (H)

M =
⋂

M∈M (H)

(M ∩ F),

so in applyingLemma1 to H one can restrict attention to the stabilisers M∞ = M∩F
of ∞ for the various maximal subgroups M of G. The following result describes the
possibilities for these stabilisers.

Lemma 2 Let M be a maximal subgroup of G.

1. If M = F g ∈ F , then M ∩ F = F or M ∩ F = G∞,∞g ∈ A0 as g ∈ F or not.
2. If M = G( f )g ∈ G ( f ) for some f |e, then M ∩ F = F( f )g ∈ F ( f ) or

M ∩ F = I ∈ C1 as g ∈ G( f )F or not.
3. If M ∈ B0 then M ∩ F ∈ A0 ∪ C1 ∪ C2.
4. If M ∈ Bi for i = 1, 2 then M ∩ F ∈ C1 ∪ C2 ∪ C4.
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In order to prove the second part, we need the following lemma:

Lemma 3 If f divides e then G( f ) acts semi-regularly on Ω \ Ω( f ).

Proof By Sect. 4.2(8), a non-identity element of G fixes 2, 1 or 0 elements ofΩ as it
has order dividing q −1, 4 or q2 +1. Similarly, a non-identity element of G( f ) fixes
2, 1 or 0 elements of Ω( f ) as it has order dividing 2 f − 1, 4 or 22 f + 1 respectively.
Since 2 f − 1 divides q − 1, and 22 f + 1 divides q2 + 1, a non-identity element of
G( f ) can have no further fixed points in Ω \ Ω( f ). Thus all orbits of G( f ) on this
set are regular, with point-stabilisers G( f ) ∩ Gα = I for α ∈ Ω \ Ω( f ). ��
Proof We can now prove Lemma 2. The maximal subgroups M of G are given by
Proposition 7.

(1) This part is trivial, since F and M are the stabilisers in G of ∞ and ∞g, and G
is doubly transitive on Ω .

(2) If M = G( f )g ∈ G ( f ) then Lemma 3 shows that M acts doubly transitively on
Ω( f )g, and semiregularly on its complement. Thus M ∩ F = F( f )g or I as
∞ ∈ Ω( f )g or not, that is, as g ∈ G( f )F or not.

(3) Each M ∈ B0 is the subgroup G{α,β} of G preserving an unordered pair {α, β} ⊂
Ω . If ∞ /∈ {α, β} then since Gα,β,∞ = I we have |M ∩ F | ≤ 2, whereas if
∞ = α or β then M ∩ F = Gα,β ∈ A0.

(4) If M ∈ Bi for i = 1 or 2 then M = NG(A) ∼= A � C4 for some A ∈ Ai ; since
A acts without fixed points, M ∩ F is isomorphic to a subgroup of C4, so it is in
Cm for m = 1, 2 or 4. ��

5.4 Subgroups H of F

We first prove Theorem 6 for subgroups H ∈ I which are contained in groups in
F . Replacing H with a conjugate, we may assume that H ≤ F .

5.4.1 Preliminaries

Here we record some observations and simplifications which will be used in the
proof.

(a) Lemma 2 shows that each M ∈ M (H) satisfies M ∩ F ∈ XM where XM =
F ( fM) for some fM dividing e (depending on M), orXM = A0, orXM = Cm

for somem dividing 4. IfXM = Cm for somem, then since H ≤ M ∩ F we have
H ∈ C1 ∪ C2 ∪ C4, so H is as required, i.e. conjugate to an element of S ; we
may therefore assume that for each M ∈ M (H) \ {F} we haveXM = F ( fM)

for some fM or XM = A0, with M ∈ G ( fM) or F respectively.
(b) Since F is solvable, Hall’s theorems [12] imply that a Hall 2′-subgroup A of H

is contained in one of the Hall 2′-subgroups of F . These are the conjugates of
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A0, and Q permutes them regularly by conjugation, so by conjugating H with a
suitable element of Q we may assume that A ≤ A0.

(c) If H has even order it contains an involution. The involutions in F (the non-
identity elements of Z ) are all conjugate under A0, so in this case, by conjugating
H with an element of A0 we may also assume that H contains z := (0, 1).

(d) If any M ∈ M (H)\ {F} satisfies M = G( fM)g ∈ G ( fM) for some g ∈ G, then
since M ∩ F ∈ F ( fM) we have g ∈ G( fM)F by Lemma 2. Without loss of
generality we can therefore choose this conjugating element g to be in F . Then

F( fM)g = (G( fM) ∩ F)g = G( fM)g ∩ F = M ∩ F.

Thus z ∈ M ∩ F , so zg−1 ∈ F( fM). Since F = A0Q we can write g = ab where
a ∈ A0 and b ∈ Q. Since z is in the centre Z of Q we have

zg−1 = (zb−1
)a−1 = za−1

,

so za−1 ∈ F( fM). Since z ∈ F(1) and A0 acts regularly by conjugation on the
involutions in Z , this implies that a ∈ A0( fM). Thus g = ab with a ∈ F( fM), so
each M ∈ M (H) \ {F} satisfies

M ∩ F = F( fM)g = F( fM)b

for some fM dividing e, with b ∈ Q.

(e) We claim that if f | h | e then the set

Q( f, h) := {g ∈ Q | Q( f )g ≤ Q(h)}

is the union of the cosets (α, 0)Z of Z in Q where α ∈ F(h). Clearly this set
consists of complete cosets of Z in Q. The elements (α, 0) where α ∈ F are
representatives of these cosets, since there is an epimorphism (α, β) 
→ α from
Q to the additive group of F, with kernel Z . Therefore it suffices to show that
g := (α, 0) ∈ Q( f, h) if and only if α ∈ F(h).
If α ∈ F(h) then g ∈ Q(h); since Q( f ) ≤ Q(h) we have Q( f )g ≤ Q(h)

and hence g ∈ Q( f, h). For the converse, note that (1, 0) ∈ Q( f ). A simple
calculation shows that

(1, 0)g = (1, α + αθ),

so if g ∈ Q( f, h) then α + αθ ∈ F(h). The function φ : x 
→ x + xθ maps each
subfieldK of F into itself. Composing φ with itself gives a quadratic polynomial

φ2 : x 
→ (x + xθ ) + (x + xθ )θ = x + xθ2 = x + x2
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defined over the prime field, so if β ∈ K then any element of φ−2(β) has
degree at most 2 over K. Since e is odd, F contains no quadratic extensions, so
φ−2(K) ⊆ K and hence φ−1(K) ⊆ K. In particular, since φ(α) ∈ F(h) we have
α ∈ F(h).

We can now start the case-by-case analysis of maxint subgroups H ≤ F .

5.4.2 Subgroups H ≤ F which are not 2-groups

First suppose that H is not a 2-group, or equivalently the Hall 2′-subgroup A ≤ A0

of H is not the identity subgroup, so that CG(A) = A0. For each M ∈ M , A
is contained in a maximal cyclic subgroup AM of M , which has order 2 fM − 1 if
M ∈ G ( f ), and order 2e − 1 if M ∈ F . This subgroup AM centralises A, so it is
contained in A0; thus A = A0( fM), where we take fM = e when M ∈ F , since
this is the unique subgroup of A0 of order 2 fM − 1. Now H is the intersection of
these subgroups M , so A is the intersection of the corresponding subgroups AM ; it
therefore has the form A = A0( f ) where f is the highest common factor of the
divisors fM of e.

If H has odd order then this gives H = A ∈ A0( f ), one of the types allowed for
in Theorem 6, so we may assume that H has even order. As noted in Sect. 5.4.1(c),
this allows us to assume that z ∈ H . This also implies that each M ∈ M (H)\ {F} is
in G ( fM) for some fM , for otherwise M ∈ F and so H is a subgroup of a two-point
stabiliser M ∩ F , which has odd order. As shown in Sect. 5.4.1(d), it follows that
such subgroups M satisfy M ∩ F = F( fM)b for some b ∈ Q.

We have A0( fM) = A ≤ AM ≤ M ∩ F = F( fM)b, so A0( fM) and A0( fM)b−1

are both point-stabilisers in F( fM); because F( fM) acts as a Frobenius group on
Ω( f ), its kernel Q( fM) permutes these point-stabilisers regularly by conjugation,
so A0( fM) = A0( fM)b−1c for some c ∈ Q( fM). Thus the element b−1c of Q nor-
malises A0( fM), so it also normalises CG(A0( fM)) = A0. However, Q permutes
the conjugates of A0 regularly by conjugation (since it is also a Frobenius group), so
b−1c = 1 and hence b = c ∈ Q( fM).

Thus M ∩ F = F( fM)b = F( fM) for each M ∈ M (H) \ {F}, so H , being the
intersection of such subgroups F( fM), together with F , has the form F( f ) ∩ F =
F( f ) for some divisor f of e, giving H ∈ F ( f ) as required.

5.4.3 Subgroups H ≤ F which are 2-groups

Now suppose that H is a 2-group, so H ≤ Q. By Sect. 5.4.1(a), for each M ∈
M (H) \ {F} either M ∩ F ∈ F ( fM) for some fM dividing e, or M ∩ F ∈ A0, with
M ∈ G ( fM) orF respectively.Wemay assume that H 	= I , so H has even order and
hence (as in Sect. 3.4.2) the second possibility cannot arise. Thus M ∩ F = F( fM)b

for some b ∈ Q, as shown in Sect. 5.4.1(d). As Q is normal in F , and is a Sylow
2-subgroup of F , we have M ∩ Q = Q( fM)b; comparing centres, we see that
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M ∩ Z = Z( fM)b = Z( fM) since Z( fM), being central in Q, is normalised by b.
Thus if H ≤ Z then

H =
⋂

M∈M (H)

M =
⋂

M∈M (H)

(M ∩ Z) =
⋂

M∈M (H)

Z( fM) = Z( f ),

where f is the highest common factor of the integers fM , so H ∈ Z ( f ).
Wemay therefore assume that H 	≤ Z , so H contains an element of order 4. Since

F has a single conjugacy class of cyclic subgroups of order 4, we may assume that
H contains the subgroup Q(1) = {1, z, y±1} where y := (1, 0). Then Q(1) ≤ H ≤
M ∩ Q = Q( fM)b, so by Sect. 3.4.1(e) we have b−1 ∈ (α, 0)Z for some α ∈ F( fM).
This shows that M ∩ Q = Q( fM)b = Q( fM) for each M ∈ M (H) \ {F}, so taking
the intersection over all such M gives H = Q( f ) ∈ Q( f ) where f is the highest
common factor of the integers fM .

5.5 Subgroups H of Bi

Now suppose that H is a subgroup of a group in Bi for some i = 0, 1 or 2, and is
maxint. Without loss of generality we may assume that H ≤ Bi .

5.5.1 Subgroups H of B0

Suppose that H ≤ B0. The subgroup A := H ∩ A0 = H ∩ F is maxint, since H
is, it is contained in F , and it has odd order, so by an argument in Sect. 3.4.2 we see
that A = A0( f ) for some f dividing e. Now H contains A with index at most 2, so
either H = A0( f ), or H is a dihedral subgroup of B0 conjugate (since |A0| is odd)
to B0( f ). Thus H is in A0( f ) or B0( f ).

5.5.2 Subgroups H of Bi for i = 1 or 2

Suppose that H ≤ Bi where i = 1 or 2. Let A := H ∩ Ai . If |A| = 1 then H
is isomorphic to a subgroup of Bi/Ai

∼= C4, so H is in Cm for some m = 1, 2
or 4. We may therefore assume that |A| > 1. Any subgroup M ∈ M (H) \ {Bi }
contains A, which has order dividing q2 + 1, so it follows from the classification
of the maximal subgroups in Proposition 7 that M must be in Bi or in G ( fM) for
some fM dividing e. The first possibility can be dismissed, since distinct subgroups
in Bi have intersections of order dividing 4, so M ∈ G ( fM). We can now argue as
in Sect. 3.4.2, by considering subgroups centralising A, to show that A = Ai ( f ) for
some f dividing e.

Now |H : A| divides |Bi : Ai | = 4. If |H : A| = 1 then H = Ai ( f ) ∈ Ai ( f ), as
required. If |H : A| = 4 then H is a subgroup of Bi of order 4ai ( f ); all subgroups
of this order are conjugate in Bi to Bi ( f ), so H ∈ Bi ( f ). We will show that the
remaining case |H : A| = 2, where |H | = 2ai ( f ), cannot arise.
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In a Suzuki group Sz(q), any subgroup K of order 2m, where m divides q2 + 1,
is contained in a unique subgroup K ∗ of order 4m. (This is because Ai < K Ai < Bi

for i = 1 or 2, up to conjugacy, and the complements for Ai in Bi have mutually
trivial intersections.) Applying this to the subgroup K = H , firstly as a subgroup of
G, and then as a subgroup of each of the Suzuki subgroups M ∼= G( f ) inM (H), we
see that there is a subgroup H∗ ≤ Bi , containing H with index 2, such that H∗ ≤ M
for all M ∈ M (H). Lemma 1 then shows that H /∈ I .

This completes the proof of Theorem 6. ��

6 Size of Conjugacy Classes

An important step in proving the statement of theMöbius function of G in Theorem 5
is to determine the number of conjugates of each subgroup H ∈ S , equal to the
index in G of its normaliser NG(H). The orders of some of these normalisers are
noted in Table1.

Theorem 9 Let f divide e. Then

1. NG(G( f )) = G( f ) and |G ( f )| = |G|/|G( f )|;
2. NG(F( f )) = F( f ) and |F ( f )| = |G|/|F( f )| if f > 1;
3. |NG(Q( f ))| = 2e+ f (2 f − 1) and |Q( f )| = |G|/2e+ f (2 f − 1) if f > 1;
4. NG(Z( f )) = Q A0( f ) and |Z ( f )| = |G|/22e(2 f − 1) if f > 1;
5. NG(Bi ( f )) = Bi ( f ) and |Bi ( f )| = |G|/|Bi ( f )| if i = 1, or if i = 0 or 2 and

f > 1;
6. NG(Ai ( f )) = Bi and |Ai ( f )| = |G|/|Bi | if i = 1, or if i = 0 or 2 and f > 1;
7. |NG(B2(1))| = 2q and |B2(1)| = q(q2 + 1)(q − 1)/2;
8. |NG(B0(1))| = q2 and |B0(1)| = (q2 + 1)(q − 1).

Proof (1) Let H = G( f )where f divides e. If f > 1, then since NG(G( f )) contains
G( f ) it cannot be solvable, so by Proposition 8 it must be conjugate to G(h) for
some multiple h of f . Since G(h) is simple, we must have h = f and NG(H)= H ,
giving |G ( f )| = |G|/|H |. The case f = 1 is dealt with in (5), since G(1) is conjugate
to B1(1).
(4) It is convenient to prove (4) before (2) and (3). Let f > 1. Any element of
G normalising Z( f ) must fix its unique fixed point ∞, so NG(Z( f )) ≤ F . By
Sect. 4.2(4), F = Q A0. Now Z( f ) is centralised by Q since it lies in the centre Z of
Q, and Sect. 4.2(5) implies that NG(Z( f ))∩ A0 = A0( f ), so NG(Z( f )) = Q A0( f ),
of order |Q|.|A0( f )| = q2(2 f − 1) = 22e(2 f − 1).
(3) Any element of G normalising Q( f ) must normalise its characteristic subgroup
Z( f ), so NG(Q( f )) ≤ NG(Z( f )) = Q A0( f ). Now A0( f ) ≤ F( f ) ≤ NG(Q( f )),
and Sect. 3.4.1(e) shows that NQ(Q( f )) = ⋃

α(α, 0)Z with the union over all α ∈
F( f ), so NG(Q( f )) has order |Z |.2 f .|A0( f )| = 2e+ f (2 f − 1).
(2) Clearly NG(F( f )) ≤ NG(Q( f )) ≤ Q A0( f ), and A0( f ) ≤ NG(F( f )). Since
Z acts semi-regularly on Ω \ {∞}, it acts semi-regularly by conjugation on the
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subgroups of F in the conjugacy classA0, so NG(F( f ))∩ Z = Z( f ). Hence, using
the proof of part (3), we see that NG(F( f )) ≤ F ∩ G( f ) = F( f ). Thus F( f ) is
self-normalising.
(5, 6) See Sect. 4.3.2.
(7, 8) For i = 0 and 2 the subgroups in Bi (1) are cyclic groups of orders 2 and
4 respectively, so they are contained in Sylow 2-subgroups of G. There are q2 + 1
Sylow 2-subgroups, each conjugate to Q and containing q − 1 subgroups of order 2,
and containing (q2 − q)/2 of order 4. Since distinct Sylow 2-subgroups have trivial
intersection, there are (q2 + 1)(q − 1) and (q2 + 1)(q2 − q)/2 such subgroups in
G. In each case such subgroups are all conjugate, so their normalisers have order q2

and 2q. ��

7 Calculating Values of µG

We can now complete the proof of Theorem 5 by calculating μG(H) for each sub-
group H ∈ S . In order to use Eq. (13) for this (see Sect. 4), we first need to know,
for each pair of subgroups H, K ∈ S , the number N (H ; K ) of conjugates in G of
K containing H . If M(H ; K ) denotes the number of conjugates in G of H contained
in K , then a simple double counting argument gives

M(H ; K )M(K ; G) = M(H ; G)N (H ; K ) (15)

for all H, K ∈ S . This allows N (H ; K ) to be determined from the values of the
function M . Now M(H ; G) = |H | and M(K ; G) = |K |, where H and K are
the conjugacy classes of subgroups of G containing H and K , so these values are
given by Theorem 9. The values of M(H ; K ) for K 	= G can be found by using
arguments similar to those used in proving Theorem 9, so details are omitted.

The non-zero values of N (H ; K ) resulting from (15) are given in Table2, where
the rows and columns are indexed by the subgroups H and K respectively; the row
corresponding to the identity subgroup H = A0(1) = A2(1) is omitted since in this
case N (H ; K ) = |K |, given by Theorem 9 for all K ∈ S . The table is split into
two parts, the second part giving further entries for the last six rows of the first part.
We assume that f divides h and that f > 1 unless otherwise stated. Thus G(1) is
represented by its conjugate B1(1), while F(1) and Q(1) are represented by B2(1),
and Z(1) by B0(1) (see Sect. 4.3.3 and the comments in Sect. 4.4).

Given Table2, one can systematically use Eq. (13) to calculate μG(H) for each
H ∈ S , starting with H = G( f ) in the first row, and working downwards through
the table. For instance, if H = G( f ) then the subgroups K ∈ S with N (H ; K ) 	= 0
are those of the form K = G(h) where f | h | e; under inclusion, these form a
lattice isomorphic to the lattice Λ(e/ f ) of all divisors h/ f of e/ f , with μG(K ) = 1
when h = e, so we find that μG(H) = μ(e/ f ), as in Table1. Next, if H = F( f ) we
consider the subgroups K = G(h) and F(h) where f | h | e; these form a lattice
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Table 2 Values of N (H ; K ) where H, K ∈ S

G(h) F(h) Q(h) Z(h) B0(h) A0(h)

G( f ) 1

F( f ) 1 1

Q( f ) 2e−h 2e−h 1

Z( f ) 22(e−h) 22(e−h) 2e−h 1

B0( f ) 1 1

A0( f )
(2e−1)
(2h−1)

2(2e−1)
(2h−1)

(2e−1)
(2h−1)

1

B1( f ), f � 1 1

B2( f ) 1

A1( f ), f � 1 a1(e)
a1(h)

A2( f )
a2(e)
a2(h)

B2(1) ∼= C4 2e−h 2e−h 1

B0(1) ∼= C2 22(e−h) 22(e−h) 2e−h 1 22e−1

B1(h) B2(h) A1(h) A2(h) B2(1) B0(1)

B1( f ), f � 1 1

B2( f ) 1

A1( f ), f � 1 a1(e)
a1(h)

1

A2( f )
a2(e)
a2(h)

1

B2(1) ∼= C4 2e−1 2e−1 1

B0(1) ∼= C2 22(e−1) 22(e−1) 2e−1 1

isomorphic to Λ(2e/ f ) since e is odd, giving μG(H) = μ(2e/ f ) = −μ(e/ f ).
Similar arguments show that if f > 1 then μG(Bi ( f )) = −μ(e/ f ) for i = 0, 1, 2,
andμG(Q( f )) = μG(Z( f )) = μG(Ai ( f )) = 0 for i = 1, 2. This process continues
until μG(H) is evaluated for all H ∈ S . The method is essentially the same as that
described fully in [5, Sect. 4] for the groups G = L2(2e), so the remaining details
are omitted.

Now μG(H) = 0 whenever H = Q( f ), Z( f ), A1( f ) or A2( f ) for any f > 1,
so let T denote the remaining set of subgroups H ∈ S , namely

G( f ), F( f ), Bi ( f ) (i = 0, 1, 2), A0( f ), B2(1), B0(1), A0(1), (16)

where 1 < f | e. This is a set of representatives for the conjugacy classes in Table1,
and every subgroup H of G withμG(H) 	= 0 is in one of these classes. This, together
with the values of |H |, |NG(H)| and μG(H) determined earlier, justifies the entries
in Table1 and in particular proves Theorem 5. ��
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Each conjugacy class in Table1 contains |G|/|NG(H)| subgroups, and |Aut G| =
e|G| by Sect. 4.2(2), so Eq. (1), counting the normal subgroups N of a finitely gen-
erated group Γ with Γ/N ∼= G, can be reformulated as in Eq. (5), that is,

nΓ (G) = 1

e

∑

H∈T

μG(H)|Hom(Γ, H)|
|NG(H)| .

Table1 gives the values ofμG(H) and |NG(H)|, so in order to apply this equation
to a particular group Γ one needs only to count the homomorphisms Γ → H for
each H ∈ T .

8 Enumerations

We can now use the values of the Möbius function μG given in Table1 to enumer-
ate regular objects with automorphism group G = Sz(q) in various categories C
described in Sect. 2. Formulae (19) and (23) for maps have been found in equivalent
form by Hubard and Leemans [15] and, in the context of polytopes, by Kiefer and
Leemans [22]. All the other enumerations in this section, concerning regular and
orientably regular hypermaps, k-valent maps, self-dual maps, and surface coverings,
are new.

Before startingwe record in Table3 the number |H |k of elements of order k = 2, 4
or 5 in each subgroup H in Table1, information needed later.

Table 3 Values of |H |k for k = 2, 4 and 5

Conjugacy class of H |H |2 |H |4 |H |5
G ( f ), 1 < f | e (2 f − 1)(22 f + 1) 2 f (22 f + 1)(2 f − 1) 22 f (2 f − 1)a2( f )

F ( f ), 1 < f | e 2 f − 1 2 f (2 f − 1) 0

B0( f ), 1 < f | e 2 f − 1 0 0

A0( f ), 1 < f | e 0 0 0

B1( f ), 1 < f | e a1( f ) 2a1( f ) 4

B2( f ), 1 < f | e a2( f ) 2a2( f ) 0

B2(1) 1 2 0

B0(1) 1 0 0

A0(1) 0 0 0
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8.1 Orientably Regular Hypermaps

If C is the category H+ of oriented hypermaps, we take Γ to be the free group F2 of
rank 2. Then |Hom(Γ, H)| = |H |2 for each subgroup H ≤ G, so

rH+(G) = nF2(G) = 1

|Aut G|
∑

H≤G

μG(H)|H |2.

Now |Aut G| = e|G|, so using the information in Table1 about the subgroups H of
G, their orders, numbers of conjugates, and values of μG(H), we obtain, after some
routine algebra,

rH+(G) = nF2(G) = 1

e

∑

f |e
μ

(
e

f

)
2 f (24 f − 23 f − 9) ∼ q5/e. (17)

(Here we have used the fact that � f |eμ(e/ f ) = 0 for e > 1 to eliminate a constant
term in the summation.) Formula (17) gives the number of orientably regular hyper-
maps O with orientation-preserving automorphism group AutH+O ∼= G = Sz(q),
where q = 2e for some odd e > 1. It also gives the number of regular dessins
d’enfants with automorphism group G, the number of normal subgroups of the free
group F2 with quotient group G, and the number of orbits of Aut G on ordered pairs
of generators of G. The dominant term in the summation on the right-hand side is the
leading term 25e, so rH+(G) ∼ q5/e ∼ |G|/e as e → ∞. (More generally, results of
Dixon [4], Kantor and Lubotzky [21], and Liebeck and Shalev [24] on probabilistic
generation imply that for all non-abelian finite simple groups, rH+(G) ∼ |G|/|Out G|
as |G| → ∞.)

8.2 Regular Hypermaps

If C is the categoryH of all hypermaps, then Γ is the free product C2 ∗C2 ∗C2. Since
G cannot be generated by fewer that three involutions, we can restrict attention to
smooth homomorphisms and epimorphisms, those that map the three free factors of
Γ faithfully into G. For each H the number of such homomorphisms Γ → H is
(|H |2)3, where |H |2 is the number of involutions in H . The values of |H |2 for the
nine families of conjugacy classes of subgroups H in Table1 are given in Table3, so
after some algebra we obtain

rH(G) = 1

e

∑

f |e
μ

(
e

f

)
2 f (23 f − 22 f +1 + 2 f +1 − 5) ∼ q4/e. (18)

This is the number of regular hypermaps with automorphism group G, and also,
by Proposition 1, the number of reflexible hypermaps in RH+(G). Subtracting the



Möbius Inversion in Suzuki Groups and Enumeration of Regular Objects 121

formula in Eq. (18) from that in (17) therefore gives the number of chiral hypermaps
inRH+(G); note that these predominate.

8.3 Orientably Regular Maps

For the category M+ of oriented maps we take Γ = C∞ ∗ C2. As in the case of
hypermaps we may restrict the summation to smooth homomorphisms. There are
|H ||H |2 such homomorphisms Γ → H , so we obtain

rM+(G) = 1

e

∑

f |e
μ

(
e

f

)
2 f (22 f − 2 f − 3) ∼ q3/e. (19)

(This is equivalent to the formula obtained by Hubard and Leemans in [15, The-
orem 15].) The k-valent maps in RM+(G) correspond to the torsion-free normal
subgroups inNΓ (G), where Γ is the Hecke group Ck ∗C2 (see [14]). To count these
we consider smooth homomorphisms Γ = Ck ∗ C2 → H for relevant subgroups H
of G. There are |H |k |H |2 of these, so with k = 4 and k = 5 for example, Table3
gives

rM+
4
(G) = 1

e

∑

f |e
μ

(
e

f

)
2 f (2 f − 2) ∼ q2/e (20)

and

rM+
5
(G) = 1

e

∑

f |e
μ

(
e

f

)
(2 f − 1)a2( f ) ∼ q2/e, (21)

where a2( f ) = 2 f − χ( f )2( f +1)/2 + 1.
One can apply similar arguments for odd k > 5. For instance, G contains ele-

ments of order 7 if and only if e is divisible by 3, in which case they form three
conjugacy classes, represented by elements of A0. It follows that the number of
normal subgroups of Γ = C7 ∗ C2 with quotient group Sz(q) is

3

e

∑

3| f |e
μ

(
e

f

)
(22 f − 2). (22)

A mapM ∈ RM+(G) of type {n, n}, represented by a generating triple (x, y, z)
for G of type (n, 2, n), is self-dual if and only if G has an automorphism transposing
x and z. Such an automorphism has order 2 and is therefore inner, induced by con-
jugation by an involution i ∈ G. This is equivalent to G having a generating triple
(xi, i, x−1) of type (4, 2, n), corresponding to amapM ∗ of type {n, 4} inRM+(G). If
M corresponds to a subgroup N ∈ NΔ(G), where Δ := Δ(n, 2, n), then its median
mapM † corresponds to N as an element ofNΔ∗(G × C2), where Δ∗ := Δ(4, 2, n)

containsΔ(n, 2, n)with index 2, andM ∗ = M †/C2. (The median of anymapM is
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a map on the same surface, with vertices at the edge-centres ofM , joined by an edge
if they are on consecutive edges of a face ofM .) The correspondenceM 
→ M ∗ is
a bijection, so the number of self-dual maps M ∈ RM+(G) is equal to the number
rM+

4
(G) of 4-valent maps M ∗ ∈ RM+(G), given in (20).

8.4 Regular Maps

For the category M of all maps we take Γ = V4 ∗ C2. In this case we may restrict
attention to homomorphisms which embed the direct factors as subgroups V and
C , such that the generator of C commutes with only the identity element of V . The
only subgroups H ≤ G containing such subgroups V and C are those conjugate to
some G( f ), with V and C central subgroups of distinct Sylow 2-subgroups of H .
Since G( f ) has 22 f +1 Sylow 2-subgroups, and their centres are elementary abelian
groups of order 2 f , one easily obtains

rM(G) = 1

e

∑

f |e
μ

(
e

f

)
(2 f − 1)(2 f − 2) = 1

e

∑

f |e
μ

(
e

f

)
2 f (2 f − 3) ∼ q2/e.

(23)
Note that for this result we useμG(H) only for subgroups H ∼= G( f ), so it is feasible
to obtain it without invoking the whole of the Möbius function. By an argument sim-
ilar to that used in Sect. 8.2 for hypermaps, Proposition 1 implies that this is also the
number of reflexible maps inRM+(G), all of them inner reflexible. Subtracting (23)
from (19) gives the number of chiral maps (see also [15, Theorem 16]), and as before
these predominate.

The formulae (23) are the same for the group G = L2(2e) (see [6]). At first
this may seem surprising, since Sz(q) is much larger than L2(q). However, the
distribution of involutions in these two groups is similar, and the above proof can be
applied, with only minor changes, to L2(q). The fact that (19) also gives rH(L2(2e))

and rH+(L2(2e)) seems to be more accidental.
This proof gives a natural interpretation for the first formula in (23). There is a

unique inner automorphism of the subgroup H = G( f ) sending the image of the
generator R1 of Γ to r1 = τ , and sending R0 and R2 to a pair of distinct elements
r0, r2 of the form (0, β), in the notation of Sect. 5.1. Then (2 f − 1)(2 f − 2) is the
number of choices for such an ordered pair, the Möbius inversion picks out those
triples (ri ) which generate G, and division by e is explained by the number of orbits
of Out G, acting on these triples, being the same as that for GalFq

∼= Ce acting on
the coefficients β.

This parametrisation ofmaps also allows one to determine their types {m, n}, since
m and n are the orders of rir1 for i = 0 and 2. A matrix (0, β)τ has characteristic
polynomial

p(λ) = λ4 + βθλ3 + β2λ2 + βθλ + 1, (24)
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so its order, as an element rir1 ofG, is the least commonmultiple of themultiplicative
orders of the roots of p. Clearly λ = 1 is not a root, so m and n cannot be equal to 2
or 4, since elements of G of these orders are unipotent, with all eigenvalues equal to
1. Thus m and n are both odd. For example, if we take β = 1 then the roots of p are
the primitive 5th roots of 1, so rir1 has order 5. Specific examples are considered in
Sect. 9.

None of these regular maps is self-dual. If one were, G would have an auto-
morphism fixing r1 and transposing r0 and r2. This would be induced by an ele-
ment of G centralising the involutions r0r2 and r1; however, these lie in distinct
Sylow 2-subgroups of G, so their centralisers have trivial intersection. This explains
why (23) gives twice the number of abstract regular polytopes with automorphism
group G computed byKiefer and Leemans in [22] (for instance 71576170 rather than
35788085 in their Example 2 (continued), with e = 15): by [23] such polytopes all
have rank 3, so they are regular maps, and they were enumerated in [22] by counting
unordered triples {r0, r1, r2} of involutions generating G and satisfying (r0r2)2 = 1,
corresponding to dual pairs of regular maps and polytopes.

8.5 Surface Coverings

In order to apply Theorem 3 to count regular surface coverings with covering
group G, one needs to know the degrees of the irreducible complex characters of
the subgroups H in Table1. The irreducible characters of the Suzuki groups G( f )

are described in [30] and [16, Sect. XI.5], and the degrees for the other subgroups
H are easily found; they are given in Table4, where s := 2 f , t := √

2s = 2( f +1)/2,
ki := (ai ( f ) − 1)/4 for i = 1, 2, and the notation d{k} denotes k characters of
degree d.

With this information, Theorem3gives |Hom(Γ, H)| for each H in Table1,where
Γ is the fundamental group Πg of an orientable surface Sg of genus g, and then

Table 4 Degrees of irreducible characters of subgroups H ≤ G

Conjugacy class of H Conditions on f Degrees of irreducible characters of H

G ( f ) 1 < f | e 1, s2, (s − 1)t/2{2}, (s2 + 1){(s−2)/2},
(s − 1)a1( f ){k2}, (s − 1)a2( f ){k1}

F ( f ) 1 < f | e 1{s−1}, s − 1, (s − 1)t/2{2}

B0( f ) 1 < f | e 1{2}, 2{(s−2)/2}

A0( f ) 1 < f | e 1{s−1}

B1( f ) 1 < f | e 1{4}, 4{k1}

B2( f ) 1 < f | e 1{4}, 4{k2}

B2(1) 1{4}

B0(1) 1{2}

A0(1) 1
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nΓ (G) in Eq. (5) gives rg(G), the number of regular coverings ofSg with covering
group G. The general formulae are very unwieldy, but in Sect. 9 wewill give a simple
example.

9 The Smallest Simple Suzuki Group

The smallest of the simple Suzuki groups is the group G = G(3) = Sz(8) of order
29120 = 26.5.7.13. Putting e = 3 in the enumerative formulae given above, we
find that G is the automorphism group of 1054 regular hypermaps, of which 14
are maps; all of these are non-orientable. Similarly, it is the orientation-preserving
automorphism group of 9534 orientably regular hypermaps, of which 142 are maps.
By Proposition 1, 1054 of these orientably regular hypermaps, and 14 of these ori-
entably regular maps, are reflexible; these are the orientable double covers of the
regular hypermaps and maps associated with G, so they are all inner reflexible.

Theorem 2 and the character table of G in [2, 30] can be used to find howmany of
these orientably regular maps and hypermaps there are for each type. For instance,
they show that G contains 26.3.7.13.331 triples (x, y, z) of type (5, 5, 5) satisfying
xyz = 1; of these, 26.3.7.13 generate the 24.7.13 Sylow 5-subgroups, while the
remaining 26.3.7.13.330 = 66|Aut G| generate G, so there are 66 hypermaps of
type (5, 5, 5) inRH+(G).

Each element of G has order 1, 2, 4, 5, 7 or 13, so the entries in each type must
come from this list. Moreover, since G is non-solvable, any map arising must have
type {m, n} with m, n ≥ 4, other than {4, 4}. As shown in [19], it follows from
Theorem 2 that there are four maps of type {4, 5} in RM+(G), forming two chiral
pairs. In fact, repeated use of Theorem 2 shows that the distribution of the maps in
RM+(G) into types is as in Table5, which is symmetric in m and n by the duality of
maps. The number of self-dual maps of type {n, n} is equal to the number of maps
of type {n, 4} in this table.

One can use the argument at the end of Sect. 8.4 to determine the types {m, n} of
the 14 regular maps in RM(G). Taking β = 1 gives an element rir1 of order 5. Of
the six remaining elements β ∈ F

∗
8, three have minimal polynomial t3 + t + 1 over

F2, and three have t3 + t2 + 1. In the first case p splits into four linear factors, with
roots β + 1, β2, β2 + β and β2 + β + 1 all of order 7, so that rir1 has order 7. In

Table 5 Number of orientably regular maps of type {m, n} in RM+ (Sz(8))

m \ n 4 5 7 13 Total

4 0 4 8 4 16

5 4 4 13 9 30

7 8 13 26 15 62

13 4 9 15 6 34

Total 16 30 62 34 142
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the second case, p is irreducible over F8, and its roots in its splitting field F212 have
order 13, so rir1 has order 13. By considering the action of GalF8

∼= C3 on distinct
ordered pairs of elements β ∈ F

∗
8, we find that the number of regular maps of each

type {m, n} is as in Table6; there are none with m = 4 or n = 4 since elements of
order 4 are not conjugate to their inverses. This table also gives the types of the 14
reflexible maps inRM+(G), so subtracting its entries from the corresponding entries
in Table5 gives the number of chiral maps of each type inRM+(G).

One can also enumerate regular surface coverings with covering group G. If we
put f = e = 3 in Table4, so that s = 8 and t = 4, we find from Eq. (5) and
Theorem 3 that the number rg(G) of regular coverings of an orientable surface of
genus g with covering group G is

1

3

{
29120n(1 + 2.14−n + 3.35−n + 64−n + 3.65−n + 91−n)

−448n(7 + 7−n + 2.14−n) − 14n(2 + 3.2−n) + 7n+1

−52n(4 + 3.4−n) − 20n(4 + 4−n) + 8.4n + 2.2n − 1
}

where n = 2g − 2 is the negative of the Euler characteristic of the surface. When
g = 1 there are no coverings, as one should expect since the fundamental group Π1

is abelian, and when g = 2 there are 286063776. As g → ∞ we have rg(G) ∼
|G|n/3 = 847974400g−1/3.

In the non-orientable case, in addition to the degrees of the irreducible charactersχ

of the subgroups H in Table1, we also need to know their Frobenius-Schur indicators
cχ . For H = G these are given in [2]: we have cχ = 1 for all χ except the two
characters of degree 14, which satisfy cχ = 0 since they take values±2i on elements
of order 4. The indicators for proper subgroups H < G are easily found, either
directly or from the character table for G in [2], [16, Sect. XI.5] or [30]. It follows
from Eq. (5) and Theorem 4 that the number r−

g (G) of regular coverings of a non-
orientable surface of genus g ≥ 1 with covering group G is

1

3

{
29120n(1 + 3.35−n + 64−n + 3.65−n + 91−n)

−448n(1 + 7−n) − 14n(2 + 3.2−n) + 7n

−52n(2 + 3.4−n) − 20n(2 + 4−n) + 4.4n + 2.2n − 1
}

where n = g − 2, the negative of the Euler characteristic. We have r−
g (G) = 0 when

g ≤ 2, while r−
3 (G) = 11004. As g → ∞, r−

g (G) ∼ 29120g−2/3.
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Table 6 Number of regular maps of type {m, n} in RM (Sz(8))

m \ n 4 5 7 13 Total

4 0 0 0 0 0

5 0 0 1 1 2

7 0 1 2 3 6

13 0 1 3 2 6

Total 0 2 6 6 14

10 Postscript

The calculations described in Sects. 5–7 were carried out by the first author, Martin
Downs, in the early 1990s, but were never published. Recent interest in combinatorial
and geometric actions of the Suzuki groups motivated the authors to revisit these
calculations, and to provide various applications of them. Despite suffering from a
long-term illness, Martin was deeply involved in the preparation of this paper, right
up to its submission. Unfortunately, he died before it could be published. As a good
friend and a valued colleague, he will be greatly missed.

Acknowledgments The authors are grateful to Dimitri Leemans for some very helpful comments
on enumeration with Suzuki groups, and to Nikos Kanakis for help in preparing the TeX file.
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More on Strongly Real Beauville Groups

Ben Fairbairn

Abstract Beauville surfaces are a class of complex surfaces defined by letting a
finite group G act on a product of Riemann surfaces. These surfaces possess many
attractive geometric properties several ofwhich are dictated byproperties of the group
G. A particularly interesting subclass are the ‘strongly real’ Beauville surfaces that
have an analogue of complex conjugation defined on them. In this survey we discuss
these objects and in particular the groups that may be used to define them. En route
we discuss several open problems, questions and conjectures and in places make
some progress made on addressing these.

1 Introduction

Roughly speaking (precise definitions will be given in the next section), a Beauville
surface is a complex surface S defined by taking a pair of complex curves, i.e.
Riemann surfaces, C1 and C2 and letting a finite group G act freely on their prod-
uct to define S as a quotient (C1 × C2)/G. These surfaces have a wide variety
of attractive geometric properties: they are surfaces of general type; their automor-
phism groups [45] and fundamental groups [17] are relatively easy to compute (being
closely related to G); they are rigid surfaces in the sense of admitting no nontriv-
ial deformations [8] and thus correspond to isolated points in the moduli space of
surfaces of general type [34].

Much of this good behaviour stems from the fact that the surface (C1 ×C2)/G is
uniquely determined by a particular pair of generating sets ofG known as a ‘Beauville
structure’. This converts the study of Beauville surfaces to the study of groups with
Beauville structures, i.e. Beauville groups.

Beauville surfaces were first defined by Catanese in [17] as a generalisation of
an earlier example of Beauville [12, Exercise X.13(4)] (native English speakers
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may find the English translation [13] somewhat easier to read and get hold of) in
which C1 = C2 and the curves are both the Fermat curve defined by the equation
X5 + Y 5 + Z5 = 0 being acted on by the group (Z/5Z) × (Z/5Z) (this choice of
groupmay seem somewhat odd at first, but the reasonwill become clear later). Bauer,
Catanese and Grunewald went on to use these surfaces to construct examples of
smooth regular surfaces with vanishing geometric genus [9]. Early motivation came
from the consideration of the ‘Friedman-Morgan speculation’—a technical conjec-
ture concerning when two algebraic surfaces are diffeomorphic which Beauville
surfaces provide counterexamples to. More recently, they have been used to con-
struct interesting orbits of the absolute Galois group Gal (Q/Q) (connections with
Gothendeick’s theory of dessins d’enfant make it possible for this group to act on
the set of all Beauville surfaces). Indeed one of the more impressive applications
of these surfaces is the recent proof by González-Diez and Jaikin-Zapirain in [36]
that Gal(Q/Q) acts faithfully on the set of regular dessins by showing that it acts
regularly on the set of Beauville surfaces.

Furthermore, Beauville’s original example has also recently been used by Galkin
and Shinder in [32] to construct examples of exceptional collections of line bundles.

Like any survey article, the topics discussed here reflect the research interests
of the author. Slightly older surveys discussing related geometric and topological
matters are given by Bauer et al. in [10, 11]. Other notable works in the area include
[6, 23, 46, 53, 58]. Whilst this article is largely expository in nature we also report
incremental progress on various different problems that will appear here. Indeed, this
work can be naturally viewed as a sequel to the author’s earlier article [24], though
the reader will lose little if they have neither read nor have a copy of [24] to hand.

We remark that throughout we shall use the standard ‘Atlas’ notation for finite
groups and related concepts as described in [20], excepting that we will occasion-
ally deviate to minimise confusion with similar notation for geometric concepts. In
particular, given two groups A and B we use the following notation.

• We write A × B for the direct product of A and B, that is, the group whose
members are ordered pairs (a, b) with a ∈ A and b ∈ B such that for two pairs
(a, b), (a′, b′) ∈ A × B we have the multiplication (a, b)(a′, b′) = (aa′, bb′).
Given a positive integer k we write Ak for the direct product of k copies of A.

• We write A · B for the extension of A by B, that is, a group with a normal
subgroup isomorphic to A whose quotient is B (such groups are not necessarily
direct products—for instance SL2(5) = 2 · PSL2(5)).

• We write A : B for a semi-direct product of A and B, also known as a split
extension A and B, that is, there is a homomorphism φ : B → Aut (A) with
elements of this groupbeingorderedpairs (b, a)witha ∈ A andb ∈ B such that for
(b, a), (b′, a′) ∈ A : B we have the multiplication (b, a)(b′, a′) = (bb′, aφ(b′)a′).

• We write A � B for the wreath product of A and B, that is, if B is a permutation
group on n points then we have the split extension An : B with B acting in a way
that permutes the n copies of A.
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In Sect. 2 we provide preliminary information and in particular give specific defi-
nitions for the concepts we have only talked about very vaguely until now. In Sect. 3
we will discuss the case of the finite simple groups. In Sects. 4, 5 and 6 we will
discuss families of groups closely related to these such as characteristically simple
groups and almost simple groups. Finally, in Sect. 7 we will conclude with a brief
discussion of the question of which of the abelian and nilpotent groups are strongly
real Beauville groups.

2 Preliminaries

We give the main definition.

Definition 1 A surface S is a Beauville surface of unmixed type if

• the surfaceS is isogenous to a higher product, that is,S ∼= (C1 ×C2)/G where
C1 and C2 are complex algebraic curves of genus at least 2 and G is a finite group
acting faithfully on C1 and C2 by holomorphic transformations in such a way that
it acts freely on the product C1 × C2, and

• each Ci/G is isomorphic to the projective line P1(C) and the corresponding cov-
ering map Ci → Ci/G is ramified over three points.

There also exists a concept of Beauville surfaces of mixed type in which the action
of G interchanges the two curves C1 and C2 but these are much harder to construct
and we shall not discuss these here. (For further details of the mixed case, the most
up-to-date information at the time of writing may be found in the work of the author
and Pierro in [27].)

In the first of the above conditions the genus of the curves in question needs to be at
least 2. It was later proved by Fuertes, González-Diez and Jaikin-Zapirain in [30] that
in fact we can take the genus as being at least 6. The second of the above conditions
implies that each Ci carries a regular dessin in the sense of Grothendieck’s theory
of dessins d’enfants (children’s drawings) [39]. Furthermore, by Belyı̆’s Theorem
[14] this ensures that S is defined over an algebraic number field in the sense that
when we view each Riemann surface as being the zeros of some polynomial we find
that the coefficients of that polynomial belong to some number field. Equivalently
they admit an orientably regular hypermap [47], with G acting as the orientation-
preserving automorphism group. A modern account of dessins d’enfants and proofs
of Belyı̆’s theorem may be found in the recent book of Girondo and González-Diez
[35].

These constructions can also be described instead in terms of uniformisation and
using the language of Fuchsian groups [38, 56].

What makes this class of surfaces so good to work with is the fact that all of the
above definition can be ‘internalised’ into the group. It turns out that a group G can
be used to define a Beauville surface if and only if it has a certain pair of generating
sets known as a Beauville structure.
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Definition 2 Let G be a finite group. For x, y ∈ G let

Σ(x, y) :=
|G|⋃

i=1

⋃

g∈G

{(xi )g, (yi )g, ((xy)i )g}.

An unmixed Beauville structure for the group G is a set of pairs of elements
{{x1, y1}, {x2, y2}} ⊂ G × G with the property that 〈x1, y1〉 = 〈x2, y2〉 = G such
that

Σ(x1, y1) ∩ Σ(x2, y2) = {e}.

If G has a Beauville structure we say that G is a Beauville group. Furthermore we
say that the structure has type

((o(x1), o(y1), o(x1y1)), (o(x2), o(y2), o(x2y2))).

In some parts of the literature authors have defined the above structure in terms
of so-called ‘spherical systems of generators of length 3’, meaning {x, y, z} ⊂ G
with xyz = e, but we omit z = (xy)−1 from our notation in this survey. (The reader
is warned that this terminology is a little misleading since the underlying geometry
of Beauville surfaces is hyperbolic thanks to the below constraint on the orders of
the elements.) Furthermore, many earlier papers on Beauville structures add the
condition that for i = 1, 2 we have that

1

o(xi )
+ 1

o(yi )
+ 1

o(xi yi )
< 1,

but this condition was subsequently found to be unnecessary following Bauer et al.
investigation of the wall-paper groups in [7]. A triple of elements and their orders
satisfying this condition are said to be hyperbolic. Geometrically, the type gives
us considerable amounts of geometric information about the surface: the Riemann-
Hurwitz formula

g(Ci ) = 1 + |G|
2

(
1 − 1

o(xi )
− 1

o(yi )
− 1

o(xi yi )

)

tells us the genus of each of the curves used to define the surfaceS and by a theorem
of Zeuthen-Segre this in turn gives us the Euler number of the surface S since

e(S ) = 4
(g(C1) − 1)(g(C2) − 1)

|G|
which in turn gives us the holomorphic Euler-Poincaré characteristic of S since
4χ(S ) = e(S ) (see [17, Theorem 3.4]). On a more practical and group the-
oretic note, the type is often useful for verifying that the critical condition that
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Σ(x1, y1) ∩ Σ(x2, y2) = {e} is satisfied since this will clearly hold whenever the
number o(x1)o(y1)o(x1y1) is coprime to the number o(x2)o(y2)o(x2y2).

Furthermore, if a group can be generated by a pair of elements of orders a and b
whose product has order c then G is a homomorphic image of the triangle group

Δ(a, b, c) = 〈x, y, z | xa = yb = zc = xyz = e〉.

Homomorphic images of the triangle groupΔ(2, 3, 7) are known as Hurwitz groups.
In several places in the literature, knowing that a particular group is a Hurwitz group
has proved useful for deciding its status as a Beauville group. For a discussion of
known results on Hurwitz groups see the excellent surveys of Conder [18, 19] and
for a more historically oriented discussion see the brief account given by Murray
Macbeath in [50].

The abelian Beauville groups were essentially classified by Catanese in [17, p.
24.] and the full argument is given explicitly in [7, Theorem 3.4] where the following
is proved.

Theorem 1 Let G be an abelian group. Then G is a Beauville group if, and only if,
G = (Z/nZ) × (Z/nZ) where n > 1 is coprime to 6.

This explains why Beauville’s original example used the group (Z/5Z) ×
(Z/5Z)—it is the smallest abelian Beauville group.

Given any complex surface S it is natural to consider the complex conjugate
surface S . In particular, it is natural to ask whether or not these two surfaces are
biholomorphic.

Definition 3 Let S be a complex surface. We say that S is real if there exists a
biholomorphism σ : S → S such that σ 2 is the identity map.

(We remark that strictly speaking the above definition is not quite right, it being
impossible to compose σ with itself. It is more accurate to talk of the composition
σ ◦ σ where σ : S → S .)

As is often the case with Beauville surfaces, the above geometric condition can
be translated into purely group theoretic terms.

Definition 4 Let G be a Beauville group and let X = {{x1, y1}, {x2, y2}} be a
Beauville structure for G. We say that G and X are strongly real if there exists
an automorphism φ ∈ Aut(G) and elements gi ∈ G for i = 1, 2 such that

giφ(xi )g
−1
i = x−1

i and giφ(yi )g
−1
i = y−1

i

for i = 1, 2.

In practice we can always replace one generating pair by some generating pair
that is conjugate to it and so we can take g1 = g2 = e and this is often what is done
in practice. (We take this opportunity to point out that the definition of strongly real
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Beauville structure as given by the author in [23, Definition 5.2] is slightly incorrect
since the indices of the gis appearing there are mixed up.)

In [7] Bauer et al. show that a Beauville surface is real if, and only if, the corre-
sponding Beauville group and structure are strongly real. This all comes from the
study of the following related concept in the theory of Riemann surfaces. In Singer-
man’s nomenclature of [52], a Riemann surface with a function behaving like the
function σ in Definition 3 are said to be symmetric. The relationship with automor-
phisms of the corresponding group critically depends on the main result of [52]. The
reader is warned, however, that some notable errors in [52] were subsequently found
and are corrected by Jones et al. in [48]. More specifically, the condition that an auto-
morphism like the above exists is sufficient but it is not necessary. This is corrected
by Jones et al. by giving a complete list of conditions that are both necessary and
sufficient in [48, Theorem 1.1].

Question 1. Are there interesting strongly real Beauville surfaces arising from the
conditions given in [48, Theorem 1.1] but not [52, Theorem 2]?

We remark that symmetric Riemann surfaces are also connected to the theory of
Klein surfaces. Real algebraic curves and compact Klein surfaces are equivalent in
the same way that the categories of complex algebraic curves and compact Riemann
surfaces are equivalent. Indeed, just as a compact, connected, orientable surface
admits the structure of a complex analyticmanifold of dimension 1 (this is, aRiemann
surface structure) then a compact connected surface that is not necessarily orientable
admits the structure of a complex dianalytic manifold of dimension 1, that is, a Klein
surface structure. See [51] for an introductory discussion and [16] for a recent survey
of these surfaces.

By way of immediate easy examples, note that the function x �→ −x is an
automorphismof any abelian group and so everyBeauville group given byTheorem1
is an example of a strongly real Beauville group. More generally the following
question is the main subject of this article.

Question 2. Which groups are strongly real Beauville groups?

3 The Finite Simple Groups

Naturally, a necessary condition for being a strongly real Beauville group is being a
Beauville group. Furthermore, a necessary condition for being a Beauville group is
being 2-generated: we say that a group G is 2-generated if there exist two elements
x, y ∈ G such that 〈x, y〉 = G. It is an easy exercise for the reader to show that the
alternating groups An for n ≥ 3 are 2-generated (see the work of Miller in [49]).
In [54] Steinberg proved that all of the simple groups of Lie type are 2-generated
and in [1] Aschbacher and Guralnick used cohomological methods to show that the
larger of the sporadic simple groups are 2-generated, the smaller ones having dealt
with by numerous previous authors. We thus have that all of the non-abelian finite
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simple groups are 2-generated making them natural candidates for Beauville groups.
This lead Bauer, Catanese and Grunewald to conjecture that aside from A5, which
is easily seen to not be a Beauville group, every non-abelian finite simple group is a
Beauville group—see [7, Conjecture 1] and [8, Conjecture 7.17]. This suspicion was
later proved correct [25, 26, 33, 40], indeed the full theorem proved by the author,
Magaard and Parker in [26] is actually a more general statement about quasisimple
groups (recall that a group G is quasisimple if it is generated by its commutators and
the quotient by its center G/Z(G) is a simple group.). A sketch of the proof of this
Theorem is given by the author in [23, Sect. 3].

Having found that almost all of the non-abelian finite simple groups are Beauville
groups, it is natural to askwhich of the finite simple groups are strongly real Beauville
groups. In [7, Sect. 5.4] Bauer et al. wrote

There are 18 finite simple nonabelian groups of order ≤15,000. By computer calculations
we have found strongly [real] Beauville structures on all of them with the exceptions of A5,
PSL2(7), A6, A7, PSL3(3), U3(3) and the Mathieu group M11.

On the basis of these computations they conjectured that all but finitely many
of the non-abelian finite simple groups are strongly real Beauville groups. Several
authors have worked on this conjecture and consequently many special cases are now
known to be true.

• In [29] Fuertes and González-Diez showed that the alternating groups An (n ≥ 7)
and the symmetric groups Sn (n ≥ 5, cf Sect. 5) are strongly real Beauville groups
by explicitly writing down permutations for their generators and the automor-
phisms and applying some of the classical theory of permutation groups to show
that their elements had the properties they claimed. Subsequently the alternating
group A6 was also shown to be a strongly real Beauville group.

• In [31] Fuertes and Jones prove that the simple groups P SL2(q) for prime powers
q > 5 and the quasisimple groups SL2(q) for prime powers q > 5 are strongly
real Beauville groups. As with the alternating and symmetric groups, these results
are proved by writing down explicit generators, this time combined with a cele-
brated theorem usually (but historically inaccurately) attributed to Dickson for the
maximal subgroups of P SL2(q). General lemmas for lifting Beauville structures
from a group to its covering groups are also used.

• Settling the case of the sporadic simple groups makes no impact on the Bauer,
Catanese and Grunewald’s original conjecture, there being only 26 of them.
Nonetheless, for reasons we shall return to below, in [22] the author determined
which of the sporadic simple groups are strongly real Beauville groups, including
the ‘27th sporadic simple group’, the Tits group 2F4(2)′. Of all the sporadic simple
groups only the Mathieu groups M11 and M23 are not strongly real. For all of the
other sporadic groups smaller than the Baby Monster group B explicit words in
the ‘standard generators’ [57] for a strongly real Beauville structure are given. For
the Baby Monster group B and Monster groupM character theoretic methods are
used.

• In [24, Theorem 2] the author verifies the conjecture for the Suzuki groups
2B2(22n+1), again making use of knowledge of the subgroup structure of these
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groups and writing down explicit matrices in the natural 4 dimensional represen-
tations of these groups.

• In unpublished calculations, the author has pushed the original computations of
Bauer, Catanese and Grunewald to every non-abelian finite simple group of order
at most 100,000,000.

Many of the smaller groups seem to require the use of outer automorphisms to
make their Beauville structures strongly real, which explains much of the above
difficulty in finding strongly real Beauville structures in certain groups. Slightly
larger groups have enough conjugacy classes for inner automorphisms to be used
instead. Consequently, it seems that ‘small’ non-abelian finite simple groups fail to
be strongly real if they have too few conjugacy classes (as is the case with A5 and as
wewould intuitively expect) or if they have no outer automorphisms—aphenomenon
that is extremely rare but is true of both of the groups M11 and M23. We are thus
lead to assert the following somewhat bolder strengthening of the above, which was
previously asserted by the author in [23, Conjecture 5.5] and [24, Conjecture 1].

Conjecture 1 All non-abelian finite simple groups apart from A5, M11 and M23 are
strongly real Beauville groups.

4 Characteristically Simple Groups

Another class of finite groups that has recently been studied from the viewpoint
of Beauville constructions, and appears to be fertile ground for providing further
examples of strongly real Beauville groups, are the characteristically simple groups
that we define as follows (the definition commonly given is somewhat different from
the belowbut in the case of finite groups it can easily be shown that below is equivalent
to it).

Definition 5 A finite group G is said to be characteristically simple if G is iso-
morphic to some direct product H k where H is a finite simple group.

For example, as we saw in Theorem 1, if p > 3 is prime then the abelian Beauville
groups isomorphic to Zp × Zp are characteristically simple.

Characteristically simple Beauville groups have recently been investigated by
Jones in [24, 43, 44] where the following conjecture is discussed.

Conjecture 2 Let G be a finite non-abelian characteristically simple group. Then
G is a Beauville group if and only if it is a 2-generator group not isomorphic to A5.

In particular, themain results of [43, 44] verify this conjecture in the caseswhere H
is any of the alternating groups; the linear groups P SL2(q) and P SL3(q); the unitary
groups P SU3(q); the Suzuki groups 2B2(22n+1); the small Ree groups 2G2(32n+1)

and the sporadic simple groups. Furthermore, as discussed in the previous section
this conjecture is true for all simple groups in the case k = 1.
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For large values of k, the group H k will not be 2-generated despite the fact that
H will be as discussed in Sect. 3. The values of k for which H k is 2-generated were
first investigate by Hall in [41] where various techniques for calculating, or at least
bounding, these were investigated. The values of k for which H k is 2-generated can
be surprisingly large. For example, a special case of the results alluded to here is the
somewhat amusing fact that

A5 × A5 × A5 × A5 × A5 × A5 × A5 × A5 × A5 × A5

× A5 × A5 × A5 × A5 × A5 × A5 × A5 × A5 × A5

is a Beauville group, despite the fact that A5 itself is not a Beauville group.
In general, the full automorphism group of H k will be thewreath product Aut(H)�

Sk where Sk is the kth symmetric group acting on the product by permuting the groups
H . This bounteous supply of automorphisms makes it likely that characteristically
simple Beaville groups are in general strongly real.

