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1 Introduction: Basic Insurance Question (Casualty)

Assume ahome value is $100,000, and the chance of it burning down is = 0.01 (1 %).
Also assume that an insurer insures homes which are independent and identically
distributed.'

Therefore the expected loss per house = 10° x 1072 = $1,000. Indeed, the
loss variable is 100,000X where X is a Bernoulli r.v. with parameter p = 0.01
(i.e. X equals 1 with probability 0.01 and 0 otherwise)

— Pricing of the insurance claim needs to cover this expected loss plus the cost
of running an insurance business (e.g. employee salaries), minus the interest earned
on clients’ premiums.

— But what if major a event occurs? The insurance company would need more
cash to cover large losses.

1. Company must hold capital reserves: The Central Limit Theorem says the more
i.i.d. clients one holds, the less reserve per capital one might need. Indeed:
Let XV :=10°2N, X;)+ : here X; ii.d. Bernoulli (parameter p = 0.01),
thus X is the per-capital reserve. We have of course E[XV)] = 10°pN/N =
1,000. However,

1 1000
VVar(X™) =10°/Np(1 — p)— = ——
(X)) P =p) ~

which shows that the spread of the per-capita reserve decreases like constant/</N.
More specifically, to be 95 % sure that one can cover all losses, we can look for the
amount of per-capita reserve ¢ beyond the average per-capita reserve of $1,000
such that the chance of the actual per-capita loss exceeding that level is 5 %: find
& such that

P(X™M = 10° + &) = 0.05
XM — 1000 P
>
10* 104

—) = 0.05
TN
) = 0.05 approximately, by the CLT

1
T=
P(N(0,1) >

4_1
10 I

_~ 1.645 approximately, using a normal table

1041
16450

&= ——.
VN

I 111
%

I This could be an abusive assumption if an insurer insures all the homes in a given high-risk area,
such as a coastal flood plain or a town in the U.S. midwest in an area which is prone to tornados.
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We conclude that

e If we have 10,000 customers, then excess reserve needed per customer equals

& =$164,5.
e But if we have 1,000,000 customers, then this excess reserve decreases to
¢ = $16,45.

Hence the use of aggregating as many customers as possible, to take advantage
of this phenomenon of risk diversification (as long as our customers are i.i.d).

2. However, there is another way to manage risk: Use Reinsurance.
Ask a reinsurance company to take on the risk associated with very large events
only. If the total value Claim of all claims exceed a certain level K, the reinsurer
pays the insurer Claim — K to cover those claims in excess of the large value K';
otherwise the reinsurer pays nothing: thus the reinsurer pays

e max(Claims — K ,0) : This is the payoff of a call option where the asset =
total claims and the strike price = K = level where reinsurance kicks in.

e This contract can also be thought of as a put option for the insurer: the insurer
has the right to sell to the reinsurer all the contracts that lost money: thus
insurer may sell to reinsurer the negative quantity —Claims if that amount is
less than — K ; hence the contract payoff is max(—K — (—Claims),0).

In any case, there is a need to price this payoff, i.e. this contingent claim
max(Claims — K ,0).
Question: Can the reinsurance use the same method of pricing excess reserves
¢ per client, as the insurance company does with its own individual clients? Here
the reinsurer’s clients are individual insurance companies. Therefore...
Answer is Typically NO: indeed the typical number of clients M for the reinsurer
is never as large as N = 10,00,000, so can’t rely on “diversification of risk”,
the reinsurer cannot use the CLT because the number of insurance companies
(or contracts) M for a reinsurer is usually too small.

3. Need a new pricing method for reinsurance: Hedging.
This method would be common to both reinsurance and financial derivatives
markets; it is the method of derivatives (e.g. options) pricing.
The word “Claims” can be replaced by the more generic term “value of a risky
asset or index” ; this asset could be a stock price S = {S (¢); ¢t € [0,T]}.
Basic idea of hedging: a market maker sells a call option with strike price K,
payoff Cy = max(S (T') — K,0).

e Question: can we try to hedge this payoff ahead of time by investing in the
stock S and in a risk-free account with short rate r?

o IF the answer is “Yes this can be done perfectly”, then the value of the call
option at any time ¢ prior to maturity 7 (¢ < T') is exactly the value of the
hedging investment (portfolio). In the language of insurance, this value is the
premium of the call option at time ¢, the value one would pay to buy the claim
at time 7.
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Equivalently, at time ¢t = 0 (say), one only needs to make an investment equal
in value to the hedging portfolio, and rebalance the portfolio over time so that
its value remains equal to what it is supposed to be at any time ¢ < T, then
this portfolio will be exactly equation to the payoff Cr = max(S (T) — K,0)
at time 7.

e Answer to the question:
Answer is Yes, in discrete time: there’s a perfect answer (perfect hedging
portfolio) using the binomial model.
However, typically, the binomial model work well for time step 7 = 1 day, but
is much to show for very liquid asset high frequency (2 = 5 min). For the HF
question, there is a perfect continuous time theory.
Answer is Yes, in continuous time: the Black-Scholes model also leads to a
perfect hedging portfolio, but one must be allowed to trade continuously.

4. In practice: one typically uses a continuous-time model such as Black-Scholes,
but one only follows its hedging portfolio discretely in time; this discretization
leads to hedging errors.

e In other words, hedging in practice is never perfect.

e Hedging errors can be large if a large asset price swing occurs in a short period.

e The market maker may try to immunize her position against such risks. One
way to do this is to buy a financial derivative that is related to the one she
sold. We will see below that if we sell a call option, we can buy a certain
amount of another call option to cover some of the risk, using a procedure
called delta-gamma hedging.

In the sequel we will use the following numerical values to illustrate the three
types of basic hedges (binomial, continuous-time Black-Scholes, discretized version
of continuous-time Black-Scholes), as well as delta-gamma hedging (also a discrete
hedge for continuous-time Black-Scholes):

e Stock S, Sy = 40.
— Stock’s volatility is o = 0.3.

e Time step At = h = % = one day.
e We sell the call option Cy(0,Sy) with

— Strike price K = 40 (“at the money”).

— Maturity T = % (3 months).

e Short rate r = 0.08.
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2 Binomial Option Pricing

The most general one-period model for option pricing is a risk-free asset whose value
at time 0 is By = 1 and at time & is B), = ¢"", plus the following stock model:

new stock value if it goes “up”: Sou  option payoff = C,

/

intial stock value: Sy

N

new stock value if it goes “down”: Spd option payoff = Cy

For example, for a call with strike price K, we have C,, = max (0; Sou — K) and
Cy = max (0; Sod — K). Here u and d are fixed values, and we assume d < u; using
d > 1 ord < 1 are both legitimate, as long as we have d < e < u which is needed
to avoid arbitrage. Note that we did not specify the probability of the stock going up
or down; these so-called objective probabilities are not needed to price and hedge
the option.

e Hedging question
Find a portfolio £ = (b,y) with y shares of S at time 0 and b dollars in risk-free
asset at time 0, such that value V*(h) at time h = exactly C, if stock went “up”
and C, if stock went “ down”. Therefore we have the following values for the
portfolio at times O and A

VI(0) = b+ yS.
be"" + ySou if stock went “up”
Ly — porh _ 0
Vi) = be™ + y5, = I be"" + ySod if stock went “down” *

To have a perfect hedge, only need to require that we replicate the option, i.e.

be'™ + ySou = C,

be' + ySod = Cy °
This is a system with two unknowns b and y. and a unique solution (a perfect
hedge)

Cu — Cd b —rh uCu - dCd
= —; =e —_—.

u—d ’ u—d

e Pricing question
The price of the option at time 0 should be the value V* (0) of the hedging portfolio
£ at time O:
Price of option at time 0 = V¢ (0) = b + yS

with the values y and b given above.
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e Probabilistic interpretation of the option price
rh __

Letg, = p € (0,1); then we find, after some simple algebra, that
U —

VH0) = e (g, Cy + (1 — gu)Ca).

