
Variance-GGC Asset Price Models
and Their Sensitivity Analysis

Nicolas Privault and Dichuan Yang

Abstract This paper reviews the variance-gamma asset price model as well as its
symmetric and non-symmetric extensions based on generalized gamma convolutions
(GGC). In particular we compute the basic characteristics and decomposition of the
variance-GGCmodel, and we consider its sensitivity analysis based on the approach
of Kawai and Kohatsu-Higa in Appl Math Finance 17(4):301–321, 2010 [8].
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1 Introduction

Lévy processes play an important role in the modeling of risky asset prices with
jumps. In addition to the Black-Scholes model based on geometric Brownianmotion,
pure jump and jump-diffusion processes have been used by Cox and Ross [5] and
Merton [13] for the modeling of asset prices. More recently, Brownian motions
time-changed by non-decreasing Lévy processes (i.e. subordinators) have become
popular, in particular the Normal Inverse Gaussian (NIG) model [1], the variance-
gamma (VG) model [11, 12], and the CGMY/KoBol models [3, 4].
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The normal inverse Gaussian (NIG) process [1] can constructed as a Brownian
motion time-changed by aLévyprocesswith the inverseGaussian distribution,whose
marginal at time t is identical in law to the first hitting time of the positive level t by
a drifted Brownian motion.

The variance-gamma process [11, 12] is built on the time change of a Brownian
motion by a gamma process, and has been successful in modeling asset prices with
jumps and in addressing the issue of slowly decreasing probability tails found in real
market data.

The CGMY/KoBol models [3, 4] are extensions of the variance-gammamodel by
a more flexible choice of Lévy measures. However, this extension loses some nice
properties of variance-gamma model, for example variance-gamma processes can
be decomposed into the difference of two gamma processes, whereas this property
does not hold in general in the CGMY/KoBol models.

In [6] the variance-gamma model has been extended into a symmetric variance-
GGC model, based on generalized gamma convolutions (GGCs), see [2] for details
and a driftless Brownian motion. In this paper we review this model and propose an
extension to non-symmetric case using a drifted Brownian motion.

GGC random variables can be constructed by limits in distribution of sums of
independent gamma random variables with varying shape parameters. As a result,
the variance-GGC model allows for more flexibility than standard variance-gamma
models, while retaining some of their properties. The skewness and kurtosis of
variance-GGC processes can be computed in closed form, including the relations
between skewness and kurtosis of the GGC process and of the corresponding
variance-GGC process. In addition, variance-GGC processes can be represented as
the difference of two GGC processes.

On the other hand, the sensitivity analysis of stochastic models is an important
topic in financial engineering applications. The sensitivity analysis of time-changed
Brownian motion processes has been developed and the Greek formulas have been
obtained by following the approach in [8]. In addition, the sentivity analysis of the
variance-gamma, stable and tempered stable processes has been performed in [9]
and [10] respectively. As an extension of the variance-gamma process, we study the
corresponding sensitivity analysis of the variance-GGCmodel along the lines of [9].

In the remaining of this section we review some facts on generalized gamma con-
volutions, (GGCs) including their variance, skewness and kurtosis. We also discuss
an asset price model based on GGCs and its sensitivity analysis.

Wiener-gamma integrals

Consider a gamma process (γt )t∈R+ , i.e. (γt )t∈R+ is a process with independent and
stationary increments such that γt at time t > 0 has a gamma distribution with shape
parameter t and probability density function e−x x t−1/Γ (t), x > 0. We denote by

∫ ∞

0
g(t)dγt , (1)



Variance-GGC Asset Price Models and Their Sensitivity Analysis 83

the Wiener-gamma stochastic integral of a deterministic function

g : R+ −→ R+

with respect to the standard gamma process (γt )t∈R+ , provided g satisfies the
condition

∫ ∞

0
log(1 + g(t))dt < ∞, (2)

which ensures the finiteness of Eq. (1), cf. Sect. 1.2, page 350 of [7] for details. In
particular, there is a one-to-one correspondence between GGC random variables and
Wiener-gamma integrals, Proposition 1.1, page 352 of [7].

Generalized gamma convolutions

A random variable Z is a generalized gamma convolution if its Laplace transform
admits the representation

E[e−u Z ] = exp

(
−t
∫ ∞

0
log
(
1 + u

s

)
μ(ds)

)
, u ≥ 0

where μ(ds) is called the Thorin measure and should satisfy the conditions

∫
(0,1]

| log s|μ(ds) < ∞ and
∫

(1,∞)

s−1μ(ds) < ∞.

Generalized gamma convolutions (GGC) can be defined as the limits of independent
sums of gamma random variables with various shape parameters, cf. [2] for details.

In particular, the density of the Lévy measure of a GGC random variable is a
completely monotone function. From the Laplace transform of Z we find

E[Z ] =
∫ ∞

0
t−1μ(dt),

and the first central moments of Z can be computed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[(Z − E[Z ])2] =
∫ ∞

0
t−2μ(dt),

E[(Z − E[Z ])3] = 2
∫ ∞

0
t−3μ(dt),

E[(Z − E[Z ])4] = 3 (Var [Z ])2 + 6
∫ ∞

0
t−4μ(dt).

(3)
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As a consequence we can compute the

Skewness[Z ] = E[(Z − E[Z ])3]
(Var [Z ])3/2 = 2

∫∞
0 t−3μ(dt)

(Var [Z ])3/2 ,

and

Kurtosis[Z ] = E[(Z − E[Z ])4]
(Var [Z ])2 = 3 + 6

∫∞
0 t−4μ(dt)

(Var [Z ])2

of Z . We refer the reader to Proposition 1.1 of [7] for the relation between the
integrand in aWiener-gamma representation and the cumulative distribution function
of the associated generalized gamma convolution.

