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Abstract The main goal of this paper is to study sensitivity analysis, with respect to
the parameters of themodel, in the framework of time-inhomogeneous Lévy process.
This is a slight generalization of recent results of Fournié et al. (Finance Stochast
3(4):391–412, 1999 [9]), El-Khatib and Privault (Finance Stochast 8(2):161–179,
2004 [7]), Bally et al. (Ann Appl Probab 17(1):33–66, 2007 [1]), Davis and Johans-
son (Stochast Process Appl 116(1):101–129, 2006 [5]), Petrou (Electron J Probab
13(27):852–879, 2008 [12]), Benth et al. (Commun Stochast Anal 5(2):285–307,
2011 [2]) and El-Khatib and Hatemi (J Statist Appl Probab 3(1):171–182, 2012 [8]),
using Malliavin calculus developed by Yablonski (Rocky Mountain J Math 38:669–
701, 2008 [16]). This relatively recent result will help us to provide tools that are
necessary for the calculation of the sensitivities. We provide some simple examples
to illustrate the results achieved. In particular, we discussed the time-inhomogeneous
versions of the Merton model and the Bates model.
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1 Introduction

A trader selling a financial product to a customer usually tends to avoid any risk
involved in that product and therefore wants to get rid of these risks by hedging. In
some cases we can make use of a static hedge and we can hedge—and—forget it,
additionally we can calculate the price from the products used for hedging. But for
most options this is not possible and we have to use a dynamic hedging strategy.
The price sensitivities with respect to the model parameters—the Greeks—are vital
inputs in this context.

The Greeks are calculated as differentials of the derivative price, which can be
expressed as an expectation (in risk—neutral measure) of the discounted payoff. The
Greeks are traditionally estimated by means of a finite difference approximation.
This approximation contains two errors: one on the approximation of the derivative
function by means of its finite difference and another one on the numerical com-
putation of the expectation. In addition the theoretical convergence rates for finite
difference approximations are not met for discontinuous payoff functions.

Fournié et al. [9] propose a method with faster convergence which consists in
shifting the differential operator from the payoff functional to the diffusion kernel,
introducing a weighting function. The main idea is the use of the Malliavin integra-
tion by parts formula to transform the problem of calculating derivatives by finite
difference approximations to calculating expectations of the form

E[H(ST )π |S0 = x]

where the weight π is a random variable and the underling price process is a Markov
diffusion given by:

d St = b(St )dt + σ(St )dWt , S0 = x .

There have been several studies that attempt to produce similar results for markets
governed by processes with jumps. We mention León et al. [10], have approximated
a jump—diffusion model for a simple Lévy process, and hedged an european call
option using aMalliavin Calculus approach. El-Khatib and Privault [7] where a mar-
ket generated by Poisson processes is considered. Their setup allows for random
jump sizes, and by imposing a regularity condition on the payoff they use Malli-
avin calculus on Poisson space to derive weights for Asian options. Bally et al.
[1] reduce the problem to a setting in which only ‘finite—dimensional’ Malliavin
calculus is required in the case where stochastic differential equations are driven by
Brownianmotion and compound Poisson components. Davis and Johansson [5] have
developed the Malliavin calculus for simple Lévy process which allows them to cal-
culate the Greeks in a jump diffusion setting which satisfy a separability condition.
Petrou [12] has calculated the sensitivities using Malliavin Calculus for markets
generated by square integrable Lévy processes which is a extension of the paper
[9]. Benth et al. [2] studied the computation of the deltas in model variation within
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a jump—diffusion framework with two approaches, the Malliavin calculs technics
and the Fourier method. El-Khatib and Hatemi [8] estimated the price sensitivities
of a trading position with regard to underlying factors in jump—diffusion models
using jump times Poisson noise.

While Lévy processes offer nice features in terms of analytical tractability, the
constraints of independence and stationarity of their increments prove to be rather
restrictive. On one hand, the stationarity of increments of Lévy processes leads to
rigid scaling properties for marginal distributions of returns, which are not observed
in empirical time series of returns. On the other hand, from the point of view of risk
neutral modeling, the Lévy models allow to reproduce the phenomenon of volatility
smile for a given maturity, but it becomes more complicated when one tries to stick
to several maturities. The inhomogeneity in time increments can improve it, hence
the importance of introducing the additive processes in financial modeling. Each
of the previous papers has its advantages in specific cases. However, they can only
treat subclasses of Lévy processes except that of [12] but in time-homogeneous case
setting.

The objective of this work is to derive stochastic weights in order to compute
the Greeks in market models with jump when the discontinuity is described by a
Poisson random measure with time-inhomogeneous intensity and then to use differ-
ent numerical methods to compare the results for simpler time dependent models.
The main tool uses Malliavin calculus, developed by Yablonski [16] for additive
processes, that will be presented shortly at the appendix of the present document for
the sake of completeness. Essentially, we introduce the time-inhomogeneity in the
jump component of the risky asset price. In particular, we focus on a class of models
in which the price of the underlying asset is governed by the following stochastic
differential equation:

⎧
⎨

⎩

d St = b(t, St−)dt + σ(t, St−)dWt

+ ∫

R
d
0
ϕ(t, St−, z)Ñ (dt, dz),

S0 = x
(1)

where Rd
0 := R

d \ {0Rd }, x = (xi )1≤i≤d ∈ R
d . The functions b : R+ × R

d −→ R
d ,

σ : R+ × R
d −→ R

d×d and ϕ : R+ × R
d × R

d −→ R
d×d , are continuously differ-

entiable with bounded derivatives. Here

Wt = (W1(t), . . . , Wd(t))

is a d-dimensional standard Brownian motion and

Ñ (dt, dz)� = (N1(dt, dz1) − ν1
t (z1), . . . , Nd(dt, dzd) − νd

t (zd))

where Nk, k = 1, . . . , d are independent Poisson random measures on [0, T ] × R0,
R0 := R

1
0, with time-inhomogeneous Lévy measures νk

t , k = 1, . . . , d coming from
d independent one-dimensional time-inhomogeneous Lévy processes. The family of
positive measures (νk

t )1≤k≤d satisfies
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d∑

k=1

∫ T

0

∫

R0

(|zk |2 ∧ 1)νk
t (dzk)dt < ∞

and νk
t ({0}) = 0, k = 1, . . . , d. Let b(t, x) = bi (t, x))1≤i≤d , σ(t, x) = σi j

(t, x)1≤i≤d,1≤ j≤d and ϕ(t, x, z) = ϕik(t, x, z)1≤i≤d,1≤k≤d be the coefficients of (1)
in the component form. Then St = (Si (t))1≤i≤d in (1) can be equivalently written as

⎧
⎨

⎩

d Si
t = bi (t, St−)dt + ∑d

j=1 σi j (t, St−)dW j (t)
+∑d

k=1

∫

R0
ϕik(t, St−, zk)Ñk(dt, dzk),

Si
0 = xi .

(2)

To guarantee a unique strong solution to (1), we assume that the coefficients of
(1) satisfy linear growth and Lipschitz continuity, i.e.,

‖b(t, x)‖2 + ‖σ(t, x)‖2 +
d∑

k=1

d∑

i=1

∫

R0

|ϕik(t, x, zk)|2νk
t (dzk) ≤ C(1 + ‖x‖2)

(3)

and

‖b(t, x) − b(t, y)‖2 + ‖σ(t, x) − σ(t, y)‖2 ≤ K1‖x − y‖2 (4)

for all x, y ∈ R
d and t ∈ [0, T ], with C and K1 are positive constants.

We suppose that there exists a family of functions ρk : R −→ R, k = 1, . . . , d such
that

sup
0≤t≤T

∫

R0

d∑

k=1

|ρk(zk)|2νk
t (dzk) < ∞, (5)

and a positive constant K2 such that

d∑

i=1

|ϕik(t, x, zk) − ϕik(t, y, zk)|2 ≤ K2|ρ(zk)|2‖x − y‖2, (6)

for all x, y ∈ R
d , t ∈ [0, T ] and zk ∈ R, k = 1, . . . , d. Similarly to the homogeneous

case, we have the following lemma:

Lemma 1.1 Under the above conditions there exists a unique solution (St )t∈[0,T ]
for (1). Moreover, there exists a positive constant C0 such that

E

[

sup
0≤t≤T

‖St‖2
]

< C0.
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2 Regularity of Solutions of SDEs Driven
by Time-Inhomogeneous Lévy Processes

The aim of this section is to prove that under specific conditions the solution of
a stochastic differential equation belongs to the domains D1,2 (see Sects. 4.14 and
4.16). Having in mind the applications in finance, we will also provide a specific
expression for the Wiener directional derivative of the solution.

Remark 2.1 The theory developed in the Appendix also holds in the case that our
space is generated by an d-dimensional Wiener process and d-dimensional random
Poissonmeasures.However,wewill have to introducenewnotation for the directional
derivatives in order to simplify things. For the multidimensional case,

Dt,0 = (D(1)
t,0 , . . . , D(d)

t,0 )

will denote a row vector, where the element D( j)
t,0 of the j th row is the directional

derivative for the Wiener process W j , for all j = 1, . . . , d. Similarly, for all z =
(zk)1≤k≤d ∈ R

d
0 we define the row vector

Dt,z = (D(1)
t,z1 , . . . , D(d)

t,zd
)

where the element D(k)
t,zk

of the kth row is the directional derivative for the random
Poisson measure Ñk , for all k = 1, . . . , d. For what follows we denote with σ j the
j th column vector of σ and ϕk the kth column vector of ϕ.

Theorem 2.2 Let (St )t∈[0,T ] be the solution of (1). Then St ∈ D
1,2 for all t ∈ [0, T ],

and we have

1. The Malliavin derivative D( j)
r,0 St with respect to W j satisfies the following linear

equation:

D( j)
r,0 St =

d∑

i=1

∫ t

r

∂b

∂xi
(u, Su−)D( j)

r,0 Si
u−du + σ j (r, Sr−)

+
d∑

i=1

d∑

α=1

∫ t

r

∂σα

∂xi
(u, Su−)D( j)

r,0 Si
u−dWα(u)

+
d∑

i=1

∫ t

r

∫

R
d
0

∂ϕ

∂xi
(u, Su−, y)D( j)

r,0 Si
u− Ñ (du, dy),

for 0 ≤ r ≤ t a.e. and D( j)
r,0 St = 0 a.e. otherwise.

