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1 Life Insurance

By life insurance policy or contract we mean any form of person insurance contract
over a (long) period of time such as life or pension and disability or sickness coverage.
In such products, premiums and benefits are typically contingent upon transitions of
the policyholder between a number of states stated in the contract. Thereof the use
of the powerful (semi)-Markov chain theory to carry out the valuation of insurance
contracts and estimation of the underlying rates. We first give a short introduction
to the basic constituents of a life insurance contract and related reserving. Then
we single out the main parameters that control the evolution of the life insurance
contract and focus on their statistical estimation. These parameters are the mortality
rate and disability inception and recovery rates. Due to lack of space, the reader
is referred to the list of references for an update of recent developments in claims
reserving techniques for life and disability insurance. A detailed account for basic
life insurance contracts can be found in the papers [11–15] by Norberg. A very short
summary is displayed in Sects. 1.1–1.6, below.

B. Djehiche (B)
Department of Mathematics, KTH Royal Institute of Technology,
SE-100 44, Stockholm, Sweden
e-mail: boualem@math.kth.se

© Springer International Publishing Switzerland 2016
M. Eddahbi et al. (eds.), Statistical Methods and Applications in Insurance
and Finance, Springer Proceedings in Mathematics & Statistics 158,
DOI 10.1007/978-3-319-30417-5_5

127



128 B. Djehiche

1.1 A Markov Chain Model of a Life Insurance Contract

Let E = {0, 1, 2, . . . , m} be the (finite) set of possible states of the policy. Starting
at 0, the policy is assumed to be in one and only one state at each time. Let X (t)
denote the state of the policy at time t ∈ [0, n]. We assume that the process X is
right-continuous with a finite number of jumps, with transition probability

pi j (s, t) = P[X (t) = i|X (s) = j], i, j ∈ E, 0 ≤ s ≤ t ≤ n, (1)

and transition intensity

μi j (t) := lim
h↓0

pi j (t, t + h)

h
, i �= j. (2)

The total transition intensity from state i at time t is

μi·(t) =
∑

k:k �=i

μik(t) (3)

so that

pii(t, t + dt) = 1 − μi·(t)dt + o(t).

1.1.1 Basic Kolmogorov Equations

The transition probabilities (pi j (s, t), i, j ∈ E, 0 ≤ s ≤ t ≤ n) satisfy the follow-
ing equations.

A. The Kolmogorov backward equation: for s ≤ t ,

⎧
⎨

⎩

∂pi j

∂s
(s, t) = μi·(s)pi j (s, t) − ∑

k:k �=i μik(s)pk j (s, t),

pi j (t, t) = δi j .

(4)

B. The Kolmogorov forward equation: for s ≤ t ,

⎧
⎨

⎩

∂pi j

∂t (s, t) = −pi j (s, t)μ j ·(t) + ∑
k:k �=i pik(s, t)μk j (t),

pi j (s, s) = δi j .

(5)

C. The Chapman-Kolmogorov equation

pik(s,u) =
∑

j∈E

pi j (s, t)p jk(t,u), s ≤ t ≤ u. (6)
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The key parameter in this Markov chain framework is the transition intensity which
is the object of our statistical inference study.

1.2 Examples

1.2.1 Single Life with One Cause of Death (One Absorbing State)

In this model E = {0, 1}, where state 0 = alive, state 1= dead (absorbing state).
If T denotes the life length of a person with survival probability

F̄(t) = P(T > t),

the Markov chain counts the number of deaths:

X (t) = 11{T ≤t}, t ∈ [0, n],

with transition probability

p00(s, t) = F̄(t)

F̄(s)
= e− ∫ t

s μ(u)du.

μ is called mortality intensity (rate or force). Its estimation from data is of central
importance in life insurance Fig. 1

1.2.2 Single Life with m Causes of Death (m Absorbing States)

In this model E = {0, 1, . . . , m}, where state 0 = alive, state j= dead with cause
j (absorbing state). These absorbing states model different causes of death such as
death by “car accident”, “normal death” or “death caused by a disease” etc. Fig. 2.

