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Abstract A general maximum principle (necessary and sufficient conditions) for
an optimal control problem governed by a stochastic differential equation driven by
an infinite dimensional martingale is established. The solution of this equation takes
its values in a separable Hilbert space and the control domain need not be convex
when studying optimality necessary conditions. The result is obtained by using the
adjoint backward stochastic differential equation.
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1 Introduction

This paper studies the following form of a controlled stochastic differential equation
(SDE in short):{

d X (t) = F(X (t), u(t))dt + G(X (t))d M(t), 0 ≤ t ≤ T,

X (0) = x0,
(1)

where M is a continuous martingale taking its values in a separable Hilbert space K ,
while F , G are some mappings with properties to be given later and u(·) represents
a control variable. We will be interested in minimizing the cost functional:

J (u(·)) = E

[∫ T

0
�(Xu(·)(t), u(t)) dt + h(Xu(·)(T ))

]

over a set of admissible controls.
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We shall follow mainly the ideas of Bensoussan in [10, 11], Zhou in [36, 37],
Øksendal et al. [26], and our earlier work [4]. The reader can see our main results in
Theorems 2 and 3.

We recall that forward SDEs driven by martingales are studied in [6, 15, 16,
21, 34]. In fact in [6] we derived the maximum principle (necessary conditions)
for optimality of stochastic systems governed by SPDEs. However, the results there
show themaximum principle in its local form and also the control domain is assumed
to be convex. In this paper we shall try to avoid such conditions as we shall shortly
talk about it. Due to the fact that we are dealing here with a non-convex domain of
controls, it is not obvious how one can allow the control variable u(t) to enter in
the mapping G in (1) and obtain a result like Lemma 3 below. This issue was raised
also in [10]. Nevertheless, in some special cases (see [8]) we can allow G to depend
on the control, still overcome this difficulty, and prove the maximum principle. The
general case is still open as pointed out in [6, Remark 6.4].

The maximum principle in infinite dimensions started after the work of Pontrya-
gin [30]. The reader can find a detailed description of these aspects in Li and Yong
[22] and the references therein. An expanded discussion on the history of maximum
principle can be found in [36, P. 153–156]. On the other hand, the use of (linear)
backward stochastic differential equations (BSDEs) for deriving the maximum prin-
ciple for forward controlled stochastic equations was done by Bismut in [12]. In
this respect, one can see also the works of Bensoussan in [10, 11]. In 1990 Pardoux
and Peng [27], initiated the theory of nonlinear BSDEs, and then Peng studied the
stochastic maximum principle in [28, 29]. Since then several works appeared con-
sequently on the maximum principle and its relationship with BSDEs. For example
one can see [17–19, 33, 36] and the references of Zhou cited therein. Our earlier
work in [2] has now opened the way to study BSDEs and backward SPDEs that are
driven by martingales. One can see [23] for financial applications of BSDEs driven
by martingales, and [7, 9, 14, 20] for other applications.

In this paper we shall consider first a suitable perturbation of an optimal control
by means of the spike variation method in order to derive the maximum principle in
its global form to derive optimality necessary conditions. Then we shall provide suf-
ficient conditions for optimality of our control problem. The results will be achieved
mainly by using the adjoint equation of (1), which is a BSDE driven by themartingale
M . This can be seen from Eq. (30) in Sect. 5. It is quite important to realize that the
adjoint equations in Sect. 5 of such SDEs are in general BSDEs driven by martin-
gales. This happens also even if the martingale M , which is appearing in Eq. (1), is
a Brownian motion with respect to a right continuous filtration being larger than its
natural filtration. There is a discussion on this issue in Bensoussan’s lecture note [10,
Sect. 4.4], and in [1] and its erratum, [5]. In particular, studying control problems
associated with SDEs like (1) with their martingale noises cannot be recovered from
the works done for SDEs driven by Brownian motions in the literature. We refer the
reader to the discussion at the beginning of Sect. 5 below for more details. To the best
of our knowledge our results here towards deriving the maximum principle (neces-
sary and sufficient optimality conditions) in its global form for a control problem
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governed by SDE (1) with a martingale noise are new. The general case when the
control variable enters in the noise term G is still an open problem as stated above.

The paper is organized as follows. Section2 is devoted to some preliminary nota-
tion. In Sect. 3 we present our main stochastic control problems. Then in Sect. 4
we establish many of our necessary estimates, which will be needed to derive the
maximum principle for the control problem of (1). The maximum principle in the
sense of Pontryagin for the above control problem is derived in Sect. 5. In Sect. 6 we
establish sufficient conditions for optimality for this control problem, and present
some examples as well.

2 Preliminary Notation

Let (Ω,F , P) be a complete probability space, filtered by a continuous filtration
{Ft }t≥0, in the sense that every square integrable K -valued martingale with respect
to {Ft , 0 ≤ t ≤ T } has a continuous version.

Denoting by P the predictable σ—algebra of subsets of Ω × [0, T ] we say
that a K - valued process is predictable if it is P/B(K ) measurable. Suppose that
M 2

[0,T ](K ) is the Hilbert space of cadlag square integrable martingales {M(t), 0 ≤
t ≤ T }, which take their values in K . Let M 2,c

[0,T ](K ) be the subspace of M 2
[0,T ](K )

consisting of all continuous square integrable martingales in K . Two elements M
and N of M 2

[0,T ](K ) are said to be very strongly orthogonal (or shortly VSO) if

E [M(τ ) ⊗ N (τ )] = E [M(0) ⊗ N (0)],

for all [0, T ]—valued stopping times τ .
Now for M ∈ M 2,c

[0,T ](K ) we shall use the notation < M > to mean the pre-
dictable quadratic variation of M and similarly � M � means the predictable
tensor quadratic variation of M , which takes its values in the space L1(K ) of
all nuclear operators on K . Precisely, M ⊗ M− � M �∈ M 2,c