2. For all z ∈ R
d
0 , The Malliavin derivative Dr,z St with respect to Ñ satisfies the

following linear equation:
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Dr,z St =
∫ t

r
Dr,zb(u, Su−)du +

∫ t

r
Dr,zσ(u, Su−)dWu

+ϕ(r, Sr−, z) +
∫ t

r

∫

R
d
0

Dr,zϕ(u, Su−, y)Ñ (du, dy),

for 0 ≤ r ≤ t a.e. and Dr,z St = 0 a.e. otherwise.

Proof 1. We consider the Picard approximations Sn
t , n ≥ 0, given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S0
t = x

Sn+1
t = x +

∫ t

0
b(u, Sn

u−)du +
∫ t

0
σ(u, Sn

u−)dWu

+
∫ t

0

∫

R
d
0

ϕ(u, Sn
u−, z)Ñ (du, dz).

(7)

From Lemma 1.1 we know that

E

[

sup
0≤t≤T

|Sn
t − St |2

]

−→
n→∞ 0.

By induction, we prove that the following statements hold true for all n ≥ 0.
Hypothesis (H)

(a) Sn
t ∈ D

1,2 for all t ∈ [0, T ].
(b) ξn(t) = sup

0≤r≤t
E

[

sup
r≤u≤t

∣
∣Dr,0Sn

u

∣
∣2
]

< ∞.

(c) ξn+1(t) ≤ α + β
∫ t
0 ξn(u)du for some constants α, β.

For n = 0, it is straightforward that (H) is satisfied. Assume that (H) holds for a
certain n. Wewould prove it for n + 1. By Proposition 4.12 b(u, Sn

u−), σ(u, Sn
u−)

and ϕ(u, Sn
u−, z) are in D

1,2. Furthermore,

Dr,0bi (u, Sn
u−) =

d∑

α=1

∂bi

∂xα

(u, Sn
u−)Dr,0Sn,α

u− 1{r≤u},

Dr,0σi j (u, Sn
u−) =

d∑

α=1

∂σi j

∂xα

(u, Sn
u−)Dr,0Sn,α

u− 1{r≤u},

Dr,0ϕik(u, Sn
u−, zk) =

d∑

α=1

∂ϕik

∂xα

(u, Sn
u−, zk)Dr,0Sn,α

u− 1{r≤u}.

Since the functions b, σ and ϕ are continuously differentiable with bounded first
derivatives in the second direction and taking into account the conditions (4) and
(6) we have
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∥
∥Dr,0bi (u, Sn

u−)
∥
∥2 ≤ K1

∥
∥Dr,0Sn

u−
∥
∥2 ,

∥
∥Dr,0σi j (u, Sn

u−)
∥
∥2 ≤ K1

∥
∥Dr,0Sn

u−
∥
∥2 , (8)

∥
∥Dr,0ϕik(u, Sn

u−, zk)
∥
∥2 ≤ K2|ρ(zk)|2

∥
∥Dr,0Sn

u−
∥
∥2 .

However,
∫ t
0 b(u, Sn

u−)du,
∫ t
0 σ(u, Sn

u−)dWu and
∫ t
0

∫

R
d
0
ϕ(u, Sn

u−, z)Ñ (dt, dz)

are in D1,2. Which implies that Sn+1
t to D1,2 and we have

D( j)
r,0

∫ t

0
bi (u, Sn

u−)du =
∫ t

r
D( j)

r,0 bi (u, Sn
u−)du,

D( j)
r,0

d∑

α=1

∫ t

0
σiα(u, Sn

u−)dWα
u = σi j (r, Sn

r−) +
d∑

α=1

∫ t

r
D( j)

r,0 σiα(u, Sn
u−)dWα(u),

D( j)
r,0

d∑

k=1

∫ t

0

∫

R0

ϕik (u, Sn
u−, zk )Ñk (dt, dzk ) =

d∑

k=1

∫ t

r

∫

R0

D( j)
r,0 ϕik (u, Sn

u−, zk )Ñk (dt, dzk ).

Thus

D( j)
r,0 Sn+1

t =
∫ t

r
D( j)

r,0 b(u, Sn
u−)du + σ j (r, Sn

r−) +
d∑

α=1

∫ t

r
D( j)

r,0 σα(u, Sn
u−)dWα(u)

+
d∑

k=1

∫ t

r

∫

R0

D( j)
r,0 ϕk(u, Sn

u−, zk)Ñk(dt, dzk).

We conclude that

E

[

sup
r≤v≤t

|D( j)
r,0 Sn+1

v |2
]

≤ 4

{

E

[

sup
r≤v≤t

∣
∣
∣
∣

∫ v

r
D( j)

r,0 b(u, Sn
u−)du

∣
∣
∣
∣

2
]

+E

[

sup
0≤t≤T

|σ j (t, Sn
t )|2

]

+ E

⎡

⎣ sup
r≤v≤t

∣
∣
∣
∣
∣

d∑

α=1

∫ v

r
D( j)

r,0σα(u, Sn
u−)dWα(u)

∣
∣
∣
∣
∣

2
⎤

⎦

+ E

⎡

⎣ sup
r≤v≤t

∣
∣
∣
∣
∣

d∑

k=1

∫ v

r

∫

R0

D( j)
r,0ϕk(u, Sn

u−, zk)Ñk(dt, dzk)

∣
∣
∣
∣
∣

2
⎤

⎦

⎫
⎬

⎭
.

Using Cauchy–Schwarz inequality and Burkholder–Davis–Gundy inequality
(see [14], Theorem 48 p. 193), there exists a constant K > 0 such that

E

[

sup
r≤v≤t

|D( j)
r,0 Sn+1

v |2
]

≤ K

{

(t − r)E

[∫ t

r
|D( j)

r,0 b(u, Sn
u−)|2du

]

+E

[

sup
0≤t≤T

|σ j (t, Sn
t )|2

]

+ E

[
d∑

α=1

∫ t

r
|D( j)

r,0σα(u, Sn
u−)|2du

]
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+ E

[
d∑

k=1

∫ v

r

∫

R0

|D( j)
r,0ϕk(u, Sn

u−, zk)|2νk
u (dzk)du

]}

.

From (6) and (8) we reach

E

[

sup
r≤u≤t

|D( j)
r,0 Sn+1

u |2
]

≤ KE

[

sup
0≤t≤T

|σ j (t, Sn
t )|2

]

+K

⎛

⎝K1(T + 1) + K2 sup
0≤t≤T

∫

R0

d∑

k=1

|ρk(zk)|2νk
t (dzk)

⎞

⎠

∫ t

r
E
[
|D( j)

r,0 Sn
u−|2

]
du.

Then, from (3)

E

[

sup
r≤u≤t

|D( j)
r,0 Sn+1

u |2
]

≤ K C

(

1 + E

[

sup
0≤t≤T

|Sn
t |2

])

+K

(

K1(T + 1) + K2 sup
0≤t≤T

∫

R0

d∑

k=1

|ρk(zk)|2νk
t (dzk)

)∫ t

r
E

[

sup
r≤v≤u

|D( j)
r,0 Sn

v−|2
]

du.

Consequently

ξn+1(t) ≤ α + β

∫ t

0
ξn(u)du,

where

α := K C

(

1 + sup
n∈N

E

[

sup
0≤t≤T

|Sn
t |2

])

< ∞

and, using (5), we have

β := K

(

K1(T + 1) + K2 + sup
0≤t≤T

∫

R0

d∑

k=1

|ρk(zk)|2νk
t (dzk)

)

< ∞.

By induction, we can easily prove that, for all n ∈ N and t ∈ [0, T ]

ξn(t) ≤ α

n∑

i=0

(βt)i

i ! .

Hence, for all n ∈ N and t ∈ [0, T ]

ξn(t) ≤ αeβt < ∞,



Sensitivity Analysis for Time-Inhomogeneous Lévy Process … 47

which implies that the derivatives of Sn
t are bounded inL

2(Ω × [0, T ])uniformly
in n. Hence, we deduce that the random variable St belongs to D

1,2 and by
applying the chain rule to (1) we achieve our proof.

2. Following the same steps we can prove the second claim of the theorem.

As in the classical Malliavin calculus we are able to associate the solution of (1)
with the first variation process Yt := ∇x St .We reach the following proposition which
provides us with a simpler expression for Dr,0St .

Proposition 2.3 Let (St )t∈[0,T ] be the solution of (1). Then the derivative satisfies
the following equation:

Dr,0St = Yt Y
−1
r− σ(r, Sr−)1{r≤t} a.e. (9)

where (Yt )t is the first variation process of (St )t .

Proof Let (St )t∈[0,T ] be the solution of (1). Then

D( j)
r,0 Si

t =
d∑

β=1

∫ t

r

∂bi

∂xβ

(u, Su−)D( j)
r,0 Sβ

u−du + σi j (r, Sr−)

+
d∑

β=1

d∑

α=1

∫ t

r

∂σiα

∂xβ

(u, Su−)D( j)
r,0 Sβ

u−dWα(u)

+
d∑

β=1

d∑

k=1

∫ t

r

∫

R0

∂ϕik

∂xβ

(u, Su−, zk)D( j)
r,0 Sβ

u− Ñk(du, dzk).

The d × d matrix–valued process Yt is given by

Y i j
t := ∂Si

t

∂x j

= δi j +
d∑

k=1

∫ t

0

∂bi

∂xk
(u, Su−)Y k j

u−du

+
d∑

k=1

d∑

α=1

∫ t

0

∂σiα

∂xk
(u, Su−)Y k j

u−dWα(u)

+
d∑

k=1

d∑

β=1

∫ t

0

∫

R0

∂ϕiβ

∂xk
(u, Su−, zβ)Y k j

u− Ñβ(du, dzβ)

with δi i = 1 and δi j = 0 if i �= j . Let (Zt )0≤t≤T be a d × d matrix–valued process
that satisfies the following equation
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Zi j
t = δi j +

d∑

k=1

∫ t

0

(

− ∂bk

∂x j
(u, Su−) +

d∑

n=1

d∑

α=1

∂σkα

∂xn
(u, Su−)

∂σnα

∂x j
(u, Su−)

)

Zik
u−du

+
d∑

k=1

d∑

β=1

∫ t

0

∫

R0

∑d
n=1

∂ϕkβ
∂xn

(u, Su−, zβ)
∂ϕnβ
∂x j

(u, Su−, zβ)

1 + ∂ϕkβ
∂x j

(u, Su−, zβ)
Zik

u−νβ
u (dzβ)du

−
d∑

k=1

d∑

α=1

∫ t

0

∂σkα

∂x j
(u, Su−)Zik

u−dWα(u)

−
d∑

k=1

d∑

β=1

∫ t

0

∫

R0

∂ϕkβ
∂x j

(u, Su−, zβ)

1 + ∂ϕkβ
∂x j

(u, Su−, zβ)
Zik

u− Ñβ(du, dzβ).

