
Multi-GPU Acceleration of Algebraic Multigrid
Preconditioners

Christian Richter, Sebastian Schöps, and Markus Clemens

Abstract A multi-GPU implementation of Krylov subspace methods with an
algebraic multigrid preconditioners is proposed. With this, large linear system are
solved which result from electrostatic field problems after discretization with the
Finite Element Method. As data is distributed across multiple GPUs the resulting
impact on memory and execution time are discussed for a given problem solved
with either first or second order ansatz functions.

1 Introduction

The solution of partial differential equations as they occur e.g. in electrostatics is
of high importance in design and evaluation of virtual prototypes, e.g. of electric
high-voltage system components. For this Finite Elements (FE) are very popular
in electromagnetics, in particular for static and low frequency field simulations.
After applying space and time discretization and possibly a nonlinear solver as e.g.
the Newton-Raphson scheme, the resulting problem is a large symmetric positive
definite linear algebraic system of equations. For solving these linear systems
Krylov subspace method like conjugate gradients (CG) are a common approach [1].
The acceleration of the solution procedure with sophisticated preconditioners, i.e.,
the algebraic multigrid (AMG) method based on smoothed aggregation with graphic
processing units is discussed in this paper.

As multicore systems are standard today, recent research focuses on GPUs as
hardware accelerators. Sparse matrix vector (SpMV) operations can be implemented

C. Richter (�)
University of Wuppertal, Chair of Electromagnetic Theory, 42119 Wuppertal, Germany
e-mail: christian.richter@uni-wuppertal.de

S. Schöps
Graduate School of Computational Engineering Institut für Theorie Elektromagnetischer Felder,
Technische Universität Darmstadt, 64285 Darmstadt, Germany
e-mail: schoeps@gsc.ce.tu-darmstadt.de

M. Clemens
Chair of Electromagnetic Theory, Bergische Universität Wuppertal, Wuppertal, Germany
e-mail: clemens@uni-wuppertal.de

© Springer International Publishing Switzerland 2016
A. Bartel et al. (eds.), Scientific Computing in Electrical Engineering, Mathematics
in Industry 23, DOI 10.1007/978-3-319-30399-4_9

83

mailto:christian.richter@uni-wuppertal.de
mailto:schoeps@gsc.ce.tu-darmstadt.de
mailto:clemens@uni-wuppertal.de


84 C. Richter et al.

efficiently on GPUs in general [2] and particularly in applications from electromag-
netics [3]. The advantages of GPU acceleration have been demonstrated for Finite
Differences [4] as well as FE [5, 6]. The major bottleneck of a GPU is its limited
local memory that determines the maximum size of a problem that can be solved at
once without swapping data between the GPU and the host memory which usually
has a serious impact on the performance. Consequently, when it comes to problems
exceeding the memory size of a single GPU the use of multiple GPUs becomes
mandatory. But even for smaller problems the CG method can be accelerated by
using multiple GPUs [7].

The results in this paper extend those reported in [8]. While previously the
proposed addon of a multi-GPU-AMG solver to the CUSP library was presented for
the first time, in this paper the results for second order ansatz functions and larger
problems, exceeding the memory of one GPU, are discussed. Second order ansatz
functions change the density of the matrix by increasing the number of non-zero
matrix entries per degree of freedom. With the larger discrete problem exceeding
one GPUs’ memory it is shown that the code can solve large problems not only in
theory, but in a real-world example.

The paper is structured as follows: first the problem formulation is introduced.
In Sect. 2 the multi-GPU implementation is described in detail. A numerical
example shows the effects when taking into account multiple GPUs for solving
electromagnetic problems with either first or second order ansatz functions. In the
end the work is summarized.

1.1 Problem Formulation

When solving an electrostatic problem, an elliptic boundary value problem has to
be solved on a computational domain ˝ , i.e.,

� r � .".r/r�.r// D f .r/ (1)

for r 2 ˝ and where " is the spatially distributed permittivity, f a given field
source, � the electric scalar potential with adequate boundary conditions, like a
homogeneous Dirichlet constraint �j@˝ D 0. Discretizing the problem with FE
results in a linear system of equations with a positive definite system matrix. The
in-house simulation code ‘MEQSICO’ [9] is used that is capable of solving static
and quasi-static electric and magnetic field problems and coupled multiphysical
problems with high-order FEM ansatz functions [10]. An exemplary electrostatic
problem is shown in Fig. 1 which is described by (1).



Multi-GPU Acceleration of Algebraic Multigrid Preconditioners 85

Fig. 1 CAD model and scalar potential of a high-voltage-insulator presented in [11]

1.2 Algebraic Multigrid

The AMG method is used as a preconditioner for a conjugate gradient solver
[12]. Apart from classical AMG it can be based on smoothed aggregation [13]
as employed in this paper. AMG consists of two parts: in the setup-phase, levels
of increasing coarseness are assembled from the degrees of freedom. To enable
the different grid levels to interact the prolongation and restriction operators are
constructed, which connect two consecutive levels. With the so-called Galerkin
product, a triple matrix product, the system matrix of the coarser level is constructed.

