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Abstract A low-frequency stable potential formulation is presented. It covers lossy
and lossless regions, results in symmetric finite-element matrices, and guarantees
unique solutions. This contribution improves upon the authors’ prior work by
including general impressed currents and charge distributions. Moreover, it clarifies
the interface condition to be imposed on the gauge on the common boundaries of
the lossy and lossless regions.

1 Introduction

In recent years, the stability of finite-element (FE) formulations for the time-
harmonic Maxwell equations in the low-frequency (LF) regime has gained a lot
of attention. It is well known that the electric field formulation (EFF) breaks down
in the static limit [1]. Various alternatives have been suggested [1–6], but none of
them is completely satisfactory: The formulation of Dyczij-Edlinger et al. [1] does
not consider ohmic losses, the method of Hiptmair et al. [2] leads to non-symmetric
matrices and non-unique solutions, the purely algebraic approach of Ke et al. [3]
relies on numerical break-down, and [4, 5] require an LF threshold and cannot
recover magnetostatic fields. A promising approach is [6]; however, its matrices
are non-symmetric.

In a recent publication [7], the authors presented an LF stable potential for-
mulation that covers lossy and lossless domains and yields symmetric matrices
and unique solutions. However, it requires all impressed currents to be solenoidal,
and the lossless region to be free of charges. This contribution improves upon
[7] by including general impressed currents and charge distributions. Moreover, a
variational framework is provided that clarifies the interface condition to be imposed
on the gauge on the common boundary of the lossy and lossless regions.
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2 Time-Harmonic Boundary Value Problem

We write E and H for the electric and magnetic field strength, and Ji for the
impressed current density, and � for the electric charge density. The wavenumber,
characteristic impedance, and speed of light in free space are denoted by k0, �0,
and c0; the relative magnetic permeability and electric permittivity by �r and
"r, respectively, and the electric conductivity by � . We will also use the relative
magnetic reluctivity �r D ��1

r . The indices C and N stand for “conducting” .� ¤ 0/

and “non-conducting” .� D 0/, respectively.
Let ˝ be a topologically simple domain which is partitioned into a conducting

sub-domain ˝C and a non-conducting region ˝N . The interface of ˝N and ˝C is
denoted by � and the unit surface normal by On.

We consider the Maxwell equations in the frequency domain,

�0 r� H D .�0� C ik0"r/E C �0Ji in ˝; (1a)

r� E D �ik0�0�rH in ˝; (1b)

r � .�rH/ D 0 in ˝; (1c)

r � ."rE/ D c0�0� in ˝; (1d)

subject to the boundary conditions (BC)

E � On D 0 on @˝; (2a)

On � .�rH/ D 0 on @˝; (2b)

and the interface conditions

.EC � EN/ � On D 0 on �; (3a)

.HC � HN/ � On D 0 on �; (3b)

Œ.�rH/C � .�rH/N� � On D 0 on �; (3c)

fŒ.�0� C ik0"r/E C �0Ji�C � .ik0"rE C �0Ji/Ng � On D 0 on �: (3d)

3 Source Modeling in the Lossless Domain

Taking the divergence of Ampère’s Law (1a) leads to the continuity equation

r � Œ.�0� C ik0"r/E� D ��0 r � Ji: (4)

In the lossy domain ˝C, the prescription of Ji fixes the sources of the electric field.
Hence (1d) is not a governing equation for the electromagnetic fields. Rather, the
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charge density � becomes a dependent quantity which is obtained from E in a post-
processing step, via (1d). Moreover, there are no particular constraints on Ji.