We can interpret this as saying that V¢ (0) is the discounted expected value of the
option payoff at maturity (at time /) under a model in which the probability of
going up is g, , and therefore the probability of going down is 1 — g, : the payoff is

C, with prob g,

payoff at time 1 = 2}, = [ C, with prob (1 — gu)

price at time 0 = ¢ ""EQ [2,].

Here Q is the probability measure defined by Q(“up”) = ¢, and Q(“down”) =
1—qu.

e Qs called the risk-neutral measure for our model. Notice that e ""EQ[S,,] = S,
which explains why Q is also called a martingale measure. The term “risk-neutral”
comes from the fact that the strategy to hedge the option does not take into account
the true risk associated with the stock S (e.g. its true chance of going up), and
therefore this strategy is neutral with respect to the stock’s risk. The formula
e ""EQ[.Z;,] is called the discounted risk-neutral valuation formula for the option
price.

IMPORTANT: V'(0) is the correct (“arbitrage-free”) price of the option C at
time 0.

Also (easy to prove): the condition g, € [0,1] & d < e <u <=no arbitrage
< there is a risk neutral measure.

Also: 3 hedge (b, y) <= 3! risk-neutral measure.

3 Multi-period Binomial Model: N Periods

To extend the binomial model to several periods, in an effort to develop a model
for option pricing and hedging which includes the possibility of dynamic portfolio
allocation, we consider a total number of periods N > 2, and iterate the one-period
construction of the previous section, over several periods, forming what is known as
a binomal tree, with the root typically represented at the left, and the leaves at the
right, i.e. with time running from left to right. For N = 2, this tree representation for
the two-period binomial model has the following form
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S()I/t2
/
S()Lt
N
S() S()du
NS
Sod
N
Sod?

Note that the tree has the so-called “recombining” property, because the up and
down factors do not change. More generally, for N > 2, andn =1,2,...,N, k =
0,1,2,...,n, period number n models the dynamics during the time interval [n —
1, n], and the node (n, k) is the name of the position in the tree at time » for any stock
price path which takes k up steps and n — k down steps, from time O to time 7. This
parametrization of nodes is only possible because of the recombining property. This
property works because the up and down factors u,d do not depend on the position
in the tree at a fixed time (# and d might depend on time 7, this does not impact the
recombining property). In particular, the value of S at node (n,k) is

Spx = Soutd"*.

Again in the case where 1 and d depend only on n (we will not consider other cases
in these notes), let us translate the binomial model in a more probabilist fashion. Let g,
be probability to go up at every node. Assume g, is constant. Foreveryn = 1,...,N,
we can consider the random variable K, representing the number of times that the
stock went up rather than down between time 0 and time n. Then K, = >/_, &
where ¢; = 1 if the stock went up in the interval [i — 1,1], and &; = O if the stock
went down. Each ¢; is a Bernoulli random variable with parameter ¢,. Assuming
all the ¢;’s are independent, K, is thus a binomial random variable with parameters
n,q,. This is from whence the binomial model gets its name. The stock price model
then has the following probabilistic representation: forn =0, ...,N,

S” — S()Mk’ldn_,(" — Soe(lnd)n-Hn(u/d)Kn'

4 Option Pricing and Hedging Algorithm: Backwards
Recursion

Assume we need to price and hedge a simple European claim with contract function
@. We may use the pricing and hedging scheme from the one-period model iteratively
backwards in time to price and hedge options in the N-period binomial model.
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e Attime N, value of option = value of payoff = Cy = @ (Sy)
In node notation, if number of up steps = k then Sy = Sou*d™~*. Thus:

Initialization Cy; = @ (SoufdV=*) forallk =0,1,...,N.

e To implement the recursion, assume that at some time n < N ; C,,  is known for
everyk = 0,1, ..., n. Then, foreachk = 0,1, ...,n — 1, by using the formula for
pricing in the one-period binomial model which goes from node (n — 1, k) to the
two possible future nodes (n, k) and (n, k 4 1), i.e. the tree, in which each node
contains stock and option prices,

Snktl ith probability g,
nk+1
/!
Sn—1.k
Cuoik
Ny
mk " with probability (1 — g,)
Cn,k

we obtain the following price recursion:

Recursion: option prices C,_; ; = e " (qu Cor+U - qu)C,Lk_l) for each
n=1,....Nandk=0,1,...,n — 1.

e We must also compute the hedging portfolio at node (n — 1, k): this can either be
computed while implementing the previous recursion, or offline after all option
prices are known. By the one-period hedging portfolio, this is

Hedge: number of shares of stock

Coit1 = Coik  Cupr1 — Ck
Sn,k+1 - Sn,k Sn—l.k(u - d) '

Yn—1k =
Hedge: wealth in risk-free account

btk =Cutk — Sn—1.kYn—1,k-

e The above scheme provides a perfect hedge which can be followed dynamically
in time, and reacts to the changes in stock prices over each period. Indeed, at time
n — 1, the hedging decision only requires knowledge of the observed stock price
Su—1 = Su—1.k,_, (under the binomial model, the random variables S,_; and K,_;
can be computed one from the other; they share the same information), and of
the two possible future values for C,, which are C, g, ,+1 and C, g, , which are
among the precomputed values in the binomial tree.
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e Asanoption hedger (also known as an option market maker), one must consider the
trade-off between assuming that the length of the time in one’s binomial model is
short enough to stick closely to the stock variations, and incurring many transaction
costs every time one rebalances one’s hedging portfolio. In practice, stock prices
change many more times than once a day. Yet market makers often assume that
h = 1/365 = 1 day nonetheless. When we enter our discussion of continuous-
time modeling with discrete-time hedging, we will provide a way to compute the
discrepancy between a perfect hedge and the need to keep the hedging frequency
down to a reasonable, daily level.

e Recall probabilistic representation of the option price for one period: price at time
0 = ¢ ""EQ[.2}]. Such a formula also holds for the multiperiod model, and it is
easy to prove this by using the one-period formula and the recursion formula for
the multi-period model given here. The details are left to the reader.

Discounted Risk Neutral Valuation Formula: multi-period case ~ With maturity
T = Nh, define the contingent claim 27 = @ (S (T)), the risk-neutral (mar-
tingale) measure Q is defined by using the risk-neutral probabilities ¢, and
1 — g, in each period. Then we have

price of 27 attime 0 = ¢ "TEQ [27].

4.1 How to Estimate/Calibrate Parameters r, u and d?

We provide some brief recommendations for the parameter estimation question.