The multigrid preconditioner is applied in every iteration step within the solve-
phase of the CG method. At first the given linear system is subject to a smoothing
step and the afterwards computed residual is restricted to the next coarse level.
Within this next level the described function is called recursively. After returning
from the next coarse level, the result is corrected by an error calculated on the
coarser grid level and a smoothing step is applied again. Instead of calling further
recursive calls the system is solve on the coarsest level. The coarsest system is
solved by direct or iterative solvers. Details of this V-cycle approach are given in
[14, 15].

While the complex calculations of the setup phase are performed only once for a
given system matrix, the solve phase is executed in every iteration step. Consisting
only of some SpMVs the multigrid V-cycle in the solve phase is less time intense.
These operations can be performed very efficiently on GPUs [2].



86 C. Richter et al.

2 Algebraic Multigrid on Multiple GPUs

The CUSP library [16] is a well-established and fast library for solving linear
equation systems on GPUs. Providing efficient implementations for matrix-vector
operations and a set of solvers including an AMG-Preconditioner [17] it is well
suited as a starting point for our multi-GPU approach. The AMG preconditioner [17]
has a high memory demand due to the multiple grids, each storing its own system
matrix as well as matrices for restriction and prolongation. To overcome the
limitations we propose to distribute the data across multiple GPUs. As CUSP is
an evolving software library the decision was made to implement a multi-GPU
extension as an add-on to this library. The environment uses templated C++ classes
and can interact with CUSP. Main parts of the addon are classes for multi-GPU
vectors and matrices, communication routines for data exchange between the GPUs
and a multi-GPU PCG solver with an AMG-preconditioner that solves the system
on multiple GPUs in parallel.

2.1 Multi-GPU Datatypes

The major part of memory is spent on the storage of matrices. Therefore redundancy
has to be avoided. To achieve this the matrices are split up in a row wise manner and
the resulting parts are copied to the individual GPUs. During the splitting process
the input matrix is converted into the Compressed Sparse Row (CSR) format, split
up and the resulting parts are reconverted. Due to this the splitup is performed fast
with almost no calculation effort and the resulting parts are load balanced as the
entries per row remain unchanged supposing that each row has approximately the
same number of non-zero elements. With respect to the construction of the multi-
GPU matrix class and due to the fact that vectors have only low memory demand
compared to a matrix, the vector class holds a full copy of every vector on each
GPU. The vector part corresponding to the GPU is defined on the full vector via
a vector view, i.e., a kind of pointer. When performing an operation it is executed
simultaneously on all GPUs using OpenMP. During a vector-vector operation each
GPU performs the operation only on the corresponding vector parts. A matrix-
vector operation is performed on every GPU using the CUSP SpMV routine with
the full vector as input and the corresponding vector view as output. Therefore it
is important that the whole input vector is up to date on each GPU. This has to be
ensured by communication routines.

2.2 Inter-GPU Communication

The exchange of data between the GPUs is the most critical part of the implemen-
tation. Sparse operations on a single GPU are already limited by the bandwidth of



Multi-GPU Acceleration of Algebraic Multigrid Preconditioners 87

the connection between the GPUs global memory and its processing unit. When it
comes to inter-GPU communication there is a large gap between the GPUs internal
bandwidth and the connecting Peripheral Component Interconnect Express (PCIe)
bandwidth. A contemporary GPU like the Nvidia Tesla K20X as used in this work
has a theoretical bandwidth of 250 GB/s. The PCIe bus which connects the GPUs
has a bandwidth of 8 GB/s. Therefore sophisticated communication schemes have
been developed to minimize the burden of communication. With the copy-1n routine
a whole vector is distributed from one GPU to all GPUs involved in the calculation.
With “direct access”1 data can be copied from one GPU to another without going
through the host. Due to this and by using asynchronous memory copy functions
data can be copied between different GPUs in parallel. With these measures the
bandwidth scales linearly with the number of parallel processes. As a result the
vector is not copied to each GPU one after another but instead it is realized as
follows: the first part of the vector is copied from the first GPU to the second one,
from the second to the third and so on. In the meantime the second memory segment
is transferred from the first to the second GPU in parallel. This can be realized
because of the two copy engines of contemporary GPUs enabling them to send and
receive data at the same time. The most important routine is the gather-nn routine.
It is used when each GPU holds only its own piece of data and a vector has to
be updated such that every vector holds a up-to-date version of the whole vector.
This is the case before every SpMV. Here the same principle is used as described
above. Each GPU copies its piece data to the next GPU in the cycle. When the
transmission is finished the GPU sends the next piece of data it has just received
to the next GPU. In this way each GPU sends and receives data during the whole
procedure maximizing the parallel throughput.