[0,T ](L1(K )). We

shall assume for a given fixed M ∈ M 2,c
[0,T ](K ) that there exists a measurable map-

ping Q(·) : [0, T ] × Ω → L1(K ) such that Q(t) is symmetric, positive definite,
Q(t) ≤ Q for some positive definite nuclear operator Q on K , and satisfies the
following equality:

� M �t =
∫ t

0
Q(s) ds.

We refer the reader to Example 1 for a precise computation of this processQ(·).
For fixed (t, ω), we denote by LQ(t,ω)(K ) to the set of all linear operators

ϕ : Q1/2(t, ω)(K ) → K and satisfy ϕQ1/2(t, ω) ∈ L2(K ), where L2(K ) is the
space of all Hilbert-Schmidt operators from K into itself. The inner product and norm
in L2(K ) will be denoted respectively by 〈·, ·〉2 and || · ||2. Then the stochastic inte-
gral

∫ ·
0 Φ(s)d M(s) is defined for mappings Φ such that for each (t, ω), Φ(t, ω) ∈
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LQ(t,ω)(K ), ΦQ1/2(t, ω)(h) ∀ h ∈ K is predictable, and

E

[ ∫ T

0
||(ΦQ1/2)(t)||22 dt

]
< ∞.

Such integrands formaHilbert spacewith respect to the scalar product (Φ1, Φ2) →
E [ ∫ T

0 〈Φ1Q1/2(t),Φ2Q1/2(t)〉 dt ]. Simple processes taking values in L(K ; K ) are
examples of such integrands. By letting Λ2(K ;P, M) be the closure of the set of
simple processes in this Hilbert space, it becomes a Hilbert subspace. We have also
the following isometry property:

E

[
|
∫ T

0
Φ(t)d M(t)|2

]
= E

[ ∫ T

0
||Φ(t)Q1/2(t)||22 ds

]
(2)

for mappings Φ ∈ Λ2(K ;P, M). For more details and proofs we refer the reader
to [25].

On the other hand, we emphasize that the processQ(·) will be play an important
role in deriving the adjoint equation of the SDE (1) as it can be seen from Eqs. (29),
(30) in Sect. 5. This is due to the fact that the integrandΦ is not necessarily bounded.
More precisely, it is needed in order for the mapping ∇x H , which appear in both
equations, to be defined on the space L2(K ), since the process Zu(·) there need not be
bounded. This always has to be considered when working with BSDEs or BSPDEs
driven by infinite dimensional martingales.

Next let us introduce the following space:

L2
F (0, T ; E) := {ψ : [0, T ] × Ω→E, predictable and E

[∫ T

0
|ψ(t)|2dt

]
< ∞},

where E is a separable Hilbert space.
Since Q(t) ≤ Q for all t ∈ [0, T ] a.s., it follows from [3, Proposition 2.2] that

ifΦ ∈ L2
F (0, T ; LQ(K )) (where as above LQ(K )) = L2(Q1/2(K ); K )), the space

of all Hilbert-Schmidt operators from Q1/2(K ) into K ), then Φ ∈ Λ2(K ;P, M)

and

E

[ ∫ T

0
||Φ(t)Q1/2(t)||22 dt

]
≤ E

[ ∫ T

0
||Φ(t)||2LQ(K ) dt

]
. (3)

An example of such a mapping Φ is the mapping G in Eq. (1); see the domain of G
in the introduction of the following section.
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3 Formulation of the Control Problem

LetO be a separableHilbert space andU be a nonempty subset ofO .We say thatu(·) :
[0, T ] × Ω → O is admissible if u(·) ∈ L2

F (0, T ;O) and u(t) ∈ U a.e., a.s. The
set of admissible controls will be denoted by Uad .

Let F : K × O → K , G: K → LQ(K ), �: K × O → R and h: K → R be mea-
surable mappings. Consider the following SDE:

{
d X (t) = F(X (t), u(t)) dt + G(X (t)) d M(t), t ∈ [0, T ],
X (0) = x0 ∈ K .

(4)

If assumption (E1), which is stated below, holds, then (4) attains a unique solution
in L2

F (0, T ; K ). The proof of this fact can be gleaned from [31] or [32]. In this case
we shall denote the solution of (4) by Xu(·).

Our assumptions are the following.
(E1) F, G, �, h are continuously Fréchet differentiable with respect to x , F and � are
continuously Fréchet differentiable with respect to u, the derivatives Fx , Fu, Gx ,

�x , �u are uniformly bounded, and

|hx |L(K ;K ) ≤ k (1 + |x |K )

for some constant k > 0.
In particular, |Fx |L(K ,K ) ≤ C1, ||Gx ||L(K ,LQ(K )) ≤ C2, |Fv|L(O,K ) ≤ C3, for

some positive constants Ci , i = 1, 2, 3, and similarly for �.
(E2) �x satisfies Lipschitz condition with respect to u uniformly in x .

Consider now the cost functional:

J (u(·)) := E

[ ∫ T

0
�(Xu(·)(t), u(t)) dt + h(Xu(·)(T ))

]
, (5)

for u(·) ∈ Uad .
The control problem here is to minimize (5) over the set Uad . Any u∗(·) ∈ Uad

satisfying
J (u∗(·)) = inf{J (u(·)) : u(·) ∈ Uad} (6)

is called an optimal control, and its corresponding solution X∗ := Xu∗(·) to (4) is
called an optimal solution of the stochastic optimal control problem (4)–(6). In this
case the pair (X∗, u∗(·)) in this case is called an optimal pair.

Remark 1 We mention here that the mappings F, G and � in (4) and (5) can be
taken easily to depend on time t with a similar proof as established in the following
sections, but rather, having more technical computations.

Since this control problem has no constraints we shall deal generally with pro-
gressively measurable controls. However, for the case when there are final state
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constraints, one can mimic our results in Sects. 4, 5 and 6, and use Ekeland’s varia-
tional principle in a similar way to [24, 28] or [36].

In the following section we shall begin with some variational method in order to
derive our main variational inequalities that are necessary to establish the main result
of Sect. 5.