An excellent proxy for the rate r is the LIBOR (London Interbank Offered Rate)
short (overnight) rate L: this is the average rate at which banks lend each other money
over a 24-hour period. This is thus most appropriate when 2 = 1/365, and one sets
e =1+ L. Since the LIBOR short rate changes over time, one typically uses the
previous day’s value of L to calibrate r. There exist stochastic models of interest rates
that take into account the uncertainty on future values of L. They are not discussed
in these notes.

For u and d, it is typical to base their estimation/calibration using the concept of
“historical volatility”, which can be defined, for instance, as the empirical standard
deviation, over an appropriately long time period, of 7~'/2%, where %, are the
log returns %; := log (S (t — h) /S (t)) where (S (¢)), are the past stock price data,
which can thus be identified, insofar as it represents a consistent estimator, with the
square root o of

o2 :=Var (%)

where now the notation %; comes from a specific model, as long as this variance
does not depend on ¢ (stationarity).

There are many other ways of determining volatility models, some of which
involve assuming that volatility is random itself. An emerging method for determining
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volatility is becoming popular in the case of the S&P 500 index. Since 1993, the
Chicago Board of Options Exchange (CBOE) has published a composite value of
option prices on this equity index, which can be interpreted as a 30-day average of
volatility on the index. This volatility index, now known as the VIX, increased in
popularity since the CBOE started offering traded options and futures contracts on
the VIX starting in 2004.

Once a value of o has been determined, a common method for calibrating u and
d using the so-called Cox-Ross-Rubenstein parametrization:

u= e"‘/ﬁ,
d=e°"

Other choices include the Hull-White parametrizationu = 1 + ah + ov/h,d = 1 +
ah — o+/h; as well as the Jarrow-Rudd parametrization u = elth+ovh ,d = elth=oh s
where the values of  and y are 2! times the expected values of the log returns %,
or the simple returns R, = (S (¢t +h) — S(¢)) /S (¢).

Understanding the differences between these various parametrizations can be done
in conjunction with the introduction of the continuous-time analogue to the Binomial
model, the so called Black-Scholes model, where the volatility parameter o plays a
rather clear role, as we now discuss.

5 Black-Scholes Model (Single Stock)

The classical Black-Scholes model with constant coefficients contains the following
two elements, for any ¢ € [0,7'] where T is a maturity or time horizon:

e A risk-free account B with constant rate r:
B(t) = ¢".
e A stock or index price process S:
S(t) = S(0)e@ 20 WD),

Here, we use the nomenclature o = “mean rate of return” for stock S, and o =
“volatility” for stock S; while {W(¢); ¢t > 0} is a standard Brownian motion
(Wiener process).

The process W has the following properties:

- W) =0,for0 <s <1, W(t) — W (s) is independent of all the random vari-
ables W (r) for r <s, and W (r) — W (s) is centered normal with variance
t—s.

— W has continuous paths with probability one.
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e Convenient notation: st := & — 302,

e These parameters «, o, u are assimilated to quantities similarly to those in the
discussion at the end of the previous section: specifically it holds that

St+h)—S@)

“=hpE— )

= G e )

e lhi% vmW]
i Vartd g SR,

Example 1 Today is time t =T = Nh; let S; = S(@h);i =0,1,...,N. Then o?
can be estimated as the rescaled empirical variance of the sequence of log returns:

N—1 2
1 1 S; 1 S;
2 A2 i+1 i+1
o xR o L= = —1lo — ) - —=FE|lo _—
NZ,._O(@ g(si) Jh [g(si )D
1

N— 2
S;
0 Si

since Var [log (ST*)] =Var[oW ((i + 1 h) — oW (ih)] = c>h. Using same

i

Z[ -

1
h

=l
idea, we can also get estimators for x and .

5.1 Method of Moments

To explain the parameter choices made at the end of the previous section, one only
needs to match the means and variances (first and second moments) of the stock
returns over one period in the binomial model, to the same statistics in the Black-
Scholes model in a period of length /4, by using various specific choices for the
objective probabilities of going up or down:

e We compute the log and simple returns in the Black-Scholes model:
S(t+h)

S(t)

R, = —S v+ /?S')t_ S @) = o Whtn-Ww®) _ 1

X, = log( )=upuh+o(Wh+1t)— W),



14 F. Viens

so that we compute can compute their means and variances, and their asymptotics
for small h:

E (%] = nh,
Var[%,] = o’h,
E[R] = ¢ — 1 ~ ah,
Var [R;] = e(2uta?)h (e"zh — 1) ~ o’h.

e One possibility is to look for the binomial model with equal probabilities p, =
1 — p, = 0.5 of going up or down, and matching its simple returns’ expectation
and variance. Since then R; = (§1 — So) /So = u — 1 or d — 1 with probabilities
0.5 and 0.5, those binomial statistics are

u+d
2

E[R/] = 1,

2
Var[R,]:%((u—1)2+(d—1)2)— (”;d —1)

(=)

In the case of small 4, this yields (approximately) the system

AN

u—

2

ovh =

[O[h—{—l:'hLd

whose solution is easily seen to be

u=1+ah+ovhd=1+ah—ovh

1

Pu= 5
We recognize the Hull-White parametrization.

e Another possibility is to decide that one prefers to have up and down factors which
are reciprocals of each other. By inspecting the Black-Scholes model, ignoring the
drift term put and concentrating only on the term o W, inside the exponential,
one knows that an order of magnitude of the change of o W, over a period of
length £ is its standard deviation, namely o +/A. It is then legitimate to require that
u= 5 = exp(o +/h). However, let us use the method of moments using only the
restriction # = 1/d. We can compute mean and variance of the log return %, in
the one peroid binomial, finding
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E[%:] = pulogu+ (1 — p,)logu™
= Q2p, — 1)logu
Var [%,] = pu log2 u+(1— p,,)2 log2 u— 2p, — 1)210g2 u
= (1 — 2pu—1)?) log* u.

Using the approximation that if 4 is small, p should be close to 1/2, matching
the above variance with the Black-Scholes variance yields log? u = o2k, which is
precisely

Plugging this into the equation for matching expectations (2p, — 1) logu = uh,
we get, o\/ﬁ(Zpu — 1) = uh,ie.

Lo
LN
pll 2 20
This is the Cox-Ross-Rubenstein parametrization.
e One last possibility we examine is the case of matching means and variances of

the log returns when p, = 1/2. In this case, we compute those statistics for the
Binomial model

1
E (%] = 3 (logu + logd)

1 1
Var (%] = 3 (log2 u + log® d) —2 (logu + logd)?

_ (logu —logd 2
= 5 .

In this case, the moment-matching equations can be solved without resorting to
approximations, and one finds

U= e"HUﬁ,
d = e”“h_”ﬁ,
1
Pu = 5

This is the Jarrow-Rudd parametrization. This parametrization is closest in spirit
to the original Black-Scholes model, if one attempts to discretize it in time by
replacing each Brownian increment W,,;, — W, by a random variable taking the
values +o +/h and —o +/h with equal probabilities, owing to the standard deviation
and symmetry of the normal law for this increment. In fact, the binomal model
with Jarrow-Rudd parameters converges to the Black-Scholes model. The proof
of this fact is nearly immediate for fixed ¢ by using the central limit theorem; that
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the convergence also holds at the process level (i.e. for all # simultaneously) is an
application of the infinite-dimensional (functional) extension of the central limit
theorem, sometimes known as Donsker’s invariance principle.