By means of Itô’s formula, one can check that

d∑

j=1

Zi j
t Y jk

t = δik .

Hence Zt Yt = Zt Yt = Id where Id is the unit matrix of size d. As a consequence, for
any t ≥ 0 the matrix Yt is invertible and Y −1

t = Zt . Applying again Itô’s formula, it
holds that

D( j)
r,0 Si

t =
d∑

n=1

d∑

k=1

Y ik
t Zkn

r σnj (r, Sr−) for all r ≤ t.

Then the result follows.

2.1 Greeks

For n ∈ N
∗ we define the payoff H := H(St1 , St2 , . . . , Stn ) to be a square integrable

function discounted frommaturity T and evaluated at the times t1, t2, . . . , tn with the
convention that t0 = 0 and tn = T . Under a chosen, since we do not have uniqueness,
risk neutral measure, denoted by Q, the price C (x) of the contingent claim given an
initial value is then expressed as:

C (x) = EQ

[
H(St1 , St2 , . . . , Stn )

]
.

In what follows, we assume the next ellipticity1 condition for the diffusion matrix σ .

1This is to ensure that we can find some solutions for the weighting functions, since it often requires
to take the inverse of the volatility function.
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Assumption 2.4 The diffusion matrix σ satisfies the uniform ellipticity condition:

∃ η > 0 ξ ∗σ ∗(t, x)σ (t, x)ξ > η‖ξ‖2, ∀ ξ, x ∈ R
d .

Using the Malliavin calculus developed in the Sect. 2.1 we are able to calculate the
Greeks for the one–dimensional process (St )t∈[0,T ] that satisfies equation (1).

2.2 Variation in the Initial Condition

In this section, we provide an expression for the derivatives of the expectation C (x)

with respect to the initial condition x in the form of a weighted expectation of the
same functional.
Let us define the set:

Tn =
{

a ∈ L2([0, T ]) :
∫ ti

0
a(u)du = 1 ∀ i = 1, 2, . . . , n

}

where ti , i = 1, 2, . . . , n are as defined in the Sect. 2.1.

Proposition 2.5 Assume that the diffusion matrix σ is uniformly elliptic. Then for
all a ∈ Tn,

∇xC (x) = EQ

[

H(St1 , St2 , . . . , Stn )

∫ T

0
a(u)σ−1(u, Su−)Yu−dWu

]

.

Proof Let H be a continuously differentiable function with bounded gradient. Then
we can differentiate inside the expectation (see Fournié et al. [9] for details) and we
have

∇xC (x) = EQ

[
n∑

i=1

∇i H(St1 , St2 , . . . , Stn )∇x Sti

]

= EQ

[
n∑

i=1

∇i H(St1 , St2 , . . . , Stn )Yti

]

where∇i H(St1 , St2 , . . . , Stn ) is the gradient of H with respect to Sti for i = 1, . . . , n.
For any a ∈ Tn and i = 1, . . . , n and using (9) we find

Yti =
∫ T

0
a(u)Du,0Sti σ

−1(u, Su−)Yu−du.

From Proposition 4.12 we reach
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∇xC (x) = EQ

[∫ T

0

n∑

i=1

∇i H(St1 , St2 , . . . , Stn )a(u)Du,0Sti σ
−1(u, Su−)Yu−du

]

= EQ

[∫ T

0
Du,0H(St1 , St2 , . . . , Stn )a(u)σ−1(u, Su−)Yu−du

]

= EQ

[∫ T

0

∫

R

Du,z H(St1 , St2 , . . . , Stn )a(u)σ−1(u, Su−)Yu−duδ0(dz)

]

.

Into measure π(dudz) defined in Sect. 4.12 we replace Δ by 0 and μ(du) by a
Lebesgue measure du. Then

∇xC (x) = EQ

[∫ T

0

∫

R

Du,z H(St1 , St2 , . . . , Stn )a(u)σ−1(u, Su−)Yu−1{0}(z)π(dudz)

]

.

Using the integration by parts formula (see Sect. 4.14), we have

∇xC (x) = EQ

[
H(St1 , St2 , . . . , Stn )δ

(
a(·)σ−1(·, S·)Y·1{z=0}(·)

)]
.

However,
(
a(u)σ−1(t, St−)Yt−

)

0≤t≤T is a predictable process, thus the Skorohod
integral coincides with the Itô stochastic integral.

∇xC (x) = EQ

[

H(St1 , St2 , . . . , Stn )

∫ T

0
a(u)σ−1(u, Su−)Yu−dWu

]

.

Since the family of continuously differentiable functions is dense in L2, the result
hold for any H ∈ L2 (see Fournié et al. [9] for details).

2.3 Variation in the Drift Coefficient

Let b̃ : R+ × R
d −→ R

d be a function such that for every ε ∈ [−1, 1], b̃ and b + εb̃
are continuously differentiable with bounded first derivatives in the space directions.

We then define the drift–perturbed process (Sε
t )t as a solution of the following

perturbed stochastic differential equation:

{
d Sε

t = (b(t, Sε
t−) + εb̃(t, Sε

t−))dt + σ(t, Sε
t−)dWt

+ ∫

R
d
0
ϕ(t, Sε

t−, z)Ñ (dt, dz), with Sε
0 = x .

(10)

We can relate to this perturbed process the perturbed price C ε(x) defined by

C ε(x) = EQ

[
H(Sε

t1 , Sε
t1 , . . . , Sε

tn )
]
.
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Proposition 2.6 Assume that the diffusion matrix σ is uniformly elliptic. Then we
have

Rho = ∂C ε

∂ε
(x)

∣
∣
∣
∣
ε=0

= EQ

[

H(St1 , St2 , . . . , Stn )

∫ T

0
(σ−1b̃)(t, St−)dWt

]

.

Proof We introduce the random variable

D̃ε
T = exp

(

ε

∫ T

0
(σ−1b̃)(t, Sε

t−)dWt − ε2

2

∫ T

0
‖(σ−1b̃)(t, Sε

t−)‖2dt

)

.

The Novikov condition is satisfied since

EQ

[

exp

(
ε2

2

∫ T

0
‖(σ−1b̃)(t, Sε

t−)‖2dt

)]

< +∞.

As well as EQ[D̃ε
T ] = 1, then we can define new probability measure Q

ε by its
Radon–Nikodym derivative with respect to the risk–neutral probability measure Q:

D̃ε
T = dQε

dQ

/

FT .

By changing of measure, we can write

EQ

[
H(Sε

t1 , Sε
t1 , . . . , Sε

tn )
] = EQε

[

H(Sε
t1 , Sε

t1 , . . . , Sε
tn )

dQ

dQε

]

= EQ

[
H(St1 , St2 , . . . , Stn )Dε

T

]

where

Dε
T = exp

(

−ε

∫ T

0

(
(σ−1b̃)(t, St−)

)
dWt − ε2

2

∫ T

0
‖(σ−1b̃)(t, St−)‖2dt

)

= 1 − ε

∫ T

0

(
(σ−1b̃)(t, St−)

)
Dε

t dWt

which implies that

∣
∣
∣
∣
∣

EQ

[
H(Sε

t1 , Sε
t1 , . . . , Sε

tn )
] − EQ

[
H(St1 , St2 , . . . , Stn )

]

ε

−EQ

[

H(St1 , St2 , . . . , Stn )

∫ T

0
(σ−1b̃)(t, St−)dWt

]∣
∣
∣
∣

2
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=
∣
∣
∣
∣EQ

[

H(St1 , St2 , . . . , Stn )

(
Dε

T − 1

ε
−

(∫ T

0
(σ−1b̃)(t, St−)dWt

))]∣
∣
∣
∣

2

≤ EQ

[|H(St1 , St2 , . . . , Stn )|2
]
EQ

[∣
∣
∣
∣

Dε
T − 1

ε
−

∫ T

0

(
(σ−1b̃)(t, St−)dWt

)
∣
∣
∣
∣

2
]

.

2.4 Variation in the Diffusion Coefficient

In this section, we provide an expression for the derivatives of the price C (x) with
respect to the diffusion coefficient σ . We introduce the set of deterministic functions

T̃n =
{

a ∈ L2([0, T ]) :
∫ ti

ti−1

a(u)du = 1 ∀ i = 1, 2, . . . , n

}

where ti , i = 1, 2, . . . , n are as defined in theSect. 2.1. Let σ̃ : R+ ×R
d −→R

d ×R
d

a direction function for the diffusion such that for every ε ∈ [−1, 1], σ̃ and σ + εσ̃

are continuously differentiable with bounded first derivatives in the second direction
and verify Lipschitz conditions such that the following assumption is satisfied:

Assumption 2.7 The diffusion matrix σ + εσ̃ satisfies the uniform ellipticity con-
dition for every ε ∈ [−1, 1]:

∃ η > 0 ξ ∗ (σ + εσ̃ )∗ (t, x) (σ + εσ̃ ) (t, x)ξ > η‖ξ‖2, ∀ ξ, x ∈ R
d .

We then define the diffusion–perturbed process (Sε,̃σ
t )0≤t≤T as a solution of the

following perturbed stochastic differential equation:

{
d Sε,̃σ

t = b(t, Sε,̃σ
t− )dt +

(
σ(t, Sε,̃σ

t− ) + εσ̃ (t, Sε,̃σ
t− )

)
dWt

+ ∫

R
d
0
ϕ(t, Sε,̃σ

t− , z)Ñ (dt, dz), with Sε,̃σ
0 = x .

We can also relate to this perturbed process the perturbed price C ε,̃σ (x) defined by

C ε,̃σ (x) := EQ

[
H(Sε,̃σ

t1 , Sε,̃σ
t1 , . . . , Sε,̃σ

tn )
]
.