4 Estimates

Let (X∗, u∗(·)) be the given optimal pair. Let 0 ≤ t0 < T be fixed and 0 < ε <

T − t0. Let v be a random variable taking its values in U , Ft0 -measurable and
sup
ω∈Ω

|v(ω)| < ∞. Consider the following spike variation of the control u∗(·):

uε(t) =
{

u∗(t) if t ∈ [0, T ]\[t0, t0 + ε]
v if t ∈ [t0, t0 + ε]. (7)

Let Xuε(·) denote the solution of the SDE (4) corresponding to uε(·). We shall
denote it briefly by Xε. Observe that Xε(t) = X∗(t) for all 0 ≤ t ≤ t0.

The following lemmas will be very useful in proving the main results of Sect. 5.
Lemma 1 Let (E1) hold. Assume that {p(t), t0 ≤ t ≤ T } is the solution of the fol-
lowing linear equation:

{
dp(t) = Fx (X∗(t), u∗(t)) p(t) dt + Gx (X∗(t)) p(t) d M(t), t0 < t ≤ T,

p(t0) = F(X∗(t0), v) − F(X∗(t0), u∗(t0)).
(8)

Then
sup

t∈[t0,T ]
E [ |p(t)|2 ] < C

for some positive constant C.

Proof With the help of (E1) apply Itô’s formula to compute |p(t)|2, and take the
expectation. The required result follows then by using Gronwall’s inequality.

Lemma 2 Assuming (E1) we have

E

[
sup

t0≤t≤T
|Xε(t) − X∗(t)|2

]
= o(ε).

Proof For t0 ≤ t ≤ t0 + ε one observes that

Xε(t) − X∗(t) =
∫ t

t0

[F(Xε(s), v) − F(X∗(s), v)] ds

+
∫ t

t0

[F(X∗(s), v)−F(X∗(s), u∗(s))] ds+
∫ t

t0

[G(Xε(s))−G(X∗(s))]d M(s),

(9)
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or, in particular,

|Xε(t) − X∗(t)|2 ≤ 3 (t − t0)
∫ t

t0

|F(Xε(s), v) − F(X∗(s), v)|2 ds

+ 3 (t − t0)
∫ t

t0

|F(X∗(s), v) − F(X∗(s), u∗(s))|2 ds

+ 3 |
∫ t

t0

[G(Xε(s)) − G(X∗(s))]d M(s)|2. (10)

But Taylor expansion implies the three identities:

F(Xε(s), v) − F(X∗(s), v)

=
∫ 1

0
Fx (X∗(s), u∗(s) + λ(Xε(s) − X∗(s))) (Xε(s) − X∗(s)) dλ, (11)

F(X∗(s), v) − F(X∗(s), u∗(s))

=
∫ 1

0
Fv(X∗(s), u∗(s) + λ(v − u∗(s))) (v − u∗(s)) dλ, (12)

and

G(Xε(s)) − G(X∗(s)) =
∫ 1

0
Gx (X∗(s) + λ(Xε(s) − X∗(s))) (Xε(s) − X∗(s)) dλ

=: Φ(s) (∈ LQ(K )). (13)

Then, by using (13), the isometry property (2), (3) and (E1) we deduce that for
all t ∈ [t0, t0 + ε],

E

[
|
∫ t

t0

(
G(Xε(s)) − G(X∗(s))

)
d M(s)|2

]
= E

[
|
∫ t

t0

Φ(s)d M(s)|2
]

= E

[ ∫ t

t0

||Φ(s)Q1/2(s)||22 ds

]

≤ E

[ ∫ t

t0

||Φ(s)||2LQ(K ) ds

]

= E

[ ∫ t

t0

||
∫ 1

0
Gx (X∗(s) + λ(Xε(s) − X∗(s))) (Xε(s) − X∗(s)) dλ||2LQ(K ) ds

]

≤ E

[ ∫ t

t0

∫ 1

0
||Gx(X∗(s) + λ(Xε(s) − X∗(s))) (Xε(s) − X∗(s))||2LQ(K ) dλ ds

]

≤ C2 E

[ ∫ t

t0

|Xε(s) − X∗(s)|2 ds

]
. (14)
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Therefore, from (10), (11), (12), (E1) and (14), it follows evidently that

E [ |Xε(t) − X∗(t)|2 ] ≤ 3 (C1 (t − t0) + C2)

∫ t

t0

E [ | Xε(s) − X∗(s) |2 ] ds

+ 3 (t − t0) C3

∫ t

t0

E [ | v − u∗(s) |2 ] ds,

for all t ∈ [t0, t0 + ε].
Hence by using Gronwall’s inequality we obtain

E [ | Xε(t) − X∗(t) |2 ] ≤ 3C3 (t − t0) e3 (C1 (t−t0)+C2)(t−t0)×
∫ t0+ε

t0
E [ |v − u∗(s)|2 ] ds,

(15)

for all t ∈ [t0, t0 + ε]. Consequently,

E

[∫ t0+ε

t0
| Xε(t) − X∗(t) |2 dt

]
≤ 3C3 ε2 e3 (C1 ε+C2)ε ×

∫ t0+ε

t0
E [ |v − u∗(s)|2 ] ds.

(16)

It follows then from (10), (15), standard martingale inequalities, (14) and (16)
that

E

[
sup

t0≤t≤t0+ε

|Xε(t) − X∗(t)|2
]

≤ 3C3 [ 3 (C1 ε + 4C2) ε e3 (C1 ε+C2)ε + 1 ] ε

∫ t0+ε

t0

E [ |v − u∗(s)|2 ] ds. (17)

Next, for t0 + ε ≤ t ≤ T , we have

Xε(t) − X∗(t) = Xε(t0 + ε) − X∗(t0 + ε)

+
∫ t

t0+ε

[F(Xε(s), u∗(s)) − F(X∗(s), u∗(s))] ds

+
∫ t

t0+ε

[G(Xε(s)) − G(X∗(s))]d M(s). (18)

Thus by working as before and applying (15) we derive

E

[ ∫ T

t0+ε

| Xε(t) − X∗(t) |2 dt

]
≤ 9C3 ε2eC4(ε)

