
BSDE Approach for Dynkin Game
and American Game Option

El Hassan Essaky and M. Hassani

Abstract Consider a Dynkin game with payoff

J (λ, σ) = F

[
Uλ1{λ<σ} + Lσ1{λ>σ} + Qσ1{σ=λ<T } + ξ1{σ=λ=T }

]
,

where F : R −→ R is a continuous nondecreasing function and λ, σ are stopping
times valued in [0, T ]. We show the existence of a value as well as a saddle-point for
this game using the theory of BSDE with double reflecting barriers. An American
game option pricing problem is also discussed.
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1 Introduction

Stochastic game was first introduced by Dynkin and Yushkevich [6] and later stud-
ied, in different contexts, by several authors, including Neveu [18], Bensoussan and
Friedman [2], Bismut [3], Morimoto [17], Alario-Nazaret, Lepeltier and Marchal
[1], Lepeltier and Maingueneau [16], Cvitanic and Karatzas [4], Touzi and Vieille
[19] and others, such stochastic games are known as Dynkin games.
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Considerable attention has been devoted to studying the association between back-
ward stochastic differential equations (BSDEs for short) and stochastic differential
games. Among others, Cvitanic and Karatzas showed in [4] existence and unique-
ness of the solution to the BSDE with double reflecting barriers, and associated their
equation to a stochastic games. Hamadène [9] and Hamadène and Hassani [11] stud-
ied the mixed zero-sum stochastic differential game problem using the notion of a
local solution of BSDEs with double reflecting barriers. Hamadène and Lepeltier
[10] added controls to the Dynkin game studied by Cvitanic and Karatzas in [4].
Karatzas and Li [14] studied a non-zero-sum game with features of both stochastic
control and optimal stopping, for a process of diffusion type via the BSDE approach.
Dumitrescu et al. [5] introduced a generalized Dynkin game problem associated with
a BSDE with jumps.

Consider the Dynkin game, associated with processes L ,U , ξ and Q, with payoff:

J (λ, σ) = F

[
Uλ1{λ<σ} + Lσ1{λ>σ} + Qσ1{σ=λ<T } + ξ1{σ=λ=T }

]
,

where F : R −→ R is a continuous nondecreasing function and λ, σ are stopping
times valued in [0, T ]. In the direction of connection between BSDEwith two reflect-
ing barriers and Dynkin games, in order to prove that this game has a saddle point,
which is a pair of stopping (λ∗, σ∗) such that for any stopping times λ and σ one has

E

(
J (λ∗, σ)

)
≤ E

(
J (λ∗, σ∗)

)
≤ E

(
J (λ, σ∗)

)
,

all the works [4, 9–11, 14] have considered the case of bounded or square integrable
processes F(ξ), F(Q), F(L) and F(U ). Moreover, they have assumed that the
barriers F(L) and F(U ) have to satisfy one of the conditions:

1. The so-called Mokobodski condition which turns out into the existence of a dif-
ference of nonnegative supermartingales between F(L) and F(U ).

2. The complete separation i.e. F(L) < F(U ).

One of the main objective of this work is to weaken the assumptions assumed on
the data F(ξ), F(Q), F(L) and F(U ) in the case of association between BSDE with
two reflecting barriers and Dynkin games. Yet, checking Mokobodski’s condition
appears as a difficult question. So, instead of assuming the Mokobodski’s condition
on the barriers F(L) and F(U ), we suppose only that there exists a semimartingale
between them. It should be also noted here that if the barriers are completely separated
this implies that there exists a semimartingale between them (see [8]). Actually, if
we assume the following conditions:

1. There exists a semimartingale between L and U and for every semimartingale S
such that L ≤ S ≤ U , F(S) is a also a semimartingale.

2. E[F(Lσ)
−] < +∞, for all stopping time 0 ≤ σ ≤ T , where F(L)−

= sup(−F(L), 0).
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3. lim inf
r→+∞ r P

[
sup
s≤T

F(Us)
+ > r

]
= 0, where F(U )+ = sup(F(U ), 0).