We will need to introduce the variation process with respect to the parameter ε

d Z ε,̃σ
t = b′(t, Sε,̃σ

t− )Z ε,̃σ
t− dt +

(
σ ′(t, Sε,̃σ

t− ) + εσ̃ ′(t, Sε,̃σ
t− )

)
Z ε,̃σ

t− dWt

+ σ̃ (t, Sε,̃σ
t− )dWt +

∫

R
d
0

ϕ′(t, Sε,̃σ
t− , z)Z ε,̃σ

t− Ñ (dt, dz) and Z ε,̃σ
0 = 0,
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so that ∂Sε,̃σ
t

∂ε
= Z ε,̃σ

t . We simply use the notation St , Yt and Z σ̃
t for S0,̃σ

t , Y 0,̃σ
t and

Z0,̃σ
t where the first variation process is given by Y 0,̃σ

t := ∇x S0,̃σ
t . Next, consider the

process (βσ̃
t )t∈[0,T ] defined by

βσ̃
t := Y −1

t Z σ̃
t , 0 ≤ t ≤ T a.e.

Proposition 2.8 Assume that Hypothesis 2.7 holds. Set

β̃a,̃σ
t =

n∑

i=1

a(t)
(
βσ̃

ti − βσ̃
ti−1

)
1[ti−1,ti [(t).

Suppose further that the process (σ−1(t, St )Yt β̃
a,̃σ
t δ0(z))(t,z) belongs to Dom(δ),

then we have for any a ∈ T̃n:

V ega = ∂C ε,̃σ

∂ε
(x)

∣
∣
∣
∣
ε=0

= EQ

[
H(St1 , St2 , . . . , Stn )δ

(
σ−1(·, S·)Y·β̃a,̃σ

· δ0(·)
)]

.

Moreover, if the process
(
βσ̃

t δ0(z)
)

t∈[0,T ] belongs to D
1,2, then

δ
(
σ−1(·, S·)Y·β̃a,̃σ

· δ0(·)
) =

n∑

i=1

{

βσ̃
ti δ0(z)

∫ ti

ti−1

a(t)(σ−1(t, St−)Yt−)dWt

−
∫ ti

ti−1

a(t)
(
(Dt,0β

σ̃
ti )σ

−1(t, St−)Yt−
)

dt

−
∫ ti

ti−1

a(t)(σ−1(t, St−)Yt−βσ̃
ti−1

δ0(z)dWt

}

.

Proof Let H be a continuously differentiable function with bounded gradient. Then
we can differentiate inside the expectation

∂C ε,̃σ

∂ε
(x) = EQ

[
n∑

i=1

∇i H(Sε,̃σ
t1 , Sε,̃σ

t2 , . . . , Sε,̃σ
tn )

∂Sε,̃σ
ti

∂ε

]

= EQ

[
n∑

i=1

∇i H(Sε,̃σ
t1 , Sε,̃σ

t2 , . . . , Sε,̃σ
tn )Z ε,̃σ

ti

]

.

Hence

∂C ε,̃σ

∂ε
(x)

∣
∣
∣
∣
ε=0

= EQ

[
n∑

i=1

∇i H(St1 , St2 , . . . , Stn )Z σ̃
ti

]

.



54 M. Eddahbi and S.M. Lalaoui Ben Cherif

On the other hand we have

Z σ̃
ti = Yti β

σ̃
ti

= Yti

i∑

j=1

(βσ̃
t j

− βσ̃
t j−1

)

= Yti

i∑

j=1

∫ t j

t j−1

a(t)(βσ̃
t j

− βσ̃
t j−1

)dt

=
∫ ti

t0

Yti β̃
a,̃σ
t dt.

From Proposition 2.3, we conclude that

Z σ̃
ti =

∫ T

0
Du,0Sti σ

−1(u, Su−)Yu−β̃a,̃σ
u du.

Which implies that

∂C ε,̃σ

∂ε
(x)

∣
∣
∣
∣
ε=0

= EQ

⎡

⎣

∫ T

0

n∑

i=1

∇i H(St1 , St2 , . . . , Stn )Du,0Sti σ
−1(u, Su−)Yu−β̃

a,̃σ
u du

⎤

⎦

= EQ

[∫ T

0
Du,0H(St1 , St2 , . . . , Stn )σ−1(u, Su−)Yu−β̃

a,̃σ
u du

]

.

Using the duality formula in Sect. 4.14 and taking into account the fact that
(σ−1(t, St )Yt β̃

a,̃σ
t δ0(z))(t,z) belongs to Dom(δ), we reach

∂C ε,̃σ

∂ε
(x)

∣
∣
∣
∣
ε=0

= EQ

[
H(St1 , St2 , . . . , Stn )δ

(
σ−1(·, S·)Y·β̃a,̃σ

· δ0(·)
)]

.

2.5 Variation in the Jump Amplitude

To derive a stochastic weight for the sensitivity with respect to the amplitude para-
meter ϕ we use the same technique as in the Proposition 2.6. To do this, we consider
the perturbed process

⎧
⎪⎨

⎪⎩

d Sε,ϕ̃
t = b(t, Sε,ϕ̃

t− )dt + σ(t, Sε,ϕ̃
t− )dWt

+ ∫

R
d
0
(ϕ(t, Sε,ϕ̃

t− , z) + εϕ̃(t, Sε,ϕ̃
t− , z))Ñ (dt, dz),

Sε,ϕ̃
0 = x
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where ε ∈ [−1, 1] and ϕ̃ : R+ × R
d × R

d −→ R
d×d is continuously differentiable

function with bounded first derivative in the second direction. The variation process
with respect to the parameter ε becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d Z ε,ϕ̃
t = b′(t, Sε,ϕ̃

t− )Z ε,ϕ̃
t− dt + ∑d

k=1 σ ′
k(t, Sε,ϕ̃

t− )Z ε,ϕ̃
t− dW (k)

t

+ ∫

R
d
0

(
ϕ′(t, Sε,ϕ̃

t− , z) + εϕ̃′(t, Sε,ϕ̃
t− , z)

)
Z ε,ϕ̃

t− Ñ (dt, dz)

+ ∫

R
d
0
ϕ̃(t, Sε,ϕ̃

t− , z)Ñ (dt, dz),

Z ε,ϕ̃
0 = 0.

We can also relate to this perturbed process the perturbed price C ε,ϕ̃(x) defined by

C ε,ϕ̃(x) := EQ

[
H(Sε,ϕ̃

t1 , Sε,ϕ̃
t1 , . . . , Sε,ϕ̃

tn )
]
.

Hence, the statement of the following proposition is practically identical to
Proposition 2.8:

Proposition 2.9 Assume that the diffusion matrix σ is uniformly elliptic and the
process (σ−1(t, St )Yt β̃

a,ϕ̃
t δ0(z))(t,z) ∈ Dom(δ), then we have for any a ∈ T̃n:

K appa = ∂C ε,ϕ̃

∂ε
(x)

∣
∣
∣
∣
ε=0

= EQ

[
H(St1 , St2 , . . . , Stn )δ

(
σ−1(·, S·)Y·β̃a,ϕ̃

· δ0(·)
)]

.

Moreover, if the process (β
ϕ̃
t δ0(z))t∈[0,T ] belongs to D

1,2, then

δ
(
σ−1(·, S·)Y·β̃a,ϕ̃

· δ0(·)
) =

n∑

i=1

{

β
ϕ̃
ti δ0(z)

∫ ti

ti−1

a(t)(σ−1(t, St−)Yt−)dWt

−
∫ ti

ti−1

a(t)
(
(Dt,0β

ϕ̃
ti )σ

−1(t, St−)Yt−
)

dt

−
∫ ti

ti−1

a(t)(σ−1(t, St−)Yt−β
ϕ̃
ti−1

δ0(z))dWt

}

.

3 Numerical Experiments

In this section, we provide some simple examples to illustrate the results achieved
in the previous section. In particular, we will look at time-inhomogeneous versions
of the Merton model and the Bates model.
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3.1 Examples

3.1.1 Time-Inhomogeneous Merton Model

We consider time-inhomogeneous versions of the Merton model when the riskless
asset is governed by the equation:

d S0
t = S0

t r(t)dt, S0
0 = 1,

and the evolution of the risky asset is described by:

d St = St−d Lt , S0 = x,

where

Lt =
∫ t

0
b(u)du +

∫ t

0
σ(u)dWu +

∫ t

0
ϕ(u)d Xu, t ≥ 0.

• {Wt , 0 ≤ t ≤ T } is a standard Brownian motion.
• The process {Xt , 0 ≤ t ≤ T } is defined by Xt := ∑Nt

j=1 Z j for all t ∈ [0, T ], such
that {Nt , t ≥ 0} is a inhomogeneous Poisson process with intensity function λ(t)
and (Zn)n≥1 is a sequence of square integrable random variables which are i.i.d.
(we set κ := EQ[Z1]).

• {Wt , t ≥ 0}, {Nt , t ≥ 0} and {Zn, n ≥ 1} are independent.
• r , b, σ and ϕ are deterministic functions.

We can write

Lt =
∫ t

0
b(u)du +

∫ t

0
σ(u)dWu +

∫ t

0

∫

R0

ϕ(u)z JX (du, dz)

=
∫ t

0
(b(u) + κϕ(u)λ(u)) du +

∫ t

0
σ(u)dWu +

∫ t

0

∫

R0

ϕ(u)z J̃X (du, dz),

where JX (du, dz) and J̃X (du, dz) are, respectively, the jump measure and the com-
pensated jumpmeasure of the process X . By Itô’s formula, we have for all t ∈ [0, T ]:

ln(St ) = ln(x) +
∫ t

0

(

b(u) − 1

2
σ 2(u)

)

du

+
∫ t

0
σ(u)dWu +

∫ t

0

∫

R0

ln(1 + ϕ(u)z)JX (du, dz).
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Set At = exp(− ∫ t
0 r(u)du),we conclude that the process (At St )t∈[0,T ] is amartingale

if and only if the following condition is satisfied:

b(t) − r(t) + κϕ(t)λ(t) = 0 ∀ t ∈ [0, T ].

Hence, for all t ∈ [0, T ]:

ln(St ) = ln(x) +
∫ t

0

(

r(u) − 1

2
σ 2(u) − κϕ(u)λ(u)

)

du

+
∫ t

0
σ(u)dWu +

∫ t

0

∫

R0

ln(1 + ϕ(u)z)JX (du, dz).