Market model and sensitivity analysis

As an extension of the model of [9] to GGC random variables we consider an asset
price process ST defined by the exponent

ST = S0 exp

(
θ

∫ ∞

0
g(s)dγs + τ

√
T Θ + ZT + c(θ, τ )T

)
,

of a variance-GGCprocess, i.e.
∫∞
0 g(s)dγs is a GGC random variable represented as

a Wiener-gamma integral, Θ is an independent Gaussian random variable, (Zt )t∈R+
is another GGC-Lévy process, and θ ∈ R, τ ≥ 0, T > 0.

In Sect. 3 the sensitivity
∂

∂S0
E[Φ(ST )] of an option with payoff Φ with respect

to the initial value S0 in a variance-GGC model is shown to satisfy

∂

∂S0
E[Φ(ST )] = 1

S0
E[Φ(ST )LT ],

where

LT := 2θ
∫∞
0 g(s) f 2(s)dγs

(θ
∫∞
0 g(s) f (s)dγs + τ

√
T η)2

+
∫∞
0 f (s)dγs − T

∫∞
0 f (s)ds + ηΘ

θ
∫∞
0 g(s) f (s)dγs + τ

√
T η

for any positive function f : R+ → (0, a) and η > 0. In Theorem 1wewill compute
this sensitivity as well as orther Greeks based on the model parameters θ and τ .

The remaining of this paper is organized as follows. In Sect. 2 we introduce a
model for Brownian motion time-changed by a GGC subordinator. The variance,
skewness and kurtosis of variance-GGC processes are calculated in relation with the
corresponding parameters of GGC processes, and several example of variance-GGC
models are considered. A Girsanov transform of GGC processes is also stated. The
sensitivity analysis with respect to S0, θ and τ is conducted in Sect. 3.
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2 Variance-GGC Processes

Given (Wt )t∈R+ a standard Brownian motion and θ ∈ R, σ > 0, consider the drifted
Brownian motion

Bθ,σ
t := θ t + σ Wt , t ∈ R+.

Next, consider a generalized gamma convolution (GGC) Lévy process (Gt )t∈R+ such
that G1 is a GGC random variable with Thorin measure μ(ds) on R+. We define the
variance-GGC process (Y σ,θ

t )t∈R+ as the time-changed Brownian motion

Y σ,θ
t := Bθ,σ

Gt
, t ∈ R+.

The probability density function of Y σ,θ
t is given by

fY σ,θ
t

(x) = 1

σ
√
2π

∫ ∞

0
exp

(
−|x − θy|2

2σ 2y

)
ht (y)

dy√
y
, x ∈ R,

where ht (y) is the probability density function of Gt , cf. Relation (6) in [11].
The Laplace transform of Y σ,θ

t is

E
[
exp
(−uY σ,θ

t

)] =
∫ ∞

0
e−uy fYt (y)dy

= ΨGt

(
θu − σ 2

2
u2

)

= exp

(
−t
∫ ∞

0
log

(
1 + θu − σ 2u2/2

s

)
μ(ds)

)
, (4)

where ΨGt is the Laplace transform of Gt .
This construction extends the symmetric variance-GGC model constructed in

Sect. 4.4, pages 124–126of [6]. In particular, the next proposition extends to variance-
GGC processes Relation (8) in [11, 12], which decomposes the variance-gamma
process into the difference of two gamma processes. Here, we are writing Yt as
the difference of two independent GGC processes, i.e. Yt becomes an Extended
Generalized Gamma Convolution (EGGC) in the sense of Chap.7 of [2], cf. also
Sect. 3 of [14].

Proposition 1 The time-changed process Yt can be decomposed as

Yt = Ut − Wt ,

where Ut and Wt are two independent GGC processes with Thorin measures μA and
μB which are the image measures of μ(dt) on R+ respectively, by the mappings
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s �−→ B(s) := θ

σ 2
+ 1

σ

√
θ2

σ 2
+ 2s, s ∈ R+,

and

s �−→ A(s) = − θ

σ 2
+ 1

σ

√
θ2

σ 2
+ 2s, s ∈ R+.

Proof From (4), the Laplace tranform of Yt can be decomposed as

E
[
exp
(−uY σ,θ

t

)] = exp

(
−t
∫ ∞

0
log

(
1 − u

B(s)

)(
1 + u

A(s)

)
μ(ds)

)

= exp

(
−t
∫ ∞

0
log

(
1 + u

A(s)

)
μ(ds) − t

∫ ∞

0
log

(
1 − u

B(s)

)
μ(ds)

)

= exp

(
−t
∫ ∞

0
log
(
1 + u

s

)
μA(ds) − t

∫ ∞

0
log
(
1 − u

s

)
μB(ds)

)

= E[e−uUt ]E[euWt ].

�
The Laplace tranform of Yt can also be decomposed as

E

[
exp
(
−uY σ,θ

t

)]
= exp

(
−t
∫ ∞

0
log
(
1 + u

s

)
μA(ds) − t

∫ ∞

0
log
(
1 − u

s

)
μB(ds)

)

= exp

(
−t
∫ 0

−∞
log
(
1 + u

s

)
μ−B(ds) − t

∫ ∞

0
log
(
1 + u

s

)
μA(ds)

)
, (5)

whereμ−B is the imagemeasure ofμB by s �→ −s, and in particular,Yt is an extended
GGC (EGGC) with Thorin measure μA + μ−B in the sense of Chap.7 of [2].