4. lim inf
r→+∞ r P

[
sup
s≤T

F(Ls)
− > r

]
= 0,

then the pair of stopping times (λ∗, σ∗) defined by

λ∗ = inf{s ≥ 0 : Ys = F(Us)} ∧ T and σ∗ = inf{s ≥ 0 : Ys = F(Ls)} ∧ T,

is a saddle-point for the game, where Y is the solution of the following BSDE with
double reflecting barriers F(L) and F(U ) (see Definition 2):

⎧⎪⎪⎨
⎪⎪⎩

(i) Yt = F(ξ) + ∫ T
t d K +

s − ∫ T
t d K −

s − ∫ T
t Zsd Bs , t ≤ T,

(ii) Y between F(L) and F(U ), i.e. ∀t ≤ T, F(Lt) ≤ Yt ≤ F(Ut ),

(iii) the Skorohod conditions hold:∫ T
0 (Yt − F(Lt ))d K +

t = ∫ T
0 (F(Ut ) − Yt )d K −

t = 0, a.s..

Weshouldmention here that if F(L) and F(U ) are L1—integrable, i.e.E sup
t≤T

(|F(Ut )|
+ |F(Lt )|) < +∞, then the above assumptions 2–4 are satisfied and then theDynkin
game has a saddle point. This corresponds to the main assumption assumed in the
general context of Dynkin games.

An American option is a contract which enables its buyer (holder) to exercise
it at any time up to the maturity. An American game option gives additionally the
right to the option seller (writer, issuer) to cancel it early paying for this a prescribed
penalty. American game optionwas first introduced byKifer [15] and studied later by
several authors, see for example Hamadène [9], Hamadène and Zhang [13] and the
references therein. The second aim of this work is to prove, under weaker conditions
than the square integrability assumed on the data in [9], that the value of the option
at any time t ∈ [0, T ] is given by ert Yt , where Y is the solution of some BSDE with
two reflecting barriers. Moreover, we also show that a hedge after t , against the game
option, exists.

2 Preliminaries

2.1 Notations and Assumptions

Let (Ω,F , (Ft )t≤T , P) be a stochastic basis onwhich is defined a Brownianmotion
(Bt )t≤T such that (Ft )t≤T is the natural filtration of (Bt )t≤T and F0 contains all
P-null sets of F . Note that (Ft )t≤T satisfies the usual conditions, i.e. it is right
continuous and complete.
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Let us now introduce the following notations:

• P the sigma algebra of Ft -progressively measurable sets on Ω × [0, T ].
• C the set of R-valued P-measurable continuous processes (Yt )t≤T .
• L 2,d the set of Rd -valued and P-measurable processes (Zt )t≤T such that

T∫
0

|Zs |2ds < ∞, P − a.s.

• K the set of P-measurable continuous nondecreasing processes (Kt )t≤T such
that K0 = 0 and KT < +∞, P– a.s.

Throughout the paper, we introduce the following data:

• L := {Lt , 0 ≤ t ≤ T } and U := {Ut , 0 ≤ t ≤ T } are two real valued barriers
which are P-measurable and continuous processes such that Lt ≤ Ut , ∀t ∈
[0, T ].

• Q be a process such that, ∀t ∈ [0, T ] Lt ≤ Qt ≤ Ut , P − a.s.
• ξ is anFT -measurable one dimensional random variable such that

LT ≤ ξ ≤ UT .

• F : R −→ R is a continuous nondecreasing function.

We assume the following assumptions:

(A.1) There exists a continuous semimartingale S. = S0 + V +
. − V −

. + ∫ .

0 αsd Bs ,
with S0 ∈ R, V +, V − ∈ K and α ∈ L 2,d , such that

Lt ≤ St ≤ Ut , ∀t ∈ [0, T ].

(A.2) For every semimartingale S such that L ≤ S ≤ U , F(S) is a also a
semimartingale.