The total mortality intensity is

μ0·(t) := μ(t) =
r∑

j=1

μ j (t), (7)

where, μ j (t) := μ0 j (t) denotes the mortality rate for death with cause j . This is
nothing but the transition intensity from state 0 (alive) to the absorbing state j .

Fig. 1 Single life with one
cause of death
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Fig. 2 Single life with m
causes of death

The probability that an s years old person will die from cause j before age t is
then

p0 j (s, t) =
∫ t

s

e− ∫ u
s μ(τ )dτμ j (u)du. (8)

1.2.3 Disability, Recovery and Death

This model is widely used to analyze insurance contracts with payments depending
on the state of the health of the insured. For example

• Sickness insurance that provides an annuity benefit during disability periods.
• Life insurance with premium waiver during disability.
• Pension with additional benefits to other members of the family.

The possible states are a = alive/active, i=invalid/unemployed, and d=dead/recovered
or any other suitable labeling Fig. 3.

1.3 Payment Streams and Reserving Techniques

Let X be theMarkov chain with intensities μi j associated with an insurance contract.
Let

I j (t) = 11{X (t)= j}, t ∈ [0, T ],

denote the indicator process of whether the policy is in state j or not, and

Ni j (t) = #{s: X (s−) = i, X (s) = j, s ∈ (0, t]}, i �= j,

denote the number of transitions from state i to state j during the time interval (0, t].
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Fig. 3 Three possible states
of a life insurance contract

We have

d I j (t) = d N· j (t) − d N j ·(t), (9)

where,

N· j (t) :=
∑

k;k �= j

Nk j (t), N j ·(t) :=
∑

k;k �= j

N jk(t).

We have, for t ≤ u

E[I j (u)|X (t) = i] = pi j (t,u),

E[d N jk(u)|X (t) = i] = pi j (t,u)μ jk(u)du. (10)

A standard payment stream A (benefits less premiums) has usually the following
form:

d A(t) :=
∑

j

⎛

⎝I j (t)d A j (t) +
∑

k;k �= j

a jk(t)d N jk(t)

⎞

⎠ , (11)

where,

d A j (t) := a j (t)dt + (A j (t) − A j (t
−)) = a j (t)dt + �A j (t) (12)

specifies the so-called general life annuity payment i.e. payments due during sojourn
in state j . The payment a j (t) is the rate of a state-wise annuity payable continuously
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at time t , while the lump sum payment �A j (t) is an endowment at time t . The
annuity function A j is usually assumed to have a finite number of discontinuity points
{t1, t2, . . . , tq}. The payments a jk(t) specify the so-called general life assurance i.e.
amounts that are payable immediately upon transition from state j to state k.

1.4 Expected Present Values and Prospective Reserves

The liability at time t for which the insurer should provide a reserve (prospective
reserve) is the present value of the payment streams (future benefits less premiums)
A over the lifespan [t, n] of the insurance contract:

V (t) =
∫ n

t
e− ∫ s

t r(u)dud A(s). (13)

When the policy is in state i at time t , then, in view of Eq. (10), the state-wise
prospective reserve is

Vi(t) := E[V (t)|X (t) = i] = ∫ n
t e− ∫ s

t r(u)duE[d A(s)|X (t) = i]

= ∫ n
t e− ∫ s

t r(u)du
∑

j pi j (t, s)
(

d A j (t) + ∑
k;k �= j a jk(s)μ jk(s)ds

)
,

(14)

when r, a j , aik are all deterministic function.
Written in differential form, Vj satisfies the following Feynman-Kac type formula
known as the backward Thiele’s differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dVi
dt (t) = (r(t) + μi·(t))Vi(t) − ∑

j; j �=i μi j (t)Vj (t) − ai(t) − ∑
j; j �=i ai j (t)μi j (t),

t ∈ (tp−1, tp), p = 1, . . . , q,

�Vj (tp) = −�A j (tp), p = 1, 2, . . . , q, i ∈ E,

Vj (n) = 0.
(15)

This equation admits an explicit solution only for a fewuninteresting/trivial insurance
contracts. In most cases it is solved using a numerical integration recipe. A fourth
order “Runge-Kutta” procedure seems to work efficiently in almost all practical
situations.