The price of a contingent claim H(ST ) is then expressed as

C (x) = EQ [AT H(ST )] ,

and for all t ∈ [0, T ], the processes Yt , Z σ̃
t , β

σ̃
t , Z ϕ̃

t and β
ϕ̃
t are, respectively, given

by

Yt = St

x

Z σ̃
t =

(∫ t

0
σ̃ (u)dWu −

∫ t

0
σ̃ (u)σ (u)du

)

St

βσ̃
t = x

(∫ t

0
σ̃ (u)dWu −

∫ t

0
σ̃ (u)σ (u)du

)

Z ϕ̃
t =

(∫ t

0

∫

R0

ϕ̃(u)z

1 + ϕ(u)z
JX (du, dz) −

∫ t

0
κϕ̃(u)λ(u)du

)

St

β
ϕ̃
t = x

(∫ t

0

∫

R0

ϕ̃(u)z

1 + ϕ(u)z
JX (du, dz) −

∫ t

0
κϕ̃(u)λ(u)du

)

.

By using the general formulae developed in the previous section, we are able to
compute analytically the values of the different Greeks (a(u) = 1

T ):

∇xC (x) = EQ

[

AT H(ST )

∫ T

0
a(u)

(
σ−1(u, Su−)Yu−

)
dWu

]

= EQ

[

AT H(ST )

∫ T

0

1

xT σ(u)
dWu

]
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Rhõr = EQ

[

AT H(ST )

∫ T

0

(
σ−1(t, St−)̃r(t, St−)

)
dWt

]

−EQ

[∫ T

0
r̃(u)du AT H(ST )

]

= EQ

[

AT H(ST )

(∫ T

0

r̃(u)

σ (u)
dWu −

∫ T

0
r̃(u)du

)]

V egaσ̃ = EQ

[

AT H(ST )

∫ T

0
σ−1(t, St−)Yt−β̃a

t−dWt

]

= EQ

[

AT H(ST )

(∫ T

0
a(t)βT (σ−1(t, St−)Yt−)dWt

)]

= EQ

[

AT H(ST )

(∫ T

0

a(t)

σ (t)

(∫ T

0
σ̃ (u)(dWu − σ(u)du)

)

dWt

)]

K appaϕ̃ = EQ

[

AT H(ST )

∫ T

0
σ−1(t, St−)Yt−β̃a

t−dWt

]

= EQ

[

AT H(ST )

(∫ T

0
a(t)βT (σ−1(t, St−)Yt−)dWt

)]

= EQ

[

AT H(ST )

(∫ T

0

a(t)

σ (t)
dWt

)

×
(∫ T

0

∫

R0

ϕ̃(u)z

1 + ϕ(u)z
JX (du, dz) −

∫ T

0
κϕ̃(u)λ(u)du

)]

For numerical simplicity we suppose that the coefficients r > 0, σ > 0 are real
constants and ϕ = 1 such that ln(1 + Z1) ∼ N (μ, δ2)whereμ ∈ R and δ > 0. The
intensity function λ(t) is exponentially decreasing given by λ(t) = ae−bt for all
t ∈ [0, T ], where a > 0 and b > 0.

In this case we have κ = E[Z1] = eμ+ δ2

2 − 1 and the mean–value function of the
Poisson process {Nt , t ≥ 0} is m(t) = ∫ t

0 λ(s)ds = a
b

(
1 − e−bt

)
, ∀ t ∈ [0, T ].

3.1.2 Binary Call Option

We consider the payoff of a digital call option of strike K > 0 and maturity T i.e.
H(ST ) = 1{ST ≥K }, such that:

ST = x exp

⎧
⎨

⎩

(

r − 1

2
σ 2

)

T − aκ

b
(1 − e−bT ) + σ WT +

NT∑

j=1

ln(1 + Z j )

⎫
⎬

⎭
.
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The price of a digital option is given by:

C M
bin := C (x) = e−rTEQ[1[K ,+∞[(ST )].

Delta: variation in the initial condition

• Delta computed from a derivation under expectation: By conditioning on the num-
ber of jumps, we can express the price as a weighted sum of Black–Scholes prices:

C M
bin =

∑

n≥0

e−m(T )(m(T ))n

n! C BS
bin (0, T, Sn, K , r, σn)

where m(T ) = a
b (1 − e−bT ), Sn = x exp(n(μ + δ2

2 ) − m(T )κ), σ 2
n = σ 2 + n δ2

2
and C BS

bin (0, T, Sn, K , r, σn) stands for the Black–Scholes price of a digital option.

ΔM
bin := ∂C M

bin

∂x
=

∑

n≥0

e−m(T )(m(T ))n

n!
Sn

x

∂C BS
bin (0, T, Sn, K , r, σn)

∂Sn
.

Recall that

C BS
bin (0, T, Sn, K , r, σn) = e−rTN (d2,n)

and

∂C BS
bin (0, T, Sn, K , r, σn)

∂Sn
= e−rT

Snσn

√
T

�(d2,n)

where d1,n = ln( Sn
K )+(r+ σ2n

2 )T

σn

√
T

, d2,n = d1,n − σn

√
T and �(z) = 1√

2π
e

−z2

2 . Conse-
quently

ΔM
bin = e−(rT +m(T ))

x
√

T

∑

n≥0

(m(T ))n

n!
�(d2,n)

σn
.

• Finite difference approximation scheme of Delta:

Δ
M,DF
bin = ∂

∂x
EQ[e−rT H(Sx

T )] � EQ[e−rT H(Sx+ε
T )] − EQ[e−rT H(Sx−ε

T )]
2ε

.
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• Global Malliavin formula for Delta:
The stochastic Malliavin weight for the delta is written:

δ(ω) =
∫ T

0

1

T

St

xσ St
dWt = WT

xσ T

where ω(t) = a(t) Yt
σ St

and Yt = St
x and a(t) = 1

T

Δ
M,Mal
bin = EQ

[

e−rT 1[K ,+∞](ST )
WT

xσ T

]

.

• Localized Malliavin formula for Delta:
Empirical studies have shown that the theoretical estimators produced by the tech-
niques of Malliavin are unbiased. We will adopt the localization technique intro-
duced byFournié et al. [9], which aims is to reduce the variance of theMonte–Carlo
estimator for the sensitivities by localizing the integration by part formula around
the singularity at K .
Consider the decomposition:

H(ST ) = Hε,loc(ST ) + Hε,reg(ST ).

The regular component is defined by:

Hε,reg(ST ) := Gε(ST − K ).

where ε is a localization parameter and the localization function Gε, that we
propose, is given by:

Gε(z) =

⎧
⎪⎪⎨

⎪⎪⎩

0; z ≤ −ε
1
2

(
1 − z

ε

) (
1 + z

ε

)3 ; −ε < z < 0

1 − 1
2

(
1 + z

ε

) (
1 − z

ε

)3 ; 0 ≤ z < ε

1; z ≥ ε.

Then

Hε,reg(ST ) = 1

2

(

1 − ST − K

ε

)(

1 + ST − K

ε

)3

1{K−ε<ST <K }

+
(

1 − 1

2

(

1 + ST − K

ε

)(

1 − ST − K

ε

)3
)

1{K≤ST <K+ε}

+ 1{ST ≥K+ε}.

The localized component is given by:

Hε,loc(ST ) = H(ST ) − Hε,reg(ST ).
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Fig. 1 Delta of a digital option computed by global, localized Malliavin like formula and finite
difference. The parameters are S0 = 100, K = 100, σ = 0.10, T = 1, r = 0.02, μ = −0.05, δ =
0.01, ϕ = 1, the intensity function λ is exponentially decreasing given by λ(t) = ae−bt for all
t ∈ [0, T ], where a = 1 and b = 1

We find that the Delta computed by localized Malliavin formula:

ΔLocMall = e−rTEQ

[

Hε,loc(ST )
WT

xσ T

]

+ e−rTEQ

[

H ′
ε,reg(ST )

ST

x

]

.

In Fig. 1 we plot the delta for a digital option for a simplest time-inhomogeneous
Merton model.

Furthermore, we have

Rho = e−rTEQ

[(
WT

σ
− T

)

1{ST ≥K }
]

V ega = e−rTEQ

[(
W 2

T − σ T WT − T

σ T

)

1{ST ≥K }
]

K appa = e−rTEQ

⎡

⎣

⎛

⎝
NT∑

j=1

Z j

1 + ϕZ j
− κ

a

b
(−e−bT + 1)

⎞

⎠
WT

σ T
1{ST ≥K }

⎤

⎦ .

Rho: variation in the drift coefficient

• Rho computed from a derivation under expectation: Recall that

C BS
bin (0, T, Sn, K , r, σn) = e−rTN (d2,n)
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and

∂C BS
bin (0, T, Sn, K , r, σn)

∂r
= −T e−rTN (d2,n) +

√
T e−rT

σn
�(d2,n)

RhoM
bin := ∂C M

bin

∂r

=
∑

n≥0

e−m(T )(m(T ))n

n!
∂C BS

bin (0, T, Sn, K , r, σn)

∂r

=
∑

n≥0

e−m(T )(m(T ))n

n! (−T e−rTN (d2,n) +
√

T e−rT

σn
�(d2,n))

= T e−(rT +m(T ))
∑

n≥0

(m(T ))n

n!
(

−N (d2,n) + �(d2,n)√
T σn

)

.

• Finite Difference Approximation scheme of Rho:

RhoF D := ∂

∂r
EQ[e−rT H(ST )] � EQ[e−(r+ε)T H(Sr+ε

T )] − EQ[e−(r−ε)T H(Sr−ε
T )]

2ε
.

• Global Malliavin formula for Rho:

RhoG Mall = e−rTEQ

[(
WT

σ
− T

)

1{ST ≥K }
]

.

• Localized Malliavin formula for Rho:

RhoLocMall = e−rTEQ

[

Hε,loc(ST )

(
WT

σ
− T

)]

+e−rTEQ

[
H ′

ε,reg(ST )T ST
] − T e−rTEQ

[
H ′

ε,reg(ST )
]
.

In Fig. 2 we plot the Rho for a digital option for a simplest time-inhomogeneous
Merton model.

Vega: variation in the diffusion coefficient

• Vega computed from a derivation under expectation:

V egaM
bin : = ∂C M

bin

∂σ

=
∑

n≥0

e−m(T )(m(T ))n

n!
∂σn

∂σ

∂C BS
bin (0, T, Sn, K , r, σn)

∂σn
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Fig. 2 Rho of a digital option computed by global, localized Malliavin like formula and finite
difference. The parameters are S0 = 100, K = 100, σ = 0.1, T = 1, r = 0.03, μ = −0.05, δ =
0.01, ϕ = 1, the intensity function λ is exponentially decreasing given by λ(t) = ae−bt for all
t ∈ [0, T ], where a = 1 and b = 1

=
∑

n≥0

e−m(T )(m(T ))n

n!
σ

σn
(−e−rT )(

√
T + d2,n

σn
)�(d2,n)

= −σe−(rT +m(T ))
∑

n≥0

(m(T ))n

n!