In the next proposition we compute the variance, skewness and kurtosis of
variance-GGC processes.

Proposition 2 We have

(i) Var [Y1] = θ2Var [G1] + σ 2
E[G1].

(ii) Skewness[Y1] = −E[(G1 − E[G1])3] + 2(σ/θ)2Var [G1]
2(Var [G1] + (σ/θ)2E[G1])3/2

= −θ3

2
Skewness[G1] (Var [G1])3/2

(Var [Y1])3/2 − θσ 2Var [G1]
(Var [Y1])3/2 . (6)
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(iii) Kurtosis[Y1] = 3 + 3θ4E[(G1 − E[G1])4] − 3(Var [G1])2
8(θ2Var [G1] + σ 2E[G1])2

+ 3
3θ2σ 2

E[(G1 − E[G1])3]/4 + σ 4Var [G1]
(θ2Var [G1] + σ 2E[G1])2

= 3 + θ4 (Kurtosis[G1] − 3)(Var [G1])2
16(Var [Y1])2

+ 9σ 2θ2 Skewness[G1](Var [G1])3/2
4(Var [Y1])2 + 3

σ 4Var [G1]
(Var [Y1])2 . (7)

Proof Using the Thorin measure μA + μ−B of Yt and (3) we have

Var [Y1] =
∫ ∞

0
t−2μA(dt) +

∫ 0

−∞
t−2μ−B(dt)

=
∫ ∞

0

1

A2(t)
μ(dt) +

∫ ∞

0

1

B2(t)
μ(dt)

=
∫ ∞

0

θ2 + tσ 2

t2
μ(dt)

= θ2Var [G1] + σ 2
E[G1],

and

E[(Y1 − E[Y1])3] = 2
∫ ∞

0
t−3μA(dt) + 2

∫ 0

−∞
t−3μ−B(dt)

= 1

2

∫ ∞

0

θ3 + θσ 2
(
θ2/σ 2 + 2t

)
t3

μ(dt)

= θ3

2
E[(G1 − E[G1])3] + θσ 2Var [G1],

and

E[(Y1 − E[Y1])4] = 6
∫ 0

−∞
t−4μA(dt) + 6

∫ ∞

0
t−4μ−B(dt)

+ 3

(∫ 0

−∞
t−2μ−(dt) +

∫ ∞

0
t−2μ+(dt)

)2

= 3

4

∫ ∞

0

θ4 + (θσ )2(
√
4θ2/σ 2 + 8t/2)2 + σ 4(

√
4θ2/σ 2 + 8t)4/2

t4
μ(dt)

+ 3

(∫ ∞

0

θ2 + tσ 2

t2
μ(dt)

)2

= 3

4

∫ ∞

0

3θ4 + 6σ 2θ2t + 4σ 4t2

t4
μ(dt) + 3

(∫ ∞

0

θ2 + tσ 2

t2
μ(dt)

)2
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= 3

8
θ4(E[(G1 − E[G1])4] − 3(Var [G1])2)

+9

4
θ2σ 2

E[(G1 − E[G1])3] + 3σ 4Var [G1] + 3(θ2Var [G1] + σ 2
E[G1])2,

and this yields (6) and (7). �

Girsanov theorem

Consider the probability measure Qλ defined by the Radon-Nikodym density

d Qλ

d P
:= eλYT

E[eλYT ] = (1 − λ)aT eλYT = eλYT +aT log(1−λ), λ < 1, (8)

cf. e.g. Lemma 2.1 of [9], where YT is a gamma random variable with shape and
scale parameters (aT, 1) under P . Then, under Qλ, the random variable Yt has a
gammadistributionwith parameter (aT, 1/(1 − λ), i.e. the distribution ofYt/(1 − λ)

under P .
In the next proposition we extend this Girsanov transformation to GGC random

variables.

Proposition 3 Consider the probability measure Pf defined by its Radon-Nikodym
derivative

d Pf

d P
= e

∫∞
0 f (s)dγs

E[e∫∞
0 f (s)dγs ] = e

∫∞
0 f (s)dγs+

∫∞
0 log(1− f (s))ds,

where f : R+ → (0, 1) satisfies

∫ ∞

0
log

(
1 + f (t)

1 − f (t)

)
dt < ∞. (9)

Assume that g : R+ → R+ satisfies (2), and

∫ ∞

0
log (1 + ug(s) − f (s)) ds > −∞, u > 0.

Then, under Pf , the law of
∫∞
0 g(s)dγs is the GGC distribution of the Wiener-gamma

integral ∫ ∞

0

g(s)

1 − f (s)
dγs

under P.
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Proof For all u > 0, we have

EPf

[
exp

(
−u
∫ ∞

0
g(s)dγs

)]

= E

[
exp

(
−u
∫ ∞

0
g(s)dγs +

∫ ∞

0
f (s)dγs +

∫ ∞

0
log (1 − f (s)) ds

)]

= E

[
exp

(∫ ∞

0
f (s) − ug(s)dγs

)]
exp

(∫ ∞

0
log (1 − f (s)) ds

)

= exp

(
−
∫ ∞

0
log (1 + ug(s) − f (s)) ds

)
exp

(∫ ∞

0
log (1 − f (s)) ds

)

= exp

(
−
∫ ∞

0
log

(
1 + ug(s)

1 − f (s)

)
ds

)

= E

[
exp

(
−u
∫ ∞

0

g(s)

1 − f (s)
dγs

)]
.