Thiele’s equation can be recast in the following form “preferred by actuaries”

− ai(t)dt = dVi(t) − r(t)Vi(t)dt +
∑

j; j �=i

Ri j (t)μi j (t)dt (16)
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where,

Ri j (t) = ai j (t) + Vj (t) − Vi(t), (17)

is the so-called “Sum-at-Risk” associated with a possible transition from state i to
state j .

• The term
∑

j; j �=i Ri j (t)μi j (t)dt is called the “risk premium” in (t, t + dt).
• The term dVi(t) − r(t)Vi(t)dt is called the “savings premium” in (t, t + dt).

1.5 The Equivalence Principle (aka Fairness Constraint)

The equivalence principle of insurance states that the expected present values of
premiums and benefits should be equal. That is, roughly speaking, premiums and
benefits should balance on the average. In our context this principle states that

V0(0) = −A0(0). (18)

This condition imposes a constraint on the contractual payments a j , A j and ai j to
design a premium level for given benefits. Noting that A0(0−) = 0, we easily see
that Eq. (18) is equivalent to

V0(0
−) := E

[∫ n

0−
e− ∫ s

0 r(u)dud A(s)

]
= 0. (19)

The state-wise prospective reserveV (t) can be seen as the value function of a singular
control problem subject to the fairness constraint, where the control parameter is the
process A(t).

1.6 First and Second Order Reserving Bases

The jump intensities μi j (purely actuarial parameters or liability driving parameter)
and the discounting rate r which reflects the “expected return” of the investment
portfolio (the main driver of the asset side) constitute the so-called reserving basis:

• First order technical basis (prudent or conservative). This is a set of assump-
tions about the portfolio return (or just an interest rate that reflects the market value
of the cash flow), r , the transition ratesμi j (includingmortality rates), costs and other
relevant technical parameters etc. These assumptions are meant to yield premiums
and reserves that include a high safety loading that hedges against worst case scenar-
ios. The first order premiums and reserves are usually higher than experience based
or historically observed values. This means that a systematic surplus is created by
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the company and, by law (which regulates mutual funds in some countries), it should
be redistributed to the policyholder in terms of bonuses that are usually allocated but
not distributed until the termination of the policy. Here we face a model risk!

• Second order technical basis: It is also called experience (or market) basis.
It sets values of the parameters based on realistic scenarios collected based on the
history of the policy. The company updates the reserves on a regular basis and adjusts
for the parameters using the bonus fund created by applying the first order basis.

A typical example of adjustments to bemadeunder the experience (market) basis is
compensation for a possible non-equivalenceof thefirst order payments i.e.V0(0−) �=
0, i.e. the insurance company compensates for this by adding dividend payments
D to the first order payments. D has usually the following form:

d D(t) :=
∑

j

⎛

⎝I j (t)d D j (t) +
∑

k;k �= j

δ jk(t)d N jk(t)

⎞

⎠ , (20)

where,
d D j (t) := δ j (t)dt + (D j (t) − D j (t

−)) = δ j (t)dt + �D j (t). (21)

The coefficients δ j ,�D j and δi j are stochastic processes adapted to the
“demographic-economic” history F with a more complex structure than the coeffi-
cients related to the payment processes A. The dividend process D is chosen (con-
strained) to attain the ultimate equivalence (fairness):

E

[∫ n

0−
e− ∫ s

0 r(u)dud(A + D)(s)

]
= 0. (22)

In the Black and Scholes market model, the dividend payments are provided by an
asset portfolio such as the following diffusion Y modulated by the jump process X :

dY (t) = rY (t)dt + σ(t, X (t), Y (t))Y (t)dW (t) + d(C − D)(t),
Y (0−) = 0,

(23)

where, C is the usual income (or contribution) process of the following form (similar
to A and D):

dC(t) :=
∑

j

⎛

⎝I j (t)dC j (t) +
∑

k;k �= j

c jk(t)d N jk(t)

⎞

⎠ , (24)

dC j (t) := c j (t)dt + (C j (t) − C j (t
−)) = c j (t)dt + �C j (t). (25)
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Assuming the coefficients δ j (t),�D j (t) and δi j (t) are functions of (t, Y (t)), the
state-wise prospective reserve is

Vi(t,x) := E[V (t)|X (t) = i, Y (t) = x]
= E

[∫ n
t e− ∫ s

t r(u)dud(A + D)(s)|X (t) = i, Y (t) = x
] (26)

satisfies a more complex “Thiele’s” PDE (cf. [8, 16, 18]).