The question of which characteristically simple Beauville groups are strongly real
was first investigated by the author in [24, Sect. 3]. More specifically the following
conjecture was investigated.

Conjecture 3 If H is a finite simple group of order greater than 3, then the group
H × H is a strongly real Beauville group.

In many cases previously known strongly real Beauville structures of simple
groups H can be used to provide strongly real Beauville structures for the groups
H × H . In particular we have the following.

Theorem 2 If H is any of the following groups, then H × H is a strongly real
Beauville group.

(a) The cyclic groups of prime order greater than 3;
(b) The alternating groups An for n ≥ 5;
(c) The linear groups P SL2(q) for prime powers q > 5;
(d) The Suzuki groups 2B2(22n+1);
(e) All simple groups of order at most 100,000,000;
(f) The sporadic simple groups.

The proofs of several of these cases relied on the following general construction.

Theorem 3 Let G be a strongly real Beauville group with strongly real Beauville
structure {{x1, y1}, {x2, y2}} such that the numbers o(x1)o(y1)o(x1y1) is coprime to
o(x2)o(y2)o(x2y2). Furthermore, suppose that there is an automorphism φ ∈ Aut(G)

such that

φ(x1) = x−1
1 , φ(y1) = y−1

1 , φ(x2) = x−1
2 and φ(y2) = y−1

2 .

Then the group G × G is a strongly real Beauville group.
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Proof See [24, Theorem 3]. ��
The reader may be somewhat suspicious of the cases of the alternating group

A5 as well as the Mathieu groups M11 and M23 given these groups non-status as
strongly real Beauville groups, in addition to asking why we are not being ambitious
in considering larger direct products. Each of the groups A5 × A5, M11 × M11 and
M23 × M23 are indeed strongly real Beauville groups, the automorphisms used to
invert the elements of the structures being ones that interchanges the two factors of
the direct products. The fact that none of the corresponding simple groups in these
cases are strongly real means that this automorphism cannot be extended to higher
products so in particular none of the groups A5 × A5 × A5, M11 × M11 × M11 and
M23 × M23 × M23 strongly real despite the fact that the automorphisms making the
product of two copies of the simple groups strongly real can be adapted to make each
of the groupsA5×A5×A5×A5,M11×M11×M11×M11 andM23×M23×M23×M23

are strongly real. In short, any precise statement concerning which higher products
of simple groups are strongly real must be much more complicated.

Despite the remarks made in the previous paragraph we have the following.

Lemma 1

(a) Let n ≥ 11 be odd and let k ≤ (n − 6)/2 be positive integers. Then Ak
n is a

strongly real Beauville group.
(b) Let n ≥ 12 be an even integer and let k ≤ (n − 8)/4. Then Ak

n is a strongly real
Beauville group.

Proof See [24, Lemmas 5 and 6]. ��
More generally the following question seems natural.

Question 3. Given a finite simple group H for which values of k is the characteristi-
cally simple group H k a strongly real Beauville group?

By way of a partial answer to this question the author has computed values of
k such that Hr is a strongly real Beauville group for every r ≤ k for every simple
group of order at most 100,000 (with the exception of the alternating group A5 and
the Mathieu group M11 for which we have already shown that k = 0 is the largest

Table 1 Values of k such that every a simple group H with |H | < 100,000 the group Hr is a
strongly real Beauville group for every r ≤ k

H k H k H k H k H k H k

A5 0 L2(7) 2 A6 2 L2(8) 4 L2(11) 4 L2(13) 4

L2(17) 6 A7 14 L2(19) 6 L2(16) 2 L3(3) 14 U3(3) 6

L2(23) 2 L2(25) 10 M11 0 L2(27) 12 L2(29) 12 L2(31) 14

A8 18 L3(4) 4 U4(2) 6 2B2(8) 52 L2(32) 2 L2(41) 18

L2(43) 18 L2(47) 22 L2(49) 22 U3(4) 28 L2(53) 48 M12 16
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value). The best known values of k are listed in Table1. We do not claim that these
values are best possible, merely lower bounds on the correct value, and it is likely that
these may be improved upon. The author hopes to push these computations further
in the future. Furthermore, the author is happy to provide details of the computations
done on request.

5 Almost Simple Groups

We first recall the definition of almost simple groups.

Definition 6 Let G be a group. Recall that we say G is almost simple if there exists
a simple group S such that S ≤ G ≤ Aut(S).

For example, any simple group is almost simple, as are the symmetric groups.
As briefly mentioned earlier in [29] Fuertes and González-Diez considered which

of the symmetric groups are strongly real Beauville groups. We wish to take this
opportunity to correct a minor error in [29] that as far as the author is aware has
not previously been corrected in the literature. In [29, Proposition 9] permutations
providing strongly real Beauville structures for the smallest symmetric groups are
given. In particular, in the case n = 8 the following permutations are given to provide
the x1 and y1 elements of a Beauville structure for S8:

x1 := (2, 7, 3)(5, 8, 6), y1 := (1, 2, 3, 4, 5, 6).

Despite the claim that these generate the whole group, it is easy to see that these
permutations preserve the partition {{1, 4}, {2, 5}, {3, 6}, {7, 8}} and therefore they
do not even generate a primitive group, let alone the whole of the symmetric group!
Since the other half of the Beauville structure given in [29, Proposition 9] is

x2 := (7, 8), y2 := (1, 2, 3, 4, 5, 6, 7)

(these are easily seen to be inverted by (1, 6)(2, 5)(3, 4)) we complete this Beauville
structure by setting

x1 := (1, 2, 3, 4, 5, 6), y1 := (8, 7, 6, 5, 4).

It is easy to verify that these permutations generate the whole of S8 and are both
inverted by conjugation by (1, 3)(4, 6)(7, 8).

Webriefly digress by noting that in [21] the author has recently generalised Fuertes
and González-Diez’s results to reflection groups more generally. (Recall that wemay
view the symmetric group Sn+1 as the Coxeter group of type An—see [42].) For the
irreducible Coxeter groups we have the following.
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Theorem 4 Every finite irreducible Coxeter group is a strongly real Beauville group
aside from the groups of type:

(a) An for n ≤ 3;
(b) Bn for n ≤ 4;
(c) Dn for n ≤ 4;
(d) F4, H3 and
(e) I2(k) for any k.

From this we can deduce the complete classification of strongly real Beauville
Coxeter groups.

Corollary 1 No product of three or more irreducible Coxeter groups is a Beauville
group. Furthermore, K1 × K2 is a strongly real Beauville group if K1 and K2 are
strongly real irreducible Coxeter Beauville groups not of type Bn.

As a consequence of the proof of this theorem we have the following.

Corollary 2 An irreducible Coxeter group is a Beauville group if and only if it is a
strongly real Beauville group.

The first place the more general question of which almost simple groups are
(strongly real) Beauville groups was the author’s discussion given in [24, Sect. 5]
where the following conjecture is asserted.

Conjecture 4 A split extension of a simple group is a Beauville group if, and only
if, it is a strongly real Beauville group.

There are multiple ‘warning shots’ to be fired here—there are infinitely many
almost simple groups that are not even 2-generated, let alone Beauville groups,
the smallest example being PSL4(9) whose outer automorphism group is 2 × D8

(and more generally, if p is an odd prime and r is an even positive integer then
Aut (P SL4(pr )) is not 2-generated). Even among the almost simple groups that are
2-generated, many are not Beauville groups—for example the almost simple groups
2B2(22n+1) : 3 where n ≡ 1 (mod 3) are never Beauville groups since for any
generating pair x, y ∈ 2B2(22n+1) : 3 we have that Σ(x, y) contains elements from
the only class of elements of order 3.

6 The Groups G : 〈g〉 × G : 〈g〉

After characteristically simple groups, the next most natural direct products to try
and deal with are products of almost simple groups. Alas, any group of the form
G : H where H is not cyclic will have the property that G : H × G : H will not
be 2-generated, so the best we can hope for is that the groups G : 〈g〉 × G : 〈g〉
are Beauville. (This observation was also extremely useful when proving the above
Corollary 1.)
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In [24, Lemma 7] the author proves that for n ≥ 5 the groups Sn × Sn are strongly
real. Besides symmetric groups there are infinitely many simple groups with non-
trivial outer automorphisms, indeed it is unusual for a simple group to have no outer
automorphisms. It is natural to consider groups in which G is not necessarily the
alternating group.

Question 4. For which simple groups G is the group G : 〈g〉 × G : 〈g〉 a strongly
real Beauville group?

It is easy to see that if G is a sporadic simple group with a non-trivial outer
automorphism (namely one of the groups M12, M22, J2, HS, J3, McL, He, Suz, O’N,
Fi22, HN and Fi24) then the strongly real Beauville structures obtained for the groups
G : 2 in [24, Sect. 5] provide further examples of groups of this kind. As far as
the author is aware this class of groups has not been investigated more generally
elsewhere in the literature.

7 Abelian and Nilpotent Groups

Recall that the abelian Beauville groups were classified in Theorem 1 and that an
immediate corollary of this result is that every abelain Beauville group is strongly
real.

Theorem 1 has been put to great use by González-Diez et al. in [37] where sev-
eral structural results concerning the surfaces defined by abelian Beauville groups
are proved. For each abelian Beauville group they describe all the surfaces arising
from that group, enumerate them up to isomorphism and impose constraints on their
automorphism groups. As a consequence they show that all such surfaces are defined
over Q.

After the abelian groups, the next most natural class of finite groups to consider
are the nilpotent groups. In [2, Lemma 1.3] Barker, Boston and the author note the
following easy Lemma.

Lemma 2 Let G and G ′ be Beauville groups and let {{x1, y1, }, {x2, y2}} and
{{x ′

1, y′
1, }, {x ′

2, y′
2}} be their respective Beauville structures. Suppose that

gcd(o(xi ), o(x ′
i )) = gcd(o(yi ), o(y′

i )) = 1

for i = 1, 2. Then {{(x1, x ′
1), (y1, y′

1)}, {(x2, x ′
2), (y2, y′

2)}} is a Beauville structure
for the group G × G ′.

Recall that a finite group is nilpotent if, and only if, it is isomorphic to the direct
product of its Sylow subgroups. It thus follows that Lemma 2, and its easy to prove
converse, reduces the study of nilpotent Beauville groups to that of Beauville p-
groups.Note that Theorem1gives us infinitelymany examples ofBeauville p-groups
for every prime p > 3: simply let n be any power of p. Early examples of Beauville
2-groups and 3-groups were constructed by Fuertes et al. in [30] where a Beauville
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group of order 212 and another of order 312 were constructed. Even earlier than this,
two (mixed) Beauville 2-groups of order 28 arose as part of a classification due to
Bauer et al. in [9] of certain classes of surfaces of general type, which give rise to
examples of (unmixed) Beauville 2-groups of order 27.

More recently, in [2] Barker, Boston and the author classified the Beauville p-
groups of order at most p4 and made substantial progress on the cases of groups
of order p5 and p6. More recently still in [55] Stix and Vdovina have constructed
infinite series of Beauville p-groups. In particular this gives the first examples of
non-abelian Beauville p-groups of arbitrarily large order and any prime p ≥ 5.
To do this they make use of the theory of pro-p groups and in doing so provide
generalisations of examples from [2]. The first explicit construction of an infinite
family of Beauville 3-groups was recently given by Fernández-Alcober and Gül in
[28] where they consider homomorphic images of the famous Nottingham group as
well as providing other general constructions for Beauville p-groups. In doing so
they settled several conjectures made in [2]. The earliest explicit infinite family of
Beauville 2-groups have been constructed by Barker et al. in [3–5] where, again,
more general constructions are also considered. The most comprehensive survey on
Beauville p-groups is given by Boston in [15].

Up until now, however, the only example of Beauville p-groups that have been
explicitly shown to be strongly real have been the abelian ones. Below we give what
is, as far as the author is aware, the very first example of non-abelian strongly real
Beauville p-group.

Lemma 3 There exist strongly real Beauville 2-groups.

Proof Consider the group

G = 〈u, v | (ui v j )4, i, j = 0, 1, 2, 3〉.

Straightforward computations verify that |G| = 214 and that {{u, v}, {uvu, vuv}} is
a Beauville structure. Moreover, the function mapping u ↔ u−1 and v ↔ v−1 is an
automorphism since it simply permutes the relations appearing the above presenta-
tion. This automorphism of this group clearly inverts all of the elements in the above
Beauville structure so we have a strongly real Beauville structure and thus a strongly
real Beauville group. ��

As far as the author is aware, the above is an isolated example—replacing 4 with
a higher power of 2 or replacing 2 with a larger prime does not appear to produce
a finite group. The utility of the above group stems from the fact that it admits an
unusually easy to write down presentation and in particular a presentation that makes
it unusually easy to explicitly write down an automorphism of the group. The closest
to a further example the author has been able to find is the group

G = 〈u, v | u8, v8, [u2, v2], (ui v j )4, i, j = 1, 2, 3〉

which can easily be shown to be a strongly real Beauville group of order 213 by an
argument similar to the above.
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Whilst constructing infinitely many examples of strongly real Beauville p-groups
is difficult, constructing infinitelymany strongly real nilpotent Beauville groups from
the above is easy: as noted earlier any nilpotent group is isomorphic to the direct
product of its Sylow subgroups. This fact combined with the strongly real abelian
Beauville p-groups given to us byTheorem1 provides an infinite supply of examples.

Clearly much work on the following question remains to be done.

Question 5.

(a) Are there infinitely many strongly real Beauville p-groups?
(b) What proportion of the 2-generated p-groups that are Beauville groups are

strongly real?

Since p-groups in general tend to have large automorphism groups it seems likely
in the opinion of the author that there are infinite families of strongly real Beauville
p-groups.
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On Pentagonal Geometries with Block
Size 3, 4 or 5

Terry S. Griggs and Klara Stokes

Abstract Let PLS(k, r ) be a partial linear space which is both uniform, i.e. every
line has the same cardinality k ≥ 2, and regular, i.e. every point is incident with the
same number r ≥ 1 of lines. In a recent paper (J. Combin. Des. 21 (2013), 163–179),
Ball, Bamberg, Devillers & Stokes introduced the concept of a pentagonal geometry
PENT(k, r ) as a PLS(k, r ) in which all the points not collinear with any given point
are themselves collinear. They also determined the existence spectrum for k = 1 or 2
and r = k or k +1. In this paper we prove that the existence spectrum for PENT(3, r )
is r ≡ 0 or 1 (mod 3) except r = 4 or 6. We also prove that there exists a PENT(4, r )
for r ≡ 1 (mod 8) and a PENT(5, r) for r ≡ 1 (mod 5), r �= 6, apart from nine
possible exceptions. Further we construct an infinite class of pentagonal geometries
PENT(2m, 2m+1 + 1), m ≥ 1, and a PENT(6, 13).

1 Introduction

In [2], the authors introduced the concept of a pentagonal geometry and developed the
theory of this structure. The framework within which this is done is that of a partial
linear space. This is an ordered pair (V,L ) where V is a set of elements, usually
called points, of cardinality v andL is a family of subsets of V, usually called lines
or blocks, such that every pair of distinct points is contained in at most one line. We
will only be concerned with partial linear spaces which are both uniform, i.e. every
line has the same cardinality k ≥ 2, and regular, i.e. every point is incident with
the same number r ≥ 1 of lines. Denote such a partial linear space by PLS(k, r ). A
pentagonal geometry, PENT(k, r ), is a partial linear space in which for all points x ,
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the points not collinear with x are themselves collinear. We call this line the opposite
line to x and denote it by xopp. If two points x and y have the same opposite line
xopp = yopp = l, then zopp = m for all points z ∈ l where m is the line joining x
and y. Similarly wopp = l for all w ∈ m. We will call such a pair of lines (l,m)

an opposite line pair. The pentagon is the geometry PENT(2, 2) and the Desargues
configuration is PENT(3, 3). When r = 1, PENT(k, 1) consists of two disjoint lines,
each of cardinality k. We will say that this is a degenerate pentagonal geometry.

A number of basic lemmas about pentagonal geometries are proved in [2], of
which the following will be important for this paper.

Lemma 1 A pentagonal geometry PENT(k, r) has rk − r + k + 1 points and (rk −
r +k +1)r/k lines. Thus a necessary condition for existence is that k divides r(r −1).

Lemma 2 If there exists a pentagonal geometry PENT(k, r) with r > 1, then r ≥ k.

Lemma 3 A pentagonal geometry PENT(k, r) with 1 < r < 3k has either

(i) no opposite line pair, or
(ii) r = 2k + 1 and the points are partitioned into opposite line pairs.

An important concept in the theory of partial linear spaces is that of the leave or
deficiency graph. This is the graph G whose vertex set is V with two points x and
y being adjacent if and only if they are not collinear. The following result is also
proved in [2].

Lemma 4 The deficiency graph G of a pentagonal geometry PENT(k, r) is the
disjoint union of complete bipartite graphs Kk,k (one for each opposite line pair)
and G ′ where G ′ is a k-regular graph of girth at least 5, not necessarily connected.

With the aid of this latter result, the authors of [2] were able to relate the existence
of a pentagonal geometry PENT(k, k) or PENT(k, k + 1) to that of a Moore graph
of girth 5, i.e. k-regular graph with k2 + 1 vertices. Such graphs exist only for k = 2
(pentagon), 3 (Petersen graph), 7 (Hoffman-Singleton graph) and possibly 57. Thus
they were able to prove the two following theorems.

Theorem 1 A pentagonal geometry PENT(k, k) exists only for k = 2, 3, 7 and
possibly 57.

Theorem 2 A pentagonal geometry PENT(k, k+1) exists only for k = 2, 6 and
possibly 56.

The existence spectrum of pentagonal geometries with block size 2 was also
determined. From Lemma 1, the number of points in a PENT(2, r ) is r +3. So, from
Lemma 4 we have the following theorem which is taken from [2].

Theorem 3 A pentagonal geometry PENT(2, r) is a complete graph on r + 3 vertices
from which a union of disjoint cycles, none of size 3, spanning the vertex set has been
deleted.
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Thus the number of non-isomorphic pentagonal geometries PENT(2, r ) is equal
to the number of decompositions, say q(r), of r +3 into integers greater than or equal
to 4. This is sequence A008484 in the On-line Encyclopedia of Integer Sequences
(OEIS) and, as observed there, can easily be expressed in terms of the partition
function, (sequence A000041 in OEIS). Recall that for all n ≥ 1, the partition
function p(n) is the number of ways in which n can be expressed as a sum of positive
integers, called parts, where the order of the parts is immaterial. By convention
p(0) = 1 and p(n) = 0 for n < 0.

We express this result formally as a theorem.

Theorem 4 The number q(r) of non-isomorphic pentagonal geometries PENT(2, r)
is p(r + 3) − p(r + 2) − p(r + 1) + p(r − 1) + p(r − 2) − p(r − 3).

Values of q(r) for 2 ≤ r ≤ 21 are given in the table below.

r 2 3 4 5 6 7 8 9 10 11
q(r) 1 1 1 2 2 3 3 5 5 7
r 12 13 14 15 16 17 18 19 20 21
q(r) 8 11 12 16 18 24 27 34 39 50

The aim of this paper is to extend the results of [2] by considering pentagonal
geometries with block size 3, 4 or 5. The main result is the proof that the existence
spectrum for PENT(3, r ) is r ≡ 0 or 1 (mod 3) except r = 4 or 6. The case r ≡
2 (mod 3) is prohibited by Lemma 1. The necessary condition for the existence of
PENT(4, r ) as given by Lemma 1 is r ≡ 0 or 1 (mod 4). We also prove that there
exists a PENT(4, r ) for r ≡ 1 (mod 8). Further progress on the existence spectrum
is inhibited by the lack of any examples in the residue classes 0, 4 or 5 (mod 8).
However we indicate how the construction of certain small examples would lead,
via our methods, to further infinite linear classes. The necessary condition for the
existence of PENT(5, r ) as given by Lemma 1 is r ≡ 0 or 1 (mod 5). We prove the
existence of pentagonal geometries in the latter residue class apart from r = 6 and
possibly nine further values.We also establish some results on pentagonal geometries
PENT(k, 2k + 1).

2 Constructions

Apartial linear space PLS(k, r ) is said to have deficiency one if every point is collinear
with every other point except one, called its antipodal point. In [2], the authors
construct pentagonal geometries by taking the union of k copies of a partial linear
space of deficiency one with k points on each line and replacing the disconnected
configuration consisting of the k copies of the same line together with the points
on these lines by an affine plane of order k. This is a product construction and all
opposite lines of the resulting pentagonal geometry occur in pairs. This gives the
following theorem.



150 T.S. Griggs and K. Stokes

Theorem 5 Let PLS(k, r) be a partial linear space of deficiency one where k is a
power of a prime. Then there exists a pentagonal geometry PENT(k, kr + 1).

In the next two sections we use this theorem to prove the existence of infinite
linear classes of pentagonal geometries with block size 3 or 4.

The authors of [2] also give a second construction.

Theorem 6 Let PENT(k, r) be a, (possibly degenerate), pentagonal geometry. If
there exists a set of k − 2 mutually orthogonal Latin squares (MOLS) of order
(k − 1)r + k + 1, then there exists a pentagonal geometry PENT(k, rk + k + 1).

We prove a generalisation of this theorem by replacing the set of mutually orthog-
onal Latin squares by an appropriate group divisible design.

A k-group divisible design, k-GDD, is an ordered triple (V, G , B) where V is a
set of points of cardinality v, G is a partition of V into groups and B is a family
of subsets of V, called lines or blocks, each of cardinality k, such that every pair
of distinct points is contained in either precisely one group or one block, but not
both. If v = a1g1 + a2g2 + . . . + as gs and if there are ai groups of cardinality gi ,
i = 1, 2, . . . , s, then the k-GDD is said to be of type ga1

1 ga2
2 . . . gas

s . Thus the existence
of k − 2 MOLS of order n is equivalent to the existence of a group divisible design
of type nk .

For group divisible designs with uniform group size we have the following result.

Theorem 7 Let PENT(k, r) be a (possibly degenerate) pentagonal geometry. If there
exists a k-GDD of type ((k −1)r +(k +1))u, then there exists a pentagonal geometry
PENT(k, ru + (k + 1)(u − 1)/(k − 1)).

Proof Let the point set of the pentagonal geometry PENT(k, r ) be V = {1, 2, . . . ,
(k − 1)r + (k + 1)}. Define disjoint sets V (i) = {x (i) : x ∈ V }, i = 1, 2, . . . , u, and
construct pentagonal geometries PENT(k, r ) on each of these sets. Adjoin the blocks
of a k-GDD of type ((k − 1)r + (k + 1))u where the sets V (i) form the groups of the
design. We obtain a pentagonal geometry with block size k and in which every point
occurs in r + ((k − 1)r + (k + 1))(u − 1)/(k − 1) = ru + (k + 1)(u − 1)/(k − 1)
blocks. �

We can also prove an extension of Theorem 7 in which all group sizes except one
have the same cardinality.

Theorem 8 Let PENT(k, r) and PENT(k, s) be (possibly degenerate) pentagonal
geometries. If there exists a k-GDD of type ((k −1)r +(k +1))u((k −1)s +(k +1))1,
then there exists a pentagonal geometry PENT(k, (r + (k + 1)/(k − 1))u + s).

Proof Let the point set of the pentagonal geometry PENT(k, r ) be V = {1, 2, . . . ,
(k − 1)r + (k + 1)}. Define disjoint sets V (i) = {x (i) : x ∈ V }, i = 1, 2, . . . , u,
and construct pentagonal geometries PENT(k, r ) on each of these sets. In addi-
tion construct a pentagonal geometry PENT(k, s) on the set W = {1(w), 2(w), . . . ,

((k − 1)s + (k + 1))(w)}. Adjoin the blocks of a k-GDD of type ((k − 1)r + (k +



On Pentagonal Geometries with Block Size 3, 4 or 5 151

1))u((k − 1)s + (k + 1))1 where the sets V (i) and W form the groups of the design.
We obtain a pentagonal geometry with block size k. A point x ∈ V (i) occurs in
r+(((k−1)r+(k+1))(u−1)+(k−1)s+(k+1))/(k−1) = (r+(k+1)/(k−1))u+s
blocks and a point y ∈ W also occurs in s + ((k − 1)r + (k + 1))u/(k − 1) =
(r + (k + 1)/(k − 1))u + s blocks. �

3 Block Size 3

From Lemma 1, the number of points in a PENT(3, r ) is 2r + 4 and the necessary
condition for existence is r ≡ 0 or 1 (mod 3). We prove that this condition is also
sufficient with the exception of the two values r = 4 and r = 6, where the pentagonal
geometries do not exist.

In arithmetic set density terms, this means that 1/3 of the possible spectrum can
be constructed using Theorem 5. PLS(3, r ) of deficiency one are readily obtained
from Steiner triple systems. Recall that a Steiner triple system of order v, STS(v),
is an ordered pair (V,B) where V is a set of points of cardinality v and B is a
family of lines or blocks, each of cardinality 3, such that every pair of distinct points
is contained in precisely one block. It is very well known that STS(v) exist if and
only if v ≡ 1 or 3 (mod 6), [12], and there is an extensive theory and literature
on the systems, see for example [6]. Given an STS(v), then by selecting any point
and deleting all blocks through that point, a PLS(3, r ) of deficiency one is obtained
for all r ≡ 0 or 2 (mod 3). It then follows immediately that there exist pentagonal
geometries PENT(3, 9t + 1) and PENT(3, 9t + 7), t ≥ 0.

However using Theorems 7 and 8, we can obtain the entire existence spectrum.
First we need the following two results on the existence of 3-GDDs, the first due to
Hanani, [10], and the second to Colbourn, Hoffman & Rees, [5].

Proposition 1 (Hanani) There exists a 3-GDD of type gu, u ≥ 3, if and only if

1. g ≡ 1 or 5 (mod 6) and u ≡ 1 or 3 (mod 6), or
2. g ≡ 2 or 4 (mod 6) and u ≡ 0 or 1 (mod 3), or
3. g ≡ 3 (mod 6) and u ≡ 1 (mod 2), or
4. g ≡ 0 (mod 6) with no constraint on u.

Proposition 2 (Colbourn, Hoffman & Rees) There exists a 3-GDD of type gum1

if and only if the following conditions are all satisfied.

1. if g > 0, then u ≥ 3, or u = 2 and m = g, or u = 1 and m = 0, or u = 0;
2. m ≤ g(u − 1) or gu = 0;
3. g(u − 1) + m ≡ 0 (mod 2) or gu = 0;
4. gu ≡ 0 (mod 2) or m = 0;
5. 1

2g2u(u − 1) + gum ≡ 0 (mod 3).

We are now in a position to prove the main theorem.
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Theorem 9 (Existence theorem for block size 3) The existence spectrum of pen-
tagonal geometries PENT(3, r) is r ≡ 0 or 1 (mod 3), except r = 4 or 6.

Proof In Theorem 7, let k = 3 and r = 1. There exists a pentagonal geometry
PENT(3, 1) and a 3-GDDof type 6t , t ≥ 3. Hence there exists a pentagonal geometry
PENT(3, 3t − 2), t ≥ 3. We have already observed that there exists a PENT(3, 1)
and from Theorem 2 there is no PENT(3, 4).
In Theorem 8, let k = 3, r = 1 and s = 3. There exist pentagonal geometries
PENT(3, 1) and PENT(3, 3) and a 3-GDD of type 6t101, t ≥ 3. Hence there exists a
pentagonal geometry PENT(3, 3t + 3), t ≥ 3. Again we have already observed that
a PENT(3, 3) exists and it was shown in [2] that there is no PENT(3, 6). A PENT(3,
9) with one opposite line pair is also given in [2]. �

The systems constructed in the above theorem contain the maximum number of
opposite line pairs among all pentagonal geometries with the same parameters. From
Lemma 4 the deficiency graph of a pentagonal geometry with k = 3 is a union of (i)
complete bipartite graphs K3,3 (corresponding to opposite line pairs) and (ii) cubic
graphs of girth at least 5, of which the smallest is the Petersen graph with 10 vertices.
In the pentagonal geometries PENT(3, 3t − 2), t = 1 or t ≥ 3, the 6t points are
partitioned into t opposite line pairs. In the pentagonal geometries PENT(3, 3t + 3),
t = 0 or t ≥ 3, the 6t + 10 points are partitioned into t opposite line pairs and 10
points which form a PENT(3, 3). This just leaves PENT(3, 9) to be considered. By
the same argument as above, there are at most two opposite line pairs. But this is not
possible as the following lemma shows.

Lemma 5 There is no pentagonal geometry PENT(3, 9) with two opposite line pairs.

Proof A pentagonal geometry PENT(3, 9) has 22 points and 66 lines. Suppose that
there are two opposite line pairs. Call the points of one of the opposite line pairs type
A and the points of the other opposite line pair type B. The remaining 10 points are
type C. There are two lines of type AAA and two lines of type BBB (the opposite
line pairs). The remaining 62 lines are of type ABC, ACC, BCC or CCC. Of the
remaining pairs to be covered, 36 are of type AB, 60 are of type AC and 60 are of
type BC. This leaves (62× 3)− (36+ 60+ 60) = 30 further pairs which must be of
type CC. So there are 36 lines of type ABC, 12 lines of type ACC, 12 lines of type
BCC and 2 lines of type CCC. Now consider a point of type C. Its opposite line is of
type CCC and since there are no opposite line pairs other than those of types AAA
or BBB there are at least as many lines of type CCC as points of type C giving a
contradiction. �

So for all admissible r we have an example of a pentagonal geometry PENT(3, r )
which is extremal in the sense that it contains the maximum number of opposite line
pairs; although zero in the case of PENT(3, 3). It would therefore be of interest to
have examples at the other extreme, i.e. with no opposite line pairs. We can use the
PENT(3, 3) and our constructional methods using 3-GDDs to obtain infinite linear
classes.
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Theorem 10 There exists a pentagonal geometry PENT(3, r) with no opposite line
pair for all r ≡ 3 or 13 (mod 15).

Proof In Theorem 7, let k = 3 and r = 3. There exists a 3-GDD of type 10u , u = 3t
or 3t + 1, t ≥ 1. Hence there exists a pentagonal geometry PENT(3, 5u − 2) for the
same values of u. �

We conclude this section with an enumeration result. Trivially PENT(3, 1) is
unique and it is easily seen that the Desargues configuration is the unique PENT(3,
3). There is no PENT(3, r ) for r = 4 or 6. The next value to consider is r = 7. From
Lemma 3, a pentagonal geometry PENT(3, 7) either has no opposite line pair or the
points are partitioned into opposite line pairs. The former possibility was eliminated
in [2] by computer search. For the latter possibility the 18 points are partitioned into
three opposite line pairs (l0,m0), (l1,m1), (l2,m2). The remaining 36 lines come
from a group divisible design with block size 3 and of type 63, (i.e. a Latin square of
side 6), whose groups are the points of li ∪ mi , i = 0, 1, 2. Thus the number of non-
isomorphic PENT(3, 7)s is the number of paratopy or main classes of Latin squares
of side 6. There are precisely 12 of these and they are listed in [4]. The deficiency
graph of every pentagonal geometry PENT(3, 7) is disconnected, being three copies
of the bipartite graph K3,3.

4 Block Sizes 4 and 5

Necessary and sufficient conditions for the existence of 4-GDDs with uniform block
size was determined in [3].

Proposition 3 (Brouwer, Schrijver & Hanani) There exists a 4-GDD of type
gu, u ≥ 4, if and only if

1. g ≡ 1 or 5 (mod 6) and u ≡ 1 or 4 (mod 12), or
2. g ≡ 2 or 4 (mod 6) and u ≡ 1 (mod 3), (g, u) �= (2, 4), or
3. g ≡ 3 (mod 6) and u ≡ 0 or 1 (mod 4), or
4. g ≡ 0 (mod 6) with no constraint on u, (g, u) �= (6, 4).

From Lemma 1, the number of points in a PENT(4, r ) is 3r +5 and the necessary
condition for existence is r ≡ 0 or 1 (mod 4). In arithmetic set density terms we can
determine 1/4 of the possible spectrum again by using Theorem 5. From the above
there exists a 4-GDD of type 23t+1, t ≥ 2. This is a PLS(4, 2t) of deficiency one and
so it follows that there exist pentagonal geometries PENT(4, 8t + 1), t ≥ 2. This
leaves the existence of a PENT(4, 9) still in doubt but using Theorem 7 the existence
of this geometry can also be shown.

Theorem 11 There exists a pentagonal geometry PENT(4, r) for all r ≡ 1 (mod 8).

Proof In Theorem 7 let k = 4 and r = 1. There exists a pentagonal geometry
PENT(4, 1) and a 4-GDD of type 83t+1, t ≥ 1. Hence there exists a PENT(4, 8t +1),
t ≥ 1. �
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Necessary and sufficient conditions for the existence of 4-GDDs in which all
group sizes except one have the same cardinality are not known. However there
do exist very many 4-GDDs of this type, see [7]. But it is not the lack of suitable
group divisible designs which prevents further progress on the existence spectrum of
PENT(4, r )s. As the reader can easily check, putting k = 4, u ≡ 0 (mod 3) and r, s ≡
1 (mod 8) in Theorem 8, and supposing that the relevant GDDs exist, yields further
geometries in the residue class 1 (mod 8). In order to obtain pentagonal geometries
in the residue classes 0, 4 or 5 (mod 8) by this method we need at least one geometry
in one of these classes. To illustrate this point we present two putative constructions.

Construction 1 Suppose that there exists a PENT(4, 4s) for some s ≥ 2. Now let
k = 4 and r = 4s in Theorem 7. There exists a 4-GDD of type (12s + 5)u where
u = 12t + 1, t ≥ 1 or u = 12t + 4, t ≥ 0. In the former case we obtain pentagonal
geometries PENT(4, 48st+4s+20t), i.e. further infinite linear subclasses of systems
in the residue class 0 (mod 4) and in the latter case PENT(4, 48st + 16s + 20t + 5),
systems in the residue class 1 (mod 4).

Construction 2 First we prove the existence of a relevant 4-GDD. From [8], see
also [7], there exists a 4-GDD of type 23w111 forw ≥ 4. Now in this group divisible
design inflate each point by a factor 4, i.e. replace each point by four points and in
addition replace each block by a 4-GDD of type 44. This is a standard procedure
known as Wilson’s fundamental construction. We obtain a 4-GDD of type 83w441

for w ≥ 4. Now suppose that there exists a PENT(4, 13). Let r = 1 and s = 13 in
Theorem 8. Then there exists PENT(4, 8w + 13) for w ≥ 4, which deals with the
entire residue class 5 (mod 8) apart from three possible exceptions.

Turning now to block size 5, the number of points in a PENT(5, r ) is 4r + 6
and the necessary condition for existence is r ≡ 0 or 1 (mod 5). Here we are able
to determine 1/2 of the possible existence spectrum, specifically we can deal with
the residue class 1 (mod 5) apart from nine possible exceptions. First we need the
following result from [9].

Proposition 4 (Ge & Ling) There exists a 5-GDD of type 102t+1, t ≥ 2, possibly
apart from when t ∈ {2, 3, 7, 11, 13, 16, 17, 19, 23}.

We now have the following theorem.

Theorem 12 There exists a pentagonal geometry PENT(5, r) for all r ≡ 1 (mod 5),
r �= 6, possibly apart from r ∈ {11, 16, 36, 56, 66, 81, 86, 96, 116}.
Proof In Theorem 7, let k = 5 and r = 1. There exists a pentagonal geometry
PENT(5, 1) and a 5-GDD of type 102t+1, t ≥ 2, possibly apart from the values of t
given in Proposition 4. Hence there exists a pentagonal geometry PENT(5, 5t +
1), t ≥ 2, again possibly apart from these values. There is no PENT(5, 6) by
Theorem 2. �
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5 The Case r = 2k + 1

This section is concerned with pentagonal geometries PENT(k, r ) in which r =
2k + 1. From Lemma 3, such a pentagonal geometry either has no opposite line pair
or the points are partitioned into opposite line pairs. Consider the latter option. We
prove the following characterization theorem.

Theorem 13 There exists a pentagonal geometry PENT(k, 2k +1) whose points are
partitioned into opposite line pairs if and only if there exists a set of k − 2 mutually
orthogonal Latin squares (MOLS) of side 2k.

Proof The number of points in a PENT(k, 2k + 1) is 2k2 and the number of lines is
4k2 + 2k. Put r = 1 in Theorem 6. There exists a pentagonal geometry PENT(k, 1).
Hence if there exists a set of k − 2 MOLS of order 2k, then there exists a pentagonal
geometry PENT(k, 2k + 1). Further, the k copies of PENT(k, 1) contained in the
PENT(k, 2k + 1) will form a partition of the 2k2 points into k opposite line pairs.
Conversely, if there exists a PENT(k, 2k +1) whose points are partitioned into oppo-
site line pairs, then these line pairs will form k copies of the degenerate pentagonal
geometry PENT(k, 1) accounting for 2k lines in total. The remaining 4k2 lines must
then form a set of k − 2 MOLS of side 2k. 	


The theoretical maximum number of MOLS of side n is n − 1, called a complete
set. These are known to exist when n is a power of a prime and are equivalent to the
existence of a projective plane of order n. We are interested in the case where n is
even. Thus when k = 2m , m ≥ 1, there exist 2m+1−1 > 2m −2MOLS of side 2m+1.
We therefore have the following infinite class of pentagonal geometries as stated in
the theorem below.

Theorem 14 There exists a pentagonal geometry PENT(2m, 2m+1+1) for all m ≥ 1
whose points are partitioned into opposite line pairs.

From the table given in [1], the only other value of k for which it is known that
the number of MOLS of side 2k is at least k − 2 is k = 6. There exists a set of 5
MOLS of side 12, [11]. So we have the following result.

Theorem 15 There exists a pentagonal geometry PENT(6, 13) whose points are
partitioned into opposite line pairs.

We conclude this section with the remark that the existence of a pentagonal geom-
etry PENT(5, 11) with points partitioned into opposite line pairs, which is one of the
“missing” values in Theorem 12, is equivalent to the existence of three MOLS of
side 10, one of the most intriguing unanswered questions about Latin squares.
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6 Concluding Remarks

As we stated in the introduction, pentagonal geometries with block size 2 were
characterised in [2]. The main result of the present paper has been to completely
determine the existence spectrum for block size 3. In doing this, we have not been
unduly concerned with the structure of the geometries. Nevertheless as we observed,
the pentagonal geometries given in Theorem 9 contain the maximum number of
opposite line pairs. Then in Theorem 10 we constructed infinite linear classes of
PENT(3, r ) with no opposite line pair. It would be good to complete the existence
spectrum of such pentagonal geometries. In order to do this using the group divisible
design constructions it is necessary to find examples other than those in the residue
classes 3 or 13 (mod 15) already dealt with.

Also the group divisible design constructions of Theorems 7 and 8 yield pentago-
nal geometries whose deficiency graph is not connected. The only known pentagonal
geometries PENT(3, r ) with connected deficiency graph are those for r = 1 (K3,3),
r = 3 (Petersen graph) and an example for r = 13 given in [2]. It would be of interest
to have more examples, indeed infinite families. This would appear to be a priority
for future research but new ideas for the constructional methods would seem to be
needed.

We have also proved the existence of pentagonal geometries PENT(4, r ) for all
r ≡ 1 (mod 8). But the situation for r ≡ 0, 4 or 5 (mod 8) remains completely open.
As we indicated, the obstacle is that currently not a single PENT(4, r ) is known to
exist in these residue classes. Our constructions in Sect. 4 show that the existence of
for example a PENT(4, 8), PENT(4, 12) and/or PENT(4, 13) would lead to further
infinite classes. The construction of these geometries or proof of their non-existence
is also of prime importance.

For k ≥ 4, although we have been able to construct pentagonal geometries
PENT(k, r ) for k = 5 and r ≡ 1 (mod 5) apart from nine possible exceptions, fur-
ther progress seems limited because of the lack of knowledge of appropriate group
divisible designs. Nevertheless it would be good to deal with these nine “missing”
values but that is more a problem of constructing the relevant group divisible designs
than the pentagonal geometries.
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The Grothendieck-Teichmüller Group
of a Finite Group and G-Dessins d’enfants

Pierre Guillot

Abstract For each finite group G, we define the Grothendieck-Teichmüller group
of G, denoted GT(G), and explore its properties. The theory of dessins d’enfants
shows that the inverse limit of GT(G) as G varies can be identified with a group
defined by Drinfeld and containing Gal(Q/Q). We give, in particular, an iden-
tification of GT(G), in the case when G is simple and non-abelian, with a cer-
tain very explicit group of permutations that can be analyzed easily. With the
help of a computer, we obtain precise information for G = PSL2(Fq) when
q ∈ {4, 7, 8, 9, 11, 13, 16, 17, 19}, and we treat A7, PSL3(F3) and M11. In the rest of
the paper we give a conceptual explanation for the technique which we use in our
calculations. It turns out that the classical action of the Grothendieck-Teichmüller
group on dessins d’enfants can be refined to an action on “G-dessins”, which we
define, and this elucidates much of the first part.

1 Introduction

Suppose that Γ is a finite group, generated by two distinguished elements x and y,
and such that

(i) Γ has an automorphism θ such that θ(x) = y and θ(y) = x,
(ii) Γ has an automorphism δ such that δ(x) = z and δ(y) = y, where z is the

element such that xyz = 1.

In this situation we define a subgroup A(Γ ) ⊂ Aut(Γ ) as follows: an element ϕ ∈
Aut(Γ ) belongs to A(Γ ), by definition, when

1. ϕ(x) is a conjugate of xk for some integer k,
2. ϕ commutes with θ and δ in Out(Γ ).

(It follows that ϕ(y) is a conjugate of yk , and likewise for z). The image of A(Γ )

in Out(Γ ) will be denoted by A (Γ ).
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For any finite group G at all, we shall see that there is a way to construct a group G

satisfying (i) and (ii), so that it can play the role of Γ (and moreover G = G). Thus
it makes sense to define GT(G) := A (G). We call it the Grothendieck-Teichmüller
group of G, and the present paper is dedicated to the study of its properties. We start
with a few words of motivation and background.

How GT(G) varies with G is a discussion which we postpone; for the time being,
we take it for granted that it is possible to form the inverse limit

GT := lim
G

GT(G).

In [2] we proved the central (for us) result that there is a monomorphism

Gal(Q/Q) −→ GT.

Thus GT, with its very brief definition, gives a group-theoretic angle to the study
of the absolute Galois group Gal(Q/Q) of the field Q. A very first step towards
understanding GT is to provide information on GT(G) for some individual choices
of G, and this is what we propose to do here.

As an aside, the reader will probably find it useful to know that

lim
G

Out(G) ∼= Out(F̂2),

where F̂2 is the profinite completion of the free group F2 on two generators. Thus GT
can be seen as a certain subgroup of Out(F̂2), and one can show that it can be
lifted to a subgroup of Aut(F̂2). Also, let us indicate that GT coincides with the
group denoted ĜT0 by Drinfeld in [1] (we shall have nothing to say about the sub-
group ĜT ⊂ ĜT0, also considered by Drinfeld). All this, and more, is proved in [2].

A good deal of the present paper will in fact pertain to GT1(G), which is the
subgroup of GT(G) obtained by restricting condition (1) above to k = 1 only. One
can show that there is a monomorphism

Gal(Q/Q)′ −→ GT1 := lim
G

GT1(G),

where Gal(Q/Q)′ is the derived subgroup of Gal(Q/Q). So GT1 can potentially give
us information on Gal(Q/Q)′ just like GT can give us information on Gal(Q/Q),
and of course the abelianization Gal(Q/Q)/Gal(Q/Q)′ ∼= Ẑ

× is well-understood.
Here Ẑ

× is the group of units in the profinite completion of Z.
The following simple example should illuminate the situation. If G = Cn, the

cyclic group of order n, we have Cn
∼= Cn × Cn with its canonical pair of generators.

Then GT(Cn) ∼= (Z/n)×, directly from the definition, while GT1(Cn) is trivial.
Letting n vary, we can take the inverse limit and obtain

Gal(Q/Q) −→ lim
n

GT(Cn) ∼= Ẑ
×.
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In turn, this homomorphism can be identified with the celebrated cyclotomic charac-
ter, whose kernel is Gal(Q/Q)′. In a sense, consideration of cyclic groups accounts
forwhat is abelian inGal(Q/Q), andwemust turn to non-abelian groups and theirGT
to proceed further.

� � �

The Grothendieck-Teichmüller group is strongly related to the theory of dessins
d’enfants, which are the object of many papers in these Proceedings (some informa-
tion on dessins is given below in this Introduction, andmore is said in Sect. 6). On the
one hand one uses dessins in order to construct the homomorphism from Gal(Q/Q)

into GT and show that it is injective. On the other hand, the group GT can be used to
shed light on the action of Gal(Q/Q) on (isomorphism classes) of dessins. Indeed,
when trying to predict whether two dessins belong to the sameGalois orbit, one starts
by checking a few combinatorial properties which they must have in common: the
same number of black vertices, the same number of white vertices, the same number
of faces, and the same “monodromy group”, for example.

All these are subsumed by the following statement: the action of Gal(Q/Q) on
those dessins with monodromy group G factors via

Gal(Q/Q) −→ GT −→ GT(G).

For simplicity, say that one is interested in regular dessins, those with “maximal
symmetry”. Then the regular dessins with monodromy group (or automorphism
group) G are in bijection with those normal subgroups N of G such that G/N ∼= G,
and the action ofGal(Q/Q) factors through the natural action ofGT(G) on these. The
combinatorial features above can be recovered from this, and more. This motivates
the computation of GT(G) for a single group G individually.

An example of a finer statement which one can make about the Galois action is
the following: if GT1(G) = 1, then Gal(Q/Q)′ acts trivially on the set of dessins
with monodromy G. In different terms, the moduli field of such a dessin, that is, the
number field F whose fixed subgroup in Gal(Q/Q) is the stabilizer of the dessin,
is an abelian extension of Q. (The field F is strongly related to, though sometimes
smaller than, the number fields over which the dessin can be defined.)

During the SIGMAP conference, Gareth Jones asked for examples of regular
dessins with non-abelian moduli field. A hint for those trying to answer the question
is thus that the monodromy group G must satisfy GT1(G) �= 1. In the course of this
paper we shall see that this rules out G = A5 and G = Dn when n is divisible by 4,
among others.

� � �

Let us nowdescribe the contents of the paper. It is in Sect. 2where, after expanding
on the definitions above, we prove that properties of G are reflected in properties
of GT1 (but not GT). For example we establish:
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Theorem 1 If G is a p-group for some prime p, then so is GT1(G); if G is nilpotent,
then so is GT1(G).

The group GT(G)/GT1(G) is abelian, with exponent dividing that of (Z/N)×,
where N is the order of x or y in G (in particular, this exponent may not be a power
of p when G is a p-group).

In Sect. 4 we define a new group S (G). We hasten to add that when G is non-
abelian and simple we shall prove that there is an isomorphism GT1(G) ∼= S (G),
so the material in that section can be seen at least as a study of the “simple case”.
However S (G) is defined for all G, and it is a much easier group to deal with
than GT1(G). It is described as the intersection, in a permutation group, of a Young
subgroup and the centralizer of a few explicit permutations. The first virtue ofS (G)

is that it is easy to reason with, leading for example to the next result:

Theorem 2 Let G be a finite, simple, non-abelian group, and let m be the size of
the largest conjugacy class in G. A simple factor occurring in GT1(G) must be
isomorphic to either:

• C2,
• C3,
• a subquotient of Out(G),
• an alternating group As where s ≤ m2

|G| .

(We stress that the theorem mentions Out(G), not Out(G) which is much bigger
and would make for a tautological statement.)

It is also easy to compute explicitly withS (G). The reader should keep in mind
that a computer, unleashed after GT1(G) by a direct, brute force approach, will not
be able to finish its task within a day or without exceeding the memory on a group G
whose order is much bigger than 32. Relying only on naive calculations, the author
has yet to see a completed example for which the order of GT1(G) is anything
but 1, 2, 3, 4, 5, 6, 7. By contrast, the machinery of S (G) has allowed us to treat,
for example, the case of the Mathieu group M11 of order 7920, yielding:

Theorem 3 The direct product of the simple factors of GT1(M11) is

C465
2 × C46

3 × A10
5 × A9

6 × A10
7 × A4

8 × A4
9 × A5

10 × A5
11 × A12 × A2

14 × A4
15 × A16

× A3
17 × A12

18 × A19 × A2
20 × A23 × A28 × A31 × A2

33.

Accordingly, the order of GT1(M11) is 21141 · 3407 · 5165 · 798 · 1143 · 1334 · 1723 · 198 ·
235 · 293 · 313.

We also give a complete description of GT1(PSL2(Fq)) for q ∈ {4, 7, 8, 9, 11, 13,
16, 17, 19}, and we treat A7 and PSL3(F3). In Sect. 5 we explain some of the practi-
calities of the implementation with the open-source computer algebra system GAP.

Tomove onwith our outline, letP be the set of pairs (g, h) ∈ G such that 〈g, h〉 =
G. We will see that there is a very natural action of GT(G) on the set P/Aut(G).
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However, the development of the isomorphism between GT1(G) andS (G) relies on
the existence of an action of GT(G) on Pc, the set of orbits in P under the action
of the inner automorphisms only (the letter c is for “conjugation”). At first sight
this appears rather mysterious, and the arguments are ad hoc. In Sect. 6 we give a
conceptual explanation.

The key is to bring dessins d’enfants into the picture. Here we must recall that
a dessin is essentially a bipartite graph drawn on a compact, oriented surface in
such a way that the complement of the graph is a union of topological discs. The
(isomorphism classes of) dessins d’enfants are in bijection with many other sets
of (isomorphism classes of) objects, notably algebraic curves over Q with a certain
ramification property, or étale algebras overQ(x), again with a ramification property.
The group Gal(Q/Q) acts naturally on étale algebras, and this is turned into an action
on dessins via the said bijection.

In [2] (which is our reference for dessins), we prove that dessins form a cate-
goryDessins, and that the aforementioned bijections can be refined into equivalences
of categories. Such a refinement may not seem to bring much new information at first
sight, but it is not so. Indeed, with this formalism it is completely straightforward to
define the category GDessins of G-dessins, that is, dessins equipped with an action
of a fixed group G; and we prove the following:

Theorem 4 The group Gal(Q/Q) acts on the set of isomorphism classes of objects
in GDessins, for any group G.

Moreover, suppose we consider those regular G-dessins X in GDessins such that
the action gives an isomorphism G −→ Aut(X). Then the set of isomorphism classes
of such objects is naturally in bijection with Pc, and the latter is endowed with an
action of Gal(Q/Q).

(The word regular will be explained in the text.) It is now much more believable
that GT should act onPc; given that the action of GT on dessins, when restricted to
those dessins X such that Aut(X) ∼= G, factors via GT(G), we should not be overly
surprised by the discovery made in Sect. 4 that GT(G) does act on Pc.

2 Generalities

We start by expanding on the definitions given in the Introduction. We define G, the
group GT(G) as a subgroup of Out(G), explain the relationship with Gal(Q/Q), and
prove the most basic properties.

2.1 The Group G

Let G be a finite group.Whenever N is a subgroup of a group Γ , it will be convenient
to say that N has index G in Γ when (i) N is normal in Γ and (ii) there is an
isomorphism Γ/N ∼= G.
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Writing F2 = 〈x, y〉 for the free group on two generators x and y, we call NG the
intersection of all the subgroups of F2 having index G. There are finitely many of
these, so the group G := F2/NG is finite. We usually write x and y for the images of
the generators of F2 in G, since no confusion should arise.

The following lemma is almost trivial.

Lemma 1 G has the following properties:

1. The intersection of all the subgroups of G having index G is trivial.
2. If Γ is any group such that the intersection of all its subgroups of index G is

trivial, and if x′ and y′ are generators of Γ , then there is a homomorphism G → Γ

mapping x to x′ and y to y′.
3. If x′ and y′ are generators for G, then there is an automorphism of G mapping x

to x′ and y to y′.

We turn to the description of a concrete “model” for G. The key observation is
that subgroups of F2 of index G are in bijection with the orbits of Aut(G) on the
setP of pairs of generators for G; the bijection sends a pair (x′, y′) to the kernel of
the map F2 → G sending x to x′ and y to y′.

Based on this, we select pairs (x1, y1), . . . , (xr, yr) forming a system of represen-
tatives for the orbits of Aut(G), that is, with just one pair out of each orbit. (The
number r = r(G) was much studied in [4].) Consider then the subgroup G̃ of Gr

generated by x = (x1, x2, . . . , xr) and y = (y1, y2, . . . , yr). Then it is straightforward
to show that G̃ satisfies (2) of Lemma 1 (since the group Γ mentioned there embeds
into Gr). This property clearly characterizes G as a group with distinguished gener-
ators, so there must be an isomorphism G ∼= G̃ identifying the two elements which
we have both called x, and likewise for y. For most of this paper we will consider G
to be the subgroup of Gr just defined.

Let pi be the projection onto the ith factor of Gr , restricted to G. It sends x to xi

and y to yi, so it is surjective and its kernelKi has indexG. The variousKi’s are distinct
(by choice of the pairs (xi, yi)), so they must constitute the r different subgroups of
index G in G. In particular, they form a characteristic family of subgroups, that is,
for any ϕ ∈ Aut(G) we must have ϕ(Ki) = Kσ(i) for some permutation σ ∈ Sr .

Finally, we note that G = G. Indeed, if we try to construct the model for G as
we have just done with G, then property (3) of Lemma 1 leaves us only one pair to
consider; in other words, r(G) = 1.

2.2 The Group GT(G)

By (3) of Lemma 1, the group G has an automorphism θ with θ(x) = y and θ(y) = x;
likewise, G possesses an automorphism δ with δ(x) = y−1x−1 and δ(y) = y.
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Consider now the elements ϕ ∈ Aut(G) satisfying

1. ϕ(x) is a conjugate of xk for some k prime to the order of G,
2. ϕ commutes with θ and δ in Out(G).

(It follows that ϕ(y) is a conjugate of yk , and likewise xy is a conjugate of (xy)k .)
These form a subgroup of Aut(G), and its image in Out(G) will be called GT(G).

Likewise, we can consider those automorphisms satisfying (1) for k = 1 only, as
well as (2); they induce a normal subgroup GT1(G) of GT(G).

A complication to keep in mind is that there is no well-defined map on GT(G)

that would associate to ϕ the number k as above: the latter is not unique, and not
even unique modulo the order of x, for some powers of x may well be conjugated to
one another. In other words an element of GT1(G) may have the property that ϕ(x)
is a conjugate of xk for many values of k �= 1.

It is however true that when ϕ(x) ∼ xk and ψ(x) ∼ x	, then ψ ◦ ϕ(x) ∼ xk	,
where we write a ∼ b when a and b are conjugate. In particular, since ϕ−1 is a power
of ϕ, we note that ϕ−1(x) ∼ xk′

where xkk′ ∼ x. If ψ−1(x) ∼ x	′
with x		′ ∼ x, then

the commutator [ϕ,ψ] takes x to a conjugate of

xkk′		′ = (xkk′
)		

′ ∼ x		′ ∼ x.

We have proved that all commutators in GT(G) must belong to GT1(G). Thus we
may state:

Lemma 2 The groupGT(G)/GT1(G) is an abelian group, of exponent dividing that
of (Z/NZ)×, where N is the order of x (or y) in G.

The statement about the exponent follows from the fact that ϕ(x) ∼ xk for
some k ∈ (Z/NZ)×, whenever ϕ ∈ GT(G). So ϕn(x) ∼ xkn = x when kn = 1
mod N , and then ϕn ∈ GT1(G).

2.3 Inverse Limits

IfN is a normal subgroup ofF2 of finite index, we can always find aG such thatNG ⊂
N : indeed it suffices to take G = F2/N . From this one can show that

lim F2/NG
∼= F̂2,

where F̂2 is the profinite completion of F2. Here the inverse limit is over the directed
set of all the subgroups of the form NG (with their inclusions). Details for this, and
everything else in the next few paragraphs, are provided in [2].



166 P. Guillot

When NG ⊂ NH , we have a map G → H, whose kernel is the intersection of
all the subgroups of G having index H. In particular, this kernel is a characteristic
subgroup, and as a result we have an induced map

GT(G) −→ GT(H).

Thus it makes sense to talk about the inverse limit lim GT(G). Again the indexing
set for the limit is the set of the various subgroups NG, but we prefer to write more
suggestively

lim
G

GT(G)

which we call GT. We also put

GT1 := lim
G

GT1(G).

2.4 The Galois Group of Q

In [2] we prove the existence of a monomorphism

Φ : Gal(Q/Q) −→ GT

which is the motivation for the study of GT. Moreover, if λ ∈ Gal(Q/Q) and if ϕ =
Φ(λ), then we can compute for anyG an integer k such that ϕ(x) and xk are conjugate
in G: namely, let N be the order of x, let ζ = e

2iπ
N , and pick k such that λ(ζ ) = ζ k .

We write Gal(Q/Q)′ for the derived subgroup of Gal(Q/Q) (the closed sub-
group generated by the commutators). A celebrated result in number theory asserts
that Gal(Q/Q)′ is precisely the subgroup of elements acting trivially on all the roots
of unity (this is essentially the Kronecker-Weber theorem, see [6], Chap. 5, The-
orem1.10). As a result, or simply as an application of Lemma 2, there is also a
monomorphism

Gal(Q/Q)′ −→ GT1.

It is surprising that the lemma below seems hard to prove without appealing
to Gal(Q/Q). It is never used on the sequel.

Lemma 3 Let N be the order of x (or y) in G. Then for any integer k prime to N,
there is ϕ ∈ GT(G) such that ϕ(x) is a conjugate of xk.

Proof Simply take ϕ = Φ(λ) where λ ∈ Gal(Q/Q) has the appropriate effect on
roots of unity.
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2.5 p-Groups and Nilpotent Groups

Proposition 1 If G is a p-group, then so is GT1(G).

Proof First note that G is itself a p-group, being a subgroup of Gr . Let A′(G) denote
the preimage of GT1(G) in Aut(G). If A′(G) is not a p-group, then it contains an
element ϕ whose order is a prime 	 �= p.