�

Note that (8) is recovered by taking g(s) = 1[0,aT ](s) and f (s) = λ1[0,aT ](s) for
λ ∈ (0, 1), i.e. GT = ∫∞

0 g(s)dγs is a gamma random variable with shape parameter
aT and we have

EPf [e−uGT ] =
(
1 + u

1 − λ

)−aT

= E

[
exp

(
− u

1 − λ
GT

)]
,

u > 0, λ < 1. Next we consider several examples and particular cases.

Gamma case

In case the Thorin measure μ is given by

μ(dt) = γ δc(dt),

where δc is the Dirac measure at c > 0 we find the variance-gamma model of [12].
Here, Gt , t > 0, has the gamma probability density

φt (x) = cγ t xγ t−1e−cx

Γ (γ t)
, x ∈ R+,

with mean and variance γ t/c and γ t/c2, and Gt becomes a gamma random variable
with parameters (γ t, c). In this case, the decomposition in Proposition 1 reads

ΨYt (u) =
(
1 − σ 2u2

2c

)−tγ

=
(
1 − σu√

2c

)−tγ (
1 + σu√

2c

)−tγ

,
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and we have
μA(dt) = μB(dt) = γ δ√

2c/σ (dt),

thus (Ut )t∈R+ , (Wt )t∈R+ become independent gamma processes with parameter
(γ t,

√
2c/σ). The mean and variance of U1 are

E[U1] =
∫ ∞

0
t−1μA(dt) = σγ√

2c

and

Var [U1] = E[(U1 − E[U1])2] =
∫ ∞

0
t−2μA(dt) = γ σ 2

2c
.

Symmetric case

When θ = 0 we recover the symmetric variance-GGC process

Yt := Bσ (Gt ), t ∈ R+,

defined in Sect. 4.4, page 124–126 of [6], i.e. the time-changed Brownian motion is
a symmetric variance-GGC process. Here, Yt is a centered Gaussian random vari-
able with variance σ 2Gt given Gt , where Bσ

t is a standard Brownian motion with
variance σ 2.

The Laplace transform of Yt in Proposition 1 shows that Yt decomposes into two
independent processes with same GGC increments since μA and μB are the same
image measures of μ(dt) on R+, by s �→ √

2s/σ .

Variance-stable processes

Let (Gt )t∈R+ be a Lévy stable process with index parameter α ∈ (0, 1) and moment
generating function h(s) = e−sα

. In this section we consider a non-symmetric exten-
sion of the symmetric variance stable process considered in Sect. 4.5, pages 126–127
of [6]. The Thorin measure of the stable distribution is given by

μ(dt) = ϕ(t)dt = α

π
sin(απ)tα−1dt,

cf. page 35 of [2]. By Proposition 1, Yt can be decomposed as

Yt = Ut − Wt ,

where Ut and Wt are processes with independent stable increments and Thorin
measures

μA(dt) = ϕA(t)dt = α

π
sin(απ)(σ 2t + θ)

(
1

2
(σ t − θ/σ)2 − θ2

2σ 2

)α−1

dt,
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Fig. 1 Sample paths of variance-stable process with α = 0.99

and

μB(dt) = ϕB(t)dt = α

π
sin(απ)(σ 2t − θ)

(
1

2
(σ t − θ/σ)2 − θ2

2σ 2

)α−1

dt.

In the symmetric case θ = 0 we find

μA(dt) = ϕA(t)dt = μB(dt) = ϕB(t)dt = σ 2tϕ

(
σ 2t2

2

)
dt = α sin(απ)

2α−1π
σ 2α t2α−1dt,

i.e.
√
2Ut/σ and

√
2Wt/σ are stable processes of index 2α. Note that the skewness

and kurtosis ofGt andYt are undefined. Figure1 presents a simulation of the variance-
stable process.

Variance product of stable processes

Here we take G1 = Z1/α Xα where Z is a Γ (γ, 1) random variable and Xα is a stable
random variable with index α < 1. The MGF of G1 is h(s) = (1 + sα)γ , cf. page 38
of [2], i.e. G1 is a GGC with Thorin measure

μ(dt) = ϕ(t)dt = 1

π

γαtα−1 sin(απ)

1 + t2α + 2tα cos(απ)
dt,

and Yt decomposes as
Yt = Ut − Wt ,

whereUt andWt are processes of independent product of stable increment andThorin
measures
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Fig. 2 Sample paths of variance-product of stable process with α = 0.99 and γ = 0.2

μA(dt) = ϕA(t)dt

= 1

π

γα((σ t + θ/σ )2/2 − θ2/(2σ 2))α−1 sin(απ)(σ 2t + θ)

1 + ((σ t + θ/σ )2/2 − θ2/(2σ 2))2α + 2((σ t + θ/σ )2/2 − θ2/(2σ 2))α cos(απ)
dt,

and

μB(dt) = ϕB(t)dt

= 1

π

γα((σ t − θ/σ )2/2 − θ2/(2σ 2))α−1 sin(απ)(σ 2t − θ)

1 + ((σ t − θ/σ )2/2 − θ2/(2σ 2))2α + 2((σ t − θ/σ )2/2 − θ2/2σ 2)α cos(απ)
dt.

In the symmetric case

μA(dt) = ϕA(t)dt = μB(dt) = ϕB(t)dt

= σ 2tϕ

(
σ 2t2

2

)
dt = γασ 2αt2α−1 sin(απ)

π(2α−1 + 2−α−1σ 4αt4α + σ 2αt2α cos(απ))
dt.