∫ t0+ε

t0

E [ |v − u∗(s)|2 ] ds

and
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E

[
sup

t0+ε≤t≤T
|Xε(t) − X∗(t)|2

]
≤ 27C3 ε eC4(ε) [ 1 + ((T − t0 − ε) C1 + 4C2) ε ]

×
∫ t0+ε

t0

E [ |v − u∗(s)|2 ] ds, (19)

where C4(ε) = [3 ε2 + 3 (T − t0 − ε)2] C1 + (T − t0 + 2 ε) C2.
Now (17) and (19) imply that

E

[
sup

t0≤t≤T
|Xε(t) − X∗(t)|2

]
≤ (C5(ε) + C6(ε))

∫ t0+ε

t0

E [ |v − u∗(s)|2 ] ds,

with the constants

C5(ε) = 3C3 [ 3 (C1 ε + 4C2) ε e3 (C1 ε+C2)ε + 1 ] ε

and
C6(ε) = 27C3 ε eC4(ε) [ 1 + ((T − t0 − ε) C1 + 4C2) ε ].

This completes the proof.

Remark 2 We note that for a.e. s,

1

ε

∫ s+ε

s
E [ |φ(X∗(t), u∗(t)) − φ(X∗(s), u∗(s))|2 ] dt → 0, as ε → 0, (20)

for φ = F, �. Indeed, if for example, φ = F, then we may argue as in (12) to see
that

1

ε

∫ s+ε

s
E [ |F(X∗(t), u∗(t)) − F(X∗(s), u∗(s))|2 ] dt

= 1

ε

∫ s+ε

s
E

[
|
∫ 1

0
Fv(X∗(t), u∗(s) + λ(u∗(t) − u∗(s))) (u∗(t) − u∗(s)) dλ|2 dt

]

≤ 1

ε

∫ s+ε

s
E [ |u∗(t) − u∗(s)|2 ] dt. (21)

But since
∫ T
0 E [ |u∗(t) − u∗(s)|2 ] dt < ∞ (for fixed s), then, as it is well-known

from measure theory (e.g. [13]), there exists a subset O of [0, T ] such that
Leb([0, T ] \ O) = 0 and the function O � t → E [ |u∗(t) − u∗(s)|2 ] is continuous.
Thus, if s ∈ O , this function is continuous in a neighborhood of s, and so we have

1

ε

∫ s+ε

s
E [ |u∗(t) − u∗(s)|2 ] dt → 0, as ε → 0,

which by (21) implies (20) for φ = F .

We will choose t0 such that (20) holds for φ = F, �. This assumption will be
considered until the end of Sect. 5.
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Lemma 3 Assume (E1). Let

ξε(t) = 1

ε
(Xε(t) − X∗(t)) − p(t), t ∈ [t0, T ].

Then
lim
ε→0

E [ |ξε(T )|2 ] = 0.

Proof First note that, for t0 ≤ t ≤ t0 + ε,

dξε(t) = 1

ε
[ F(Xε(t), v) − F(X∗(t), u∗(t)) − ε Fx (X∗(t), u∗(t)) p(t) ]dt

+ 1

ε
[ G(Xε(t)) − G(X∗(t)) − ε Gx (X∗(t)) p(t) ]d M(t),

ξε(t0) = − (
F(X∗(t0), v) − F(X∗(t0), u∗(t0))

)
.

Thus

ξε(t0 + ε) = 1

ε

∫ t0+ε

t0

[ F(Xε(s), v) − F(X∗(s), v) ] ds

+ 1

ε

∫ t0+ε

t0

[ F(X∗(s), v) − F(X∗(t0), v) ] ds

+ 1

ε

∫ t0+ε

t0

[ F(X∗(t0), u∗(t0)) − F(X∗(s), u∗(s)) ] ds

+ 1

ε

∫ t0+ε

t0

[ G(Xε(s)) − G(X∗(s)) ]d M(s)

−
∫ t0+ε

t0

Fx (X∗(s), u∗(s))p(s) ds −
∫ t0+ε

t0

Gx (X∗(s))p(s)d M(s).

By using (2), (3) and (E1) we deduce

E [ | ξε(t0 + ε) |2 ] ≤ 6C1 E [ sup
t0≤t≤t0+ε

|Xε(t) − X∗(t)|2 ]

+ 6 sup
t0≤t≤t0+ε

E [ |F(X∗(t), v) − F(X∗(t0), v)|2 ]

+ 6

ε

∫ t0+ε

t0
E [ |F(X∗(s), u∗(s)) − F(X∗(t0), u∗(t0))|2 ] ds

+ 6C2

ε
E

[
sup

t0≤t≤t0+ε
|Xε(t) − X∗(t)|2

]
+ 6 (C1 + C2) E

[ ∫ t0+ε

t0
|p(s)|2 ds

]
.

(22)

But from (17)
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1

ε
E

[
sup

t0≤t≤t0+ε

|Xε(t) − X∗(t)|2
]

≤ 3C3 [ 3 (C1 ε + 4C2) ε e3 (C1 ε+C2)ε + 1 ]
∫ t0+ε

t0

E [ |v − u∗(s)|2 ] ds → 0

(23)

as ε → 0. Also as in (11), by applying (E1) and (15), one gets

E [ |F(X∗(t), v) − F(X∗(t0), v)|2]

= E

[
|
∫ 1

0
Fx (X∗(t0) + λ(X∗(t) − X∗(t0)), v)(X∗(t) − X∗(t0)) dλ|2

≤ C1 E [ |X∗(t) − X∗(t0)|2]
≤ 3C1 C3 ε e3 (C1 ε+C2)ε

∫ t0+ε

t0
E [ |v − u∗(s)|2 ] ds → 0 as ε → 0. (24)

Thus, by applying Lemma 2, (24), (23), (20) and Lemma 1 in (22), we deduce

E [ | ξε(t0 + ε) |2 ] → 0 as ε → 0. (25)