The fact that there are several parametrization choices show that the binomal
model is in fact richer than the Black-Scholes model; the former has one more
parameter than the latter, hence the existence of many parametrization choices.

5.2 Option Pricing Under BS Model

Because of the close similarity between the binomial model with Jarrow-Rudd para-
meters and the Black-Scholes model, one suspects that the discounted risk-neutral
valuation formula should hold for the Black-Scholes model. This is in fact true, and
there is a generic option-pricing meta-theorem, which is broader than merely the
Black-Scholes model, and also includes a statement about hedging.

Pricing metatheorem Let S be a stock price model, and let 2" be a contingent
claim expiring at time 7', i.e. 2 is a random variable which can be determined at
time T using knowledge of the path of the stock price S up to time 7. If the model
for § can be expressed with a probability measure Q under which r — ¢S (¢)
is a martingale with respect S, then all contingent claims can be simultaneously
priced in a consistent way via the formula

price of 27 at time 0 = e "TEQ [ 27].

If the measure Q is unique, then the price of every contingent claim is unique, and
each such claim can be perfectly hedged (in continuous time) using a continuously-
rebalanced self-financing portfolio of stock S and risk-free asset B.

In the case of Markovian models such as the Black-Scholes model, much more
can be said about simple claims. We state the result in the Black-Scholes case only,
for simplicity.

Definition 1 We say that 2 is a simple “contingent claim” (= a simple “option”)
if there as a non-random function @ : R, — R such that 2" = & (S(T)) (here T =
maturity).

Theorem 1 (Discounted Risk-Neutral Valuation Formula) Assume S satisfies the
Black-Scholes model. The price P, at time t < T for the claim 2~ defined above, is
given by

P, =F(,5())

where the non-random function F : [0,T] x Ry — R is given by

F(t,x) = exp(—r(T — )E" [®(S(T))/S(1) = x],
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where E* is the expectation under P* the unique risk-neutral (martingale) measure.
Moreover, P* can be defined by saying that under P*, the parameter o in the Black-
Scholes model need only be replaced by the risk-free rate r.

5.3 Black-Scholes Formula

We may now use the meta-theorem’s application to the Black-Scholes model, which
we have just stated, to calculate the price of call options.

Definition 2 Let K be a positive constant. A simple contingent claim with contract
function given by @ (x) = max(x — K,0), is a Call option with strike price K.

We wish to compute F'(¢,x) in the previous theorem when @ (x) = max(x — K,0)
and S(#) = Black-Scholes model under P*. This can be done to a large extent by
hand:

F(t,x) = exp(—r(T — t))E* [max(x — K,0)/S(t) = x]

= exp(—r (T — t))E[max(x exp(u* (T — 1) + o (W(T) — W(1))) — K,0)]
= exp(—r(T — t))E[max(x exp(u* (T —t) + o/T —tZ) — K,0)]

where in the second line, we denote
wi=r—o/2

(i.e. we use the parameters for S under P*), and in the last line, thanks to scaling
for normal laws, we assume that Z is a standard normal random variable. Note that,
starting with the second displayed line above, it becomes unnecessary to add a star
to the expectation sign. We also see that the last expression above depends on 7" and
t only via T — ¢. Hence without loss of generality we set r = 0. Thus

FOx)=e¢'TE [max(x exp(W*T + ovVTZ) — K,O)]
= ¢TE [yt s0 72010 (5 XDUT + 08T Z) = K|

=xe'TE [1{ “T+oVTZ)>K) exp(u*T + oﬁZ)]

xexp(e

—Ke'TP [x exp(u*T + oNTZ) > K] )
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We first compute the second piece:

P [xexp(,u*T—i—oﬁZ) > K] =P [Z > ! (—u*T+log (5)):|
X

where N is the cummulative distribution function of the standard normal N (d) =
Qm)~1/? ffoo e~“/2dz and

dy = . 1T (/L*T + log (%)) == lT ((r —0?/2) T +log (%))

For the first piece, the computation is not much harder:

xe'TE [l{x exp(u* T+ VT 2)=K) exp(u*T + O’ﬁZ)]

1
= xE |:exp (—EJZT + 0\/72) 1{Z>d2}i|
1
= xE |:exp (_EUZT - Uﬁ(—Z)) 1{_Z<d2}]

2

% 1 72 dz
_ —rT _ 27 _
= xe /700 exp( 20 T —ov Tz) exp( > )\/E

d’)
2 1 ) dz
= x/ooexp(—z(z-l-aﬁ) )E

dr+oT 2\ dz
[ ()

= xN(d, + aﬁ)
= xN(dy)
where
1
oNT

dy = ((r+02/2) T + log (%))

We proved the famous Black-Scholes formula for pricing.

Theorem 2 The pricing function F of the call option with strike K under the stan-
dard Black-Scholes model is:

F(t,x) =xN(d) — Ke " TN (dy)
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where N is the standard normal distribution function and

1 X 1oy
dy : _Gm(log(K)—i-(r—i-zo WT —1)),
b ¢ = ——(log() + (r = 30%) (T =1))
Y, ey SRR

=d —o~NT —1t.

Remark 1 This formula has an interesting feature, which is to suggest a possible
way of hedging the option over time: indeed, if at time ¢, where the stock price is
S (t), one invests in N (d;) shares of stock (here x must be replaced by the current
stock value S () in the formulas), then by also holding

F(,5()) — SONd) = —Ke "TIN(dy)

dollars in the risk-free asset, one obtains a replicating portfolio for the option, i.e.
one whose value is exactly that of the option at all times. This will be a worthwhile
observation if one can prove that the portfolio is self-financing.

Remark 2 As it turns out, the previous portfolio really is self-financing, meaning
that all changes in the portfolio allocations can be financed by the changes in the
asset prices. We record this fact formally here, but rather enter into a formal proof,
in the next section, we investigate how far from a perfect hedge one might get when
the hedging portfolio is followed appriximately, by using discrete time.

Theorem 3 (Perfect Black-Scholes Hedge) The Call option with strike-price K and
maturity T can be perfectly replicated using the following portfolio: y, shares of stock
S and b, dollars in the risk-free asset, with

yl‘ = N(dl)y

by =—Ke "T"ON(d,)
where x is replaced by S (t) in the formulas for d, and d,. This portfolio is self-
financing.

More generally, for the pricing function F of a given contingent claim 2 =
@ (S (T)), under the Black-Scholes model, the hedging portfolio defined by

oF
yer= o (0.8@); b= F@.50) = SOy

is replicating by definition, and is self-financing.
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6 Imperfect Black-Scholes Hedging in Discrete Time

6.1 Overnight Rebalancing, with Profit (Loss) Calculation

We mentioned earlier that following a trading strategy in continuous time is not
practical. The replicating strategy (y; ,b,) in the previous theorem is not immune to
this difficulty. In practice, a high-frequency trading strategy (e.g. rebalancing every
5Smin) can take advantage of rapid changs in stock values, but is too expensive to
implement because of transaction costs.

Question: What happens if we follow the Black-Scholes hedging strategy only
once a day?

We will use the arguments (7,x) and (t + h,x + ¢) for expressions F, d; and d,
as shorthand notation, with the following understanding:

t = today
h =1/365
t + h = tomorrow
x = § (¢) = price of stock today

x + & = S (t + h) = price of stock tomorrow.