The skewness and kurtosis of Gt and Yt are undefined. Figure2 presents the corre-
sponding simulation.

3 Sensitivity Analysis

In this section we extend approach of [8] to the sensitivity analysis of variance-GGC
models. Consider (Bt )t∈R+ a standard one-dimensional standard Brownian motion
independent of the Lévy process (Yt )t∈[0,T ] generated by
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YT :=
∫ ∞

0
g(s)dγs .

Let Θ be a standard Gaussian random variable independent of (Yt )t∈[0,T ]. For each
t ∈ [0, T ], we denote byFt the filtration generated by Θ and σ(Ys : s ∈ [0, t]).

Let (Zt )t∈R+ be a real-valued stochastic process in R independent of (Yt )t∈R+
and (Bt )t∈R+ . Finally we denote by and let Cn

b (R+;R) denote the class of n-time
continuously differentiable functions with bounded derivatives, whereas Cc(R+;R)

denotes the space of continuous functions with compact support.
Given θ ∈ R and τ ∈ R+ we consider the asset price ST written as

ST = S0 exp
(
θYT + τ

√
T Θ + ZT + T c(θ, τ )

)
,

where the function g(s) : R+ → R+ verifies (2).

Remark 1 When θ = 0 the above model reduces to the standard Black-Scholes
model, and in case θ �= 0 we find the variance-GGC model by taking (Zt )t∈[0,T ]
to be a GGC process.

For example, we can take the Wiener-gamma integral
∫∞
0 g(s)dγs to be a stable

random variable and set ZT to be another stable random variable, then the exponent
of St is a variance-stable process. This example will be developed in the next section.

The next theorem deals with the sensitivity analysis of the variance-GGC model
with respect to S0, θ and τ , and is the main result in this section. Define the classes
of functions

CL(R+;R) := { f ∈ C(R+;R) : | f (x)| ≤ C(1 + |x |) for some C > 0},

and

D(R+;R) :=
{

f : R+ → R : f =
n∑

k=1

ck fk1Ak , n ≥ 1,

ck ∈ R, fk ∈ CL(R+;R), Ak intervals of R+
}
.

Theorem 1 Let Φ ∈ D(R+;R). Assume that the law of ZT is absolutely continuous
with respect to the Lebesgue measure, with

∫ ∞

0
log

(
1 + g(s) f k(s)

(1 − λ f (s))k+1

)
ds < ∞, k = 1, 2, 3. (10)

Then

(i) (Delta—sensitivity with respect to S0). We have

∂

∂S0
E[Φ(ST )] = 1

S0
E[Φ(ST )LT ],
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where

LT = 2θ
∫∞
0 g(s) f 2(s)dγs

(θ
∫∞
0 g(s) f (s)dγs + τ

√
T η)2

+
∫∞
0 f (s)dγs − T

∫∞
0 f (s)ds + ηΘ

θ
∫∞
0 g(s) f (s)dγs + τ

√
T η

.

(ii) (Sensitivity with respect to θ ). We have

∂

∂θ
E[Φ(ST )] = E

[
Φ(ST )

(
LT

∫ ∞

0
g(s)dγs − 1

HT

∫ ∞

0
g(s) f (s)dγs

)]

+ T S0
∂c

∂θ
(θ, τ )

∂

∂S0
E[Φ(ST )],

where HT = θ

∫ ∞

0
g(s) f (s)dγs + τ

√
T η.

(iii) (Theta—sensitivity with respect to τ ). We have

∂

∂τ
E[Φ(ST )] = E

[
Φ(ST )LT

√
T

(
Θ − η

HT

)]
+ T S0

∂c

∂τ
(θ, τ )

∂

∂S0
E[Φ(ST )].

(iv) (Gamma—second derivative with respect to S0). We have

∂2

∂S2
0

E[Φ(ST )]

= 1

S2
0

E

[
Φ(ST )

(
(LT )2 − 1

HT

(
IT HT − 2(KT )2

(HT )3
+ NT HT − MT KT

(HT )2

))]

− 1

S0

∂

∂S0
E[Φ(ST )],

where

KT = 2θ
∫ ∞

0
g(s) f 2(s)dγs, MT =

∫ ∞

0
f (s)dγs − T

∫ ∞

0
f (s)ds + ηΘ,

and

IT = 6θ
∫ ∞

0
g(s) f (s)3dγs, NT =

(∫ ∞

0
f (s)dγs − T

∫ ∞

0
f (s)ds + ηΘ

)2
.

Next we state two lemmas which are needed for the proof of Theorem 1.

Lemma 1 Assume that E[e2γ ZT ] < ∞ for some γ > 1. Let f : R → (0, a) be a
positive function and λ ∈ (0, ε) for ε < 1/a such that (10) holds. Fix η > 0 and
suppose that one of the following conditions holds:
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(i) The density function of YT = ∫∞
0 g(s)dγs decays exponentially, or

(ii) E
[
e2γ (1+θδ)YT

]
< ∞ for all δ > 0.

Let also

S(λ f )

T = S0 exp

(
θ

∫ ∞

0

g(s)

1 − λ f (s)
dγs + τ

√
T (Θ + ηλ) + ZT + c(θ, τ )T

)
,

and

H (λ f )

T = ∂

∂λ
log S(λ f )

T = θ

∫ ∞

0

g(s) f (s)

(1 − λ f (s))2
dγs + τ

√
T η, HT = H (0)

T ,

and

K (λ f )

T = ∂

∂λ
H (λ f )

T = 2θ
∫ ∞

0

g(s) f 2(s)

(1 − λ f (s))3
dγs, KT = K (0)

T .