(
σn

√
T + d2,n
σ 2

n

)

�(d2,n).

• Finite Difference Approximation scheme of Vega:

V egaF D := ∂

∂σ
EQ[e−rT H(Sσ

T )] � e−rT EQ[H(Sσ+ε
T )] − EQ[H(Sσ−ε

T )]
2ε

.

• Global Malliavin formula for Vega:

V egaG Mall = e−rTEQ

[(
W 2

T − σ T WT − T

σ T

)

1{ST ≥K }
]

.

• Localized Malliavin formula for Vega:

V egaLocMall = e−rTEQ

[

Hε,loc(ST )

(
W 2

T − σ T WT − T

σ T

)]

+ e−rTEQ

[
H ′

ε,reg(ST ) (WT − σ T ) ST
]
.
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Fig. 3 Vega of a digital option computed by global, localized Malliavin like formula and finite
difference. The parameters are S0 = 100, K = 100, r = 0.02, σ = 0.20, T = 1, r = 0.05, μ =
−0.05, δ = 0.01, ϕ = 1, the intensity function λ is exponentially decreasing given by λ(t) = ae−bt

for all t ∈ [0, T ], where a = 1 and b = 1

In Fig. 3 we plot the Vega for a digital option for a simplest time-inhomogeneous
Merton model.

Alpha: variation in the jump amplitude

• Alpha computed from a derivation under expectation:

AlphaM
bin := ∂C M

bin

∂ϕ

=
∑

n≥0

e−m(T )(m(T ))n

n!
∂Sn

∂ϕ

∂C BS
bin (0, T, Sn, K , r, σn)

∂Sn

=
∑

n≥0

e−m(T )(m(T ))n

n!
m(T )κSn

ϕ

∂C BS
bin (0, T, Sn, K , r, σn)

∂Sn

= κe−(rT +m(T ))

ϕ
√

T

∑

n≥0

(m(T ))n+1

n!
�(d2,n)

σn
.

• Finite Difference Approximation scheme of Alpha:

AlphaF D := ∂

∂ϕ
EQ[e−rT H(Sϕ

T )] � e−rT EQ[H(Sϕ+ε

T )] − EQ[H(Sϕ−ε

T )]
2ε

.
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• Global Malliavin formula for Alpha:

AlphaG Mall = e−rTEQ

⎡

⎣

⎛

⎝
NT∑

j=1

Z j

1 + ϕZ j
− κ

a

b
(−e−bT + 1)

⎞

⎠
WT

σ T
1{ST ≥K }

⎤

⎦ .

• Localized Malliavin formula for Alpha:

AlphaLocMall = e−rT EQ

⎡

⎣Hε,loc(ST )

⎛

⎝
NT∑

j=1

Z j

1 + ϕZ j
− κ

a

b
(−e−bT + 1)

⎞

⎠
WT

σ T

⎤

⎦

+ e−rT EQ

⎡

⎣H ′
ε,reg(ST )

⎛

⎝
NT∑

j=1

Z j

1 + ϕZ j
− κ

a

b
(−e−bT + 1)

⎞

⎠ ST

⎤

⎦ .

In Fig. 4 we plot the sensitivity with respect to the jump size parameter ϕ for a digital
option for a simplest time-inhomogeneous Merton model.

Fig. 4 Alpha of a digital option computed by global, localized Malliavin like formula and finite
difference. The parameters are S0 = 100, K = 100, σ = 0.20, T = 1, r = 0.02, μ = −0.05,
δ = 0.01, ϕ = 1, the intensity function λ is exponentially decreasing given by λ(t) = ae−bt for
all t ∈ [0, T ], where a = 1 and b = 1
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3.1.3 Time-Inhomogeneous Bates Model:

We consider the solution of the stochastic differential equation:

⎧
⎨

⎩

d S1
t = r S1

t−dt + √
Vt S1

t−dW 1
t + S1

t−
∫

R0
(ez − 1)Ñ (dt, dz), S1

0 = x0,
dVt = κ(θ − Vt )dt + σ

√
Vt d Bt , V0 = v0,〈

W 1, B
〉

t = ρt,

where (W 1
t , Bt )t∈[0,T ] is a two–dimensional correlated Brownian motion with cor-

relation parameter ρ ∈] − 1, 1[. The stochastic process (S1
t ) is the underling price

process and (Vt ) is the square of the volatility process which follows a CIR2 process
with an initial value v0 > 0, with long–run mean θ , and rate of reversion κ , σ is
referred to as the volatility of volatility.
For all t ∈ [0, T ], we define

W 2
t := 1

√
1 − ρ2

(
Bt − ρW 1

t

)
.

The process (W 2
t )t∈[0,T ] is a Brownian motion which is independent of (W 1

t )t∈[0,T ].
Then, the system of stochastic differential equations can be rewritten in a matrix
form

d St = b(t, St−)dt + σ(t, St−)dWt +
∫

R0

ϕ(t, St−, z)Ñ (dt, dz), S0 = (x0, v0)

where St = (S1
t , Vt ), W ∗

t = (W 1
t , W 2

t )∗, b∗(t, St−) = (r S1
t−, κ(θ − Vt ))

∗,
ϕ∗(t, St−, z) = ((ez − 1)S1

t−, 0)∗ and

σ(t, St−) =
⎛

⎝

√
Vt S1

t− 0

ρσ
√

Vt σ
√
1 − ρ2

√
Vt

⎞

⎠ .

The inverse of σ is

σ−1(t, St−) = 1

σ
√
1 − ρ2S1

t−Vt

⎛

⎝
σ
√
1 − ρ2

√
Vt 0

−ρσ
√

Vt
√

Vt S1
t−

⎞

⎠ .

The price of the contingent claim in this setting is expressed as:

C = EQ

[
e−rT H(St )

]
.

2Cox, Ingersoll and Ross model. See [4].
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Note that by Itô’s formula we have for all t ∈ [0, T ]

ln(S1
t ) =

∫ t

0

(

r − 1

2
Vu

)

du +
∫ t

0

∫

R0

[
z − (ez − 1)

]
νu(dz)du

+
∫ t

0

√
VudW 1

u +
∫ t

0

∫

R0

z Ñ (du, dz).

The Rho

In the drift—perturbed process (Sε
t )t which is a solution of the stochastic differential

equation (10), we take b̃∗(t, x) = (x1, 0)∗ and we get

(σ−1(t, St−)̃b(t, St−))∗ =
(

1√
Vt

,
−ρ

√
1 − ρ2

√
Vt

)

.

From Proposition 2.6, we have

Rho = e−rT EQ

[

H(St )

(∫ T

0

dW 1
t√

Vt
− ρ

√
1 − ρ2

∫ T

0

dW 2
t√

Vt

)]

− T e−rT EQ [H(St )] .

The Delta

The first variation process is given by

⎧
⎨

⎩

dYt = b′(t, St−)Yt−dt + σ ′
1(t, St−)Yt−dW 1

t
+ σ ′

2(t, St−)Yt−dW 2
t + ∫

R0
ϕ′(t, St−, z)Yt− Ñ (dt, dz),

Y0 = I2

where

b′(t, St−) =
(

r 0
0 −κ

)

, ϕ′(t, St−, z) =
(

(ez − 1) 0
0 0

)

,

σ ′
1(t, St−) =

(√
Vt

S1
t−

2
√

Vt

0 σρ

2
√

Vt

)

and σ ′
2(t, St−) =

(
0 0

0
σ
√

1−ρ2

2
√

Vt

)

,

(
σ−1(t, St−)Yt−

)∗ =
⎛

⎜
⎝

Y 1,1
t−

S1
t−

√
Vt

−ρ√
1−ρ2

Y 1,1
t−

S1
t−

√
Vt

Y 2,1
t−

S1
t−

√
Vt

1√
1−ρ2

√
Vt

(−ρY 1,2
t−

S1
t−

+ Y 2,2
t−
σ

)

⎞

⎟
⎠ .
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By Proposition 2.5 we conclude that

Delta := ∂C

∂x0

= e−rT EQ

[

H(St )

(∫ T

0
a(t)

Y 1,1
t−

S1
t−

√
Vt

dW 1
t −

∫ T

0
a(t)

−ρ
√
1 − ρ2

Y 1,1
t−

S1
t−

√
Vt

dW 2
t

)]

.

Since Y 1,1
t− = S1

t−
x0

and if we take a(t) = 1
T , we get

Delta = e−rT

x0T
EQ

[

H(St )

(∫ T

0

dW 1
t√

Vt
− ρ

√
1 − ρ2

∫ T

0

dW 2
t√

Vt

)]

.

The Vega

We perturb the original diffusion matrix with σ̃ to get the perturbed process given
by (11) such that

σ̃ (t, x) =
(

x1 0
0 0

)

.

For all t ∈ [0, T ], the processes Z σ̃
t and βσ̃

t are, respectively, given by

Z1,̃σ
t =

(

W 1
t −

∫ t

0

√
Vudu

)

St , Z2,̃σ
t = 0

β1,̃σ
t = x0

(

W 1
t −

∫ t

0

√
Vudu

)

, β2,̃σ
t = 0.

Using the chain rule (Proposition 4.12) on a sequence of continuously differ-
entiable functions with bounded derivatives approximating

√
Vu , together with

Proposition 2.3 we obtain

Dt,0β
1,̃σ
T = x0

(

(1, 0)∗ −
∫ T

0

1

2
√

Vu
Dt,0

√
Vudu

)

= x0

(

(1, 0) − σ

2

∫ T

t

√
Vt√
Vu

Y 2,2
u

Y 2,2
t

(
ρ,

√
1 − ρ2

)
du

)

.

Thus

T r
(
(Dt,0βT )σ−1(t, St−)Yt−

) = 1√
Vt

.
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Then

δ
(
σ−1(·, S·)Y·β̃a

· δ0(·)
) = βσ̃∗

T

∫ T

0
a(t)(σ−1(t, St−)Yt−)∗dWt

−
∫ T

0
a(t)T r

(
(Dt,0βT )σ−1(t, St−)Yt−

)
dt

=
(

W 1
T −

∫ T

0

√
Vudu

)

×
(∫ T

0

a(t)√
Vt

dW 1
t − ρ

√
1 − ρ2

∫ T

0

a(t)√
Vt

dW 2
t

)

−
∫ T

0

a(t)√
Vt

dt.