1.7 Graduation Techniques-Estimation of the Mortality Rates

We start with statistical inference of the mortality rate μ which is the only jump
intensity in the simplest life insurance contract: Single life with one cause of death
(one absorbing state) i.e. E = {0, 1}, where state 0 = alive, state 1= dead (absorbing
state). The underlying Markov chain counts the number of deaths:

X (t) = 11{T ≤t}, t ∈ [0, n],

where, T denotes the life length of a person with survival probability

p00(s, t) = F̄(t)

F̄(s)
= e− ∫ t

s μ(u)du, 0 ≤ s ≤ t ≤ n.

In actuarial practice one often considers the remaining life length Tx of an insured of
age x. The corresponding survival probability over a time period of length t ≥ 0 is

P(Tx > t) := P(T > x + t |T > x) = e− ∫ x+t
x μ(u)du = e− ∫ t

0 μ(x+u)du. (27)

In a more general framework where ‘stochastic mortality’ modeling can be incor-
porated, consider (the possibly random) force (or rate) of mortality μ(x, t) at t for
individual aged x at time 0. Then, the survival index

S(x, t) := exp

(
−

∫ t

0
μ(x + s, s)ds

)

is the probability of survival of an individual aged x during the time interval [0, t],
given the mortality force μ(x, s) i.e.

P(Tx > t) = E[S(x, t)].

In Eq. (27), μ(x, t) = μ(x + t).
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The main goal of this section is to estimate the mortality force μ(x, s), given
historical mortality data of a population of insured individuals.

1.7.1 An Age-Specific Model: Gompertz-Makeham Graduation
Formula

This model captures the evolution of mortality in mutually exclusive age cohorts but
disregards a possible common risk factor that links all cohorts together. Consider an
insured population of ages xi, i = 1, 2, . . . , n. Let Nx denote the exposure i.e. the
number of individuals of the same age x, and Dx denotes the number of individuals
dead during the interval (x,x + 1). Assuming that the remaining survival lengths
of all individuals are independent, and the insured population is homogeneous in
the sense that the survival probability of all individuals is the same. A stochastic
model based on a “crude approximation” of the Binomial distribution by the Poisson
distribution suggests that

Dxi
∼ independent Poisson(μxi

Nxi
). (28)

Then the mortality rate (or force) μxi
for a population of age xi, i = 1, 2, . . . , n can

be estimated by the so-called ‘central or crude death rate’

μ̂xi
= Dxi

Nxi

, i = 1, 2, . . . , n. (29)

Gompertz and later Makeham famous graduation formula suggests a mortality rate
of the form

μx := α + βeγx, (30)

where, the parameters α,β and γ which satisfy α + β > 0,β > 0 and γ ≥ 0 are
estimated using the insured population data.Whenα = 0 we get Gompertz mortality
law. A fairly standard way to perform the parameter estimation is to use a weighted
least squares method: minimize

Q =
n∑

i=0

wxi

(
μ̂xi

− α − βeγxi
)2

(31)

w.r.t. the parameters α,β and γ, where the weight is the inverse of the variance of
μ̂xi

:

wxi
= N 2

xi

V ar(Dxi
)

= N 2
xi

Nxi
μ̂xi

= Nxi

μ̂xi

, (32)

so that Q is approximatelyχ2-distributed. In practice, one ‘fixes’ a value for γ ‘based
on experience’ and finds the optimal values of α and β. In the Swedish life insurance
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business, there is a Central Mortality Committee that estimates these parameters to
be used by insurance companies and pension funds. For example, in the so-called
M90 investigation, the committee suggested that

μx = α + βeγ(x− f ),

where, the parameter f adjusts for mortality of females among the insured popula-
tion. Values f = 4 or 5 years are used. For M90, α = 0.001,β = 0.000012 and
γ = 0.044.

