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Abstract The goal of this survey article is to present in detail a method that, for
a financial derivative under a certain stochastic volatility model, allows to obtain a
decomposition of its pricing formula that distinguishes clearly the impact of correla-
tion and jumps. This decomposed pricing formula, usually calledHull andWhite type
formula, can be potentially useful for model selection and calibration. The method
is based on the obtention of an ad-hoc anticipating Itô formula.

Keywords Hull andWhite type formula ·Malliavin-Skorohod calculus · Stochastic
volatility jump-diffusion models · Derivative pricing · Quantitative finance
Mathematical Subject Classification 60H07 · 60H30 · 91G80 · 91G20

1 Introduction

The decomposition method presented in this paper is based on a series of works
developed during the last ten years. In [1], E. Alòs obtained a decomposition of
the pricing formula, usually called Hull and White type formula, for a plain vanilla
call under a correlated stochastic volatility model, with minor hypothesis on the
volatility process related with its Malliavin derivability. The decomposition was
obtained applying an ad-hoc extension of the anticipative Itô formula given in [2].
The obtained formula showed clearly the impact on prices of adding correlation
between price and volatility in stochastic volatility models.

In [3] the same type of formula was obtained adding also finite activity jumps in
the price process. A new term appeared, showing the impact of jumps. In [5] the for-
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mula was extended to the case of assuming jumps also on the volatility process. Still
a new term appeared in the formula. Finally, on [9], the result in [5] was extended
for free to the case of infinite activity and finite variation jumps, and with a cer-
tain restriction in the interpretation of the formula, to the case of infinite activity
and infinite variation jumps. The very general model considered in this last paper
covers almost all stochastic volatility models with and without jumps, treated in the
literature.

Aswe see in the paper, the presence of correlation and jumps in stochastic volatility
models is relevant. Additional terms in the pricing formula appears from correlation,
from jumps in the price process and from jumps in the volatility. Malliavin-Skorohod
calculus and the decomposition method allow to obtain these pricing formulas that
clearly distinguish the effect of correlation than the effect of jumps, for different types
of jumpmodels. If the stochastic volatility is correlated only with the continuous part
of the price process, only Gaussian Malliavin-Skorohod calculus is needed. If the
stochastic volatility is also correlated with price jumps, Lévy Malliavin-Skorohod
calculus is needed.

Section2 is devoted to the Brownian (no jump) case and Sect. 3 treats the
Lévy case.

2 Decomposition of the Pricing Formula Under a General
Brownian Stochastic Volatility Model

The main reference of the theory presented in this section is [1].

2.1 The Model

Let T > 0 be a finite horizon, S = {St , t ∈ [0, T ]} a price process, Xt = log St the
corresponding log price process and r > 0 the fixed interest rate. We assume the
following exponential model with stochastic volatility for the dynamics of the log-
price, under a market chosen risk-neutral probability:

Xt = x + r t − 1

2

∫ t

0
σ 2

s ds +
∫ t

0
σs(ρdWs +

√
1 − ρ2d Bs)

where x is the current log-price,W and B are independent standardBrownianmotions
and ρ ∈ (−1, 1).

We denote byFW andF B the filtrations generated by the independent processes
W and B. Moreover, we define F , the filtration associated to S, by F : = FW ∨
F B . We consider our price model defined on the product of the canonical spaces of
processes W and B.
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The volatility process σ is assumed to be a square-integrable stochastic process,
adapted toFW and with strictly positive and càdlàg trajectories.

Note that this is a very general stochastic volatility model. In this sense, recall the
following facts:

• The model is a generalization of Heston model or other classical correlated sto-
chastic volatility models in the sense that we do not assume a concrete dynamics
for the volatility process σ .

• If ρ = 0 we have a generalization in the same sense as before of different
non correlated stochastic volatility models as Hull-White, Scott, Stein-Stein or
Ball-Roma.

• If σ is deterministic or constant we have the classical Osborne-Samuelson-Black-
Scholes model.

For information about correlated and non-correlated stochastic volatility models,
a good reference is [8].

Stochastic volatility models pursue the goal to replicate price surfaces of plain
vanilla options (depending on time tomaturity and strike) given by derivativemarkets
or vanilla desks. The stochastic volatility σ is a process not directly observable, so it
is not easy to model. This is a justification for trying to assume minimal conditions
on it.

Let HT be the payoff of a financial derivative. Assume it is a FT −measurable
functional. Its price is given by Vt = e−r(T −t)

Et (HT ) where Et : = E(·|Ft ). To fix
ideas wewill concentrate on the case of a plain vanilla call, that is, HT = (ST − K )+.

So, our goal is to obtain a decomposition of

Vt = e−r(T −t)
Et ((ST − K )+)

under our risk neutral model, in order to clarify the effect of correlation in the price.

2.2 Fast Summary of Brownian
Malliavin-Skorohod Calculus

Here we simply recall some basic definitions and facts necessary for our purpose.
See for example [10] for a complete presentation of the theory.

Let W and (ΩW ,FW ,PW ) be the canonical Wiener process and its canonical
space, respectively. Recall that ΩW : = C0([0, T ]) is the space of continuous func-
tions on [0, T ], null at the origin. Denote by EW the expectation with respect to PW .