2.3 Preconditioned Conjugate Gradients

The AMG preconditioner is set up by the CUSP library. As shown in [18] it should
be set up on the host to overcome memory limitations of a single GPU. Within
the multi-GPU splitup routine, the preconditioner is divided level by level and
distributed across all GPUs involved. The multi-GPU CG routine then solves the
problem by handing over the multi-GPU preconditioner and the original right hand
side and solution vectors. The routine is build analogously to the CUSP AMG-CG,
but uses multi-GPU routines. Due to the implementation only minimal changes are
necessary in an existing code and the behavior in terms of residual reduction per
step is almost identical.

1This technology was introduced with CUDA 4.0 within the framework of a “unified address
space”, i.e., a virtual address space for the host and all GPUs attached.



88 C. Richter et al.

3 Numerical Example

As an example a real-world FE problem is solved using first and second order ansatz
functions. The example, a high voltage insulator as is presented in [11], is shown
in Fig. 1. The discrete model has 1:5 � 106 degrees of freedom and a linear system
matrix consisting of 21 � 106 nonzero entries. When using second order ansatz
functions the linear problem expands to 12 � 106 dof and 340 � 106 nonzero matrix
entries. In both cases the problem is solved to a relative residual norm of 1 � 10�12.
Calculations are performed on a server running CentOS 6.5. It is equipped with two
Intel Xeon E5-2670 CPUs and 128 GB RAM. Four Nvidia Tesla K20Xm GPUs are
attached to the host. To ensure data integrity, error-correcting code (ECC) is enabled.
Thus the effective bandwidth of each GPU is reduced from 250 to 200 GB/s. Host
parallelization is done by OpenMP on the host. On the devices architecture model
3.5 is used. The code is compiled with CUDA 5.0, Thrust 1.8.0, CUSP 0.4.0 and
GCC 4.4.7 with -O3. For comparison the problem is also solved on the host using the
CUSP host version which has been shown to outperform [18] state of the art libraries
like PetSc [19] or Trilinos ML [20]. The setup phase is performed on the host where
it is stored and distributed to the GPUs. The preconditioner is only setup once and
can be reused for multiple right hand sides, i.e., for several timesteps in a quasistatic
simulation. The speedup of the GPU implementations over the host implementation
is depicted in Fig. 2. It shows the individual speedup when solving the problem
with first and second order ansatz functions for a varying number of GPUs. The
problem cannot be solved on one GPU with second order ansatz functions due to
memory limitations and therefore no results are presented. One can see that with
first order ansatz functions a speedup of 7.7 times is achieved when using one GPU.
It can be increased to a factor 10.8 with two GPUs but decreases to 9.5 when using
four GPUs. This has two reasons: firstly the communication processes become so
costly that the speedup in calculation cannot compensate for them. The data per
GPU is not sufficient to keep the GPUs busy. Secondly every calculation and data
movement operation needs a certain fixed time to be launched. This has a higher
effect when the time to perform the operation is lower. The second order case differs
from the first order one. The speedup is again more than doubled compared to the

Fig. 2 Speedup of the
solve-phase for the first- and
second-order-problem on a
varying number of GPUs

1 GPU 2 GPUs 4 GPUs
0

5

10

15

20

25

S
pe

ed
up

 o
ve

r 
ho

st
 →

 

 
1st order
2nd order



Multi-GPU Acceleration of Algebraic Multigrid Preconditioners 89

Fig. 3 Memory-usage per
GPU for the first- (upper bar)
and second-order-problem
(lower bar) on a varying
number of GPUs

0 2 4 6 8 10

1 GPU

2 GPUs

4 GPUs

memory usage in GB →

Matrix
x and b
AMG−PC
CG vectors

first order case. It is increased to 18.1 on two GPUs and over 23 when using four
GPUs. This speedup over the first order GPU calculation has two major reasons.
At first the time the GPUs spend for calculations is larger because of the increased
work each GPU has to do. This minimizes launch effects. Then the matrix itself
is much denser with second order ansatz functions with an average of over 28.2
instead of 14.7 entries per row of the system matrix. This means that the calculations
increase compared to the number of degrees of freedom, which are transferred at
every individual communicational operation.

Figure 3 shows the memory consumption for the given problem. It is separated
by the order of the ansatz functions and number of GPUs in use. Each bar is the sum
of the individual parts of the CG-solver. The use of second order ansatz functions
is shown to lead to a much higher memory demand. With the number of GPUs
involved the memory demand per GPU of the matrices decreases linearly because
they are split up and no information is saved redundantly. In contrast to this the
memory demand for a vector remains unchanged because each GPU has to hold the
full vector. Since the matrices memory demand is dominating the overall scaling
remains almost linear. Another reduction of memory demand can be achieved by
erasing redundancies between the matrix and the AMG preconditioner. In CUSP
the system matrix is saved redundantly in the preconditioner as the system matrix
for the finest level. As this is not needed in the proposed addon a further reduction
is obtained.