Consider the elementary abelianp-groupE = G/Φ(G),whereΦ(G) is theFrattini
subgroup of G, generated by the images x and y of x and y. The induced action of ϕ

on E is then trivial. It follows from [3], Corollary 3.29 (a result sometimes referred
to as the Burnside basis theorem), that the action of ϕ on G is trivial, violating the
assumption that the order of ϕ is 	. This contradiction shows that A′(G) is a p-group,
and so also is GT1(G).

Proposition 2 If G and H have coprime orders, we have G × H ∼= G × H
and GT(G×H) ∼= GT(G)×GT(H), as well as GT1(G×H) ∼= GT1(G)×GT1(H).

Proof We start with a remark. Whenever a group N has index G × H in a group Γ ,
then we can write N = N ′ ∩ N ′′ where N ′ has index G and N ′′ has index H, clearly.
Now suppose the orders of G and H are coprime, and let us prove the converse.
If N = N ′ ∩ N ′′ for such N ′ and N ′′, then Γ/N injects in Γ/N ′ × Γ/N ′′ ∼= G × H,
and its image surjects onto both G and H. Thus the order of Γ/N is divisible by
both |G| and |H| and so by their product, so that Γ/N ∼= G × H, as we wished to
show. Applying this remark to the subgroups of the free group F2, we deduce that

NG×H = NG ∩ NH . (*)

(Recall that NG is the intersection of the subgroups of index G, and likewise for NH

and NG×H .)
What is more, G and H also have coprime orders since they are subgroups of Gr

and Hs respectively. Thus we may apply the remark again, and deduce from (*)
that NG×H has index G×H (being the intersection of a group of index G and a group
of index H). This shows that there is an isomorphism G × H → G × H.

Next we note that an automorphism ofG×H must be of the form α×β where α ∈
Aut(G) and β ∈ Aut(H). It follows easily that GT(G × H) ∼= GT(G) × GT(H).

Corollary 1 If G is nilpotent, then so is GT1(G).

Proof A finite group is nilpotent precisely when it is a direct product of p-groups.

3 An Elementary Example: Dihedral Groups

In this section we present a computation of GT1(Dn) where Dn is the dihedral group
of order 2n (with details only when n is odd). It is simple enough to be carried out “by
hand” to the end, while by contrast the methods developped in the sequel ultimately
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rely on computers when put to practice. We believe that many features of GT1(G)

are already visible here.
So let s and t be involutions generating G = Dn, and let R = st, so that the 2n

elements of G are the “rotations” Rm and the involutions sRm, for 0 ≤ m < n. It is
easily seen that a pair of generators (x1, x2) for G can be taken by an automorphism
to one of (s, t), (R, t) or (s, R). As a result, G is the subgroup of G3 generated
by x = (s, R, s) and y = (t, t, R).

From now on, we assume that n is odd, and we proceed to prove that GT1(G) has
order 2. We shall state the corresponding results for other values of n below.

Observations

First we describe the group G a to some extent. To do so, we observe that the
abelianization of G is C2, so G3 has projects onto C3

2 = {(±1,±1,±1)}, and looking
at the images of x and y we see that G maps onto the subgroup of elements (a, b, c)
with abc = 1. Thus the index of G in G3 is at least 2. However, since x2 = (1, R2, 1)
and the order of R is odd, we see that (1, R, 1) ∈ G; likewise, starting with y and xy,
we see that (1, 1, R) and (R, 1, 1) are in G. There is thus a subgroup A ∼= C3

n ⊂ G,
and the order of G is a multiple of n3. Finally, note that A is normal in G3 and hence,
also in G, and the quotient G/A is easily seen to be C2 × C2, so the order of G is 4n3

and its index in G3 is just 2. In passing we have established a recipe for checking
whether an element (α, β, γ ) ∈ G3 belongs to G: namely, this is the case if and only
if there are an even number of involutions among α, β, γ .

It will be useful to know the centralizer CG(y) of y in G. First off, the centralizer
in G3 is CG3(y) = C2×C2×Cn generated by (t, 1, 1), (1, t, 1) and (1, 1, R), so it has
order 4n. Since the order of y is 2n (using that n is odd), and since there are elements
in CG3(y) which are not in G, such as (t, 1, 1), we conclude that CG(y) = 〈y〉.
Choices for ϕ

Now let ϕ ∈ Aut(G) represent an element of GT1(G). Composing with an inner
automorphism if necessary, we may assume that ϕ(y) = y, and we know that ϕ(x) =
x′ can be conjugated to x within G, and so also within G3. Put x′ = (s′, R′, s′′),
where s′ and s′′ are involutions and R′ = R±1 is a rotation.

Now suppose ψ is another such automorphism of G, with ψ(y) = y and ψ(x) =
x′′, a conjugate of x. Then ϕ and ψ differ by an inner automorphism, or equivalently
represent the same element in GT1(G), if and only if x′ can be conjugated to x′′ by
an element of CG(y) = 〈y〉.

Here we point out that all the involutions in G are conjugate, and indeed can
be conjugated to one another using a power of R: using the notation ab for b−1ab,
this follows from (sRi)R = sRi+2 and the fact that the order of R is odd. Given
that y = (t, t, R), we can clearly conjugate x′ by a power of y to obtain an element
whose third coordinate is any involution we want, say s. In other words, we may
assume that s′′ = s without loss of generality. Conjugating further by yn = (t, t, 1)
if necessary, we may assume that R′ = R, that is x′ = (s′, R, s). Different choices
for s′ can only lead to different elements of GT1(G).
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We must have s′ = sRm for an integer m (taken mod n). The next step is to show
that there are only two possibilities for m.

The Condition Involving δ

This will be imposed by the condition stating that ϕ and δ must commute in Out(G),
by definition of GT1(G). Recall that δ(y) = y = (t, t, R) and δ(x) = y−1x−1 =
(ts, tR−1, R−1s) = (R−1, s, t). Pick a power of R, say Rp, such that sRp = t. As the
element (t, 1, Rp) commutes with y, and (R, s, s)(t,1,R

p) = (R−1, s, t), we conclude
that

δ(a, b, c) = (b, a, c)(t,1,R
p),

for any (a, b, c) ∈ G. Indeed, both sides of this equation definehomomorphismsG →
G3, and they agree on x and y. The attentive reader will notice that finding a simple
expression for δ, replacing the definition in terms of the generators x and y, is a silent
but major theme in all the rest of the paper, and the same applies to θ .

We are now able to compute δ(ϕ(x)) = δ(x′) = (R−1,−,−) (what happens with
the second and third coordinates turns out to be irrelevant for the sequel, and would
be distracting to look at). On the other hand ϕ(δ(x)) = y−1(x′)−1 = (ts′,−,−) =
(Rm−1,−,−). And of course δ(ϕ(y)) = ϕ(δ(y)) = y.

The condition on ϕ thus states the existence of c ∈ G such that (i) yc = y, that is c
centralizes y, and (ii) (Rm−1,−,−)c = (R−1,−,−). By the observation above, (i)
implies c ∈ 〈y〉. The element c, in particular, is of the form (1,−,−) or (t,−,−).

Each possibility implies a value for m. Indeed if c = (1,−,−), condition (ii)
gives R−1 = Rm−1 so that m = 0. The case c = (t,−,−) yields R = Rm−1 so
that m = 2.

Existence

We know now that there can be at most two elements in GT1(G): the identity and
the class of a potential automorphism ϕ such that ϕ(y) = y and ϕ(x) = x′ =
(sR2, R, s). To show that such an automorphism actually exists, we may simply
consider conjugation by the element (t, 1, 1) ∈ G3, which does not belong to G.

We are left with the task of checking that ϕ really defines an element of GT1(G),
that is, it must be verified that ϕ and θ commute up to an inner automorphism. Recall
that θ(x) = y and θ(y) = x. Using that x′ = x(xy)2, a straightforward computation
shows that we must find an element which simultaneously conjugates y(yx)2 =
(tR−2, t, R) to y = (t, t, R) and x = (s, R, s) to x′ = (sR2, R, s). For this one may
take (R, 1, 1).

We have proved the first part of the following proposition:

Proposition 3 If n is odd, then the group GT1(Dn) has order 2.
If n = 2k and k is odd, then the group GT1(Dn) also has order 2. If k is even, then

the group GT1(Dn) is trivial.

The rest of the proposition is left as a lengthy exercise. Note that when n = 2k,
the group G has order 4k3 and so has index 16 in G3.
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Let us say a word about the image of GT1 in GT1(Dn). Let us use the notation sn,
tn and Rn for the elements in Dn written s, t, R up to now. There is a homomor-
phism Dnm → Dn sending snm to sn, tnm to tn, and Rnm to Rn. Clearly the induced
homomorphismD3

nm → D3
n mapsDnm ontoDn. It is a general fact, alreadymentioned

in Sect. 2.3, that in this situation there is a map GT1(Dnm) → GT1(Dn).
The projectionmapGT1 → GT1(Dn) thus factors throughGT1(Dnm) for anym, in

particular, throughGT1(D4n) = 1. As a result, the image ofGT1 inGT1(Dn) is trivial,
for all n. What amounts essentially to the same thing, the inverse limit limn GT1(Dn)

makes sense here, but sadly, it is trivial.

4 The Case of Simple Groups

For any finite group G, we define a permutation groupS (G). When G is simple and
non-abelian, we proceed to show that there is an isomorphism GT1(G) ∼= S (G).
This is used to analyse the possible simple factors in GT1(G) in this case.

4.1 Notation

Let G be a finite group (shortly to be assumed simple and non-abelian, but not at
the moment). The following notation will be used throughout this section. Let us
emphasize that we make some arbitrary choices at the same time.

LetP denote the set of pairs of elements (g, h) generating G. The group Aut(G)

acts onP , and the setP/Aut(G) of orbits has cardinality r. It will be useful to also
work withPc, the set of orbits under the sole action of the inner automorphisms. We
see that Out(G) acts freely onPc, andPc/Out(G) = P/Aut(G). Thus the setPc

has cardinality r|Out(G)|. (Please note that the actions considered here are on the
left. In this section the composition on Aut(G) is αβ = α ◦ β.)

For each 1 ≤ i ≤ r we choose a representative (xi, yi) ∈ P for the ith orbit
inP/Aut(G), in some ordering.

TheAut(G)-orbit of (g, h) ∈ P will be denoted [g, h], while its orbit under Inn(G)

will be written [g, h]c (the brackets will never denote commutators in this section).
In this notation the action of α ∈ Out(G) on [g, h]c is α · [g, h]c = [α(g), α(h)]c.
The elements of Pc are precisely enumerated as [α(xi), α(yi)]c for α ∈ Out(G)

and 1 ≤ i ≤ r. The following is immediate.

Lemma 4 There is a bijection of sets

Pc −→ Out(G) × P/Aut(G),
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sending [α(xi), α(yi)]c to the pair (α, [xi, yi]). It is equivariant with respect to
the Out(G) actions, where on the right hand side the group Out(G) acts trivially
on P/Aut(G) and by left multiplication on itself.

Finally, each pair (xi, yi) determines a unique homomorphism pi : G → G send-
ing x and y to xi and yi respectively (recall that x and y are the canonical generators
of G). The kernel of pi will be written Ki.

Remark 1 In the literature on dessins d’enfants or related group-theoretical topics,
one often works with triples (x, y, z) of elements generating a finite group G and
satisfying xyz = 1. Our P can be identified with the set of such triples, clearly,
andPc can be thought of as the set of triples up to simultaneous (triple) conjugation.
Likewise the rest of this section could be developed with this (hardly different) point
of view.

4.2 An Action of Out(G) on Pc

First recall (from the discussion in Sect. 2.1) that the Ki’s form a characteristic family
of subgroups in G; in other words, for any ϕ ∈ Aut(G) and any i there is a σ(i) such
that ϕ(Ki) = Kσ(i). The permutation σ ∈ Sr thus obtained from ϕ may occasionally
be denoted σ(ϕ).

Next, the composition G
ϕ−→ G

pσ(i)−→ G factors through pi, thus resulting in an
automorphism G → G which we denote ϕi. There is the composition formula

(ψ ◦ ϕ)i = ψσ(i) ◦ ϕi where σ = σ(ϕ).

Also observe that when ϕ is inner, the permutation σ(ϕ) is the identity, and each ϕi

is inner.
We can now define an action of Aut(G) on Out(G) × P/Aut(G) by setting

ϕ · (α, [xi, yi]) = (αϕ−1
i , [xσ(i), yσ(i)]).

(On the second factor this is the natural action onP/Aut(G), which can be identified
with the set of the Ki’s). In this expression we have written ϕ−1

i for the class of this
automorphism in Out(G). It is clear that this is indeed an action and that it factors
through Out(G).

Crucially, we notice that the action just defined commutes with that of Out(G)

(by left multiplication on itself and trivially onP/Aut(G).)
By Lemma 4, we also have an action of Out(G) on Pc, which commutes with

the natural action of Out(G). We have in particular

ϕ · [xi, yi]c = [ϕ−1
i (xσ(i)), ϕ

−1
i (yσ(i))]c,
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which we will use more often than the general expression

ϕ · ([α(xi), α(yi)]c) = [αϕ−1
i (xσ(i)), αϕ−1

i (yσ(i))]c.

(Commutation with Out(G)means that the first formula implies the second anyway.)
This discussion is summarized in the next proposition.

Proposition 4 There is a homomorphism

Out(G) −→ CS(Out(G)),

where S = S(Pc) is the symmetric group of the set Pc, and CS(Out(G)) is the
centralizer of Out(G) for the natural action. The corresponding action of Out(G)

on Pc satisfies in particular

ϕ · [xi, yi]c = [ϕ−1
i (xσ(i)), ϕ

−1
i (yσ(i))]c,

(Note that when ϕ ∈ Out(G), or ϕ ∈ Aut(G), we simply write ϕ · [g, h]c for the
action.)

Remark 2 The specific choices we have made for the elements xi and yi actually
matter here. The curious readermay prove the following. Using thematerial below on
simple groups, one can at least establish that when G is simple, the permutation σ(ϕ)

and the automorphisms ϕi are uniquely defined (once one has a numbering of the
elements ofP/Aut(G)), and so the action on Out(G) × Pc can be defined without
making choices. However, even in this case, the bijection of Lemma 4 depends on
choices.

We need to identify the permutations ofPc induced by certain specific elements
of Aut(G). We start with the automorphism θ of G which exchanges x and y. The
next lemma is perhaps not surprising, but its proof requires some care.

Lemma 5 For all g, h ∈ G, we have

θ · [g, h]c = [h, g]c .

Proof Consider the following commutative diagram:

G
θ ��

��

G

pσ(i)

��
G

θi �� G

Recall that θ(x) = y, θ(y) = x, pi(x) = xi, pi(y) = yi, and likewise for pσ(i).
Thus we see that θi(xi) = yσ(i) and θi(yi) = xσ(i), which we may profitably rewrite
as θ−1

i (yσ(i)) = xi and θ−1
i (xσ(i)) = yi.
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Following the definitions, we see that

θ · [xi, yi]c = [yi, xi]c.

Thus the proposed formula is true at leastwhen [g, h]c = [xi, yi]c for some i.However,
the map [g, h]c → [h, g]c commutes with the action of Out(G), as does [g, h]c →
θ · [g, h]c, so these two maps have to agree.

In the exact same vein, we have

Lemma 6 For all g, h ∈ G, we have

δ · [g, h]c = [h−1g−1, h]c.

We leave the proof to the reader (recall that δ(x) = y−1x−1 and δ(y) = y.)
The next (and last) lemma involves the action of G × G onPc by conjugation.

Lemma 7 Let ϕ ∈ Aut(G) be such that ϕ(x) is conjugate to x, and ϕ(y) is conjugate
to y. Then the action of ϕ on Pc preserves the orbits of G × G.

Remark 3 (on our cavalier use of the word “orbit” here). While G × G acts on
itself by conjugation, the action does not restrict to the subsetP . As a result it does
not make sense to speak of the orbits of G × G on P , let alone Pc. However, it
does make sense to ask whether two elements of P lie in the same G × G-orbit
(that is, orbit on G × G); it also makes sense to ask whether two elements ofPc are
the images of two elements of P in the same G × G-orbit: very explicitly [a1, b1]c

and [a2, b2]c are thus related if a1 and a2 are conjugate and b1 and b2 are conjugate,
a relation which is well-defined.

This is how the notion of an “orbit” should be interpreted in the lemma and in
related statements that follow.

In Sect. 4.5we give an examplewhere the elements ofPc lying in the sameG×G-
“orbit” are grouped together into blocks; one of these blocks is of size 10 while G
has order 168, showing that the blocks are not actual orbits.

Proof (Proof of Lemma 7) The action of Out(G) onPc preserves the G × G-orbits,
clearly, so it suffices to show that ϕ · [xi, yi]c is in the same G × G-orbit as [xi, yi]c

for each index i.
By assumption ϕ(x) = xg so ϕi(xi) = pσ(i)(ϕ(x)) = xg′

σ(i) where g′ = pσ(i)(g). It

follows that ϕ−1
i (xσ(i)) is conjugate to xi. Likewise, ϕi(yσ(i)) is conjugate to yi, and in

the end we have indeed shown that ϕ−1
i · [xσ(i), yσ(i)]c is in the G×G-orbit of [xi, yi]c.

4.3 The Group S (G)

Let us use the notation θ and δ for the permutations induced onPc by the automor-
phisms denoted by the same symbols in Aut(G). They generate a subgroup 〈θ, δ〉
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in S(Pc), the symmetric group of the set Pc. One can check the identities θ2 = 1,
δ2 = 1, δθδ = θδθ , and it follows that 〈θ, δ〉 is a homomorphic image of S3.

We defineS (G) to be the subgroup of S(Pc) of those permutations that commute
with the action of Out(G)×〈θ, δ〉, and preserve the G×G-orbits (bearing Remark 3
in mind). Thus S (G) is the intersection of the centralizer of a certain subgroup
on the one hand, and a Young subgroup of S(Pc) on the other hand. (By “Young
subgroup” we mean the product of symmetric groups associated to a partition of a
set, here corresponding to the G × G-orbits.)

For any group G, we have a map GT1(G) −→ S (G), by the lemmas just estab-
lished. The rest of this section is dedicated to the proof of:

Theorem 5 When G is simple and non-abelian, the map

GT1(G) −→ S (G)

is an isomorphism.

Recall that we have a model of G as the subgroup of the cartesian product Gr

generated by x = (x1, x2, . . . , xr) and y = (y1, y2, . . . , yr). The map pi is then just
the projection onto the ith factor. In [4] one finds a proof of the following

Lemma 8 Let G be a nonabelian, simple finite group. Then

1. The group G is all of Gr.
2. The normal subgroups of Gr are those of the form

∏
I Gi for some I ⊂ {1, . . . , r}

(where Gi is the ith embedded copy of G in Gr.)
3. As a result, the maximal, proper normal subgroups of Gr are those of the

form
∏

i �=j Gi for some j. This is precisely Kj.

In the rest of this section G will always be nonabelian and simple, as well as finite.
Let us add:

Lemma 9 The automorphisms of Gr are as follows:

1. Aut(Gr) ∼= Aut(G) � Sr.
2. Out(Gr) ∼= Out(G) � Sr.
3. The action of Out(G) on Pc is faithful.

Proof Considering the action on the Kj’s, we obtain a map Aut(Gr) → Sr which
is clearly split surjective. Now suppose ϕ is an automorphism of Gr preserving all
the Kj’s. By taking intersections, we see that ϕ preserves all the normal subgroups
ofGr , includingG1 andK1

∼= Gr−1, these two satisfyingG1×K1 = Gr . By induction,
it is immediate that ϕ is of the form α1 × · · · × αr . This proves (1).

An inner automorphism of Gr is the direct product of inner automorphisms of
each Gi, so we have also (2).

Now suppose ϕ ∈ Aut(G) acts trivially on Pc. Then it must also act trivially
onP/Aut(G) (the mapPc → P/Aut(G) is equivariant for this action). It follows
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that σ(ϕ) is the trivial permutation of Sr . The map considered in (2) then sends ϕ

to (ϕ1, ϕ2, . . . ϕr) ∈ Out(G)r , in a notation which is consistent with our earlier use
of ϕi. As the action onPc is trivial, we see that ϕi must be inner (that is, it represents
the trivial element in Out(G)), so (2) implies that ϕ is itself inner. This concludes the
proof of the lemma.

If we combine (3) of the lemma with Proposition 4, we see that Out(G) injects
into CS(Out(G)), the centralizer of Out(G) in S = S(Pc). However, since the
action of Out(G) on Pc is free with r orbits, its centralizer is itself a wreath prod-
uct Out(G) � Sr . Comparing orders, we conclude that Out(G) maps isomorphically
onto CS(Out(G)) via the action on Pc.

It remains to check that the conditions defining GT1(G) as a subgroup of Out(G)

correspond to what is stated in the theorem. This is immediate for the commutation
with θ and δ. Lemma 7 does half the remaining work, by showing that the elements
of GT1(G) must preserve the G × G-orbits in Pc. The proof will be concluded by
establishing the converse.

Indeed, if the action of ϕ ∈ Aut(G) is such that [ϕ−1
i (xσ(i)), ϕ

−1
i (yσ(i))]c is in

the G × G-orbits of [xi, yi]c for all 1 ≤ i ≤ r then xσ(i) and ϕi(xi) are conjugate;
in other words pσ(i)(x) and pσ(i)(ϕ(x)) are conjugate. If we recall that G = Gr and
each pj is just the projection onto the jth factor, then we see immediately that x
and ϕ(x) are conjugate in Gr , so in G. Likewise for y. This concludes the proof of
Theorem 5.

4.4 Properties of S (G)

We write S = S(Pc) and H = Out(G) × 〈θ, δ〉, while Y is the Young subgroup of
those permutations in S which preserve the G × G-orbits onPc. We haveS (G) =
CS(H) ∩ Y .

Proposition 5 The group S (G) is a product of wreath products Ek � Srk where∑
k rk = r and Ek is a subquotient of H.
Moreover, each integer rk satisfies

rk ≤ |Z|m2

|G|
where m is the size of the largest conjugacy class in G, and Z is the centre of G.

Of course we will mostly use this proposition when G is simple and non-abelian,
so that |Z| = 1.

Proof We number arbitrarily the “orbits” P1, P2, . . . of G × G on Pc. The use of
quotes here refers to Remark 3. Other orbits in this proof are genuine.

Every orbit X of H has an ordered “partition” into the subsets X(1) = X ∩
P1, X(2) = X ∩ P2, . . . some of which may be empty. Call two of these H-orbits X1



176 P. Guillot

and X2 equivalent when there is an H-equivariant bijection X1 → X2 mapping X(i)
1

onto X(i)
2 for each i. Finally, a block is a subset of Pc obtained as the union of

the H-orbits inside one equivalence class.
The image of an H-orbit under an element of S (G) is another H-orbit which is

equivalent to the original one. It follows thatS (G) preserves the blocks, as does H.
Moreover, this allows for a decomposition of S (G) as a direct product of groups,
one for each block: namely, if B is a block, defineS (G)B = CS(B)(H)∩YB where YB

is the Young subgroup corresponding to the partition of B by the subsets B ∩ Pi;
then S (G) is the direct product of the various groups S (G)B.

Suppose that the H-orbits in the block B are X1, . . . , Xs. These are permuted
byS (G), orS (G)B, yielding a homomorphismS (G)B → Ss which is easily seen
to be split surjective. The kernel of this homomorphism is a direct product of s copies
of the groupE of self-equivalences ofX1 (in the above sense). The latter is a subgroup
of the automorphism group of X1 as an H-set; if X1

∼= H/K for some subgroup K
of H, then this automorphism group is NH(K)/K . This completes the description
of S (G)B as a wreath product E � Ss where E is a subquotient of H.

There remains to prove the bound on rk . If X1 is an H-orbit, then an H-equivariant
bijection X1 → X2 is entirely determined by the image of a single point p ∈ X1; if
this bijection is to afford an equivalence between X1 and X2, then this image must be
taken in the G × G-“orbit” of p. As a result, there are no more orbits equivalent to X1

than elements in the largest G × G-“orbit”. A G × G-“orbit” on P has size ≤ m2;
on the other hand as G/Z acts freely on P , the fibres of the map P → Pc have
size |G|/|Z|. Thus we see that a G × G-“orbit” on Pc has size ≤ |Z|m2/|G|.

Keeping in mind that 〈θ, δ〉 is a homomorphic image of S3, we draw:

Corollary 2 A simple factor occurring in S (G) must be isomorphic to either:

• C2,
• C3,
• a subquotient of Out(G),
• an alternating group As where s ≤ |Z|m2

|G| .

Combining this with Theorem 5 yields a description of the possible simple factors
in GT1(G) when G is non-abelian and simple (namely, those in the corollary). Also
using that GT(G)/GT1(G) is abelian (Lemma 2), we draw:

Corollary 3 Let G be non-abelian and simple. Then a simple factor occurring
in GT(G) must be isomorphic to either:

• a cyclic group,
• a subquotient of Out(G),
• an alternating group As where s ≤ m2

|G| .

Note that the classification of finite simple groups implies by inspection that the
group Out(G) is always solvable, so if one accepts this result then we conclude that
the list of simple factors reduces to cyclic and alternating groups.
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In any case, we can consider those non-abelian simple groups such that Out(G)

has order 1, 2 or 4: this includes the alternating groups for n ≥ 5, almost all Chevalley
groups over fields of prime order, and all 26 sporadic groups. The results above show
that GT1(G) can only have, as simple factors, the groups C2 and C3 as well as some
alternating groups. In GT(G) one may encounter further cyclic groups.

4.5 A Complete Example

Take G = PSL3(F2), a simple group of order 168 with Out(G) = C2 = 〈α〉. The
following information is obtained with the help of GAP.

There are 114 elements in Pc; in the following some arbitrary numbering is
used for them. Looking at the action of G × G we obtain the following partition
of {1, . . . , 114} :

{1, 10, 27, 28, 96, 106}, {2, 11, 52, 57, 82, 86}, {3, 12}, {62, 63}, {107, 109}
{4, 13, 29, 49, 51, 54, 56, 70, 101, 102}, {5, 6, 31, 32, 71, 72}, {7, 34, 75}, {8, 84, 97},

{9, 36, 53, 73, 83, 85}, {14, 16, 38, 60, 91, 114}, {15, 61, 76}, {17, 98, 110},
{18, 40, 58, 59, 78, 99}, {19, 21}, {20, 41, 43}, {22, 42, 64}, {39, 77, 90},

{23, 25, 44, 48, 67, 79, 87, 103, 108, 111}, {24, 45, 68, 94, 105, 112}, {33, 35, 74},
{26, 46, 69, 89, 93, 104}, {30, 37, 50, 55, 100, 113}, {47, 65, 66, 80, 81, 88, 92, 95}.

There are 4 subsets of size 2; 8 of size 3; 9 of size 6; one of size 8 and two of size
10. Thus Y ∼= C4

2 × S8
3 × S9

6 × S8 × S2
10.

Then we compute

• the permutation induced by α: (1,11) (2,10) (3,12) (4,101) (5,16) (6,14) (7,15)
(8,17) (9,18) (13,102) (19,21) (20, 22) (23,48) (24,26) (25,103) (27,52) (28,57)
(29,70) (30,100) (31,60) (32,38) (33, 77) (34,61) (35,39) (36,59) (37,113) (40,85)
(41,42) (43,64) (44,87) (45,104) (46, 94) (47,88) (49,56) (50,55) (51,54) (53,58)
(62,63) (65,80) (66,95) (67,111) (68, 93) (69,105) (71,114) (72,91) (73,78) (74,90)
(75,76) (79,108) (81,92) (82,96) (83, 99) (84,110) (86,106) (89,112) (97,98)
(107,109).

• the permutation induced by θ : (1,5) (2,14) (3,19) (4,23) (6,10) (7,15) (8,20) (9,24)
(11,16) (12,21) (13,25) (17, 22) (18,26) (27,31) (28,72) (29,67) (30,100) (32,96)
(34,61) (36,68) (38,82) (40, 69) (41,97) (42,98) (43,84) (44,49) (45,53) (46,99)
(47,88) (48,101) (50,55) (51, 79) (52,60) (54,108) (56,87) (57,91) (58,104) (59,93)
(62,107) (63,109) (64,110) (66, 95) (70,111) (71,106) (73,112) (75,76) (78,89)
(81,92) (83,94) (85,105) (86,114) (102, 103).

• the permutation induced by δ: (2,3) (4,106) (5,35) (6,8) (7,85) (10,12) (13,100)
(14,17) (15,40) (16,39) (19,22) (20,21) (23,68) (24,65) (25,103) (26,80) (27,52)
(28,70) (29,57) (30,102) (31,75) (34, 73) (36,71) (37,96) (41,63) (42,62) (44,87)
(45,111) (46,107) (47,88) (48,93) (49, 55) (50,56) (51,54) (53,72) (58,91) (59,114)
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(60,76) (61,78) (66,108) (67,104) (69, 105) (74,84) (79,95) (81,92) (82,113)
(83,97) (86,101) (89,112) (90,110) (94,109) (98, 99).

We can then ask GAP to compute GT1(G) as the intersection of Y and the central-
izer of the three permutations above. We find that GT1(G) has order 512; its centre Z
is elementary abelian of order 32; and GT1(G)/Z is elementary abelian of order 16.
In fact, finer use of GAP as described below allows us to improve this very last step
of the computation, showing that GT1(G) ∼= C3

2 ×D2
8, whereD8 is the dihedral group

of order 8.

5 Computing Explicitly

In this Section we provide details on the use of the computer algebra system GAP in
order to apply our results aboutS (G). No doubt many readers who are not computer
enclined will wish to skip most of this, and we encourage them to browse the results
themselves in Sects. 5.3 and 5.4.

We have chosen to give the explanation in a mathematical discourse interspersed
with GAP commands. We feel that the readers having little familiarity with compu-
tational group theory will be able to understand what follows, while an opportinity
is given to get a sense of “what is feasible with just one command” (and by contrast,
what requires more effort). On the other hand, we find it useful to indicate some
relevant GAP commands to those readers who will wish to implement their own
calculations.

5.1 Computing GT1(G)

The first task is to construct G given G, and it is straightforward. We provide some
details solely with the purpose of indicating some GAP functions to the reader.
One builds the automorphism group of G using AutomorphismGroup(G), then
converts its generators into automorphisms of G × G, see DirectProduct(G,
G) and also the function GroupHomomorphismByImages.

Having thus constructed the groupA of these automorphisms ofG×G, one appeals
to OrbitsDomain(A, GG) (where GG is G×G) to find the orbits. For each orbit
orb, pick a representative orb[1] (which is an element of G × G), extract the
two elements x and y comprising the pair, and check whether we have the equality
Subgroup(G, [x, y]) = G. If not, discard the orbit.

Picking representatives in the r remaining orbits, one constructs G as a subgroup
of Gr , using DirectProduct again.

As for GT1(G), we will rely on the next lemma.

Lemma 10 Let Cx and Cy be the centralizers of the canonical generators x and y
of G, respectively. To each element ϕ ∈ GT1(G) we may associate a unique double
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coset D ∈ Cx\G/Cy. In fact, if ϕ is induced by the automorphism ϕ̃ of G satisfy-
ing x → xf and y → y, then D is the double coset of f .

Moreover, in the same notation, we have 1 ∈ Cx f θ(f ) Cθ(f )
y . Conversely if ϕ̃ ∈

Aut(G) satisfies x → xf and y → y for some f such that 1 ∈ Cx f θ(f ) Cθ(f )
y , then the

induced ϕ ∈ Out(G) commutes with θ .

Proof By definition ϕ can be induced by such an automorphism. If f1 and f2 are both
possible choices for f , yielding ϕ̃1 and ϕ̃2 both inducingϕ, thenwe see that ϕ̃2 = ct◦ϕ̃1

where ct is conjugation by t. It follows that yt = y so t ∈ Cy, and that xf2 = xf1t

so s := f1tf −1
2 ∈ Cx. In the end f1 = sf2t−1 so f1 and f2 are in the same double coset.

The converse is obvious.
We turn to the last statement, which follows from the fact that ϕ̃ ◦θ and θ ◦ ϕ̃ must

differ by an inner automorphism, by definition of GT1(G). So there must exist an
element t such that yt = yθ(f ) and xft = x. We see that s = ft ∈ Cx and u = tθ(f )−1 ∈
Cy, so that 1 = s−1fuθ(f ) ∈ CxfCyθ(f ) = Cx f θ(f ) Cθ(f )

y . Again the converse is left
to the reader.

This suggest the following method to compute GT1(G). First, compute the cen-
tralizers Cx:= Centralizer(GB, x) and Cy:= Centralizer(GB, y),
where GB isG. Then compute DoubleCosets(GB, Cx, Cy) (which is an opti-
mized process in GAP). Now filter the double cosets, by excluding CxfCy if the unit
of G is not in DoubleCoset(Cx, f*fth, Cŷfth), where fth is θ(f ). Also
exclude f if xf and y generate a proper subgroup of G.

The next step is to go through the remaining double cosets, andwith each represen-
tative f define ϕ̃ withGroupHomomorphismByImages(GB, GB,[x, y],[x̂f,
y]) (this is automatically well-defined by (3) of Lemma 1; however, the construction
of ϕ̃ by GAP is surprisingly time-consuming, which is the reason for filtering out as
many candidates for f as possible before reaching this stage.)

Finally, keep only those homomorphisms commuting with δ in Out(G),
which may be checked with IsInnerAutomorphism(phi*delta*phî(-1)
*deltâ(-1)).

At this point, we have a list of automorphisms of G representing the elements
of GT1(G) with no repetition; the number of these automorphisms is the order
of GT1(G). Finding the group structure of GT1(G) can be achieved, rather slowly,
with the help of the commands

A:= AutomorphismGroup(GB);

int:= InnerAutomorphismsAutomorphismGroup(A);

quo:= NaturalHomomorphismByNormalSubgroup(A, int);

One can then create the list of all the elements quo(phi) where phi is taken
from our list of automorphisms, and ask GAP to describe the group they generate.
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5.2 Computing S (G)

This is several orders of magnitude faster than computing GT1(G).
The first step is to construct Pc. For this, one builds G × G and the embedded

diagonal copy of G in G×G, and one appeals to OrbitsDomain(diagG, GG).
As above, one filters out an orbit if a representative pair (x, y) fails to generate all
of G. We obtain Pc as a GAP list, say pairsconj. Its length is 	 = r |Out(G)|.

Then onemust build the orbits ofG×G onPc, say stored as a list of lists of indices,
those indices refering to pairsconj. It is impossible to rely on OrbitsDomain
for the reasons given in Remark 3, since we are not dealing with genuine orbits;
instead, for each pairorbit taken in pairsconj, we take the representative
pair:= pairorbit[1], then get its C:= ConjugacyClass(GG, pair)
where GG is G × G. Then we run through all the indices, and those corresponding to
elements ofPc which happen to be in Cwe group together. After this has been done
for each pairorbit, we have a list of lists of indices partitioning the set {1, . . . , 	};
for example in Sect. 4.5 we gave the corresponding partition of {1 . . . 114} when
G = PSL3(F2). The corresponding Young subgroup Y may be constructed easily,
but we will argue that it is not the best way to go.

Before turning to this though, we mention that we must construct two further
permutations of {1, . . . , 	} corresponding to θ and δ, and for this we follow Lem-
mas 5 and 6. We then do the same for each generator of Out(G) which is not inner,
and compute the corresponding permutations. We let GAP know that we call H the
subgroup of S	 generated by all these elements.

It is possible at this stage to ask GAP to compute

Intersection(Centralizer(SymmetricGroup(ell), H), Y);

but except in very small examples, the calculation will simply take too long (and will
likely exhaust the available memory.)

Instead, we partially implement the ideas of Proposition 5 and its proof. Let us
use the notation introduced in that proof. First we compute the orbits of H with
OrbitsDomain(H, [1..ell]). Then we group these orbits according to a
looser equivalence relation than the one used in the proof of Proposition 5: we call
two orbits X1 and X2 equivalent if (i) they are isomorphic as H-sets, which in practice
is checked by verifying whether the corresponding stabilizers are conjugate in H,
cfStabilizer(H, orbit[1]) andConjugacyClassesSubgroups(H)
which together allow to associate to each orbit the position of the conjugacy class of
the stabilizer in some numbering; and (ii) the cardinality of X1 ∩ Pi is equal to the
cardinality of X2 ∩ Pi, for each index i. The union of the orbits in one equivalence
class we call a packet, and each packet is a union of the “blocks” defined in the
aforementioned proof.

Noweach packet isH-invariant, andS (G) splits as a direct product corresponding
to the packets, which we see by arguing as we did in the proof of Proposition 5 with
blocks. We can compute the image H ′ of H in the symmetric group of each packet by



The Grothendieck-Teichmüller Group of a Finite Group … 181

applying RestrictedPermNC(g, packet) to each generator g of H. Also,
the Young subgroup Y ′ corresponding to the intersections of the Pi’s with the packet
is readily created in GAP.

It is nowpossible to ask directly for the computation of the centralizer ofH ′, and its
intersection with Y ′. The product of all the resulting groups, for all packets, isS (G).
For each factor in this product, we can promptGAP for the composition series, see for
example DisplayCompositionSeries(factor). (Finer information, such
as StructureDescription(factor), can still take a very long time.)

5.3 Simple Groups of Small Order

Weshall give information onGT1(G) for 12 simple groups of small size.We startwith
the PSL2 family (recall that PSL2(F4) ∼= PSL2(F5) ∼= A5, PSL2(F7) ∼= PSL3(F2)

and PSL2(F9) ∼= A6). Write D8 for the dihedral group of order 8.

Theorem 6 We have:

• (Order 60) GT1(PSL2(F4)) is trivial.
• (Order 168) GT1(PSL2(F7)) ∼= C3

2 × D2
8.

• (Order 360) GT1(PSL2(F9)) ∼= C12
2 × D8.

• (Order 504) GT1(PSL2(F8)) is trivial.
• (Order 660) GT1(PSL2(F11)) ∼= C27

2 × D7
8.

• (Order 1092) GT1(PSL2(F13)) ∼= C54
2 × D17

8 .
• (Order 2448) GT1(PSL2(F17)) ∼= C104

2 × D50
8 .

• (Order 3420) GT1(PSL2(F19)) ∼= C133
2 × D74

8 .
• (Order 4080) GT1(PSL2(F16)) is trivial.

It seems tempting to conjecture that GT1(PSL2(Fq)) ∼= Ca
2 × Db

8, with a = b = 0
when q is a power of 21. Let us now turn to the simple group of order 5616:

Theorem 7 The group GT1(PSL3(F3)) is isomorphic to

C26
2 × D6

8 × S4
3 × S21

4 × S12
6 × S6

7 × S3
8 × S11

9 × A3 × B8 × C5

where

A = (((C2 × C2 × C2 × C2 × C2) � A6) � C2) � C2,

B = ((((C2 × D8) � C2) � C3) � C2) � C2,

and

C = (((C2 × C2 × C2 × C2) � A5) � C2).

1Added in proof: the author now has a proof of this fact in general. Details to appear.
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Two more simple groups from our intention remain. It has not been possible to
obtain a complete description of GT1(G) for these (in a reasonable amount of time),
no doubt because of the appearance of simple factors of the form As for s large (18
and above). At least we have been able to find the corresponding simple factors.

Theorem 8 The direct product of the simple factors of GT1(A7) is

C152
2 × C15

3 × A3
5 × A3

6 × A7 × A2
8 × A10 × A18.

Theorem 9 The direct product of the simple factors of GT1(M11) is

C465
2 × C46

3 × A10
5 × A9

6 × A10
7 × A4

8 × A4
9 × A5

10 × A5
11 × A12 × A2

14 × A4
15 × A16

× A3
17 × A12

18 × A19 × A2
20 × A23 × A28 × A31 × A2

33.

5.4 p-Groups

We are going to give information on the orders of GT1(G) and S (G) for a few
2-groups. We offer the following table:

n Number of groups max |GT1(G)| max |S (G)| Same order (1 or 2)
3 2 1 1 2 (2)
4 6 1 1 6 (6)
5 17 2 1 14 (14)
6 50 4 2 40 (40)
7 159 4 16 111 (109)

The first column contains a number n, indicating that the row is about groups of
order 2n. Among all these, we select those which can be generated by 2 elements, and
which are non-abelian (otherwise GT1(G) is not interesting). The next column gives
the number of groups which we have kept. The largest order for GT1(G), when G
runs among those groups, is recorded in the next column, followed by the maximum
for |S (G)|. Finally, we give the number of groups for which |GT1(G)| = |S (G)|
followed in parenthesis by the number of groups for which this common order is 1
or 2 (so that GT1(G) and S (G) are at least abstractly isomorphic in these cases.)

It may be difficult to comment sensibly on this small-scale analysis.We venture to
say thatS (G) is “quite often” abstractly isomorphic to GT1(G) (though not always),
and that the order of GT1(G) seem to grow very slowly with that of G (attempts to
prove theoretical bounds on the order of GT1(G) have produced very bad results,
and there seems to be a phenomenon to understand here.)
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6 Dessins d’enfants

Keeping the notation introduced before, we have seen that there is a natural action
of GT(G) on the set P/Aut(G). However, in the process of constructing a map
fromGT1(G) toS (G), we have also defined an action of GT(G) (in fact, of Out(G))
on Pc, the set of pairs in P up to conjugation. This seems a little ad hoc. In this
section we provide a partial “explanation”, showing that at least for Gal(Q/Q) (a
close cousin of GT(G)) there are very good reasons for an action to exist onPc.

6.1 The Category of Dessins

Dessins d’enfants are essentially bipartite graphs drawn on compact, oriented sur-
faces, forming the 1-skeleton of a CW-complex structure (in particular, the comple-
ment of the graph is homeomorphic to a disjoint union of open discs). For precise
definitions, and for all statements about dessins to follow, we refer to [2].

Dessins form a category Dessins, and the first striking results of the theory are
equivalences between Dessins and various other categories. To name but the most
important one: algebraic curves over C with appropriate ramification, étale algebras
over C(x)with a ramification condition, the other two categories obtained by replac-
ing C by Q, and the category of finite sets with a right action of F2, to be denoted
simply by Setsxy (our usual notation for the generators of F2 being x, y.)

Some dessins are called regular. Many definitions are possible; in Setsxy, an
object is regular if and only it is isomorphic to one of the following particular form:
take a finite group G with two distinguished generators x and y, and let F2 act on G
on the right via the canonical homomorphism F2 → G, using right multiplication.
The regular dessins (G, x, y) and (G′, x′, y′) (as we will denote them) are isomorphic
inSetsxy if and only if there is a group isomorphism G → G′ with x → x′, y → y′,
as the reader may check.

The automorphism group of the regular dessin (G, x, y) is then G itself, acting
on itself by left multiplication. As a result of this discussion, we see that the set of
isomorphism classes of regular dessins with automorphism group isomorphic to a
fixed groupG is in bijectionwithP/Aut(G), the set of pairs of elements generatingG
under the action of Aut(G).

Thuswe can rephrase the fact thatGT(G) acts onP/Aut(G) by saying thatGT(G)

acts on the isomorphism classes of regular dessinswith automorphism groupG.What
is more, one can define an action of GT = limG GT(G) on the isomorphism classes
of all dessins, regular or not (loc cit).

The other fundamental result is the fact that there is also a natural action
of Gal(Q/Q) on isomorphism classes of dessins. This action factorizes through
the map ϕ : Gal(Q/Q) −→ GT (and is indeed instrumental in the very definition
of ϕ); the classical result due to Belyi and Grothendieck that the action of Gal(Q/Q)



184 P. Guillot

is faithful implies then the injectivity of this homomorphism. In turn one can show
that GT also acts faithfully, and even that the action on regular dessins is already
faithful (Theorem 5.7 in [2]).

6.2 Γ -Dessins

In [2] we have defined a certain category Etale(Q(x)), whose objects are étale alge-
bras over Q(x) satisfying a certain ramification property, and we have built an equiv-
alence of categories between Dessins and Etale(Q(x)). The category Etale(Q(x))
is the one to use in order to define the action of Gal(Q/Q) on isomorphism classes
of dessins.

What is more, we proved in loc cit that each λ ∈ Gal(Q/Q) actually defines a
functor Fλ : Etale(Q(x)) −→ Etale(Q(x)), inducing the action. This gives more
precise information, as we proceed to show. We shall work in a very general context,
not for the sheer pleasure of writing abstract nonsense, but out of necessity: the
equivalence betweenDessins (or the very practicalSetsxy) andEtale(Q(x)) is given
by a zig-zag of explicit functors, whose inverses we know very little about beyond
the fact that their existence is garanteed by the axiom of choice. This prevents us
from being more direct and concrete.

So let C be any category at all. Given a group Γ , we can define the category Γ C
whose objects are the pairs (X, ρ) where X is an object of C and ρ : Γ → AutC(X)

is a group homomorphism. (In the sequel we shall write Aut(X) rather than AutC(X)

when no confusion can arise). The morphisms (X, ρ) → (Y , ρ ′) in Γ C are those
morphisms f : X → Y in C which are equivariant in the sense that the following
diagram commutes, for any g ∈ Γ :

X
ρ(g) ��

f

��

X

f

��
Y

ρ ′(g) �� Y

Now let F be a self-equivalence of C. The operation [X] → [F(X)] gives a per-
mutation of the set of equivalence classes of objects in C, where we have written [X]
for the class of X.

However, more is true. Simply assuming that F is a functor from C to itself,
there is an induced homomorphism aX : Aut(X) → Aut(F(X)), and we can employ
it to construct a self-functor F̃ of Γ C. On objects this is defined as F̃(X, ρ) =
(F(X), aX ◦ ρ), while on morphisms F̃ is simply the restriction of F. One checks

readily that F̃ is indeed a functor, that F̃ ◦ G = F̃ ◦ G̃, and that F̃ is the identity
of Γ C if F is the identity of C. In particular, if F is a self-equivalence of C, then F̃
is a self-equivalence of Γ C.
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The comments we have made on F then apply to F̃: there is an induced permu-
tation of the set of isomorphism classes of objects in Γ C. Since this discussion was
conducted purely in the language of categories, it is clear that C can be replaced by
any category equivalent to it.

We also point out that the groupAut(Γ ) acts on the isomorphismclasses of objects,
by the rule α · (X, ρ) = (X, ρ ◦α) (for α ∈ Aut(γ )). When α is inner, we see readily
that this action is trivial (in fact if α is conjugation by t, then ρ(t) : X → X is an
isomorphism in Γ C between (X, ρ) and (X, ρ ◦α)). Thus we have an induced action
of Out(Γ ), and it commutes visibly with the permutation induced by F̃.

Coming back to Etale(Q(x)), where we know that the action of λ ∈ Gal(Q/Q)

is via some functor Fλ, we conclude:

Proposition 6 There is an action of Gal(Q/Q) on the set of isomorphism classes of
objects in ΓDessins, for any group Γ . The same holds with Dessins replaced by
any equivalent category, such as Setsxy.

There is also an action of Out(Γ ) on the same classes of objects, and the two
actions commute.

Moreover, the forgetful functor ΓDessins → Dessins induces a Gal(Q/Q)-
equivariant map between the sets of isomorphism classes.

Finally, these actions restrict to the set of isomorphism classes of faithful, equivari-
ant dessins.

The last sentencementions faithful equivariant dessins, that is, those objects (X, ρ)

in ΓDessins such that ρ is injective. The statement holds obviously.
We point out that the group Γ need not be finite here. This is one reason for

not calling it G, which in this paper usually denotes a finite group. Still, the reader
may complain that in the Abstract and Introduction, we mentioned G-dessins rather
than Γ -dessins. The point is that we wanted to develop the properties of Γ -dessins
in general, then consider a regular dessin X with automorphism group denoted G
as in the rest of the paper, and then regard it as a G-dessin, that is, putting Γ = G
ultimately.

The reader may wish to skip ahead to Sect. 6.4 where two concrete examples of
Γ -dessins are presented (with Γ a finite, cyclic group). However, a little result is
required in order to prove that they are not isomorphic to one another, and we turn
to this easy point now.

6.3 Γ -Objects in Setsxy

As happens with many other concepts, the categorySetsxy provides the most clean-
cut statements aboutΓ -dessins. Recall from the definitions that an object inΓSetsxy

is a finite set with an action of F2 on the right, and a commuting action of Γ on the
left (since we usually define the composition in Aut(X) such that it acts on the left
on X, in general.)
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Let us call an object in ΓSetsxy regular when it is regular as an object ofSetsxy

(that is, the concept ignores the Γ -action.)

Proposition 7 Let G and Γ be groups. Consider the objects in ΓSetsxy which are
regular and have automorphism group isomorphic to G. Then the set of isomorphism
classes of such objects in ΓSetsxy is in bijection with the set of triples (g, h, ϕ)

where 〈g, h〉 = G and ϕ : Γ → G is a homomorphism, modulo the relation

(g, h, ϕ1) ∼ (g′, h′, ϕ2)

which holds (by definition) if and only if there is an automorphism α ∈ Aut(G)

and t ∈ G such that α(g) = g′, α(h) = h′, and α(ϕ1(γ )) = t−1ϕ2(γ )t, for all γ ∈ Γ .

Proof It is clear from the definitions that a triple (g, h, ϕ) does define a regular object
in ΓSetsxy, and that each such object can be obtained in this way. What needs to be
checked is the condition expressing that (g, h, ϕ1) and (g′, h′, ϕ2) yield isomorphic
objects in ΓSetsxy.

So assume that there isα1 : G → G giving such an isomorphism; that is,α is amap
of sets which is equivariant with respect to both theF2-actions on the right, and theΓ -
actions on the left. Let t = α1(1) and define α2 : G → G by α2(g) = t−1g. Finally,
put α = α2 ◦ α1. We have α(1) = 1, and as we know that α commutes with the F2-
actions on the right, implying, in particular, that α(x) = α(1 · x) = α(1) · x′ = x′ and
α(y) = y′, it follows easily that α is in fact a homomorphism. Moreover, for γ ∈ Γ

we have α(ϕ1(γ )) = α2(α1(ϕ1(γ ) · 1)) = α2(ϕ2(γ ) · α1(1)) = t−1ϕ2(γ )t.
It is straightforward to reverse this argument and prove, conversely, that when-

ever α and t exist, the objects defined by (g, h, ϕ1) and (g′, h′, ϕ2) are indeed iso-
morphic in ΓSetsxy.

For Γ = 1 we find, as we already know, that the set of isomorphism classes of
regular dessins with G as automorphism group is in bijection with P/Aut(G). Of
more interest is the following:

Corollary 4 For Γ = G, the set of isomorphism classes in GSetsxy of faithful,
regular objects, with G as automorphism group, is in bijection with Pc.

In particular Gal(Q/Q) acts on Pc as well as P/Aut(G), and the map

Pc −→ P/Aut(G)

is Gal(Q/Q)-equivariant.

Proof Start with an object (g, h, ϕ). Since we consider only faithful objects, and
sinceΓ = G here, themapϕ is an automorphism. Takingα = ϕ−1 in the proposition,
we see that the same object is represented by (g′, h′, id) where g′ = ϕ−1(g), h′ =
ϕ−1(h) (and id is the identity map).

We conclude that the objects under consideration can be represented by triples of
the form (g, h, id). By the proposition, (g1, h1, id) and (g2, h2, id) represent isomor-
phic objects precisely when there is an automorphism α of the form α(γ ) = t−1γ t,



The Grothendieck-Teichmüller Group of a Finite Group … 187

that is an inner automorphism, taking g1 to g2 and h1 to h2. In the end the set of
isomorphism classes is preciselyPc.

Of course this falls short of a proof thatGT, let aloneGT(G)orOut(G), acts onPc,
but this corollary makes the result much less surprising and much more natural. Also
note that our ad hoc arguments to the effect that Out(G) does act on this set do not
guarantee any compatibility with the action of the image of Gal(Q/Q) → Out(G).

6.4 A Complete Example; Cyclic Dessins

We follow the usual workflow for dessins. We start with an informal picture of a
dessin on the sphere:

1
2

3

4 5

6

7

8
9

10

11

12

The theory guarantees that enough information is conveyed in the picture to define
an object unambiguously. To proceedwith this, wemove toSetsxy. Having numbered
the “darts” (=edge between a black vertex and a white vertex), we write down the
two permutations x and y of the set {1, . . . , 12} which take each dart to the next one
in the positive rotation around the incident black, resp. white, vertex. These are

x = (123)(456)(789)(10, 11, 12) and y = (14)(2, 10)(37)(59)(6, 11)(8, 12).

ThenX = ({1, . . . , 12}, x, y) is our object inSetsxy. The subgroupG of S12 generated
by x and y has order 12, and is in fact isomorphic to A4; it acts freely and transitively,
and it follows that X is regular. For the rest of the discussion, we identify G with the
set {1, . . . , 12}, by identifying g ∈ G with the image of 1 under g, and the natural
action of G on this set is by right multiplication.

The automorphism group of X is given by all the multiplications by elements
of G on the left on {1, . . . , 12} = G. Thus this group is (isomorphic to) G itself. For
example the permutation x̃ of the set {1, . . . , 12} corresponding to the action of x by
left multiplication is the unique automorphism of X taking 1 to 2; from the picture we
know that this must be the rotation around the black vertex incident with the dart 1,
that is

x̃ = (123)(4, 10, 7)(6, 12, 9)(11, 8, 5).
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(This can also be checked by computation). A similar reasoning gives

ỹ = (14)(8, 12)(2, 5)(3, 6)(10, 9)(11, 7).

See Example 3.8 in [2] for more details.
Let C3 = 〈r〉 be the cyclic group of order 3, and let us define C3-dessins with X as

the underlying dessin. Define two homomorphisms ϕ1, ϕ2 : C3 → G by ϕ1(r) = x
and ϕ2(r) = x−1. Then X1 = (G, x, y, ϕ1) and (G, x, y, ϕ2) are C3-dessins.

Let us show that they are not isomorphic. If theywere, byProposition 7 therewould
exist α ∈ Aut(G) and t ∈ G such that α(x) = x, α(y) = y and α(ϕ1(r)) = t−1ϕ2(r)t.
The first two conditions impose α = Id of course, and the last one reads x = t−1x−1t.
However x and x−1 are not conjugate in G, so t cannot exist.

To explore the Galois action, we continue with the usual workflow, and compute
a Belyi map. A possible choice is

f (z) = −64
(z3 + 1)3

(z3 − 8)3z3

(taken from [5]). The simple fact that the coefficients of f are in Q means that X is
fixed by Gal(Q/Q). However, we shall see that X1 and X2 are not.

First we can ask a computer to produce a picture of f −1([0, 1]).

Here thewhite vertex on the real axis isw = −(1+√
3), a root ofw2+2w−2 = 0.

The dart from ∞ to w we number as 1, and we number all the others so that x and y
are as above.

We know that there must exist Moebius transformations inducing the actions of x̃
and ỹ as above, and we find easily that they are

μx : z → j2z and μy : z → −z + 2

z + 1
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respectively, where j = e
2iπ
3 . (The use of j2 rather than j mirrors the fact that we con-

sider the positive rotation around ∞, which is also the clockwise rotation around 0).
We can now think of X as the Belyi pair (P1, f ) and of Aut(X) as the group generated
by μx and μy. The C3-dessins X1 and X2 are obtained from X by throwing in the
homomorphism C3 → Aut(X) mapping r to μx or μ−1

x .
If λ ∈ Gal(Q/Q) satisfies λ(j) = j2 (and there are such elements!), then the

action of λ exchanges X1 and X2. [In fact, since the dessin X is fixed by Gal(Q/Q),
we have a homomorphism Gal(Q/Q) → Out(Aut(X)). The non-trivial element
of Out(A4) ∼= C2 sends x to x−1 and y to y−1 = y.]

In a nutshell: the tetrahedron can be made into a C3-dessin in two non-isomorphic
ways, by picking a rotation of order 3 whose axis carries a black vertex and the
centre of the opposite face; the two choices are enabled by the two possibilities for
the orientation; these are interchanged by the action of Gal(Q/Q).

More generally, let us call a dessin cyclic when it is a Cn-equivariant dessin for
some n. Starting with a regular dessin (G, x, y), a cyclic structure on it is simply
given by an element of G of order dividing n; the non-isomorphic cyclic structures
correspond to the conjugacy classes of such elements. If the dessin is fixed by the
Galois group, then Gal(Q/Q) permutes these conjugacy classes.

7 Concluding Comments

In this paper we have explored the properties of the groups GT(G) and S (G),
from first principles. Motivation for this is twofold: on the one hand, each of these
acts on the set of (isomorphism classes of) regular dessins with G as automor-
phism group, extending the action of Gal(Q/Q), and this is our finest information
about the latter action; on the other hand, Gal(Q/Q) injects in the inverse limit GT
of all the groups GT(G). By contrast one cannot form an inverse limit with the
groups S (G), but they are much easier to compute with, and in good cases S (G)

agrees with GT(G), e.g. when G is simple and non-abelian. We have also tried,
using the apparatus of G-dessins, to give a conceptual explanation for the existence
of S (G).

Many people have attempted to classify the generating pairs up to conjugacy
or up to isomorphism, within their favorite finite group G. This may or may not
have been motivated by the enumeration of dessins. We believe that, once this is
done, trying to compute GT(G) is a natural idea, that will lead to a wealth of new
information.

We shall conclude with a few open problems for the reader. Some of these have
been implicitly touched upon in the text. There are many other questions, which are
too vague to be mentioned here.

Obviously one may ask for computations of GT(G) or GT1(G) for various
groups G, and obtaining results “by hand”, that is, without computers, would
certainly have value. For example, in a subsequent publication we shall describe
GT1(PSL2(Fq)), confirming the pattern emerging in Theorem 6. It would be inter-
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esting to have many other such results available, so as to understand better what it is
about G that makes GT(G) large or small. The question of intuition is wide open.

Intuition is much needed for the next problem: find an entire (infinite) family of
groups (Gi)i∈I such that you can compute the inverse limit

lim
i∈I

GT(Gi);

then, give an interpretation of the map Gal(Q/Q) → GT → limi GT(Gi). This
would be a direct generalization of the cyclotomic character (obtained for cyclic
groups, see the Introduction). In this paper, in a sense, we have done this for the
dihedral groups, unfortunately obtaining a trivial answer (see Proposition 3 and the
subsequent discussion).

Perhaps less ambitious, but already quite hard, is the question of finding a single
explicit element in limi GT(Gi). Recall that, beyond the identity and complex con-
jugation, exhibiting elements of Gal(Q/Q) is no simple matter at all. With any luck,
the problem at hand might be less difficult.