2.2 Existence of Solution for BSDE with Double Reflecting
Barriers

In view of clarifying this issue, we recall some results concerningBSDEswith double
reflecting barriers with two continuous barriers (see Essaky and Hassani [8] for more
details). Let us recall first the following definition of two singular measures.
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Definition 1 Let K 1 and K 2 be two processes inK . We say that:

K 1 and K 2 are singular if and only if there exists a set D ∈ P such that

E

T∫
0

1D(s, ω)d K 1
s (ω) = E

T∫
0

1Dc(s, ω)d K 2
s (ω) = 0.

This is denoted by d K 1 ⊥ d K 2.

Let us now introduce the definition of a BSDE with double reflecting obstacles
L and U .

Definition 2 1. We call (Y, Z , K +, K −) := (Yt , Zt , K +
t , K −

t )t≤T a solution of the
GBSDE with two reflecting barriers L and U associated with a terminal value ξ

if the following hold:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i) Yt = ξ + ∫ T
t d K +

s − ∫ T
t d K −

s − ∫ T
t Zsd Bs , t ≤ T,

(ii) Y between L and U, i.e. ∀t ≤ T, Lt ≤ Yt ≤ Ut ,

(iii) the Skorohod conditions hold:∫ T
0 (Yt − Lt )d K +

t = ∫ T
0 (Ut − Yt )d K −

t = 0, a.s.,
(iv) Y ∈ C K +, K − ∈ K Z ∈ L 2,d ,

(v) d K + ⊥ d K −.

(1)

2. Wesay that theBSDE(1) has amaximal (resp.minimal) solution (Y, Z , K +, K −)

if for any other solution (Y
′
, Z

′
, K ′+, K ′−) of (1) we have for all t ≤ T , Y

′
t ≤ Yt ,

P − a.s. (resp. Y
′
t ≥ Yt , P − a.s.).

The following theorem has already been proved in [8].

Theorem 1 Let assumption (A.1) holds true. Then there exists a maximal (resp.
minimal) solution for BSDE with double reflecting barriers (1).

3 Dynkin Game

Our purpose in this section is to show that the existence of a solution (Y, Z , K +, K −)

to the BSDE (1) implies that Y is the value of a certain stochastic game of stopping.
Consider the payoff

J (λ, σ) = F

(
Uλ1{λ<σ} + Lσ1{λ>σ} + Qσ1{σ=λ<T } + ξ1{σ=λ=T }

)
.
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The setting of our problem of Dynkin game is the following. There are two players
labeled player 1 and player 2. Player 1 chooses the stopping time λ, player 2 chooses
the stopping time σ, and J (λ, σ) represents the amount paid by player 1 to player

2. It is the conditional expectation E

(
J (λ, σ)

)
of this random payoff that player 1

tries to minimize and player 2 tries to maximize. The game stops when one player
decides to stop, that is, at the stopping time λ ∧ σ before time T , the payoff is then
equals

J (λ, σ) =

⎧⎪⎪⎨
⎪⎪⎩

F(Uλ) if player 1 stops the game first
F(Lσ) if player 2 stops the game first
F(Qσ) if players stop the game simultaneously before time T
F(ξ) if neither have exercised until the expiry time T.

It is then natural to define the lower and upper values of the game:

V := sup
σ∈Mt,T

inf
λ∈Mt,T

E

[
J (λ, σ)

]
≤ V := inf

λ∈Mt,T

sup
σ∈Mt,T

E

[
J (λ, σ)

]
,

where Mt,T is the set of stopping times valued between t and T . If it happens that
V = V , then the above Dynkin game is said to have a value. A pair (λ∗

0, σ
∗
0) is called

a saddle point if

E

(
J (λ∗

0, σ)

)
≤ E

(
J (λ∗

0, σ
∗
0)

)
≤ E

(
J (λ, σ∗

0)

)
.

Our objective is to show the existence of a saddle-point for the game and to charac-
terize it. This implies that this game has a value.