Consequently,

V egaσ̃ = e−rT

T
EQ

[

H(ST )

((

W 1
T −

∫ T

0

√
Vudu

)

×
(∫ T

0

dW 1
t√

Vt
− ρ

√
1 − ρ2

∫ T

0

dW 2
t√

Vt

)

−
∫ T

0

dt√
Vt

)]

.

The alpha

We consider the perturbed process

⎧
⎨

⎩

d Sε
t = b(t, Sε

t−)dt + σ(t, Sε
t−)dWt

+ ∫

R0
(ϕ(t, Sε

t−, z) + εϕ̃(t, Sε
t−, z))Ñ (dt, dz),

Sε
0 = x,

with

ϕ̃(t, x, z) =
(

x1
0

)

.

For all t ∈ [0, T ], the processes Z ϕ̃
t and β

ϕ̃
t defined above are, respectively, given by

Z1,ϕ̃
t =

(∫ t

0

∫

R0

e−z Ñ (du, dz) −
∫ t

0

∫

R0

(1 − e−z)νu(dz)du

)

St , Z2,ϕ̃
t = 0

β
1,ϕ̃
t = x0

(∫ t

0

∫

R0

e−z Ñ (du, dz) −
∫ t

0

∫

R0

(1 − e−z)νu(dz)du

)

, β
2,ϕ̃
t = 0.
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Then

δ
(
σ−1(·, S·)Y·β̃a

· δ0(·)
) = β

ϕ̃∗
T

∫ T

0
a(t)(σ−1(t, St−)Yt−)∗dWt

−
∫ T

0
a(t)T r

(
(Dt,0βT )σ−1(t, St−)Yt−

)
dt

=
(∫ T

0

∫

R0

e−z Ñ (du, dz) −
∫ T

0

∫

R0

(1 − e−z)νu(dz)du

)

×
(∫ T

0

a(t)√
Vt

dW 1
t − ρ

√
1 − ρ2

∫ T

0

a(t)√
Vt

dW 2
t

)

.

Consequently

Alphaϕ̃ = e−rT

T
EQ

[

H(ST )

(∫ T

0

∫

R0

e−z Ñ (du, dz) −
∫ T

0

∫

R0

(1 − e−z)νu(dz)du

)

×
(∫ T

0

dW 1
t√

Vt
− ρ

√
1 − ρ2

∫ T

0

dW 2
t√

Vt

)]

.

4 Malliavin Calculus for Square Integrable Additive
Processes

4.1 Additive Processes

Definition 4.1 (see Cont [3], Definition 14.1) A stochastic process (St )t≥0 on R
d

is called an additive process if it is càdlàg, satisfies S0 = 0 and has the following
properties:

1. Independent increments: for every increasing sequence of times t0, . . . , tn , the
random variables St0 , St1 − St0 , . . . , Stn − Stn−1 are independent.

2. Stochastic continuity: ∀ ε > 0 and ∀ t ≥ 0, limh→0 P[|St+h − St | ≥ ε] = 0.

Theorem 4.2 (see Sato [15], Theorems 9.1–9.8) Let (St )t≥0 be an additive process
on R

d . Then St has an infinitely divisible distribution for all t . The law of (St )t≥0 is
uniquely determined by its spot characteristics (At , μt , Γt )t≥0:

E[exp(iuSt )] = exp(ψt (u))

where

ψt (u) = −1

2
u · At u + iu · Γt +

∫

Rd

(eiu·z − 1 − iu · z1{|z|≤1})μt (dz).
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The spot characteristics (At , μt , Γt )t≥0 satisfy the following conditions

1. For all t , At is a positive definite d × d matrix and μt is a positive measure on
R

d satisfying μt (0) = 0 and
∫

R
d
0
(|z|2 ∧ 1)μt (dz) < ∞.

2. Positiveness: A0 = 0, μ0 = 0, Γ0 = 0 and for all s, t such that s ≤ t , At − As

is a positive definite d × d matrix and μt (B) ≥ μs(B) for all measurable sets
B ∈ B(Rd).

3. Continuity: if s −→ t then As −→ At , Γs −→ Γt and μs(B) −→ μt (B) for all
B ∈ B(Rd) such that B ⊂ {z : |z| ≥ ε} for some ε > 0.

Conversely, for a family of (At , μt , Γt )t≥0 satisfying the conditions (1), (2) and
(3) above there exists an additive process (St )t≥0 with (At , μt , Γt )t≥0 as spot char-
acteristics.

Example 1 We consider a class of spot characteristics (At , μt , Γt )t≥0 constructed in
the following way:

• A continuous matrix valued function σ : [0, T ] −→ Md×d(R) such that σt is sym-
metric for all t ∈ [0, T ] and verifies

∫ T
0 σ 2

t dt < ∞.

• Afamily (νt )t∈[0,T ] ofLévymeasures verifying
∫ T
0

(∫

R
d
0
(|z|2 ∧ 1)νt (dz)

)
dt < ∞.

• A deterministic function with finite variation γ : [0, T ] −→ R
d (e.g., a piecewise

continuous function).

Then the spot characteristics (At , μt , Γt )t≥0 defined by

At =
∫ t

0
σ 2

s ds

μt =
∫ t

0
νsds

Γt =
∫ t

0
γsds

satisfy the conditions 1, 2, 3 and therefore define a unique additive process (St )t≥0

with spot characteristics (At , μt , Γt )t∈[0,T ]. The triplet (σ 2
t , νt , γt )t∈[0,T ] are called

local characteristics of the additive process.

Remark 4.3 Not all additive processes can be parameterized in this way, but we
will assume this parametrization in terms of local characteristics in the rest of this
paper. In particular, the assumptions above on the local characteristics implies that
the process (St )t≥0 is a semimartingale which will allow us to apply the Itô formula.

The local characteristics of an additive process enable us to describe the structure
of its sample paths: the positions and sizes of jumps of (St )t≥0 are described by a
Poisson random measure on [0, T ] × R

d

JS(ω, ·) =
∑

0≤t≤T ;ΔSt �=0

δ(t,ΔSt )
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with (time-inhomogeneous) intensity given by νt (dz)dt :

E[JS([t1, t2] × B)] = μT ([t1, t2] × B) =
∫ t2

t1

νs(B)ds.

The compensated Poisson random measure can therefore be defined by:

J̃S(ω, dt, dz) = JS(ω, dt, dz) − νt (dz)dt.

4.2 Isonormal Lévy Process (ILP)

Let μ and ν are σ–finite measures without atoms on the measurable spaces (T,A )

and (T × X0,B) respectively.
Define a new measure

π(dt, dz) := μ(dt)δΔ(dz) + ν(dt, dz) (11)

on a measurable space (T × X,G ), where X = X0 ∪ Δ, G = σ(A × Δ,B) and
δΔ(dz) is the measure which gives mass one to the point Δ.

We assume that the Hilbert space H = L2(T × X,G , π) is separable.

Definition 4.4 We say that a stochastic process L = {L(h), h ∈ H } defined in a
complete probability space (Ω,F , P) is an isonormal Lévy process (or Lévy process
onH ) if the following conditions are satisfied:

1. The mapping h −→ L(h) is linear.
2. E[eix L(h)] = exp(�(x, h)), where

�(x, h) =
∫

T×X

(

(eixh(t,z) − 1 − i xh(t, z))1X0 (z) − 1

2
x2h2(t, z)1Δ(z)

)

π(dt, dz).

4.3 Generalized Orthogonal Polynomials (GOP)

Denote by x = (x1, x2, . . . , xn, . . .) a sequence of real numbers. Define a function
F(z, x) by

F(z, x) = exp

( ∞∑

k=1

(−1)k+1

k
xk zk

)

. (12)

If

R(x) =
(
lim sup |xk | 1

k

)−1
> 0
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then the series in (12) converge for all |z| < R(x). So the function F(z, x) is analytic
for |z| < R(x).

Consider an expansion in powers of z of the function F(z, x):

F(z, x) =
∞∑

n=0

zn Pn(x).

One can easily show the following equalities:

(n + 1)Pn+1(x) =
n∑

k=0

(−1)k xk+1Pn−k(x), n ≥ 0,

∂ Pn

∂xl
(x) =

{
0 if l > n,
(−1)l+1

l Pn−l(x) if l ≤ n.

4.4 Examples

1. If x(h) = (x, λ, 0, . . . , 0, . . .), then

F(z, x) = exp

(

zx − z2

2
λ

)

=
∞∑

n=0

Hn(x, λ)zn,

where Hn(x, λ) are the Hermite polynomials (Brownian case). So

Pn(x, λ, 0, . . . , 0) = Hn(x, λ).

2. If x(h) = (x − t, x, . . . , x, . . .), then

F(z, x) = (1 + z)x e−t z =
∞∑

n=0

Cn(x, λ)
zn

n! ,

where Cn(x, λ) are the Charlier polynomials (Poissonian case). So

n!Pn(x − t, x, . . . , x) = Cn(x, λ).

4.5 Relationship Between Generalized Orthogonal
Polynomials and Isonormal Lévy Process

For h ∈ H ∩ L∞(T × X0,B, ν), let x(h) = (xk(h))∞k=1 denote the sequence of the
random variables such that
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x1(h) = L(h);
x2(h) = L(h21X0) + ‖h‖2H ;
xk(h) = L(hk1X0) +

∫

T ×X0

hk(t, x)ν(dt, dx), k ≥ 3.

Lemma 4.5 Let h and g ∈ H ∩ L∞(T × X0,B, ν). Then for all n, m ≥ 0we have
Pn(x(h)) and Pm(x(g)) ∈ L2(Ω), and

E [Pn(x(h))Pm(x(g))] =
{
0 if n �= m,
1

n! (E [L(h)L(g)])n if n = m.

4.6 The Chaos Decomposition

Lemma 4.6 The random variables {eL(h), h ∈ H ∩ L∞(T × X0,B, ν)} form a
total subset of L2(Ω,F , P).

For each n ≥ 1 we will denote byPn the closed linear subspace of L2(Ω,F , P)

generated by the random variables {Pn(x(h)), h ∈ H ∩ L∞(T × X0,B, ν)}. P0

will be the set of constants. For n = 1,P1 coincides with the set of random variables
{L(h), h ∈ H }. We will call the space Pn chaos of order n.

Theorem 4.7 The space L2(Ω,F , P) can be decomposed into the infinite orthog-
onal sum of the subspace Pn:

L2(Ω,F , P) =
∞⊕

n=0

Pn.