1.7.2 Gompertz Graduation Formula with a View Towards GLM

Recall Gompertz’ graduation formula:

μx := βeγx, (33)

or logμx, which is linear in age,

logμx = logβ + log eγx := a + γx.

This can be extended to a quadratic or a polynomial form

logμx = a + bx + cx2, logμx = a0 + a1x + a2x
2 + . . . + apx

p.

GLM means that we perform a regression of logμx with respect to a basis

{1,x}, {1,x,x2}, {1,x, . . . ,xp},

or any other carefully chosen ‘spline’ basis {B1(x), B2(x), . . . , Bp(x)} such that

μx =
p∑

j=1

B j (x)a j := P(a),

and estimate the coefficients a0, a1, . . . , ap which maximize the penalized log-
likelihood function:

L(a) − 1

2
λP(a), (34)

where, L(a) is the log- likelihood of the model

Dxi
∼ independent Poisson(μxi

Nxi
), i = 1, . . . , n, (35)

and λ > 0 is a smoothing parameter.
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A similar approach can be applied to obtain a smooth year (or period) specific
mortality: maximize the penalized log-likelihood function

L(θ) − 1

2
λP(θ), (36)

where, L(θ) is the log- likelihood of the model

Dti ∼ independent Poisson(μti Nti), t = tmin, . . . , tmax, (37)

and

P(θ) =
p∑

j=1

B j (t)θ j .

The smoothing parameter λ can be estimated using the Akaike Information Criterion
(AIC), theBayesian InformationCriterion (BIC) or theGeneralizedCross-Validation
(GCV).

1.7.3 An Age-Period Model: Lee-Carter Graduation Formula

Lee andCarter [10] suggest aGompertz type graduation formula for the fullmortality
rate μ(x, t):

logμ(x, t) := α(x) + β(x)κ(t), (38)

subject to the constraints

∑

x

β(x) = 1,
∑

t

κ(t) = 0, (39)

fitting
∑

x,t

(logμobs(x, t) − α(x) + β(x)κ(t))2 .

This model captures the evolution of mortality in mutually exclusive age cohorts
while at the same time includes a possible common risk factor (systemic risk) k(t) that
links all cohorts together over time. The parameters a(x) and b(x) are age-specific
while k(t) is time (period) dependent only and should capture the random period
effect of the mortality rate. The risk factor k(t) is usually modeled as a time series
or a random walk with drift. Lee and Carter [10] suggest an ARIMA (discretized
diffusion process) for κ of the form

k(t + 1) = k(t) + a1 + a2ξ + σz(t)
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where, z(t) is white noise and ξ ∈ {0, 1} is a dummy variable that captures major
outbreaks of disease leading to a huge mortality wave such as the 1918 worldwide
flu outbreak or the 2008 earthquake in China etc. Statistical estimation of these para-
meters is usually performed w.r.t. each dimension: x and time (period) t . Here are
some suggestions (see [2, 10], Currie, Richards and co-authors (2003–2012), [17]
etc.).

• Given κ(t) = κ̂(t), fit a GLM with regressor κ̂:

logμ(x, t) := α(x) + β(x)κ̂(t).

• Givenα(x) = α̂(x), β(x) = β̂(x), fit aGLMwith offset α̂(x) and regressor β̂(x):

logμ(x, t) := α̂(x) + β̂(x)κ(t).

• Perform a regression w.r.t. a 2-d spline basis Ba(x) ⊗ By(t) for age and time
dimensions (x, t).

1.7.4 Building Blocks of the MLE for the Lee-Carter Model

Following [2], theMLE approach to the Lee-Carter model is based on the assumption
that

Dx,t ∼ Poisson(μ(x, t)Nx,t ), where logμ(x, t) := α(x) + β(x)κ(t),
x = xmin, . . . ,xmax, t = tmin, . . . , tmax.