In Sect. 5.4 we have mentioned that there is no known bound on the order of the
group GT(G). It is an exciting problem to find one, since it would provide a bound
for the “order” of the profinite group Gal(Q/Q), in some sense.

Finally, if GT is similar to Gal(Q/Q) in any reasonable sense, then it should
be interesting to have a look at its closed subgroups of index 2, or equivalently at
the (continuous) homomorphisms GT → F2; they form the group which would
be written H1(GT, F2) in cohomological notation. Indeed, the cohomology ring
H∗(Gal(Q/Q), F2) is generated by its elements of degree 1 (part of Milnor’s conjec-
ture, now a theorem by Voevodsky, states that this is true for any field replacing Q,
showing the depth of this result). It follows from the fact that the abelianization
map Gal(Q/Q) → Ẑ can be lifted to a map GT → Ẑ, as we have seen, that any
map Gal(Q/Q) → F2 can also be lifted to GT; in other words, the homomorphism

H1(GT, F2) −→ H1(Gal(Q/Q), F2)

is surjective. One may ask whether it is injective as well, that is: does GT have
homomorphisms onto F2 which are identically trivial on Gal(Q/Q)? A probably
harder question being: what is the abelianization of GT?
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Discrete Groups and Surface
Automorphisms: A Theorem
of A.M. Macbeath

W.J. Harvey

Abstract This short article re-examines the interaction between group actions in
hyperbolic geometry and low-dimensional topology, focussing in particular on some
contributions of Murray Macbeath to the study of Riemann surface automorphisms.
A brief account is included of a potential extension to hyperbolic 3-manifolds.

1 Introduction

The classical results of Klein, Hurwitz and others on automorphisms of Riemann
surfaces were based on the theory of projective algebraic curves. This contrasts
somewhat with the approach used today, which makes essential use of the uniformi-
sation theorem, covering spaces and the geometry of non-Euclidean crystallographic
groups.Behind all this stands the rigorous theoryof uniformisationwhichwasworked
out in the years before 1910 via Dirichlet’s Principle by Hilbert and Courant and
completed by Koebe and (using other methods) by Poincarë, thus establishing a firm
basis for a systematic geometric account of surface topology. Group actions in the
hyperbolic plane were analysed by Dehn and Nielsen, while the 2-volume book of
Fricke and Klein [5] explored at length the immense range of discrete hyperbolic
plane groups involved in this theory, formulating a classification of Fuchsian groups
into distinct parameter spaces associated with each signature (or geometric type).
At the same time, the formulation of an abstract notion of manifold, signalled by
Weyl’s ground-breaking book on Riemann surfaces [19], now just over a hundred
years old, heralded an upsurge of interest in geometric topology generally and low
dimensional manifolds in particular.

It is worth noting that something of a hiatus in the systematic development of
discrete group actions began in the late 1920s. Thus, after Fricke’s construction of
parameter spaces for Fuchsian groups and the work of Dehn and Nielsen on surface
topology, the problem of moduli for Riemann surfaces remained unresolved until
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the theory of complex analytic deformations was established, first in outline by
Teichmüller from 1938 to 1943, and then in rigorous detail by the school of Lars
Ahlfors and Lipman Bers in the late 1950s. The latter developments will not concern
us here; that material can now be found in many sources, including the collected
works of these two authors, [1] and [4].

2 Hurwitz’s Theorem Revisited

A brief paper of Siegel from 1945 [17] led Murray Macbeath to formulate a
systematic new approach to the study of Riemann surface automorphisms in the
late 1950s. In 1893, A. Hurwitz showed that, for values of the genus g ≥ 2, the
maximum number of automorphisms of a surface is 84(g − 1), a bound attained
by the famous Klein quartic curve of genus 3, with automorphism group the sim-
ple group P SL(2,F7) of order 168. This finite group action had been discovered
by Klein (1879) in the appropriate setting of non-Euclidean plane geometry; for
more details of that fascinating story and some contemporary developments, see [9].
Soon after, Poincaré began his own study of the discrete subgroups of the Lie group
G = P SL(2,R) (which he called Fuchsian, much to Klein’s annoyance), motivated
by his sudden realisation that the groups emerging from his study of uniformisation
by differential equations are these same groups of isometries of the hyperbolic plane,

H 2 = {z = x + iy ∈ C : y > 0}, with the Poincarémetric dsh = |ds|
2y

.

The (sense-preserving) isometry group of H 2 is isomorphic to the group G =
P SL(2,R) acting transitively by fractional linear transformations: if A is a 2 × 2
real matrix with detA �= 0, the corresponding mapping is

TA : z �→ az + b

cz + d
, when A =

[
a b
c d

]
.

The invariant Haar measure of G induces an invariant notion of area μ in the
homogeneous spaceH 2 ∼= G/P SO(2), known as the Gauss-Bonnet area measure;
it coincides (up to amultiplicative constant) with the hyperbolic area element induced
by the Poincaré metric dsh .

For a Fuchsian group, a discrete subgroup Γ of G, the action onH 2 is properly
discontinuous and there is a fundamental domain, which we take here to mean a
closed (Borel-measurable) subset F , with interior F0, satisfying two characteristic
properties:-

(i) F0 ∩ γ F0 = ∅ for γ ∈ Γ with γ �= Id;
(ii)

⋃
γ∈Γ γ F = H 2.
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The Dirichlet region with a chosen centre point p0 not fixed by any group element
is a convenient construction, giving a (convex hyperbolic) polygonal fundamental
domain for each Fuchsian group: one takes the subset of those points of H 2 for
which the distance dh(p, p0) from p to p0 is minimal among the points in the orbit
Γ · p. For full details of these basic concepts of hyperbolic geometry, see for instance
Beardon’s book [2, 12].

For Γ co-compact and torsion-free, i.e. such that the quotient orbit space S =
H 2/Γ is a compact Riemann surface, the hyperbolic areaμ(F) of any fundamental
domain for Γ is a positive number, independent of the choice of fundamental set. In
particular, by the Gauss-Bonnet Theorem, the area of a fundamental set for a group
which has quotient a genus g closed surface is 4π(g − 1) = (−2πχ(S). Siegel
showed in [17] that, within the range of all possible Fuchsian groups in G, there is
a unique group (up to conjugacy) with the smallest positive value for the area.

Theorem 1 For all co-compact Fuchsian groups, the minimum value of the invariant
area μ is π/21.

This value corresponds to the triangle group Γ0 = 〈x, y : x2 = y3 = (xy)7 = 1〉.
Nowwe let K < Γ be a subgroup of finite index in a Fuchsian groupwith compact

quotient space. Choosing a finite set of coset representatives, γ1, . . . , γn , we see that
the union of these translates �n

j=1γ j F of a given fundamental domain F for Γ forms
a fundamental domain FK for the subgroup K , and invariance of the measure implies
that

Theorem 2 The index of the subgroup K, [Γ : K ], is equal to the quotient
μ(FK )/μ(F).

This is the Gauss-Bonnet Index Theorem for Fuchsian groups. A simple conse-
quence of this and the result of Siegel is the Hurwitz Theorem: choose a Fuchsian
cocompact group K ∼= π1(S) and let Γ denote the group of all possible lifts to the
universal covering of S of the automorphisms of S. Then Γ contains K as a normal
subgroup, and since |Aut(S)| = [Γ : K ], we obtain at once the following result.

Corollary 3 The order of an automorphism group acting on a genus g Riemann
surface is at most 84(g − 1).

Of course, this is not the end of the story: the same line of reasoning produces the
Riemann-Hurwitz branching formula, involving the genus ofH 2/Γ and the orders
of themaximal periodic generators ofΓ , and there is a natural extension to subgroups
of finite index in arbitrary non-Euclidean crystallographic groups, leading to a vast
catalogue of results analysing the patterns of conformal and anti-conformal group
actions on hyperbolic surfaces.

Macbeath’s paper [10] fills in the details of the above proof and unveils a method
(the ‘Macbeath trick’ mentioned by Marston Conder in his conference talk at
Malvern) for constructing, from a single finite index torsion-free normal subgroup
K �Γ , an infinite sequence Kn, n ∈ N of finite index characteristic normal subgroups
of Γ . For each of these subgroups, the corresponding quotient surface Sn is of course
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a smooth covering of S0 = H 2/K and the finite groups Γ/Kn are automorphism
groups of the surfaces, with orders determined by multiplying by the index just like
the Euler characteristic. This proves the following result, Macbeath’s Theorem.

Theorem 4 If there is a Riemann surface S of genus g ≥ 2 with a group of h(g −1)
automorphisms, where h is a rational number with denominator dividing g −1, then
for infinitely many values of the integer k there is a k-sheeted covering surface Sk of
genus gk with h(gk − 1) automorphisms.

The sequence of characteristic subgroups employed in [10] is defined as the set
of product groups Kn = [K , K ].{K n}, where {K n} denotes the Burnside n-kernel
generated by all n-th powers in K and [K , K ] is the commutator subgroup. It is then
an easy exercise to show that the index of Kn in the surface group K is n2g , so that we
know fromEuler characteristic considerations that Sn has genus gn = n2g(g−1)+1.

If the over-group concerned isΓ0, then the inducedfinite groups are all (by Siegel’s
result) Hurwitz groups acting on the surfaces Sn , that is, we have produced an infinite
family of surfaces with automorphism groups for which the Hurwitz bound on their
order is attained.

The original exposition of this approach to Fuchsian groups and surface auto-
morphisms was presented in a widely circulated set of lecture notes, [11] from the
Summer School in Topology at Dundee in 1961; they can be obtained in pdf format
by email request to this author (bill.harvey@kcl.ac.uk). A very pleasant account by
Macbeath of the whole story, in the context of Klein’s study of his quartic and the
genus 3 action of the simple group of order 168, can be found in [13].

3 Automorphisms and Geometry in Three Dimensional
Hyperbolic Space

Poincaré also initiated the study of hyperbolic 3-space with its analogous metric
structure closely linked to the matrix group P SL(2,C) and conformal geometry on
the boundary 2-sphere, but progress in understanding the topological structure of 3-
manifolds was slow. After the revolutionary geometric ideas, results and conjectures
worked out by W.P. Thurston in the mid-1970s, a furious concentration of research
effort ensued which has swept away most of the topological and group-theoretic
difficulties which confronted 3-manifold topology at that time. In the process, two
crucial facts emerged, the first largely due to the efforts of G. Perelman.

• (Geometrisation.) All compact 3-manifolds possess a natural geometric structure,
modelled on one of the eight geometries that Thurston described.

• (Hyperbolic structure predominates.) By far the majority of compact 3-manifolds
are hyperbolic.
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We can now formulate a very simple topological characterisation of the class
of compact hyperbolic 3-manifolds, thanks to recent breakthrough work by Jeremy
Kahn andVladMarkovic with some essential further topological and group-theoretic
input from I. Agol and from D. Wise.

Theorem 5 A compact 3-manifold has a hyperbolic structure if and only if it has a
finite covering which fibers over the circle with fibre a compact surface of genus at
least 2 and with pseudo-Anosov holonomy.

An accessible summary treatment of these developmentswhich brings outwell the
range of ideas and work involved can be found in a recent Bourbaki Seminar report
[3]. The key result which drives them appears in [7]. It confirms a remarkable string
of conjectures made by Thurston [18], following his proof that both Hakenmanifolds
and pseudo-Anosov surface bundles over the circle carry hyperbolic structures.

In the present context, it is natural to look for a parallel approach to study automor-
phism groups of (compact) hyperbolic 3manifolds via the structure of 3D hyperbolic
orbifolds. This turns out to be possible in principle, but the combinatorial patterns
which exist have not yet been completely understood. However, for the privileged
class of surface bundles, we can reason as follows.

A compact hyperbolic surface bundle induced by a pseudo-Anosov map ϕ : S →
S is, by definition, a 3-manifold obtained from the product of a surface S of genus
at least 2 with a closed interval by identifying the two end surfaces using ϕ:

Mϕ = S × {0 ≤ t ≤ 1}/{x × 0 ∼ ϕ(x) × 1 for each x ∈ S}.

Now any automorphism of Mϕ must preserve the fibration structure since, by
Macbeath’s method of lifting automorphisms to the universal cover, it is induced by
conjugation with a hyperbolic isometry—equally this follows by Mostow rigidity.
But such an isometry must induce an automorphism of a typical fibre surface S
preserving the holomorphic quadratic form (Teichmüller differential) on S which
determines the hyperbolic axis in H 3 up to conjugacy. Note that any hyperbolic
isometry f of H 3 preserving an axis must be contained in the stabiliser of the axis
and, furthermore, lies in the normaliser ofπ1(Mϕ), a discrete subgroup of P SL(2,C)

which means that f lies in a discrete subgroup of that stabiliser. We can assume for
convenience that this is the vertical axis I at O, the origin in the horizontal plane
C, and it follows that the group of automorphisms of a hyperbolic surface bundle is
very restricted.

Theorem 6 Let M = Mϕ be a smooth hyperbolic surface bundle over the circle
induced by a pseudo-Anosov homeomorphism ϕ : S → S of a genus g surface.
The automorphism group of the fibered hyperbolic 3-manifold M is either cyclic or
dihedral, with order bounded above by a linear function (2g − 1) of the genus of S.

Proof (Sketch.) The stabiliser in P SL(2,C) of an axis A is isomorphic to G(A) =
Z/2×C

∗ and the intersection of this stabiliser with K = π1(M) is cyclic, generated
by some loxodromic element. Note that any discrete subgroup of G(A) is dihedral
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or cyclic. The automorphisms of M , when lifted to the universal covering, generate a
discrete overgroup Γ > K , the normaliser of π1(M), just as in the Riemann surface
case. But in contrast to the case of surfaces, where the (2, 3, 7)—triangle group
Γ0 gives the Hurwitz upper bound, the orbifold fibre surface must in this case be
sufficiently large, in the sense that it contains an essential closed loop and admits a
pseudo-Anosov automorphism. This implies that the fibre subgroup Γ , which must
contain the surface subgroup π1(S) with cyclic or dihedral quotient automorphism
group, has at least 4 generators, and restrictions on the orders of torsion generators
coming from the so-called lcm condition (see [6]) imply that the smallest area Γ (in
terms of Euler-Poincaré characteristic) is a (2, 2, n, m)—group for suitable periods
n, m dividing the index. Hence the index, if the quotient is cyclic, is at most 2g − 1
by a short argument using Theorem 2.2. The argument in the dihedral case is similar
but a little more complicated.

A more detailed discussion and complete proof will be published elsewhere.
Notice that this result does not hold if the fibration is not smooth: an example of a
hyperbolic orbifold fibering in three mutually orthogonal ways, which goes back to
Sullivan (and probably Thurston), is described briefly in Otal’s text [16].

We note, finally, that Macbeath’s result on a sequence of characteristic subgroups
applies here for any given example as in the theorem, to produce an infinite family
of fibered 3-manifolds which cover it and enjoy the same symmetry property.

More general results are known about automorphisms of hyperbolic manifolds in
dimension 3 which chime with dimension 2; for instance a finite volume or compact
hyperbolic 3-manifold may have any finite group as automorphism group. See, for
instance, [8] or [14]. At present, however, a normal form for crystallographic groups
in hyperbolic 3-space is unknown and no general direct analysis of automorphism
groups analogous to the 2D case seems possible. A good account of the basic facts
about 3D hyperbolic volumes can be found inMilnor’s paper [15], and more recently
the smallest volumemanifolds and orbifolds have been determined, both compact and
cusped. Clearly, much remains to be done in analysing the combinatorial structure
of hyperbolic 3-manifolds and their automorphisms.
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Isometric Point-Circle Configurations
on Surfaces from Uniform Maps

Milagros Izquierdo and Klara Stokes

Abstract We embed neighborhood geometries of graphs on surfaces as point-circle
configurations.We give examples coming from regular maps on surfaces with amax-
imum number of automorphisms for their genus, and survey geometric realization
of pentagonal geometries coming from Moore graphs. An infinite family of point-
circle v4 configurations on p-gonal surfaces with two p-gonal morphisms is given.
The image of these configurations on the sphere under the two p-gonal morphisms
is also described.

1 Introduction

Consider the (rank two) set system of points and blocks where the points are the
vertices and the blocks are the neighborhoods of the vertices of an r -regular graph
on v vertices. Such set systems are called neighborhood geometries of graphs, and
were first defined in [1], within a more general context. If any two vertices have
distinct neighborhoods, then the system has the following two properties: (1) each
vertex appears in r blocks and (2) each block contains r vertices. A set system, or a
geometry, with properties (1) and (2) with v points and v blocks is classically known
as a (balanced) vr configuration. We say that a rank two set system is connected if
there is a sequence of subsequently incident points and blocks between each pair of
points. If the intersection of each pair of blocks contains at most d elements, then we
will say that it is of combinatorial linear dimension d , since two distinct linear spaces
of dimension d can intersect in d linearly independent points, but not in d + 1. The
blocks of a (combinatorial) geometry of linear dimension d = 1, 2, 3 will sometimes
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be called lines, planes and3-spaces, and soon.Acombinatorial configuration is linear
if it is of linear dimension 1. Most configurations in the literature are linear.

A classical example of a configuration of combinatorial linear dimension 2 is
the Möbius 84 configuration, which is also a geometric configuration of 8 planes
intersecting in quadruples on 8 points. The literature also contains many examples
of geometric point-circle configurations. A classical example is the Miquel (83, 64)
configuration with 6 circles intersecting in triples on 8 points. Two circles in the real
plane intersect in atmost 2 points, so combinatorially non-linear point-circle configu-
rations in the plane correspond to configurations of combinatorial linear dimension 2.
Note that if the point-circle configuration is embedded on a surface of genus g > 0,
then two circles may intersect in more than 2 points.

The neighborhood geometry of a graph is a combinatorial geometry with the
following properties, described in [1]: It is linear exactly when the graph does not
contain any cycle of length 4. There is a combinatorial polarity (that is, a duality
of order two) in a neighborhood geometry defined by mapping each vertex to its
neighborhood. If the graph is bipartite, then one obtains two disconnected neighbor-
hood geometries. The polarity then maps a point in the first connected component
to its neighborhood, which is then a block in the second component. Therefore, the
two components are duals of each other, that is, one is obtained from the other by
interchanging the roles of the points and the blocks. This is true also if the graph
is not r -regular. If the graph is not bipartite then the set system it defines consists
of a single connected component, and so it is self-dual. The two disjoint geometries
defined by a bipartite r -regular graph are dual but are not necessarily isomorphic
and then not self-dual, although they have the same parameters. This is the case for
example if the graph is the incidence graph of a configuration which is not self-dual.
However, the union of the connected components of a neighborhood geometry is
always self-dual.

Combinatorially, the incidence graph of the neighborhood geometry of a graph is
the Kronecker double cover of the graph [2]. Any combinatorial property of neigh-
borhood geometries of graphs is therefore a property of the Kronecker cover of
graphs.

The neighborhood geometry of a graph has been applied to 1-skeletons of regular
polytopes in real Euclidean d-space in order to construct geometric point-hyperplane
realizations (that is, of linear dimension d−1) of self-polar symmetric configurations
(symmetric as in with the maximal number of symmetries) [3]. The construction was
also generalized there by using the t-neighborhoods of the vertices of the polytope,
that is, the vertices at distance t from a given vertex.

It was observed in [3] that the neighborhood geometry of the 1-skeleton of a
spherical polytope in real Euclidean 3-space, which is a point-plane configuration,
also defines a point-circle configuration in the real Euclidean plane through stere-
ographic projection, whenever the points in each plane are concyclic. Indeed, the
circle-preserving property of the stereographic projection implies that any point-
circle configuration drawn on the sphere can also be drawn in the real Euclidean
plane.
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In [2], point-circle configurations were realized in the plane as neighborhood
geometries of unit-distance graphs. For the neighborhood geometry of a graph
embedded in the plane to be realized in terms of the circles passing through all
the vertices in each neighborhood of the graph, it is necessary to ensure that these
vertices are concyclic. Since three points define a circle, if the graph is 3-regular this
condition is always satisfied. If the valencies of the vertices is larger than three, then
embeddings with concyclic neighborhoods are special. A unit-distance embedding
of the graph in the plane is an example of an embedding with this property. The
1-skeleton of a quasi-regular polyhedron in Euclidean 3-space is an example of an
embedding with the same property in three dimensions.

In [4], the construction of point-circle configurations on spherical polyhedron
was generalized to surfaces in general. The motivation was there to give geometric
realizations as point-circle configurations of certain pentagonal geometries coming
from Moore graphs.

For a more general overview of lineal and point-circle configurations, see the
books [5, 6].

In this article we will use the construction in [4] to construct point-circle real-
izations of neighborhood geometries on several classical surfaces, as well as on an
infinite family of surfaces for an infinite number of genera. We also give two realiza-
tions in terms of points and isometric circles of a certain 94 configuration of linear
dimension 2, one in the real plane and one on an orientable surface of genus 4, the
latter realizing all the combinatorial automorphisms of the configuration.

2 Constructing Configurations of Points and Isometric
Circles on Surfaces

Let U be either the Riemann sphere, the complex Euclidean plane or the hyperbolic
plane. A uniform tiling of U is a collection of congruent polygons that partitions
and fills up the entire space. If this tiling has p q-gons meeting in each vertex, then
the stabilizer of the tiling is a cocompact subgroup G of a triangle group Γ (p, 2, q)

or, if we allow orientation-reversing elements, a discrete torsion-free group of auto-
morphisms of U in which Γ (p, 2, q) has index 2. Since the polygons are congruent,
the neighbors of each vertex are concyclic on isometric circles. The distance is the
spherical, the Euclidean or the hyperbolic distance respectively.

An (compact) orientable Riemann surface is a closed topological surface S with
analytic structure. A non-orientable Riemann surface is a closed topological surface
S with dianalytic structure where the conjugation z → z̄ is allowed. The quotient of
U under the action of G is a Riemann surface S = U/G. The group is called the
surface group of S andU is its universal covering space. By the Poincaré uniformiza-
tion theorem any Riemann surface is the quotient S = U/G, where U is either
the Riemann sphere, the complex Euclidean plane or the hyperbolic plane and G



204 M. Izquierdo and K. Stokes

is a discrete torsion-free group of automorphisms of U , possibly with orientation-
reversing elements. The quotient of the polygonal tiling by the action of G is a
uniform map of type {p, q} on the surface [7–10]. In a uniform map of type {p, q}
the vertices have valency p, the edges have valency 2 and the faces have valency q.
A map is regular if its automorphism group acts transitively on the triples of incident
vertices, edges and faces, so a regular map is always uniform.

The image of the isometric circles through the neighborhoods of the vertices of
a uniform tiling of U under the quotient by G are isometric circles through the
neighbors of each vertex of the corresponding uniform map of U/G. The result is
a configuration of a finite number of points and circles on the surface. Each circle
contains p points and p circles go through each point. We have proved the following
result.

Theorem 1 [4] A uniform map on a surface produces a configuration of points and
isometric circles on the same surface.

Since themap completely determines the geometric point-circle configuration, the
automorphism group of the configuration coincides with the automorphism group of
themap. Therefore, applyingTheorem1 to regularmapswill give configurationswith
many geometric symmetries. This motivates the study of point-circle configurations
defined by regular maps in general.

Two non-isomorphic graphs can define the same neighborhood geometry. For
example, both the Petersen graph and the Desargues graph has the Desargues con-
figuration as neighborhood geometry. Since the Desargues graph is bipartite (it is the
incidence graph of the Desargues configuration), it defines the Desargues configura-
tion as a point-circle configuration twice. For other examples, see [11]. Also, the same
r -regular graph can be embedded in a Riemann surface as a uniform map in several
ways. Consequently, there may be many ways to realize the same configuration in
terms of points and circles on some surface.

In a paper from 1949, Coxeter explored the relation between self-dual configura-
tions and arc-transitive graphs (he used the term regular graph) [12]. He embedded
the incidence graph of the configurations as regular maps on surfaces. For bipar-
tite graphs, this is exactly what we also do. However, our approach goes further.
We obtain a geometric configuration defined by the incidences of elements from
two classes of distinct geometric objects, points and circles, on the surface. As an
immediate consequence of this, we see that all configurations represented in [12]
as regular maps of incidence graphs, are actually point-circle configurations on the
same surfaces.

For graphs that are not bipartite, our construction is essentially different from
Coxeter’s approach. However, his general principle “interesting configurations are
represented by interesting graphs” [12] may still be applied.
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3 Point-Circle Configurations from Some Classical
Regular Maps

In this section we apply Theorem 1 to some classic regular maps, giving point-circle
configurations on surfaces of genus two, three and four.

3.1 The Bolza Curve

The Bolza curve is a complex projective curve of genus 2 with automorphism group
GL(2, 3) of order 48. It is the curve of genus 2 with maximum number of automor-
phisms. Its surface group (as Riemann surface) is a normal subgroup of the triangle
group Γ (2, 3, 8). It has a regular map of type {3, 8} with 16 vertices, 24 edges and 6
octagonal faces. The neighborhood geometry of the underlying bipartite graph is the
unique linear 83 configuration known as the Möbius-Kantor configuration, which is
therefore realized as a point-circle configuration on the Bolza curve. This configura-
tion has the antipodal property, mutually non-collinear points occur in pairs. The dual
map has 6 vertices, 24 edges and 16 triangular faces. The neighborhood geometry of
the underlying graph is a degenerated 64 configuration of 3 circles through 6 points
where each circle appears twice. Each pair of distinct circles meet in 2 points.

3.2 Klein’s Quartic

Klein’s quartic projective curve, given by the equation x3y + y3z + z3x = 0 over
the complex field is the curve of smallest genus that attains the Hurwitz bound. Its
genus is g = 3 and its automorphism group is P SL(2, 7) of order 84(g − 1) = 168,
so it is the curve of genus 3 with maximum number of automorphisms. There is
an epimorphism from the triangle group Γ (2, 3, 7) to P SL(2, 7) and its kernel is
the surface group uniformizing Klein’s quartic, as Riemann surface. This results in
the classical regular heptagonal map on the surface of type {3, 7} with 56 vertices
of valency 3, 84 edges and 24 heptagonal faces. The neighborhood geometry of the
underlying non-bipartite graph is a self-polar 563 configuration, which is linear, since
the graph has no 4-cycles.

The dual map (obtained by interchanging the roles of vertices and faces) has 24
vertices of valency 7, 84 edges and 56 triangular faces. The 24 vertices correspond to
the 24 Weierstrass points of the surface. The neighborhood geometry of the under-
lying non-bipartite graph is a self-polar 247 configuration of combinatorial linear
dimension 2. Given any point p, there are exactly two points which are not concylic
with p. All other points are concyclic with p exactly twice.

Note that it is possible to embed the Fano plane (the projective plane over F2),
which is a self-polar linear 73 configuration, in Klein’s quartic in terms of the
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incidences of a hypermap related to the 24 Weierstrass points of the surface [13].
These 24 points are also exactly the inflection points of the surface. There are 8
triangles with these points as vertices and inflection tangents as sides, and one of
these triangle is the coordinate triangle [14]. The other 7 triangles are then the blocks
of the Fano plane, with the incidences defined like the incidences of the hyperpoints
and hyperedges described in [13]. Therefore this embedding of the Fano plane in
Klein’s quartic is actually an embedding of the Fano plane as a configuration of
planes, where the planes are defined by the triangles.

3.3 Bring’s Curve

Bring’s curve is a complex projective curve of genus 4 given by the equations∑5
i=1 xi = ∑5

i=1 x2
i = ∑5

i=1 x3
i = 0. Its automorphism group is the symmetric

group acting on 5 elements. It is the curve of genus 4 with maximum number of
automorphisms.

Consider the triangle group Γ (2, 4, 5). There is an epimorphism from Γ (2, 4, 5)
to the symmetric group S5 and the kernel is the surface group of Bring’s curve (as
Riemann surface), which is normal inΓ (2, 4, 5). The surface allows a regular map of
type {4, 5}. This map has 30 vertices of valency 4, 60 edges and 24 pentagonal faces.
The neighborhood geometry of the underlying graph is a self-polar 304 configuration.
Since the graph has no 4-cycles, the configuration is linear.

The dual map has 24 vertices, 60 edges and 30 quadratic faces. The underlying
graph is bipartite, and is therefore the incidence graph of its neighborhood geometry,
a self-polar 125 configuration of combinatorial linear dimension 2.Given any point p,
there is exactly one point which is not concylic with p. All other points are concyclic
with p exactly twice. This gives the configuration an antipodal property.

4 Pentagonal Geometries as Point-Circle Configurations
from Moore Graphs

A pentagonal geometry is a (linear) combinatorial configuration with the property
that, for any point p, all points that are not collinear with p are on a single line, which
is called the opposite line of p [15]. The lines in a pentagonal geometry are of two
types, lines that are the opposite line of some point, and lines that are not.

A pentagonal geometry in which all lines are opposite lines is self-polar by the
polarity thatmakes correspond each point to its opposite line. The reduced Levi graph
(in the sense of [11]) defined by the polarity of a self-polar pentagonal geometry is the
graph inwhich the vertices are pairs of one point and its polar line and two vertices are
joined by an edge if the point of one vertex is incident with the line of the other vertex.
Therefore this graph is exactly the deficiency graph of the geometry, that is, the graph
in which the vertices are the points and two vertices are joined by an edge if the points
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are not collinear. The pentagonal geometry can be recovered from the reduced Levi
graph as its neighborhood geometry. More generally, the neighborhood geometry of
the reduced Levi graph of a self-polar configuration is always equal to the original
configuration. This construction of pentagonal geometries was first described in [15],
where it also was proved that pentagonal geometries with r = k are exactly the ones
with a Moore graph of diameter 2 as reduced Levi graph.

There are only three knownMoore graphs of diameter 2; the cycle graph of length
5, the Petersen graph and the Hoffman-Singleton graph. These graphs have degree
2, 3 and 7, respectively. The existence of a Moore graph of degree 57 is still an open
question. The pentagonal geometries obtained from these graphs are, respectively,
the ordinary pentagon, the Desargues’ configuration and a pentagonal geometry with
parameters (7, 7) and with 50 points and 50 lines. In [15], it was also proved that
all pentagonal configurations of order (k, k +1) can be constructed from pentagonal
geometries of order (k + 1, k + 1) through the removal of one point and its opposite
line. There are therefore at most three such pentagonal geometries, with k = 2, 6
and maybe 56.

Regular embeddings of the two smallest Moore graphs are well-known. The cycle
graph can be embedded with full automorphism group as a regular map on the
Riemann sphere with two pentagonal faces. The Petersen graph has an embedding
in the real projective plane as a regular map with six pentagonal faces, obtained from
the classical spherical map {3, 5} by identifying antipodal points. By Theorem 1, this
implies that both the pentagon and the Desargues configuration allow realizations in
terms of points and isometric circles with full automorphism group on surfaces of
orientable genus 0 and non-orientable genus 1, respectively.

There is no regular embedding of the Hoffman-Singleton graph, but there are
uniform pentagonal embeddings of type {7, 5} on non-orientable surfaces of genus
57 with automorphism group of the map either trivial, of order 5 or of order 7
[16]. By Theorem 1 this implies that the pentagonal geometry (7, 7) on 50 points
and 50 blocks can be realized as a point-circle configuration on a surface of non-
orientable genus 57 with any of these three automorphism groups [4]. It is also
possible to realize this pentagonal geometry as a point-hypersphere configuration
with full automorphism group in Euclidean space of 24 dimensions as the geometric
neighborhood geometry of the well-known embedding of the Hoffman-Singleton
graph in the Leech lattice [4].

5 Point-Circle Configurations on p-gonal Surfaces with
Two Cyclic p-gonal Morphisms

In this section we give an infinite family of Riemann surfaces, one for each genus,
admitting point-circle configurations. For this purpose we use Theorem 1 and the
so called p-gonal surfaces. Before the p-gonal surfaces can be properly introduced
some notation is needed.
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The universal covering space U of an (orientable) Riemann surface U/G covers
it with infinitely many sheets. Each point of U/G is the representative of exactly
one orbit (fiber) of the points in U under the action of the surface group G, which
is a torsion-free discrete group of automorphisms of U , possibly with orientation-
reversing elements.

By considering also cocompact discrete groups H of automorphisms of U with
elliptic elements, one obtains a surface U/H with singular points, a geometric orb-
ifold. An orbifold is a more general concept than a Riemann surface. When H has
no elliptic elements, then U/H is a Riemann surface.

Let G be a finite index n subgroup of a discrete subgroup H of automorphisms of
U (a Fuchsian group). The inclusion G ↪→ H induces a (possibly ramified) covering
f : U/G → U/H of degree n. The covering f is determined by the action of H on
the G-cosets θ : H → �|H :G|. If G is normal in H , then the covering f : U/G →
U/H is a regular covering given by the monodromy θ : H → H/G. Assume that
G has no elliptic elements, so that G is a surface group uniformizing a Riemann
surface U/G. Assume also that the covering morphism U/G → U/H is of degree
a prime number p. Then there is an automorphism φ : S → S such that the deck-
transformation group of the covering is generated by φ, that is, 〈φ〉 ∼ H/G = C p.
If the genus of the underlying surface of U/H is 0, then we say that the surface U/G
is a p-gonal surface and f : U/G → U/H is a p-gonal morphism [17, 18].

According to Castelnuovo-Severi [19] a compact Riemann surface which allows
more than one p-gonal morphism has genus g satisfying g ≤ (p −1)2. Additionally,
it is known that if Sg has several p-gonal morphisms, then these morphisms are all
conjugate [18].

For every prime p ≥ 3 there is a family of surfaces with two distinct cyclic
p-gonal morphisms [17] of genus (p − 1)2, implying that the Castelnuovo-Severi
inequality is sharp. For each p, one of the surfaces in this family, which we call Yp, is
quasi-platonic, that is, its surface group is normal in the triangle group Γ (4, 2, 2p).
The automorphism group of this surface1 is (C p ×C p)� D4, whereCn and Dn are the
cyclic and the dihedral groups of order n and 2n, respectively. Since the surface group
is a normal subgroup in Γ (4, 2, 2p), the surface allows a regular map of type {4, 2p}
of genus (p−1)2. The underlying graph of thismap is a bipartite 4-regular symmetric
graph on 2p2 vertices of girth 4. The neighborhood geometry of this graph has p2

points and p2 blocks and it is self-polar, because the graph is symmetric. Each pair
of points appears in exactly 0, 1 or 2 blocks, so it is not linear, but (combinatorially)
planar. By Theorem 1, the geometry is realized as a point-circle configuration on the
surface Yp. There are 4 points on each circle and 4 circles through each point.

The neighborhood geometry of the underlying bipartite graph of the dual map is
less interesting, since it is a degenerate 2p2p configuration of one circle through 2p
points, for the 2p circles are all the same.

1In [20] an erroneous presentation of this group for p = 3 was given. A presentation is
〈a, b, s, t/a3 = b3 = s2 = t4 = (st)2 = (sa)2 = sbsb2 = t3atb2 = t3bta = 1〉, as cor-
rectly stated in [21]. The two p-gonal automorphisms are then ab and ab−1.
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The automorphism group of Yp contains two conjugate p-gonal morphisms such
that the orbit space of their action on Yp is the Riemann sphere with 2p singular
points, all of degree p. The action of each one of the two p-gonal morphism on the
regular map of type {4, 2p} on Yp divides the vertices in 2p orbits of p vertices
each. The result is a 2-regular bipartite graph on 2p vertices embedded as a map on
the sphere. By Theorem 1, its neighborhood geometry is a point-circle configuration
with p points and p circles on the sphere, 2 points on each circle and 2 circles through
each point. We have proved the following.

Theorem 2 There is an infinite family of combinatorially planar self-polar configu-
rations p2

4 , realizable as point-circle configurations on orientable p-gonal surfaces
of genus (p − 1)2. The orbits of such a configuration under the action of the two
p-gonal morphisms defines a p2 configuration of p circles and p points on the sphere
which is isomorphic to the cycle graph of order p.

The smallest member of this family of point-circle configurations on p-gonal
surfaces, with p = 3, is perhaps themost interesting one. Note that this configuration
occurs in [22] as one of two new interesting small v4 configurations with the property
that the last incidence in a geometric realization is implied by the other incidences.
The graph of the regular map on the 3-gonal surface, resulting from Theorem 2
with p = 3, is bipartite on 18 vertices. Its neighborhood geometry has 9 points
and 9 blocks. Each pair of points are in at least one block, therefore either in 1 or
2 blocks. Interestingly, given a point x , the points that are not in the same block
twice (and therefore once) with x form a single block. This property can be seen
as a generalization of the property defining a pentagonal (linear) geometry: given
a point x , the points that are not collineal with x are collinear on a single line of
the geometry, and they are the only points on that line (see Sect. 4). We define the
property in its general form for a configuration of combinatorial linear dimension d
as follows.

Definition 1 A configuration of combinatorial linear dimension d has the general-
ized pentagonal property if, given any point x , there are points which are in the same
block as x exactly d or d − 1 times and the points that are in the same block as x
exactly d − 1 times form a single block.

For d = 1 this is the defining property of the pentagonal geometries. For d = 2, there
is the 94 configurationwe just described. Its incidence graph, the 4-regular symmetric
graph on 18 vertices is listed as the second symmetric graph of order 18 in [23]. In the
same list one also finds an example for d = 3, the neighborhood geometry defined by
the third symmetric graphof order 26, a 6-regular symmetric graphon26verticeswith
automorphism group of order 156. These examples are all self-polar configurations
by construction and somehow they generalize the pentagon. A d-dimensional self-
polar geometry with the generalized pentagonal property must have 1+ r2/d points
and 1+r2/d blocks. In particular d must divide the number of points per block r . The
pentagonal geometries are in general not self-polar linear configurations and may be
non-balanced, that is, they may have more lines through a point than points on a line.
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It would be interesting to know if there are examples of non-balanced configurations
of combinatorial linear dimension d with the generalized pentagonal property.

The neighborhood geometry of the underlying symmetric graph of the regular
{4, 6}map on Y3 is also the smallest member of the family of planar point-circle con-
figurations defined as the neighborhood geometries of the generalized cuboctahedron
graph in [2]. Apart from this example, the family of point-circle configurations from
generalized cuboctahedron graphs and the family defined by the regular maps of type
{4, 2p} on the surfaces Yp are disjoint. In [2] it is stated as an open question whether
there is an isometric realization in terms of points and circles of any of the configura-
tions in the family coming from the generalized cuboctahedron graphs. In this article
we have given a realization of the first member of that family in terms of points and
isometric circles on an orientable surface of genus 4. The automorphism group of
this realization equals the automorphism group of the combinatorial configuration.

This special 94 configuration can also be realized as a point-circle configuration
in the complex plane as the neighborhood geometry of the 3{4}2 regular and com-
plex polygon. The points and edges of this polygon are the points and lines of the
generalized quadrangle with parameters (2, 1) (a grid on 9 points with 3 points on
each line and 2 lines through each point). Our 94 configuration is the neighborhood
geometry of the symmetric, distance-regular collinearity graph of this generalized
quadrangle.

It is described in [24] how a complex polygon can be represented in the real plane,
and a real representation of this particular 3{4}2 polygon can be found on page 108.
The regularity of the polygon and the properties of this representation imply that the
graph that has as vertices the vertices of the real representation and as edges the sides
of the triangles representing the complex edges of the polygon in the real plane, is a
unit-distance graph in the real plane. This implies that this particular neighborhood
geometry can be realized as an isometric point-circle configuration in the Euclidean
real plane. This gives also a planar answer to the open question mentioned before
from [2]. Note that the realization in the real plane has a smaller automorphism group
than the one on a surface of genus 4.
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Dessins, Their Delta-Matroids and Partial
Duals

Goran Malić

Abstract Given a map M on a connected and closed orientable surface, the delta-
matroid of M is a combinatorial object associated to M which captures some topo-
logical information of the embedding. We explore how delta-matroids associated to
dessins behave under the action of the absoluteGalois group. Twists of delta-matroids
are considered as well; they correspond to the recently introduced operation of partial
duality of maps. Furthermore, we prove that every map has a partial dual defined
over its field of moduli. A relationship between dessins, partial duals and tropical
curves arising from the cartography groups of dessins is observed as well.

1 Introduction

A map on a connected and orientable closed surface X is a cellular embedding of a
connected graph G (loops and multiple edges are allowed). By this we mean that the
vertices of G are distinguished points of the surface, and the edges are open 1-cells
drawn on the surface so that their closures meet only at the vertices; furthermore,
the removal of the all the vertices and all the edges from the surface decomposes the
surface into a union of open 2-cells, which are called the faces of the map (Fig. 1).

To every map on X a clean dessin d’enfant corresponds. A clean dessin d’enfant
is a pair (X, f )where X is a compact Riemann surface (or, equivalently, an algebraic
curve) defined over C and f : X → CP

1 is a holomorphic ramified covering of the
Riemann sphere, ramified at most over a subset of {0, 1,∞}, with ramification orders
over 1 all equal to 2. Vertices of the map correspond to the points in the fiber above
0, whilst the preimages f −1(〈0, 1〉) of the open unit interval, glued together at the
fiber above 1, form the edges.

The following theorem of Belyı̆ [3, 4] is considered as the starting point of the
theory of dessins d’enfants.
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Fig. 1 A map with 2
vertices, 4 edges, and 2 faces
on a genus 1 surface

Theorem 1 (Belyı̆) Let X be an algebraic curve defined over C. Then X is defined
over the field Q of algebraic numbers if, and only if there is a holomorphic ramified
covering f : X → CP

1 of the Riemann sphere, ramified at most over a subset of
{0, 1,∞}.

As a direct consequence, given any dessin (X, f ), both the algebraic curve X
and the covering map f are defined over Q and therefore the absolute Galois group
Gal(Q|Q) acts naturally on both. One of the major themes of the theory of dessin
d’enfants is the identification of combinatorial, topological or geometric properties
of dessins which remain invariant under the aforementioned action.Wewill call such
invariants Galois invariants. A number of Galois invariants have been documented
and an incomplete list can be found in Sect. 3.2 of this paper or in [25, Sect. 2.4.2.2].

A delta-matroid is a combinatorial object associated to a map M on a surface X
which records a certain independence structure. It is completely determined by the
spanning quasi-trees of M, that is the spanning sub-graphs of the underlying graph
of M which can be embedded as a map with precisely one face in some surface, not
necessarily the same one as X . We will study the behaviour of the delta-matroid of
a clean dessin under the action of Gal(Q|Q); the main conclusion is that the delta-
matroid itself is not Galois invariant, however further consideration suggests that the
self-dual property of delta-matroids might be, and in some cases is, preserved by the
action.

A partial dual of a map with respect to some subset of its edges is an operation
which generalises the geometric dual of a map. It was recently introduced in [10]
and generalised to hypermaps in [11]. It was shown in [12] that the delta-matroids
of partial duals of a map M correspond to the twists of the delta-matroid of M. We
give a proof of this correspondence without invoking the machinery of ribbon graphs
used in [12] and use it to show that a map always has a partial dual defined over its
field of moduli.

Towards the end of the paper we discuss the connection between maps, partial
duals, and tropical curves. An abstract tropical curve is a connected graph without
vertices of degree 2 and with edges decorated by the set of positive reals and ∞. We
associate a tropical curve to a map via the monodromy graph of a map. The vertices
of these graphs correspond to the partial duals of the map and the tropical curves
obtained in this way show some similarities with maps when considering the action
of Gal(Q|Q) on them. For example, the number of vertices, edges and the genus of
tropical curves remains invariant under the action of Gal(Q|Q).
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The paper is structured as follows. In Sect. 2 we define (not just clean) dessins
d’enfants, describe the correspondence between dessins and bipartite maps and give
a permutation representation.

In Sect. 3 we revisit Belyı̆’s theorem and go into more detail about the action of
Gal(Q|Q) on dessins. Some Galois invariants are described in Sect. 3.2 as well.

In Sect. 4 we introduce matroids and delta-matroids and describe how they arise
from maps on surfaces.

In Sect. 5 we discuss the behaviour of delta-matroids of maps when the maps
are acted upon by Gal(Q|Q). Special consideration is given to maps with self-dual
delta-matroids in Sect. 5.2.

In Sect. 6 partial duals of maps are introduced, with remarks on the partial duals
of hypermaps. We discuss both the combinatorial and geometric interpretation. In
Sect. 6.1 we give a link from [12] between partial duals and delta-matroids and use
it to show that a map always has a partial dual defined over its field of moduli.

In Sect. 7 we present a relationship between maps, their partial duals and tropical
curves and note some similarities between the tropical curves associated to dessins
that are in the same orbit of Gal(Q|Q).

2 Dessins and Bipartite Maps

Throughout this paper X shall denote a compact Riemann surface or its underlying
connected and closed orientable topological surface. Furthermore, since compact
Riemann surfaces are algebraic, X shall denote an algebraic curve as well. We con-
sider X to be oriented, with positive orientation. Permutations shall be multiplied
from left to right.

Definition 1 A dessin d’enfant, or just dessin for short, is a pair (X, f ) where X is
a compact Riemann surface (or, equivalently, an algebraic curve) defined overQ and
f : X → CP

1 is a holomorphic ramified covering of the Riemann sphere, ramified
at most over a subset of {0, 1,∞}.

The pair (X, f ) is called aBelyı̆ pair aswell, whilst themap f is called aBelyı̆ map
or a Belyı̆ function. Sometimes we will denote a dessin by D = (X, f ) to emphasise
both the curve and the Belyı̆ map. A dessin is of genus g if X is of genus g.

Two dessins (X1, f1) and (X2, f2) are isomorphic if they are isomorphic as cov-
erings, that is if there is an orientation preserving homeomorphism h : X1 → X2

such that f2 ◦ h = f1.
Under the terminology of Grothendieck and Schneps [30, 31], a dessin is called

pre-clean if the ramification orders above 1 are at most 2, and clean if they all are
precisely equal to 2. The associated Belyı̆ maps are called pre-clean and clean Belyı̆
maps, respectively.
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Definition 2 A bipartite map on X is a map on a topological surface X with bipartite
structure, that is the set of vertices can be decomposed into a disjoint union B ∪ W
such that every edge is incident with precisely one vertex from B and one vertex
from W . Vertices from B and W are called black and white, respectively.

Two bipartite maps M1 on X1 and M2 on X2 are isomorphic if there is an
orientation preserving homeomorphism X1 → X2 which restricts to a bipartite graph
isomorphism. When working with bipartite maps we shall adopt the following.

Convention 1 The segments incident with precisely one black and one white vertex
in a bipartite map shall be called darts. Since every map can be thought of as a
bipartite map by considering the edge midpoints as white vertices (see Fig. 3), we
shall reserve the term edge for maps only. To summarise, a bipartite map has darts,
not edges, whilst an edge of a map has precisely two darts.

To every bipartite map on a topological surface X a dessin corresponds, and vice-
versa. This correspondence is realised in the following way: given a dessin (X, f ),
the preimage f −1([0, 1]) of the closed unit interval will produce a bipartite map on
the underlying surface of the curve X such that the vertices of the map correspond to
the points in the preimages of 0 and 1, and the darts correspond to the preimages of
the open unit interval. The bipartite structure is obtained by colouring the preimages
of 0 in black and the preimages of 1 in white.

On the other hand, given a bipartite map on a topological surface X , colour
the vertices in black and white so that the bipartite structure is respected. To the
interior of each face add a single new vertex and represent it with a diamond �,
so that it is distinguished from the black and white vertices. Now triangulate X by
connecting the diamonds with the black and white vertices that are on the boundaries
of the corresponding faces. Following the orientation of X , call the triangles with
vertices oriented as •-◦-�-• positive, and call other triangles negative (see Fig. 2).
Now map the positive and negative triangles to the upper and lower half-plane of C,
respectively, and map the sides of the triangles to the real line so that the black, white

0
1 ∞

f

Fig. 2 The positive (shaded) and negative triangles are mapped to the upper and lower-half plane,
respectively. The sides of the triangles are mapped to R ∪ {∞} so that the black and white vertices
map to 0 and 1, respectively, and the face centres map to ∞
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Fig. 3 A map (left) is
transformed into a clean
dessin (right) by adding edge
midpoints as white vertices.
In the other way, from a clean
dessin we obtain a map by
ignoring the white vertices

and diamond vertices are mapped to 0, 1 and ∞, respectively. As a result, a ramified
cover f : X → CP

1, ramified only over a subset of {0, 1,∞} will be produced. We
now impose on X the uniqueRiemann surface structurewhichmakes f holomorphic.
For a detailed description of this correspondence see [16, Sects. 4.2 and 4.3].

Remark 1 In the introduction we stated that maps correspond to clean dessins. Here
we explain why this is the case: a given map with n edges can be refined into a
bipartite map 2n darts by adding the edge midpoints of the map as white vertices.
The corresponding Belyı̆ function will obviously have ramification orders at the
white vertices equal to 2. In the other way, given a clean dessin, we first obtain a
bipartite map with 2n darts in which every white vertex is incident to precisely two
darts, since all the ramification orders above 1 are equal to 2. By ignoring the white
vertices we obtain a map with n edges. See Fig. 3 for an example.

From now on we shall think of dessins both as bipartite maps, and as Belyı̆ pairs.
Consequently, clean dessins are synonymous with maps.

2.1 A Permutation Representation of Dessins

Throughout this section let (X, f ) be a dessin with n darts (or, equivalently, such that
f is a degree n ramified covering). The goal of this section is to describe how each
such dessin can be represented by a triple (σ, α, ϕ) of permutations in Sn . However,
let us first introduce the following labelling convention to which we will conform
throughout the rest of this paper.

Convention 2 We label the darts of a dessin with the elements of the set {1, . . . , n}
so that, when standing at a black vertex, and looking towards an adjacent white
vertex, the label is placed on the ‘left side’ of the dart. See Fig. 4 for an example.

Following the previous convention, label the darts of a dessin arbitrarily. Now
let σ and α denote the permutations which record the cyclic orderings of the labels
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Fig. 4 Labelling of darts.
The labels are always on the
left when looking from a
black vertex to its adjacent
white vertices

1

2

3

4

5

around the black and white vertices, respectively, and let ϕ denote the permutation
which records the counter-clockwise ordering of the labels within each face.

Example 1 For the dessin in Fig. 4 we have σ = (1)(2 3 4)(5), α = (1 2)(3 5 4)
and ϕ = (1 4 5 2)(3). The cycles of length 1 are usually dropped from the notation.
Note that the cycle corresponding to the ‘outer face’ is, from the reader’s perspective,
recorder clockwise. This does not violate our convention since that face should be
viewed from the opposite side of the sphere [25, Remark 1.3.18(3)].

Since the labelling was arbitrary, a change of labels corresponds to simultaneous
conjugation of σ , α and ϕ by some element in Sn . Therefore, any dessin can be
represented, up to conjugation, as a triple of permutations.

Definition 3 The length of a cycle in σ or α corresponding to a black or a white
vertex, respectively, is called the degree of the vertex. The length of a cycle in ϕ

corresponding to a face is called the degree of the face. Thus, the degree of a vertex
is the number of darts incident to it, while the degree of a face is half the number of
darts on its boundary.

A triple (σ, α, ϕ) representing a dessin D = (X, f ) satisfies the following prop-
erties:

• the group 〈σ, α, ϕ〉 acts transitively on the set {1, . . . , n} and
• σαϕ = 1.

The first property above is due to the fact that dessins are connected while the
second is due to the following: consider three non-trivial simple loops γ0, γ1 and γ∞
onCP1\{0, 1,∞} based at 1/2 and going around 0, 1 and ∞ once, respectively. The
lifts of these loops under f correspond to paths on X that start at some and end at
another (possibly the same) point in f −1(1/2). We observe the following.

• Every dart of D contains precisely one element of f −1(1/2) since f is unramified
at 1/2.

• The cardinality of f −1(1/2) is precisely n. Hence there is a bijection between
f −1(1/2) and {1, . . . , n}.

• With respect to this bijection, σ , α and ϕ can be thought of as permutations of the
set f −1(1/2).
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Therefore the loops γ0, γ1 and γ∞ induce σ , α and ϕ. Since the product γ0γ1γ∞ is
trivial, the corresponding permutation σαϕ must be trivial as well.

We have now seen that to every dessin with n darts we can assign a triple of
permutations in Sn such that their product is trivial and the group that they generate
acts transitively on the set {1, . . . , n}. In a similar fashion we can show that this
assignment works in the opposite direction: given three permutations σ , α and ϕ in
Sn such that σαϕ = 1 and the group that they generate acts transitively on {1, . . . , n},
we can construct a dessin with n darts so that the cyclic orderings of labels around
vertices correspond to the cycles of σ , α and ϕ, up to simultaneous conjugation.
Therefore, up to simultaneous conjugation, a dessin is uniquely represented by a
transitive triple (σ, α, ϕ) with σαϕ = 1, and such a triple recovers a unique dessin
(up to isomorphism).

Remark 2 Obviously, dessins correspond to 2-generated transitive permutation
groups since we can set ϕ = (σα)−1. However, we prefer to emphasise all three
permutations.

We shall use the notation D = (σ, α, ϕ) to denote that a dessin D is represented
by the triple (σ, α, ϕ).

Definition 4 The subgroup of Sn generated by σ , α and ϕ is called the monodromy
group of D = (σ, α, ϕ) and denoted by Mon(D).

The monodromy group is actually defined up to conjugation in order to account
for all the possible ways in which a dessin can be labelled.

Example 2 Themonodromygroupof the dessin inFig. 3 is (isomorphic to) PSL3(2).
The monodromy group of the dessin in Fig. 4 is S5.

3 Belyı̆’s Theorem and the Galois Action on Dessins

One of the most mysterious objects in mathematics is the absolute Galois group
Gal(Q|Q), the group of automorphisms of Q that fix Q point-wise, and the study
of its structure is one of the goals of the Langlands program. Grothendieck, in his
remarkable Esquisse d’un Programme [20], envisioned an approach towards under-
standing Gal(Q|Q) as an automorphism group of a certain topological object; the
starting point of his approach is Belyı̆’s theorem, which we restate here.

Theorem 2 (Belyı̆) Let X be an algebraic curve defined over C. Then X is defined
over Q if, and only if there is a holomorphic ramified covering f : X → CP

1,
ramified at most over a subset of {0, 1,∞}.

Aside from Belyı̆’s own papers [3, 4], various other proofs can be found in, for
example, [33, Theorem 4.7.6] or [16, Chap. 3] or the recent new proof in [17]. Belyı̆
himself concluded that the above theorem implies that Gal(Q|Q) embeds into the
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outer automorphism group of the profinite completion of the fundamental group
of CP1\{0, 1,∞}, however it was Grothendieck who observed that Gal(Q|Q) must
therefore act faithfully on the set of dessins as well. This interplay between algebraic,
combinatorial and topological objects is what prompted Grothendieck to develop his
Esquisse. For more detail, see [31] or [33].

3.1 Galois Action on Dessins

Let D = (X, f ) be a dessin. If X is of genus 0, then necessarily X = CP
1 and

f : CP1 → CP
1 is a rationalmapwith critical values in the set {0, 1,∞}. If f = p/q,

where p, q ∈ C[z], then Belyı̆’s theorem implies that p, q ∈ Q[z]. Moreover, the
coefficients of both p and q generate a finite Galois extension K of Q. Therefore
p, q ∈ K [z], and Gal(K |Q) acts on f by acting on the coefficients of p and q, that
is if θ ∈ Gal(K |Q) and

f (z) = a0 + a1z + · · · + am zm

b0 + b1z + · · · bnzn
,

then f θ (z) = θ(a0) + θ(a1)z + · · · + θ(am)zm

θ(b0) + θ(b1)z + · · · θ(bn)zn
.

If X is of genus 1 or 2, then as an hyperelliptic algebraic curve it is defined by
the zero-set of an irreducible polynomial F in C[x, y]. This time we must take into
consideration the coefficients of both F and f which, due to Belyı̆’s theorem again,
generate a finite Galois extension K ofQ. Similarly as in the genus 0 case, Gal(K |Q)

acts on D by acting on the coefficients of both F and f simultaneously. When the
genus of X is at least 3, the action is exhibited similarly.

It is not immediately clear that the action of some automorphism in Gal(K |Q) on
a Belyı̆ map f will produce a Belyı̆ map. This indeed is the case and we refer the
reader to the discussion in [25, Sect. 2.4.2].

Since anyQ-automorphismof K extends to anQ-automorphismofQ [7, Chap. 3],
we truly have an action of Gal(Q|Q) on the set of dessins.

We shall denote by Dθ = (X θ , f θ ) the dessin that is the result of the action of
θ ∈ Gal(Q|Q) on D = (X, f ). We shall also say that Dθ is conjugate to D.

The following example is borrowed from [25, Example 2.3.3].

Example 3 Let D = (X, f ) be a dessin where X is the elliptic curve

y2 = x(x − 1)(x − (3 + 2
√
3)),

and f : X → CP
1 is the composition g ◦ πx , where πx : X → CP

1 is the projection
to the first coordinate and g : CP1 → CP

1 is given by
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X: y2 = x(x − 1)(x − (3 + 2
√
3))

f : (x, y) �→ x −→� (x−1)3(x−9)
64x

Xθ: y2 = x(x − 1)(x − (3 − 2
√
3))

f θ: (x, y) �→ x −→� (x−1)3(x−9)
64x

Fig. 5 The twodessins (X, f ) and (X θ , f θ ) fromExample 3. Thedotted lines indicate the boundary
of the polygon representation of an orientable genus 1 surface with the usual identification of the
left-and-right and top-and-bottom sides

g(z) = − (z − 1)3(z − 9)

64z
.

The corresponding bipartite map is depicted on the left in Fig. 5.
Note that we must consider g ◦ πx and not just πx since πx is not a Belyı̆ map; it

is ramified over four points, namely 0, 1, 3 + 2
√
3 and ∞. However, g maps these

four points onto the set {0, 1,∞} and therefore g ◦ πx is a true Belyı̆ map.
The Galois extension that the coefficients of X and f generate is K = Q(

√
3) and

the corresponding Galois group has only one non-trivial automorphism θ given by
θ : √

3 �→ −√
3. Therefore X θ is the elliptic curve y2 = x(x − 1)(x − (3− 2

√
3)).

The curve X θ is non-isomorphic to X , which can easily be seen by computing the
j-invariants of both.

What about f θ? In this case, πx : X θ → CP
1 is unramified over 3 + 2

√
3 and

ramified over 3−2
√
3. However, g maps 3−2

√
3 to 0 as well, and since g is defined

over Q, the Belyı̆ functions f and f θ coincide. The bipartite map corresponding to
(X θ , f θ ) is depicted on the right in Fig. 5.