Then we have the L2(Ω)-limits

lim
λ→0

S(λ f )

T H (λ f )

T = ST HT and lim
λ→0

K (λ f )

T

(H (λ f )

T )2
= KT

(HT )2
.

Proof For any λ ∈ (0, ε), we have

sup
λ∈(0,ε)

E

[
|S(λ f )

T H (λ f )
T |2γ

]
≤ C1E

[
e2γ τ

√
T Θ
]
E

[
e2γ ZT

]

× sup
λ∈(0,ε)

E

[(
θ

∫ ∞

0

g(s) f (s)

(1 − λ f (s))2
dγs + τ

√
T η

)2γ
exp

(
2γ
∫ ∞

0

g(s)

1 − λ f (s)
dγs

)]

≤ C1E[e2γ τ
√

T Θ ]E[e2γ ZT ]

× sup
λ∈(0,ε)

(
a

(1 − λa)2

)2γ
E

[(∫ ∞

0
g(s)dγs + τ

√
T η

)2γ
exp

(
2γ θ

1 − λa

∫ ∞

0
g(s)dγs

)]

≤ C1E[e2γ τ
√

T Θ ]E[e2γ ZT ]

×
(

a

(1 − εa)2

)2γ
E

[(∫ ∞

0
g(s)dγs + τ

√
T η

)2γ
exp

(
2γ θ

1 − εa

∫ ∞

0
g(s)dγs

)]
,

where C1 is a positive constant. Under condition (i) or (i i) above we have

E

[
Y 2γ

T exp

(
2γ θ

1 − εa
YT

)]
≤ E

[
exp

(
2γ

(
1 + θ

1 − εa

)
YT

)]
< ∞,
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and similarly we have E

[
e

2γ θ

1−εa YT

]
< ∞. Finally, we have E[e2γ ZT ] < ∞ by

assumption, and it is clear that E[e2γ τ
√

T Θ ] < ∞. Then |S(λ f )

T H (λ f )

T | is L2γ (Ω)-
integrable, hence (S(λ f )

T H (λ f )

T )2 is uniformly-integrable since γ > 1. Therefore, we
have proved that S(λ f )

T H (λ f )

T converges to ST HT in L2(Ω) as λ → 0.
Next, for any λ ∈ (0, ε) we have

sup
λ∈(0,ε)

E[|K (λ f )

T /(H (λ f )

T )2|2γ ] ≤ sup
λ∈(0,ε)

E

[((
2θ

τ
√

T η

)∫ ∞

0

g(s) f 2(s)

(1 − λ f (s))3
dγs

)2γ]

≤
(

a2

(1 − λa)3

)2γ
E

[(∫ ∞

0
g(s)dγs

)2γ]
sup

λ∈(0,ε)

∣∣∣∣ 2θ

τ
√

T η

∣∣∣∣
2γ

≤
(

a2

(1 − εa)3

)2γ
E

[(∫ ∞

0
g(s)dγs

)2γ] ∣∣∣∣ 2θ

τ
√

T η

∣∣∣∣
2γ

,

since E

[(∫∞
0 g(s)dγs

)2γ ]
is finite under Condition (i) or (i i) above. Therefore

(K (λ f )

T /(H (λ f )

T )2)2 is uniformly-integrable since γ > 1, and this shows that K (λ f )

T /

(H (λ f )

T )2 converges to KT /(HT )2 as λ → 0 in L2(Ω). �

Lemma 2 Assume that E[e2γ ZT ] < ∞ for some γ > 1 and that (10) holds. Suppose
in addition that one of the following conditions holds:

1. The density function of
∫∞
0 g(s)dγs decays exponentially.

2. E
[∣∣e2γ (1+θδ)YT

∣∣] < ∞ for all δ > 0, where YT = ∫∞
0 g(s)dγs .

Then for Φ ∈ C 1
b (R+,R) it holds that

(i) E
[
Φ ′(ST )ST HT

] = E

[(∫ ∞

0
f (s)dγs − T

∫ ∞

0
f (s)ds + ηΘ

)
Φ(ST )

]
.

(ii) E[Φ ′(ST )ST ] = E[Φ(ST )LT ].
(iii) E

[
Φ ′(ST )ST

∫ ∞

0
g(s)dγs

]
= E

[
Φ(ST )

(
LT

∫ ∞

0
g(s)dγs − 1

HT

∫ ∞

0
g(s) f (s)dγs

)]
.

(iv) E[Φ ′(ST )ST BT ] = √
TE

[
Φ(ST )LT

(
Θ − η

HT

)]
.

(v) If in addition Φ ∈ C 2
b (R+,R) and (10) is satisfied then we have

E[Φ ′′(ST )(ST )2] + E[Φ ′(ST )ST ]
= E

[
Φ(ST )

(
(LT )2 − 1

HT

(
IT HT − 2(KT )2

(HT )3
+ NT HT − MT KT

(HT )2

))]
.
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Proof We have

E[(Φ(ST ))2] ≤ 2E[(Φ(ST ) − Φ(S0))
2] + 2E[(Φ(S0))

2]
≤ 2E[(Φ(S0))

2] + 2
∫ 1

0
E[(Φ ′(r ST + (1 − r)S0))

2(ST − S0)
2]dr

< ∞,

since Φ ∈ C1
b(R+;R). As for (i) we have

E

[
Φ(S(λ f )

T )
]

= E

[
d Pλ f

d P
∣∣FT

Φ(ST )

]
, (11)

where we define the probability measure Pλ f via its Radon-Nikodym derivative

d Pλ f

d P
∣∣FT

= eλ
∫∞
0 f (s)dγs

E[eλ
∫∞
0 f (s)dγs ]

eληΘ

E[eληΘ ] = eλ
∫∞
0 f (s)dγs+T

∫∞
0 log(1−λ f (s))ds+ληΘ−λ2η2/2,

where f : R → (0, a) and λ ∈ (0, ε). In this way the GGC random variable∫∞
0 g(s)dγs and the Gaussian random variable Θ under Pλ f are transformed to∫∞
0

g(s)
1−λ f (s)dγs and Θ + ηλ under P .