Consider the family of smooth functionals of type

F = f (Wt1 , . . . , Wtn )

for any n ≥ 0, t1, . . . tn ∈ [0, T ] and f ∈ C∞
b (Rn).
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Given a smooth functional F we define its Malliavin derivative DW F as the
element of L2(ΩW × [0, T ]) given by

Dt F =
n∑

i=1

∂i f (Wt1 , . . . , Wtn )11[0,ti ](t).

The operator DW is closed and densely defined in L2(ΩW ), and its domain
Dom DW is the closure of the smooth functionals with respect the norm

||F ||Dom DW : = (
EW (|F |2) + EW

∫ T

0
|DW

t F |2dt
) 1

2 .

We define δW as the dual operator of DW . Given u ∈ L2(ΩW × [0, T ]), δW (u) is
the element of L2(ΩW ) characterized by

EW (FδW (u)) = EW

∫ T

0
ut DW

t Fdt

for any F ∈ Dom DW . Note that taking F ≡ 1 we obtain

EW (δW (u)) = 0.

The following results will be helpful:

• If F, G and F · G belong to Dom DW we have

DW (F · G) = F DW G + G DW F.

• If F ∈ Dom DW , u ∈ Dom δW and F · u ∈ Dom δW then

δW (F · u) = FδW (u) −
∫ T

0
ut DW

t Fdt.

• It is well known that DW can be interpreted as a directional derivative on the
Wiener space and δW is an extension of the classical Itô integral.

We define the space L1,2
W := L2([0, T ]; Dom DW ), that is the space of processes

u ∈ L2([0, T ] × ΩW ) such that ut ∈ Dom DW for almost all t and Du ∈ L2(ΩW ×
[0, T ]2). It can be proved that L1,2

W ⊆ Dom δW and

EW (δW (u)2) ≤ ||u||2
L
1,2
W

:= EW (||u||2L2([0,T ])) + EW (||DW u||2L2([0,T ]2)).

Finally, we will denote δW
t (u) := δW (u11[0,t]).
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2.3 The Hull and White Formula

If we assume constant volatility we have the well known geometric Brownian model.
In this case, the price Vt is given by the well known Black-Scholes formula:

Vt = BS(t, Xt , σ ) = exΦ(d+) − K e−r(T −t)Φ(d−)

where

d± = Xt − log K + r(T − t)

σ
√

T − t
± σ

√
T − t

2

and Φ is the cumulative probability function of the standard normal law.
If we allow σ = σ(t) be a deterministic function, it is easy to see, that

XT − Xt ∼ N ((r − 1

2
σ̄ 2

t )(T − t), σ̄ 2
t (T − t)),

where

σ̄t :=
√

1

T − t

∫ T

t
σ 2(s)ds

is the so called future average volatility. Define σ̄T as the limit of σ̄t when t ↑ T .

So, in this case, the pricing formula is exactly the Black-Scholes formula changing
σ by σ̄t , that is,Vt = BS(t, Xt , σ̄t ).This suggests that it is the future averagevolatility
and not the volatility the really relevant quantity in pricing. Black-Scholes formula
would be nothing more than the particular case of constant future average volatility.

If σ is a stochastic process uncorrelated with price, that is, ρ = 0 in our model,
we have, following for example [7]:

Vt = Et (BS(t, Xt , σ̄t )).

This is the classical Hull and White formula and covers non correlated stochas-
tic volatility models as the cases of Hull-White, Scott, Stein-Stein, Ball-Roma and
others. The proof is immediate, conditioning first byFt ∨ FW

T .

Note that the future average volatility σ̄t is an anticipative process. This suggest
the use of Malliavin-Skorohod calculus as a natural tool to deal with this type of
processes.

In the correlated case we have the following theorem:

Theorem 1 Assume

• (A1): σ 2 ∈ L
1,2
W .

• (A2): σ ∈ L
1,2
W .
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Then we have,

Vt = Et [BS(t, Xt , σ̄t )] + ρ

2
Et [

∫ T

t
e−r(s−t)(∂3

x − ∂2
x )BS(s, Xs, σ̄s)Λsds]

where

Λs := (

∫ T

s
DW

s σ 2
r dr)σs .

Proof The proof is based on the so called decomposition method.
Recall that

VT = (eXT − K )+ = BS(T, XT , σ̄T )

and so
e−r t Vt = Et (e

−rT BS(T, XT , σ̄T )).

The idea of the proof consists in applying an ad-hoc anticipative Itô formula to
the process

e−rs BS(s, Xs, σ̄s)

between t and T , take conditional expectations Et and multiply by ert . This gives
the expansion for Vt .

The ad-hoc Itô formula is an adaptation to our case of the anticipative Itô formula
proved in [2]. Define

Yt := (T − t)σ̄ 2
t =

∫ T

t
σ 2

r dr.