4.7 The Multiple Integral

Set G0 = {A ∈ G |π(A) < ∞}. For any m ≥ 1 we denote by Em the set of all linear
combinations of the following functions f ∈ L2((T × X)m,G m, πm)

f (t1, x1, . . . , tm, xm) = 1A1×A2×...Am (t1, x1, . . . , tm, xm), (13)

where A1, . . . , Am are pairwise–disjoint sets in G0.
The fact that π is a measure without atoms implies that Em is dense in L2((T ×

X)m). (See, e.g. Nualart [11] pp. 8–9).
For the function of the form (13) we define the multiple integral of order m

Im( f ) = L(A1) . . . L(Am).
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Then, by linearity we conclude Im( f ) for all functions f ∈ Em and by continuity
Im( f ) for all functions f ∈ L2((T × X)m).

The following properties hold:

1. Im is linear.
2. Im( f ) = Im( f̃ ), where f̃ denotes the symmetrization of f , which is defined by

f̃ (t1, x1, . . . , tm, xm) = 1

m!
∑

σ∈Sm

f (tσ(1), xσ(1), . . . , tσ(m), xσ(m)).

3.

E [In( f )Im(g)] =
{
0 i f n �= m,

m! < f̃ , g̃ >L2((T ×X)m ) i f n = m.

4.8 Relationship Between Generalized Orthogonal
Polynomials And multiple Stochastic Integrals

Proposition 4.8 Let Pn be the nth generalized orthogonal polynomial and x(h) =
(xk(h))∞k=1, where h ∈ ∩p≥2L p(T × X0,B, ν) ∩ H and

x1(h) = L(h);
x2(h) = L(h21X0) + ‖h‖2H ;
xk(h) = L(hk1X0) +

∫

T ×X0

hk(t, x)ν(dt, dx), k ≥ 3.

Then it holds that

n!Pn(x(h)) = In(h
⊗n),

where

h⊗n(t1, x1, . . . , tm, xm) = h(t1, x1) × · · · × h(tm, xm).

4.9 Expansion into a Series of Multiple Stochastic Integrals

Corollary 4.9 Any square integrable random variable ξ ∈ L2(Ω,F , P) can be
expanded into a series of multiple stochastic integrals:

ξ =
∞∑

k=0

Ik( fk). (14)
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Here f0 = E[ξ ], and I0 is the identity mapping on the constant. Furthermore, this
representation is unique provided the functions fk ∈ L2((T × X)k) are symmetric.

4.10 The Derivative Operator

Let S denote the class of smooth random variables such that a random variable
ξ ∈ S has the form

ξ = f (L(h1), . . . , L(hn)), (15)

where f belongs to C∞
b (Rn), h1, . . . , hn are in H , and n ≥ 1. The set S is dense

in L p(Ω), for any p ≥ 1.

Definition 4.10 The stochastic derivative of a smooth functional of the form (15) is
theH –valued random variable Dξ = {Dt,xξ, (t, x) ∈ T × X} given by

Dt,xξ =
n∑

k=1

∂ f

∂yk
(L(h1), . . . , L(hn))hk(t, x)1Δ(x) (16)

+ ( f (L(h1) + h1(t, x), . . . , L(hn) + hn(t, x))

− f (L(h1), . . . , L(hn))) 1X0(x).

We will consider Dξ as an element of ξ ∈ L2(T × X × Ω) ∼= L2(Ω;H ),
namely, Dξ is a random process indexed by the parameter space T × X .

1. If the measure ν is zero or hk(t, x) = 0, k = 1, . . . , n when x �= Δ then Dξ

coincides with the Malliavin derivative (see, e.g. Nualart [11] Def. 1.2.1 p. 38).
2. If the measure μ is zero or hk(t, x) = 0, k = 1, . . . , n when x = Δ then Dξ

coincides with the difference operator (see, e.g. Picard [13]).

4.11 Integration by Parts Formula

Theorem 4.11 Suppose that ξ and η are smooth functionals and h ∈ H . Then

1.

E[ξ L(h)] = E[〈Dξ ; h〉H ].

2.

E[ξηL(h)] = E[η 〈Dξ ; h〉H ] + E[ξ 〈Dη; h〉 >H ] + E[〈Dη; h1X0 Dξ
〉

H
].
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As a consequence of the above theorem we obtain the following result:

• The expression of the derivative Dξ given in (16) does not depend on the particular
representation of ξ in (15).

• The operator D is closable as an operator from L2(Ω) to L2(Ω;H ).

We will denote the closure of D again by D and its domain in L2(Ω) by D
1,2.

4.12 The Chain Rule

Proposition 4.12 (See Yablonski [16], Proposition 4.8) Suppose F = (F1, F2, . . . ,

Fn) is a random vector whose components belong to the space D1,2. Let φ ∈ C 1(Rn)

be a function with bounded partial derivatives such that φ(F) ∈ L2(Ω). Then
φ(F) ∈ D

1,2 and

Dt,xφ(F) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n∑

i=1

∂φ

∂xi
(F)Dt,ΔFi ; x = Δ

φ(F1 + Dt,x F1, . . . , Fn + Dt,x Fn) − φ(F1, . . . , Fn); x �= Δ

4.13 The Action of the Operator D via the Chaos
Decomposition

Lemma 4.13 It holds that Pn(x(h)) ∈ D
1,2 for all h ∈ H ∩ L∞(T × X0,B, ν),

n = 1, 2, . . . and

Dt,x Pn(x(h)) = Pn−1(x(h))h(t, x).

Proposition 4.14 Let ξ ∈ L2(Ω,F , P) with an expansion ξ = ∑∞
k=0 Ik( fk) where

fk ∈ L2((T × X)k) are symmetric for all k. Then ξ ∈ D
1,2 if and only if

∞∑

k=0

kk!‖ fk‖2L2((T ×X)k ) < ∞,

and in this case we have

Dt,xξ =
∞∑

k=0

k Ik−1( fk(·, t, x))
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and

E

[∫

T ×X
(Dt,xξ)2π(dt, dx)

]

coincides with the sum of the series (14).

4.14 The Skorohod Integral

We recall that the derivative operator D is a closed and unbounded operator defined
on the dense subset D1,2 of L2(Ω) with values in L2(Ω;H ).

Definition 4.15 We denote by δ the adjoint of the operator D and we call it the
Skorohod integral.
The operator δ is a closed and unbounded operator on L2(Ω;H ) with values in
L2(Ω) defined on Dom(δ), where Dom(δ) is the set of processes u ∈ L2(Ω;H )

such that
∣
∣
∣
∣E

[∫

T ×X
Dt,z Fu(t, z)π(dt, dz)

]∣
∣
∣
∣ ≤ c ‖F‖L2(Ω)

for all F ∈ D
1,2, where c is some constant depending on u.

If u ∈ Dom(δ), then δ(u) is the element of L2(Ω) such that

E [Fδ(u)] = E

[∫

T ×X
Dt,z Fu(t, z)π(dt, dz)

]

(17)

for any F ∈ D
1,2.

4.15 The Behavior of δ in Terms of the Chaos Expansion

Proposition 4.16 Let u ∈ L2(Ω;H ) with the expansion

u(t, z) =
∞∑

k=0

Ik( fk(·, t, z)). (18)

Then u ∈ Dom(δ) if and only if the series

δ(u) =
∞∑

k=0

Ik+1( f̃k) (19)

converges in L2(Ω).
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It follows that Dom(δ) is the subspace of L2(Ω) formed by the processes that
satisfy the following condition:

∞∑

k=1

(k + 1)!‖ f̃k‖2L2(T ×X)k+1 < ∞. (20)

Note that the Skorohod integral is a linear operator and has a zero mean, e.g.
E [δ(u)] = 0 if u ∈ Dom(δ). The following statements prove some properties of δ.

Proposition 4.17 Suppose that u is a Skorohod integrable process. Let F ∈ D
1,2 be

such that E
[∫

T ×X

(
F2 + (Dt,z F)21X0

)
u(t, z)2π(dt, dz)

]
< ∞. Then it holds that

δ
((

F + (Dt,z F)1X0

)
u
) = Fδ(u) −

∫

T ×X
(Dt,z F)u(t, z)π(dt, dz), (21)

provided that one of the two sides of the equality (21) exists.

4.16 Commutativity Relationship Between the Derivative
and Divergence Operators

Let L1,2 denote the class of processes u ∈ L2(T × X × Ω) such that u(t, x) ∈ D
1,2

for almost all (t, x), and there exists a measurable version of the multi–process
Dt,x u(s, y) satisfying

E

[∫

T ×X

∫

T ×X
(Dt,x u(s, y))2π(dt, dx)π(dsdy)

]

< ∞.

Proposition 4.18 Suppose that u ∈ L
1,2 and for almost all (t, z) ∈ T × X , the two–

parameter process
(
Dt,zu(s, y)

)

(s,y)∈T ×X is Skorohod integrable, and there exists a

version of the process
(
δ(Dt,zu(·, ·)))

(t,z)∈T ×X
which belongs to L2(T × X × Ω).

Then δ(u) ∈ D
1,2, and we have

Dt,zδ(u) = u(t, z) + δ(Dt,zu(·, ·)). (22)

4.17 The Itô Stochastic Integral as a Particular
Case of the Skorohod Integral

Let W = {Wt , 0 ≤ t ≤ T } is a be an d-dimensional standard Brownian motion, Ñ a
compensated Poisson random measure on [0, T ] × R

d
0 with (time-inhomogeneous)

intensity measure ν(dt, dx) = βt (dx)dt , where (βt )t∈[0,T ] is a family of Lévy mea-
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sures verifying
∫ T
0

(∫

Rd (‖z‖2 ∧ 1)βt (dz)
)

dt < ∞. HereR0 := R \ {0} and for each
t ∈ [0, T ],Ft is the σ–algebra generated by the random variables

{W j
s , Ñ ((0, s] × A); 0 ≤ s ≤ t, j = 1, . . . , d, A ∈ B(Rd

0), sup
0≤s≤t

βs(A) < ∞}

and the null sets of F .
We denote by L2

p the subset of L2(Ω;H ) formed by (Ft )–predictable processes.

Proposition 4.19 L2
p ⊂ Dom(δ), and the restriction of the operator δ to the space

coincides with the usual stochastic integral, that is

δ(u) =
d∑

j=1

∫ T

0
u j (t, 0)dW j

t +
∫ T

0

∫

R
d
0

u(t, z)Ñ (dt, dz). (23)
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