First we prove that
∂

∂λ
E

[
Φ(S(λ f )

T )
]
exists and equals the left hand side of (i).

For every ε ∈ (−λ, λ) we have

Φ(S(ε f )

T ) − Φ(ST )

ε
=
∫ 1

0
Φ ′(S(rε f )

T )S(rε f )

T H (rε f )

T dr,

and by the Cauchy-Schwarz inequality we get

E

[∣∣∣∣1ε (Φ(S(ε f )

T ) − Φ(ST )) − Φ ′(ST )ST HT

∣∣∣∣
]

≤
∫ 1

0
E[|Φ ′(S(rε f )

T )S(rε f )

T H (rε f )

T − Φ ′(ST )ST HT ]dr

≤
∫ 1

0

√
E[(Φ ′(S(rε f )

T ))2]
√
E[(S(rε f )

T H (rε f )

T − ST HT )2]dr

+
∫ 1

0

√
E[(Φ ′(S(rε f )

T ) − Φ ′(ST ))2]
√
E[(ST HT )2]dr. (12)

From the boundedness and continuity of Φ ′(S(ε f )

T ) with respect to ε in L2(Ω), we
have
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E[(Φ ′(S(ε f )

T ))2] < ∞ and lim
ε→0

E[(Φ ′(S(ε f )

T ) − Φ ′(ST ))2] = 0.

By Lemma 1 we get that S(λ f )

T H (λ f )

T converges in L2(Ω). Finally, we take the limit

on both sides of (12) as ε → 0. Next we prove that
∂

∂λ
E

[
d Pλ f

d P
∣∣FT

Φ(ST )

]
exists

and equals the right hand side of (i).
For every ε ∈ (−λ, λ) the Cauchy-Schwarz inequality yields

E

[∣∣∣∣∣
1

ε

(
d Pε f

d P
∣∣FT

− d P0

d P
∣∣FT

)
Φ(ST ) −

(∫ ∞

0
f (s)dγs − T

∫ ∞

0
f (s)ds + ηΘ

)
Φ(ST )

∣∣∣∣∣
]

≤
√
E
[
(Φ(ST ))2

]

E

√√√√√
⎡
⎣
(
1

ε

(
d Pε f

d P
∣∣FT

− d P0

d P
∣∣FT

)
−
(∫ ∞

0
f (s)dγs − T

∫ ∞

0
f (s)ds + ηΘ

))2⎤
⎦.

It is then straightforward to check that E[|Φ(ST )|2] < ∞ and

1

λ

(
exp

(
λ

∫ ∞

0
f (s)dγs + T

∫ ∞

0
log (1 − λ f (s)) ds + ληΘ − λ2η2/2

)
− 1

)

converges to ∫ ∞

0
f (s)dγs − T

∫ ∞

0
f (s)ds + ηΘ

in L2(Ω) as λ tends to 0 since λ−1(eλ
∫∞
0 f (s)dγs − 1) converges to

∫∞
0 f (s)dγs in

L2(Ω) as λ → 0. We conclude by taking the limit on both sides as λ → 0.
For (i i) we start with the identity

E

[
Φ(S(λ f )

T )

H (λ f )

T

]
= E

[
d Pλ f

d P
∣∣FT

Φ(ST )

HT

]
.

First we prove that
∂

∂λ
E

[
Φ(S(λ f )

T )

H (λ f )

T

]
exists and equals the left hand side of (i i). For

every ε ∈ [−λ, λ] we have

1

ε

(
Φ(S(ε f )

T )

H (ε f )

T

− Φ(S(0)
T )

HT

)
=
∫ 1

0

Φ ′(S(rε f )

T )S(rε f )

T (H (rε f )

T )2 − Φ(S(rε f )

T )K (rε f )

T

(H (rε f )

T )2
dr,
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and by the Cauchy-Schwarz inequality we get

E

[∣∣∣∣∣
1

ε

(
Φ(S(ε f )

T )

H (ε f )
T

− Φ(ST )

HT

)
− Φ ′(ST )ST (HT )2 − Φ(ST )KT

(HT )2

∣∣∣∣∣
]

≤
∫ 1

0
E

[∣∣∣∣∣
Φ ′(S(rε f )

T )S(rε f )
T (H (rε f )

T )2 − Φ(S(rε f )
T )K (rε f )

T

(H (rε f )
T )2

− Φ ′(ST )S(0)
T (HT )2 − Φ(ST )KT

(HT )2

∣∣∣∣∣
]

dr

≤
∫ 1

0

√
E[(Φ ′(S(rε f )

T ))2]
√
E[(S(rε f )

T − ST )2]dr

+
∫ 1

0

√
E[(Φ ′(S(rε f )

T ) − Φ ′(ST ))2]
√
E[(ST )2]dr

+
∫ 1

0

√
E[(Φ(S(rε f )

T ))2]
√
E[(K (rε f )