(40)

The parameters α(x),β(x) and κ(t) are estimated by maximizing the log-likelihood
function

L(α,β,κ) :=
∑

x,t

(
Dx,t (α(x) + β(x)κ(t)) − Nx,t exp (α(x) + β(x)κ(t))

) + C,

where, C contains all the terms that do not dependent on the parameters. The nonlin-
ear term β(x)κ(t) does not allow for a closed form of the maximizing parameters.
One instead uses an iterative method such as the Newton-Raphson updating scheme
(or any more efficient numerical optimization algorithm):

θ(n+1) = θ(n) − ∂L(n)/∂θ

∂2L(n)/∂θ2
,

which numerically solves ∂L(n)/∂θ = 0.



140 B. Djehiche

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̂(0)
x = 0, β̂(0)

x = 1, κ̂(0)
t = 0,

alternatively α̂(0)
x = 1

tmax−tmin+1

∑
t log(μ̂(x, t)), β̂(0)

x = 1
tmax−tmin+1 ,

κ̂(0)
t = ∑

x β̂(0)
x

(
log(μ̂(x, t)) − α̂(0)

x

)
,

D̂(n)
x,t = Nx,t exp (α̂(n)

x + β̂(n)κ̂(n)
t ),

α̂(n+1)
x = α̂(n)

x −
∑

t (Dx,t −D̂(n)
x,t )

− ∑
t D̂(n)

x,t
, β̂(n+1)

x = β̂(n)
x , κ̂(n+1)

t = κ̂(n)
t ,

κ̂(n+2)
t = κ̂(n)

t −
∑

t (Dx,t −D̂(n+1)
x,t )β̂(n+1)

x

−∑
t D̂(n+1)

x,t (β̂(n+1)
x )2

, α̂(n+2)
x = α̂(n+1)

x , β̂(n+2)
x = β̂(n+1)

x ,

β̂(n+3)
x = β̂(n+2)

x −
∑

t (Dx,t −D̂(n+2)
x,t )κ̂n+2(t)

− ∑
t D̂(n+2)

x,t (κ̂n+2
t )2

, α̂(n+3)
x = α̂(n+2)

x , κ̂(n+3)
t = κ̂(n+2)

t .

The parameters are standardized in each step of the iteration to satisfy the constraints

∑

x

β(x) = 1,
∑

t

κ(t) = 0, (41)

by letting

α̂(n+1)
x = α̂(n)

x + Aβ̂(n)
x , κ̂(n+1)

x = (κ̂(n)
t − A)B, β̂(n+1)

x = β̂(n)
x /B, (42)

where,

A = 1

tmax − tmin

∑

t

κ̂(n)
t , B =

∑

x

β̂(n)
x . (43)

The estimated values of κ(t), t = tmin, . . . , tmax are used to fit it to a dynamical
model. We mentioned above that Lee and Carter fit κ(t) to an ARIMA model of the
form

k(t + 1) = k(t) + a1 + a2ξ + σz(t)

where, z(t) is white noise and ξ ∈ {0, 1} is a dummy variable that captures major
mortality changes.

This algorithm is illustrated by the Figs. 4, 5 and 6, applied to mortality data
among Swedish insured (cf. Swedish Research Board for Actuarial Science [17]).

Mortality jumps, due to e.g. new life standards or medical development etc.,
are also important to capture in a mortality model, despite the serious difficulties to
perform reliable estimation. Cox et al. [7] suggest two types of mortality jump events
to the Lee-Carter model:

logμ(x, t) := α(x) + β(x)κ(t) − G(x, t) + H(x, t),
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Fig. 4 The αx parameter for
ages 30–90 years (females
and males). (From [17],
reproduced with permission
from Taylor and Francis
Ltd.)
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Fig. 5 Estimated and
smoothed βx parameter for
ages 30–90 years (females
and males). (From [17],
reproduced with permission
from Taylor and Francis
Ltd.)
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where

• G(x, t) captures a permanent longevity jump and takes the form

G(x, t) := K (x, t) + D(x, t),

with

K (x, t) :=
∞∑

j=1

y j A j (x)11{t≥η j } = Jump reduction component,
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Fig. 6 Estimated and
linearized κ(t) parameter for
data 1985–2005 (females
and males). (From [17],
reproduced with permission
from Taylor and Francis
Ltd.)
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and

D(x, t) :=
∞∑

j=1

ζi(t − νi)Fi(x)e−ξi(t−νi)11{t≥νi} = Trend reduction component.