4 Conclusion

The limitations of a single GPU can be overcome by using multiple GPUs for
solving high dimensional discrete electric or magnetic field problems. This has been
shown with an addon to the CUSP library that enables multi-GPU computing for
FE simulations with first and second order ansatz functions. Memory consumption
scales approximately linear with the number of used GPUs. Furthermore, significant
speedups can be achieved by multiple GPUs, even though inter-GPU communi-



90 C. Richter et al.

cation has to be taken into account. Especially higher order simulations can be
accelerated significantly due to the higher density of their system matrices.

References

1. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Boston (2003)
2. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA, NVIDIA

Corporation, NVIDIA Technical Report NVR-2008-004 (2008)
3. Mehri Dehnavi, M., Fernández, D.M., Giannacopoulos, D.: Finite-Element sparse matrix

vector multiplication on graphic processing units. IEEE Trans. Magn. 46(8), 2982–2985 (2010)
4. Richter, C., Schöps, S., Clemens, M.: GPU acceleration of finite differences in coupled

electromagnetic/thermal simulations. IEEE Trans. Magn. 49(5), 1649–1652 (2013)
5. Mehri Dehnavi, M., Fernández, D.M., Giannacopoulos, D.: Enhancing the performance of

conjugate gradient solvers on graphic processing units. IEEE Trans. Magn. 47(5), 1162–1165
(2011)

6. Mehri Dehnavi, M., Fernández, D.M., Gaudiot, J.-L.: Parallel sparse approximate inverse
preconditioning on graphic processing units. IEEE Trans. Parallel Distrib. Syst. 24(9), 1852–
1862 (2013)

7. Verschoor, M., Jalba, A.C.: Analysis and performance estimation of the conjugate gradient
method on multiple GPUs. Parallel Comput. 38(10–11), 552–575 (2012)

8. C. Richter; S. Schöps; M. Clemens Multi-GPU acceleration of algebraic multigrid pre-
conditioners for elliptic field problems, IEEE Trans. Magn., 51(3), 1–4 (2015). DOI:
10.1109/TMAG.2014.2357332

9. Steinmetz, T., Helias, M., Wimmer, G., et al.: Electro-quasistatic field simulations based on a
discrete electromagnetism formulation. IEEE Trans. Magn. 42(4), 755–758 (2006)

10. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford
(2003)

11. Ye, H., Clemens, M., Seifert, J.: Electro-quasistatic field simulation for the layout optimization
of outdoor insulation using microvaristor material. IEEE Trans. Magn. 49(5), 1709–1712
(2013)

12. Stüben, K.: Algebraic multigrid (AMG): an introduction with applications, GMD, Report 53
(1999)

13. Vanek, P., Mandel, J., Bresina, M.: Algebraic multigrid by smoothed aggregation for second
and fourth order elliptic problems. Computing 56, 179–196 (1996)

14. Shapira, Y.: Matrix-Based Multigrid: Theory and Applications. Numerical Methods and
Algorithms. Springer, New York (2008)

15. Trottenberg, U., Oosterlee, C., Schuller, A.: Multigrid. Academic, New York (2001)
16. Bell, N., Garland, M.: CUSP: generic parallel algorithms for sparse matrix and graph

computations, version 0.4.0. (2012)
17. Bell, N., Dalton, S., Olson, L.N.: Exposing fine-grained parallelism in algebraic multigrid

methods. SIAM J. Sci. Comput. 34(4), C123–C152 (2012)
18. Richter, C., Schöps, S., Clemens, M.: GPU acceleration of algebraic multigrid preconditioners

for discrete elliptic field problems. IEEE Trans. Magn. 50(2), 461–464 (2014)
19. Balay, S., Brown, J., Buschelman, K., et al.: PETSc users manual, Argonne National Labora-

tory, Technical Report ANL-95/11 - Review 3.4, (2013)
20. Gee, M., Siefert, C., et al.: ML 5.0 smoothed aggregation user’s guide, Sandia National

Laboratories, Technical Report SAND2006-2649 (2006)


	Multi-GPU Acceleration of Algebraic Multigrid Preconditioners
	1 Introduction
	1.1 Problem Formulation
	1.2 Algebraic Multigrid

	2 Algebraic Multigrid on Multiple GPUs
	2.1 Multi-GPU Datatypes
	2.2 Inter-GPU Communication
	2.3 Preconditioned Conjugate Gradients

	3 Numerical Example
	4 Conclusion
	References