In the lossless domain ˝N , (4) simplifies to

ik0 r � ."rE/ D ��0 r � Ji: (5)

Substituting (1d) for the left-hand side of (5) shows that Ji and � are linked by

r � Ji D �ik0c0�: (6)

For k0 D 0, � becomes an independent excitation for the electrostatic problem
in ˝N :

r� E D 0; (7)

r � ."rE/ D c0�0�: (8)

4 Electric Field Formulation and Low-Frequency Instability

A classical example of a formulation that breaks down in the static limit is given by
the time-harmonic EFF. The corresponding boundary value problem (BVP) reads

r�.�r r� E/C ik0�0�E � k20"rE D �ik0�0Ji in ˝; (9a)

E � On D 0 on @˝; (9b)

where Ji is given. As long as k0 > 0 holds, (9a) incorporates the continuity
equation (4) in lossy regions˝C and the electric flux balance (1d) in lossless regions
˝N , respectively, as can be seen by taking the divergence of (9a):

ik0 r � Œ.�0� C ik0"r/E� D �ik0�0 r � Ji in ˝C; (10)

�k20 r � ."rE/ D �ik0�0 r � Ji D �k20c0�0� in ˝N : (11)

However, the two constraints are imposed in wavenumber-dependent form and
vanish for k0 D 0. Instability in the LF regime .k0 � 1/, and non-uniqueness
in the static limit .k0 D 0/ follow.

5 Low-Frequency Stable Potential Formulations

To overcome the shortcomings of the EFF, the authors presented in [7] a gauged
potential formulation that provides the basis for this work. We define a scaled
magnetic vector potential A 2 Hcurl

0 .˝/ and an electric scalar potential V 2 H1
0.˝/
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by

�0�rH D r� A; (12)

E D � r V � ik0A: (13)

We introduce some subspace QHcurl
0 .˝/ � Hcurl

0 .˝/ via the inexact Helmholtz
splitting

Hcurl
0 .˝/ D QHcurl

0 .˝/˚ r H1
0.˝/: (14)

In the discrete setting, (14) is realized by a tree-cotree splitting of the FE basis
functions of lowest order [8]. If hierarchical FEs with an explicit basis for higher-
order gradients [9, 10] are employed, that basis is discarded; see [1].

Equation (14) enables us to represent A in terms of a reduced potential Ac 2
QHcurl
0 .˝/ and an auxiliary scalar potential  2 H1

0.˝/:

A D Ac C r  with Ac 2 QHcurl
0 .˝/;  2 H1

0.˝/: (15)

Thus,

�0�rH D r� Ac; (16)

E D � r V � ik0.Ac C r  /: (17)

5.1 Boundary Value Problem in Terms of Potentials

In the lossy sub-domain˝C we state

r� .�r r� Ac/C .�0� C ik0"r/ Œik0 .Ac C r /C rV� D �0Ji in ˝C; (18a)

� r � Œ.�0� C ik0"r/ .Ac C r /� D 0 in ˝C: (18b)

Therein (18a) represents Ampère’s Law (1a), and (18b) is a gauge condition. In the
lossless sub-domain˝N we employ Ampère’s Law (1a), again, and the electric flux
balance (1d):

r� .�r r� Ac/C ik0"r Œik0 .Ac C r /C rV� D �0Ji in ˝N ; (19a)

� r � f"r Œik0 .Ac C r /C rV�g D �0c0� in ˝N : (19b)

A gauge will be imposed in the discrete setting. Note that (19a) implies (19b) for
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k0 > 0; see Sect. 5.3. BCs corresponding to (2) are given by

Ac � On D 0 on @˝; (20a)

 D 0 on @˝; (20b)

V D 0 on @˝: (20c)

Interface conditions will be discussed in Sect. 5.4.

5.2 Weak Formulation in Lossy Sub-Domain

Testing (18a) by wc 2 QHcurl
0 and r N , with N 2 H1

0 , and (18b) by NV 2 H1
0 yields

Z
˝C

r� wc � .�r r� Ac/C wc � .�0� C ik0"r/ Œik0 .Ac C r  /C r V� d˝

D �0

Z
˝C

wc � Ji d˝ C �0

Z
�

wc � .H � OnCN/ d�; (21)

Z
˝C

r N � f.�0� C ik0"r/ Œik0 .Ac C r  /C r V�g d˝

D �0

Z
˝C

r N � Ji d˝ �
Z
�

N Œ.�0� C ik0"r/E C �0Ji� � OnCN d�;

(22)Z
˝C

r NV � Œ.�0� C ik0"r/ .Ac C r  /� d˝

D
Z
�

NV Œ.�0� C ik0"r/ .Ac C r  /� � OnCN d�: (23)