• K (x, t) captures temporary adverse mortality jumps and takes the form

H(x, t) :=
∞∑

j=0

b j B j (x)e−κi(t−τi)11{t≥τ j }.

1.8 An Age-Period-Cohort Model: Extending Lee-Carter
Graduation Formula

The Lee-Carter model captures the age-period effect, but does not reflect the possible
cohort effect (calender year-age= t −x). A simple model that would simultaneously
capture the age-period-cohort effect is

logμ(x, t) := α(x) + κ(t) + γ(t − x).

Renshaw and Haberman [9] suggested the following extension of the Lee-Carter
model to capture the cohort effect (calender year-age = t − x):

logμ(x, t) := β1(x) + β2(x)κ(t) + β3(x)γ(t − x). (44)
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A generalization of this mortality model for data divided into N components reads

logμ(x, t) :=
N∑

j=1

β j (x)κ j (t)γ j (t − x).

In a series of papers the Edinburgh teams including Currie, Richards and co-authors
(2003–2012) and Cairns and co-authors (2006–2012) suggest other extensions and
perform deep statistical analysis that seem tune the age-period-cohort effect when
applied to mortality data from England and Wales, and USA.

1.9 An Infinite Dimensional Approach to Mortality Modeling

The mortality rate can be viewed as an (infinite dimensional) curve of (x, t). To
capture the high level of uncertainty in projections of future mortality one is tempted
to translate the “machinery” developed for “forward” interest rate yields such as
“the HJM-model under the Musiela parametrization etc.” to mortality rates. One
is tempted to translated the calibration techniques of interest rate yield curves, to
perform hopefully more accurate projections of future mortality (thoughwith limited
data points). Recent relevant references include [3–6, 19].

2 Disability Insurance

In the next sections we briefly describe a stochastic semi-Markov model for the
development of disability inception and recovery rates and perform the corresponding
statistical estimation. For more details see [1].

2.1 Disability Inception

Let Ex,t denote the number of healthy individuals with age in [x,x + 1) at the
beginning of time period t , and let Dx,t denote the number of individuals among Ex,t

with disability inception in the interval [t, t + 1). In this section we model inception
over time, t = 0, 1, 2, . . . and eventually estimate the underling parameters.

The Fig. 7 describes inception frequencies per 5-year age groups of females
insured and a smoothed curve. This plot clearly shows that inception seems to be
strongly time- and age-dependent. Below, we suggest a model of this behavior.

Assume Dx,t is binomially distributed given Ex,t :

Dx,t ∼ Bin(Ex,t , px,t ) (45)
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Fig. 7 Left Inception
frequencies per 5-year age
groups, females. Right
Smoothed surface
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where px,t is the inception probability of an x-year-old. In order to reduce the dimen-
sionality of the problem and achieve some level of smoothness, we use the logistic
regression:

logit px,t := log
( px,t

1 − px,t

)
=

n∑

i=1

νi
t φ

i(x), (46)

where φi(x) are age-dependent basis functions, and νi
t time-varying stochastic risk

factors that we aim at estimating. Changing notation, pνt (x) = px,t , we invert the
expression above, obtaining

pνt (x) = exp
(∑n

i=1 νi
t φ

i(x)
)

1 + exp(
∑n

i=1 νi
t φi(x))

. (47)

This guarantees that the probabilities pνt (x) ∈ (0, 1).
Given historical values of Dx,t and Ex,t , and a set of basis functions {φi}, the

log-likelihood function for yearly values of νt ∈ Rn can be written

l(νt ) =
∑

x∈X

[
Dx,t

n∑

i=1

νi
t φ

i(x) − Ex,t log
(
1 + exp

{ n∑

i=1

νi
t φ

i(x)
})] + ct . (48)