Thanks to (A1), we are under the conditions of Theorem 1 in [1], and so, for any
F ∈ C1,2,2

b ([0, T ] × R × [0,∞)), we have

F(t, Xt , Yt ) = F(0, X0, Y0) +
∫ t

0
∂s F(s, Xs, Ys)ds + δW,B

t (∂x F(·, X ·, Y·)σ·)

+
∫ t

0
∂x F(s, Xs, Ys)(r − σ 2

s

2
)ds −

∫ t

0
∂y F(s, Xs, Ys)σ

2
s ds

+ρ

∫ t

0
∂xy F(s, Xs, Ys)Λsds + 1

2

∫ t

0
∂2

x F(s, Xs, Ys)σ
2
s ds.

Now we want to apply this result to

F(s, x, y) := e−rs BS(s, x,

√
y

T − s
),

but this function doesn’t satisfy the required conditions of the previous Itô formula
because the derivatives are not bounded, so we need to use a mollifier argument.
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For n ≥ 1 and δ > 0, we consider the approximation,

Fn,δ(s, x, y) := e−rs BS(s, x,

√
y + δ

T − s
)φ(

x

n
),

where φ ∈ C2
b (R), such that φ(z) = 1 if |z| ≤ 1, φ(z) ∈ [0, 1] if |z| ∈ [1, 2] and

φ(z) = 0 if |z| > 2.
Then, applying the previous ad-hoc Itô formula to Fn,δ(s, Xs, Ys), taking the

conditional expectation Et , using the fact that Skorohod type integrals have zero
expectation and multiplying by ert we obtain

Et (e
−r(T −t) BS(T, XT , σ̄ δ

T )φ(
XT

n
))

= Et (BS(t, Xt , σ̄
δ
t )φ(

Xt

n
))

+Et (

∫ T

t
e−r(s−t) An(s)ds)

+ρ

2
Et (

∫ T

t
e−r(s−t)(∂3

x − ∂2
x )BS(s, Xs, σ̄

δ
s )φn(

Xs

n
)Λsds

+ρ

2
Et (

∫ T

t
e−r(s−t)(∂2

x − ∂x )BS(s, Xs, σ̄
δ
s )

1

n
φ

′
(

Xs

n
))Λsds

where

σ̄ δ
s :=

√
Ys + δ

T − s

and

An(s) : = σ 2
s

n
∂x BS(s, Xs, σ̄

δ
s )φ

′
(

Xs

n
)

+σ 2
s

2n
BS(s, Xs, σ̄

δ
s )(

1

n
φ

′′
(

Xs

n
) − φ

′
(

Xs

n
))

+ r

n
BS(s, Xs, σ̄

δ
s )φ

′
(

Xs

n
).

The details can be found in [9] (erasing there the terms depending on jumps, that
will be treated later in this paper).

Finally, the result follows from the dominated convergence theorem taking limits
first on n ↑ ∞ and then on δ ↓ 0. The dominated convergence runs thanks to the
properties of Black-Scholes function and (A2). For the left hand side and the two
first terms on the right hand side we use the fact that function BS(t, x, σ ) is bounded
by ex + K and its derivative (∂x BS)(t, x, σ ) is bounded by ex . For the last two terms
on the right hand side we use Lemma 2 in [3] that says that for any n ≥ 0,
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|E[∂n
x (∂2

x − ∂x )BS(s, Xs, σ̄s)|Ft ∨ FW
T ]| ≤ Cn(ρ)(

∫ T

t
σ 2

s ds)−
n+1
2 ,

for a certain constant Cn(ρ) that depends only on n and ρ.

For example, for the third term on the right hand side, we have

Et (

∫ T

t
e−r(s−t)(∂3

x − ∂2
x )BS(s, Xs, σ̄

δ
s )φn(

Xs

n
)Λsds)

= Et (

∫ T

t
e−r(s−t)

E[(∂3
x − ∂2

x )BS(s, Xs, σ̄
δ
s )|Ft ∨ FW

T ]φn(
Xs

n
)Λsds).

And, applying the lemma,

|E[(∂3
x − ∂2

x )BS(s, Xs, vδ
s )|Ft ∨ FW

T ]φn(
Xs

n
)Λs | ≤ C1(ρ)

|Λs |∫ T
t σ 2

s ds
.

Using the chain rule for DW , the problem reduces to show

Et (

∫ T
t (

∫ T
t |DW

s σu |σudr)σsds∫ T
t σ 2

r dr
) < ∞,

and applying Cauchy-Schwarz inequality twice, we can bound this expression by

Et (
(
∫ T

t (
∫ T

t |DW
s σu |σudu)2ds)

1
2

(
∫ T

t σ 2
u du)

1
2

)

≤ Et (
(
∫ T

t (
∫ T

t |DW
s σu |2dr)(

∫ T
t σ 2

u du)ds)
1
2

(
∫ T

t σ 2
u du)

1
2

)

≤ Et ((

∫ T

t

∫ T

t
|DW

s σu |2duds)
1
2 )

≤ (Et

∫ T

t

∫ T

t
|DW

s σu |2duds)
1
2 .

So, (A2) proves that this expression is finite.
For the fourth term in the right hand side, applying the lemma and using C as a

generic constant, we have

|E[(∂2
x − ∂x )BS(s, Xs, σ̄

δ
s )|Ft ∨ FW

T ]1
n
φ

′
n(

Xs

n
)Λs | ≤ C

n

|Λs |
(
∫ T

t σ 2
s ds)

1
2

.
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So, we have to show

Et (

∫ T
t σs(

∫ T
s |DW

s σu |σudu)ds

(
∫ T

t σ 2
u du)

1
2

) < ∞,

that follows applying Cauchy-Schwarz inequality, similarly to the previous case.