Let us now assume that t0 + ε ≤ t ≤ T . In this case we have

dξε(t) = 1

ε
[ F(Xε(t), u∗(t)) − F(X∗(t), u∗(t)) − ε Fx (X∗(t), u∗(t)) p(t) ]dt

+ 1

ε
[ G(Xε(t)) − G(X∗(t)) − ε Gx (X∗(t)) p(t) ]d M(t),

or, in particular, by setting

Φ̃ε(s) =
∫ 1

0
[ Gx (X∗(s) + λ(Xε(s) − X∗(s))) − Gx (X∗(s)) ] p(s) dλ,

we get

ξε(t) = ξε(t0 + ε) +
∫ t

t0+ε

∫ 1

0
Fx (X∗(s) + λ(Xε(s) − X∗(s)), u∗(s)) ξε(s) dλ ds

+
∫ t

t0+ε

∫ 1

0
Gx (X∗(s) + λ(Xε(s) − X∗(s))) ξε(s) dλ d M(s)

+
∫ t

t0+ε

∫ 1

0
[ Fx (X∗(s) + λ(Xε(s) − X∗(s)), u∗(s)) − Fx (X∗(s), u∗(s)) ] p(s) dλ ds

+
∫ t

t0+ε
Φ̃ε(s) d M(s),
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for all t ∈ [t0 + ε, T ]. Hence by making use of the isometry property (2) it holds
∀ t ∈ [t0 + ε, T ],

E [ | ξε(t) |2 ] ≤ 5E [ | ξε(t0 + ε) |2 ] + 5 (C1 + C2)

∫ t

t0+ε
E [ |ξε(s) |2 ] ds

+ 5E

[ ∫ T

t0
|
∫ 1

0

(
Fx (X∗(s) + λ(Xε(s) − X∗(s)), u∗(s)) − Fx (X∗(s), u∗(s))

)
p(s) dλ ds |

]2

+ 5E

[ ∫ T

t0
||Φ̃ε(s)Q

1/2(s)||22 ds

]
. (26)

But as done for the second equality and first inequality in (14) we can derive easily
that

E

[ ∫ T

t0
||Φ̃ε(s)Q

1/2(s)||22 ds

]
= E

[ ∫ t

t0
||Φ̃ε(s)Q

1/2(s)||22 ds

]

≤ E

[ ∫ t

t0
||Φ̃ε(s)||2LQ(K ) ds

]

= E

[ ∫ t

t0
||

∫ 1

0
[Gx (X∗(s) + λ(Xε(s) − X∗(s))) − Gx (X∗(s))]p(s) dλ||2LQ(K )ds

]

≤ E

[ ∫ t

t0

∫ 1

0
||Gx (X∗(s) + λ(Xε(s) − X∗(s))) − Gx (X∗(s)) ] p(s)||2LQ(K ) dλ ds

]
.

(27)

Therefore, from Lemma 2, the continuity and boundedness of Gx in (E1), Lemma 1
and the dominated convergence theorem we deduce that the last term in the right
hand side of (27) goes to 0 as ε → 0.

Similarly, the third term in the right hand side of (26) converges also to 0 as ε → 0.
Finally, by applyingGronwall’s inequality to (26), and using (25)–(27), we deduce

that
sup

t0+ε≤t≤T
E [ | ξε(t) |2 ] → 0 as ε → 0,

which proves the lemma.

Lemma 4 Assume (E1) and (E2). Let ζ be the solution of the equation:

{
dζ(t) = �x (X∗(t), u∗(t))p(t)dt, t0 < t ≤ T,

ζ(t0) = �(X∗(t0), v) − �(X∗(t0), u∗(t0)).

Then

lim
ε→0

E

[ ∣∣∣∣ 1ε
∫ T

t0

(
�(Xε(t), uε(t)) − �(X∗(t), u∗(t))

)
dt − ζ(t)

∣∣∣∣
2
]

= 0.
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Proof Let

ηε(t) = 1

ε

∫ t

t0

(
�(Xε(t), uε(t)) − �(X∗(t), u∗(t))

)
dt − ζ(T ),

for t ∈ [t0, T ]. Then ηε(t0) = − (�(X∗(t0), v) − �(X∗(t0), u∗(t0))). So one can pro-
ceed easily as done in the proof of Lemma 3 to show thatE [ | ηε(T ) |2 ] → 0, though
this case is rather simpler.

Let us now for a C1 mapping Ψ : K → R denote by ∇Ψ to the gradient of
Ψ , which is defined, by using the directional derivative DΨ (x)(k) of Ψ at a point
x ∈ K in the direction of k ∈ K , as 〈∇Ψ (x), k〉 = DΨ (x)(k) (= Ψx (k)). We shall
sometimes write ∇xΨ for ∇Ψ (x).

Corollary 1 Under the assumptions of Lemma 4

d

dε
J (uε(·))|ε=0 = E [ 〈∇ h(X∗(T )), p(T )〉 + ζ(T ) ]. (28)

Proof Note that from the definition of the cost functional in (5) we see that

1

ε

[
J (uε(·)) − J (u∗(·))] = 1

ε
E

[
h(Xε(T )) − h(X∗(T ))

+
∫ T

t0

(
�(Xε(s), uε(s)) − �(X∗(s), u∗(s))

)
ds

]

= E

[ ∫ 1

0
hx (X∗(T ) + λ(Xε(T ) − X∗(T )))

(Xε(T ) − X∗(T ))

ε
dλ

+ 1

ε

∫ T

t0

(
�(Xε(s), uε(s)) − �(X∗(s), u∗(s))

)
ds

]
.

Now let ε → 0 and use the properties of h in (E1), Lemmas 3 and 4 to get (28).

5 Maximum Principle

Themaximum principle is a good tool for studying the optimality of controlled SDEs
like (4) since in fact the dynamic programming approach for similar optimal control
problems require usually a Markov property to be satisfied by the solution of (4),
cf. for instance [36, Chap. 4]. But this property does not hold in general especially
when the driving noise is a martingale.