Taking the perspective of the option hedger, we sell one option at time # and purchase
its corresponding Black-Scholes perfect hedging portfolio at the same time, and hold
that portfolio without any rebalancing until time ¢ + A. The value of the portfolio
at time ¢ is O by the hedging theorem. Let us investigate the so-called “overnight
profit (or loss)”; this is thus identical to the value of the portfolio at time ¢ 4+ & before
rebalancing:

e Value held in option: —F (t + h,x 4+ ¢€).

e Value held in stock: (x + &) N (d; (t,x)) .

e Value held in risk-free asset: (F(¢,x) — xN(d))) ¢™".
e Total value held is: Overnight profit (or loss)

=—F(t+hx+e)+ (x+e)N(d(t,x)+ (F(t,x) —xN(d, (t,x))) ™.

Example 2 In our numerical applications, we use: x =40; ¢ =0.5;0 =0.3;r =
0.08; h = 1/365; we choose to price the call with K =40 and T —t = 1/4
(3 months).

By using BS formula we find F(t,x) = 2,7847 ; N(d,(t,x)) = 0,5825; F(t,x)
— xN(dy) = —20,5159 ; F(t 4+ h,x + &) = 3,0665. Thus in this case:

Option hedger’s overnight profit = —3,0665 + 0,5824 x 40,5 — 20,5159¢%08/363
= 0,00500.
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This is great: this is very close to 0, so there is probably no need to buy or sell stock
to rebalance the portfolio at time ¢ + h.

Example 3 However, the good news in the previous example is due to the fact that
the stock price did not move very far (only about 1 %) overnight. One might run into
more trouble if the movements are larger. Repeating the previous calculations for
various values of ¢, we obtain the following Figures.

Figure 1 shows that when large stock price movements occur, the overnight profit
quickly becomes a substantial loss. Figure 2 shows in detail the small magnitude of
profit or loss when stock price changes are small (for S (¢ 4+ /) near S (¢).) An actual
small profit occurs for | S (r + h) — S (¢)| < 0.6 only.

We finish this section by mentioning the general form of the overnight profit under
the Black-Scholes model.

Theorem 4 (Overnight profit for general simple claims under the Black-Scholes
model) With the pricing function F of a given contingent claim 2 = @ (S (T)),
under the Black-Scholes model, by following the hedging portfolio defined by y, :=
%—5 #,S(@)); b :=F (¢,5S(t)) — S (t) y; at discrete time intervals of length h, the
overnight profit at time t is

oF oF h
—F(t+h,x+8)+(x+8)a(t,x)+ F(t,x)—xa(t,x) e,

01

0

35 355 36 36.5 37 375 38 3 39 39.5 40 405 41 5 42 425 43 435 44 445 45
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Fig. 1 Overnight profit for values of x + & from 35 to 45. Vertical axis is dollar value
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Fig. 2 Detail of overnight profit for values of x + ¢ from 39 to 41

6.2 Forecasting

To understand the previous graph in theory, instead of analyzing the Black-Scholes
formula in a mechanistic way (i.e. looking only at its dependence on ¢ and x as
a deterministic function), one may return to the probabilistic understanding and
employ some simple forecasting. A rough approximation is in fact sufficient. Under
the Black-Scholes model we can compute

St +h) =S@) =S exp(uh+o(W+h) — W) - S
= S(t) (exp(uh +o(W(t +h) —W())) —1).

Since £ is considered small, and the typical size of the mean-zero increment W (¢t +
h) — W(t) is the size of its standard deviation, i.e. Vh, one may consider in a first
approximation that W (¢ + h) — W (t) is small and dominates p/. Thus, using the
first order Taylor expansion of the exponential function, we would get
SG+h) = S®) =S @) (@W(t +h) = W©N) +o(/h).
We may interpret this approximation in a binary way, as
St +h) — S(t) ~ (£D)avVhS(t).

In other words, with the x and ¢ notation, this approximation is equivalent to:

e~ (£D)o~hx
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where the (£1) symbol represents a random variable which takes values +1 and —1
with equal probabilities.
Using Taylor’s formula on F up to order 1 in time and order 2 in space, we obtain

2
Ft+hx+e) = F(tx)—l—h (tx)—l—s (tx)—l—1 aI;(t,x)—i—o(h)—I—o(sz).

Therefore,
‘ [ IF 1 ,9%F }
overnight profit = F(t,x)+ h (t x) + 8 (t x) + 78 —(t X)
oF oF >
—|—a (t,x)(x+¢e)+ F(l,x)—xa (t,x) | (1 +rh) 4+ o(h) 4+ o(e”).

One notes that all the terms involving & rather > miraculously disappear, as do all
the terms which are not small: this is because the Black-Scholes hedge was chosen
in such a way to make these simplications occur, at least in the first approximation
we are using here. Thus we get overnight profit

oF 82 oF 2
:—hg(t Xx) — 8 —(t x)+rhx—(t x)+rhF(t,x)+o(h)+ o(e”).

Interestingly, in a first-order approximation on ¢, one sees that if 7 or = (t,x) > 0, which
is typically the case for most options, the highest overnight proﬁt is obtained when &
is 0. Now using the forecast for &, we see that 2 = o2k and that o(h) = o(¢?). This
yields

, IF 1 5 ,8%F dF
overnight profit = { r F(t,x) — E(t,x) — 50 X ax—Z(t,x) — rxg(t,x) h+4o(h).

The option hedger must try to keep her profit to a minimum in absolute value, as
one should from the perspective of an insurer, which is to minimize risk (it is also
a good idea from an investment perspective, since we saw in the previous section
that the overnight profit’s downside is significantly greater than its upside.) This
risk-minimizing strategy can thus be summarized as “Overnight profit = 0”

— aF(r ) + aF(r )+1 2282F(r Y —rF (t,x)=0
— (, rx— (¢, —0° X" —= (t,x) —r ,X)=0.
gr )T ) e Y *

This is precisely the famous so-called BLACK-SCHOLES PDE !

What we have essentially just shown is that the Black-Scholes hedge is a perfect
self-financing replicating portfolio if and only if the Black-Scholes PDE holds for
the pricing function F'. In fact, the above development is in some sense equivalent
to the classical proof of the Black-Scholes pricing and hedging theorem by means
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of stochastic calculus and the 1t6 formula. We do not provide the details, but state
the result formally, also summarizing our theorems on the discounted risk-neutral
valuation formula and the perfect Black-Scholes hedge.

Theorem 5 For a generic simple European contingent claim 2" = @ (S(T)) under
the Black-Scholes model, let

F(t,x)=e "TDE*[2| S (1) = x]

where under P*, the parameter « is replaced by the short rate r. Then 2~ can be
replicated perfectly at all times t < T by using the following Black-Scholes self-
financing replicating portfolio:

1. Attimety < T, collect F (1y,S (ty)) dollars from the sale of Z .

2. At all times t € [ty,T), compute %—i(l,x), and invest (long or short) in y, =
% (t,S(t)) shares of stock at time t.

3. At the same time, put (or borrow) b, = F (t,5(t)) — y;S(t) dollars in the risk-free
account to finance the stock investment.

This strategy is possible because the portfolio is self-financing. Moreover, F solves
the Black-Scholes PDE with terminal condition F (t,x) = @ (x) for all x > 0 and
allt € [ty,T].