Let assumptions (A.1) and (A.2) hold true. Let (Y, Z , K +, K −) be the solution,
which is exists according to Theorem1, of the followingBSDEwith double reflecting
barriers:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) Yt = F(ξ) + ∫ T
t d K +

s − ∫ T
t d K −

s − ∫ T
t Zsd Bs, t ≤ T,

(ii) ∀t ≤ T, F(Lt ) ≤ Yt ≤ F(Ut ),∫ T
0 (Yt − F(Lt))d K +

t = ∫ T
0 (F(Ut ) − Yt )d K −

t = 0, a.s.,
(iv) Y ∈ C K +, K − ∈ K Z ∈ L 2,d ,

(v) d K + ⊥ d K −.

(2)

Let λ∗
t and σ∗

t be the stopping times defined as follows:

λ∗
t = inf{s ≥ t : Ys = F(Us)} ∧ T and σ∗

t = inf{s ≥ t : Ys = F(Ls)} ∧ T .

The main result of this section is the following.
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Theorem 2 Assume the following assumptions:

1. EF(Lσ)
− < +∞, for all stopping time 0 ≤ σ ≤ T , where F(L)− = sup

(−F(L), 0).

2. lim inf
r→+∞ r P

[
sup
s≤T

F(Us)
+ > r

]
= 0, where F(U )+ = sup(F(U ), 0).

3. lim inf
r→+∞ r P

[
sup
s≤T

F(Ls)
− > r

]
= 0.

Then

Yt = E

[
J (λ∗

t , σ
∗
t ) | Ft

]

= sup
σ∈Mt,T

E

[
J (λ∗

t , σ) | Ft

]
= inf

λ∈Mt,T

E

[
J (λ, σ∗

t ) | Ft

]

= inf
λ∈Mt,T

sup
σ∈Mt,T

E

[
J (λ, σ) | Ft

]
= sup

σ∈Mt,T

inf
λ∈Tt

E

[
J (λ, σ) | Ft

]
,

(3)

whereMt,T is the set of stopping times valued between t and T . Y0 can be interpreted
as the value of the game and (λ∗

0, σ
∗
0) as the fair strategy for the two players (or a

saddle point for the game).

Proof Let (a+
n )n and (a−

n )n be two nondecreasing sequences such that

lim inf
n→+∞ a+

n P

[
sup
s≤T

F(Us)
+ > a+

n

]
= 0, lim inf

n→+∞ a−
n P

[
sup
s≤T

F(Ls)
− > a−

n

]
= 0.

(4)

Let also (αi )i≥0 and (υ±
i )i≥0 be families of stopping times defined by

αi = inf{s ≥ t :
s∫

t

| Zr |2 dr ≥ i} ∧ T, υ±
i = inf{s ≥ t : Y ±

s > a±
i } ∧ T .

It follows from Eq. (2) that for every stopping time σ ∈ Mt,T

Yt =Yλ∗
t ∧σ∧αi ∧υ+

n ∧υ−
m

+
λ∗

t ∧σ∧αi ∧υ+
n ∧υ−

m∫
t

d K +
s −

∫ λ∗
t ∧σ∧αi ∧υ+

n ∧υ−
m

t
d K −

s︸ ︷︷ ︸
=0

−
λ∗

t ∧σ∧αi ∧υ+
n ∧υ−

m∫
t

Zsd Bs .

Then for every stopping time σ ∈ Mt,T
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Yt ≥ E

(
Yλ∗

t ∧σ∧αi ∧υ+
n ∧υ−

m
| Ft

)

= E

(
Y +

λ∗
t ∧σ∧αi ∧υ+

n ∧υ−
m

| Ft

)
− E

(
Y −

λ∗
t ∧σ∧αi ∧υ+

n ∧υ−
m

| Ft

)
.

In view of passing to the limit on i and n respectively and using Fatou’s lemma for
Y + and dominated convergence theorem for Y − since it is bounded, we have

Yt ≥ E

(
Y +

λ∗
t ∧σ∧υ−

m
| Ft

)
− E

(
Y −

λ∗
t ∧σ∧υ−

m
| Ft

)
.