This action of Gal(Q|Q) on dessins is faithful already on the set of trees, i.e. the
genus 0 dessins with precisely one face and with polynomials as Belyı̆ functions.
However, this is not straight-forward (proofs can be found in [16, 30]) and, surpris-
ingly, it is much easier to show faithfulness in genus 1 [16, Sect. 4.5.2]. Moreover,
the action is faithful in every genus [16, Sect. 4.5.2].

3.2 Galois Invariants

Here we shall list a number of properties of dessins which, up to various notions
of equivalence, remain invariant under the action of Gal(Q|Q). Such properties are



222 G. Malić

called Galois invariants of dessins. We shall use the notation D � D′ to indicate
that two dessins D and D′ are conjugate.

Invariant 1 (Passport) Let D = (σ, α, ϕ) be a dessin with n darts. The cycle types
of σ , α and ϕ define three partitions λσ , λα and λϕ of n. The passport of D is
the sequence [λσ , λα, λϕ]. If D′ = (σ ′, α′, ϕ′) and D � D′, then [λσ , λα, λϕ] =
[λσ ′, λα′ , λϕ′ ]. In other words, conjugate dessins have the same passport.

We compactly record a partition of, for example, n = 17 = 3+ 3+ 3+ 3+ 2+
1 + 1 + 1 as 34213. If a double-digit number appears in the partition, for example
23 = 11 + 11 + 1, then we record it as (11)21.

Example 4 The dessin in Fig. 3 has the sequence [3212, 24, 71] as its passport. The
dessin in Fig. 4 has [312, 32, 41] as its passport. The two dessins in Fig. 5 both have
[612, 422, 62] as their passport.

The passport is a very crude invariant, however much useful information can be
extracted from it. For example, the number of black vertices, white vertices, darts
and faces is invariant and hence the genus of the surface must also be invariant.
Moreover, we can conclude that every orbit of the action is finite since there are only
finitely many dessins with a given passport.

Invariant 2 (Monodromy group) If D � D′, then Mon(D) ∼= Mon(D′). In other
words, conjugate dessins have isomorphic monodromy groups.

Example 5 The monodromy group of the dessin D on the left side in Fig. 5 is
the nilpotent group given by the external wreath product of Z2 by the alternating
group A4. Since the dessin on the right side of the same figure is conjugate to D, its
monodromy group is isomorphic to Mon(D).

The monodromy group is a much finer invariant than the passport since dessins
with the same passport may have non-isomorphic monodromy groups.

Invariant 3 (Automorphism group) Let D = (σ, α, ϕ). The centre of Mon(D) in
Sn is the automorphism group of D, denoted by Aut(D). If D � D′, then Aut(D) ∼=
Aut(D′).

If the automorphism group of a dessin D acts transitively on the set {1, . . . , n}
or, equivalently, if |Aut(D)| = n, then we say that the dessin is regular. It has been
shown in [18, 21] that Gal(Q|Q) acts faithfully on the set of regular dessins as well.

Invariant 4 (Cartography group) The cartography group Cart(D) of a dessin D
is the monodromy group of the map obtained from D by colouring all the white
vertices black and adding new white vertices to the midpoints of edges. Therefore,
for maps or clean dessins we have Cart(D) = Mon(D). As it was the case with the
monodromy group, conjugate dessins have isomorphic cartography groups.
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Since the cartography groups are subgroups of S2n , when n is large they are in
general more difficult to compute than the monodromy groups. However, Jones and
Streit have shown in [24] that the cartography group can be used to distinguish
between the orbits of Gal(Q|Q) when the monodromy group does not suffice. That
is, there are non-conjugate dessins with isomorphic monodromy groups but non-
isomorphic cartography groups.

More Galois invariant groups that arise from the monodromy group in a similar
fashion can be found in [27].

Invariant 5 (Duality) Given a dessin D = (X, f ) we define its dual dessin D∗ to
be the dessin corresponding to the Belyı̆ pair (X, 1/ f ). Clearly, if D1 � D2, then
D∗

1 � D∗
2 .

In terms of permutation representations, if D = (σ, α, ϕ), then D∗ will have the
triple (ϕ−1, α−1, σ−1) as its permutation representation. Geometrically this means
that the black vertices and the face centres of the dual are the face centres and the
black vertices of D, respectively, while the white vertices remain unchanged, except
for the orientation of the labels. The darts of D∗ are the curved segments that connect
the face centres and the white vertices of D. See Fig. 6 for an example.

Remark 3 If D is a map then D∗ corresponds to the geometric dual of a map. If e
is an edge of D, then the unique edge e∗ in D∗ which intersects e at the appropriate
white vertex is called the coedge of e.

Invariant 6 (Self-duality) We say that a dessin is self-dual if it is isomorphic to its
dual. If D is self dual and D � D′, then D′ is self-dual as well. We shall considered
self-duality again in Sect. 5.2.

Invariant 7 (Field of moduli) Let D be a dessin and

Stab(D) = {θ ∈ Gal(Q|Q) | Dθ = D}

the stabiliser of D in Gal(Q|Q). The field of moduli of D is the fixed field corre-
sponding to Stab(D), that is the field

{q ∈ Q | θ(q) = q, for all θ ∈ Stab(D)}.

Fig. 6 The dessin (full) from
Fig. 4 and its dual (dashed)
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Alternatively, the field of moduli of D is the intersection of all fields of definition
of D, i.e. all the fields in which we can write down a Belyı̆ pair for D.

Fields of moduli are notoriously difficult to compute, and moreover, there are
dessins whose Belyı̆ pairs cannot be realised over their own fields of moduli! [25,
e.g. 2.4.8 and 2.4.9]. Therefore, a natural question to ask is when can a dessin be
defined over its field of moduli. Based on the work of Birch in [2] (see also [32]), a
necessary, but not sufficient condition was given in [36].1

Theorem 3 A dessin can be defined over its field of moduli if there exists a black
vertex, or a white vertex, or a face center which is unique for its type and degree.

4 Matroids and Delta-Matroids

It is often said that matroids are a combinatorial abstraction of linear independence.
Formally we have

Definition 5 Given a non-empty finite set E , a matroid on E is a non-empty family
M(E) of subsets of E which is closed under taking subsets, i.e.

• if J ∈ M(E) and I ⊆ J , then I ∈ M(E),

and satisfies the following augmentation axiom:

• if I, J ∈ M(E)with |I | < |J |, then there exists x ∈ J\I such that I∪{x} ∈ M(E).

The elements of M(E) obviouslymimic the properties of linearly independent sets of
vectors and are hence called independent sets. Subsets of E which are not independent
are called dependent. Maximal independent sets are called bases, and, as the reader
might suspect, any two bases of M(E) are of the same size [29, Lemma 1.2.1]. Two
matroids M(E) and M(E ′) are isomorphic if there is a bijection ψ : E → E ′ such
that ψ(I ) is independent if, and only if I is independent.

Matroids were introduced by Hassler Whitney [35] and, as the name suggests,
arise naturally from matrices; the collection of linearly independent sets of columns
in a matrix forms a matroid [29, Proposition 1.1.1]. Matroids which are isomorphic
to matroids arising from matrices are called representable.

A multitude of examples of matroids arise from graphs as well. Given an abstract
undirected graph G = (V, E), the collection of its acyclic sets of edges forms a
matroid M(G) [19, Theorem 4]. The independent sets of this matroid are in fact
subsets of E , however we denote it by M(G) to emphasise that the matroid is arising
from a graph. The spanning forests of G correspond to the bases of M(G). If G is
connected then the trees and the spanning trees correspond to the independent sets
and the bases of M(G). Matroids which are isomorphic to matroids arising from
graphs are called graphic. Moreover, every graphic matroid is isomorphic to the
graphic matroid of some connected graph [29, Proposition 1.2.8].

1See also Theorem 2.4.14 in [25].
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Convention 3 It is customary in matroid theory to drop the braces and commas
when specifying sets. For example, abc stands for the set {a, b, c}.

Given amatroid M(E)wecan completely recover the independent sets by describ-
ing only the collectionB of its bases. On the other hand, ifB is a non-empty collection
of subsets of some non-empty set E , thenBwill be the collection of bases of amatroid
if, and only if the following exchange axiom is satisfied [29, Corollary 1.2.5]:

• if B1, B2 ∈ B and x ∈ B1 \ B2, then there is y ∈ B2 \ B1 such that (B1 \ x)∪ y ∈ B.
Let us look at a simple example of a graphic matroid.

Example 6 Let G be the map obtained from the bipartite map in Fig. 4 by colouring
all the white vertices into black vertices (see Fig. 7). The bases of M(G) are the sets
1235 and 1245 and they correspond precisely to the spanning trees of the map.

Let B be the collection of bases of some matroid M(E) and let

B∗ = {E \ B | B ∈ B}

be the collection of the complements of its bases. This collection is clearly non-empty
and it can be shown that it satisfies the exchange axiom [29, Chap. 2]. The matroid
with B∗ as its collection of bases is called the dual matroid of M(E), and is denoted
by M∗(E).

Example 7 Let us go back to the map in Fig. 7. As we have seen in Example 6, the
bases of this map are 1235 and 1245. Recall that the unique edge of the dual map
which intersects an edge e of the map is labelled by e∗. Therefore the bases of the
dual map should be the coedges 4∗ and 3∗. In Fig. 7 we can see that this indeed is the
case.

1

2
3

4

5

Fig. 7 A map obtained from the dessin in Fig. 4 by colouring the white vertices into black and
adding new white vertices at the edge midpoints. The dual map (dashed) is formed by connecting
the face centres to the (new) white vertices. The segments on the left and right go around the sphere
and connect into a loop
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We say that a matroid is cographic if it is isomorphic to the dual of some graphic
matroid. The following theorem of Whitney [34] establishes a matroidal characteri-
sation of planarity.

Theorem 4 (Whitney’s planarity criterion) Let G be a connected graph. Then G
is planar if, and only if M(G) is cographic. Moreover, if G is a plane map, then
M∗(G) = M(G∗), where G∗ is the geometric dual of G.

4.1 Delta-Matroids

As we have seen in Theorem4, the dual matroid of a plane map is the matroid
of the dual map. This correspondence does not hold for graphs that are not planar.
However,wewould like to extend this property to non-planar graphs and their cellular
embeddings, that is to maps on surfaces of any genus. To that effect, we introduce
the following.

Definition 6 A delta-matroid Δ(E) on E = {1, . . . , n} is a non-empty collection
F of subsets of E satisfying the following symmetric axiom:

• if F1, F2 ∈ F and x ∈ F1�F2, then there is y ∈ F2�F1 such that F1�{x, y} ∈ F .

Here � denotes the symmetric difference of sets. The elements of F are called
feasible sets. Two delta-matroids Δ(E) and Δ(E ′) are isomorphic if there is a bijec-
tion ψ : E → E ′ preserving feasible sets. We shall use the notation Δ(E) ∼= Δ(E ′)
to indicate that Δ(E) and Δ(E ′) are isomorphic delta-matroids.

It is straightforward to show that every matroid is a delta-matroid, however not
every delta-matroid is a matroid, as we shall see.

Delta-matroids, also known as symmetric or Lagrangian matroids [8, Chap. 4],
were first introduced by Bouchet [5] and later generalized to the so-called Coxeter
matroids by Gelfand and Serganova [14, 15]. A systematic treatment of Coxeter
matroid theory can be found in [8].

Delta-matroids arise from maps in a fashion similar to which graphic matroids
arise from graphs. However, instead of spanning trees we shall consider bases of
maps. To that effect, let M be a map on X with n edges labelled by the set E =
{1, 2, . . . , n}. Label the edges of the dual map M∗ by the set E∗ = {1∗, 2∗, . . . , n∗}
so that j∗ is the coedge corresponding to j . Call an n-subset B of E ∪ E∗ admissible
if precisely one of j or j∗ appears in it.

Definition 7 An admissible n-subset B of E ∪ E∗ is called a base if X\B is
connected.

It was shown in [6, Proposition 2.1] that the bases of M are equicardinal and
spanning, that is each base includes a spanning tree of the underlying graph of M.
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Definition 8 A quasi-tree is a map with precisely one face. A spanning quasi-tree
of a map M is a quasi-tree obtained from a base B of M by ignoring the starred
elements.

Remark 4 We are allowing the case of an empty spanning quasi-tree. This occurs
precisely when there is a base B = E∗. In that case, X\E∗ is connected and therefore
M∗ has precisely one face. Hence M has only one vertex and we think of the empty
spanning quasi-tree as the degenerate map on the sphere with one vertex and no
edges.

Let B denote the collection of bases of a map M, and let F denote the collection
of the spanning quasi-trees of M, that is the collection

F = {E ∩ B|B ∈ B}.

Analogously to matroids, the spanning quasi-trees of a map form a delta-matroid
[8, Theorem 4.3.1].

Theorem 5 If M is a map on X, then F is the collection of feasible sets of a
delta-matroid.

The delta-matroid arising from a map M shall be denoted by Δ(M) or Δ(D)

when we are assuming that D is a clean dessin.

Example 8 Let M be a map on a genus 1 surface X with two vertices, three edges
and one face, as shown and labelled in Fig. 8. Since the map itself has precisely one
face, then X \ M must be connected. Therefore 123 is a base. It is easy to see that
no 2-subset of 123, together with an appropriate coedge, is a base. The remaining
admissible 3-sets are 12∗3∗, 1∗23∗, 1∗2∗3 and 1∗2∗3∗. Out of those four, only 12∗3∗
and 1∗2∗3 do not disconnect X . Therefore, the feasible sets are 123, 1, 3.

In general one does not need to go through all possible admissible n-subsets of
E ∪ E∗ and check which ones are bases. It is enough to find one base which can then
be used to find the representation of the delta-matroid as an n by 2n matrix overQE ⊕
Q

E∗
. The linearly independent admissible n-sets of columns of the representation

will correspond to the bases of the map [8, Theorem 4.3.5]. However, we shall not
consider representations of delta-matroids in this paper.

We note that the Definition 6 can be modified so that a delta-matroid is specified
by a collection of admissible n-sets [8, Sect. 4.1.2]. In that case we must replace F1,
F2,F , x , y and {x, y}with B1, B2,B, {x, x∗}, {y, y∗} and {x, x∗, y, y∗}, respectively.
The reason that we chose our definition is due to the fact that if M is a map on the
sphere, then its feasible sets correspond precisely to its spanning trees and therefore
the delta-matroid in question is a matroid.

As in the case of matroids, there exists a notion of a dual delta-matroid.
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Fig. 8 The bases of the map
are 123, 12∗3∗ and 1∗2∗3.
Hence Δ(M) = {123, 1, 3}.
The edges 1 and 3 are the
spanning quasi-trees of M
which can be embedded as
maps only on the sphere

1

2

3

1∗

2∗

3∗

Proposition 1 Let Δ(E) be a delta-matroid with F as its collection of feasible sets.
Then the collection

F∗ = {E\F |F∈F}

is the collection of feasible sets of some delta-matroid on E.

This proposition is easily seen to be true by noting that

F1 � F2 = (E\F1) � (E\F2).

The delta-matroid on E with F∗ as the collection of its feasible sets is called the
dual delta-matroid of Δ(E) and is denoted by Δ∗(E).

Theorem 6 Let M be a map and B the collection of its bases. Let M∗ be its dual
map and Δ(M∗) the delta-matroid of M∗. Then Δ∗(M) ∼= Δ(M∗).

Proof The bases ofM andM∗ clearly coincide. Therefore, the collection of feasible
sets of Δ(M∗) is

F ′ = {E∗ ∩ B|B ∈ B}.

If F is a feasible set ofΔ(M), then E\F is a feasible set ofΔ∗(M), and we have

E\F = E ∩ Fc = E ∩ (B ∩ E)c

= E ∩ (Bc ∪ E∗) = E ∩ Bc

= E ∩ B∗,
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where B∗ is the admissible n-subset obtained from B by starring and un-starring the
un-starred and starred elements, respectively. Denote by ψ : E → E∗ the bijection
ψ(i) = i∗. From the computation above we have

ψ(E\F) = ψ(E) ∩ ψ(B∗) = E∗ ∩ B.

Hence Δ∗(M) and Δ(M∗) are isomorphic. Moreover, by relabelling the edges of
M∗ with the elements of E we can even achieve equality between the two delta-
matroids.

If we recall that for plane maps the feasible sets correspond to spanning trees, we
immediately recover Theorem 4. In other words, a delta-matroid Δ(M) is a matroid
if, and only if M is a plane map.

5 Galois Action on the Delta-Matroids of Maps

Since delta-matroids do not take into account the bipartite structure of dessins,
throughout this section we shall consider maps only. Nevertheless, this restriction is
not a significant one, as established by the following corollary [30, p. 50] to Theo-
rem 2.

Corollary 1 Let X be an algebraic curve defined over C. Then X is defined over Q
if, and only if there is a clean Belyı̆ map f : X → CP

1.

This corollary is due to the fact that if ϑ : X → CP
1 is a Belyı̆ function, then

f = 4ϑ(1 − ϑ) is a clean Belyı̆ function on the same curve X . The dessin to which
it corresponds is a familiar one: it is the dessin obtained from (X, ϑ) by colouring
all the white vertices black and adjoining the edge midpoints as the white vertices.

As we have seen, delta-matroids of maps are defined through a topological prop-
erty, namely connectedness, and therefore we cannot expect that conjugate maps
will have isomorphic delta-matroids. This indeed is the case, as we will see in the
following examples.

Example 9 Let A, B+ and B− be the three genus 0 clean dessins depicted in Fig. 9
with Belyı̆ functions

f (z) = 16
(391 + 550ν + 455ν2)(z + 2ν)(z + 1)2z5

(16z − ν + 7ν2 − 4)(−8z + 4ν + 3ν2 − 4)2
,

where ν is a root of the irreducible polynomial

7ν3 + 2ν2 − ν − 4.
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Fig. 9 From left to right: dessins A, B+ and B−

Thedessin A corresponds to its real root,while B+ and B− correspond to its imaginary
roots with positive and negative real parts, respectively [1, Figs. 87–89]. Clearly, any
two are conjugate.

Since these dessins are plane maps, their delta-matroids are matroids and the
feasible sets are their spanning trees. Dessins B+ and B− clearly have isomorphic
delta-matroids with two feasible sets, while A has only one feasible set.

Example 10 Let us look at some delta-matroids which are not matroids. Let A+,
A− and B be the three genus 1 clean dessins as depicted and labelled in Fig. 10. The
Belyı̆ pairs of the three dessins have coefficients in the fixed field corresponding to
the Galois group of the irreducible polynomial

256ν3 − 544ν2 + 1427ν − 172,

and any two are conjugate. Similarly to the previous example, the dessin B corre-
sponds to the Belyı̆ pair defined over R while the Belyı̆ pairs for A+ and A− are
complex-conjugate. Due to the complicated expressions involved, we shall omit the
equations for the Belyı̆ pairs. However, the readermay look themup in [1, pp. 39–40].

1

23
4

1

23

4

1

2

3 4

Fig. 10 From left to right: dessins A+, A− and B
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The bases of A+ and A− are 123∗4∗, 12∗34∗ and 1∗2∗3∗4∗ hence the feasible sets
are 12, 13 and ∅. However, B has only two bases, namely 123∗4∗ and 1∗2∗3∗4∗ and
therefore has only two feasible sets: 12 and ∅. The reason why delta-matroids fail to
be Galois invariant is illustrated clearly in this example: a delta-matroid takes into
account the topology of edges and hence distinguishes between non-contractible and
contractible loops on the surface whereas Gal(Q|Q) does not!

5.1 Trivial Delta-Matroidal Galois Invariants

The simplest dessins are the trees, that is genus 0 dessins with precisely one face.
As we have already mentioned in the last paragraph before Sect. 3.2, the action of
Gal(Q|Q) on the set of trees is very rich since it is faithful. However, delta-matroids
associated to trees do not reveal much information as every tree has precisely one
feasible set, the tree itself.

Similarly, Gal(Q|Q) will preserve the delta-matroid of a genus 0 dessin which
has n faces of degree 1 and one face of arbitrary degree. Such a dessin is a tree with
m loops attached to it. Again, every such dessin clearly has only one feasible set,
namely the tree obtained by removing the m loops. Therefore, we have the following
proposition.

Proposition 2 Let D be a genus 0 clean dessin which is either

(i) a tree,
(ii) a tree with m degree 1 faces attached, or

(iii) the dual dessin of a dessin of type (i) or (i i).

If D′ is a dessin conjugate to D, then Δ(D′) ∼= Δ(D).

Proof In the cases (i) and (ii) the proof is trivial if we recall that the passport of a
dessin is a Galois invariant. Hence the conjugate dessin D′ must be of the same type
as D in both cases. Since the delta-matroids of those dessins are one and the same
feasible set, namely the (underlying) tree, we must have Δ(D′) ∼= Δ(D).

For (i i i), recall from Invariant 5 that the duals of conjugate dessins are conjugate
as well. Since D∗ is of type (i) or (i i) we have Δ(D′∗) ∼= Δ(D∗). Combining with
Theorem 6 we have

Δ∗(D′) = Δ(D′∗) ∼= Δ(D∗) = Δ∗(D).

Now by noting that (Δ∗)∗ = Δ, we recover Δ(D′) ∼= Δ(D).

As we have seen in Example 9, the case (ii) cannot be improved even to trees with
only one degree 2 face attached. The following conjugate dessins found in [37] show
that case (i) cannot be extended to quasi-trees.
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Example 11 Let T5 denote the fifth Chebyshev polynomial of the first kind and
consider its square

T 2
5 (x) = 25x2 − 200x4 + 560x6 − 640x8 + 256x10.

This polynomial is a clean Belyı̆ map with critical points in the set

⎧
⎨

⎩0,
1 ± √

5

4
,
−1 ± √

5

4
,

√
5 ± √

5

8
,

√
−5 ± √

5

8

⎫
⎬

⎭ .

Therefore, if X is the algebraic curve

y2 = (x − 1)(x + 1)

⎛

⎝x −
√
5 + √

5

8

⎞

⎠ ,

then the composition t = T 2
5 ◦ πx , where πx : X → CP

1 is the projection to the first
coordinate, is a clean Belyı̆ map. Clearly D = (X, t) will have precisely one face
since t−1(∞) = {∞}, as we can see in Fig. 11.

Let D be labelled as in Fig. 11 and let B be a base of D. If the edge 10 is in
B then no coedges can appear since cuts along the two edges 10 and e∗, for any
e ∈ {1, . . . , 9}, will clearly disconnect X . Therefore, B = 12 . . . 10 is the only
base containing the edge 10. On the other hand, if 10∗ is in B then at least one
coedge e∗ ∈ {1∗, . . . , 9∗} must appear since 1 . . . 9(10)∗ disconnects D. But if two
or more coedges in {1∗, . . . , 9∗} appear in B then D will again be disconnected.
Therefore, Δ(D) has precisely 10 feasible sets, namely 12 . . . 10 and 1 . . . ê . . . 9,
where ê denotes the omission of e ∈ {1, 2, . . . 9}.

Now let θ be an automorphism in Gal(Q|Q) such that

θ :
√
5 + √

5

8
�→

√
5 − √

5

8
.

Fig. 11 The dessin (X, t).
The only feasible set
containing 10 is the entire
dessin. Any two coedges
1 ≤ e, f ≤ 9 disconnect X
so other feasible sets must be
of the form 1 · · · ê · · · 9,
where ê is omitted

1 2 3 4 5 6 7 8 9

10
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Fig. 12 The dessin
Dθ = (X θ, t). There are at
least 18 feasible sets
obtained by adjoining
1 · · · ê · · · 7, where ê is
omitted, to 89, 8(10) or 9(10)

1 2 3 4 5 6 7

8

9

10

Since T 2
5 is defined over the rationals, then (T 2

5 )θ coincides with T 2
5 and therefore tθ

and t coincide as well. However, X θ , which is given by

y2 = (x − 1)(x + 1)

⎛

⎝x −
√
5 − √

5

8

⎞

⎠ ,

is a curve not isomorphic to X . Hence Dθ and D are non-isomorphic conjugate
dessins. The corresponding map is shown in Fig. 12.

Let Dθ be labelled as in Fig. 12 and B a base of Dθ . If the edges 8, 9 and 10 are
in B, then B must be the entire dessin. Now suppose that 8, 9 and 10∗ are in B. Then
the rest of B must be of the form 1 . . . ê . . . 7, where ê ∈ {1, . . . 7} is omitted. We can
conclude the same for bases that contain 8, 9∗, 10 or 8∗, 9, 10. Therefore Δ(Dθ ) has
at least 19 feasible sets and cannot be isomorphic to Δ(D).

Question 1 As we have seen, Gal(Q|Q) alters significantly the delta-matroids of
conjugate dessins. In the caseswhere the delta-matroid is preserved,most information
about the dessin is not captured. Is there an interesting family of dessins for which
delta-matroids could provide some useful information?

5.2 Self-Duality of Maps and Matroids

Recall that a map is self-dual if it is isomorphic to its dual. As an example, any map
in Fig. 9 is self-dual.

We say that a delta-matroid is self-dual if Δ(E) ∼= Δ∗(E). Combining with
Theorem 6, the delta-matroid of a map M is self-dual if, and only if Δ(M) ∼=
Δ(M∗).

Self-dual maps clearly have self-dual delta-matroids. The following example
demonstrates that the converse need not be true.
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Fig. 13 A map which is not
self-dual but has a self-dual
delta-matroid

Example 12 Consider the map in Fig. 13. It is not self-dual since it has only one
vertex of degree 1, while the dual map has two. However, both have precisely one
feasible set corresponding to the unique spanning tree. Clearly their delta-matroids
are isomorphic, as the two feasible sets are of the same size.

By a theorem of Steinitz2 [28, p. 63], a 3-connected planar simple graph G has,
up to isomorphism, a unique embedding on the sphere.Moreover, if the delta-matroid
of G is self-dual, then G, as a planar map, is self-dual as well. Hence a 3-connected
planar simple graph is self-dual as a map if, and only if its delta-matroid is self-
dual. As we have mentioned in Sect. 3.2, the property of being self-dual is a Galois
invariant, and therefore the conjugates of 3-connected plane simple maps with self-
dual delta-matroids must have a self-dual delta-matroid. Can the same be said, at
least in the genus 0 case, for all clean dessins with self-dual delta-matroids? It is easy
to see by inspecting the catalogue [1] that this is the case for genus 0 dessins with
4 edges or less. However, this might be due to the simplicity of orbits involved; the
largest orbit in the catalogue consists of only 3 dessins. Here we pose the following
question.

Question 2 Given a genus 0 clean dessin D, if the delta-matroid of D is self-dual,
does the same hold for any dessin conjugate to D?

Since in the genus 0 case the feasible sets of D correspond to spanning trees, and
if v is the number of vertices, then any feasible set must have v −1 edges. Moreover,
if F is a feasible set of D, then E\F is a feasible set of D∗ and therefore D must
have 2v − 2 edges. Euler’s formula now implies that the number f of faces of D has
to be f = v. Therefore, if a counterexample is to be found, its passport should be of
the following form

[aα1
1 · · · a

α j

j , 22v−2, bβ1
1 · · · bβk

k ],

with the following equalities satisfied:

2Also, see 8.2.16 in [29]. There the same theorem is attributed to Whitney.
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α1 + · · · + α j = β1 + · · · + βk = v,

a1α1 + · · · + a jα j = b1β1 + · · · + bkβk = 4v − 4.

In higher genus feasible sets are not all of the same size and therefore there are
less constraints on the passport. This would suggest that a question analogous to
Question 2 is even less likely to have a positive answer.

Question 3 Are there some other properties of delta-matroids that are invariant
under the action of Gal(Q|Q)?

6 Partial Duals and Twists of Delta-Matroids

A partial dual of a map is a generalisation of the geometric dual of a map. It was first
introduced in [10] and later generalised to hypermaps in [11], where a representation
as a triple of permutations is given as well. In this paper we shall first define partial
duals combinatorially and then explain the geometric counterpart, thus working in
the opposite direction of [11]. We shall consider maps only but give some remarks
on hypermaps as well. Throughout this section D = (σ, α, ϕ) will denote a clean
dessin with n edges, hence α will be of the form α = c1 · · · cn , where c1, . . . , cn are
n disjoint transpositions. We are identifying the edges of D with the cycles of α so
that the j-th edge corresponds to the transposition c j . The notation D/j stands for
the map D with the edge j contracted, while D \ j stands for the map D with the
edge j deleted.

Definition 9 Let D = (σ, α, ϕ) be a map. The partial dual with respect to an edge
j of D is the map

∂ j D = (σc j , α, c jϕ).

The following theorem shows that the partial dual with respect to an edge is well
defined.

Theorem 7 Let D = (σ, α, ϕ) be a map. Then σc jαc jϕ = 1 and the group〈
σc j , α, c jϕ

〉
acts transitively on {1, . . . , 2n}.

Proof Since c j commutes with α we clearly have σc jαc jϕ = 1. If n = 1 we are
done since in that case ∂ j D corresponds to the geometric dual of D. Hence suppose
that n > 1.

Without loss of generality set c j = (1 2) and let a, b ∈ {1, . . . , 2n}. If (a b) is
a cycle in α, then aα = b and we are done. Otherwise, let σ1 and σ2 (with possibly
σ1 = σ2) be the cycles of σ corresponding to the (black) vertices of D incident to
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the darts 1 and 2, respectively. Since we are assuming n > 1, the two cycles σ1 and
σ2 cannot both be trivial and neither can be equal to c j .

We may assume that a, b /∈ {1, 2} as well since if, say, a = 1 and σ1 is not trivial,
then aσc j /∈ {1, 2}. If σ1 is trivial, then

a(σc j )
2 = 2σc j .

Since σ2 is not trivial, we clearly must have 2σc j /∈ {1, 2}.
Case (i). Suppose that σ1 and σ2 are disjoint. Consider the not necessarily connected
map D \ j = D̂ ∪ D̃ obtained from D by deleting the edge j . Let σ̂ , α̂ and σ̃ , α̃ be
the restrictions of σ and α on D̂ and D̃, respectively. Clearly σ̂ coincides with the
restriction of σc j on D̂, and similarly σ̃ coincides with the restriction of σc j on D̃.

If a and b both belong to the same connected component, say D̂, then there is
ĝ ∈ 〈

σ̂ , α̂
〉
such that aĝ = b. If ĝ is of the form

ĝ = σ̂ v1 α̂w1 · · · σ̂ vk α̂wk ,

and since on D̂ we have σ̂ = σc j and α̂ = α, then for

g = (σc j )
v1αw1 · · · (σc j )

vk αwk

we must have ag = b as well.
If a belongs to D̂ and b to D̃, then suppose that the vertex that corresponds to σ1 in

D is in D̂. Let d be a dart in D̂ such that in the map D we have dσ = 1. By repeating
the previous argument, there is g ∈ 〈

σc j , α
〉
such that ag = d. By acting with σc j

on d twice we first map d to 2 and then to some dart in D̃. Therefore, ag(σc j )
2
and b

are now both in D̃. By reusing the same argument as before we can find h ∈ 〈
σc j , α

〉

such that
ag(σc j )

2h = b.

Case (ii). Suppose that σ1 and σ2 coincide, that is

σ1 = σ2 = (1 p1 · · · pr 2 q1 · · · qs).

The product σ1c j will split σ1 into two cycles σ ′
1 and σ ′

2 such that

σ ′
1 = (1 p1 · · · pr ),

σ ′
2 = (2 q1 · · · qs).

Let D′ be the not necessarily connected map obtained from D by splitting the vertex
corresponding to σ1 = σ2 so that the orderings of the darts around the two new
vertices correspond to σ ′

1 and σ ′
2. By connecting the new vertices with an edge

with darts labeled by {2n + 1, 2n + 2}, a connected map with σ ′
1 and σ ′

2 disjoint is



Dessins, Their Delta-Matroids and Partial Duals 237

obtained. Now case (ii) follows from (i) by noting that D and D′ with the new edge
(2n + 1 2n + 2) contracted are equivalent maps.

Remark 5 When D is a general dessin, i.e. a bipartite map (or equivalently, a hyper-
map), and c j a cycle in α, then the partial dual with respect to the j-th white vertex
(equivalently, j-th hyperedge) is the bipartite map

∂ j D = (σc j , c−1
j α̂, c jϕ),

where α̂ denotes the permutation obtained from α by omitting the cycle c j .

The geometric interpretation of the partial dual ∂ j D for c j = (1 2) is the following.
Suppose that n > 1 and c j is not a loop. Let σ1 and σ2 be the two cycles of σ which
contain 1 and 2, respectively. Draw the dual edge j∗ of j by crossing j at the white
vertex. The coedge j∗ is incident to at most two face centers marked with � as before;
draw a segment joining a face center to a black vertex of j if, and only if the black
vertex is on the boundary of the corresponding face. As a result, four triangles are
formed. Using the orientation of the underlying surface of D shade the two triangles
with vertices oriented as • − ◦ − � − •. Exactly one of those triangles has the dart
1 as its side. Label the ◦ − � segment of that triangle with 1∗, and proceed similarly
with the other triangle. See Fig. 14.

Now contract j , and if j∗ is not already a loop, glue the endpoints of j∗ together
and consider themas a singlewhite vertex. If necessary, add a handle to the underlying
surface of D so that (D/j) ∪ { j∗} is a map. Then ∂ j D is obtained by relabeling j∗,
1∗ and 2∗ into j , 1 and 2, respectively. The cycle corresponding to the new vertex is
given by σ1σ2c j . See Fig. 15.

If c j is a loop we proceed in the reverse direction. That is, first we break the
loop at its white vertex so that the two endpoints fall onto some, possibly the same,
face centers. If need be, remove a handle from the underlying surface. Then we split
σ1 = σ2 into two vertices and add an edge j∗ between them so that the former loop
j intersects it at its midpoint. Next we label the darts of j∗ as before. Finally, the
partial dual is completed by deleting j and relabeling j∗ to j together with its darts.
See Fig. 16.

Fig. 14 The darts of the
coedge are labeled so that i
and i∗ are sides of the same
shaded triangle, for i = 1, 2.
Here σ1σ2 = (1 p1 · · · pr )

(2 q1 · · · qs)
1

2

1∗

2∗

p1

pr

q1

qs
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1∗

2∗

1∗

2∗

1

2

p1 p1 p1

pr pr pr

q1 q1 q1

qs qs qs

Fig. 15 From left to right: contraction, then gluing of the endpoints and relabelling. By comparing
with Fig. 14 we see that σ1σ2c j = (1 p1 · · · pr 2 q1 · · · qs)

1

2

1

2

1

2

1∗

2∗

p1 p1 p1

pr pr pr

q1 q1 q1

qs qs qs

Fig. 16 From left to right: a map with a cycle σ1 = σ2 = (1 p1 · · · pr 2 q1 · · · qs). The loop is
then broken at its white vertex and the two endpoints fall onto face centers. We split the vertex and
add a new edge j∗. The final step is obtained by deleting j and relabelling. By comparing with
Fig. 15 we see that σ1c j = σ2c j = (1 p1 · · · pr )(2 q1 · · · qs)

Example 13 Let D be the genus 0 dessin given by the triple

D = (
(1 4)(2 3), (1 2)(3 4), (1 3)(2 4)

)
.

Let c1 = (12). Then ∂1D is the genus 1 dessin given by the triple

∂1D = (
(1 4 2 3), (1 2)(3 4), (1 3 2 4)

)
.

See Fig. 17 for the geometric counterparts.

Since the cycles of α commute, the following is well defined.

Definition 10 Let D be a map, E its set of edges and S = {i1, . . . , ik} some subset
of E . Then the partial dual of D with respect to the set of edges S is the map

∂S D = ∂ik · · · ∂i1 D = (σci1 · · · cik , α, cik · · · ci1ϕ).

The geometric interpretation is immediately clear; the partial dual with respect to
the set S is obtained by dualising the edges in S one at a time.
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1

23

4

1∗
2∗

3

4

1∗
2∗

1

2
3

4

Fig. 17 From left to right: the map D from Example 13, an intermediate step, and its partial dual
∂1D

Remark 6 When D is a general dessin, the partial dual with respect to some subset
of hyperedges is obtained analogously to Remark 5.

The following lemma, borrowed directly from [10, 11], lists some properties of
the operation of partial duality.

Lemma 1 Let D be a map, E its set of edges and S some subset of E. Then

(a) ∂E D = D∗
(b) ∂S∂S D = D.
(c) If j ∈ E \ S, then ∂ j∂S D = ∂S∪{ j} D.
(d) If S′ is some other subset of E, then ∂S′∂S D = ∂S�S′ D.
(e) Partial duality preserves orientability of hypermaps.
(f) If X is the underlying surface of ∂S D, then X is the underlying surface of ∂E\S D

as well.

We shall comment only on part (f) of the lemma as other properties follow directly
from the definition. For the partial dual ∂E\S D we have

∂E\S D = ∂E�S D = ∂E∂S D.

Therefore, ∂E\S D and ∂S D are dual maps and hence they are embedded on homeo-
morphic surfaces. Moreover, if f is the clean Belyı̆ function of ∂E\S D, then the two
corresponding Belyı̆ pairs are (X, f ) and (X, 1/ f ), respectively. Hence part (f) of
the lemma can be improved slightly by noting that the underlying surfaces of ∂S D
and ∂E\S D coincide not just as topological, but as Riemann surfaces too.

6.1 Partial Duals, Delta-Matroids and the Galois Action

Given a dessin D = (X, f ), the absolute Galois group acts on it and its partial duals.
It appears that the relationship between the Belyı̆ function of D and ∂ j D is very
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complicated. For if D is a tree, its Belyı̆ function is a polynomial; however, the Belyı̆
function of ∂ j D, for any edge j , clearly is no longer polynomial. More worryingly,
Example 13 shows that the Riemann surface of ∂ j D can be a point of a completely
different moduli space than the one of D!

Nevertheless, some nice behaviour can be observed. For example, we shall prove
that D always has a partial dual defined over its field of moduli by using a correspon-
dence between delta-matroids and partial duals established in [12, Theorem 4.8].

We start with a simple proposition.

Proposition 3 Let D = (σ, α, ϕ) be a map, E its set of edges and S some subset of
E. Then Mon(D) is abelian if, and only if Mon(∂S D) is abelian.

Proof By Lemma 1 it is enough to consider S = {1}. Let c1 be the corresponding
cycle in α. Then

σα = ασ ⇐⇒ σαc1 = ασc1 ⇐⇒ (σc1)α = α(σc1),

since c1 commutes with α.

It was shown in [22]3 than any dessin with abelian monodromy group is defined
over Q. Therefore the following corollary is obvious.

Corollary 2 Let D = (σ, α, ϕ) be a map such that Mon(D) is abelian. Then D and
its partial duals are all defined over Q.

Remark 7 Proposition 3 is no longer true if D is a hypermap. For if c is a non-trivial
cycle in α which is not a transposition, then c−1α̂ = c−1αc−1 = c−2α. Furthermore,
if Mon(D) is abelian we have

(σc)(c−1α̂) = (c−1α̂)(σc) ⇐⇒
σαc−1 = c−2ασc ⇐⇒
σc−1α = c−2σcα ⇐⇒

c2σ = σc2.

The last equality does not hold always, of course. For example, if

D = ((1 2)(3 4)(5 6), (1 3 5)(2 4 6), (1 6 3 2 5 4))

is a dessin (see Fig. 18) then Mon(D) ∼= Z6, however for c = (1 3 5) we have
σc2 �= c2σ .

Given a delta-matroid Δ(E) on some set E with F as its collection of feasible
sets, one can easily see that for some subset S of E the collection

F � S = {F � S | F ∈ F}

3For an alternative argument, see the discussion after Proposition 3 in [13] as well.
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Fig. 18 The dessin D from
Remark 7

1
2

3

4

5
6

satisfies the symmetric axiom of Definition 6. This motivates the following.

Definition 11 Let Δ(E) be a delta-matroid on E with F as its collection of feasible
sets. Let S be a subset of E . The delta-matroid on E with F � S as its collection of
feasible sets is called the twist of Δ(E) with respect to S and is denoted byΔ(E)∗ S.

Similarly as before, when D is a map, we shall use the notation Δ(D) ∗ S. The fol-
lowing lemma from [12] gives a correspondence between delta-matroids and partial
duals.

Lemma 2 Let D be a map, E its set of edges and S some subset of E. Then

Δ(∂S D) = Δ(D) ∗ S.

Proof It is sufficient to show the lemma for S = { j} since the general result will
then follow from Lemma 1(c).

If j is in no base, then it is a contractible loop in D and in ∂ j D it is a pendant, i.e.
an edge incident to a degree 1 vertex. In that case, the lemma follows easily.

So suppose that B is a base of D with j ∈ B. Moreover, suppose that j is not
a loop. If j is a pendant, then the lemma is again obvious. Therefore, suppose that
both vertices incident to j have degree at least 2.

By our construction, j is a loop in ∂ j D. Therefore, D/j is the same map as
(∂ j D)\ j . The underlying surface of D/j is the surface of D, hence B\ j does not
disconnect it. Therefore, B\ j is a base of (∂ j D)\ j as well.

Let us now adjoin the loop j back to (∂ j D)\ j . If we were forced to add a
handle, then j∗ will not disconnect the underlying surface since it will split the
new handle into two sleeves and leave the rest of the surface unaffected. Therefore,
(B\ j) ∪ j∗ = B � { j, j∗} will be a base of ∂ j D. Furthermore, if F is the feasible
set of Δ(D) with F = E ∩ B, then

F � j = E ∩ (B � { j, j∗})
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is a feasible set of Δ(∂ j D).
If a new handle was not needed, then ∂ j D and (∂ j D)\ j are on the same surface X .

Since (∂ j D) \ j is a map on X with at least one face, adjoining j to it will clearly
split some face into two new faces. Hence j∗ must be a contractible segment on X
since its endpoints are in the two faces with j as a common boundary. Therefore,
B �{ j, j∗} is a base of ∂ j D and, by passing to feasible sets, we conclude that F � j
is a feasible set in Δ(∂ j D), if F is a feasible set in Δ(D).

Now suppose that j is a loop. Since j ∈ B, it cannot be contractible. If D and ∂ j D
are on the same surface, then, topologically, j ∈ D and j∗ ∈ ∂ j D are the same loop.
Therefore, B � { j, j∗} must be a base of ∂ j D. Otherwise, by removing a handle,
Euler’s formula implies that ∂ j D gained an additional face. By construction, j must
be on the boundary of the additional face, and at least one other face since other
edges in D do not contribute to the partial dual. Therefore, j∗ is contractible and
B � { j, j∗} a base for ∂ j D.

So far we have shown that Δ(D) ∗ j ⊆ Δ(∂ j D). The other inclusion is obtained
by noting that if F ∈ Δ(∂ j D), then

(F � j) ∈ Δ(∂ j D) ∗ j.

However, by using the just proven inclusion we have

(F � j) ∈ Δ(∂ j∂ j D) = Δ(D).

Moreover, since F = (F � j) � j , we must have F ∈ Δ(D) ∗ j .

Remark 8 The proof of the preceding lemma is somewhat more natural in the lan-
guage of ribbon graphs, as it can be seen in [12, Theorem 4.8]. However, in this
paper, we prefer to work with maps instead.

We finish this section by demonstrating that partial duals with respect to feasible
sets can be defined over their fields of moduli.

Theorem 8 Let D be a clean dessin and E its set of edges. Then D has a partial
dual which can be defined over its field of moduli.

Proof Recall that by Theorem 3 a dessin can be defined over its field of moduli if it
has a black vertex, or a white vertex, of a face center which is unique for its type and
degree. If D has precisely one face, then that face is the unique face of some degree
and therefore both ∂∅ D = D and ∂E D = D∗ can be defined over their corresponding
fields of moduli (which coincide).

Otherwise, let F �= E be a feasible set of Δ(D) and set S = E \ F . Then by
Lemma 2 themap ∂S D has S�F = E as a feasible set. Therefore, E is a base of ∂S D.
Furthermore, if X S is the underlying surface of ∂S D, then X S \ ∂S D is connected.
This implies that ∂S D has precisely one face. As before, Theorem 3 implies that ∂S D
can be defined over its field of moduli.
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Corollary 3 Let D be a clean dessin and Δ(D) its delta-matroid. If F is a feasible
set of Δ(D), then both ∂F D and ∂E\F D can be defined over their fields of moduli.
Moreover, the two fields coincide.

Proof The case for ∂E\F D was discussed in the proof the previous theorem. The
second case follows from Lemma 1 (d), that is

∂E (∂E\F D) = ∂F D.

Since the fields of definition of a map and its dual map coincide, and both maps can
be defined over their field of moduli, then the fields of moduli coincide as well.

7 Maps, Their Partial Duals and Tropical Curves

In this section we informally comment on a simple relationship between the mon-
odromy groups of dessins, partial duals and tropical curves. To the best knowledge
of the author, this relationship has not been noted in the literature yet. We do not
assume any knowledge of tropical geometry, however the reader is referred to [26]
for an introduction.

Let D = (σ, α, ϕ) be a clean dessin with

σ = v1 · · · v j , α = c1 · · · cn, ϕ = f1 · · · fk,

and consider the planar graph G obtained from the triple (σ, α, ϕ) in the following
way.

• Mark the integer points in the segment [0, n + 1].
• Place j vertices, one for each cycle in σ , vertically above 0.
• To a vertex i attach an open segment of length 1 and label it with the cycle vi .
• Choose a cycle (p q) in α.

– If p and q are in the cycles vp and vq , respectively, above 1 join the edges with
labels vp and vq into a single edge of length 1/2, so that a degree 3 vertex above
1 is formed. Label the edge with the cycle σpσq(p q).

– If p and q are in the same cycle, say vr , above 1 split the edge with label vr into
two edges of length 1/2, so that a degree 3 vertex above 1 is formed. Label the
two edges with the cycles in σr (p q).

– Extend all other edges so that their ends are above 3/2.

• Repeat the previous step until all the cycles of α are exhausted. Above n + 1 there
are k vertices, one for each cycle of ϕ. The edges incident with the final vertices
have labels corresponding to the cycles in ϕ−1.

Planar graphs obtained in this fashion are called monodromy graphs [9, 23]. Let us
look at an example.
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Example 14 Let D = (σ, α, ϕ) be the map B from Fig. 10. It can be represented by
the triple

((1 3 5 7 8 6 2 4), (1 2)(3 4)(5 6)(7 8), (1 6 3 2 4)(5 8)(7)).

Therefore, above 0 we should have one vertex, and above 5 we should have three
vertices. A monodromy graph obtained by multiplying σ in the order (1 2), (3 4),
(5 6) and (7 8) is given in Fig. 19.

Multiplying σ with the cycles of α in a different order may produce a different
monodromy graph. For example, if we multiply in the order (1 2), (5 6), (3 4),
(7 8), the resulting monodromy graph shown in Fig. 20 will not be isomorphic to the
previous one since it will have a cycle of length 3.

Irregardless of the order in which we multiply the cycles of σ with the cycles of
α, monodromy graphs capture all of the information contained in the passport of a
clean dessin D. Clearly the number and the degrees of black vertices and face centers
correspond to the number of vertices and the lengths of the labels of edges above
0 and n + 1, and the genus of D corresponds to the genus of the graph, which is
defined as the first Betti number of the graph (this fact is a simple consequence of
the handshaking lemma). Moreover, the vertices of the graphs correspond precisely

(1 3 5 7 8 6 2 4)

(1 3 5 7 8 6)

(2 4)

(1 4 2 3 5 7 8 6)

(1 4 2 3 6)

(5 7 8) (5 8)

(7)

0 1 2 3 4 5

Fig. 19 A monodromy graph for the map D = (σ, α, ϕ) from Example 14

(1 3 5 7 8 6 2 4)

(1 3 5 7 8 6)

(2 4)

(5 7 8)

(1 6 3)

(1 4 2 3 6)

(5 8)

(7)

0 1 2 3 4 5

Fig. 20 A monodromy graph for the map D = (σ, α, ϕ) from Example 14 not isomorphic to the
monodromy graph in Fig. 19
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to the partial duals of D and two trivalent vertices v and w are adjacent if, and only
if ∂ jv = w or ∂ jw = v for some edge j . Furthermore, monodromy graphs transfer
dessins into the realm of tropical geometry.

Definition 12 An abstract tropical curve is a connected graph without vertices of
degree 2 and with edges decorated by the elements of the set 〈0,∞]. The decorations
on the edges are called lengths. Edges incident to degree 1 vertices have length ∞
and all other edges have finite length.

It is easy to see how to pass from a clean dessin D to an abstract tropical curve:
first form a monodromy graph for D and decorate each edge with the length of
its corresponding cycle. Finally, decorate the edges incident to degree 1 vertices
with ∞. Tropical curves obtained in this way capture most information contained in
the passport, and since they depend only on the monodromy group of the dessin, the
following is clear.

Theorem 9 Let D and D′ be clean dessins and T and T ′ the sets of abstract tropical
curves obtained from the monodromy graphs of D and D′, respectively. If D and D′
are conjugate, then any two curves T ∈ T and T ′ ∈ T ′ have

• The same number of finite edges and the same number of infinite edges.
• The same number of degree 3 vertices.
• The same genus, which is defined as the genus of the underlying monodromy graph.

In particular, if D � D′ is a tree, then T and T ′ are tropical trees.

The invariants above most likely do not improve on the already known invariants.
However, they may serve as a motivation for studying tropical curves in the context
of the theory of dessins d’enfants.
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Faithful Embeddings of Planar Graphs
on Orientable Closed Surfaces

Seiya Negami

Abstract A graph G is said to be faithfully embeddable on a closed surface F2 if
G can be embedded on F2 in such a way that any automorphism of G extends to an
auto-homeomorphism of F2. It has been known that every 3-connected planar graph
is faithfully embeddable on the sphere. We shall show that every 3-connected planar
graph is faithfully embeddable on a suitable orientable closed surface other than the
sphere unless it is one of seven exceptions.

1 Introduction

Let G be a graph regarded as a 1-dimensional topological space and let F2 be a
closed surface. Intuitively, an embedding of G on F2 is a drawing of the graph G on
the surface without edge crossings. Technically, we regard an embedding to be an
injective continuous map f : G → F2.

Two embeddings f1 and f2 : G → F2 are said to be congruent if there exist an
automorphism τ : G → G and a homeomorphism h : F2 → F2 with h f1 = f2τ . In
this case, the images f1(G) and f2(G) look the same up to homeomorphism if we
neglect the labels of vertices of G. A graph G is said to be uniquely embeddable on
F2 (up to congruence) if all embeddings of G on F2 are pairwise congruent.

On the other hand, an embedding f : G → F2 is said to be faithful if, for any
automorphism τ : G → G, there exists a homeomorphism hτ : F2 → F2 with
hτ f = f τ . Roughly speaking, in a faithful embedding, any symmetry of the graph
can be realized as an action over the surface. A graph G is said to be faithfully
embeddable on a closed surface F2 if G has a faithful embedding on F2.

It is well-known that every 3-connected planar graph has a unique embedding
on the sphere, which follows from the uniqueness of its combinatorial dual, proved
by Whitney [5]. The author [2] has introduced two notions of the uniqueness and
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faithfulness of embeddings as above and pointed out that Whitney’s uniqueness is
equivalent with the composition of these two. That is, we can restate Whitney’s result
by saying that any 3-connected planar graph is uniquely and faithfully embeddable
on the sphere.

A graph G embedded on a closed surface F2, other than the sphere, is said to
be r-representative if any non-contractible simple closed curve on F2 meets G in
at least r points and the representativity of G is defined as the minimum number r
such that G is r -representative. It is known that a graph is uniquely and faithfully
embeddable on a closed surface if it can be embedded there with sufficiently large
representativity. On the other hand, no planar graph is 3-representative on any closed
surface other than the sphere. (See [4] for these facts.)

In this situation, a natural question will arise; can we embed a 3-connected planar
graph faithfully on a closed surface other than the sphere? For example, adding a
handle to each face of a 3-connected planar graph embedded on the sphere yields
such an embedding. To avoid such a trivial answer, we assume that any embedding of
a graph is cellular, that is, each face must be homeomorphic to an open 2-cell. With
this assumption, we shall give the complete answer to the question in the orientable
case:

Theorem 1 Every 3-connected planar graph can be embedded faithfully on an ori-
entable closed surface other than the sphere unless it is isomorphic to the 1-skeleton
of one of the following polyhedra:

(i) the tetrahedron, the octahedron, the dodecahedron,
(ii) the truncated tetrahedron, the truncated dodecahedron, the truncated icosahe-

dron,
(iii) the icosidodecahedron.

The first three are three of the five Platonic solids and the other are Archimedean
solids. As a graph, the tetrahedron is K4, while the octahedron is K2,2,2. In general,
the truncation of a convex polyhedron is another polyhedron obtained from the poly-
hedron by cutting off a small part around each vertex with the plane. The truncated
dodecahedron consists of 12 decagons and 20 triangles, while the truncated icosa-
hedron has 20 hexagons and 12 pentagons resembling a soccer ball. These two can
be obtained from the dodecahedron and the icosahedron by truncation. The icosido-
decahedron consists of 12 pentagons and 20 triangles and can be obtained from the
truncated dodecahedron by shrinking each edge joining two triangles. We often call
a planar graph embedded on the sphere by the name of a convex polyhedron whose
1-skeleton is isomorphic to the graph.

We shall prove that almost all 3-connected planar graphs have faithful embeddings
on suitable orientable closed surfaces different from the sphere, introducing a useful
method in Sect. 2. Sections 3 and 4 are devoted to the 3-regular and 4-regular cases.
Section 5 presents the proof of our main theorem and some comments related to this
topic.
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2 Faithful Rotation Schemes

To present an embedding of a graph G on an orientable closed surface combinato-
rially, we used a rotation scheme of G, which define a cyclic order over the neigh-
borhood of each vertex v of G, called a rotation around v. It may be useful to use a
function ρv : N (v) → N (v) over the neighborhood N (v) of a vertex v to present the
rotation around v. That is, ρv(u) presents the successor of u in the cyclic order given
as a rotation around v. The rotation scheme of G can be regarded as the collection
of these functions, ρ = {ρv : v ∈ V (G)}.

Trace edges to form a closed walk, according to the following rule; if one comes
from a neighbor u of a vertex v to v along an edge uv, then he goes toward the
successor w = ρv(u) of u in the rotation around v along the edge vw. Each of
the closed walks so constructed corresponds to the boundary walk of a face in the
embedding of G derived by the given rotation scheme. (A general description on the
rotation scheme can be found in [1].)

Put ρ−1 = {ρ−1
v : v ∈ V (G)} and call it the inverse of a rotation scheme ρ =

{ρv : v ∈ V (G)} of G. Then ρ−1 determines another rotation scheme of G. It is clear
that any closed walk derived from ρ−1 with the above rule coincide with one derived
from ρ if we reverse its direction. This means that ρ−1 presents the same embedding
of G on the same surface as ρ does.

Here, we shall consider a rotation scheme which presents a faithful embedding.
Let G be a graph and assume that a rotation scheme ρ presents an embedding f :
G → F2 of G on an orientable closed surface F2. For convenience, we denote
the image f (G) of G by G itself. The rotation scheme induces not only the local
orientation around v, but also a global orientation over F2 consistently. Thus, we
assume that F2 is oriented with this orientation. In general, a cyclic order arbitrarily
given around a vertex v is said to be coherent with the orientation of F2, or with the
rotation scheme ρ, if it induces the same cyclic permutation over the neighborhood
of v as ρv. It is said to be reverse to ρ if its inverse order is coherent with ρ.

Take any automorphism τ ∈ Aut(G). Let v be any vertex of G and let
u0, u1, . . . , uk−1 be its neighbors such that ρv(ui ) = ui+1 with indices taken modulo
k. That is, the cyclic order derived from ρv reads u0u1 · · · uk−1. Then τ naturally
induces a cyclic order τ(u0)τ (u1) · · · τ(uk−1) over the neighborhood of τ(v) and this
corresponds to a function τρτ−1(v)τ

−1 : N (τ (v)) → N (τ (v)). We call it the rotation
around τ(v) induced by τ . Put ρτ = {τρvτ

−1 : v ∈ V (G)} and call it the rotation
scheme of G induced by τ .

If the rotations belonging to ρτ are all coherent with (or reverse to) the original
rotation ρ, then the boundary walk of each face of G derived from ρ can be translated
into the boundary walk of a face derived from ρτ (or one traced in the reverse
direction) via τ . Thus, we can define a one-to-one correspondence between the sets
of faces in the embeddings of G derived from ρ and ρτ . This implies that τ extends to
a homeomorphism hτ : F2 → F2 over the surface, which is orientation-preserving
or -reversing, depending on whether the rotations in ρτ are all coherent or all reverse.
Therefore, we have the following criterion for a rotation scheme to present a faithful
embedding:
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Lemma 1 The embedding of G derived from a rotation scheme ρ is faithful if and
only if the rotations belonging to the rotation scheme induced by τ are all coherent
with ρ or all reverse to ρ for any automorphism τ ∈ Aut(G).

Proof Let G be a graph embedded on the oriented closed surface F2. We may assume
that this embedding is derived from a given rotation scheme ρ and that the rotations
in ρ are all coherent to the orientation of F2. The inclusion map iG : G → F2 can
be regarded as its embedding map.

Let τ : G → G be any automorphism of G. Suppose that the rotation in ρτ are all
coherent with or all reverse to ρ, then τ extends to a homeomorphism hτ : F2 → F2

with hτ |G = τ , as shown in the previous. This implies that hτ iG = iGτ and hence
the embedding iG is faithful if this assumption holds for all automorphism τ . Thus,
the sufficiency follows.

Conversely, if the inclusion map iG : G → F2 is faithful, then any automorphism
τ : G → G extends to a homeomorphism hτ : F2 → F2 with hτ |G = τ . Since
any homeomorphism over the surface preserves a cyclic rotation around any point,
the rotation around τ(v) induced by τ for any vertex of G must be coherent with (or
reverse to) ρτ(v) if hτ is orientation-preserving (or -reversing), Thus, the necessity
follows. �

Call a rotation scheme of a graph G faithful if it satisfies the necessary condition
in the lemma. Thus, it suffices to construct a faithful rotation scheme for each 3-
connected planar graph, if any, so that the derived surface is not homeomorphic to
the sphere to answer our question mentioned in introduction.