It can be shown that (22) is a weak form of the continuity equation

� r � f.�0� C ik0"r/ Œik0 .Ac C r /C rV�g D ��0r � Ji: (24)

5.3 Weak Formulation in Lossless Sub-Domain

Testing (19a) by wc 2 QHcurl
0 and r N , with N 2 H1

0 , and (19b) by NV 2 H1
0 yields

Z
˝N

r� wc � .�r r� Ac/C wc � .ik0"r/ Œik0 .Ac C r /C rV� d˝

D �0

Z
˝N

wc � Ji d˝ C �0

Z
�

wc � .H � OnNC/ d�; (25)
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ik0

Z
˝N

r N � "r Œik0 .Ac C r  /C r V� d˝

D �0

Z
˝N

r N � Ji d˝ �
Z
�

N .ik0"rE C �0Ji/ � OnNC d�;

(26)Z
˝N

r NV � "r Œik0 .Ac C r  /C r V� d˝

D �0c0

Z
˝N

NV� d˝ �
Z
�

NV ."rE/ � OnNC d�: (27)

It can be shown that (26) is a weak form of the continuity equation

�ik0 r � f"r Œik0 .Ac C r /C rV�g D ik0�0c0� D ��0r � Ji: (28)

It is apparent that (28) is a wavenumber-scaled version of (19b), in accordance with
the lack of a gauge in ˝N . The fact that (28) vanishes in the static case suggests to
replace (26) by a suitable gauge condition, on the FE level.

5.4 Interface Conditions

The interface conditions (3a) and (3c) require that

.Ac;C � Ac;N/ � On D 0 on �; (29)

 C �  N D 0 on �; (30)

VC � VN D 0 on �; (31)

which is to be imposed in strong form, by single-valued potentials on the interface.
The interface conditions (3b) and (3d) are imposed in weak form, by requiring that
the boundary integrals in (21) and (25) as well as in (22) and (26) cancel out.

Finally, we require that the boundary integrals in (23) and (27) cancel. This
means, the gauge condition (18b) is supplemented by the constraint

Œ.�0� C ik0"r/C .Ac C r /C C ."rE/N � � On D 0 on �: (32)

5.5 Finite-Element Representation and Gauge

The discrete formulation is obtained by restricting the spaces QHcurl
0 .˝/ and H1

0.˝/

to finite-dimensional FE spaces [9, 10]. Assuming (complex)-symmetric material
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tensors, it can be seen from the weak forms of Sects. 5.2 and 5.3 that the resulting FE
matrices will also be complex-symmetric, which can be exploited to reduce memory
consumption and compute time. The computationally cheapest choice of gauge in
˝N is to set all FE coefficients x associated with  basis functions in the interior
of ˝N to zero. In this case (26) still contributes to unknowns on � .

6 Numerical Examples

6.1 Partially Filled Cavity

Figure 1a shows a box-shaped cavity, which is half-filled by a lossy dielectric. To
compare the LF properties of the EFF and the present approach, the frequency-
dependence of the spectral condition number of the system matrix is shown in
Fig. 1b. In the frequency range under consideration, the condition number remains
almost constant for the new formulation, whereas that of the EFF grows rapidly as
the frequency tends to zero. Saturation at 1021 : : : 1025 is due to numerical noise.

6.2 RLC Circuit

The voltage-driven RLC circuit shown in Fig. 2 constitutes our second example. The
wires and electrodes are taken to be lossy, whereas all other materials are assumed to
be lossless. The field plots of Fig. 3 demonstrate that all relevant physical effects are
represented correctly: In the static case, the structure serves as an ideal open circuit.

Fig. 1 Half-filled cavity: spectral condition number 	2 of FE matrix vs. frequency for FE basis
functions of different degree p. dashed line: E method; solid line: present approach. Materials:
�N=�C=1, "N="C=1, �N = 0 S/m, �C = 1 S/m. (a) Structure. (b) Spectral condition number 	2
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Fig. 2 RLC circuit. (a) Structure. Dimensions are in mm. (b) Mesh

Fig. 3 RLC circuit: field patterns for different operating frequencies

As the frequency rises, significant currents and magnetic fields start to develop. In
parallel, the skin and proximity effect become clearly visible in the wires.
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