Remark 1 Note that hypothesis (A2) can be changed by the following alternative
hypothesis of uniform ellipticity (A2′): The process σ 2 defined on [0, T ] is uniformly
bounded below by a constant a > 0. In fact (A1) and (A2′), jointly, imply (A2).

3 The Lévy Case

The main references for this section are [3, 5, 9].

3.1 A Very General Stochastic Volatility Lévy Model

Assume now the following exponential Lévy model with stochastic volatility for the
dynamics of the log-price, under a market chosen risk-neutral probability:

Xt = x + r t − 1

2

∫ t

0
σ 2

s ds +
∫ t

0
σs(ρdWs +

√
1 − ρ2d Bs) + L0

t

where L0 is a pure jumpLévy processwith possibly infinitelymany jumpswith triplet
(γ0, 0, ν) and independent of W and B. Now, the volatility process σ is assumed to
be adapted to the filtration generated by W and L0.

Due to the well known Lévy-Itô decomposition we can write

L0
t = γ0t +

∫ t

0

∫
{|y|>1}

yN (ds, dy) + lim
ε↓0

∫ t

0

∫
{ε<|y|≤1}

y Ñ (ds, dy)

where N denotes the Poisson measure associated to Lévy process, Ñ (ds, dy) :=
N (ds, dy) − ν(dy)ds is the compensated Poisson measure and the limit is a.s. and
uniformly on compacts.

For the integers i ≥ 0, we consider the following constants, provided they exist:

ci :=
∞∑

k=i

∫
R

yk

k! ν(dy).
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Observe that in particular

c0 =
∫
R

eyν(dy),

c1 =
∫
R

(ey − 1)ν(dy),

c2 =
∫
R

(ey − 1 − y)ν(dy).

In order to e−r t eXt be a martingale, see for example [6], we must assume
∫

|y|≥1
eyν(dy) < ∞ and γ0 = −

∫
R

(ey − 1 − y11{|y|<1})ν(dy).

These conditions guarantee that ν has moments of all orders greater or equal than
2 and that we can write

L0
t =

∫ t

0

∫
R

y Ñ (ds, dy) − c2t.

So, in the following we will assume, without loosing generality, the model

Xt = x + (r − c2)t − 1

2

∫ t

0
σ 2

s ds +
∫ t

0
σs(ρdWs +

√
1 − ρ2d Bs) + Jt

with

Jt :=
∫ t

0

∫
R

y Ñ (ds, dy).

Recall that if
∫
R

|y|ν(dy) = ∞ we say that the process has infinite activity and
infinite variation. In this case c1 := ∫

R
(ey − 1)ν(dy) and c0 := ∫

R
eyν(dy) are infi-

nite or not defined. If ν has first order moment, that is
∫
R

|y|ν(dy) < ∞, we say the
model has infinite activity but finite variation and c1 is finite. In this case we can
consider c2 = c1 − ∫

R
yν(dy) and rewrite

∫ t

0

∫
R

y Ñ (ds, dy) − c2t =
∫ t

0

∫
R

yN (ds, dy) − c1t.

Finally, if ν is finite, the model has finite activity and so, it is a Compound Poisson
process with ν = λQ for a certain probability measure Q and a certain constant
λ = ν(R) > 0. In this case,

c1 =
∫
R

(ey − 1)ν(dy) = c0 − λ
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and ∫ t

0

∫
R

yN (ds, dy) =
Nt∑

i=1

Vi ,

where N is a λ−Poisson process and Vi are i.i.d. random variables with law Q, the
law that produce the jumps.

Let F J be the filtration generated by J . Note that this filtration is the same
as the filtration generated by L0 because the difference of these two processes is
deterministic. Define now F , the filtration associated to S, by

F := FW ∨ F B ∨ F J .

We will consider our price model defined on the product of the canonical spaces
of processes W , B and J. This means that

ω := (ωW , ωB, ωJ ) ∈ Ω := ΩW × Ω B × Ω J

and in the rest of the paper, any hypothesis on one of the spaces will mean that the
property is true almost surely with respect to the other spaces.

Note that this is a very general stochastic volatilitymodel because, beingσ adapted
toFW ∨ F J , we are allowing jumps both in price and volatility. Recall the following
facts:

• If we assume no jumps, that is ν = 0, we have a generalization of correlated and
non correlated stochastic volatility models in the sense that we do not assume a
concrete dynamics for the volatility. This is the case treated in Sect. 2.

• If we restrict our model to the case σ adapted only toFW we have a generalization
of the Bates model in a double sense; on one hand we do not assume any concrete
dynamics for the stochastic volatility and on other hand we are not assuming finite
activity nor finite variation on ν.

• If we assume no correlation but presence of jumps we cover for example Heston-
Kou model or any uncorrelated model with the addition of Lévy jumps in the price
process with any Lévy measure ν.

• If σ = 0 but we have jumps, we cover the so called exponential Lévy models.