Let us recall the SDE (4) and the mappings in (5), and define the Hamiltonian
H : [0, T ] × Ω × K × O × K × L2(K ) → R for (t, ω, x, u, y, z) ∈ [0, T ] × Ω ×
K × O × K × L2(K ) by
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H(t, ω, x, u, y, z) := �(x, u) + 〈F(x, u), y〉 + 〈G(x)Q1/2(t, ω), z〉2 . (29)

The adjoint equation of (4) is the following BSDE:

⎧⎨
⎩

− dY u(·)(t) = ∇x H(t, Xu(·)(t), u(t), Y u(·)(t), Zu(·)(t)Q1/2(t)) dt
− Zu(·)(t) d M(t) − d N u(·)(t), t0 ≤ t < T,

Y u(·)(T ) = ∇h(Xu(·)(T )).

(30)

The following theorem gives the solution to BSDE (30) in the sense that there
exists a triple (Y u(·), Zu(·), N u(·)) in L2

F (0, T ; K ) × Λ2(K ;P, M) × M 2,c
[0,T ](K )

such that the following equality holds a.s. for all t ∈ [0, T ], N (0) = 0 and N is
VSO to M :

Y u(·)(t) = ξ +
∫ T

t
∇x H(s, Xu(·)(s), u(s), Y u(·)(s), Zu(·)(s)Q1/2(s)) ds

−
∫ T

t
Zu(·)(s)d M(s) −

∫ T

t
d N u(·)(s).

Theorem 1 Assume that (E1)–(E2) hold. Then there exists a unique solution
(Y u(·), Zu(·), N u(·)) of the BSDE (30).

For the proof of this theorem one can see [2].
We shall denote briefly the solution of (30), which corresponds to the optimal

control u∗(·) by (Y ∗, Z∗, N ∗).
In the following lemma we shall try to compute E [ 〈Y ∗(T ), p(T )〉 ].

Lemma 5

E [ 〈 Y ∗(T ), p(T ) 〉 ] = − E

[ ∫ T

t0

�x (X∗(s), u∗(s))p(s) ds

]

+ E
[ 〈Y ∗(t0), F(X∗(t0), v) − F(X∗(t0), u∗(t0)〉

]
. (31)

Proof Use Itô’s formula together to compute d 〈Y ∗(t), p(t)〉 for t ∈ [t0, T ], and use
the facts that

∫ T

t0

〈 p(s),∇x H(s, X∗(s), u∗(s), Y ∗(s), Z∗(s)Q1/2(s))〉 ds

=
∫ T

t0

[
�x (X∗(s), u∗(s))p(s) + 〈 Fx (X∗(s), u∗(s))p(s), Y ∗(s) 〉] ds

+
∫ T

t0

〈 Gx (X∗(s))p(s)Q1/2(s), Z∗(s)Q1/2(s) 〉2 ds,

which is easily seen from (29).
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Now we state our main result of this section.

Theorem 2 Suppose (E1)–(E2). If (X∗, u∗(·)) is an optimal pair for the problem
(4)–(6), then there exists a unique solution (Y ∗, Z∗, N ∗) to the corresponding
BSDE (30) such that the following inequality holds:

H(t, X∗(t), v, Y ∗(t), Z∗(t)Q1/2(t)) ≥ H(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t))

a.e. t ∈ [0, T ], a.s. ∀ v ∈ U. (32)

Proof We note that since u∗(·) is optimal, d
dε

J (uε(·))|ε=0 ≥ 0, which implies by
using Corollary 1 that

E [ 〈Y ∗(T ), p(T )〉 + ζ(T ) ] ≥ 0. (33)

On other hand by applying (33) and Lemma 5 one sees that

0 ≤ − E [
∫ T

t0

�x (X∗(s), u∗(s))p(s) ds ]
+ E [ 〈Y ∗(t0), F(X∗(t0), v) − F(X∗(t0), u∗(t0)〉 + ζ(T ) ]. (34)

But

ζ(T ) = ζ(t0) +
∫ T

t0

�x (X∗(s), u∗(s))p(s) ds

and

H(t0, X∗(t0), v, Y ∗(t0), Z∗(t0)Q1/2(t0))

−H(t0, X∗(t0), u∗(t0), Y ∗(t0), Z∗(t0)Q1/2(t0))

= ζ(t0) + 〈Y ∗(t0), F(X∗(t0), v) − F(X∗(t0), u∗(t0))〉.

Hence (34) becomes

0 ≤ E [ H(t0, X∗(t0), v, Y ∗(t0), Z∗(t0)Q1/2(t0))

− H(t0, X∗(t0), u∗(t0), Y ∗(t0), Z∗(t0)Q1/2(t0)) ]. (35)

Now varying t0 as in (20) shows that (35) holds for a.e. t., and so by arguing for
instance as in [10, p. 19] we obtain easily (32).

Remark 3 Let us assume for example that the space K in Theorem 1 is the real space
R and M is the martingale given by the formula

M(t) =
∫ t

0
α(s)d B(s), t ∈ [0, T ],
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for some α ∈ L2
F (0, T ; R) and a one dimensional Brownian motion B. If α(s) > 0

for each s, then Ft (M) = Ft (B) for each t, where

Ft (R) = σ {R(s), 0 ≤ s ≤ t}

for R = M, B. Consequently, by applying the unique representation property for
martingales with respect to {Ft (M), t ≥ 0} or larger filtration in [2, Theorem 2.2]
or [5] and the Brownian martingale representation theorem as e.g. in [14, Theorem
3.4, P. 200], we deduce that the martingale N u(·) in (30) vanishes almost surely if the
filtration furnished for the SDE (4) is {Ft (M), 0 ≤ t ≤ T }. This result follows from
the construction of the solution of the BSDE (30). More details on this matter can
be found in [2, Sect. 3]. As a result, in this particular case BSDE (30) fits well with
those BSDEs studied by Pardoux & Peng in [27], but with the variable αZ replacing
Z there.