First, we should know the fact that any unnatural rotation scheme for a 3-connected
planar graph exhibits its embedding on an orientable closed surfaces other than the
sphere.

Lemma 2 A 3-connected planar graph admits only two rotation schemes which
present embeddings on the sphere, namely one induced by a planar embedding and
its inverse.

Proof Let G be a 3-connected planar graph and assume that G is embedded on
the oriented sphere S2 in one way. This embedding is presented by the inclusion
map iG : G → S2. Embed G on the sphere in another way via an embedding map
f : G → S2. Since G is uniquely and faithfully embedded on the sphere, f extends
to a homeomorphism h : S2 → S2. This implies that the same set of closed walks
exhibit the boundary cycles of faces in both embeddings and each of such closed
walks determine the corners of faces, which induces a unique rotation around each
vertex lying at the corners. Such a rotation is coherent with the orientation of S2 or
is reverse, depending on whether f preserves the orientation of the sphere or not.
Therefore, the two embeddings iG and f of G can be presented by the same rotation
scheme or by two rotation schemes each of which is the inverse of the other. �

Let S be a subset of V (G) and S = V (G) − S its complement. The pair (S, S) is
called an equivariant partition of G (under Aut(G)) if both S and S are not empty
and if either τ(S) = S or τ(S) = S for any automorphism τ ∈ Aut(G).
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Lemma 3 If a 3-connected planar graph G has an equivariant partition, then it
admits a faithful embedding on an orientable closed surface other than the sphere.

Proof Let G be a 3-connected planar graph embedded on the oriented sphere having
a rotation scheme ρ and let (S, S) be an equivariant partition of G. Then the rotation
around each vertex of G in ρ is coherent with the orientation of the sphere. Replace
the rotation around a vertex v with its inverse if v belongs to S. Denote the resulting
rotation scheme by ρS . Since ρS is different from ρ and ρ−1, it exhibits an embedding
of G on another orientable closed surface different from the sphere by Lemma 2.

Take any automorphism τ ∈ Aut(G). Since G is faithfully embedded on the
sphere, τ extends to an auto-homeomorphism hτ over the sphere. We should consider
how τ acts on the rotation scheme ρS . There are four cases depending on whether
hτ is orientation-preserving or not and on whether τ(S) = S or not.

We shall prove only the case where hτ is orientation-preserving and that τ(S) = S;
the other case are similar. Then τ induces the same rotation around a vertex τ(v)
as in the rotation scheme ρ for each vertex v. If v ∈ S, then τ(v) ∈ S and both
rotations around these two vertices v and τ(v) in ρS are coherent with ρ. Otherwise,
v, τ (v) ∈ S and their rotations in ρS are reverse to ρ. These observations imply
that each rotation in the rotation scheme (ρS)

τ induced by τ is coherent with ρS .
Therefore, ρS is faithful by Lemma 1. �

By the above lemma, we can easily construct a faithful embedding of a 3-connected
planar graph if we can find an equivariant partition, as in the following two corollaries:

Corollary 1 Every 3-connected bipartite planar graph admits a faithful embedding
on an orientable closed surface other than the sphere.

Proof A 3-connected bipartite graph G has a proper coloring with black and white.
Let S be the set of black vertices. Then its complement S consists of the white vertices.
It is clear that (S, S) forms an equivariant partition and the corollary follows from
Lemma 3. �

In general, a graph is said to be vertex-transitive if for any pair (u, v) of vertices,
there exists an automorphism τ ∈ Aut(G) with τ(u) = v. If a graph is vertex-
transitive, then it must be regular, that is, all vertices have the same degree. We say
that two vertices u and v are equivalent to each other (under Aut(G)) if there is an
automorphism τ ∈ Aut(G) with τ(u) = v.

Corollary 2 If a 3-connected planar graph is not vertex-transitive, then it admits a
faithful embedding on an orientable closed surface other than the sphere.

Proof Assume that a 3-connected planar graph G is not vertex-transitive. Then we
can choose two vertices u and v so that they are not equivalent. Let S be the set of
vertices equivalent to u. Then its complement S contains v and is not empty. It is
clear that (S, S) is equivariant since any automorphism of G leaves each of S and S
invariant. �
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Combining this corollary with arguments on degrees of vertices in planar graphs,
we can establish the following theorem, which will restrict the exceptions in our
main theorem:

Theorem 2 A 3-connected planar graph admits a faithful embedding on an ori-
entable closed surface other than the sphere unless it is either 3- or 4-regular.

Proof Let G be a 3-connected planar graph. Suppose that G is not regular. Then G
is not vertex-transitive and hence its admits a faithful embedding on an orientable
closed surface other than the sphere by Corollary 2. So we may assume that G is
regular. Since any planar graph has a vertex of degree at most 5, then G must be
either 3-, 4- or 5-regular. However, the first two cases are excluded as the exceptional
cases in the theorem.

Now suppose that G is 5-regular and let ρ be a planar rotation scheme of G. Let v
be any vertex of G and let u0, . . . , u4 be its five neighbors lying around v according
to ρv. Since ρv is a cyclic permutation over five vertices, also its square (ρv)

2 is
a cyclic permutation over N (v). Therefore, ρ2 = {(ρv)

2 : v ∈ V (G)} determines
another rotation scheme and exhibits an embedding of G on an orientable closed
surface other than the sphere by Lemma 2 since (ρv)

2 coincides with neither ρv nor
ρ−1

v .
Since τ(ρv)

2τ−1 = (τρvτ
−1)2, any automorphism τ induces a rotation around

τ(v) coherent with or reverse to (ρv)
2, which depends on whether the extension of

τ preserves the orientation of the sphere or not. This implies that ρ2 is a faithful
rotation scheme. �

3 The 3-Regular Case

In this section, we shall discuss the 3-regular planar graphs to recognize some of the
exceptional cases in Theorem 1. Fortunately, we can characterize those 3-connected
3-regular planar graphs that have faithful embeddings on orientable closed surfaces
other than the sphere, using the notion of equivariant partitions, as follows.

Let G be a 3-regular connected planar graph embedded on the oriented sphere or
the plane. To make a rotation scheme ρ exhibiting another surface, we assign “black”
or “white” to each vertex of G and set ρv to be clockwise (or anticlockwise) for black
(or white) vertices v. Since there are only two ways to define a rotation around each
vertex of degree 3, any rotation scheme of G can be obtained in this way.

Lemma 4 A 3-connected 3-regular planar graph admits a faithful embedding on an
orientable closed surface other than the sphere if and only if it has an equivariant
partition.

Proof Let G be a 3-connected 3-regular planar graph embedded on the oriented
sphere. Since the sufficiency follows from Lemma 3, it suffices to show the necessity.
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Suppose that G has a rotation scheme ρ which exhibits a faithful embedding on an
oriented closed surface F2, other than the sphere. Then the vertices of G are colored
by black and white, according to the rotations in ρ. Let S and S be the sets of black
vertices and of white vertices, respectively. Since F2 is not the sphere, both of S and
S are not empty by Lemma 2 and V (G) = S ∪ S.

Take any automorphism τ ∈ Aut(G). Then τ acts on F2, preserving or reversing
its orientations. If τ carries a black vertex v to another black vertex u, then τ induces
a rotation around u coherent with ρ and hence τ is orientation-preserving over F2

and carries any vertex to a vertex of the same color. We have τ(S) = S in this case.
On the other hand, if τ carries a black vertex to a white vertex, then τ is orientation-
reversing over F2 and we conclude that τ(S) = S. Therefore, (S, S) is an equivariant
partition. �

Zelinka [7] has already classified the vertex-transitive 3-regular planar graphs
which may have multiple edges. To establish the following theorem, it suffices to
choose only non-bipartite simple ones from his classification. However, we can recog-
nize those easily as in our proof below.

Lemma 5 Let G be a 3-connected 3-regular planar graph embedded on the sphere
and suppose that G is not bipartite and is vertex-transitive. Then G is isomorphic to
one of the following polyhedra:

(i) the tetrahedron, the dodecahedron,
(ii) the truncations of the tetrahedron, the cube, the dodecahedron and the icosa-

hedron.

Proof Let v be any vertex with three neighbors u0, u1 and u2, and denote each face
having the corner ui vui+1 by Ai for i ≡ 0, 1, 2 (mod 3). For a face A, let |A| denote
its size, that is, the length of its boundary cycle.

Case 1: The three faces A0, A1 and A2 have the same size. Since G is vertex-
transitive, all faces of G must have the same size. This implies that G is isomorphic
to one of the five Platonic solids. Since G is 3-regular, G is isomorphic to either the
tetrahedron, the cube or the dodecahedron. However, the cube is excluded since it is
bipartite, which yields (i).

Case 2: Only two of the three faces A0, A1 and A2 have the same size, say |A0| =
|A1| �= |A2|. Put r = |A2|. Since G is vertex-transitive, there is one r -gonal face
incident to each vertex and the boundary cycles of such r -gonal faces cover all vertices
of G. Each vertex on one of the r -gonal cycles is joined to a vertex on another r -gonal
cycle by an edge. In this situation, we find that G is isomorphic to the truncation of
a Platonic solid, which is r -regular, and that |A0| = |A1| is an even number. If r also
is even, then all faces are bounded by even cycles and G would be bipartite, contrary
to our assumption in the lemma. Therefore, r must be odd and the octahedron is
excluded, which yields (ii).
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Case 3: The three faces A0, A1 and A2 have all different sizes. In this case, faces
of two different sizes |Ai | and |A j | lie alternately around each face of size |Ak | for
{i, j, k} = {0, 1, 2}. This implies that |Ak | is an even number and hence all faces are
bounded by even cycles, which contradicts that G is not bipartite. Therefore, this is
not the case. �

Discussing the existence of equivariant partitions, we can conclude the following
theorem from the above lemma.

Theorem 3 A 3-connected 3-regular planar graph admits a faithful embedding on
an orientable closed surface other than the sphere if and only if it is not isomorphic
to any of the following polyhedra:

(i) the tetrahedron, the dodecahedron,
(ii) the truncation of the tetrahedron, the dodecahedron and the icosahedron.

Proof First, notice that the truncation of the cube is missing from the lists in
Lemma 5. The cube has a proper coloring by black and white. Color the vertices
on a triangle added by truncation by the same color as its corresponding vertex of
the cube has, and let S and S be the sets of black vertices and of white vertices in
the truncated cube. It is easy to see that (S, S) forms an equivariant partition since
any automorphism of the truncated cube carries each triangle to a triangle. Thus, the
truncation of the cube has a faithful embedding on an orientable closed surface other
than the sphere by Lemma 4.

To complete the proof, it suffices to show that each of the graphs listed in the
theorem has no equivariant partition, and use Lemma 4. Let G be any of them.
Then there is a set of odd cycles bounding faces which covers all vertices of G.
Such a set of odd cycles covers G doubly for each in (i) while it consists of all
triangles or pentagons created by truncation for each in (ii). It is clear that there is an
automorphism τC which carries ui to ui+1, along each odd cycle C = u0u1 · · · uk−1

in the set.
Let (S, S) be any partition of V (G) with S �= ∅ and S �= ∅. Choose any cycle C

from the covering set constructed above. If both V (C) ∩ S and V (C) ∩ S are not
empty, then we can find a vertex on C , say u j , with u j ∈ S and u j+1 ∈ S. Since
τ(u j ) = u j+1, if (S, S) is equivariant, then we have τ(S) = S and τ(V (C) ∩ S) =
V (C)∩S. This implies that |V (C)∩S| = |V (C)∩S|. However, it is impossible since
C consists of an odd number of vertices. Therefore, one of V (C) ∩ S and V (C) ∩ S
must be empty.

For each graph in (i), using the above argument and the fact that the odd cycles
form a connected spanning subgraph of G, we conclude that V (G) = S or = S and
hence S or S would be empty, a contradiction. For each graph in (ii), we conclude
that odd cycles in the covering set are classified into two nonempty groups, one
corresponding to S and the other to S. However, such a partition (S, S) does not fit to
the symmetry of G since its original graph is not bipartite and has an automorphism
which rotates a face of odd size. Therefore, (S, S) is not equivariant and hence G
has no equivariant partition. �
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4 The 4-Regular Case

In this section, we shall discuss the 4-regular planar graphs. We can use the result on
equivariant partitions in Sect. 2, but need slightly complicated arguments since there
are may ways to define a rotation around a vertex of degree 4. First, we shall list up
candidates for the exceptional cases in Theorem 1. Note that the classification of the
vertex-transitive 4- and 5-regular planar graphs which may have multiple edges can
be found in Zelinka [6].

Lemma 6 Let G be a 3-connected 4-regular planar graph embedded on the sphere
which is vertex-transitive. Then G is isomorphic to one of the following polyhedra:

(i) the octahedron,
(ii) the antiprisms,

(iii) the cuboctahedron, the icosidodecahedron,
(iv) the rhombicuboctahedron, the rhombicosidodecahedron.

Proof Let V , E and F denote the number of vertices, edges and faces of such a graph
G embedded on the sphere. Since G is 4-regular, we have 4V = 2E . Substituting this
to Euler’s formula V − E + F = 2, we obtain 4V = 4F − 8. If all faces would have
size at least 4, then we have 4F ≤ 2E and thus 2E = 4V = 4F −8 ≤ 2E −8, which
is a contradiction. Therefore, G has a triangular face. Since G is vertex-transitive,
at least one triangular face is incident to each vertex of G. Let v be any vertex of G
with four neighbors u0, u1, u2, u3 lying around it in this cyclic order.

Case 1: Four triangular faces are incident to v. It is easy to see that G is isomorphic
to the octahedron in this case. This appears in (i).

Case 2: Only three triangular faces are incident to v. We may assume that these
triangles are vu0u1, vu1u2, vu2u3. Look at u2 and consider the three triangular faces
incident to u2. Two of them are vu1u2 and vu2u3. If the third triangle were incident
to the edge u1u2, then Case 2 would not hold at the third vertex of this triangle.
Thus, the third triangle around u2 must be incident to the edge u2u3. Carrying out the
same argument, we find a sequence of triangles and finally conclude that the whole
of G consists of triangles xi xi+1xi+2 for i = 0, 1, . . . after relabeling vertices. Then
G has two disjoint cycles x0x2 · · · x2n−2 and x1x3 · · · x2n−1 and is isomorphic to the
antiprism with n-gonal base, which appears in (ii).

Case 3: Only two triangular faces are incident to v. If the two triangles were vu0u1

and vu1u2, then Case 3 would not hold at u2. Thus, the two triangles incident to v do
not share any edge. We may assume that they are vu0u1 and vu2u3. Let A1 and A2 be
the other two faces incident to v having corners u0vu3 and u1vu2 and let A3 be the
non-triangular face incident to the edge u0u1, which meets A1 and A2 at u0 and u1,
respectively. If |A1| �= |A2|, the we have |A1| �= |A3| and |A2| = |A3| since v and u0

are equivalent. However, since v and u1 are equivalent, the last equality would imply
that |A1| = |A2|, contrary to the assumption. Thus, we have |A1| = |A2| = |A3| and
hence all non-triangular faces have the same size, say r ≥ 4. In this situation, we
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can construct a 3-regular Platonic solid with faces of size r , by placing a vertex in
each triangular face and by joining each pair of vertices lying in two triangular faces
meeting at a vertex. Such a Platonic solid is either the cube or the dodecahedron.
Conversely, G can be obtained from it by truncating it and by shrinking each edge
joining two triangles created by truncation. The cuboctahedron comes from the cube
and the icosidodecahedron comes from the dodecahedron. They appear in (iii).

Case 4:Only one triangular face is incident to v. Let v0v1v2 denote the cycle bounding
such a triangular face A. There are six faces A0, B0, A1, B1, A2, B2 surrounding A
such that Ai meets A at vi and Bi shares the edge vi vi+1 with A. None of them is
triangular. Since v0, v1 and v2 are all equivalent, we conclude that |A0| = |A1| = |A2|
(= a ≥ 4) and |B0| = |B1| = |B2| (= b ≥ 4).

Let F3 denote the number of triangular faces of G and let FA and FB be the
number of faces corresponding to Ai ’s and Bi ’s. Then we have V = 3F3 = aFA and
2V = bFB . On the other hand, we have F = F3 + FA + FB = V + 2 by Euler’s
formula. Combining these two equalities, we obtain:

(
1

3
+ 1

a
+ 2

b
− 1

)
V = 2

Since the coefficient of V in the above must be positive, we conclude that 1/a +
2/b > 2/3. It is easy to see that this inequality has only two solutions (a, b) =
(4, 4) and (5, 4). The first corresponds to the rhombicuboctahedron while the second
corresponds to the rhombicosidodecahedron. They can be obtained from the cube
and the dodecahedron, respectively, by replacing their vertices with triangles and
edges with squares. They appear in (iv). �

Let G be a 3-connected 4-regular planar graph embedded on the sphere (or on
the plane) and suppose that G has an embedding on an orientable closed surface F2

other than the sphere. Let ρ be the rotation scheme to exhibit the embedding of G
on F2, not on the sphere. To present ρ, we add the following marks to the picture of
G on the plane.

The rotation scheme ρ induces a cyclic order around each vertex v of G, which
may not be coherent with or not be reverse to the orientation over the plane. Let
u0, u1, u2, u3 be the four neighbors of v lying clockwise around v in this cyclic order
according to the orientation over the place with indices taken modulo 4. Then each
sequence ui vui+1 represents a corner of a face incident to v in the planar embedding
of G. If ui+1 is the immediate successor (or predecessor) of ui in the rotation ρv, that
is, if ρv(ui ) = ui+1 (or ρv(ui+1) = ui ), then we draw a black dot (or a white dot)
at the corner ui vui+1. We call the picture of G with such black and white dots a dot
scheme here.

It is clear that there are three cases around each vertex v in any dot scheme:

(i) There are four black dots.
(ii) There are four white dots.

(iii) There are one black dot and one white dot placed in opposite angles.
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The rotation ρv induces the clockwise (or anticlockwise) rotation around v of type
(i) (or (ii)) while the cyclic order induced by ρv is (u0u1u3u2) for example if v is of
type (iii).

Now assume that G is vertex-transitive and that ρ exhibits a faithful embedding in
addition. Take any automorphism τ of G, which extends to an auto-homeomorphism
over the sphere. It is clear that if a vertex v is of type (i), then τ(v) is of type
(i) or (ii). Thus, if S consists of all vertices of type (i), then (S, S) becomes an
equivariant partition. Its complement S contains all vertices of type (ii) and is not
empty; otherwise, F2 would be the sphere. Therefore, we can conclude the following
lemma:

Lemma 7 Let G be a 3-connected 4-regular planar graph embedded on the sphere.
Then G has a faithful embedding on an orientable closed surface other than the
sphere if and only if either G has an equivariant partition, or there is a dot scheme
of G such that all vertices of G are of type (iii) and any automorphism of G sends
dots to dots, either preserving all colors or exchanging all colors.

Proof First suppose that G has a faithful embedding on an orientable closed surface
F2. This embedding is derived from a faithful rotation scheme ρ. Draw the dot
scheme which presents ρ. If this dot scheme contains at least one vertex of type (i)
or (ii), then G has an equivariant partition, as shown in the previous. Thus, we may
assume that all vertices are of type (iii) in the dot scheme.

Let v be a vertex in G and let u0, u1, u2 and u3 be its neighbors lying clockwise
around v in the dot scheme, that is, the cyclic permutation (u0u1u2u3) is coher-
ent with the orientation of the sphere S2. Take any automorphism τ of G. Since
the inclusion map iG : G → S2 is faithful on the sphere, the cyclic permutation
(τ (u0)τ (u1)τ (u2)τ (u3)) induced around τ(v) by τ is coherent with or reverse to the
orientation of the sphere.

Since v is of type (iii), we may assume that the faithful rotation ρ induces a cyclic
permutationρv = (u0u1u3u2) around v. That is, there is a black dot at the corner u0vu1

and a white dot at the corner u2vu3, and the other two corners contain no dot. The auto-
morphism τ translates (u0u1u3u2) into a cyclic permutation (τ (u0)τ (u1)τ (u3)τ (u2))

around τ(v). Since the embedding derived from ρ is faithful, the latter must be coher-
ent with or reverse to ρτ(v) and hence the corners τ(u0)τ (v)τ (u1) and τ(u2)τ (v)τ (u3)

have dots in the dot scheme. Since the layout of black and white dots determines a
unique rotation ρv around each vertex v and since all ρv’s are coherent to an orien-
tation of F2, if τ carries a black dot at one corner to a black dot at another, then it
carries all black dots in the dot scheme to black dots. Thus, τ either preserves all
colors or exchanges all colors. The necessity follows.

If G has an equivariant partition, then G has a faithful embedding on an orientable
closed surface other than the sphere by Lemma 3. On the other hand, if there is a
dot scheme of G with rotation ρ which satisfies the condition in the lemma, then the
cyclic permutation around τ(v) induced by any automorphism τ are coherent with
or reverse to ρτ(v) for each vertex v and one of these two options, coherent or reverse,
holds for all vertices. Therefore, ρ is a faithful rotation. The sufficiency follows. �
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We call a dot scheme satisfying the condition in the above lemma a faithful dot
scheme.

Theorem 4 A 3-connected 4-regular planar graph admits a faithful embedding on
an orientable closed surface other than the sphere if and only if it is isomorphic to
neither the octahedron nor the icosidodecahedron.

Proof It suffices to decide which graphs listed in Lemma 6 have faithful embed-
dings on orientable closed surfaces other than the sphere. We start by constructing
equivariant partitions of the antiprism and the rhombicuboctahedron, as follows.

The antiprism consists of two disjoint cycles x0x2 · · · x2n−2 and x1x3 · · · x2n−1 with
edges xi xi+1 for i = 0, 1, . . . between them. Let S be the set of vertices lying along
one of these cycles and S its complement. It is clear that (S, S) forms an equivariant
partition.

The rhombicuboctahedron comes from the cube and its triangular faces corre-
spond to the vertices of the cube. Consider a proper coloring of vertices in the cube
by black and while. Let S be the set of vertices on triangles corresponding to black
vertices in the cube and let S be the set of vertices corresponding to white vertices.
Since any automorphism of the rhombicuboctahedron sends those triangles to those,
(S, S) is an equivariant partition.

It is easy to construct faithful dot schemes for the cuboctahedron and the rhombi-
cosidodecahedron. The former is covered by eight triangles and they can be separated
into two groups each of which contains four disjoint triangles. Put black dots at the
three corners of each triangle in one group and white dots similarly in the other group.
This gives us a faithful dot scheme.

The rhombicosidodecahedron is covered by 30 disjoint triangles corresponding to
the vertices of the dodecahedron. Also it is covered by 12 pentagons corresponding
to the faces. Put black dots at the three corners of each triangle and white dots at the
five corners of each pentagon. This is a faithful dot scheme.

By Lemma 7, the four graphs discussed above have faithful embeddings on ori-
entable closed surfaces other than the sphere. To complete the proof, we shall show
that the octahedron and the icosidodecahedron have neither equivariant partitions
nor faithful dot schemes. Since each of them has a set of odd cycles which covers
all vertices, we can carry out the same argument as in the proof of Theorem 3 to
conclude that they have no equivariant partition, namely the argument in Case (i) of
Theorem 3 works for the octahedron while the argument in Case (ii) works for the
icosidodecahedron.

Finally, we shall show that the octahedron and the icosidodecahedron have no
faithful dot scheme. The proof is easy for the former since any two faces are equiv-
alent; if one corner of a face of the octahedron has a dot, then the automorphisms
carry the dot to all corners of all faces. This implies that there would be no vertex of
type (iii).

Now let G be the icosidodecahedron. This is covered by the set of 30 triangles and
by the set of 12 pentagons. Suppose that there is a faithful dot scheme of G giving a
faithful embedding of G on an orientable closed surface F2. Choose a face A which



Faithful Embeddings of Planar Graphs on Orientable Closed Surfaces 261

contains a dot in the scheme, black or white, at one of its corners. Then there is an
automorphism τ of period |A| = 3 or 5 which rotates the boundary cycle of A. Since
its period is odd, τ should extend to an orientation-preserving auto-homeomorphism
over F2 and hence τ preserves the colors of any dot in the scheme.

In particular, the compositions τ, τ 2, τ 3, . . . carry one dot to the dots placed at
all corners of A and they have the same color, say black. This implies that any face
sharing a vertex with A has white dots at all of its corners. Such a situation should
hold for any pair of faces sharing a vertex, but it is impossible since such faces form
a ring of odd length, 3 or 5. Therefore, G does not have any faithful dot scheme. �

5 Conclusion

Now we have prepared all we need to prove our main theorem. Combining Theorems
2, 3 and 4, we can conclude that the exceptions listed in our main theorem are
exceptions indeed. We conclude our paper with a proof of Theorem 1.

Proof of Theorem 1 Let G be a 3-connected planar graph and suppose that G is
not faithfully embeddable on any orientable close surface other than the sphere. By
Theorem 2, G is either 3-regular or 4-regular. If G is 3-regular, then G is isomor-
phic to the tetrahedron, the dodecahedron, the truncated tetrahedron, the truncated
dodecahedron or the truncated icosahedron by Theorem 3. If G is 4-regular, then
G is isomorphic to the octahedron or the icosidodecahedron. These seven graphs
coincide with the exceptions in the statement of the theorem. �

The results of this paper lead us to the following two questions:

• Define the faithfully embeddable genus of a planar graph as the minimum positive
genus of orientable closed surfaces where it is faithfully embeddable. Is there a
method to determine the faithfully embeddable genus of a given planar graph?

• Can we characterize those planar graphs that are faithfully embeddable on a fixed
orientable closed surface, say the torus?

One might wonder if a 3-connected planar graph can be faithfully embedded on a
nonorientable closed surface. For example, the tetrahedron K4 can be embedded on
the projective plane with three quadrilateral faces. It is easy to see that this embedding
is faithful. This embedding can be regarded as the Petrie dual of the planar embedding
of K4.

In fact, in [3], the author gives a sufficient condition for a 3-connected planar graph
to have a faithful embedding on a nonorientable closed surface and exhibits infinitely
many 3-connected planar graphs that have no faithful embedding on nonorientable
closed surfaces.

Acknowledgments The author would like to express his thanks to all participants of SIGMAP
2014 who gave him many good advices around his arguments on maps on surfaces. In particular,
the notion of “Petrie duals” led him to a similar work on this topic with nonorientable closed



262 S. Negami

surfaces. Also he appreciates Gašper Fijavž’s helpful discussion on Lemma 2 and an anonymous
referee who taught him about Zelinka’s works.

References

1. J.L. Gross and T.W. Tucker, “Topological Graph Theory”, John Wiley & Sons, 1987.
2. S. Negami, Uniqueness and faithfulness of embedding of toroidal graphs, Discrete Math. 44

(1983), 161–180.
3. S. Negami, Faithful embeddings of planar graphs on nonorientable closed surfaces, preprint.
4. N. Robertson and R. Vitray, Representativity of surface embeddings, In: Paths, flows, and VLSI

layout, B. Korte, L. Lovász, H.J. Prömel, and A. Schrijver, eds., Springer-Verlag, Berlin, Hei-
delberg, 1990, 293–328.

5. H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150–
168.

6. B. Zelinka, Finite vertex-transitive planar graphs of the regularity degree four or five, Matemat-
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The Higher Dimensional Hemicuboctahedron

Daniel Pellicer

Abstract The paper describes the first known infinite sequence of 2-orbit
d-polytopes in R

d with d ≥ 3. The sequence has the remarkable property that
its d-dimensional member has vertex-figures isomorphic to the (d − 1)-dimensional
member.

1 Introduction

Highly symmetric polytopes have been studied since antiquity, starting with the reg-
ular polygons and the Platonic solids. A lot of attention has been given to regular
polytopes, which are those showing the highest degree of symmetry in terms of the
action of their symmetry groups on the flags. At first, only convex regular poly-
topes were considered, in particular the Platonic solids were regarded as the only
regular polyhedra. Kepler and Poinsot in the seventeenth and nineteenth centuries
respectively, added four star polyhedra to the list of regular polyhedra. By doing
this they dropped the requirement of convexity and admitted self-intersections. In
the twentieth century Grünbaum no longer required the faces to lie on a plane and
found the remaining nine finite regular polyhedra in R

3. In the nineteenth century
Schläfli gave a list of convex regular polytopes and Hess studied the star polytopes.
Van Oss proved in the early twentieth century that these lists are complete. Finally,
McMullen describes in this century all regular polytopes of rank d in R

d according
to a definition in the spirit of Grünbaum’s polyhedra ([19, Sect. 1A] and [16] for a
more complete history on the topic).

Although the cuboctahedron and some other 2-orbit polyhedra have been known
for a long time, their systematic study started only recently. The abstract theory was
developed by Hubard and Schulte in [10, 13], while the classification of convex
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J. Širáň and R. Jajcay (eds.), Symmetries in Graphs, Maps, and Polytopes,
Springer Proceedings in Mathematics & Statistics 159,
DOI 10.1007/978-3-319-30451-9_13

263



264 D. Pellicer

2-orbit polytopes can be found in [15]. However, there is no final classification of
finite 2-orbit polyhedra in R

3, and even less of finite 2-orbit d-polytopes in R
d .

The search for 2-orbit d-polytopes in R
d took a new turn with the discovery

in [15] that there is no 2-orbit convex d-polytope in R
d for d ≥ 4. In the same

work it is also proved that there is no 2-orbit tessellation by convex tiles of R
d for

d ≥ 4. Similar behaviour was observed in [8], where 2-orbit abstract polytopes
(combinatorial structures generalising the notion of polytope in this paper) arise as
products of partially ordered sets only for rank 3.Moreover, in [12] it was proven that
no 2-orbit tessellation by cubes of the 3-torus exists even though there are several
types of 2-orbit tessellations by squares of the 2-torus. In the same work it is stated
as a possibility that there are no 2-orbit tessellations by d-cubes of the d-torus for
d ≥ 3. These results highlight the relevance of the question of existence of 2-orbit
d-polytopes in R

d for every d ≥ 4.
In this paper we exhibit the first known family of 2-orbit d-polytopes in R

d for
every d ≥ 4. In Sects. 2 and 3 we recall basic definitions of regular and 2-orbit
polytopes. The main construction is explained in Sect. 4.

2 Regular Polytopes

Polygons, polyhedra and polytopes admit a number of definitions, not all of them
equivalent. Here we are interested in symmetry of polytopes on Euclidean spaces,
and hence we shall use appropriate definitions to obtain a rich theory in this direction.
In our definition of polytope we follow the ideas in [9].

A polygon (or 2-polytope) in R
d consists of a set of points called vertices and a

set of line segments between pairs of vertices called edges, with the property that the
induced graph is connected, every vertex belongs to precisely two edges, and every
compact subset of R

d intersects only finitely many vertices. If the polygon is finite
then the graph induced by the vertex and edge sets is a cycle; on the other hand, if
the polygon is infinite then the induced graph is isomorphic to a two-sided infinite
path. By convention, the vertices have rank 0 and the edges have rank 1.

Remark 1 In [9] the requirement of discreteness of polygons in R
d states that every

compact subset of R
d intersects finitely many edges. This is harder to generalise

appropriately to higher rank polytopes. In any case, for finite polytopes, like the ones
considered in this paper, the discreteness requirement is superfluous.

There is no restriction regarding intersections of the edges of a polygon in interior
points. Also there is no disk spanned into the polygon. In fact, in the definition above
we can instead define the edges to consist of pairs of vertices as opposed to line
segments, thereby avoiding the association of an i-dimensional geometric object to
a rank i element of the polygon.

For n ≥ 3 we define n-polytopes, or polytopes of rank n, in a Euclidean space
recursively. An n-polytopeP inR

d consists of a collectionPn−1 of (n−1)-polytopes
in R

d called facets satisfying the following properties.
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(I) Diamond condition. For every facet F of Pn−1 and every facet G of F there
exists a unique F ′ ∈ Pn−1 \ {F} such that G is a facet of F ′.

(II) Connectivity. For every pair of elements G and G ′ of rank n − 2 there exists
a sequence (G = G0, F1, G1, F2, . . . , Fk, Gk = G ′) where Fi ∈ Pn−1, Gi has
rank n − 2, and Fi contains Gi−1 and Gi for i ∈ {1, . . . , k}.

(III) Discreteness. Every compact subset of R
d intersects finitely many vertices.

Remark 2 The definitions of n-polytope in a Euclidean space above and of poly-
hedron in [9] are more general than faithful realizations of abstract polytopes and
of abstract polyhedra, respectively (see [19, Chaps. 1, 5]). Faithful realizations of
abstract polytopes require strong flag-connectivity, whereas our current definition
only implies flag-connectivity. In any case, the choice of kind of connectivity has
no effect on the contents of this paper since the structures described satisfy both
definitions.

We shall call the building blocks of P the elements of P , and provide them with
the partial order given by inclusion. The elements of rank i are called i-faces, the 0-
faces are the vertices, the 1-faces are the edges, and the (n − 1)-faces are the facets.
The vertex-figure at a vertex v is the (n − 1)-polytope constructed recursively as
follows. Its vertices are the neighbours of v, each corresponding to an edge incident
with v. For i ≥ 1, each i-face F of the vertex figure corresponds to an (i + 1)-face
G F of P containing v, and contains precisely the (i − 1)-faces that correspond to
the i-faces of P contained in G F and containing v. The k-skeleton of P consists of
all faces of P of rank at most k.

A flag of P is a maximal totally ordered set and contains precisely n elements,
one of each rank in {0, . . . , n −1}. By construction, for every i ∈ {0, . . . , n −1} and
every flag � of P there exists a unique i -adjacent flag �i differing with � only on
the i-face.

A symmetry of P is an isometry of the ambient space preserving P . The group of
symmetries of P is denoted by Sym(P).

We say thatP is regularwhenever Sym(P) acts transitively on the flags ofP . The
classical examples given by the Platonic solids and the regular convex d-polytopes
satisfy this definition.

A lot is known about regular polytopes. There are 48 regular polyhedra in R
3

including 18 finite ones, 6 infinite polyhedra whose ambient space can be understood
as any plane R

2 contained in R
3, and 24 infinite polyhedra that do not fit on a plane

(see [6, 7, 18]). Finite regular d-polytopes and infinite (d + 1)-polytopes in R
d are

described by McMullen in [16]. In various other papers McMullen studies other
families of regular polytopes (see for example [17]).

To conclude this section we describe in detail the cross-polytope of dimension d
and two groups of isometries related to it.

Let C = {e1, . . . , ed} be the canonical basis of R
d . We shall abuse notation and

denote by ei the points ofR
3 instead of the corresponding vectors. The d-dimensional

cross-polytopeOd is the convex hull of {±e1, . . . ,±ed}. For k ≤ n−1, its k-faces are
simplices determined by a set of k + 1 vertices not containing antipodal pairs (that
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is, vertices ei and −ei for some i). A more detailed description of cross-polytopes
can be found in [2, Sect. 7.2].

The symmetry group ofOd is a Coxeter group of type Bd . In other words, it is the
semidirect product of the group G1

∼= Z
d
2 generated by the reflections with respect

to all canonical hyperplanes, and the group G2
∼= Sd permuting the coordinate axes.

Clearly the group G2 acts on G1 by conjugation. The group Sym(Od) has then 2dd!
elements, and Od has 2dd! flags (hence Od is a regular d-polytope).

The group Sym(Od) has an index 2 subgroup of Coxeter type Dn , that is, it is
isomorphic to G+

1 �G2 where G+
1 is the subgroup of G1 consisting of those elements

that change the sign to an even number of coordinate axes. Note that conjugation by
G2 preserves the group G+

1 . For further information the reader is referred to [14].

3 2-orbit Polytopes

We say that P is a 2-orbit polytope whenever Sym(P) induces two orbits on the
flags. Polytopes with this property are those with highest degree of symmetry among
the ones that are not regular.

If some pair of i-adjacent flags of a 2-orbit polytope P of rank n belong to the
same flag-orbit then� and�i are in the same flag-orbit for every flag� ofP (see [10,
Lemma 2] for the version for abstract polytopes, and note that the proof holds also in
this geometric setting). This allows us to define the class 2I for I ⊂ {0, . . . , n − 1}
consisting of all 2-orbit n-polytopes P for which any two i-adjacent flags are in the
same flag-orbit if and only if i ∈ I . Here we do not consider I = {0, . . . , n−1} since
this would imply that P is regular. The combinatorial analogue of this definition can
be found in [10].

There are not many examples known of 2-orbit polyhedra so far. In [15] Matteo
shows that there are only four 2-orbit convex polytopes of rank d ≥ 3, namely the
cuboctahedron, the icosidodecahedron, the rhombic dodecahedron and the rhombic
triacontahedron, all in rank 3. In particular, there is no convex 2-orbit d-polytope for
d ≥ 4. The cuboctahedron and the icosidodecahedron are in class 2{0,1}, whereas the
rhombic dodecahedron and the rhombic triacontahedron are in class 2{1,2}.

Polyhedra in class 2∅ (also called class 2) are called chiral andwere classified inR
3

by Schulte in [21, 22]. All chiral polyhedra in R
3 are infinite and they are organised

in six families depending on their kind of faces and vertex-figures. Recently a finite
2-orbit 4-polytope in class 2∅ was discovered (see [1]).

Finite 2-orbit polyhedra in R
3 that are combinatorially regular but cannot be

realized in ordinary space in a flag-transitive manner were classified in [4, 5].
Some of the uniformpolyhedra described in [3] are examples of finite 2-orbit poly-

hedra in R
3. One of them is of particular interest for this paper and can be described

as follows. The triangular faces of a regular octahedron O3 admit a bipartition in
which two faces share an edge if and only if they are in distinct parts. The faces of
the 2-orbit polyhedron are then the triangles of O3 in one of the parts, together with
the three (planar) equatorial squares of the octahedron. The centres of all equatorial
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Fig. 1 The hemicuboctahe-
dron on the projective
plane

squares coincide with the centre ofO3, and each of them is determined by two pairs
of antipodal vertices of O3.

The 2-orbit polyhedron previously described is combinatorially equivalent to the
hemicuboctahedron, a map on the projective plane obtained by antipodal identifica-
tion of the symmetric drawing of the cuboctahedron on the sphere (see Fig. 1, where
the points in the outer circle are identified). This can be seen easily by noting that in
the polyhedron and in the map every triangle shares an edge with every square and
every vertex belongs to two triangles and two squares in an alternating manner.

4 The Higher Dimensional Hemicuboctahedron

To the author’s knowledge, no 2-orbit d-polytope for d ≥ 4 appears in a published
work besides the chiral 4-polytope in [1]. In any case, there is no known family of
2-orbit polytopes containing a polytope of each dimension d ≥ 4 in R

d . In what
follows we describe a 2-orbit d-polytopeHd in R

d for every d ≥ 3, generalising the
idea of the hemicuboctahedron in R

3.
Recall that C = {e1, . . . , ed} is the canonical basis of R

d and let Od be the
d-dimensional cross polytope with vertex set {±ei | i ∈ {1, . . . , d}}. Let X1 be the
set of simplicial facets of Od whose vertex sets contain an even number of points
with a coordinate−1, and letX2 be the set of “equatorial” (d −1)-dimensional cross
polytopes obtained by intersecting Od with the canonical hyperplanes.

Before constructing the 2-orbit polytope we state the following easy observations.

Remark 3 The sets X1 and X2 have 2d−1 and d elements, respectively.

Remark 4 Every element of X1 shares one and only one (d − 2)-simplex with each
element of X2, and vice versa.

We constructHd by adjoining X1 ∪X2 to the (d − 2)-skeleton ofOd as the set of
(d − 1)-faces.

Theorem 5 The combinatorial structure Hd just defined is a finite 2-orbit
d-polytope in class 2{0,1,...,d−2} with symmetry group of Coxeter type Dd.
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Proof Since the (d − 2)-skeletons of Od and Hd coincide we only need to verify
properties (I) and (II) in order to show that Hd is a polytope. (Note here that the
vertex sets of Od and Hd are the same, implying that Hd is discrete.)

A (d − 2)-face of Hd is also a (d − 2)-face of Od , that is, a (d − 2)-simplex
determined by a set of d −1 vertices containing no antipodal pair. Such a (d −2)-face
G belongs to precisely two (d −1)-faces ofOd , namely the simplices determined by
the vertices of G and each of the vertices of the antipodal pair with no representative
in G. Clearly the number of vertices with an entry−1 is even in one of these (d −1)-
simplices and is odd in the other one. Consequently, G belongs to a unique facet
of Hd in X1. Furthermore, G can be extended to a unique face in X2, namely to
the (d − 1)-dimensional cross polytope determined by the vertices of G and their
antipodes. Hence G belongs to precisely two facets ofHd and the diamond condition
holds.

Let G1 and G2 be two (d − 2)-faces of Od and F0 ∈ X1. The discussion above
shows that there exist F1 and F2 inX2 incident toG1 andG2, respectively. ByRemark
4, F1 (resp. F2) shares a (d − 2)-face H1 (resp. H2) with F0. Then the connectivity
follows from the sequence (G1, F1, H1, F0, H2, F2, G2).

When considering Sym(Od) ∼= G1 � G2 as in Sect. 2, the group G2 permutes the
elements of X1, whereas all generating reflections of G1 map them to the facets of
O not in X1. It follows that Sym(Hd) contains Sd and the subgroup of Z

d
2 consisting

of products of an even number of the generating reflections. Hence Sym(Hd) is of
Coxeter type Dd .

The number of flags on each facet of Hd in X1 is d!, since they are (d − 1)-
simplices. The facets of Hd in X2 are (d − 1)-dimensional cross-polytopes and
therefore each of them has 2d−1(d − 1)! flags. It follows from Remark 3 that the
number of flags of H is

2d−1d! + d · 2d−1(d − 1)! = 2dd!.

Since the Coxeter groups of type Dd have half as may elements as the symmetry
group of the d-dimensional cross-polytope, we conclude thatHd is a 2-orbit polytope
for every d ≥ 3. Furthermore, flags in different kinds of facets must be in different
orbits, implying that flags in the same kind of facets are in the same orbit. Since
every (d −2)-simplex belongs precisely to one simplicial facet and to one a (d −1)-
dimensional cross-polytope, Hd is in class 2{0,1,...,d−2}. �

Part of the combinatorial structure of the polytopeHd is given by Remarks 3 and
4. Next we describe the vertex-figure of Hd

Proposition 6 For d ≥ 4 the vertex figure of Hd is H(d−1).

Proof The neighbours of any given vertex v ofHd are all vertices ofHd except for v
and −v. Moreover, for k ≤ d − 1 any set of k vertices containing v but no antipodal
pairs induces a (k − 1)-face ofHd , and therefore a (k − 2)-face of the vertex-figure
at v. Finally, there are two kinds of facets ((d − 2)-faces) of the vertex-figure at v.
One of them consists of simplicial facets ofHd containing v, and therefore they are
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simplices. The facets of the other kind can be obtained by removing v and −v to all
(d−1)-dimensional cross-polytopes that contain v. It is easy to see that such a vertex-
figure can be alternatively obtained from the construction above when considering
only the 2(d − 1) vertices ofHd different from v and −v. Hence the vertex-figure is
precisely Hd−1. �

Remark 7 Proposition 6 provides an easy recursive proof that Hd is strongly flag-
connected as defined in [19, Sect. 2A]. Hence Hd is a realization of an abstract
polytope.

The polytopeHd can be visualised as a combinatorial structure in S
d−1 as follows.

Project the simplicial facets of Hd from the origin to the (d − 1)-sphere containing
the vertices ofHd , and understand each (d − 1)-cross polytopeO as tessellations by
(d − 2)-simplices of the (d − 2)-sphere spanned by the vertices of O. For example,
H3 can be viewed in S

2 by dividing it in the 8 triangles arising from the projection
of the octahedron and considering as 2-faces half of the triangles (one part of the
bipartition) as well as the three equatorial squares. In this setting, every edge belongs
to a triangle and to an equatorial square. Note that this visualization does not induce
a tessellation of S

3.
Whenever d is even the polytope Hd is invariant under the isometry −I d and

therefore it admits antipodal identification into de projective space Pd−1(R). The
facets of these objects are simplices and halves of cross-polytopes (that is, their
images under antipodal identification). It is worth mentioning that the case d = 4
corresponds to the Tomotope (see [20]), whose facets are four tetrahedra and four
hemioctahedra, and whose vertex-figures are hemicuboctahedra.

5 Conclusions

The polytopesHd generalising the hemicuboctahedron are the first 2-orbit polytopes
known to exist in ranks d ≥ 5, andH4 is among the first ones in rank 4.Given a family
of polytopes with certain properties, one can often find more polytopes satisfying the
same set of properties by applying operations like duality and the Petrie operation
(see [16, 19, Chap. 7]). However, it seems that no other 2-orbit d-polytope is related
toHd in these standard ways.

For example, there is a construction of a dual for the Platonic solids and other
convex polyhedra where the vertices of the dual are the centres of the facets of the
original polytope. This fails for Hd since all faces in X2 are centred at the origin.
This originates a collapse in the 2-faces, which are no longer polygons.

The Petrie operation was defined in [16, p. 4] for regular polytopes and in [11,
p. 8] for arbitrary polytopes. When applied to a d-polytope P , the Petrie operation
yields a d-polytope Pπ where two flags � and � are (d − 3)-adjacent in Pπ if and
only if �d−3,d−1 = � when viewed as flags of P . The polytopes P and Pπ have the
same (d − 2)-skeleton, but their facets in general are not isomorphic. It is not hard
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to see that the facets of (H4)
π fail the diamond condition, since the edges belong to

four rank 2 faces in the same facet. By Proposition 6, this situation carries over to
higher ranks and the diamond condition in (Hd)

π fails for d ≥ 4.
Thus, the full classification of 2-orbit polytopes of rank d in R

d is far from being
complete. The polytopes Hd provide examples satisfying the additional property
that all k-faces lie on a k-dimensional affine subspace of R

d . This is the analogue
of requiring flat 2-faces for polyhedra. We therefore propose the following open
problem as an intermediate step for the full classification of 2-orbit polytopes.

Open problem Determine all 2-orbit polytopes in R
d such that all k-faces lie on

a k-dimensional affine subspace.
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Groups of Order at Most 6,000 Generated
by Two Elements, One of Which Is an
Involution, and Related Structures

Primož Potočnik, Pablo Spiga and Gabriel Verret

Abstract A (2,*)-group is a group that can be generated by two elements, one of
which is an involution. We describe the method we have used to produce a census of
all (2,*)-groups of order at most 6,000. Various well-known combinatorial structures
are closely related to (2,*)-groups and we also obtain censuses of these as a corollary.

1 Introduction

The objects that play a central role in our paper are (2, ∗)-groups, that is, groups
that can be generated by two (not necessarily distinct) elements, one of which is an
involution. We will also need the notion of a (2, ∗)-triple, which we now define.

Definition 1 A (2, ∗)-triple is a triple (G, x, g) such that G is a (2, ∗)-group, {x, g}
is a generating set for G and x is an involution. Two (2, ∗)-triples (G1, x1, g1) and
(G2, x2, g2) are isomorphic if there exists a group isomorphism from G1 to G2

mapping x1 to x2 and g1 to g2.
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Fig. 1 Number of
(2, ∗)-groups and triples
up to a given order
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The first aim of this paper is to announce a complete determination of all (2, ∗)-
groups of order at most 6,000. The methods we used and how they improve on the
ones used by previous authors are discussed in Sect. 2. Here, we just state the overall
enumeration result.

Theorem 1 Up to isomorphism, there are precisely 129,340 (2, ∗)-groups and
345,070 (2, ∗)-triples of order at most 6,000.

The database of all (2, ∗)-groups and triples in a form readable by magma [2] is
available at [16].

The second aim of this paper is to prove an asymptotic enumeration result for
(2, ∗)-groups and (2, ∗)-triples. Let f (n) and ft (n) denote the number (up to iso-
morphism) of (2, ∗)-groups and the number of (2, ∗)-triples, respectively, of order
at most n. The graphs of f (n) and ft (n) are depicted in Fig. 1. A quick look at this
picture might suggest that both f (n) and ft (n) grow polynomially in n. This is not
the case. In fact, in Sect. 3, we show the following:

Theorem 2 There exist positive constants a and b such that, for n ≥ 2, we have

na log n ≤ f (n) ≤ ft (n) ≤ nb log n.

The problem of optimising the constants a and b in Theorem 2 is beyond the scope
of this article and is related to the problem of enumerating the normal subgroups of
finite index in certain finitely presented groups (see, for example, [11, Chap. 2]).

The third aim of the paper is a discussion of a relationship between (2, ∗)-groups
and several highly symmetrical geometric and combinatorial objects; for example,
cubic Cayley graphs, arc-transitive digraphs of out-valence 2, and rotary maps (both
chiral and reflexible, on orientable and non-orientable surfaces). These relationships
are explained in Sects. 4 and 5. Together with our census of (2, ∗)-triples they have
allowed us to generate complete lists of:
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• cubic Cayley graphs generated by an involution and a non-involution, with at most
6,000 vertices;

• digraphs of out-valence 2 admitting an arc-regular group of automorphisms, with
at most 3,000 vertices;

• rotary maps (both chiral and reflexive) on orientable surfaces, with at most 3,000
edges;

• regular maps on non-orientable surfaces, with at most 1,500 edges.

Databases of these objects are also available at [16].

2 Constructing the Census of Small (2, ∗)-Groups

In this section, we are concerned with the problem of generating a complete list of
(2, ∗)-triples (G, x, g) with |G| ≤ m for some prescribed constant m. Let us discuss
a few possible approaches to this problem.

2.1 Using a Database of Small Groups

If m is sufficiently small, then a database of all the groups of order at most m might
be available. For example, at the time of writing of this article, all groups of order
2,000 have been known, and all except those of order 1,024 have been available in
standard distributions of GAP [20] and Magma [2]. One might thus try to search
through such a database and, for each group G in the database, determine all possible
generating pairs (x, g) with x being an involution, up to conjugacy in Aut(G).

While this approach is rather straight-forward, it has an obvious downside in that
it requires iterating over all the groups of order at most m. Namely, getting access
to the groups of order 1,024 is difficult at the moment and the groups of order 2,048
will probably remain out of reach in the near future. Even if one had access to these
groups, their number would make it inconvenient to iterate over them. (There are
more than 1015 groups of order 2,048 [5].)

These considerations should make it clear that, to make any significant progress,
one should find a way to avoid having to consider all groups of order at most m.

2.2 Using the Magma LowIndexNormalSubgroups
Algorithm

Observe that every (2, ∗)-group is an epimorphic image of the free product U :=
C2 ∗ C∞ = 〈x, g | x2〉 and can thus be obtained as a quotient of U by a normal
subgroup N not containing x . Note that this yields not only the (2, ∗)-group U/N ,
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but also the (2, ∗)-triple (U/N , N x, Ng). In order to find all (2, ∗)-triples of order
at most m it thus suffices to find all normal subgroups of U of index at most m.

Firth and Holt [6] have developed a very efficient algorithm for determining nor-
mal subgroups of bounded index in a finitely presented group. The current implemen-
tation of this algorithm in Magma can, in principle, compute all normal subgroups
of index at most 500,000. However, for certain finitely presented groups the practical
limitations of the algorithm (or at least its current implementation inMagma) make
the computation unfeasible, even for much smaller indices.

An approach along these lines (in the language of rotary maps; see Sect. 5.2) has
been successfully used by Conder [3] to determine all normal subgroups of U of
index at most 2,000, but computations took several months.

2.3 Using Group Extensions

Finally, we describe the approach that we used to compile a complete list of (2, ∗)-
groups and triples of order at most 6,000. The method is inductive and constructs
(2, ∗)-groups as extensions of smaller ones. The general idea is not new (see, for
example, [7]), but our recent implementation proved to be more efficient than recent
efforts using the LowIndexNormalSubgroups algorithm.

Let us first set some terminology. If N is a normal subgroup of a group G and
Q is a group isomorphic to the quotient G/N , then we say that G is an extension of
Q by N . (Some authors call G an extension of N by Q.) If N is a minimal normal
subgroup of G, then we shall say that the extension is direct, and if N is elementary
abelian, then we say that the extension is elementary abelian. The soluble radical of
a group is its (unique) largest normal soluble subgroup.

Lemma 1 If G is a (2, ∗)-group, then either G has a trivial soluble radical, or G is
a direct elementary abelian extension of a smaller (2, ∗)-group or of a cyclic group
of odd order.

Proof As G is a (2, ∗)-group, we have G = 〈x, g〉, for some involution x ∈ G and
some g ∈ G. Suppose that the soluble radical S ofG is non-trivial. Let N be aminimal
normal subgroup of G contained in S. Since S is soluble, N is elementary abelian and
hence G is a direct elementary abelian extension of N by G/N . If G/N = 〈x N , gN 〉
is not a (2, ∗)-group, then x N = N and gN has odd order, that is, G/N = 〈gN 〉 is
cyclic of odd order.

Lemma 1 suggests an inductive procedure to construct (2, ∗)-groups from smaller
ones. The base case of this inductive process are (2, ∗)-groups with trivial soluble
radical and cyclic groups of odd order. If G is a finite group with trivial soluble
radical, then soc(G) (that is, the group generated by the minimal normal subgroups
of G) is isomorphic to a direct product of non-abelian simple groups and, moreover,
G acts faithfully on soc(G) by conjugation and thus G embeds into Aut(soc(G)).
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This allows one to use a database of small simple groups (available, say, inMagma
or GAP) to construct all groups of order at most m with trivial soluble radical.

For example, it is an easy computation to determine that there are precisely 23
groups with trivial soluble radical of order at most 6,000. For a given group G with
trivial soluble radical, one can find all (2, ∗)-triples (G, x, g) by determining all
epimorphisms from the groupC2∗C∞ to G (where two epimorphisms are considered
equivalent if they differ by some automorphism of G).

Let us now discuss the inductive step. Suppose we are given a group Q of order
n (which, for our purposes, can be taken to be either a (2, ∗)-group or cyclic of odd
order) and would like to find all direct elementary abelian extensions of Q of order
at most m. In view of the general theory of group extensions, it suffices to find all
irreducible Zp Q-modules N , with N isomorphic to an elementary abelian group Zd

p,
such that pdn ≤ m and then, for each such module N , compute the cohomology
group H 2(Q, N ). Each element of H 2(Q, N ) then gives rise to a direct extension
of Q by N , and conversely, each direct elementary abelian extension of Q of order
at most m can be obtained in this manner. Efficient algorithms for computing the
irreducible modules of a given group and the corresponding second cohomology
group are known (see for example [7]) and are implemented inMagma.

It is not surprising that computationally the hardest case is the extension of 2-
groups by 2-groups. Fortunately, in this case some parts of the inductive step can
be simplified. Namely, when Q is a 2-group and p = 2, the only irreducible Z2Q-
module is the (trivial) 1-dimensionalZ2Q-moduleZ2 andhenceonly the cohomology
group H 2(Q, Z2) needs to be considered. This shortcut speeds up the determination
of (2, ∗)- 2-groups considerably.

Once the direct elementary abelian extensions G of Q are determined, one needs
to check which of them are (2, ∗)-groups and, for those which are, find all pairs
(x, g) such that (G, x, g) is a (2, ∗)-triple. This can be done by first computing the
automorphism group Aut(G), then choosing a representative of each orbit of Aut(G)

on the set of involutions of G then, for each representative x , computing the stabiliser
Aut(G)x of x in Aut(G), choosing a representative g from each orbit of Aut(G)x on
G and, finally, discarding the pairs (x, g) that do not generate G.

As mentioned at the beginning of the section, this method is the one that we
used in order to obtain the complete list of (2, ∗)-groups and triples of order at most
6,000. The computation took a few weeks on a computer with a 2.93 GHz Intel Xeon
processor and 56GB of memory.

3 Proof of Theorem 2

Since every (2, ∗)-group gives rise to a (2, ∗)-triple, we have f (n) ≤ ft (n). On
the other hand, if G is a (2, ∗)-group of order n, then there are at most n2 choices
for (x, g) ∈ G × G hence at most n2 (2, ∗)-triples with first coordinate G. This
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shows that ft (n) ≤ n2 f (n). In particular, it suffices to prove that there exist positive
constants a and b such that, for n ≥ 2, we have

na log n ≤ f (n) ≤ nb log n.

Clearly, f (n) is at most the number of groups (up to isomorphism) of order atmost
n generated by 2 elements. By a celebrated theorem of Lubotzky [10, Theorem 1],
the latter is at most nb log n . (Some information on the constant b can be found in [10,
Sect. 3, Remark 1].)

The lower bound follows easily from a theorem of Müller and Schlage-Puchta:
let A be a cyclic group of order 2, let B be a cyclic group of order 3 and let G be the
free product of A and B, that is, G = A ∗ B. Let C = A × B, let π : G → C be the
natural projection and let N be the kernel of π .

Observe that, since π is surjective, N ∩ A = N ∩ B = 1. By Bass-Serre theory, N
is a free group (see [17, Theorem 4, p. 27]). Observe also that G has a natural action
as a transitive group of automorphisms of the infinite 3-valent treeT . As N �G and
|G : N | = |C | = 6, we see that N has at most 6 orbits on the vertices ofT . Assume
that N is cyclic and let α be a generator of N . From [21, Proposition 3.2(iii)], the
element α acts as a translation on some infinite path ofT . AsT has valency 3, from
this it follows immediately that N has infinitely many orbits on the vertices T , a
contradiction. Therefore N is non-cyclic and hence is a free group of rank at least 2.

For each n ∈ N, define

Nn = {M | M � G, M ≤ N , |G : M | ≤ n}.

As N is a free group of rank at least 2, [12, Theorem 1] yields that there exists a
positive constant a′ with |Nn| ≥ na′ log n for n ≥ 2. Observe that, for every group
M ∈ Nn , the quotient G/M is a (2, ∗)-group of order at most n.

Fix M ∈ Nn , the number of M ′ ∈ Nn with G/M ′ ∼= G/M is exactly the
number of surjective homomorphisms from G to G/M . Since G is 2-generated and
|G/M | ≤ n, the number of such homomorphisms is at most |G/M |2 ≤ n2. We
conclude that f (n) ≥ |Nn|/n2 ≥ (na′ log n)/n2 and the result follows.