6.3 Delta and Gamma Hedging

To improve on the discrete hedging strategy studied above, also known as the dis-
crete Delta hedge (recall from the previous graphs that the overnight losses can be
substantial if there are large price changes) we consider a possible second-order
approximation to the perfect Black-Scholes hedge.

Definition 3 For any 2" = @ (S(T)) with pricing function F let

oF
Ap (t,x) = “Delta” = —(t,x),
ax

e
I'r (t,x) = “Gamma” = ——(t,x).
0x?

These are two examples of what we call “Greeks”, sensitivities of pricing functions
to changes in their parameters. Other greeks include the Theta ® = %, the Rho

p= %—f, and the Vega 7 =g—5 (even though Vega is not really a Greek letter!!).

Similarly to what is done in the insurance business, we can look for a way of
transferring some of the risk in the Delta-hedging portfolio to a third party, i.e. a
reinsurance contrat. We show how this works on an example.
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Example 4 Back to our call with K = 40 and T = 1/4, imagine that we worry that
S(t) will go much higher than 40 overnight. We will ask another market maker to
sell us a call option with K’ = 45, and a longer expiration 7' = 1/3 (4 months).

e Whole portfolio: our new portfolio has —1 unit of K = 40-call (pricing function
Fy0), y, shares of S, z, units of the K’ = 45-call (pricing function Fys), and b,
in risk-free account which we compute to make the value at time O of our entire
portfolio equal to 0. Its value is

0=V(t,x) :=—Fy(t,x) + y;x + 2, F4s(t,x) + b;.
e Goal: for the whole portfolio with value V (f,x) , we want not just Ay = LAAEN)

dx
but also I'y = ?:T‘Z/ = 0. In the old portfolio we just had % =0.

e Gamma condition. Slightly abusively, we consider that partial derivatives operate
only on pricing functions (this is an excellent approximation, it turns out):

a2V
I'y = el —Tyo(t,x) + ¥y X 04z, 1ys5(t,x).

Since we want I'y = 0, this yields the choice

_ To(t,x)
Tis(t,x)

2t

e Delta condition. Next, with z, already computed, we calculate
Ay = —Ag(t,x) + yi + 2, Ass(1,x),
and wanting Ay = 0, this gives
Vi = Ago(t,x) — z; Ags(t,x).
e Cash. Finally, since y, and z, have been computed, we now compute the risk-free
position:

by = Fyo(t,x) — yix — 2; Fys5(t,x).

Remark 3 'We already know that for the call Fx we have Ag (¢,x) = N (d; (¢,x)).
Therefore, by the chain rule, since N’ (z) = Qm)~1/? e~/ and

ad, Jox = 1/ (ax\/T - t) ,
we get

1 2
Tk (t,x) = ——— ¢~ h@07/2,

ox/T —ts/27
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Example 5 With the same parameters as previously r = 0.08, ¢ = 0.3, K = 40,
K' =45 T —t=1/4, T —t = 1/3, using the above formulas, we can compute

att 40-call 45-call
F 27847 1.3741
A 0.5825 0.3301
' 0.06794 0.06342

from which the expressions for the allocations of stock and 45-call become

_ 006794 _ o
YT 006342 T

v = 0.5825 — 1.0714 % 0.3301 = 0.2288.

By repeating the overnight profit analysis here we find

Overnight profit (or loss)
=—Fpt+hx+e)+G&+e)y +Fist+hx+e)z
+ (Fao(t,x) — xy, — Fas (1.x) z,) ™.

Thus if ¢ = 0.5 for instance, one finds Fyo(t + h,40.5) = 2.767 and Fus(t + h,
40.5) = 1.361, so that the overnight profit computes to 0.001813, which is about
one third of what it was for the pure discrete Delta-hedging strategy. This decrease

01
0 I o e |
35 355 36 365 _3F-3HS 33 395 40 40.5 41 42 425 43 435 44 445 45
01

Fig. 3 Overnight profit for values of x + +¢ from 35 to 45: green line is Delta hedge, red line is
Delta and Gamma hedge using a 45-strike 4-month call. From 39 to 41
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0.015

-0.025

Fig. 4 Overnight profit for values of x + ¢ from 35 to 45: green line is Delta hedge, red line is
Delta and Gamma hedge using a 45-strike 4-month call

denotes better risk-management. The improvement is particularly evident for large
values of ¢, as can be seen in Figs. 3 and 4.

The next graph shows the detail for small stock movements: here too, the improve-
ment of the Delta-Gamma hedge over the Delta hedge is marked.

7 Extensions of the Black-Scholes Formula

Recall that in a Call option, the strike is denoted by K, and the stock by S, but
in reality, by introducing the concept of prepaid forward prices for assets, these
notions become relative, and may be switched for convenience. An example of such
a situation is that where K is a second asset, and the call option is then an exchange
option. Let us be more precise about the generic framework.

e Main Idea: the prepaid forward price of any quantity K over [, T'] is the cash
value needed on hand at time ¢ to guarantee a payoff of K at time 7. This would
hold whether K is non-random, or a traded risky asset such as a stock or an interest
rate or an index, or even if it is a contingent claim. In the last case, the prepaid
forward price is what we have simply been calling the price of the claim.

e Let us discuss the other cases. Generally, we may use the notation F,{’ r for the
operator which computes the prepaid forward prices of assets. We assume for
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simplicity, as we have before, that the risk-free rate r is constant. The general
principle by which itis sufficient to identify a self-financing replicating portfolio to
compute prepaid forward prices still holds. This makes the following computations
essentially trivial.

— When K is non-random, by investing in the risk-free asset alone, one finds its
prepaid forward price as

Flr(K) = Ke "0,

— When K is a non-dividend-paying stock S, by investing in one share of this
stock alone, by definition, one finds

Fp(S) = S0).

— When astock pays a continuous dividend rate 8, this means that by purchasing the
stock at the price S (¢) at time ¢, one will obtain at time 7 the value S (T) T ~9.
Therefore, by investing in a discounted number of shares of this stock alone, we
find

FFp(8) = S@)e 7.

— If S pays a discrete dividend of $ D at a fixed time u € [¢,T], this means that
an investment in one share worth S (¢) at time ¢ yields one share worth S (7') at
time 7 but also a fixed payoff of D dollars at time u < T. Thus an investment
in one share of stock minus a discounted amount borrowed at the risk free rate
from time ¢ to time u, will replicate the stock’s payment stream, yielding

Ft{)T(S) = S(@t) — De "D,
— Combining the above two dividends, we get in general
Ftl,DT(S) = S(1)e?T=D — peru=1,

In the formulas below, as usual, the S (¢) is to be replaced by x.

It turns out that we can recast the classical BS formula for calls with no dividends
and K = constant in terms of prepaid forward prices for S and K: using the
notation x instead of S (¢), as usual, we have

price of the call C(t,x) = xN(d,) — Ke """ N(dy)
FIr (SN (d) = FIp(K)N (o).
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b= (log (ﬁ) + (r - 102) (T — t))
oJT —t K 2

S (oo Y )
TovT i\ ¢ F(K)) 2 ’

di=dy+oNT —1t.

This formula extends in many cases.
e Options for dividend-paying stocks

Theorem 6 If S pay a single discrete dividend D at time u < T and/ or continuous
dividends at the rate §, the formula

C (1.x) = F/(S)N (d1) — F7(K)N(d>)

forthe price of the call holds true for allt < uwithd, and d, as above, and FT{JT (K) =
Ke™ "7 and FFp.(S) = xe T~ — Demr=0).