Now taking the upper limit on m we get

Yt ≥ lim sup
m

[
E

(
Y +

λ∗
t ∧σ∧υ−

m
| Ft

)
− E

(
Y −

λ∗
t ∧σ∧υ−

m
| Ft

)]

= lim sup
m

[
E

(
Y +

λ∗
t ∧σ1λ∗

t ∧σ≤υ−
m

| Ft

)
+ E

(
Y +

υ−
m
1λ∗

t ∧σ>υ−
m

| Ft

)

−E

(
Y −

λ∗
t ∧σ∧υ−

m
| Ft

)]

≥ lim sup
m

[
E

(
Y +

λ∗
t ∧σ1λ∗

t ∧σ≤υ−
m

| Ft

)
− E

(
Y −

λ∗
t ∧σ∧υ−

m
| Ft

)]

= E

(
Y +

λ∗
t ∧σ | Ft

)
− lim inf

m
E

(
Y −

λ∗
t ∧σ∧υ−

m
| Ft

)
.

In view of using the limit appearing in (4), we obtain

lim inf
m

E

(
Y −

λ∗
t ∧σ∧υ−

m
| Ft

)

≤ lim inf
m

[
E

(
Y −

λ∗
t ∧σ1λ∗

t ∧σ≤υ−
m

| Ft

)
+ a−

mE

(
1λ∗

t ∧σ>υ−
m

| Ft

)]

= E

(
Y −

λ∗
t ∧σ | Ft

)
+ lim inf

m→+∞ a−
mE

(
1λ∗

t ∧σ>υ−
m

| Ft

)

≤ E

(
Y −

λ∗
t ∧σ | Ft

)
+ lim inf

m→+∞ a−
mE

(
1{sup

s≤T
F(Ls)

− > a−
m } | Ft

)

= E

(
Y −

λ∗
t ∧σ | Ft

)
,

it follows then that for all stopping time σ ∈ Mt,T ,
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Yt ≥ E

(
Y +

λ∗
t ∧σ | Ft

)
− E

(
Y −

λ∗
t ∧σ | Ft

)
= E

(
Yλ∗

t ∧σ | Ft

)

≥ E

(
F(Uλ∗

t
)1{λ∗

t <σ} + F(Lσ)1{λ∗
t >σ} + F(Qσ)1{σ=λ∗

t <T } + F(ξ)1{σ=λ∗
t =T } | Ft

)

= E

(
J (λ∗

t , σ) | Ft

)
.

(5)
Now it follows from Eq. (2) that for every stopping time λ ∈ Mt,T

Yt ≤ E

(
Yλ∧σ∗

t ∧αi ∧υ−
m ∧υ+

n
| Ft

)

= E

(
Y +

λ∧σ∗
t ∧αi ∧υ−

m ∧υ+
n

| Ft

)
− E

(
Y −

λ∧σ∗
t ∧αi ∧υ−

m ∧υ+
n

| Ft

)
.

In view of passing to the limit on i and m respectively and using dominated conver-
gence theorem for Y + since it is bounded, we have

Yt

≤ E

(
Y +

λ∧σ∗
t ∧υ+

n
| Ft

)
− lim sup

m
E

(
Y −

λ∧σ∗
t ∧υ−

m ∧υ+
n

| Ft

)

= E

(
Y +

λ∧σ∗
t ∧υ+

n
| Ft

)
− lim sup

m

[
E

(
Y −

λ∧σ∗
t ∧υ+

n
1λ∧σ∗

t ∧υ+
n ≤υ−

m
| Ft

)

+E

(
Y −

υ−
m
1λ∧σ∗

t ∧υ+
n >υ−

m
| Ft

)]

≤ E

(
Y +

λ∧σ∗
t ∧υ+

n
| Ft

)
− E

(
Y −

λ∧σ∗
t ∧υ+

n
| Ft

)
− lim sup

m
E

(
Y −

υ−
m
1λ∧σ∗

t ∧υ+
n >υ−

m
| Ft

)

≤ E

(
Y +

λ∧σ∗
t ∧υ+

n
| Ft

)
− E

(
Y −

λ∧σ∗
t ∧υ+

n
| Ft

)
.