3.2 Malliavin-Skorohod Type Calculus for Lévy Processes

The literature on Malliavin calculus for Lévy processes is more recent and less
extended. Here we follow closely [11] and [4]. A survey of this results can be found
in [12]. We refer to these references for proofs of next results.

Let us denote R0 := R − {0}. Consider the canonical version of the pure jump
Lévy process J. It is defined on the spaceΩ N given by the finite or infinite sequences
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of pairs (ti , xi ) ∈ (0, T ] × R0 such that for every ε > 0 there is only a finite number
of (ti , xi ) with |xi | > ε. Of course, ti denotes a jump instant and xi a jump size.

Consider ωN ∈ Ω N . Given (t, x) ∈ [0, T ] × R0 we can introduce a jump of size
x at instant t to ωN and call the new element

ωN
t,x := ((t, x), (t1, x1)(t2, xs), ...).

For a random variable F ∈ L2(Ω N ), we define

Tt,x F(ωN ) = F(ωN
t,x )

and

DN
t,x F = Tt,x F(ωN ) − F(ωN )

x
.

The operator DN is closed and densely defined in L2(Ω N ) and its domain
Dom DN can be characterized by the fact that

F ∈ Dom DN ⇐⇒ DN F ∈ L2(Ω × [0, T ] × R0, P ⊗ ds ⊗ x2ν(dx)).

On other hand we define δN as the dual operator of DN .

Given u ∈ L2(ΩW × [0, T ] × R, P ⊗ ds ⊗ x2ν(dx)), δN (u) is the element of
L2(Ω N ) characterized by

EN (FδN (u)) = EN (

∫ T

0

∫
R

ut,x DN
t,x Fx2ν(dx)dt)

for any F ∈ Dom DN . In particular EN (δN (u)) = 0.
Let us denote δN

t (u) := δN (u11[0,t]).
As we have seen, DN is an increment quotient operator and it is also known that

δN
t is an extension of Itô integral in the sense that

δN
t (u11R0) =

∫ t

0

∫
R

u(s, x)x Ñ (ds, dx)

for predictable integrands u.

The following formulas will be helpful:

• If F, G and F · G belong to Dom DN we have

DN (F · G) = F DN G + G DN F + x DN F DN G.
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• If F ∈ Dom DN , u ∈ Dom δN and u · Tt,x F ∈ Dom δN then

δN (F · u) = FδN (u) −
∫ T

0

∫
R

ut,x DN
t,x Fx2ν(dx)dt − δN (x · u · DN F).

As in the Wiener case we define the space

L
1,2
N := L2([0, T ] × R, Dom DN ),

that is the space of processes u ∈ L2([0, T ] × R × Ω N ) such that ut,x ∈ Dom DN

for almost all (t, x) and Du ∈ L2(Ω N × ([0, T ] × R)2).

It can be proved that L1,2
N ⊆ Dom δN and

EN (δN (u)2) ≤ ||u||2
L
1,2
N

:= EN (||u||2L2([0,T ]×R)) + EN (||DN u||2L2(([0,T ]×R)2)).

Moreover we introduce the spaceL1,2
N ,− as the subspace ofL1,2

N of processes u such
that the left-limits

u(s−, y) := lim
r↑s,x↑y

u(r, x)

and
DN ,−

s,y u(s−, y) := lim
r↑s,x↑y

DN
s,yu(r, x)

exists PN ⊗ ds ⊗ x2ν(dx)−a.s. and belong to L2(Ω N × [0, T ] × R).

Assume u ∈ L
1,2
N ,− and

∫ T
0

∫
R0

|u(s−, y)||y|N (ds, dy) ∈ L2(Ω N ). Then, for any
t ∈ [0, T ],

T −
s,yu(s−, y) := u(s−, y) + y DN ,−

s,y u(s−, y) ∈ Dom δN
t

and

∫ t

0

∫
R

u(s−, y)y Ñ (ds, dy) = δN
t (T −

s,yu(s−, y)11R0)

+
∫ t

0

∫
R

DN ,−
s,y u(s−, y)y2ν(dy)ds.

If u is predictable we have DN ,−
s,y u(s−, y) = 0. Hence, in this case,

∫ t

0

∫
R

u(s−, y)y Ñ (ds, dy) = δN
t (u(s−, y)11R0).
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3.3 The Hull and White Formula in the Lévy Case

Consider the following definitions in order to shorten the notation, for a suitable
function F :
• Δx F(s, Xs, Ys) := F(s, Xs + x, Ys) − F(s, Xs, Ys).

• Δxx F(s, Xs, Ys) := F(s, Xs + x, Ys) − F(s, Xs, Ys) − x(∂x F)(s, Xs, Ys).

• ΔF(s, Xs, Ys) = F(s, Xs + x, Ys) − F(s, Xs, Ys) − (ex − 1)(∂x F)(s, Xs, Ys).

Then, we have the following decomposition of the price formula:

Theorem 2 Assume

• (B1): σ 2 ∈ L
1,2
N ,− ∩ L

1,2
W .

• (B2): σ ∈ L
1,2
W .

• (B3): For any t ∈ [0, T ], ∫ T
t Et ((

∫ s
t σ 2

u du)−2)ds < ∞.