4 (2, ∗)-Groups and Graphs

4.1 Cubic Cayley Graphs

Let G be a group and let S be a generating set for G which is inverse-closed and
does not contain the identity. The Cayley graph Cay(G, S) on G with connection set
S is the graph with vertex-set G and two vertices u and v adjacent if uv−1 ∈ S. It is
easy to see that Cay(G, S) is a connected vertex-transitive graph of valency |S|.
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Cayley graphs form one of themost important families of vertex-transitive graphs.
In fact, at least for graphs of small order, the overwhelming majority of vertex-
transitive graphs are Cayley graphs. This makes them crucial in any project of enu-
meration of vertex-transitive graphs.

With respect to valency, the first non-trivial case is the case of cubic graphs. Let
Γ = Cay(G, S) be a cubic Cayley graph. Note that S is an inverse-closed set of size
three and thus must consist either of three involutions or have the form {x, g, g−1}
where x is an involution and g is not. In the latter case, we say that Γ has type I. In
this case, (G, x, g) is a (2, ∗)-triple and thus type I graphs arise from (2, ∗)-triples.

While constructing type I Cayley graphs from the catalogue of (2, ∗)-triples is
computationally easy, reductionmodulo graph isomorphism requires a careful choice
of computational tools. For example, magma failed to finish the computation in
reasonable time but theSage package [19] performed considerably better and yielded
the result in a few hours. We would like to thank Jernej Azarija for his help in this
matter, which allowed us to conclude that:

Theorem 3 There are precisely 274,171 connected cubic Cayley graphs of type I
with at most 6,000 vertices.

Moreover, by Theorem 2, there are at most nb log n type I Cayley graphs of order at
most n. On the other hand, non-isomorphic (2, ∗)-triples may give rise to isomorphic
Cayley graphs. In general, it is very hard to control when two non-isomorphic (2, ∗)-
triples give rise to isomorphic Cayley graphs and thus the lower bound in Theorem 2
does not immediately give a lower bound on the number of Cayley graphs of type I.
(See for example [15] for more details on such lower bounds.)

Recently, we published a census of all cubic vertex-transitive graphs of order at
most 1,280 [13]. The method we used to construct the Cayley graphs of type I was a
mix of the ones described in Sects. 2.1 and 2.3 (see [13, Sect. 3]) andwould have been
difficult to extend to orders greater than 2,000. The methods described in the current
paper thus constitute an improvement, as they allowed us to reach order 6,000.

4.2 Arc-Transitive Digraphs of Out-Valency Two

A digraph is an ordered pair (V, A)where V is a finite non-empty set and A ⊆ V ×V
is a binary relation on V . If Γ = (V, A) is a digraph, then we shall refer to the set
V and the relation A as the vertex-set and the arc-set of Γ , and denote them by
V(Γ ) and A(Γ ), respectively. Members of V and A are called vertices and arcs,
respectively. For a vertex v of Γ , the number |{w ∈ V(Γ ) | (v, w) ∈ A(Γ )}| is called
the out-valency of v.

An automorphism of a digraph Γ is a permutation of V(Γ ) which preserves the
arc-set A(Γ ). Let G be a subgroup of the automorphism group Aut(Γ ) of Γ . We say
that Γ is G-arc-transitive provided that G acts transitively on A(Γ ). In this case, if
Γ is connected, then each of its vertices has the same out-valency, say d, and we say
that Γ has out-valency d.
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If Γ is an arc-transitive digraph, then its arc-set A(Γ ) is either symmetric (that is,
for every arc (u, v) ∈ A(Γ ), also (v, u) ∈ A(Γ )), or asymmetric (that is, for every
(u, v) ∈ A(Γ ), we have (v, u) /∈ A(Γ )). We will think of a digraph with a symmetric
arc-set as a graph.

Let Γ be a connected G-arc-transitive digraph of out-valency two. It is easily
seen that, for a vertex v of Γ , the vertex-stabiliser Gv has order 2s for some s ≥ 1.
Moreover, s = 1 if and only if G acts regularly on A(Γ ). In this case, let x be the
involution generating Gv and let g be an element of G mapping (u, v) to (v, w),
where (u, v) and (v, w) are arcs of Γ . It is not hard to show that {x, g} generates G
and thus (G, x, g) is a (2, ∗)-triple. Note also that 〈x〉 is not central in G (as it is the
point-stabiliser of a transitive permutation group). Every digraph of out-valency 2
with an arc-regular group of automorphisms thus arises from a (2, ∗)-triple with x
not central.

Conversely, given a (2, ∗)-triple (G, x, g) such that 〈x〉 is not central in G, one
can recover a G-arc-regular digraph of out-valency 2 by the well-known coset graph
construction: the vertices are the right cosets of H = 〈x〉 in G with (Ha, Hb) being
an arc whenever ba−1 ∈ HgH .

As in the previous section, checking for digraph isomorphism requires some
computational work which was performed by Katja Berčič as a part of her doctoral
thesis [1]. This allowed us to obtain:

Theorem 4 There are precisely 165,952 asymmetric connected digraphs of out-
valency 2 on at most 3,000 vertices, with an arc-regular group of automorphisms.

This census of digraphs was used in our recent census of all arc-transitive digraphs
of out-valency two with at most 1,000 vertices [14].

As in Sect. 4.1, Theorem 2 implies that, up to isomorphism, there are at most
nb log n digraphs of out-valency 2 and order at most n with an arc-regular group of
automorphisms but, again, non-isomorphic (2, ∗)-triples may give rise to isomorphic
digraphs and thus lower bounds are harder to obtain.

Finally, we note that the underlying graph of an asymmetric G-arc-transitive
digraphΓ of out-valency d is a 2d-valent graph onwhich G acts half-arc-transitively
(that is, vertex- and edge- but not arc-transitively). Moreover, this process can be
reversed (see for example [14, Sect. 2.2]) and we thus obtain the following:

Theorem 5 There are precisely 76,200 connected 4-valent graphs on at most
3,000 vertices that admit a half-arc-transitive group of automorphisms with vertex-
stabiliser of order 2.

5 (2, ∗)-groups and Maps

Intuitively, amap is a drawing of a graph onto a surface or, slightlymore formally, it is
an embedding of a graph onto a closed surface (either orientable or non-orientable)
which decomposes the surface into open, simply connected regions, called faces.
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Each face can be decomposed further into flags, that is, triangles with one vertex
in the centre of the face, one vertex in the centre of an edge and one in a vertex of
the embedded graph. An automorphism of a map is then defined as a permutation of
the flags induced by a homeomorphism of the surface that preserves the embedded
graph.

It is well known that this geometric notion can also be viewed algebraically. In
this paper, we adopt this algebraic point of view and use the geometric interpretation
only as a source of motivation. For a more thorough discussion on different aspects
of maps, and the relationship between their geometric and algebraic description, we
refer the reader to [8, 9], or to the excellent survey [18].

Enumeration of maps, especially those exhibiting many symmetries, has a long
history, going back to the Ancient Greeks and the classification of the Platonic solids.
In this section, we shall be interested in the enumeration and construction of all rotary
maps (both reflexible and chiral, orientable and non-orientable) with a small number
of edges. Such an enumeration was first attempted by Wilson in [22] for the case
of oriented rotary maps on at most 100 edges. More recently, a complete list of all
rotary maps on at most 1,000 edges was obtained by Conder [3].

This section has no ambition to be a survey onmaps and their symmetries; its main
purpose is to show how the database of (2, ∗)-groups was used to extend Conder’s
database [3] up to 3,000 edges in the orientable case and up to 1,500 edges in the
non-orientable case.

5.1 Monodromy Groups of Maps

A faithful transitive action of a (2, ∗)-group on a set D can be interpreted as the
monodromy group of a map on an orientable surface. More precisely, if (G, x, g)

is a (2, ∗)-triple acting faithfully and transitively on a finite set D in such a way
that x has no fixed points, then one can construct a map with faces, edges and
vertices corresponding to the orbits of the groups 〈g〉, 〈x〉 and 〈xg〉, respectively,
and with incidence between these objects given in terms of non-empty intersection.
Conversely, every map on a closed orientable surface can be obtained in this way
from a (2, ∗)-triple. By considering transitive faithful actions of (2, ∗)-groups, one
can thus obtain all graph embeddings into orientable surfaces.

5.2 Oriented Rotary Maps

An automorphism of the map M associated with a (2, ∗)-triple (G, x, g) acting on
D is any permutation of D that commutes with x and g, and thus the automorphism
group Aut(M ) equals the centraliser of G in Sym(D).

A very special case occurs when Aut(M ) is transitive on the dart-set D , which
occurs if and only if G (and thus also Aut(M )) acts regularly onD . In that case one
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can identify D with the elements of G in such a way that x and g act upon D = G
as permutations a �→ xa and a �→ ga for all a ∈ G, respectively. The centraliser
Aut(M ) of G in Sym(D) is then generated by the permutation a �→ ax and a �→
ag. In this sense we may view the group G as the automorphism group Aut(M )

(rather than the monodromy group) acting regularly with right multiplication on
the set of darts D = G. In this setting, the elements R = g and S = g−1x act
as one step-rotations around the centre of a face and around a vertex incident to
that face, respectively. We shall always assume that the underlying surface of the
map is oriented in such a way that R and S rotate one step in the clock-wise sense;
note that the same map but with the opposite orientation is obtained from the triple
(G, g−1, gxg−1), giving rise to the rotations R−1 and S−1. This justifies the following
terminology.

Definition 2 An oriented rotary map is a triple (G, R, S) such that G is a group,
{R, S} is a generating set for G and RS is an involution. Two oriented rotary maps
(G1, R1, S1) and (G2, R2, S2) are isomorphic if there exists a group isomorphism
from G1 to G2 mapping R1 to R2 and S1 to S2.

Given an oriented rotary map (G, R, S) one can reverse the process and construct
the associated (2, ∗)-triple (G, RS, R). Moreover, two oriented rotary maps are iso-
morphic if and only if the associated (2, ∗)-triples are isomorphic. Thus, there is a
bijective correspondence between the isomorphism classes of (2, ∗)-triples and the
isomorphism classes of oriented rotary maps.

Let us now define a few invariants and operations on oriented rotary maps that are
motivated by their geometric interpretations as embeddings of graphs on surfaces. Let
(G, R, S) be an oriented rotary map. A right coset of 〈R〉 in G is called a face, a coset
of 〈S〉 a vertex, and a coset of 〈RS〉 an edge of the map. The orders of |R| and |S| of R
and S are thus called the face-length and the valence of the map, respectively, while
the symbol {|R|, |S|} is called the type of the map. Furthermore, since |〈RS〉| = 2, it
follows that a the oriented rotary map (G, R, S) has |G|/2 edges. The mirror image
of (G, R, S) is the oriented rotary map (G, R−1, S−1). If an oriented rotary map is
isomorphic to its mirror image, it is called reflexible and is chiral otherwise. Our
enumeration of (2, ∗)-triples (see Theorem 1) yields the following result.

Theorem 6 There are precisely 345,070 oriented rotary maps with at most 3,000
edges, of which 122,092 are chiral and 222,978 are reflexible.

The number of reflexible and chiral oriented rotarymapswith up to a given number
of edges is depicted in Fig. 2.

5.3 Regular Maps

LetM = (G, R, S) be a reflexible oriented rotary map. By definition, there exists an
automorphism τ of G, called the reflector ofM , with τ(R) = R−1 and τ(S) = S−1.
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Fig. 2 Number of chiral and
reflexible oriented rotary
maps with up to a given
number of edges
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(Since R and S generate G, the reflector is unique and of order at most 2). Let C2 be
a group of order 2, let b be its generator, let ϑ : C2 → Aut(G) be the homomorphism
mapping b to τ , and let

A = G �ϑ C2.

Further, let a = Rb and c = bS, and observe that a and c are involutions such that
a �= c. Moreover, ac = Rb · bS = RS and ca = bS · Rb = S−1R−1 = RS because
RS is an involution; in particular, 〈a, c〉 is the Klein 4-group. Note also that R = ab
and S = bc, and therefore 〈ab, bc〉 has index 2 in A.

Geometrically, the group A can be viewed as the automorphism group of the
orientable (but unoriented) map arising from (G, R, S), with 〈R, S〉 corresponding
to the group of orientation preserving automorphisms and b acting as the orienta-
tion reversing automorphism which reflects about the axis through the vertex corre-
sponding to 〈S〉 and the centre of the face corresponding to 〈R〉. In this setting, the
automorphism c can be viewed as the reflection over the edge {v, vR−1}, where v is
the vertex corresponding to 〈S〉, while a reflects over the line perpendicular to that
edge. The group A then acts regularly on the set of flags of the oriented rotary map.
This motivates the following definition:

Definition 3 A regular map is a quadruple (A, a, b, c) such that A is a group, a, b, c
are involutions generating A and |〈a, c〉| = 4. Two regular maps (A1, a1, b1, c1) and
(A2, a2, b2, c2) are isomorphic if there exists a group isomorphism from A1 to A2

mapping (a1, b1, c1) to (a2, b2, c2).

If a regular map M ′ = (A, a, b, c) is obtained from a reflexible oriented rotary
map M = (G, R, S) by the procedure described above, then we shall say that M ′
is an orientable regularisation of M . It should be observed at this point that the
geometric interpretation of the reflexible oriented rotary map M ′ and its orientable
regularisation M are the same, and that the oriented rotary map M ′ = (G, R, S)

can be reconstructed from M = (A, a, b, c) by letting R = ab, S = bc, and
G = 〈ab, bc〉.
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Geometrically, the group G corresponds to the orientation-preserving automor-
phisms ofM and has index 2 in G.

Definition 4 A regular map (A, a, b, c) is called orientable if 〈ab, bc〉 has index 2
in A and non-orientable otherwise.

The above discussion shows that a regular map is orientable if and only if it arises
as the orientable regularisation of some reflexible oriented rotary map. Since the
orientable regularisations M ′

1 and M ′
2 of M1 and M2 are isomorphic if and only

if M1 and M2 are isomorphic (as oriented rotary maps), there is a bijective corre-
spondence between the isomorphism classes of reflexible oriented rotary maps and
the isomorphism classes of orientable regular maps. In particular, our enumeration
immediately yields a census of orientable regular maps with at most 3,000 edges (see
Theorem 6).

Besides orientable regularisation, there is also a different procedure that can be
applied to certain oriented rotarymaps, which yields all non-orientable regular maps.

Let M = (G, R, S) be an oriented rotary map. If b is an involution of G such
that Rb = R−1 and Sb = S−1, then we say that b is an antipodal reflector of M ; we
shall follow the terminology of [4] and call M antipodal in this case.

If b is an antipodal reflector of M , then one can form a non-orientable regular
map (G, Rb, b, bS), whichwe shall call the non-orientable regularisation ofM with
respect to b. Conversely, if M ′ = (G, a, b, c) is a non-orientable regular map, then
M = (G, ab, bc) is an oriented rotary map admitting an antipodal reflector b, and
M ′ is the non-orientable regularisation of M with respect to b.

Note that non-orientable regularisations ofM that correspond to distinct antipodal
reflectors are never isomorphic. Indeed, if b1 and b2 are two antipodal reflectors of
(G, R, S) and if the corresponding non-orientable regularisations (G, Rb1, b1, b1S)

and (G, Rb2, b2, b2S) are isomorphic via an automorphism ϕ of G, then b2 = ϕ(b1),
and thus ϕ(R) = ϕ(R)b2

2 = ϕ(Rb1)b2 = Rb2
2 = R; similarly ϕ(S) = S, and since

G = 〈R, S〉, this shows that ϕ is trivial and b2 = b1. Moreover, two antipodal
reflectors always differ by a central involution, implying that the number of non-
isomorphic non-orientable regularisations arising from an antipodal oriented rotary
map (G, R, S) is one more than the number of involutions in the centre of G. This
phenomenon was first observed in [23].

Let us point out here that a non-orientable regular map (G, a, b, c) also has a
geometric interpretation, in which vertices, edges and faces correspond to the cosets
of the subgroups 〈b, c〉, 〈a, c〉, and 〈b, c〉 in G, respectively, and with the incidence
between these objects given with non-empty intersection. The underlying surface of
the map is in this case non-orientable.

With this geometric interpretation in mind, the non-orientable regularisationM ′
of an antipodal oriented rotary map M is obtained as the quotient by a central
involution in Aut(M ) that acts as an orientation reversing homeomorphism of the
underlying surface (see [4, Proof of Theorem]), and conversely, M is the unique
orientable smooth 2-cover of M ′.

The discussion above suggests an obvious strategy to construct all non-orientable
regular maps: construct all oriented rotary maps then, for each oriented rotary map,
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find all of its antipodal reflectors and then, for each such reflector, construct the
corresponding non-orientable regularisation.

In this correspondence, an antipodal oriented rotary map with m edges yields a
non-orientable regular map with m/2 edges. Hence our database of oriented rotary
maps with at most 3,000 edges yields a complete list of non-orientable regular maps
with at most 1,500 edges. The following theorem summarises the results of our
computations.

Theorem 7 There are precisely 14,375 non-orientable regular maps with at most
1,500 edges.

The number of regular maps with up to a given number of edges is shown in Fig. 3.
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Even-Integer Continued Fractions
and the Farey Tree

Ian Short and Mairi Walker

Abstract Singerman introduced to the theory of maps on surfaces an object that is
a universal cover for any map. This object is a tessellation of the hyperbolic plane
togetherwith a certain subset of the ideal boundary. The 1-skeleton of this tessellation
comprises the edges of an infinite tree whose vertices belong to the ideal boundary.
Here we show how this tree can be used to give a beautiful geometric representation
of even-integer continued fractions. We use this representation to prove some of the
fundamental theorems on even-integer continued fractions that are already known,
and we also prove some new theorems with this technique, which have familiar
counterparts in the theory of regular continued fractions.

1 Introduction

In [13], Singerman introduced a tessellation of the hyperbolic plane that can be used
as a universal cover for any map on a surface (see also [5]). To describe this universal
tessellation, we first define the well known Farey graph, written as G . We use the
upper half-plane model of the hyperbolic plane, denoted by H, along with the ideal
boundary of H, which is the extended real line R∞ (that is, the real line R with the
point ∞ attached). The Farey graph is a subset ofH∪R∞, which can be viewed as a
planar graph. The vertices of G all belong toR∞: they are the rationals together with
the point ∞. From now on, we assume that every rational a/b is in reduced form,
meaning that a and b are coprime, and b is positive. The edges of G are hyperbolic
geodesics in H: two rationals a/b and c/d are joined by an edge of G if and only
if |ad − bc| = 1 (with the convention that ∞ is identified with 1/0). The Farey
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graph induces a tessellation of the hyperbolic plane (different from the tessellation
mentioned earlier) that also appears in [13], as a universal cover for any triangular
map on a surface. Part of the Farey graph is shown in Fig. 1 (both grey and black
lines).

The Farey tree, which we denote by F , is obtained by removing from G all
vertices that as rationals in reduced form have odd numerator and denominator. It is
a tree with a countably infinite number of vertices, and a countably infinite number of
edges incident to each vertex. The vertices adjacent to ∞ are the even integers. Part
of the Farey tree is shown in black in Fig. 1, and there is another illustration ofF in
Fig. 2 without the distraction of the Farey graph. The Farey tree induces a tessellation
of the hyperbolic plane, which is Singerman’s universal tessellation—although the
definition in [13] is slightly different to this one. (We remark that in some other works
‘Farey tree’ refers to a different subgraph of G than F .)

There are other ways to define G and F . Here is one such way. Let � denote the
hyperbolic geodesic inH between 0 and ∞. Then the edges of G are the images of �

under the modular group Γ (and the vertices of G are the images of ∞ under Γ ).
We can describe F in a similar manner. Let Θ denote the group generated by the

Fig. 1 The Farey tree superimposed with the Farey graph

Fig. 2 A path in the Farey tree
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transformations s(z) = −1/z and h(z) = z+2. This Fuchsian group, called the theta
group, is a subgroup of the modular group of index 3. It consists of those Möbius
transformations z �→ (az + b)/(cz + d), where a, b, c, d ∈ Z and ad − bc = 1,
such that (

a b
c d

)
≡

(
1 0
0 1

)
or

(
0 1
1 0

)
(mod 2)

(see [7, Corollary 4]). The edges ofF are the images of � under Θ (and the vertices
of F are the images of ∞ under Θ).

We call the vertices of the Farey tree ∞-rationals. They are reduced rationals
whose numerator and denominator differ in parity, togetherwith the point∞. The∞-
rationals are the fixed points of one of the two conjugacy classes of parabolic elements
inΘ . The vertices of G that are not vertices ofF are called 1-rationals because they
consist of the images of 1 underΘ . They are the reduced rationalswith odd numerator
and denominator (called face-centre points in [13]), and they are the fixed points of
the other of the two conjugacy classes of parabolic elements in Θ . It can easily be
shown that Θ acts on F , and in fact each element of Θ is a graph automorphism
of F .

This paper is about an attractive connection between the Farey tree and even-
integer continued fractions. An even-integer continued fraction (or, more briefly, an
EICF) is a sequence of even integers b1, b2, . . ., which may be finite or infinite (or
empty), such that all terms except possibly b1 are nonzero. We denote this continued
fraction by [b1, b2, . . .] (and sometimes by [b1, . . . , bn] if it is finite). The number

b1 + 1

b2 + 1

b3 + · · · + 1

bn

,

is called the value of the finite EICF [b1, . . . , bn]. The convergents of a finite or
infinite EICF [b1, b2, . . .] are the values of [b1, . . . , bn] for n = 1, 2, . . .. If the
sequence of convergents of an infinite EICF converges in R∞ to a point x , then we
say that the EICF converges and has value x . Sometimes we abuse notation and
use [b1, b2, . . .] to represent its value; this is quite natural—in fact, the distinction
between continued fractions and their values is blurred in most works on continued
fractions. An EICF expansion of a real number x is an EICF with value x .

In either of the graphsF orG , we say that two vertices are adjacent or neighbours
if they are incident to the same edge. A path in one of these graphs is a sequence of
distinct vertices v1, v2, . . . such that vi and vi+1 are adjacent for i = 1, 2, . . .. The
path is said to be finite if the sequence has finite length, and otherwise it is infinite.
We say that an infinite path v1, v2, . . . converges to a real number x if the sequence
converges to x inR∞. In these circumstances, we describe v1, v2, . . . as a path from v1
to x .
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Let

tn(z) = bn + 1

z
and Tn = t1 ◦ t2 ◦ · · · ◦ tn, n = 1, 2, . . . ,

where b1, b2, . . . are even integers and all except possibly b1 are nonzero. Notice that
the convergents of the EICF [b1, b2, . . .] are T1(∞), T2(∞), . . .. Now, 0 and ∞ are
adjacent in F , and it is easy to check that adjacency is preserved by the maps tn ,
so Tn(0) and Tn(∞) are also adjacent inF . But

Tn(0) = Tn−1tn(0) = Tn−1(∞),

so any two consecutive vertices in the sequence ∞, T1(∞), T2(∞), . . . are adjacent.
Furthermore, the condition bn 	= 0 for n � 2 implies that this walk in F never
‘backtracks’: it is a path. Conversely, a short argument shows that the vertices of
a path with initial vertex ∞ are the convergents of a unique EICF. Thus we see
that there is a correspondence between even-integer continued fractions and paths
in F with initial vertex ∞. Finite continued fractions correspond to finite paths, and
infinite continued fractions correspond to infinite paths (and the empty continued
fraction corresponds to the path consisting of the vertex ∞ alone).

For example, the EICF expansion of the rational 8/3 is [2, 2,−2], and this con-
tinued fraction corresponds to the path inF represented by the black directed edges
in Fig. 2. The vertices of this path are, in order, ∞, 2, 5/2, 8/3 and the final three of
these are the convergents of the continued fraction.

There is a similar correspondence between integer continued fractions and paths
in the Farey graph that is well known (and the proofs of the validity of the corre-
spondence are similar); see, for example, [1, 9]. However, there are two reasons why
the tree F is better to work with than the graph G : (i) all infinite paths in the tree
converge, and (ii) there is an (almost) unique path from ∞ to each real number (in
particular, asF is a tree there is a unique finite path from ∞ to each ∞-rational). In
terms of even-integer continued fractions, these statements are (i) all infinite EICFs
converge, and (ii) each real number has an (almost) unique EICF expansion. We
explain the meaning of the qualification ‘almost’ later on. Both (i) and (ii) fail for
integer continued fractions, but they do hold for regular continued fractions (the
most familiar type of continued fractions, with positive integer coefficients). Here
we will show that in fact much of the theory of regular continued fractions (from, for
example, [6, Chaps. I and II] or [4, Chap. X]) can be reformulated using even-integer
continued fractions. To an extent, this is already known, and has been demonstrated
in works such as [8, 10]. The novelty of our approach is that we develop the theory
of even-integer continued fractions geometrically using elementary properties of the
Farey tree.

In Sects. 2–4 we prove some of the more fundamental theorems on even-integer
continued fractions using the Farey tree, covering material that is similar (although
not identical) to part of [8]. Sections5–6 contain results that appear to be new. To keep
this account concise, we omit certain relevant topics such as the EICF expansions
of quadratic irrationals and the Hurwitz constant for the theta group (see [11] for a
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treatment of the latter topic in the spirit of this paper). Furthermore, for the sake of
brevity, we sometimes skip the details of elementary geometric arguments, so that
the reader gets a feel for the geometric approach without getting bogged down in
details.

2 Infinite Continued Fractions

In this section we prove that every infinite EICF converges. There are several ways to
do this; for example, we could invoke a more general theorem on the convergence of
continued fractions, or we could use algebraic relationships between the convergents
to estimate the distance between consecutive convergents. Our approach is to use the
Farey tree to establish the following theorem.

Theorem 1 Every infinite EICF converges to an irrational or a 1-rational.

To prove the theorem, consider any infinite EICF, and let γ be the corresponding
infinite path inF with initial vertex∞. First we will show that γ cannot accumulate
at an ∞-rational. Suppose, on the contrary, that γ does accumulate at a vertex x
of F . By applying an element of Θ to γ if necessary (which will change the initial
vertex of γ ) we can assume that x 	= ∞. Furthermore, by removing the first so many
terms from γ we can assume that it does not pass through x (remember that a path
passes through a vertex at most once). Let a be the initial vertex of γ .

Like all vertices ofF , the vertex x has infinitelymany neighbours, which accumu-
late on the left and right of x . Choose any two neighbours u and v such that u < x < v,
and such that the vertex a lies outside the real interval (u, v), as shown in Fig. 3. Edges
of F do not intersect in H, so we see that because γ accumulates at x , it must pass
through one of u, x and v. However, because F is a tree, any path from a to a
neighbour of x must pass through x itself, unless that neighbour happens to lie on
the unique path between a and x . Providing we choose u and v sufficiently close
to x that they do not lie on this path, we can be sure that γ passes through x . This
contradicts an earlier assumption, so γ cannot accumulate at a vertex ofF after all.

We have just seen that the path γ cannot accumulate at an ∞-rational. Suppose,
in order to reach a contradiction, that γ accumulates at two numbers x and y, each
of which is either irrational or a 1-rational, and x < y. Now, the vertices of F that
lie inside the real interval (x, y) are connected in F to the vertices that lie outside
this interval, so there must be an edge ofF with one end vertex u inside the interval
and the other v outside. Edges of F do not intersect in H, so we see that because γ

Fig. 3 Two neighbours u
and v of the vertex x , and
another vertex a

a u x v



292 I. Short and M. Walker

accumulates at both x and y, it must pass through at least one of u or v infinitelymany
times, which is impossible. Thus, contrary to our assumption, γ cannot accumulate
at two numbers, so it converges. The proof of Theorem 1 is now complete.

3 Representing Real Numbers by Even-Integer
Continued Fractions

The next fundamental result is about the existence and uniqueness of EICF expan-
sions of real numbers. It is unoriginal (see, for example, [8], where there are a number
of results similar to parts of this one); however, our method of proof using the Farey
tree is original, and it is simple and elegant.

Theorem 2

(i) The value of any finite EICF is an ∞-rational, and each ∞-rational has a unique
finite EICF expansion.

(ii) The value of an infinite EICF is either irrational or a 1-rational, and

(a) each irrational has a unique infinite EICF expansion,
(b) each 1-rational has exactly two infinite EICF expansions, each of which

eventually alternates between 2 and −2.

AsF is a tree, and the vertices are the ∞-rationals, we can immediately deduce
statement (i) of the theorem using the correspondence between even-integer con-
tinued fractions and paths in F . We now turn to statement (ii). The first part of
statement (ii) follows from Theorem 1. It remains only to discuss statements (a)
and (b).

We begin this discussion by looking at EICF expansions of the number 1; here
are two of them:

1 = [0, 2,−2, 2,−2, . . .] = [2,−2, 2,−2, . . .].

We can check that the value x of the second continued fraction is 1 by observing
that x must satisfy

x = 2 + 1

−2 + 1

x

,

and the only solution of this equation is x = 1. (The value of the first continued
fraction can be obtained in a similar manner.) The paths inF corresponding to these
two continued fractions are shown marked by arrows in Fig. 4.

In fact, the two EICF expansions that we have found are the only EICF expansions
of 1. To see why this is so, let α denote the left-hand path (that passes through 0) and
let β denote the right-hand path (that passes through 2). Observe that in the Farey
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Fig. 4 Two paths that converge to 1

Fig. 5 Two neighbours of 1

graph G , every single one of the vertices in these two paths is connected to 1 by an
edge (in fact, they are the full collection of neighbours of 1 in G—see Fig. 1). Two
such edges are shown in Fig. 5, on either side of 1.

Suppose now that γ is an infinite path in F from ∞ to 1. Aside from the initial
vertex ∞, this path must lie entirely to the left or entirely to the right of 1 (because
any path in F that passes from one side to the other of 1 must pass through ∞).
Suppose that it lies to the left—the other case can be handled in a similar way. Then
because edges in the Farey graph do not intersect, γ must pass through all of the
vertices of α. There is only one such path that does this, namely α itself, so γ = α.

We summarise this discussion in a lemma.

Lemma 1 The number 1 has precisely two EICF expansions, namely

[0, 2,−2, 2,−2, . . .] and [2,−2, 2,−2, . . .].

If x is any 1-rational, then there is an element g ofΘ such that g(1) = x . It follows
that g(α) and g(β) are infinite paths from g(∞) to 1. By connecting ∞ to g(∞)

we obtain two walks from ∞ to 1 (each may have repeated vertices), which we can
modify by adjusting a finite number of terms to give two paths from∞ to 1. Thus we
obtain two EICF expansions of x . We can reverse this argument to see that these are
the only EICF expansions of x . This gives us the following corollary of Lemma 1.

Corollary 1 Every 1-rational has precisely two EICF expansions.

In the next section we will see that if x and y have infinite EICF expansions,
and g(x) = y for some transformation g in Θ , then it is possible to remove a finite
number of consecutive terms from the start of the EICF expansions of x and y to give
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two expansions that agree. It follows that anEICFexpansion of a 1-rational eventually
alternates between 2 and −2. (Conversely, it is straightforward to show that any real
number with an infinite EICF expansion that eventually alternates between 2 and−2
is a 1-rational.) Furthermore, one can check that the two continued fractions

[b1, . . . , bn, 2,−2, 2, . . .] and [b1, . . . , bn−1, bn + 2,−2, 2,−2, . . .]

have the same value, so the two EICF expansions referred to in Corollary 1 are of
these forms.

We have now proved statement (b) of Theorem 2, which leaves only statement (a).
Let us prove the uniqueness assertion of (a). Suppose then thatα andβ are two infinite
paths from ∞ to a real number x . The two paths may coincide for a certain number
of vertices: let w be the final vertex for which they do so. Choose an element g
of Θ such that g(w) = ∞. Let α′ and β ′ be the paths obtained from g(α) and g(β),
respectively, after removing all vertices that occur before ∞. Then α′ and β ′ are
infinite paths from ∞ to g(x), such that the second vertex u of α′ is distinct from
the second vertex v of β ′. The vertices u and v are even integers, so there is an odd
integer q (a 1-rational) that lies between them on the real line. Neither α′ nor β ′ can
pass from one side of q to the other, and since they converge to the same value, that
value must be q. Therefore g(x) is a 1-rational, so x is also a 1-rational.

This argument shows that each irrational has at most one EICF expansion. Let us
now show that each irrational has at least one such expansion. One way to do this is
to use an algorithm of a similar type to Euclid’s algorithm: in this case the ‘nearest
even-integer algorithm’ does the trick. However, we prefer to justify the existence
of an expansion using the Farey graph and tree.

We define a Farey interval to be a real interval whose endpoints are neighbouring
vertices in the Farey graph G . If [a/b, c/d] is a Farey interval (where, as usual, the
fractions are given in reduced form), then it is easily seen that

[a/b, (a + c)/(b + d)] and [(a + c)/(b + d), b/d]

are both Farey intervals—let us call them the Farey subintervals of [a/b, c/d]. Now,
any irrational x belongs to a Farey interval [n, n + 1], where n is the integer part
of x , and by repeatedly choosing Farey subintervals, we can construct a nested
sequence of Farey intervals that contains x in its intersection. The width of one of
these intervals [a/b, c/d] is

∣∣∣
a

b
− c

d

∣∣∣ =
∣∣∣∣
ad − bc

bd

∣∣∣∣ = 1

bd
,

so we see that the sequence of widths of this nested sequence of Farey intervals
converges to 0.

Let us now restrict attention to those infinitelymany Farey intervals I1 ⊃ I2 ⊃ · · ·
from the sequence for which one of the endpoints of In is a 1-rational vn (and the
other endpoint un must then be an ∞-rational). Let γn be the unique path from ∞
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Fig. 6 The path γ passes
through un−1

un−1 vn−1

γ

to un in F . Any path in F from ∞ to a vertex inside In−1 must pass through un−1

(because un−1 and vn−1 are neighbours in G , as illustrated in Fig. 6, and edges of G
do not intersect). Therefore γn−1 is a subpath of γn . It follows that there is a unique
infinite path γ that contains every path γn as a subpath. The path γ passes through
all the vertices un , which accumulate at x , so γ must converge to x . This completes
the proof of Theorem 2.

4 Serret’s Theorem on Continued Fractions

This section is about a counterpart for even-integer continued fractions of a well-
known theorem of Serret on regular continued fractions. Beforewe state our theorem,
we must introduce the extended theta group, which is the group Θ̃ generated by the
theta group and the transformation r(z) = −z. This group acts on R∞, and it also
acts on the set of ∞-rationals. In fact, elements of Θ̃ preserve adjacency inF , so Θ̃

acts on the abstract graph underlyingF . We say that two real numbers are equivalent
under the action of Θ̃ if they lie in the same orbit under this action.

Our version of Serret’s theorem for even-integer continued fractions follows. It
is similar to [8, Theorem 1], but not quite the same because even-integer continued
fractions are defined differently in that paper.

Theorem 3 Two real numbers x and y that are not ∞-rationals are equivalent
under Θ̃ if and only if there are positive integers m and n such that the EICF
expansions of x and y,

x = [a1, a2, . . .] and y = [b1, b2, . . .],

either satisfy am+i = bn+i for i = 1, 2, . . . or am+i = −bn+i for i = 1, 2, . . ..

Serret’s theorem for regular continued fractions is similar, but uses an extension
of the modular group rather than the theta group, and the possibility am+i = −bn+i

for i = 1, 2, . . . is absent.
Crucial to the proof of this theorem is the following lemma.

Lemma 2 If a real number x has an EICF expansion [a1, a2, . . .], then an EICF
expansion of −x is [−a1,−a2, . . .].
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There is noobvious analogueof this lemma for regular continued fractions because
the coefficients of regular continued fractions are (almost) all positive.

The lemma can be proven with the Farey tree by observing that the paths
from ∞ to x and from ∞ to −x are reflections of each other in the imaginary
axis. However, in this case, we will prove the lemma using Möbius transformations.
Let ta(z) = a + 1/z, where a is even; this transformation belongs to Θ̃ . Observe
that r tar = t−a . We are given that an EICF expansion of x is [a1, a2, . . .], which
implies that ta1 ta2 · · · tan (∞) → x as n → ∞. Now

t−a1 t−a2 · · · t−an (∞) = r ta1 ta2 · · · tan r(∞) = r ta1 ta2 · · · tan (∞).

So t−a1 t−a2 · · · t−an (∞) → r(x) = −x as n → ∞. Therefore an EICF expansion
of −x is [−a1,−a2, . . .].

Let us now prove Theorem 3. Suppose first that y = g(x), where g ∈ Θ̃ . We wish
to prove that there are positive integersm and n such that am+i = bn+i for i = 1, 2, . . .
oram+i = −bn+i for i = 1, 2, . . .. Since Θ̃ is generatedby the transformations r(z) =
−z, t (z) = 1/z and h(z) = z + 2, it suffices to prove the assertion when g is
each of r , t , h and h−1. It is straightforward to do so when g is one of the final
three transformations, and the remaining case when g equals r is an immediate
consequence of Lemma 2.

For the converse, suppose that x = [a1, a2, . . .], y = [b1, b2, . . .] and either
(i) am+i = bn+i for i = 1, 2, . . ., or (ii) am+i = −bn+i for i = 1, 2, . . .. By
replacing x by −x if necessary, and invoking Lemma 2, we can assume that (i)
holds. Observe that

x = ta1 · · · tam ([am+1, am+2, . . .]) and y = tb1 · · · tbn ([bn+1, bn+2, . . .]).

Hence y = tb1 · · · tbn t−1
am

· · · t−1
a1 (x), so x and y are equivalent under Θ̃ . This completes

the proof of Theorem 3.

5 An Alternative Characterisation of Convergents
of Even-Integer Continued Fractions

In this section we describe an alternative way to characterise the convergents of the
EICF expansion of any irrational x . The characterisation can easily be adapted to
allow x to be rational.

Theorem 4 A finite ∞-rational u is a convergent of the EICF expansion of an
irrational x if and only if there is a 1-rational v adjacent to u in the Farey graph
such that x lies between u and v on the real line.

The second part of the theorem is illustrated in Fig. 7.
If there is a 1-rational v of this type, then the edge in the Farey graph G between u

and v separates ∞ from any vertex of G that is sufficiently close to x on the real
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Fig. 7 The irrational x lies
between the ∞-rational u
and the 1-rational v

u vx

Fig. 8 A triangle in the
Farey graph

u w v

line. So any path from ∞ to w must pass through one of u or v—and if the path lies
in F , then it must pass through u. In particular, this demonstrates that u must be a
convergent of the EICF expansion of x .

The converse implication of Theorem 4 is a direct consequence of the following
lemma (which is a slightly stronger statement).

Lemma 3 Let u and w be two consecutive convergents in the EICF expansion of an
irrational x, in that order. Then there is a 1-rational v adjacent to each of u and w
in the Farey graph such that both w and x lie between u and v on the real line.

Since u and w are adjacent inF , they are also adjacent in G . There are two other
vertices in G that are adjacent to both u and w, precisely one of which (call it v) does
not lie between u and w on the real line. Let γ be the path of convergents of the EICF
expansion of x . If γ enters the interval between u and v, then it must pass through u
to get there, and it cannot leave the interval. Similar comments apply to the interval
between w and v. Now, u cannot lie in the interval between w and v because if it
did, then, as we have just seen, the path γ would pass through w before it passed
through u. So w lies in the interval between u and v (as illustrated in Fig. 8), and x
lies in that interval too. This completes the proofs of Lemma 3 and Theorem 4.

6 Approximating Irrationals by Rationals

One of the principal uses of continued fractions is in the field of Diophantine approx-
imation, which is concerned with approximating real numbers by rationals. In this
section we prove an analogue for even-integer continued fractions of a classic result
of Lagrange on regular continued fractions.

We call an ∞-rational a/b a strong ∞-approximant of a real number x if for
each ∞-rational c/d such that d � b, we have

|bx − a| � |dx − c|,

with equality if and only if c/d = a/b.
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Theorem 5 An ∞-rational is a strong ∞-approximant of an irrational x if and only
if it is a convergent of the EICF expansion of x.

Lagrange’s theorem for regular continued fractions is similar (see [6, Theorems
16 and 17]), but uses rationals rather than ∞-rationals.

There is no need to assume that x is irrational in the theorem—subject to minor
modifications of the theorem we can allow x to be any real number—but it is the
irrational case that interests us most, and the proof is marginally simpler with the
assumption that x is irrational.

Our proof usesFord circles, and is similar to the proof of Lagrange’s theorem from
[12]. Ford circles are a collection of horocycles inH used by Ford to study continued
fractions in papers such as [2, 3]. We say that a horocycle is based at an element x
of R∞ if the horocycle is tangent to R∞ at x . Given a reduced rational u = a/b, the
Ford circle Cu is the horocycle based at u with Euclidean radius rad[Cu] = 1/(2b2).
There is one other Ford circle C∞, which is the line y = 1 together with the point∞.
Two Ford circles intersect in at most a single point, and the interiors of the two
circles are disjoint. In fact, one can check that the Ford circles Ca/b and Cc/d are
tangent if and only if |ad − bc| = 1. Therefore the full collection of Ford circles is
a model of the abstract graph underlying the Farey graph: the vertices of this graph
are represented by Ford circles, and two vertices are adjacent if and only if the Ford
circles are tangent. Similarly, the collection of Ford circles based at ∞-rationals is
a model of the abstract graph underlying the Farey tree; this model is illustrated in
Fig. 9. When studying even-integer continued fractions, it is helpful to consider both
the Farey tree and this alternative model of the tree using Ford circles.

We now relate Ford circles to strong ∞-approximants. Let u = a/b. Notice that
if v = c/d, then d � b if and only if rad[Cu] � rad[Cv]. For any real number x , let

Ru(x) = 1

2
|bx − a|2.

Fig. 9 Ford circles based at the ∞-rationals
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Using elementary geometry, it can be shown that Ru(x) is the Euclidean radius of
the horocycle based at x that is externally tangent to Cu . With this terminology, we
can describe a strong ∞-approximant of a real number x as an ∞-rational u such
that for each ∞-rational w with rad[Cu] � rad[Cw], we have Ru(x) � Rw(x), with
equality if and only if w = u. We will use this definition of strong ∞-approximants
together with Theorem 4 to prove Theorem 5. Our proof omits several elementary
geometric details.

Suppose first that u is a convergent of the EICF expansion of x . Theorem 4 tells us
that there is a 1-rational v adjacent to u in the Farey graph such that x lies between u
and v on the real line. If w is an ∞-rational distinct from u with rad[Cu] � rad[Cw],
then w must lie outside the real interval between u and v, so Ru(x) < Rw(x), as
illustrated in Fig. 10. Therefore u is a strong ∞-approximant of x .

Conversely, suppose that u is an ∞-rational that is not one of the conver-
gents w1, w2, . . . of the EICF expansion of x . Choose a convergent wn such that
rad[Cwn+1] < rad[Cu] � rad[Cwn ]. By Lemma 3, there is a 1-rational v adjacent to
each ofwn andwn+1 in the Farey graph such that bothwn+1 and x lie betweenwn and v
on the real line. On the other hand, the radius of Cu is larger than that of Cwn+1 , so u
does not lie between wn and v, as illustrated in Fig. 11. Therefore Rwn (x) < Ru(x),
so u is not a strong ∞-approximant of x . This completes the proof of Theorem 5.

Fig. 10 Ford circles based
at u, v and w and horocycles
based at x

w u vx

Fig. 11 Ford circles based
at u, v, wn and wn+1

wn wn+1 v ux
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7 Concluding Remark

Wehave seen that a good deal of the theory of even-integer continued fractions can be
understood by viewing such continued fractions as paths in the Farey tree. It may be
of interest to study paths in other maps on surfaces, and investigate their relationship
with continued fractions.
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Triangle Groups and Maps

David Singerman

Abstract Wedevelop aBelyi type theory that applies toKlein surfaces, i.e. (possibly
non-orientable) surfaces with boundary which carry a dianalytic structure. In partic-
ular we extend Belyi’s famous theorem from Riemann surfaces to Klein surfaces.

1 Triangle Groups

Before we discuss maps we remind the reader about the basic facts about triangle
groups. Let T (l, m, n) be a triangle with angles π/ l, π/m, π/n. Let

A = 1

l
+ 1

m
+ 1

n
.

Then T (l, m, n) exists in the hyperbolic plane if A < 1, in the Euclidean plane
if A = 1, and on the sphere if A > 1. Let Γ (l, m, n) denote the group generated
by the reflections a, b, c in the sides of T (l, m, n) opposite the vertices with angles
π/m, π/n, π/ l, resp. LetU denote either the hyperbolic plane, the Euclidean plane
or the sphere. Then the images of T (l, m, n) form a triangular tessellation (or map)
on U .

A presentation of Γ (l, m, n) is

〈a, b, c | a2 = b2 = c2 = (ab)l = (bc)m = (ca)n = 1〉.

We let Γ [l, m, n] denote the subgroup of Γ (l, m, n) consisting of those trans-
formations that preserve orientation. Then Γ [l, m, n] is generated by the rotations
x = ab, y = bc, z = ca and has presentation

〈x, y, z | xl = ym = zn = xyz = 1〉.
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Groups of the form Γ (l, m, n) are called extended triangle groups and those of
the form Γ [l, m, n] are triangle groups. Note that these groups are associated with
triangular maps on U .

2 Some Personal History

This paper is basically a personal survey of my thoughts about maps on Riemann
surfaces. A lot of it is cooperative work with Gareth Jones, and later Bernhard Koeck,
Jürgen Wolfart, and Milagros Izquierdo, and a lot comes from work that I did with
my research students, Robin Bryant, David Corn, Robert Syddall, and Paul Watson.
In 1974, I realised that associated to every map on a surface, there is a canonically
defined complex structure on that surface which is associated to that map. For exam-
ple every map automorphism is an automorphism of this Riemann surface. This
realisation came about after listening to a seminar given by Norman Biggs, where
he spoke about his result that every automorphism group of a map of genus g can
be faithfully represented in the symplectic group Sp(g, Z) [3]. As it is known that a
group of automorphisms of a compact Riemann surface of genus g can be faithfully
represented in Sp(g, Z), it was natural to enquire whether the automorphism group
of the map was also the automorphism group of some underlying Riemann surface
of genus g. In [22] I showed that this was indeed the case. Soon after Gareth Jones
and I explicitly constructed this Riemann surface in [15]. We found a subgroup M of
a triangle group which uniformizes this Riemann surface and which has many nice
properties related to this map. For example, the map is regular if and only if M is nor-
mal in the triangle group. Some years later Gareth and I were on the jury for a Ph.D.
examination in Paris. The supervisor Tony Machì pointed out to us a recent paper
“Drawing curves over number fields” by Shabat and Voevodsky which contained
many of the ideas in [15]. This paper came from the Grothendieck Festschrift and
was based on ideas first developed byGrothendieck in his Esquisse d’un Programme.
There he had set out a theory of maps but added the vital new ingredient that a the-
orem of Belyi showed that the Riemann surfaces coming from maps are precisely
those that come from complex algebraic curves defined over algebraic number fields.

3 Basic Concepts

In [11], Grothendieck called maps “dessin d’enfants” or just dessins. As we shall see
these are basically the same as hypermaps, which are slight generalisations of maps.
We prefer to use the terms map or hypermap. The observation about the relation
between maps, Riemann surfaces and algebraic curves goes back to the nineteenth
century to Felix Klein and his work on Klein’s surface of genus 3 (see [17] and for
an English translation [20]).
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A map is basically a decomposition of a surface into simply-connected polygonal
cells called faces. The most famous examples are the platonic solids on the sphere,
but we could have an infinite set of maps without any symmetry. Another way of
describing a map is as an embedding of a connected graph in a surface such that the
complement of the graph in the surface consists of a collection of simply connected
pieces, which are the faces. We could describe a hypermap in much the same way
but now we embed a hypergraph. (A hypergraph is like a graph but an edge can have
more than two vertices or only one vertex. We return to the concept of a hypermap
in Sect. 7.)

Each map will have an automorphism group mapping vertices to vertices, edges
to edges, and faces to faces, preserving incidence and preserving the orientation if the
surface is orientable. The automorphism group of a platonic solid has the property
that it acts transitively on directed edges (often these are called darts), and we use
this property to define a regular map on any surface. The theory of regular maps
was developed in the early 20th century. For a brief introduction to their history
see the beginning of Chap.8 of the book Generators and Relations for Discrete
Groups [10], where it is stated that the theory began when Kepler in 1619 stellated
a regular polyhedron to obtain the star polyhedron which is essentially a map of
twelve pentagons on a surface of genus 4 (called the great dodecahedron; {5, 5

2 }
in Coxeter’s notation). But one could also go back to the discovery of the regular
polyhedra from ancient Greece. The book of Coxeter and Moser describes many of
the regular maps of low genus. Even in this book the authors realised that there was a
relationship between regular maps and Riemann surfaces and Sect. 8 is called “Maps
on a two-sheeted Riemann surface” where they even associate an algebraic curve
with a map.

The reason why regular maps are described in a book about group theory is that
every regular map is associated with a finite group which has two generators R and
S that obey the relations Rm = Sn = (RS)2 = 1, and one can associate a regular
map with such a group. Here R could be thought of as a rotation of the darts around
a face of the map (with m being the face length of the faces of the map) and S
the rotations of the darts around a vertex (with n denoting the degree of the map’s
vertices). Conversely, given a two-generator group, with one generator of order two,
we can associate a regular map.

Another motivation for studying maps came from map colouring problems, the
four-colour problem being themost notable example. This storywill not be of interest
to us here, but this problem did lead to a study of maps well away from the regular
ones. A map can be defined by looking at the permutations of the darts. A dart is a
directed edge.We usually draw a dart as an arrow along the edge pointing to a vertex.
An edge will usually have two vertices and two darts. But we do allow edges with
just one vertex. These may be loops (which still have two darts) or free edges. These
are edges with just one vertex and one dart. For details see [15].

Let Ω denote the set of darts of a map. We define three permutations x, y, z of
the darts as follows. The permutation x is the permutation that reverses the darts on
each non-free edge, or fixes the dart on a free edge, and y cyclically permutes the
darts directed towards each vertex v in an anticlockwise direction. The cycles of the
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permutation z = y−1x then describe the order of the darts around the faces following
the orientation. (We are composing permutations on the right, so this means first do
y−1and then do x .) We then have the relations x2 = ym = zn = xyz = 1 so that
the group G generated by x, y, z is an image of the triangle group Γ = Γ [2, m, n]
which acts on one of the simply-connected Riemann surfacesU that is the Riemann
sphere if 1

m + 1
n > 1

2 , the Euclidean plane if 1
m + 1

n = 1
2 , and the hyperbolic plane

if 1
m + 1

n < 1
2 . We suppose that Γ is generated by X , Y , Z obeying the relations

X2 = Y m = Zn = XY Z = 1. Here m is the least common multiple of the vertex
valencies and n is the lest common multiple of the face valencies. The ordered pair
{n, m} is called the type of the map.

Let G be the permutation group generated by x and y and z so that G is a transitive
group acting on N points where N = |Ω|, the number of darts. Transitivity follows
from the connectedness of the map. There is then an epimorphism θ : Γ −→ G
defined by θ(X) = x , θ(Y ) = y, θ(Z) = z. If Gα is the stabilizer of a dart in Ω , we
let M = θ−1(Gα). Now M is a subgroup of index N in Γ , called a map subgroup,
and thus a Fuchsian group provided U is the hyperbolic plane. The quotient space
R = R(M ) = U /M is the Riemann surface associated with the map M and there
is an embedding of the map M in R [15, 22].

Themap subgroup turns out to tell us a lot about themap. For example, ifM1,M2

are two maps with map subgroups M1, M2 respectively, then M1 covers M2 if and
only if M1 ≤ M2 (up to conjugacy). Two maps are isomorphic if and only if their
map subgroups are conjugate in Γ and if M is a map with map subgroup M , then
the Aut (M ), the automorphism group of M , is isomorphic to NΓ (M)/M (where
NΓ (M) is the normaliser of M in Γ ) so thatM is a regular map if and only if M �Γ .

4 Belyi’s Theorem

In the theory of dessin d’enfants a crucial role is played by Belyi’s Theorem.
To state this we need the concept of a critical value. Let f : R −→ Σ be a

meromorphic function from a compact Riemann surface R to the Riemann sphere
Σ . Then f is an n-sheeted branched cover of R over Σ . This means that every point
p of Σ has at most n inverse images. If a point p has less than n inverse images then
we call p a critical value.

An analytic function w(z) is called an algebraic function if it satisfies a functional
equation

A(z, w) = a0(z)w
n + a1(z)w

n−1 + · · · + an(z) = 0, a0(z) �= 0. (1)

Here, A(z, w) is an irreducible polynomial in z andw and theai (z) are polynomials
in z, with coefficients in some subfield F of the complex numbers. For example, F
could be the field of complex numbers C, the field of real numbers R, the field Q of
algebraic numbers, or the field Q of rational numbers.
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For each value of z there are at most n values of w. So we build an n-sheeted
branched cover R of Σ such that w is a single valued function on X . We then call
R the Riemann surface of w. This was Riemann’s original approach to constructing
Riemann surfaces. These days, Riemann surfaces are defined abstractly (using charts
and atlases) as complex one-dimensional manifolds. It is a very deep result that these
two approaches are equivalent. Thus every compact Riemann surface corresponds
to a complex algebraic curve as in (1).

We say that R is defined over a field F if the polynomials ai (z) in (1) are defined
over F .

A meromorphic function β : R −→ Σ is called a Belyi map (or Belyi function)
if it has at most three critical values. By composing this function with an element of
P SL(2,C) (the automorphism group ofΣ), we can assume that these critical values
lie in the set {0, 1,∞}.
Theorem 1 (Belyi’s Theorem [2]) A compact Riemann surface R can be defined
over the field Q of algebraic numbers if and only if there exists a Belyi function
β : R −→ Σ .

If K is a subgroup of finite index in a triangle group Γ = Γ [2, m, n], then the natural
map fromU /K −→ U /Γ is a Belyi map. It can be shown that every Belyi function
is of this form [6]. Thus we see that subgroups of the triangle group Γ [2, m, n] play
an important role in the theory of maps.

We sum up this section with the following theorem.

Theorem 2 Let R be a compact Riemann surface. Then the following statements
are equivalent.

(i) R can be defined over Q,
(ii) there exists a Belyi function β : R −→ Σ ,

(iii) R = U /M where M is a subgroup of a finite index in a triangle group
Γ [2, m, n].

The statement that R defined over Q implies the existence of a Belyi function can
be found in [13]. The converse is more difficult. In the early papers on the subject it
was stated that this follows from Weil’s irreducibility criterion and was sometimes
called the “obvious” part of Belyi’s theorem. This result turned out to be far from
obvious. See [25] and also [19] for proofs.

5 Other Triangle Groups

We now play the same game after replacing Γ [2, m, n] with other similarly defined
groups.We startwith the extended triangle groupΓ (2, m, n)defined inSect. 1, gener-
ated by three reflections a, b, c in the sides of the trianglewith anglesπ/ l, π/m, π/n.
Its presentation is
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{a, b, c|a2 = b2 = c2 = (ab)2 = (bc)m = (ca)n = 1}. (2)

Note that Γ (2, m, n) contains Γ [2, m, n] with index 2 as the subgroup generated
by x = ab, y = bc.

This group is called the (non-oriented) cartographic group by Grothendieck
in [11].

Interestingly, the idea of associating a map with a triple of involutions goes back
to a paper of Tutte [23] in 1973.

We are now dealing with discrete groups that might contain orientation-reversing
transformations. Such groups are called non-Euclidean crystallographic groups or
NEC groups. If Λ is an NEC group then U /Λ might be non-orientable or might
have boundary. (There is a non-empty boundary if and only ifΛ contains reflections,
that is conjugates of a, b or c.) Such a surface is called a Klein surface. Strictly
speaking a Klein surface is one which has a dianalytic structure, which means that
the change of coordinate maps are analytic or anti-analytic, whereas for a Riemann
surface they are always analytic. Whereas compact Riemann surfaces correspond
to complex algebraic curves, compact Klein surfaces correspond to real algebraic
curves [1].

Again, we can associate a map M with a subgroup M of the extended triangle
group Γ (2, m, n). However as the group contains elements that reverse orientation,
such as reflections and glide-reflections, the maps that we construct may now lie on
non-orientable surfaces or may have boundary. We thus need to build a theory of
maps which might be non-orientable or might lie on surfaces with boundary. We also
want this theory to be related to the extended triangle group. This was first developed
by Robin Bryant in a Southampton Ph.D. thesis in 1984. See [4, 5, 14]. Whereas
the theory of maps on orientable surfaces uses darts, for non-orientable surfaces or
surfaces with boundary we use blades. A blade is one of the halves of a dart. Figure1
illustrates how an edge with two darts gives rise to four blades.

Note that each blade determines a unique vertex, edge and face and so can be
regarded as a flag.Nowon the setΩ∗ of blades ofM wecan define three permutations
τ , λ, ρ which we call the transverse reflection, the longitudinal reflection and the
rotary reflection respectively. An interior edge will have four darts. If we draw the
edge as a horizontal line then there will be two upper darts and two lower darts.
The permutation τ interchanges the upper and lower halves of the dart. If the edge
lies along the boundary we define τ to fix these darts. The longitudinal reflection
λ interchanges both the upper darts and both the lower darts of an edge. Again, it
could happen that the edge intersects the boundary but not at a vertex and then the

Fig. 1 Edge with four blades
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edge could have only two blades. We then define λ to fix those blades. Finally, we
have the rotary reflection ρ. Consider a vertex v of the map that does not lie on the
boundary. At v there is a dart which consists of two blades, b and τ(b). The blade
b determines a unique sense of orientation. (The blade τ(b) determines the opposite
orientation.) We follow that orientation around until we meet the next edge of the
map. This edge will contain two blades at v, one of which, b′ say, determines the
opposite orientation to that of b. We then define ρ(b) = b′, as in Fig. 2.

If v lies on the boundary it might be that following this orientation leads to the
boundary in which case we define ρ(b) = b, as in Fig. 3, where the circle denotes a
boundary component.

We note that λτ = x , ρτ = y and λρ = z, so that we have the relations

τ 2 = ρ2 = λ2 = (τλ)2 = (λρ)m = (ρτ)n = 1.

As an example, Fig. 4 gives a map on the Möbius band. The corresponding per-
mutations are

τ = (1, 4)(2, 3), λ = (1, 3)(2, 4), ρ = (1)(2)(3, 4).

Figure5 gives a map on the disc with

τ = (1)(2)(3, 4)(5, 6)(7, 8), λ = (1)(2)(3, 4)(5, 7)(6, 8), ρ = (1, 5)(2, 6)(3, 7)(4, 8).