By using Fatou’s lemma and assumption 1. Of Theorem 2 we get

Yt + E

(
Y −

λ∧σ∗
t
| Ft

)
≤ Yt + lim inf

n
E

(
Y −

λ∧σ∗
t ∧υ+

n
| Ft

)

≤ lim inf
n

E

(
Y +

λ∧σ∗
t ∧υ+

n
| Ft

)

≤ E

(
Y +

λ∧σ∗
t
| Ft ) + lim inf

n→+∞ a+
n E

(
1λ∧σ∗

t >υ+
n

| Ft

)

≤ E

(
Y +

λ∧σ∗
t
| Ft ) + lim inf

n→+∞ a+
n E

(
1{sups≤T F(Us )+>a+

n } | Ft

)

≤ E

(
Y +

λ∧σ∗
t
| Ft

)
,

where we have used the limit appeared in (4).



220 E.H. Essaky and M. Hassani

It follows that for every stopping time λ ∈ Mt,T

Yt ≤ E

(
Y +
λ∧σ∗

t
| Ft

)
− E

(
Y −
λ∧σ∗

t
| Ft

)

= E

(
Yλ∧σ∗

t
| Ft

)
.

≤ E

(
F(Uλ)1{λ<σ∗

t } + F(Lσ∗)1{λ>σ∗
t } + F(Qσ∗)1{σ∗

t =λ<T } + F(ξ)1{σ∗
t =λ=T } | Ft

)

= E

(
J (λ, σ∗

t ) | Ft

)
.

(6)

In force of inequalities (5) and (6) we obtain that for all σ, λ ∈ Mt,T

E

(
J (λ∗

t , σ) | Ft

)
≤ Yt = E

[
J (λ∗

t , σ
∗
t ) | Ft

]
≤ E

(
J (λ, σ∗

t ) | Ft

)
.

Then it is immediately checked that

inf
λ∈Mt,T

sup
σ∈Tt

E

(
J (λ, σ) | Ft

)
≤ sup

σ∈Tt

E

(
J (λ∗

t , σ) | Ft

)

≤ Yt = E

[
J (λ∗

t , σ
∗
t ) | Ft

]

≤ inf
λ∈Mt,T

E

(
J (λ, σ∗

t ) | Ft

)

≤ sup
σ∈Mt,T

inf
λ∈Mt,T

E

(
J (λ, σ) | Ft

)
.

Since sup
σ∈Mt,T

inf
λ∈Mt,T

E

(
J (λ, σ) | Ft

)
≤ inf

λ∈Mt,T

sup
σ∈Mt,T

E

(
J (λ, σ) | Ft

)
, we have

Yt = E

[
J (λ∗

t , σ
∗
t ) | Ft

]

= sup
σ∈Mt,T

E

[
J (λ∗

t , σ) | Ft

]
= inf

λ∈Mt,T

E

[
J (λ, σ∗

t ) | Ft

]

= inf
λ∈Mt,T

sup
σ∈Mt,T

E

[
J (λ, σ) | Ft

]
= sup

σ∈Mt,T

inf
λ∈Tt

E

[
J (λ, σ) | Ft

]
,

Theorem 2 is then proved. �

Remark 1 We should remark here that:

1. If F(L) and F(U ) are L1−integrable, i.e.E sup
t≤T

(|F(Ut)| + |F(Lt)|) < +∞, then

the assumption of Theorem 2 are satisfied.
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2. If we suppose that F(x) = eθx (or F(x) = −e−θx ), θ > 0, we have an utility
function which is of exponential type and then our result can give, in particular,
a solution to the existence a saddle point for the risk-sensitive problem (see [7]
for more details).