Remark 4 When D = 0, more generally for asimple European claim 2" = @ (S (T))
with contract function @, the pricing function Fj for this claim satisfies the following
modified Black-Scholes PDE with continuous dividend rate 6 and terminal condi-
tion @

0°)— —rFs=0.

o1 27 7 x 27 e TP

Remark 5 The solution of this PDE, and the hedging portfolio, are easily computed
given our previous work. In fact, the following results hold.

Theorem 7 (Pricing and hedging with continuous dividends).

Remark 6 e The discounted risk-neutral valuation formula still holds, with P*
defined by replacing « by r — § in the Black-Scholes model.
e Let Fy be the solution to the Black-Scholes PDE with 6 = 0. Then the general
solution is given by
Fs(t,x) = Fy (t,xe"s(T”)) )

e The hedging portfolio for claim 2" = @ (S (T)) is still given by investing in the
following number of shares of stock:

dF;s
yi=AS():= B (t,5(@)),
X

and financing this position by holding b, = F;s (t,5 (t)) — S (¢) y, money in the
risk-free account.
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Remark 7 Note that, from the previous formula for Fy via F, we have

A(t,x) = e"S(T”)% (t,xef‘s(Tft))
X

— ¢3T-D 7, (t,xe*‘s(T*’))

where Ay is the stock hedging position with zero dividend. Hence to hedge an
option on a continuous dividend-paying stock, one may use the zero-dividend hedge
by reducing the position by the dividend discount factor, and reducing the current
observed stock price by the same factor.

e Option on currency exchange rate
Let X () = exchange rate (e.g. the price in US dollars (domestic currency) for one
Euro (foreign currency)). We use the Black-Sholes model with a volatility o for
X. Also, we have two risk-free rates to consider:

Forigne risk - free rate = ry,
Domestic risk - free rate = r.

Since the Euro can be considered as a risky asset, and can also be invested in the
foreign risk-free account, it will yield payments at a continuously compouded rate
rr when placed in this account. Therefore, X is just like a stock with continuous
dividend rate § = r . This proves that a call option on X with strike price K has
pricing function Fs = F;,.
e Call option on a futures contrat
A Futures on a stock § in the interval [#, 7] is a contact in which the counterparties
decide on price to pay for S at time #, but the stock is delivered at time 7 and the
price is paid at delivery. We use a Black-Scholes model for the futures price G (¢).
However, the prepaid forward price of a futures on S isnot G (t) bute "7 =9G (1),
since an investment of that many dollars in the risk-free accout will yield the
quantity G (¢) at time 7', which is precisely the price to be paid for the stock S at
time 7" under the futures contract. Hence we have

Ffr(G) =G ().

By comparing with the prepaid forward price of a dividend-paying stock, one sees
that the price G of the futures contract on S is like the price of a version of § which
pays a continuous dividend rate of § = r, and the corresponding pricing function
F = F, for options. For instance, for the call option, one obtains a particularly
simple pricing function
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Cs (t,x) =xe " T"IN (d)) — Ke " TN (dy),

! ) WL YA
d2 (t,x) = ﬁ (log (E) 20' (T f)) s
dy (t,x) =dr (t,x) +o~T —t.

e Exchange option
Instead of using a constant strike K, let us use another stock S. Hence, we consider
the contingent claim

%:max(S(T)—S(T),o).

Specifically because this option is similar to a call, the general pricing principe still
works, but one must reinterpret the volatility. By using an argument by which one

rewrite the claim’s payoff as 2~ = S (T) max (S (T) /S’ (T) — 1,0), one realizes

that the normalized asset S (T') / S(T) plays an important role. Assuming that both
assets satisfy Black-Scholes models with correlated Brownian motions, they have
volatilities ¢ and &, and one may assume that their Brownian motions W and
W have correlation p. This implies that the normalized asset S/S has volatility
equal to

- 2
O, 1= \/E |:(GW(1) —6W(1)) } =02 +62—2p06.

A further argument leads to realizing that for the normalized asset S/S, under a
risk-neutral measure, the mean rate of return parameter o should be zero. This
all leads to a pricing formula for 2~ which follows the general call formula with
r =0;6 = 0,and 0 = o, given above. Thus, with the notation x representing S (¢)
and y representing S (1), we get the exchange option pricing function

Ce(t.x,y) = xN (di) — yN(dy),

1 X 1
d s = — 1 — — — 2T_ ,
2(t X) O, T —1t (Og(y) 206( t))

dy (t,x) =d (t,x) + o, vT —t.

When S and/or S pay dividends, we get the usual modifications to the prepaid
forward prices of x and y. More generally, we have the following call pricing
general principle.

e Conclusion: call pricing meta-theorem
Let S and S be two assets which could be dividend-paying, or not, or could be
constants. Let o be the effective volatility of the normalized asset S/S. Then the

price of the contingent claim 2~ = max (S (T) — S (T), 0) isC (t,S 0y, S (O))
where
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C )= Fr SN @) - Fly (3) N,

1 FF (S 1
o | g ;T—() —EUZ(T—I) ;
oJT - Fh (3)

dy (t,x) = da (t,x) + 0T — 1.

dy (t,x) =

8 An Even More General Black-Scholes Formula:
Stochastic Interest Rates

One problem with the Black-Scholes model is that the parameters are assumed to be
constant. This can be a problematic assumption over long time periods, particularly
for the purpose of option pricing, where the time scale is in months. While arguably
the biggest issue is the non-constance of the volatility parameter, here we will discuss
the case where the short rate parameter is itself assumed to be a stochastic process.
In this case, one cannot simply write " (K) = e”"" " K, but it turns out that the
discounted risk-neutral valuation formula holds. Without entering into the details of
determining bond models and prices, we state the following.

Definition 4 The zero-coupon bond with maturity T is a contract that yields one
dollar at time 7. Its price at time ¢t < T is denoted by P (¢,T).

Theorem 8 Assume the short rate r (t) is a stochastic process, and that there exists
a martingale measure Q for the bond market. Then

T
P (:+,T) =EQ [exp (—/ r (s)ds)] )

The general call-pricing principle described at the end of the previous section can
be updated for this situation in which interest rates are stochastic, to some extent,
using the idea of change of numeraire. We provide some ideas and a special case
where the computations can be carried out.

Let S be a fixed asset. For any other asset S, we say that S /S is the asset S under the
change of numeraire S. The probability measure P5, if it exists, is one under which
each asset S /S is a martingale; this PS¢ is called the “S-neutral measure”. When one
uses the bond prices P (-,T) as the normalizing asset, the measure P”¢-7) is usually
denoted by P, and is called the “T-Forward neutral measure”.

Theorem 9 For the standard call on S with strike K under stochastic interest rates
given by a bond-price model P (-,T), the call pricing function is

C(t.x) =xP5[S(t) > K | S(t) =x] — KP(t,T)PT[S(t) > K | S(t) = x].
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The problem with the above theorem is that computing the law of S(¢) under P”
and under PS is sometimes difficult. The following special situation allows a full
computation.