Thus in particular we conclude that many of the applications of BSDEs, which
were studied in the literature, to both stochastic optimal control and finance (e.g.
[37] and the references therein) can be applied directly or after slight modification
to work here for BSDEs driven by martingales. For example we refer the reader to
[23] for financial application. Another interesting case can be found in [9].

On the other hand, in this respect we shall present an example (see Example 2) in
Sect. 6, by modifying an interesting example due to Bensoussan [10].

6 Sufficient Conditions for Optimality

In the previous two sections we derived Pontyagin’s maximum principle which gives
necessary conditions for optimality for the control problem (4)–(6). In the following
theorem we shall try to show when the necessary conditions for optimality becomes
sufficient as well. Let us assume from here on thatU is convex. This concerned result
is a variation of Theorem 4.2 in [3].

Theorem 3 Assume (E1) and, for a given u∗(·) ∈ Uad , let X∗ and (Y ∗, Z∗, N ∗)
be the corresponding solutions of Eqs. (4) and (30) respectively. Suppose that the
following conditions hold:

(i) U is a convex domain in O , h is convex.
(ii) (x, v) → H(t, x, v, Y ∗(t), Z∗(t)Q1/2(t)) is convex for all t ∈ [0, T ] a.s.

(iii) H(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t))

= min
v∈U

H(t, X∗(t), v, Y ∗(t), Z∗(t)Q1/2(t))

for a.e. t ∈ [0, T ] a.s.
Then (X∗, u∗(·)) is an optimal pair for the control problem (4)–(6).
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Proof Let u(·) ∈ Uad . Consider the following definitions:

I1 := E

[ ∫ T

0

(
�(X∗(t), u∗(t)) − �(Xu(·)(t), u(t))

)
dt

]

and
I2 := E [ h(X∗(T )) − h(Xu(·)(T )) ].

Then readily

J (u∗(·)) − J (u(·)) = I1 + I2. (36)

Let us define

I3 := E
[ ∫ T

0

(
H(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t))

− H(t, Xu(·)(t), u(t), Y ∗(t), Z∗(t)Q1/2(t))
)
dt

]
,

I4 := E

[ ∫ T

0
〈F(X∗(t), u∗(t)) − F(Xu(·)(t), u(t)), Y ∗(t)〉 dt

]
,

I5 := E

[ ∫ T

0
〈(G(Xu∗(·)(t)) − G(Xu(·)(t))

)
Q1/2(t), Z∗(t)Q1/2(t)〉2 dt

]
,

and

I6 := E

[ ∫ T

0
〈∇x H(t, X∗(t), u∗(t), Y ∗(t), Zu∗(·)(t)Q1/2(t)), X∗(t) − Xu(·)(t)〉 dt

]
.

From the definition of H in (29) we get

I1 = I3 − I4 − I5. (37)

On the other hand, from the convexity of h in condition (ii) it follows

h(X∗(T )) − h(Xu(·)(T )) ≤ 〈∇h(X∗(T )), X∗(T ) − Xu(·)(T ) 〉 a.s.,

which implies that
I2 ≤ E [ 〈 Y ∗(T ), X∗(T ) − Xu(T ) 〉 ]. (38)
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Next by applying Itô’s formula to compute d 〈Y ∗(t), X∗(t) − Xu(·)(t)〉 and using
Eqs. (4) and (30) we find with the help of (38) that

I2 ≤ I4 + I5 − I6 . (39)

Consequently, by considering (36), (37) and (39) it follows that

J (u∗(·)) − J (u(·)) ≤ I3 − I6. (40)

On the other hand, from the convexity property of the mapping (x, v) →
H(t, x, u, Y ∗(t), Z∗(t)Q1/2(t)) in assumption (iii) the following inequality holds
a.s.:

∫ T

0

(
H(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t))

− H(t, Xu(·)(t), u(t), Y ∗(t), Z∗(t)Q1/2(t))
)

dt

≤
∫ T

0
〈 ∇x H(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t)), X∗(t) − Xu(·)(t) 〉 dt

+
∫ T

0
〈 ∇u H(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t)), u∗(t) − u(t) 〉O dt.

As a result
I3 ≤ I6 + I7, (41)

where

I7 = E

[ ∫ T

0
〈 ∇u H(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t)), u∗(t) − u(t) 〉O dt

]
.

Since v → H(t, X∗(t), v, Y ∗(t), Z∗(t)Q1/2(t)) isminimumat v = u∗(t) by themin-
imum condition (iii), we have

〈 ∇u H(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t)), u∗(t) − u(t) 〉O ≤ 0.

Therefore I7 ≤ 0, which by (41) implies that I3 − I6 ≤ 0. So (40) becomes

J (u∗(·)) − J (u(·)) ≤ 0.

Now since u(·) ∈ Uad is arbitrary, this inequality proves that (X∗, u∗(·)) is an
optimal pair for the control problem (4)–(6) as required.

Example 1 Letm be a continuous square integrable one dimensionalmartingalewith
respect to {Ft }t such that < m >t = ∫ t

0 α(s)ds ∀ 0 ≤ t ≤ T for some continuous
α : [0, T ] → (0,∞). Consider M(t) = β m(t)(= ∫ t

0 β dm(s)), with β �= 0 being
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a fixed element of K . Then M ∈ M 2,c(K ) and � M �t equals β̃ ⊗ β
∫ t
0 α(s)ds,

where β̃ ⊗ β is the identification ofβ ⊗ β in L1(K ), that is (β̃ ⊗ β)(k) = 〈β, k〉β, k

∈ K . Also < M >t = |β|2 ∫ t
0 α(s) ds. Now letting Q(t) = β̃ ⊗ β α(t) yields that

� M �t = ∫ t
0 Q(s) ds. This processQ(·) is bounded sinceQ(t) ≤ Q ∀ t, where

Q = β̃ ⊗ β max
0≤t≤T

α(t). It is also easy to see that Q1/2(t)(k) = 〈β,k〉 β

|β| α1/2(t). In

particular β ∈ Q1/2(t)(K ).
Let K = L2(Rn). Let M be the above martingale. Suppose that O = K . Assume

that G̃ ∈ LQ(K ) or even a bounded linear operator from K into itself, and F̃ is a
bounded linear operator from O into K . Let us consider the SDE:

{
d X (t) = F̃ u(t) dt + 〈X (t), β〉 G̃ d M(t), t ∈ [0, T ],
X (0) = x0 ∈ K .