4 American Game Option

4.1 Problem Formulation

We deal with American game option or a game contingent claim which is a contract
between a seller A and a buyer B at time t = 0 such that both have the right to
exercise at any stopping time before the maturity time T . If the buyer exercises at
time t he receives the amount Lt ≥ 0 from the seller and if the seller exercises at
time t before the buyer he must pay to the buyer the amount Ut ≥ Lt so that Ut − Lt

is viewed as a penalty imposed on the seller for cancellation of the contract. If both
exercise at the same time t before the maturity time T then the buyer may claim Qt

and if neither have exercised until the expiry time T then the buyer may claim the
amount ξ . In short, if the the seller decides to exercise at a stopping time λ ≤ T and
the buyer exercises at a stopping time σ ≤ T then the former pays to the latter the
amount:

J 1(λ, σ) = Uλ1{λ<σ} + Lσ1{λ>σ} + Qσ1{σ=λ<T } + ξ1{σ=λ=T }.

Such game option is considered in a standard securities market consisting of a non-
random component S0

t representing the value of a savings account at time t with an
interest rate r and of a random component St representing the stock price at time
t . More precisely and following the same idea as in Hamadène [9], we consider a
security market M that contains, say, one bond and one stock and we suppose that
their prices are subject to the following system of stochastic differential equations:

{
d S0

t = r S0
t dt, S0

0 > 0
d St = St (bdt + δd Bt ), S0 > 0.

Let X be anFt -measurable random variable such that X ≥ 0. The classical approach
suggests that valuation of options should be based on the notions of a self-financing
portfolio and on hedging. For this reason, we give the following definitions.

Definition 3 A self-financing portfolio after t with endowment at time t is X , is a
P-measurable process π = (βs, γs)t≤s≤T with values in R2 such that:
(i)

∫ T
t (| βs | +(γs Ss)

2)ds < ∞.
(i i) If Δπ,X

s = βs S0
s + γs Ss, s ≤ T , then Δπ,X

s = X + ∫ s
t βud S0

u + ∫ s
t γud Su,

∀s ≤ T .
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Definition 4 A hedge against the game with payoff

J 1(s, λ) := Uλ1{λ<s} + Ls1{s<λ} + Qs1{s=λ<T } + ξ1{s=λ=T },

after t whose endowment at t is X is a pair (π, λ), where π is self-financing portfolio
after t whose endowment at t is X and a stopping time λ ∈ Mt,T , satisfying: P-a.s.
∀s ∈ [t, T ],

Δ
π,X
s∧λ ≥ J 1(s, λ).

Definition 5 The fair price of a contingent claim game is the infimum of capitals X
for which the hedging strategy exists. It is defined by

Vt := inf{X ≥ 0, ∃(π, λ) such that Δ
π,X
s∧λ ≥ J 1(s, λ), ∀t ≤ s ≤ T, P − a.s.}.

4.2 Fair Price of the Game as a Solution of BSDE
with Two Reflecting Barriers

Now, let P∗ be the probability on (Ω,F ) under which the actualized price of the
asset is a martingale, i.e.

d P∗

d P
:= exp

(
− δ−1(b − r)Bt − 1

2
(δ−1(b − r))2t

)
, t ≤ T .

Hence the process Wt = Bt + δ−1(b − r)t is an (Ft , P∗)-Brownian motion.

Let ξ, L , U and Q be as in the beginning such that: 0 ≤ L ≤ U. Assume moreover
that assumption (A.1) holds true and consider, on the probability space (Ω,F , P∗),
the following BSDE with two reflecting barriers whose solution exists according to
Theorem 1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) Yt = e−rT ξ + ∫ T
t d K +

s − ∫ T
t d K −

s − ∫ T
t ZsdWs, t ≤ T,

(ii) ∀t ≤ T, e−r t Lt ≤ Yt ≤ e−r tUt ,∫ T
0 (Yt − e−r t Lt )d K +

t = ∫ T
0 (e−r tUt − Yt )d K −

t = 0, a.s.,
(iv) Y ∈ C K +, K − ∈ K Z ∈ L 2,d ,

(v) d K + ⊥ d K −.

(7)

Let �∗
t and ϑ∗

t be the stopping times defined as follows:

�∗
t = inf{s ≥ t : Ys = e−r tUs} ∧ T and ϑ∗

t = inf{s ≥ t : Ys = e−r t Ls} ∧ T .