T /(H (rε f )
T )2 − KT /(HT )2)2]dr

+
∫ 1

0

√
E[(Φ(S(rε f )

T ) − Φ(ST ))2]
√
E[(KT /(HT )2)2]dr. (13)

We have shown E[(Φ(ST ))2] < ∞ in the proof of (i). Then

E[(Φ(S(ε f )

T ))2] ≤ 2E[(Φ(S(ε f )

T ) − ST )2] + 2E[(Φ(ST ))2]
≤ 2ε2

∫ 1

0
E[(Φ ′(S(rε f )

T )S(rε f )

T H (rε f )

T )2]dr + 2E[(Φ(ST ))2]
≤ 2ε2 sup

x∈R
|Φ ′(x)|2 sup

|ε|≤λ

E[(S(ε f )

T H (ε f )

T )2] + 2E[(Φ(ST ))2] < ∞,

where the Cauchy-Schwarz inequality and the Fubini theorem have been used for
the second inequality. The convergence of S(ε f )

T H (ε f )

T as ε → 0 in L2(Ω) has been
proved in Lemma 1. Note that E[(Φ(S(ε f )

T ))2] < ∞ also implies

E[(Φ(S(ε f )

T ) − Φ(ST ))2] → 0 as ε → 0.

By Lemma 1, we get K (ε f )

T /(H (ε f )

T )2 converges to KT /(HT )2 as ε → 0 in L2(Ω).

Taking the limit on both sides of (13) as ε → 0.

Next, we prove that
∂

∂λ
E

[
d Pλ f

d P
∣∣FT

Φ(ST )

HT

]
exists and is equal to the right hand

side of (i i). For all p > 0 we have

E[(H (λ f )
T )−2p] =

∫ ∞
0

(
θ

∫ ∞
0

g(s) f (s)

(1 − λ f (s))2
dγs + τ

√
T η

)−2p
f1(y)dy < (τ

√
T η)−2p,

where f1 is the density function of
∫∞
0

g(s) f (s)
(1−λ f (s))2 dγs . Therefore, the moment is uni-

formly bounded.
We conclude as in the second part of proof of (i). The proof of (i i i) − (iv) is

similar to that of (i i). As for (i i i) we have
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E

[
Φ(S(λ f )

T )

H (λ f )

T

∫ ∞

0

g(s)

1 − λ f (s)
dγs

]
= E

[
d Pλ f

d P
∣∣FT

Φ(ST )

HT

∫ ∞

0
g(s)dγs

]
.

For the first part, the existence of the derivative can be obtained as

E

[(∫ ∞
0

g(s)

1 − λ f (s)
dγs −

∫ ∞
0

g(s)dγs

)2]
≤ E

[(
λ

∫ ∞
0

g(s)
f (s)

1 − λ f (s)
dγs

)2]

≤ E

[(
λ

a

1 − λa

∫ ∞
0

g(s)dγs

)2]

≤ ∞.

Similarly,
∫ ∞

0

g(s) f (s)

(1 − λ f (s))2
dγs converges to

∫∞
0 g(s) f (s)dγs in L2(Ω) as λ → 0.

The second part is almost the same as (i) by uniform boundedness of H (λ f )

T .
For (iv) we have

(Θ + ηλ)E

[
Φ(S(λ f )

T )

H (λ f )

T

]
= ΘE

[
d Pλ f

d P
∣∣FT

Φ(ST )

HT

]
.

For the first part, the existence of the derivative follows from the fact that Θ has a
Gaussian distribution. The second part is proved similarly.

Finally, for (v), define Ψ (x) = Φ ′(x)x , and by the result of (i i) we have

E[Φ ′′(ST )(ST )2] = E[(Ψ ′(ST ) − Φ ′(ST ))ST ] = E[Ψ (ST )LT ] − E[Φ ′(ST )ST ].

Hence, we obtain the desired equation by differentiating

E

[
Φ(S(λ f )

T )
L(λ f )

T

H (λ f )

T

]
= E

[
d Pλ f

d P
∣∣FT

Φ(ST )
LT

HT

]

at λ = 0. �

Now we can prove Theorem 1.

Proof The proof of Theorem 1 uses the same argument as in the proof of
Corollary 3.6 of [9]. The only difference is that ST is a variance-gamma process
in the proof of Corollary 3.6 of [9], while ST is a variance-GGC process in this
proof.

When Φ ∈ C 2
b (R+,R), all four formulas in Theorem 1 are direct consequences

of (i i) − (v) in Lemma 2, and we now extend this result to the class D(R+;R). In
general, in order to obtain an extension to Φ in a class �1 of functions based on an
approximating sequence (Φn)n∈N in a class�2 ⊂ �1, it suffices to show that for each
compact set K ⊂ R we have
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sup
S0∈K

|E[Φn(ST )] − E[Φ(ST )]| → 0 as n → ∞, (14)

and

lim
n→∞ sup

S0∈K

∣∣∣∣ ∂

∂S0
E[Φn(ST )] − 1

S0
E[Φ(ST )LT ]

∣∣∣∣ = 0. (15)

The extension is then based on the above steps, first from C 2
b (R+,R) to Cc(R+,R),

then toCb(R+,R) and to the class of finite linear combinations of indicator functions
on an interval of R. Finally the result is extended to the class of functions Φ of the
form Φ = Ψ × 1A where Ψ ∈ CL(R+,R) and A is an interval of R+. This shows
that (14) and (15) are satisfied, and the details of each step are the same as in the
proof of Corollary 3.6 of [9]. �
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