For a given fixed element c of K we assume that the cost functional is given by
the formula:

J (u(·)) = E [
∫ T

0
|u(t)|2 dt ] + E [ 〈c, X (T )〉 ],

and the value function is

J ∗ = inf{J (u(·)) : u(·) ∈ Uad}.

This control problem can be related to the control problem (4)–(6) as follows. We
define

F(x, u) = F̃ u, G(x) = 〈x, β〉 G̃, �(x, u) = |u|2, and h(x) = 〈c, x〉,

where (x, u) ∈ K × O.

The Hamiltonian then becomes the mapping

H : [0, T ] × Ω × K × O × K × L2(K ) → R,

H(t, x, u, y, z) = |u|2 + 〈F̃ u, y〉 + 〈x, β〉 〈G̃ Q1/2(t), z〉2,

(t, x, u, y, z) ∈ K × O × K × L2(K ).

It is obvious that H(·, ·, y, z) is convex with respect to (x, u) for each y and z and
∇x H(t, x, u, y, z) = 〈G̃ Q1/2(t), z〉 β.

Next we consider the adjoint BSDE:

{− dY (t) = [ 〈G̃ Q1/2(t), Z(t)〉2 β ] dt − Z(t) d M(t) − d N (t),
Y (T ) = c.
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This BSDE attains an explicit solution Y (t) = c , since c is non-random. But this
implies that Z(t) = 0 and N (t) = 0 for each t ∈ [0, T ].

On the other hand,we note that the functionO � u → H(t, x, u, y, z) ∈ R attains
its minimum at u = − 1

2 F̃∗ y, for fixed (x, y, z). So we choose our candidate for an
optimal control as

u∗(t, ω) = − 1

2
F̃∗ Y (t, ω) = − 1

2
F̃∗ c (∈ U := O).

With this choice all the requirements in Theorem 3 are verified. Consequently
u∗(·) is an optimal control of this control problem with an optimal solution X̂ given
by the solution of the following closed loop equation:

{
d X̂(t) = − 1

2 F̃ F̃∗ Y (t) dt + 〈X̂(t), β〉 G̃ d M(t),
X̂(0) = x0 ∈ K .

The value function takes the following value:

J ∗ = 1

4
|F̃∗c|2 T + E [ 〈c, X̂(T )〉 ].

Remark 4 It would be possible if we take h(x) = |x |2, x ∈ K , in the preceding
example and proceeds as above. However if a result of existence and uniqueness os
solutions to what we may call “forward-backward stochastic differential equations
with martingale noise” holds, it should certainly be very useful to deal with both this
particular case and similar problems.

Example 2 LetO = K . We are interested in the following linear quadratic example,
which is gleaned from Bensoussan [10, p. 33]. Namely, we consider the SDE:
{

d X (t) = (A(t)X (t) + C(t)u(t) + f (t)) dt + (B(t)X (t) + D(t)) d M(t),
X (0) = x0,

(42)

where B(t)x = 〈γ (t), x〉 G̃(t) and A, γ, C : [0, T ] × K → K , f : [0, T ] → K ,

G̃, D : [0, T ] → LQ(K ) are measurable and bounded mappings.
Let P, Q : [0, T ] × K → K , P1 : K → K be measurable and bounded map-

pings. Assume that P, P1 are symmetric non-negative definite, and Q is a symmetric
positive definite and Q−1(t) is bounded. For SDE (42) we shall assume that the cost
functional is

J (u(·)) = E

[ ∫ T

0

(
1

2
〈P(t)Xu(·)(t), Xu(·)(t)〉 + 1

2
〈Q(t)u(t), u(t)〉

)
dt

+ 1

2
〈P1Xu(·)(T ), Xu(·)(T )〉

]
, (43)

for u(·) ∈ Uad .
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The control problem now is to minimize (43) over the setUad and get an optimal
control u∗(·) ∈ Uad , that is

J (u∗(·)) = inf{J (u(·)) : u(·) ∈ Uad}. (44)

By recalling Remark 1we can consider this control problem (42)–(44) as a control
problem of the type (4)–(6). To this end, we let

F(t, x, u) = A(t)x + C(t)u + f (t),

G(t, x) = 〈γ (t), x〉 G̃(t) + D(t),

�(t, x, u) = 1

2
〈P(t)x, x〉 + 1

2
〈Q(t)u, u〉,

h(x) = 1

2
〈P1x, x〉.

Then the Hamiltonian H : [0, T ] × Ω × K × K × K × L2(K ) → R is given by

H(t, x, u, y, z) = �(t, x, u) + 〈F(t, x, u), y〉 + 〈G(t, x)Q1/2(t), z〉2
= 1

2
〈P(t)x, x〉 + 1

2
〈Q(t)u, u〉 + 〈A(t)x + C(t)u + f (t), y〉

+ 〈 (〈γ (t), x〉 G̃(t) + D(t))Q1/2(t), z〉2 .

We can compute ∇x H directly to find that

∇x H(t, x, u, y, z) = P(t)u + A∗(t)x + 〈G̃(t)Q1/2(t), z〉2 γ (t).

Hence the adjoint equation of (42) takes the following shape:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− dY u(·)(t) =
(

A∗(t)Y u(·)(t) + P(t)Xu(·)(t)

+〈
G̃(t)Q1/2(t), Zu(·)(t)Q1/2(t)

〉
2 γ (t)

)
dt

−Zu(·)(t)d M(t) − d N u(·)(t),
Y u(·)(T ) = P1Xu(·)(T ).

Now the maximum principle theorems (Theorems 2, 3) in this case hold readily
if we consider Remark 1 again, and yield eventually

C∗(t)Y ∗(t) + 1

2
Q(t)u∗(t) = 0.
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