If we suppose that lim inf
r→+∞ r P∗(sup

s≤T
Us > r) = 0, it follows then from Theorem 2,

since L ≥ 0, that for all σ, λ ∈ Mt,T , Yt solution of BSDE (7) is given by
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Yt = E
∗
[

J (�∗
t , ϑ

∗
t ) | Ft

]

= inf
λ∈Mt,T

sup
σ∈Mt,T

E
∗
[

J (λ, σ) | Ft

]
= sup

σ∈Mt,T

inf
λ∈Tt

E
∗
[

J (λ, σ) | Ft

]
,

(8)

where

J (λ, σ) = e−rλUλ1{λ<σ} + e−rσLσ1{λ>σ} + e−rλ Qσ1{σ=λ<T } + e−rT ξ1{σ=λ=T }.

The main result of this section is the following.

Theorem 3 Assume that lim inf
r→+∞ r P∗(sup

s≤T
Us > r) = 0. Then, the fair price of our

game is given by Vt = ert Yt , for any t ≤ T . Moreover, a hedge after t against the
option exists and it is given by:

γs = ers Zs

δSs
1{s≤ϑ∗

t } and βs =
(

ers(Yt +
s∫

t

ZudWu) − γs Ss

)
(S0

s )−1, ∀s ∈ [t, T ].

Proof Let (π, λ) a hedge after t against the option. Therefore λ ∈ Mt,T and π =
(βs, γs)t≤t≤T is a self-financing portfolio whose value at t is X satisfying Δ

π,X
s∧λ ≥

J 1(s, λ), ∀t ≤ s ≤ T . But

e−r(s∧λ)Δ
π,X
s∧λ = e−r t X + δ

s∧λ∫
t

γu Sue−rudWu ≥ e−r(s∧λ) J 1(s, λ), ∀t ≤ s ≤ T .

Let σ ≥ t be a stopping time. Putting s = σ and taking the conditional expectation
we obtain

e−r t X ≥ E
∗
(

e−r(σ∧λ) J 1(σ, λ) | Ft

)
.

In view of relation (8) we have

e−r t X ≥ sup
σ∈Mt,T

E
∗
(

e−r(σ∧λ) J 1(σ, λ) | Ft

)

≥ inf
λ∈Mt,T

sup
σ∈Mt,T

E
∗
(

e−r(σ∧λ) J 1(σ, λ) | Ft

)

= inf
λ∈Mt,T

sup
σ∈Mt,T

E
∗
(

J (σ, λ) | Ft

)

= Yt .

Henceforth Vt ≥ ert Yt . Let us now prove the converse inequality. It follows that for
every t ≤ s ≤ T ,
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Yt + ∫ s∧ϑ∗
t

t ZudWu

≤ Ys∧ϑ∗
t
− ∫ s∧ϑ∗

t
t d K −

u
≤ Ys∧ϑ∗

t≤ e−rsUs1{s<ϑ∗
t } + e−rϑ∗

t Lϑ∗
t
1{s>ϑ∗

t } + e−rs Qϑ∗
t
1{ϑ∗

t =s<T } + e−rT ξ1{ϑ∗
t =s=T }

= e−r(s∧ϑ∗
t ) J 1(s, ϑ∗

t ).

Hence for every t ≤ s ≤ T ,

J 1(s, ϑ∗
t ) ≥ er(s∧ϑ∗

t )(Yt +
s∧ϑ∗

t∫
t

ZudWu).

Now if we put for all s ∈ [t, T ], γs = ers Zs
δSs

1{s≤ϑ∗
t } and βs =

(
ers(Yt + ∫ s

t ZudWu) −

γs Ss

)
(S0

s )−1.

Hence (βs, γs)t≤s≤T is a self-financing portfolio whose value at t is ert Yt . On other
hand we have

er(s∧�∗
t )(Yt +

s∧�∗
t∫

t

ZudWu) ≥ J 1(s, �∗
t ), ∀s ∈ [t, T ].

Hence ((βs, γs)t≤t≤T , �∗
t ) is a hedge against the game option. Then ert Yt ≥ Vt .

Henceforth ert Yt = Vt . The proof of Theorem 3 is then achieved. �
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