Then we have

Vt = Et (BS(t, Xt , vt ))

+ρ

2
Et (

∫ T

t
e−r(s−t)(∂3

x − ∂2
x )BS(s, Xs, σ̄s)Λsds)

+Et (

∫ T

t

∫
R

e−r(s−t)ΔBS(s, Xs−, σ̄s)ν(dy)ds)

+Et (

∫ T

t

∫
R

e−r(s−t) DN ,−
s,y Δy BS(s, Xs−, σ̄s)yν(dy)ds).

Remark 2 We can consider the following particular cases:

1. Observe that we cannot split the third term in two terms because in the general
case

Et (

∫ T

t

∫
R

e−r(s−t)Δy BS(s, Xs− , σ̄s)ν(dy)ds)

and

Et (

∫ T

t

∫
R

e−r(s−t)(ey − 1)∂x BS(s, Xs− , σ̄s)ν(dy)ds)

are not necessarily convergent.
2. Observe that if in the previous theorem we assume

∫
R

|y|ν(dy) < ∞, that is,
finite variation, we obtain
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Vt = Et (BS(t, Xt , vt ))

+ρ

2
Et (

∫ T

t
e−r(s−t)(∂3

x − ∂2
x )BS(s, Xs, σ̄s)Λsds)

−Et (

∫ T

t

∫
R

e−r(s−t)(ey − 1)∂x BS(s, Xs, σ̄s)ν(dy)ds)

+Et (

∫ T

t

∫
R

e−r(s−t)T −
s,yΔy BS(s, Xs− , σ̄s)ν(dy)ds),

that is exactly the formula obtained in [5] for the finite activity case, that in fact
is valid in the finite variation case.

3. If the volatility process is independent from price jumps, we have

DN ,−
s,y Δy BS(s, Xs−, σ̄s) = 0

and we obtain

Vt = Et (BS(t, Xt , σ̄t ))

+ρ

2
Et (

∫ T

t
e−r(s−t)(∂3

x − ∂2
x )BS(s, Xs, σ̄s)Λsds)

+Et

∫ T

t

∫
R

e−r(s−t)ΔBS(s, Xs− , σ̄s)ν(dy)ds,

that generalizes the formula in [3]. As in the previous remark, only in the finite
variation case we recuperate exactly the formula in [3]. This formula covers
Bates model and any correlated model with any type of Lévy jumps in the price
process.

4. If moreover, the volatility process is independent from the price process, that is,
ρ = 0, we obtain

Vt = Et (BS(t, Xt , vt )) + Et

∫ T

t

∫
R

e−r(s−t)ΔBS(s, Xs− , σ̄s)ν(dy)ds.

This covers all the so called uncorrelated models plus jumps (Heston-Koumodel
for example) and in the particular case of constant volatility, the so called expo-
nential Lévy models. In the jump part we can consider infinite activity jumps as
CGMY model (for Y ≥ 0) or Meixner model for example.

Proof We follow the same general idea of Theorem 1. The necessary ad-hoc Itô
formula, see [9], is now
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F(t, Xt , Yt ) = F(0, X0, Y0) +
∫ t

0
∂s F(s, Xs, Ys)ds + δW,B

t (∂x F(·, X ·, Y·)σ·)

+
∫ t

0
∂x F(s, Xs, Ys)(r − c2 − σ 2

s

2
)ds −

∫ t

0
∂y F(s, Xs, Ys)σ

2
s ds

+ρ

∫ t

0
∂xy F(s, Xs, Ys)Λsds + 1

2

∫ t

0
∂2

x F(s, Xs, Ys)σ
2
s ds

+
∫ t

0

∫
R0

(Δy F(s, Xs−, Ys) − y(∂y F)(s, Xs−, Ys))ν(dy)ds

+δN
t (

Δy F(s, Xs−, Ys)

y
11R0(y)) + δN

t (DN ,−
s,y Δy(s, Xs−, Ys))

+
∫ t

0

∫
R

DN ,−
s,y Δy F(s, Xs−, Ys)yν(dy)ds.

To prove it, fix first ε > 0, and consider the process

X ε
t := x + (r − c2)t − 1

2

∫ t

0
σ 2

s ds +
∫ t

0
σs(ρdWs +

√
1 − ρ2d Bs)

+
∫ t

0

∫
|x |>ε

x Ñ (ds, dx).

This process has a finite number of jumps and converges a.s. and in L2 sense
to Xt .

Denote by T ε
i the jump instants, and write T ε

0 := 0. Then

F(T ε
i+1, X ε

T ε
i+1

, YT ε
i+1

) − F(T ε
i , X ε

T ε
i
, YT ε

i
) =

∫ T ε
i+1−

T ε
i

d F(s, X ε
s , Ys)

+F(T ε
i+1, X ε

T ε
i+1

, YT ε
i+1

) − F(T ε
i+1, X ε

T ε
i+1−, YT ε

i+1
).