If the basis functions are linearly independent it can be shown that −l(νt ) is strictly
convex. Thus it has a unique minimum. Minimizing−l(νt ), using e.g. methods from
numerical optimization, yields estimates of νt . The basis functions can be chosen by
the user, according to some criteria. Desired properties of pνt (·), e.g. continuity or
smoothness w.r.t. x, are achieved by choosing continuous or smooth φi(·), by taking
into account eventual population characteristics. Suitable choices of basis functions
give the risk factors concrete interpretations. Alternatively, an optimal basis can be
extracted from the data using functional principal component analysis. This approach
yields better model fit, but harder to interpret results.
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Fig. 8 Left Two basis
functions. Centre Basis
functions scaled with risk
factor values 0.4 and 0.6.
Right The resulting linear
combination. Note
φ1(25) = φ2(64) = 1, and
φ1(64) = φ2(25) = 0
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Consider the simple model

logit pνt (x) = ν1
t φ1(x) + ν2

t φ2(x),

where the basis functions are linear on x ∈ [25, 64]:

φ1(x) = 64 − x

39
, φ2(x) = x − 25

39
. (49)

A linear combination of φ1 and φ2 is then also linear Fig. 8.
Under this model, the logistic inception probability of a 25-year old is given by

logit pνt (25) = ν1
t φ1(25) + ν2

t φ2(25) = ν1
t .

Similarly, for a 64-year old we have logit pνt (64) = ν2
t . An x-year old can be seen as

a convex combination of a 25-year old and a 64-year old. Inception for the population
is fully described by only ν1

t and ν2
t .

2.2 Recovery from Disability

Recovery from disability is slightly more complicated. The probability of recovering
from illness depends on the amount of time spent in the ‘ill’ state. This is known
as the semi-Markov property. We extend the disability inception model above to the
semi-Markov case, and apply it to recovery modeling.

Let Ex,d,t denote the number of individuals with disability inception age in
[x,x + 1) and disability duration d at some point in the time period [t, t + 1). Let
Rx,d,t denote the number of individuals among Ex,d,t that recover during [d, d +�d)

and [t, t + 1). Assume Rx,d,t is binomially distributed given Ex,d,t :

Rx,d,t ∼ Bin(Ex,d,t , px,d,t ), (50)
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where, px,d,t is the probability that an individual, with disability inception age in
[x,x + 1) and disability duration d at some point in [t, t + 1), recovers during
[d, d + �d).

We propose the following logistic regression model:

logitpνt (x, d) =
n∑

i=1

φi(x)

k∑

j=1

ν
i, j
t ψ j (d), (51)

where φi and ψ j , are age and duration dependent basis functions, respectively, and
ν

i, j
t are stochastic risk factors. This is the inceptionmodel Eq. (46), extendedwith one
dimension. The likelihood also has the same structure as before. It is strict convexity
if each of the sets of functions {φi} and {ψi} are linearly independent. Again, we
estimate νt using numerical optimization Fig. 9.

Consider the simple model

logit pνt (x, d) = φ1(x)

3∑

j=1

ν
1, j
t ψ j (d) + φ2(x)

3∑

j=1

ν
2, j
t ψ j (d)

where φ and ψ are given by:

φ1(x) = 64−x
39 ,φ2(x) = x−25

39 ,ψ1(d) = 1,ψ2(d) = d,ψ3(d) = √
d.

Hence, the recovery probabilities for a 25-year old are given by

logit pνt (25, ·) = φ1(25)
3∑

j=1

ν
1, j
t ψ j (·) + φ2(25)

3∑

j=1

ν
2, j
t ψ j (·) =

3∑

j=1

ν
1, j
t ψ j (·),

Fig. 9 Left Conditional
recovery probabilities. Right
Recovery surface, females,
calendar year 2006
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determined by ν1,1
t , ν1,2

t , ν1,3
t . Similarly, the recovery probabilities for a 64-year old

determined by ν2,1
t , ν2,2

t , ν2,3
t . An x-year old can be seen as a convex combination of

a 25-year old and a 64-year old. These considerations allow us to fully compute the
probability that illness lasts longer than a given period. Let an x-year old’s illness
duration be the r.v. D. The probability that the illness lasts longer than d years is
given by

λ(x, d) = Pνt (D > d) =
d/�d−1∏

n=0

(1 − pνt (x, n�d)).

This is analogous to survival curves.
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