Example 6 (El Karoui, Geman, Rochet) Let

S(t)

20 = P(t,T)

The dynamics of Z may be highly non-trivial in terms of the mean rate of return of Z,
but its volatility structure is the same under the measures P” and P® and the original
objective probability measure P. If this volatility happens to be time-dependent by
non-random, i.e. equal to the function o (s) for s € [¢,T], then C (¢,x) satisfies the
standard Black-Scholes formula with effective volatilty

. 1 ! Zd
o= ﬁ/[ lo(s)|ds.

9 For Further Analyses: Basic Introduction
to the Black-Scholes Model with It6 calculus

9.1 1Ito calculus

All the formulas developed for continuous-time models are typically shown rigor-
ously by using Itd’s stochastic calculus, which we now introduce briefly.

Let W = a brownian motion.

Let f € 47 (twice continuously differentiable function with bounded deriva-
tives), let Y (r) = f(W(¢)). We may use Taylor’s formula to express changes in the
process Y':

Y(t+h) = Y@) = f (WO)W(E +h)— W)

|
+ Ef (W)Wt +h) = W(0) +o0 (Wt +h) —W@)?).

Let us investigate what happens when & = dt is an infinitesimal.

[t6’s rule  Using standard Gaussian calculation rules, since W (¢ + h) — W (¢) is
normal with mean zero and variance s, we find

E[W@+h) —W®)]=h
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and

Var ((W(z Yy — W(z))z) —F [(W(t Th)— W(t))4] - (E [(W(z th)— v1/(z))2])2
=3h% — h* =2n’%.

Therefore with h = dt, ignoring terms of order dt?, the random variable
(Wt +dt) — W(z‘))2 may be interpreted as one which has a zero variance. With
the It6 differential notation

dW (1) = Wt +dt) — W(t)
this leads to the following:
1to’s rule: (W (¢ + dt) — W(1))* = dt.

Other It6 rules ~ Similarly we obtain

dwW(t)-dt =0

because h(W (t 4+ dt) — W(t)) = O(h). Let W be an independent copy of W :
then B
dwW () -dW(t) = 0.

Itd’s formula  Using these rules in the earlier Taylor expansion, adding an extra
time parameter for convenience, and integrating over time, we finally arrive at the
following.

Theorem 10 (Itd’s formula and It6 integral) For F (t,x) of class C'-?

1

f(t,W(t))=f(0,0)+/ %w,W(u))dw/ O W ) dW w)
0 8t 0 8x

1 [13%f

where the first and third integrals are of Riemann type, and the second is of the so-

called Ito type, which can be defined as the limit in L* () of its Ito-type Riemann-
Stieltjes sums

t n—1
0 n—00 ey n n n

[t6’s formula for the Black-Scholes model  Let S satisfy the Black-Scholes model

1
S(t) = Spet'ToVD = — 502.
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The It6 formula above implies that S solves the Black-Scholes stochastic differ-
ential equation

dS(t) = S(t +dt) — S(t) = aS(t)dt + o S()dW (1)

The following Itd rule for S is a consequence of using It6’s rules formally on
dS (t))2 above:
dS (1))* = o%S (1) dt.

Indeed (dS(1))* = a®(S(1))*(dt)? + 200 S*(t)dtd W (t) + >S*(t)(dW)? and
the first and second terms are 0. This can also be established by using the method-
ology employed for W directly for S itself. The It6 rule for S and Taylor’s formula
similarly imply the following:

Theorem 11 (Itd’s formula for the Black-Scholes model) Let S be a Black-Scholes
model and f € cl? then for every t > 0,

Lo
f@.S@) = f(O,S(O))+/O a—{(u,S(u))du

‘ t 92
+/ %W,S(u))dmwl/ oz (05 @) @S w)?
0 Ox 2Jo 9x

=f(0,S(0))+/ %(u,S(u))du
o ot

+ g—f(u,S(u))(aS(u)du+aS(u)dW(u))
0 X

t 92
+%/0 %(M,S(u))azs(u)zdu.

1t6’s rule for pairs of processes  For specific models, one may use 1t6’s rules for-
mally to evaluate the last term in the following general “integration by parts”
principle: for X, Y two process:

dXOY @) = XO)dY (1) + Y()dX () +dX (1) - dY (1).
9.2 Application: Self-financing Condition and Option
Pricing and Hedging Theorem

Consider {S;;i = 1, ...,d} aset of d risky Black-Scholes-type assets. The value of
a portfolio which contains y; (¢) shares of S; at time 7 is
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d
LOEDIAONIO!

i=1
By It6’s integration-by-parts formula

d
av(t) = zyi(f)dsi(f) +dyi (1) Si (1) + dyi (1)d S (1).

i=1

Let us investigate an infinitesimal interpretation of the notion of self-financing. In
discrete time, when passing from time # — / to time ¢, changes in portfolio positions
must be financed by current changes in asset values. This means that the portfolio
value just before changing allocations at time # must equal the portfolio value right
after changing allocations at the same time ¢:

d d
D SiOhit) =D SiOhi(t —h).

i=1 i=1

Consequently

d
0= D" SiO)(hi(t) = hi(t — h))

i=1
d d

= ZSi(t —h)(hi(t) — hi(t — h)) — Z(Si(l) — S8i(t = h)(hi(t) — hi(r — h)).
i=1 i=1

Then passing to & = dt infinitesimal, we find

d d
0= Z S;(1)dh; (t) — st,- ()dh; (1).

i=l1 i=1

Combining this with the expression above for dV (¢), we arrive at the

d
Self-financing condition: dV (1) = Z i (1)dS; (t).

i=1

Note that the risk-free asset can be denoted by Sy (¢) and satisfies d Sy (¢) = Sy (¢) dt.
Thus if instead of denoting by y, (¢) the number of “shares” of the risk-free asset, we
use the notation b, for the cash amount in the risk-free asset, then b, = y, (¢) So (¢)
and thus yo(#)dSo(t) = b,rdt. Consequently we have
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Self-financing condition for a portfolio of y; shares of stock and b, in the
risk-free asset:

dV(t) = y,dS (t) + b,rdt.

Itis now possible to check that the main pricing and hedging theorem for the Black-
Scholes model is correct. Recall that it states that with F satisfying the Black-Scholes
PDE with terminal condition @, the claim 2" = & (T') can be replicated by investing
iny, = dF/dx (¢,S (t)) shares of stockand b, = F (¢,S (t)) — y,S (¢) position in the
risk-free asset. By definition, the value V () = b, + y,S (t) = F (¢,S (¢)) replicates
the claim at time T by virtue of F’s terminal condition. We thus only need to check
that V satisfies the self-financing condition.

By It6’s formula for the Black-Scholes model, the Black-Scholes PDE, and the
definition of b, and yy,

dV (1) = dF (1,5 (1))
_F (t,8 (1)) dt + o (.8 (1)) dS (t) + Lo°F (1,8 (1) 028 (1)*d
TR ax 2 gx2 29 "
aF 1, ,0°F
=rF@,S@)dt—rSt)— (t,5S()—=-c°S)"—= (¢,5 (1))
x 2 ax2
dF 19°F e
+— (@, SA)dS () + =— (¢, S(t)) a*S (t)* du
ox 2 9x2
=rb+y:S®)dt —ry:S(t)dt + y:dS (1)
= rb[dt + ytdS (t) .

This is the self-financing condition for the hedging portfolio V. The main pricing
and hedging theorem is thus justified.
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