On the stochastic interval [T ε
j , T ε

j+1[we can apply the anticipative Itô formula for
continuous process presented in Sect. 2. Then we have that

∂x F(s, Xs− , Ys)σs11[0,t](s) ∈ Dom δW,B

and

F(t, X ε
t , Yt ) = F(0, X0, Y0) +

∫ t

0
∂s F(s, X ε

s , Ys)ds

+
∫ t

0
∂x F(s, X ε

s , Ys)(r − σ 2
s

2
− c2)ds + δW,B

t

(
∂x F(s, X ε

s− , Ys)σs
)

−
∫ t

0

∫
{|x |>ε}

∂x F(s, X ε
s , Ys)xν(dx)ds −

∫ t

0
∂y F(s, X ε

s , Ys)σ
2
s ds
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+ ρ

∫ t

0
∂xy F(s, X ε

s , Ys)Λsds + 1

2

∫ t

0
∂2

x F(s, X ε
s , Ys)σ

2
s ds

+
∑

i

[F(T ε
i , X ε

T ε
i
, YT ε

i
) − F(T ε

i , X ε
T ε

i −, YT ε
i
)].

Of course we can write

∑
i

[F(T ε
i , Xε

T ε
i
, YT ε

i
) − F(T ε

i , Xε
T ε

i −, YT ε
i
)] =

∫ t

0

∫
|x |>ε

Δx F(s, Xs−, Ys)N (ds, dx).

Then,

∑
i

[F(T ε
i , X ε

T ε
i
, YT ε

i
) − F(T ε

i , X ε
T ε

i −, YT ε
i
)] −

∫ t

0

∫
|x |>ε

∂x F(s, X ε
s−, Ys)xν(dx)ds

=
∫ t

0

∫
|x |>ε

Δx F(s, X ε
s−, Ys)Ñ (ds, dx) +

∫ t

0

∫
|x |>ε

Δxx F(s, X ε
s−, Ys)ν(dx)ds.

Observe that this equality is the crucial step of the proof. Only introducing
Δxx F(s, X ε

s−, Ys) we become able to apply succesfully the dominated convergence
theorem, even if Y has no jumps.

Using the relation between δN and the integral with respect to Ñ we have

∫ t

0

∫
|x |>ε

Δx F(s, X ε
s−, Ys)Ñ (ds, dx)

= δN
t (T −

s,x

Δx F(s, X ε
s−, Ys)

x
11{|x |>ε})

+
∫ t

0

∫
|x |>ε

DN ,−
s,x

Δx F(s, X ε
s−, Ys)

x
x2ν(dx)ds.

And using mean value theorem and the fact that first and second derivatives of
F are bounded we have

|T −
s,x

Δx F(s, X ε
s−, Ys)

x
| = |Δx F(s, X ε

s−, T −
s,x Ys)

x
| ≤ C,

|DN ,−
r,y

Δx F(s, X ε
s−, T −

s,x Ys)

x
| ≤ C |DN ,−

r,y T −
s,x Ys | = C

∫ T

s
|DN ,−

r,y T −
s,xσ

2
u |du

and

|DN ,−
s,x

Δx F(s, X ε
s−, Ys)

x
| ≤ C |DN ,−

s,x Ys | = C
∫ T

s
|DN ,−

s,x σ 2
r |dr,

for a generic constant C.
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Finally, using (B1) and the dominated convergence theorem the right hand side
of the previous equality converges when ε goes to 0. The other terms converge also
by the dominated convergence theorem, and the Itô formula follows.

Then, following the same steps of the proof of Theorem 1, after applying this
last ad-hoc Itô formula, taking conditional expectations, using the fact that Skorohod
type integrals have zero expectation and multiplying by ert we obtain

Et (e
−r(T −t) BS(T, XT , σ̄ δ

T )φ(
XT

n
)) (1)

= Et (BS(t, Xt , σ̄
δ
t )φ(

Xt

n
))

+Et (

∫ T

t
e−r(s−t) An(s)ds)

+ρ

2
Et (

∫ T

t
e−r(s−t)(∂3

x − ∂2
x )BS(s, Xs, σ̄

δ
s )φn(

Xs

n
)Λsds)

+ρ

2
Et (

∫ T

t
e−r(s−t)(∂2

x − ∂x )BS(s, Xs, σ̄
δ
s )

1

n
φ

′
(

Xs

n
)Λsds)

−c2Et (

∫ T

t
e−r(s−t)∂x BS(s, Xs, σ̄

δ
s )φ(

Xs

n
)ds)

+Et (

∫ T

t

∫
R

e−r(s−t)Δyy BS(s, Xs− , σ̄ δ
s )φ(

Xs−
n

)ν(dy)ds)

+Et (

∫ T

t

∫
R

e−r(s−t) DN ,−
s,y

Δy BS(s, Xs− , σ̄ δ
s )φ(

Xs−
n )

y
y2ν(dy)ds).

And as in Theorem 1, applying the dominated convergence theorem, letting first
n ↑ ∞ and then δ ↓ 0 we obtain the result.

To assure the dominated convergence, we have to treat the last three terms of (1)
as a unique term and separate it in two integrals, one on |y| ≤ 1 and the other on
|y| > 1.

In the case |y| > 1, things simplify and we obtain

−Et (

∫ T

t

∫
|y|>1

e−r(s−t)∂x BS(s, Xs, σ̄
δ
s )φ(

Xs

n
)(ey − 1)ν(dy)ds)

+Et (

∫ T

t

∫
|y|>1

e−r(s−t)T N ,−
s,y Δy BS(s, Xs− , σ̄ δ

s )φ(
Xs−
n

)ν(dy)ds).