Fig. 2 Rotary reflection

Fig. 3 Rotary reflection
for v lying on the boundary
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Fig. 4 Map on the Möbius
band

Fig. 5 Map on the disc

Here the dot represents a vertex, a cross a free edge, and an open square a face
centre on the boundary. These last examples come from [5].

Now in the classical theory we showed that associated to a map or dessin M
we have a canonical Riemann surface R(M ) = U /M . Here M was a Fuchsian
group provided U was the hyperbolic plane. Now let G∗ be the permutation group
generated by τ , λ, and ρ. Then there is an epimorphism θ : Γ (2, m, n) −→ G∗,
defined by θ(a) = τ, θ(b) = λ, θ(c) = ρ. If |Ω∗| = N then M∗ = θ−1(G∗

α)

is a subgroup of index N in Γ (2, m, n) and is an NEC group. The quotient space
K = U /M∗ is a Klein surface and there is an embedding of M ∗ in K .
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6 Klein Surfaces and Real Belyi Functions

We first define a real Belyi function. To do this we introduce the idea of the complex
double of a Klein surface. This is done explicitly in [1], but it is easier to use NEC
groups. It can be shown that every Klein surface S is of the form U /Λ where Λ is
an NEC group without elliptic elements. Then the complex double is the Riemann
surface S+ = U /Λ+ where Λ+ is the subgroup of Λ of index two consisting of
those transformations that preserve orientation. Note that we have a projection map
π : S+ −→ S defined by π [z]Λ+ = [z]Λ (where [z]Λ denotes the Λ-orbit of z
etc.). If S is a compact non-orientable surface without boundary then S+ is the usual
orientable two-sheeted cover. If S is a surface with boundary then S+ is obtained by
glueing the boundaries together and choosing the orientation so that S+ is orientable.

For example, if S is the projective plane then S+ is the sphere. If S is a Möbius
band then S+ is homeomorphic to a torus, and if S is an annulus then S+ is also
homeomorphic to a torus.

We let Δ denote the upper half of the complex plane including the equator which
we regard as the great circle passing through 0, 1,∞. The folding map φ : C −→
C

∗ = {a + ib|b ≥ 0} is defined by φ(a + ib) = a + i |b| and this can be extended to
a map φ : Σ −→ Δ by letting φ(∞) = ∞. Let S be a Klein surface and S+ denote
its complex double. A real Belyi function is a Belyi function β : S −→ Δ such that
the following diagram commutes.

S+ β+
��

π

��

Σ

φ

��
S

β
�� Δ

Here, β+ is a Belyi function defined on S+.
A version of Belyi’s theorem for Klein surfaces (the real Belyi theorem) was

proved in [18].

Theorem 3 Let K be a compact connected Klein surface. Then the following state-
ments are equivalent:

(i) K can be defined over Q ∩ R,
(ii) there exists a real Belyi function β : K −→ Δ,

(iii) K = U /L where L is a subgroup of a finite index in an extended triangle
group Γ (2, m, n).

Real Belyi functions can be thought of as Belyi functions on Klein surfaces.
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7 Hypermaps

We have been dealing with triangle groups of the form Γ [2, m, n]. Obviously, one
should also investigate what happens if Γ [l, m, n] was considered instead. When
we developed a theory of maps based on subgroups of Γ [2, m, n], we were aware
of work being done in Bordeaux by Robert Cori (later joined by Antonio Machì)
on hypermaps and their correspondence to subgroups of Γ [l, m, n]. In Cori’s initial
paper in 1975 [7], all hypermaps were planar (of genus 0) and the motivation was
applications to computer science. Later, David Corn in his Southampton thesis [9]
developed a theory of hypermaps based on the work of Jones and Singerman in [15]
thus thinking of a hypermap as lying on a Riemann surface. Also see [8].

Whereas a map is an embedding of a graph in a surface, a hypermap is an embed-
ding of a hypergraph in a surface X . A hypergraph is like a graph, except now
the edges can have more than two vertices or just one vertex. The Fano plane is a
well-known example. Here every (hyper)edge has three vertices. The definition of
a hypermap after Cori [7] invokes two sets called S and A (S for sommets and A
for arêtes). The elements of these sets are called the hypervertices and hyperedges
respectively. We require the set B = S ∩ A of brins to be finite, on a compact surface.
(Brin is sometimes translated to bit.) We also require X \ (S ∪ A) to be a union of
simply connected regions called hyperfaces. Note that the hypervertices, hyperedges
and hyperfaces are topological polygons with the brins as vertices. In this theory,
the brins play the same role as the darts did in the theory of maps. Again, we can
approach the theory in terms of permutations of the brins. We have three permuta-
tions x, y, z. Here x rotates the brins around a hypervertex, y rotates the brins around
a hyperedge and then the cycles of z = (xy)−1 describe the hyperfaces. If the orders
of x, y, z are l, m, n respectively, then we say that the hypermap has type {l, m, n}.
(If we perform xy we traverse two edges of a hyperface and hence the length of each
cycle of xy is half the number of sides of the corresponding hyperface.) For example,
in Fig. 6 we have three hypervertices of length 3, three hyperedges of length 3, and
three hyperfaces of length 6.

Again, as with maps, we can approach all this algebraically just using permuta-
tions. Sonowahypermap is just a transitive groupon a set B,with twogenerators x, y.

We now describe the Walsh representation of a hypermap. In the interior of each
hypervertex we place a black vertex and in the interior of a each hyperedge we place
a white vertex. If the hyperedge intersects the hypervertex in a brin we join this black
vertex to the white vertex by an edge through the brin. We end up with a map and
the number of edges of this map is the number of brins of the hypermap. This is
called the Walsh map W (H ) of the hypermap H [24]. This gives another way of
describing hypermaps. They are just bipartite maps with vertices coloured black or
white. The permutations x and y are now the cyclic rotations of the edges emanating
out of a black or white vertex.

In the Cori definition these permutations just become the anticlockwise permu-
tations of the brins around a hypervertex or hyperedge. Details about hypermaps as
bipartite maps may be found in a paper of Gareth Jones [16].
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Fig. 6 Hypermap of type
{3, 3, 3} on the torus
(opposite sides are identified)

Example. Figure6 gives a hypermap of type {3, 3, 3} on the torus formed by
identifying the opposite edges of the hexagon. The permutations are

x = (1, 2, 3)(9, 5, 8)(4, 6, 7), y = (2, 7, 9)(8, 1, 6)(3, 4, 5),

and then

z = (1, 5, 7)(2, 8, 4)(3, 9, 6).

8 Triangle Groups with Infinite Periods

An element of finite order n in a triangle group (and more generally in any Fuchsian
group) is called an elliptic element. It represents a rotation of order n. In a fundamental
region for the triangle group this rotation is about a vertex whose angle is 2π/n. We
also have limit rotations. These are rotations about points on the real axis which is
the line at infinity in the hyperbolic plane. At these points the angle is 0 = 2π/∞ so
we then have an element of infinite order which is usually referred to as a parabolic
element. (For example z �→ z +1 is a parabolic element which is a rotation about the
point at infinity.) In the presentation of the triangle group we consider the relation
z∞ = 1 as being the empty relation, so for example the triangle group Γ [l, m,∞]
has a presentation 〈x, y|xl = ym = 1〉 and so is isomorphic to a free productCl ∗Cm .

Note that there is a homomorphism from Γ [l, m,∞] to Γ [l, m, n] for any n so
that any map subgroup in Γ [2, m, n] can be pulled back to Γ [2, m,∞]. The most
well known example is Γ [2, 3,∞] which is known to be isomorphic to the classical
modular group PSL(2,Z). LetM be a triangular map on an oriented surface. If the
least common multiple of the vertex valencies is equal to N , then this map can be
represented by a map subgroup M lying in the triangle group Γ [2, 3, N ]. There is
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a homomorphism θ : P SL(2,Z) −→ Γ [2, 3, N ] and then M can be pulled back
to a subgroup θ−1(M) inside the classical modular group. Thus all triangular maps
correspond to subgroups of the classical modular group. The converse is true if we
allow degenerate triangular maps, where triangles can degenerate to points. (This
occurs where the image of y in the permutation group has a fixed point.)

In the sameway, all hypermaps can be represented by subgroups ofΓ [∞,∞,∞].
This group is just the free group F2 on two generators so there is a ono-to-one
correspondence between hypermaps and the conjugacy classes of subgroups of F2.

Another way of connecting together maps and hypermaps is to use inclusions of
triangle groups. The list of all possible inclusions between triangle groups is given
in [21]. The simplest of these inclusions is Γ [m, m, n] < Γ [2, m, 2n] with index
2. Hence Γ [∞,∞,∞] < Γ [2,∞,∞] with index 2 and so if we take a hypermap
subgroup H of index N in Γ (∞,∞,∞) it becomes a map subgroup of index 2N in
Γ [2,∞,∞]. This corresponds to the Walsh representation of a hypermap where we
go from a hypermap with N brins to a map with 2N darts, see [8]. A consequence
is that there are no more Riemann surfaces, or algebraic curves, that we get from
hypermaps than we do from maps.

One should also consider subgroups of Γ (l, m, n)where none of l, m, n are equal
to 2. These should correspond to hypermaps on non-orientable surfaces or surfaces
with boundary. A basic theory was developed in [12].

9 Away from Triangle Groups

Triangle groups are just Fuchsiangroupswith three periods. It is possible to generalise
the above theories by considering Fuchsian groupswithmore than three periods. This
leads to the work of Zvonkin [26]. He defines a k-constellation to be a sequence of
permutations σ1, σ2 . . . , σk with σ1σ2 . . . σk = 1, acting transitively on a finite set.
This idea was also mentioned in [22] where it was given the rather ugly name of
marked finite permutation group. The theory of constellations is still in its infancy.
One thing is worth mentioning here. Triangle groups are rigid. Any two isomorphic
triangle groups are conjugate in the group of all Möbius transformations. Hence their
subgroups correspond to the same Riemann surface or algebraic curve. As soon as
k > 3, there is a whole continuum of Riemann surfaces. This leads to Teichmüller
theory and well away from discrete mathematics.
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Nilpotent Symmetric Dessins of Class Two

Na-Er Wang, Roman Nedela and Kan Hu

Abstract A dessin is a cellular embedding of a connected bipartite graph into an
orientable closed surface with a fixed colouring of vertices and prescribed global
orientation. A dessin is regular if its group of colour- and orientation-preserving
automorphisms acts regularly on the set of edges, and a regular dessin is symmetric
if it admits an external symmetry transposing the vertex colours. The symmetric
dessins whose automorphism groups are nilpotent of class two are classified.

1 Introduction

A map M is a 2-cell embedding of a connected graph into an orientable closed
surface. A dessin is a bipartite map with a fixed colouring of vertices and prescribed
global orientation. A dessin is often defined by a 2-cell embedding of a bipartite
bicoloured graph.An automorphismof a dessinD is a permutation of the edgeswhich
preserves the graph incidence and vertex colourings, and extends to an orientation-
preserving self-homeomorphismof the supporting surface. The set of automorphisms
of D forms the automorphism group Aut(D) under composition. It is well known
that Aut(D) acts semi-regularly on the edges. If this action is transitive, and hence
regular, then the dessin is called regular as well.

Dessins were introduced by Grothendieck as a tool to investigate the absolute
Galois group. By Belyi theorem each dessin determines an algebraic curve defined
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over the field of algebraic numbers. Through this correspondence a faithful action of
the absolute Galois group on dessins is defined. It is known that this action remains
faithful if we are restricted to plane trees, or to regular dessins. For more details on
this interesting correspondence the reader is referred to [24, 26].

For several reasons classification of regular dessins became important in the devel-
opment of this area of research. The regular dessins have been studied by imposing
certain constraints on the supporting surfaces, on the embedded graphs or on their
automorphism groups; see [4, 6, 9, 10, 13, 17, 18, 20, 25] and references therein.

In the present paper we follow the third approach and investigate regular dessins
with a nilpotent automorphism group, focusing on those with an external symmetry
that transposes the vertex colours. These will be referred to as nilpotent symmetric
dessins. Symmetric dessins have appeared in the classification of regular embeddings
of complete bipartite graphsKn,n [9, 10, 17, 19, 20]. In particular, if n is prime power,
then the automorphism group of the respective dessin is a p-group, and therefore
the dessin is nilpotent symmetric. Nilpotent regular dessins of class one, namely
the abelian dessins, were investigated by several authors [11, 12, 23]. A complete
classification of the abelian dessins can be found in [13]. The curves associated to
the abelian dessins include some popular families of curves such as the curves of
Fermat and Lefschetz type.

In this paper we classify the symmetric dessins whose automorphism groups are
nilpotent of class two. Similarly as in the theory of nilpotent groups, we first show
that nilpotent dessins decompose into a parallel product of dessins whose automor-
phism groups are p-groups. This allows us to reduce the classification problem to
the classification of symmetric dessins whose automorphism groups are p-groups of
class two. This is done in two steps.We first classify the symmetric p-dessins of class
twowith simple underlying graphs; see Theorem 1. Thenwe extend the classification
to the general case; see Theorems 2 and 3.

2 Algebraic Dessins

In this section, we briefly outline the algebraic theory of regular dessins; see [7, 18]
for more details.

Let D be a dessin on an orientable surface S . The fixed global orientation of
S induces two permutations ρ and λ which cyclically permute the edges around
the black and white vertices, respectively. Due to the connectivity of the underlying
graph, the group Mon(D) = 〈ρ, λ〉 acts transitively on the edges of D . Conversely,
given a triple (E; ρ, λ), whereE is a non-empty finite set andρ, λ ∈ Sym(E) generate
a transitive permutation group on E, a dessin D is defined as follows: We identify
the elements of E with the edges, and the cycles of ρ and λ with the black and
white vertices ofD , with the incidence given by containment. In this way we obtain
a bipartite graph G . The cyclic order of every cycle of the permutations ρ and λ

determine the local rotation of edges around the respective vertex. In this way an
embedding of G into an oriented surface is determined.
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Let Di = (Ei; ρi, λi) (i = 1, 2) be two dessins. A homomorphism from D1 to D2

is a mapping φ : E1 → E2 such that

ρ1φ = φρ2 and λ1φ = φλ2,

where the composition is from the left to the right. In particular, if φ is a bijection,
then it is called an isomorphism from D1 to D2 and is denoted by D1

∼= D2. An
isomorphism of a dessin D onto itself is called an automorphism of D . The set of
automorphisms of D forms the automorphism group Aut(D) of D under compo-
sition. By the above commuting rule we have Aut(D) = CSym(E)(Mon(D)), the
centralizer of Mon(D) in the symmetric group Sym(E). Since Mon(D) is transitive,
Aut(D) is semiregular on E. If the action is transitive, and hence regular, then the
dessin is called a regular dessin.

Every regular dessin D can be identified with a triple (G, x, y) called an an alge-
braic dessin where G = Aut(D), and x and y generate, respectively, the cyclic
stablizers of a black vertex and an adjacent white vertex. The monodromy group
and the automorphism group of D are identified with the right and the left regu-
lar representations of G, respectively. Under the identification two regular dessins
(Gi, xi, yi) (i = 1, 2) are isomorphic if the assignment x1 �→ x2, y1 �→ y2 extends to
an isomorphism from G1 onto G2.

For a regular dessin D = (G, x, y), the triple (l, m, n) is called the type of D
where l = o(x), m = o(y) and n = o(xy). The genus g of D is the genus of its
supporting surface. It is determined by the Euler-Poincaré formula

2 − 2g = |G|
(
1

l
+ 1

m
+ 1

n
− 1

)
.

3 External Symmetries

Every dessinD = (E; ρ, λ)determines a transitive permutation representationF2 →
Mon(D), X �→ ρ, Y �→ λ where F2 = 〈X, Y | −〉 is the free group of rank two.
The stabilizer N in F2 of an element e ∈ E is a subgroup of finite index in F2.
This subgroup is uniquely determined up to conjugacy, and will be referred to as the
dessin subgroup associated with D . In particular, a regular dessin D corresponds to
a normal subgroup N , in which case Aut(D) ∼= F2/N .

LetD be a dessin, and let N be the associated dessin subgroup. An automorphism
σ of F2 sendsN toNσ , and hence transformsD to a dessinDσ . In particular if σ is an
inner automorphism of F2, then N is conjugate to Nσ , and henceD is isomorphic to
Dσ . It follows that the outer automorphismgroupΩ := Out(F2) = Aut(F2)/Inn(F2)

acts as the group of dessin operations on the isomorphism classes of dessins.
For example, the operation ωτ induced by the automorphism τ : X �→ Y , Y �→ X

transposes black and white vertices while preserving faces and orientation. This is
one of the six duality operations studied in [21]. The operation ωπ induced by the
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automorphism π : X �→ X−1, Y �→ Y reverses the orientation around the black
vertices but preserves it around the white vertices. Note that the automorphism π1 =
τπτ : X �→ X, Y �→ Y−1 induces operation which reverses the orientation around
the white vertices while preserves it around the black ones. These are sometimes
called Petrie operations, since they transpose faces and Petrie polygons (the zig-zag
walks). Finally the automorphism ι = ππ1 : X �→ X−1, Y �→ Y−1 induces an
operation ωι which transforms a dessin to its mirror image. The two operations ωτ

and ωπ generate a maximal finite subgroup Ω1 := 〈ωτ , ωπ 〉 ∼= D8 of Ω [21].
Regular dessins which are invariant under a certain operation are said to possess a

corresponding external symmetry. More specifically, a regular dessinD is symmetric
if ωτ (D) ∼= D , self-Petrie-dual if ωπ(D) ∼= D , and reflexible if ωι(D) ∼= D .
Moreover, a regular dessin will be called �1-invariant if it is invariant under all
operations in �1, and �-invariant (or totally symmetric) if it is invariant under all
dessin operations.

Given two regular dessinsDi = (Gi, xi, yi) (i = 1, 2), letNi be the associated nor-
mal dessin subgroups. Then N1 ∩N2, being the intersection of two normal subgroups
of finite index in F2, is also a normal subgroup of finite index in F2. The correspond-
ing regular dessin is called the parallel product of D1 and D2 and is denoted by
D1 ∨D2. In particular, if gcd(|G1|, |G2|) = 1 andDi (i = 1, 2) are symmetric (resp.
self-Petrie-dual, reflexible), then so is D1 ∨ D2 [13, Proposition 10].

The existence of multiple edges of a regular dessin D = (G, x, y) depends on
the non-triviality of the central subgroup K = 〈x〉 ∩ 〈y〉 in G. The subgroup K � G
determines a unique regular dessin D̄ = (Ḡ, x̄, ȳ) with the simple underlying graph,
where Ḡ = G/K , x̄ = xK and ȳ = yK . Such a quotient dessin will be referred to
as the shadow dessin of D . Regular dessins with simple underlying graphs will be
called simple regular dessins.

Proposition 1 [13, Corollary 5] The shadow dessin of a symmetric dessin is sym-
metric, and the shadow dessin of a reflexible dessin is reflexible.

Proposition 2 Let D = (G, x, y) be a regular dessin. If D is self-Petrie-dual, then
the underlying graph of D has multiplicity at most two.

Proof Assume that the underlying graph of D has multiplicity m. Then o(x) = mr
and o(y) = ms for some positive integers r, s, and 〈x〉∩ 〈y〉 = 〈xr〉 = 〈ys〉. It follows
that ys = xrε for some ε coprime to m. Since D is self-Petrie-dual, the assignment
π : x �→ x−1, y �→ y extends to an automorphism of G. Hence

ys = π(ys) = π(xrε) = x−rε.

Combining this with the preceding relation we get y2s = 1. Therefore m | 2. 
�
Let D = (G, x, y) be a symmetric dessin of type (m, m, n). Another set of

operations on dessins preserving the automorphism group was introduced by Wil-
son [28]. The jth Wilson’s operation Hj transforms D to a symmetric dessin
Hj(D) = (G, xj, yj) where j is coprime to m.



Nilpotent Symmetric Dessins of Class Two 319

Proposition 3 Let Di be two symmetric dessins of type (mi, mi, ni) (i = 1, 2), and
let Hj be the jth Wilson’s operation.

1. If m2 | m1, then for each number j such that gcd(j, m2) = 1 there is a number j′
such that j′ ≡ j (mod m1) and gcd(j′, m1) = 1.

2. D1 covers D2 if and only if Hj(D1) covers Hj(D2) where j is coprime to m1.

Proof The first part follows from [14, Lemma 1]. To prove the second we let Di =
(Gi, xi, yi) (i = 1, 2). If D1 covers D2, then the assignment φ : x1 �→ x2, y1 �→ y2
extends to an epimorphism from G1 onto G2. Since o(x1) = o(y1) = m1 and o(x2) =
o(y2) = m2, we have m2 | m1. Since j is coprime to m1, j is also coprime to m2.
So we have Hj(Di) = (Gi, xj

i , yj
i) (i = 1, 2). Observe that φ(xj

1) = (φ(x1))j = xj
2

and φ(yj
1) = (φ(y1))j = yj

2. It follows that the assignment xj
1 �→ xj

2, yj
1 �→ yj

2
determines the same epimorphism from G1 onto G2 as φ, and hence Hj(D1) covers
Hj(D2). Conversely, if Hj(D1) covers Hj(D2), then D1 = Hk(Hj(D1)) covers D2 =
Hk(Hj(D2)) where kj ≡ 1 (mod m1). 
�

4 Nilpotent Regular Dessins

In this section we recall some known facts on nilpotent groups and nilpotent regular
dessins. Let G be a finite group. The upper central series for G is the series

1 = Z0 ≤ Z1(G) ≤ Z2(G) ≤ · · · ≤ Zi(G) ≤ Zi+1(G) ≤ · · · ,

where Zi(G) (i ≥ 1) is defined by the rule: Zi(G)/Zi−1(G) is the center ofG/Zi−1(G).
A group G is nilpotent if its upper central series contains G. It is well known that in
a finite nilpotent group G, the upper central series has finite length c. The number c
is called the class of G, and is denoted by c(G).

Lemma 1 [15, Chap. III, Lemma 1.11] Let G = 〈x, y〉 be a group. Then G′ =
〈[x, y]g | g ∈ G〉.
Lemma 2 [15, Chap. III, Lemma 1.3] Let G be a nilpotent group of class two. Then,
for any x, y ∈ G,

[xn, y] = [x, yn] = [x, y]n and (xy)n = xnyn[y, x](n
2),

where n ≥ 1 is a positive integer.

A regular dessin whose automorphism group is a p-group will be called a regular
p-dessin. It is well known that every nilpotent group is a direct product of its Sylow
subgroups. So ifD = (G, x, y) is a nilpotent regular dessin, then for each prime factor
p of |G|, G = Gp × K where Gp denotes the Sylow p-subgroup of G, supplemented
by K . The quotient Dp = (G/K, xK, yK) is a regular p-dessin with Aut(Dp) ∼= Gp.
It will be the called the Sylow p-dessin of D .
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Lemma 3 [13, Theorem 12] Every nilpotent regular dessin D = (G, x, y) is
uniquely decomposed into a parallel product of its Sylow p-dessins Dp where p
ranges over all distinct prime factors of |G|. Moreover, D possesses an external
symmetry if and only if so does every Sylow p-dessin of D .

For nilpotent regular dessins with multiple edges we have

Lemma 4 [13, Proposition 11] Let D = (G, x, y) be a nilpotent regular dessin, and
let D̄ = (Ḡ, x̄, ȳ) be its shadow dessin. If c(G) = c ≥ 2, then c − 1 ≤ c(Ḡ) ≤ c.
Conversely, if c(Ḡ) = c, then c ≤ c(G) ≤ c + 1.

We end this section by a classification of abelian p-dessins proved in [13].

Lemma 5 [13, Theorem 19, Corollary 21] Let p be a prime, and let a and b be
integers, 0 ≤ b ≤ a. Then each regular dessin D = (G, x, y) with G ∼= Zpa × Zpb is
determined by the presentation

G = 〈x, y | xpa = ypb+c = [x, y] = 1, ypb = xepa−c〉, (1)

where

0 ≤ c ≤ a − b and e ∈ Z
∗
pc . (2)

Moreover, up to the duality swapping the black and white vertices, the isomor-
phism classes of regular dessins D with Aut(D) ∼= Zpa × Zpb are in one-to-one
correspondence with the integer pairs (c, e) satisfying (2).

Finally, the dessin D is symmetric if and only if c = a − b and e2 ≡ 1 (mod pc),
and it is simple if and only if a = b.

5 Simple Symmetric p-Dessins of Class Two

Recall that a simple regular dessin is a regular dessin with simple underlying graph.
In this section we classify the simple symmetric p-dessins of class two. In order to
state the result we let G(p; a, b, c) be a p-group with a presentation

〈x, y | xpa = ypa = zpa+b−c = [x, z] = [y, z] = 1, zpb = x−pc
ypc

, z = [x, y]〉. (3)

Theorem 1 Let p be a prime, and let D be a simple symmetric p-dessin of class two,
then D ∼= (G(p; a, b, c), xδ, yδ) where

max(0, 1 + c − a) ≤ b ≤ c ≤ a ≤ 2c − b and δ ∈ Z
∗
pa−c . (4)

Proof Let D = (G, x1, y1) be a symmetric p-dessin of class two. Then the mapping
τ : x1 �→ y1, y1 �→ x1 extends to an automorphism of G. Assume that o(x1) = pa
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where a ≥ 0. Then o(y1) = o(τ (x1)) = o(x1) = pa. Define z1 = [x1, y1] and assume
that o(z1) = pd . Since c(G) = 2, we have G′ ≤ Z(G), and hence by Lemma 1
G′ = 〈z1〉 ∼= Zpd where d ≥ 1.

Note that τ(z1) = [τ(x1), τ (y1)] = z−1
1 . We have τ(〈x1〉 ∩ 〈z1〉) = 〈y1〉 ∩ 〈z1〉. So

〈x1〉 ∩ 〈z1〉 and 〈y1〉 ∩ 〈z1〉, being subgroups of the same order in the cyclic group
G′ = 〈z1〉, are identical. It follows that

〈x1〉 ∩ 〈z1〉 = (〈x1〉 ∩ 〈z1〉) ∩ (〈y1〉 ∩ 〈z1〉) = 〈x1〉 ∩ 〈y1〉 ∩ 〈z1〉 ⊆ 〈x1〉 ∩ 〈y1〉.

By our assumption D is simple, so 〈x1〉 ∩ 〈y1〉 = 1. Therefore 〈x1〉 ∩ 〈z1〉 = 1.
By Lemma 2, zpa

1 = [xpa

1 , y1] = 1, we get d ≤ a. Let N = 〈x1, z1〉. Since zy1
1 = z1

and xy1
1 = x1z1, we have N � G and G/N = 〈y1N〉. Assume that G/N ∼= Zpc where

0 ≤ c ≤ a. Then ypc

1 = xκpl

1 zμpb

1 for some integers l, b, μ, κ where 0 ≤ l ≤ a,

0 ≤ b ≤ d, μ ∈ Z
∗
pd−b and κ ∈ Z

∗
pa−l . Since [x1, ypc

1 ] = [x1, xκpl

1 zμpb

1 ] = 1, we have

ypc

1 ∈ Z(G). Note that Z(G) char G, we get xpc

1 = τ(ypc

1 ) ∈ Z(G).
We proceed to prove that c = l. Without loss of generality we suppose to the

contrary that c < l. The relation ypc

1 = xκpl

1 zμpb

1 can be rewritten as the form zμpb

1 =
x−κpl

1 ypc

1 . It follows that

z−μpb

1 = (zμpb

1 )τ = (x−κpl

1 ypc

1 )τ = y−κpl

1 xpc

1 .

By equating these two relations, we get x−κpl

1 ypc

1 = x−pc

1 yκpl

1 , or equivalently,

x(κpl−c−1)pc

1 = y(1−κpl−c)pc

1 . (5)

Recall that 〈x1〉 ∩ 〈y1〉 = 1. So by the identity (5) we have c = a. This contradicts

the assumption that c < l ≤ a. Therefore zμpb

1 = x−κpc

1 ypc

1 , and the identity (5) is of
the form x(κ−1)pc

1 = y(1−κ)pc

1 . Since 〈x1〉 ∩ 〈y1〉 = 1, we get k ≡ 1 (mod pa−c). Thus,

zμpb

1 = x−pc

1 ypc

1 . (6)

The identity implies that o(zμpb

1 ) = o(x−pc

1 ypc

1 ) = pa−c. So o(z) = pa+b−c, and hence
d = a + b − c. Therefore G has a presentation

〈x1, y1|xpa

1 = ypa

1 = zpa+b−c

1 = [x1, z1] = [y1, z1] = 1, zμpb

1 = x−pc

1 ypc

1 , z1 = [x1, y1]〉.

We show that the parameters a, b and c satisfy condition (4). First we deduce

from the relation xy1
1 = x1z1 that x1 = x

xpc

1 zμpb

1
1

(6)= x
ypc

1
1 = x1zpc

1 . So zpc

1 = 1, and hence
a + b − c ≤ c. This is equivalent to b − c ≤ c − a or a ≤ 2c − b. Since c ≤ a, we
get b ≤ c ≤ a ≤ 2c − b. Recall that 1 ≤ d = b + a − c, we get 1 + c − a ≤ b.
Combining this with the inequality 0 ≤ b yields max(0, 1 + c − a) ≤ b.
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Finally, let δ be the modular inverse of μ in Zpa−c , that is, δμ ≡ 1 (mod pa−c). It
is straightforward to verify that the assignment x1 �→ xδ, y1 �→ yδ extends to a group
isomorphism from G onto G(p; a, b, c). Hence D ∼= (G(p; a, b, c), xδ, yδ). 
�
Corollary 1 Let G(p; a, b, c) be the group as above, then the following statements
hold true:

1. The group G(p; a, b, c) is a p-group of class two and order p2a+b.
2. Two groups G(pi; ai, bi, ci) (i = 1, 2) are isomorphic if and only if p1 = p2,

a1 = a2, b1 = b2 and c1 = c2.
3. The group G(p; a, b, c) underlies ϕ(pa−c) simple symmetric p-dessins where ϕ

is the Euler’s totient function, and these dessins form a single orbit under the
Wilson’s operation.

Proof Let G = G(p; a, b, c). In the proof of Theorem 1 we have seen that N =
〈x1, z1〉 � G and G/N = 〈y1N〉. So |G| = |N ||〈y1N〉| = pa+d+c = p2a+b. By the
presentation of G it is clear that G has class two.

Moreover, since G′ = 〈z〉 ∼= Zpa+b−c and G/G′ ∼= Zpa × Zpc , distinct parameters
correspond to non-isomorphic groups.

Finally, we have also shown that ifD is a simple symmetric p-dessin of class two,
then D ∼= (G; xδ, yδ) where δ ∈ Z

∗
pa−c . It is clear that distinct parameters δ ∈ Z

∗
pa−c

give rise to non-isomorphic regular dessins. Hence there are precisely ϕ(pa−c) simple
symmetric p-dessins D with Aut(D) ∼= G. Let Hδ be the δth Wilson’s operation.
Then Hδ transforms the regular dessin (G, x, y) to (G, xδ, yδ), and hence the regular
dessins (G, xδ, yδ) (δ ∈ Z

∗
pa−c) form a single orbit under the Wilson’s operation. 
�

Corollary 2 The type and genus of the simple symmetric p-dessins D of class two
with Aut(D) ∼= G(p; a, b, c) determined in Theorem 1 are given in Table1.

Proof Let G = G(p; a, b, c). In the proof of Theorem 1 we have shown that if D is
a simple symmetric p-dessin of class two, then D ∼= (G, x1, y1) where x1 = xδ and
y1 = yδ . To derive the type and genus of the dessin it suffices to evaluate the order
of x1y1.

Assume that o(x1y1) = pn. Then by Lemma 2 we have (x1y1)pn = xpn

1 ypn

1 z
−(pn

2 )
1 ,

so xpn

1 ypn

1 z
−(pn

2 )
1 = 1, and hence ypn

1 = x−pn

1 z(
pn

2 )
1 ∈ N = 〈x1, z1〉. By the minimality

Table 1 Type and genus of the simple symmetric dessins

Classes Subclass Type Genus

p > 2 1 ≤ b ≤ c ≤ a ≤ 2c − b (pa, pa, pa) 1 + pa+b(pa − 3)/2

p = 2 1 ≤ b = c = a (2a, aa, aa+1) 1 + 2a+b−2(2a+1 − 5)

p = 2 2 ≤ b + 1 ≤ c = a (2a, 2a, 2a) 1 + 2a+b−1(2a − 3)

p = 2 1 ≤ b + 1 = c = a − 1 (2a, 2a, 2a−1) 1 + 2a+b+1(2a−2 − 1)

p = 2 2 ≤ b + 2 ≤ c < a ≤ 2c − b (2a, 2a, 2a) 1 + 2a+b−1(2a − 3)
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of c (see the proof of Theorem 1) we have c ≤ n. Recall that zμpb

1 = x−pc

1 ypc

1 , so

xpc

1 = ypc

1 z−μpb

1 . Then by Lemma 2 we have

(x1y1)
pc = xpc

1 ypc

1 z
−(pc

2 )
1 = (ypc

1 z−μpb

1 )ypc

1 z
−(pc

2 )
1 = y2pc

1 z
−((pc

2 )+μpb)

1 . (7)

Let o(y2pc

1 ) = ps and o(z(
pc

2 )+μpb

1 ) = pt . Since 〈y1〉 ∩ 〈z1〉 = 1 and y1 commutes with
z1, we have n = c + max(s, t). Recall that o(y1) = pa and o(z1) = pa+b−c where
b ≤ c ≤ a.

If p is an odd prime, then s = a − c and t ≤ a − c. So in this case n = c + s = a.

If p = 2, then z(
2c

2 )+μ2b

1 = z2
c−1(2c−1)+μ2b

. By the condition (4) we distinguish five
subcases. (i) If b = c = a, then s = 0 and t = 1, and hence n = a + 1. (ii) If
b + 1 ≤ c = a, then s = 0 and t = 0, and hence n = a. (iii) If b = c < a, then by
(4) we have a + b ≤ 2c = 2b, so a ≤ b; since b ≤ c ≤ a, we have a = b = c, a
contradiction. Hence this case cannot happen. (iv) If b + 1 = c < a, then by (4) we
have b + a − c ≤ c = b + 1, and hence a ≤ c + 1. Since a > c, b + 1 = c = a − 1.
Therefore s = 0 and t = 0. Consequently n = a − 1. (v) If b + 2 ≤ c < a, then
s = a − c − 1 and t = a − c. Hence n = a. 
�
Corollary 3 LetD be a simple symmetric p-dessin from Theorem 1. IfD is reflexible,
then it isomorphic to one of the following regular dessins:

1. D1(p, a, b) = (G, x, y) where p is an odd prime, 1 ≤ b ≤ a, and

G = 〈x, y | xpa = ypa = zpb = [x, z] = [y, z] = 1, z = [x, y]〉.

2. D2(a, b) = (G, x, y) where 1 ≤ b ≤ a and

G = 〈x, y | x2
a = y2

a = z2
b = [x, z] = [y, z] = 1, z = [x, y]〉.

3. D3(a, b) = (G, x, y) where 0 ≤ b ≤ a − 2, and

G = 〈x, y | x2
a = y2

a = zpb+1 = [x, z] = [y, z] = 1, z2
b = x2

a−1
y2

a−1
, z = [x, y]〉.

Moreover, the reflexible and symmetric simple p-dessins of class two are all self-
Petrie-dual.

Proof Let D = (G, x1, y1) where G = G(p; a, b, c) and x1 = xδ, y1 = yδ . If D is
reflexible, then the assignment ι : x1 �→ x−1

1 , y1 �→ y−1
1 extends to an automorphism

of G. We have ι(z1) = [ι(x1), ι(y1)] = [x−1
1 , y−1

1 ] = z1. Recall that zμpb

1 = x−pc

1 ypc

1 ,

so zμpb

1 = ι(zμpb

1 ) = ι(x−pc

1 ypc

1 ) = xpc

1 y−pc

1 . Equating these two relations yields x2pc

1 =
y−2pc

1 . Recall that 〈x1〉 ∩ 〈y1〉 = 1. Therefore, if p > 2 then a = c, and if p = 2
then either c = a or c = a − 1, giving the three families of dessins listed above.
Conversely, it is straightforward to verify that the three families of regular dessins
are all reflexible.
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Moreover, if the symmetric p-dessin (G, x1, y1) is self-Petrie-dual, then it is also
reflexible. Checking the reflexible dessins it is easy to verify that they are all self-
Petrie-dual. The details are left as an exercise to the reader. 
�
Corollary 4 Let p be a prime and a ≥ 1, and let ξ denote the number of isomorphism
classes of pa-valent simple symmetric p-dessins of class two. Then

ξ =
{

p + 1
p − 1 (p

a
2 − 1), if a is even,

2
p − 1 (p

a+1
2 − 1) − 1, if a is odd.

Proof By Theorem 1 and Corollary 1, the number ξ is equal to the number of triples
(b, c, δ) where b and c satisfy (4) and δ ∈ Z

∗
pa−c . If a = c, then these conditions

reduce to 1 ≤ b ≤ c = a and δ = 1. If a > c, then by the relations a ≤ 2c − b
and b ≥ max(0, 1 + c − a) = 0 we have 2c ≥ a + b ≥ a, and hence (4) reduces to
a/2 ≤ c ≤ a and 0 ≤ b ≤ 2c − a. Let l = �a/2�, we have l = a/2 if a is even, and
l = (a + 1)/2 if a is odd. Then

ξ = a +
a−1∑

c=l

(2c − a + 1)ϕ(pa−c)

= a + 2
a−1∑

c=l

cϕ(pa−c) − (a − 1)
a−1∑

c=l

ϕ(pa−c)

= a + 2(p − 1)
a−1∑

c=l

cpa−c−1 − (a − 1)(pa−l − 1),

= 2(pa−l − 1)

p − 1
+ (2l − a + 1)pa−l − 1.

The value of ξ is obtained by substitution for l. 
�
Remark 1 A triple (G, x, y) is called an n-isobicyclic triple if G is a finite group,
G = 〈x〉〈y〉where o(x) = o(y) = n, and the assignment τ : x �→ y, y �→ x extends to
an automorphism of G. The notion of n-isobicyclic triples (G, x, y)was employed by
Jones et al. to classify regular embeddings of the complete bipartite graphsKn,n,where
G is the index-two subgroup of colour- and orientation-preserving automorphisms,
see [20]. Each such amap defines a simple symmetric dessinD = (G, x, y). If n = pa

is a prime power, then the dessin is a simple symmetric p-dessin. In what follows we
determine which of these dessins are of class two.

Let D = (G, xδ, yδ) be the simple symmetric p-dessins classified in Theorem 1
where G = G(p; a, b, c). Since o(xδ) = o(yδ) = pa and 〈xδ〉∩〈yδ〉 = 1, |〈xδ〉〈yδ〉| =
|〈xδ〉||〈yδ〉| = p2a. By Corollary 1 |G| = p2a+b. It follows that (G, xδ, yδ) is a pa-
isobicyclic triple if and only if b = 0, in which case it corresponds to a regular
embedding of the complete bipartite graphKpa,pa . To give the identification, we recall
that Wilson’s operation preserves the underlying bipartite graph, so by Corollary 1
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it suffices to verify the symmetric dessin (G, x, y). Since b = 0, by the presentation
we have z = x−pc

ypc
. By (4) we have 1 ≤ c + 1 ≤ a ≤ 2c. Let h = x−1y and g = x.

Then
hg = hxpc

y−pc
.

If p is odd, then hpc = (x−1y)pc = x−pc
ypc

z(
pc

2 ) = x−pc
ypc

. So hg = h1−pc
, and

henceG ismetacyclic. The associated symmetricp-dessins correspond to the subclass
M (p; e, f ) (e/2 ≤ f < e) of regular embeddings of Kpe,pe [19].

On the other hand, if p = 2 and a ≤ 2c −1, then h2c = x−2c
y2

c
z(

2c

2 ) = x−2c
y2

c
. So

we have hg = h1−2c
, and hence G is metacyclic. While if p = 2 and c + 2 ≤ a = 2c,

then

z2
c−1 = (x−2c

y2
c
)2

c−1 = x−22c−1
y2

2c−1 = (x−2c+1
y2

c+1
)2

c−2 = h22c−1
,

and hence

h2c = (x−1y)2
c = x−2c

y2
c
z2

c−1(2c−1) = x−2c
y2

c
h22c−1(2c−1) = x−2c

y2
c
h−22c−1

.

Consequently hg = hx2
c
y−2c = h1−2c(1+2c−1). Therefore G is metacyclic as well.

These dessins cover the subclass M (2; e, f ) (e/2 ≤ f < e) of regular embeddings
of K2e,2e with a metacyclic subgroup of colour- and orientation-preserving automor-
phisms classified in [9].

Finally, if p = 2 and c + 1 = a = 2c, then c = 1 and a = 2. In this case, the
group G is non-metacyclic, and the dessin corresponds to a regular embedding of
K4,4 into the torus, denoted N (4; 0, 0) in [10, Theorem1.1].

6 Symmetric p-dessins of Class Two with Multiple Edges

By Lemma 4 the shadow dessin D̄ of a symmetric p-dessinD of class two is a simple
symmetric p-dessin D of class one or two. If D̄ is of class one, then it is an abelian
simple symmetric p-dessin fromLemma 5. In the second case, by Theorem 1we have
D̄ ∼= (G, xδ, yδ) where G = G(p; a, b, c) and a, b and c satisfy (4) and δ ∈ Z

∗
pa−c . In

what follows we shall distinguish these two cases.
In order to formulate our first result in this section, we let L(p; a, b, m) be a group

with a presentation

L(p; a, b, m) = 〈x, y | xpa+m = ypa+m = 1, ypa = xpa
, [x, y] = xpa+b〉. (8)

Theorem 2 Let p be a prime, a ≥ 0 and m ≥ 1, and let D be a class-two symmetric
p-dessin of multiplicity pm. If the shadow dessin of D is the pa-valent abelian simple
symmetric dessin, then D ∼= (L(p; a, b, m), xζγ , yζ ) where

0 ≤ b < m ≤ a + b, (9)
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and γ ∈ Z
∗
pm , ζ ∈ Z

∗
pm−b satisfy the following conditions

γ 2 ≡ 1 (mod pm) and γ ≡ −1 (mod pm−b). (10)

Proof Let D = (G, x1, y1) and K = 〈x1〉 ∩ 〈y1〉. Then by the assumption D̄ =
(Ḡ, x̄, ȳ) is a pa-valent abelian simple symmetric p-dessin where G = G/K , x̄ = xK
and ȳ = yK . By Lemma 5 we have

Ḡ = 〈x̄1, ȳ1 | x̄pa

1 = ȳpa

1 = [x̄1, ȳ1] = 1̄〉.

So G, being a cyclic extension of Ḡ by K = 〈x1〉 ∩ 〈y1〉 ∼= Zpm , has a presentation

〈x1, y1 | xpa+m

1 = ypa+m

1 = 1, yγ pa

1 = xpa

1 , [x1, y1] = xζpa+b

1 〉,

where 0 ≤ b ≤ m, γ ∈ Z
∗
pm and ζ ∈ Z

∗
pm−b .

By the assumption the group G is of class two, so [x1, y1] �= 1, and hence b < m.

Clearly [x1, y1] ∈ Z(G). So by Lemma 2we have 1 = [x1, ypa

1 ] = [x1, y1]pa = xζp2a+b

1 ,
which implies m ≤ a + b.

Since D is symmetric, the assignment τ : x1 �→ y1, y1 �→ x1 extends to an
automorphism of G. So we have xγ pa

1 = τ(yγ pa

1 ) = τ(xpa

1 ) = ypa

1 . Combining this

relation with yγ pa

1 = xpa

1 yields xpa

1 = xγ 2pa

1 , which implies that γ 2 ≡ 1 (mod pm).

Similarly we have [y1, x1] = τ([x1, y1]) = τ(xζpa+b

1 ) = yζpa+b

1 . It follows that yζpa+b

1 =
[y1, x1] = x−ζpa+b

1 = y−ζγ pa+b

1 , or equivalently yζ(γ+1)pa+b

1 = 1. Since b ≤ m and
ζ ∈ Z

∗
pm−b we get γ ≡ −1 (mod pm−b).

Finally, it is straightforward toverify that the assignmentG → L(p; a, b, m), x1 �→
xζγ , y1 �→ yζ extends to a group isomorphism. So D ∼= (L(p; a, b, m), xζγ , yζ ). 
�
Corollary 5 Let L(p; a, b, m) be the group defined as above, then the following
holds true:

1. The group L(p; a, b, m) is a metacylcic p-group of class two and order p2a+m.

2. Two groups L(pi; ai, bi, mi) (i = 1, 2) are isomorphic if and only if p1 = p2,
a1 = a2, b1 = b2 and m1 = m2.

3. Let ξ be the number of symmetric p-dessins D with multiplicity pm such that
Aut(D) ∼= L(p; a, b, m), then

ξ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(pm−b), if p is odd,

1, if p = 2 and m = 1,

2, if p = 2 and m = 2,

4ϕ(2m), if p = 2, m ≥ 3and b = 0,

2ϕ(2m−b), if p = 2 and 1 ≤ b ≤ m − 2,

4, if p = 2 and b + 1 = m ≥ 3.
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Proof Let G = L(p; a, b, m). Since [x, y] ∈ Z(G), G has class two. Since xy =
x1+pa+b

and G = 〈x, y〉, G is metacyclic.
Observe that G′ ∼= Zpm−b and G/G′ ∼= Zpa × Zpa+b . So distinct triples (a, b, m)

correspond to non-isomorphic groups.
Moreover, for fixed a, b and m it is straightforward to verify that two regular

dessins (G, xζiγi , yζi) (i = 1, 2) are isomorphic if and only if γ1 ≡ γ2 (mod pm)

and ζ1 ≡ ζ2 (mod pm−b). So the number ξ is equal to the number of pairs (γ, ζ )

satisfying (10) where γ ∈ Z
∗
pm and ζ ∈ Z

∗
pm−b . The value of ξ is obtained by solving

the congruences in (10).

The type andgenus of the dessins fromTheorem2are summarized in the following
corollary. The proof is easy and we leave it as an exercise to the reader.

Corollary 6 Let D = (L(p; a, b, m), xζγ , yζ ). If p is odd, then D is of type
(pa+m, pa+m, pa) and genus 1

2pa(pa+m − pm − 2) + 1, while if p = 2, then it
has type (2a+m, 2a+m, 2a+m/d) and genus 1 + 2a−1(2a+m − d − 2) where d =
gcd(1 + γ + ζ2a+b−1(1 − 2a), 2m).

Corollary 7 Let D = (L(p; a, b, m), xζγ , yζ ).

1. If p is odd, then D is chiral,
2. If p = 2 and D is reflexible, then D ∼= (L(2; a, m − 1, m), xγ , y) where m ≥ 1,

a ≥ 1 and γ 2 ≡ 1 (mod 2m).
3. If D is self-Petrie-dual, then D ∼= (L(2; a, 0, 1), x, y).

Proof Let L = L(p; a, b, m) and x1 = xζγ , y1 = yζ . If D is reflexible, then the
assignment ι : x1 �→ x−1

1 , y1 �→ y−1
1 extends to an automorphism of L. So by the

relation [x1, y1] = xζpa+b

1 we have [x1, y1] = ι([x1, y1]) = ι(xζpa+b

1 ) = x−ζpa+b

1 . Hence

x2ζpa+b

1 = 1.
If p is odd, then we have b = m, it contradicts to (9). So in the case that p is odd

the dessins D are all chiral.
If p = 2, then xζ2a+b+1

1 = 1. So b = m − 1 and hence ζ = 1. Therefore D ∼=
(L(2; a, m − 1, m), xγ , y). Conversely it is straightforward to verify that the dessin
(L(2; a, m − 1, m), xγ , y) is reflexible.

Finally, if the symmetric dessin D is self-Petrie-dual, then it must be reflexible.
By Proposition 2 we have m = 1. Therefore b = 0 and γ = ζ = 1. 
�

In the remainder of the paperwe classify the symmetric p-dessins of class twowith
multiple edges whose shadow dessins are the simple symmetric p-dessinsD of class
two classified in Theorem 1. Recall thatD(δ) = (G, xδ, yδ)where G = G(p; a, b, c)
and δ ∈ Z

∗
pa−c . By Corollary 1, D(δ) = Hδ(D(1)) where Hδ is the δth Wilson’s

operation. So by Proposition 3, it suffices to classify the symmetric p-dessins of
class two whose shadow dessin is D(1) = (G, x, y).

Theorem 3 Let p be a prime and m ≥ 1. If D is a class-two symmetric p-dessin of
multiplicity pm and its shadow dessin is the simple symmetric p-dessin D(1) from
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Theorem 1, then D ∼= D(p; a, b, c; m, d, f , α, β, γ ) = (U, x, y) where U has a
presentation

〈x, y |xpa+m = ypa+m = [x, z] = [y, z] = 1, ypa = xαpa
, zpa+b−c = xβpa+d

,

zpb = xpc(γ pa+f −c−1)ypc
, z = [x, y]〉,

(11)

where a, b, c are given by (4), the integer parameters d and f satisfy

max(0, m + a + b − 2c) ≤ d ≤ m and 0 ≤ f ≤ m,

and α ∈ Z
∗
pm , β ∈ Z

∗
pm−d and γ ∈ Z

∗
pm−f fulfil the following conditions

α2 ≡ 1 (mod pm), (12)

γ pa+f −c + α − 1 ≡ βpd (mod pm), (13)

α ≡ −1 (mod pm−d), (14)

α ≡ −1 (mod pm−f ). (15)

Proof By the assumption the symmetric dessinD = (U, x, y)hasmultiplicitypm and
valency pa+m, so K = 〈x〉∩ 〈y〉 = 〈xpa〉 = 〈ypa〉 ∼= Zpm . It follows that the p-group U
of class two, being a cyclic extension of G(p; a, b, c) by K , has the presentation (11),
where 0 ≤ d ≤ m, 0 ≤ f ≤ m, α ∈ Z

∗
pm , β ∈ Z

∗
pm−d and γ ∈ Z

∗
pm−f .

Since zpa+b−c = xβpa+d
and o(x) = pa+m, we have o(z) = pa+b−c+m−d . Note that

the relations zpb = x(γ pa+f −c−1)pc
ypc

and z = [x, y] can be rewritten as the form

ypc = x(1−γ pa+f −c)pc
zpb

and xy = xz.

It follows that x = xx(1−γ pa+f −c)pc
zpb = xypc = xzpc

. By cancellation we get zpc = 1,
and hence m + a + b − 2c ≤ d. Further, we deduce from the relations ypa = xαpa

,
zpa+b−c = xβpa+d

and zpb = x(γ pa+f −c−1)pc
ypc

that

xβpa+d = zpa+b−c = (zpb
)pa−c = x(γ pa+f −c−1)pa

ypa = x(γ pa+f −c+α−1)pa
.

Hence γ pa+f −c + α − 1 ≡ βpd (mod pm).
Since (U, x, y) is symmetric, the assignment τ : x �→ y, y �→ x extends to an

automorphism of U. Applying τ to the relation ypa = xαpa
we get xpa = τ(ypa

) =
τ(xαpa

) = yαpa
. So xpa = xα2pa

, and hence α2 ≡ 1 (mod pm). Applying τ to the
relation zpa+b−c = xβpa+d

we get

x−βpa+d = z−pa+b−c = τ(zpa+b−c
) = τ(xβpa+d

) = yβpa+d = xαβpa+d
,
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and hence α ≡ −1 (mod pm−d). Similarly, we deduce from zpb = x(γ pa+f −c−1)pc
ypc

that

y−pc
x(−γ pa+f −c+1)pc = z−pb = τ(zpb

) = τ(x(γ pa+f −c−1)pc
ypc

) = y(γ pa+f −c−1)pc
xpc

.

By collecting similar terms we obtain that xγ pa+f = y−γ pa+f
. Since ypa = xαpa

, using
substitution we get xγ pa+f = y−γ pa+f = x−αγ pa+f

, and hence α ≡ −1 (mod pm−f ).

Corollary 8 If the dessinD(p; a, b, c; m, d, f , α, β, γ ) from Theorem 3 is reflexible,
then

1. if p > 2, then 1 ≤ b ≤ a, d = f = m ≥ 1 and α = β = 1.
2. if p = 2, then the values of parameters in D(p, a, b, c; m, d, f , α, β, γ ) are deter-

mined by Table2.

Table 2 Reflexible symmetric dessins with multiple edges

Classes d m f α β γ

1 ≤ b ≤ c = a d = m − 1 1 0 1 1 1

1 ≤ b ≤ c = a d = m − 1 2 1 1 1 1

1 ≤ b ≤ c = a d = m − 1 2 2 3 1 1

1 ≤ b ≤ c = a d = m − 1 ≥ 3 m − 1 1 1 odd

1 ≤ b ≤ c = a d = m − 1 ≥ 3 m 2m−1+1 1 odd

1 ≤ b ≤ c = a d = m − 1 ≥ 3 1 2m−1−1 1 1, 2m−1 + 1

1 ≤ b ≤ c = a d = m − 1 ≥ 3 1 2m − 1 1 2m−2 + 1

1 ≤ b ≤ c = a d = m 1 1 1 1 1

1 ≤ b ≤ c = a d = m 2 2 1 1 1, 3

1 ≤ b ≤ c = a d = m 2 1 3 1 1, 3

1 ≤ b ≤ c = a d = m ≥ 3 m 1 1 odd

1 ≤ b ≤ c = a d = m ≥ 3 1 2m − 1 1 1, 2m−1 + 1

1 ≤ b ≤ c = a d = m ≥ 3 m − 1 2m−1+1 1 odd

1 ≤ b ≤ c = a d = m ≥ 3 1 2m−1−1 1 2m−2 + 1

2 ≤ b + 2 ≤ a = c + 1 d = m 1 0 1 1 1

2 ≤ b + 2 ≤ a = c + 1 d = m 1 1 1 1 1

2 ≤ b + 2 ≤ a = c + 1 d = m 2 1 1 1 1, 3

2 ≤ b + 2 ≤ a = c + 1 d = m 2 2 1 1 1, 3

2 ≤ b + 2 ≤ a = c + 1 d = m 2 0 1 1 1, 3

2 ≤ b + 2 ≤ a = c + 1 d = m ≥ 3 m − 1 1 1 odd

2 ≤ b + 2 ≤ a = c + 1 d = m ≥ 3 m 1 1 odd

2 ≤ b + 2 ≤ a = c + 1 d = m ≥ 3 0 2m − 1 1 1, 2m−1 + 1

2 ≤ b + 2 ≤ a = c + 1 d = m ≥ 3 m − 2 2m−1+1 1 odd

2 ≤ b + 2 ≤ a = c + 1 d = m ≥ 3 0 2m−1−1 1 2m−2 + 1
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Proof If (U, x, y) is reflexible, then the assignment ι : x �→ x−1, y �→ y−1 extends to
an automorphism of U. We have ι(z) = [ι(x), ι(y)] = z. Applying ι to the defining
relations of U we get zpa+b−c = x−βpa+d

and zpb = x−pc(γ pa+f −c−1)y−pc
. Combining

these with the defining relations of U we deduce that

y2pc = x−2pc(γ pa+f −c−1) and x2βpa+d = 1.

Recall that 〈x〉∩〈y〉 = 〈xpa〉 = 〈ypa〉. So 2pc ≡ 0 (mod pa) and 2β ≡ 0 (mod pm−d).
If p is odd, then a = c and d = m. By (13) we also have m = f . Hence

α = β = γ = 1.
If p = 2, then either c = a or c = a − 1. We distinguish two cases.
Case 1: c = a.
Using substitution y2

a = x−α2a
we deduce that xα2a+1 = y2

a+1 = x−2a+1(γ 2f −1).
Hence γ 2f + α − 1 ≡ 0 (mod 2m−1). If 2m−1||γ 2f + α − 1, then by (13) we get
d = m − 1, and hence β = 1. So (13) reduces to γ 2f + α − 1 ≡ 2m−1 (mod 2m).
Combining this with (12) we obtain the values of the parameters. On the other hand,
if 2m|γ 2f + α − 1, then by (13) we have d = m. By (13) we have γ 2f + α − 1 ≡ 0
(mod 2m). Combining this with (12) we obtain the values of the parameters.

Case 2: c = a − 1.
Using similar arguments as before we have γ 2f +1 + α − 1 ≡ 0 (mod 2m). By

(13) we get d = m. Hence (13) reduces to γ 2f +1+α−1 ≡ 0 (mod 2m). Combining
this with (12) we obtain the values of f and α, β, γ , as listed in Table2. 
�
Corollary 9 If the dessinD from Theorem 3 is self-Petrie-dual, then it is isomorphic
to one of the following regular dessins:

1. D1(a, b) = (G, x, y) where 1 ≤ b ≤ a and G has a presentation

G = 〈x, y | x2
a+1 = y2

a+1 = [x, z] = [y, z] = 1, y2
a = x2

a
, z2

b = x2
a
, z = [x, y]〉.

2. D2(a, b) = (G, x, y) where 1 ≤ b ≤ a and G has a presentation

G = 〈x, y | x2
a+1 = y2

a+1 = z2
b = [x, z] = [y, z] = 1, y2

a = x2
a
, z = [x, y]〉.

3. D3(a, b) = (G, x, y) where 0 ≤ b ≤ a − 2 and G has a presentation

G = 〈x, y | x2
a+1 = y2

a+1 = [x, z] = [y, z] = 1, z2
b = x2

a−1
y2

a−1
, y2

a = x2
a
, z = [x, y]〉.

Proof Since D is symmetric and self-Petrie-dual, it is reflexible. By Proposition 2
the multiplicity 2m must be equal to 2, so m = 1. Checking Table2 we have the listed
families of self-Petrie-dual symmetric dessins. 
�
Remark 2 Let M be a regular bipartite map. It is shown [13, Theorem 25] that if
the group Aut+(M ) of orientation-preserving automorphisms of M is nilpotent of
class c ≥ 2, then the subgroup Aut+0 (M ) of colour-preserving automorphisms of
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Aut+(M ) is nilpotent of class atmost c−1. By the correspondence between symmet-
ric dessins and regular bipartitemaps, all regular bipartitemapswhose automorphism
groups are 2-groups of class 3 classified in [1] are contained as a subclass in our clas-
sification of symmetric 2-dessins of class 2. The interested reader is referred to [27]
for details.
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