For the first termwe use that ∂x BS(s, Xs, σ̄
δ
s ) is bounded by eXs and for the second

term we use the fact that

|T N ,−
s,y Δy BS(s, Xs− , σ̄ δ

s )| ≤ 2K + eXs−+y + eXs−
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and that ∫
{|y|>1}

eyν(dy) < ∞.

In the case |y| ≤ 1, the fifth term in the right hand side of (1) is bounded because
∂x BS is bounded. The sixth term can be written as

1

2
Et (

∫ T

t

∫
|y|≤1

e−r(s−t)∂2
x BS(s, Xs + α, σ̄ δ

s )φ(
Xs−
n

)y2ν(dy)ds)

= 1

2
Et (

∫ T

t

∫
|y|≤1

e−r(s−t)(∂2
x − ∂x )BS(s, Xs + α, σ̄ δ

s )φ(
Xs−
n

)y2ν(dy)ds)

+1

2
Et (

∫ T

t

∫
|y|≤1

e−r(s−t)∂x BS(s, Xs + α, σ̄ δ
s )φ(

Xs−
n

)y2ν(dy)ds)

where |α| ≤ |y|.
The second term on the right hand side of this last expression is bounded because

∂x BS is bounded. For the first term we use Lemma 2 in [3] as in Theorem 1 and we
bound it by

CEt (

∫ T

t

∫
|y|≤1

√
1

Yt
y2ν(dy)ds),

for a certain constantC.Hypothesis (B3) guarantees the convergence of this integral,
because

Et (

∫ T

t

∫
|y|≤1

√
1

Yt
y2ν(dy)ds) = C(T − t)Et (

√
1

Yt
)

and

Et (

√
1

Yt
) ≤ (Et (

1

Y 2
t
))

1
4 ≤ (Et ((

∫ s

t
σ 2

u du)−2))
1
4

and so, the term is bounded by (B3).
Finally, the last term of (1) can be bounded by

Et (

∫ T

t

∫
|y|≤1

|DN ,−
s,y (∂x BS)(s, Xs− + α, σ̄ δ

s )|y2ν(dy)ds)

= Et (

∫ T

t

∫
|y|≤1

|DN ,−
s,y (∂x BS)(s, Xs− + α,

√
Ys + δ

T − s
)|y2ν(dy)ds)

= Et (

∫ T

t

∫
|y|≤1

|(∂xσ BS)(s, Xs− + α,

√
θs,y + δ

T − s
)| |DN ,−

s,y Ys |
2(T − s)

√
θs,y+δ

T −s

y2ν(dy)ds)
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= 1

2
Et (

∫ T

t

∫
|y|≤1

|(∂x (∂2x − ∂x )BS)(s, Xs− + α,

√
θs,y + δ

T − s
)||DN ,−

s,y Ys |y2ν(dy)ds),

(2)
where |α| ≤ |y| and θs,y is a quantity between Ys and T N ,−

s,y Ys .

Now, we cannot apply directly Lemma 2 in [3], but mimicking the proof we have
that the last integral is less or equal than

CEt (

∫ T

t

∫
|y|≤1

|DN ,−
s,y Ys |∫ s

t σ 2
u du

y2ν(dy)ds).

Then, applying Cauchy-Schwarz inequality, this expression is bounded by

C(Et (

∫ T

t

∫
|y|≤1

1

(
∫ s

t σ 2
u du)2

y2ν(dy)ds))
1
2 (Et (

∫ T

t

∫
|y|≤1

|DN ,−
s,y Ys |2y2ν(dy)ds))

1
2 .

The first term of this product is bounded by (B3) and the second one by (B1)

Remark 3

1. As in the case of Theorem 1, (B2) can be changed by (A2′).
2. If σ not depends on jumps, (B3) reduces to Et ((

∫ T
t σ 2

u du)− 1
2 ) < ∞, that it is

weaker than (A2′).
3. In the case of finite variation, (B3) is not necessary.
4. In the complete general case, but only in this case, (B1) and (A2′) are not enough.

An alternative treatment of (2), using (A2′), is to bound directly

|(∂x(∂
2
x − ∂x )BS)(s, Xs− + α,

√
θs,y + δ

T − s
)| ≤ eXs−+α(

1√
Ys

+ 1

Ys
).

So, we can decompose this term in two new terms. The term with Y
− 1

2
s can be

treated easily and it is bounded with no other requirements than (B1) and (A2′).
But the term with Y −1

s requires to assume, alternatively to (B3), the following
hypothesis,

Et (

∫ T

t

∫
|y|≤1

|DN ,−
s,y Ys |
Ys

y2ν(dy)ds) < ∞,

that using (A2′) is equivalent to assume

(B4) : Et (

∫ T

t

∫
|y|≤1

|DN ,−
s,y Ys |

T − s
y2ν(dy)ds) < ∞.

Note that this last hypothesis is stronger than (B1). So, we need (B1), (A2′) and
(B4) to guarantee the complete general case.
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