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Abstract We consider 3D Curl-Curl type of problems in the presence of arbitrary,
non-conforming mesh-interfaces. The Interior Penalty/Nitsche’s Method (Stenberg,
Computational mechanics, 1998) is extended to these problems for edge functions
of the first kind. We present an a priori error estimate which indicates that one
order of convergence is lost in comparison to conforming meshes due to insufficient
approximation properties of edge functions. This estimate is sharp for first order
edge functions: In a numerical experiment the method does not converge as the
mesh is refined.

1 Introduction

The Curl-Curl equation,

r � .��1r � A/ D ji; (1)

can be used to calculate the magnetic field that originates from a stationary current
ji. Herein � denotes the magnetic permeability, A is the magnetic vector potential
and the magnetic field is B D r � A. The Magnetostatic model (1) is a special case
of the temporally gauged Eddy Current model (note that (2) reduces to (1) in static
cases as well as in regions where the electric conductivity � vanishes) ,

�
dA
dt

C r � .��1r � A/ D ji: (2)
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Fig. 1 Initially conforming
sub-meshes become
non-conforming when the
upper sub-mesh starts moving

In some applications like the simulation of electric machines or magnetic actuators,
magnetic fields have to be computed in the presence of moving, rigid parts. Then
one may use separate, moving sub-meshes for them in order to avoid remeshing.
However, this leads to so-called “sliding interfaces”, i.e. meshes with hanging nodes
(cf. Fig. 1).

Our aim is to construct a method which solves (1) such that the solution is
not affected by the “non-conformity” of the sub-meshes at the common interface.
This problem has been studied in depth in the framework of so called Mortar
Methods where the continuity requirements are incorporated directly into the trial-
space [1] or they are enforced by additional Lagrange Multipliers [2]. These
approaches have been proven to be successful, but they require the inversion of a
full matrix respectively additional unknowns. A related approach uses a primal/dual
formulation and couples the systems in a weak sense across the interface [3].

We pursue a different approach that fits into the framework of Discontinuous
Galerkin (DG) methods which support non-conforming meshes naturally. A Locally
Discontinuous Galerkin scheme for sliding meshes has already been proposed and
analyzed in [4]. We will study a simpler method which has it’s origins in Nitsche’s
Method. The idea is to penalize tangential discontinuities along the non-conforming
interface, but not in the interior of the subdomains where we use a standard FEM
discretization. The method has been analyzed for the Poisson Equation in [5] where
it was shown that a symmetric positive definite system matrix results. We aim to
extend this idea to (1).

It is important to realize that (1) and (2) (if � D 0 anywhere) don’t have a unique
solution (in the L2-norm). In this work, we will therefore study the regularized
problem,

r � .��1r � A/ C "A D ji; in ˝ (3)

n � A D gD on @˝: (4)

Here " > 0 is the regularization parameter that renders the solution unique. We
discuss the influence and necessity of the regularization term in [6]. Finally we want
to point out that the boundary condition (4) implies .r � A/ � n D B � n D 0 on @˝

which reflects the decay of the fields away from the source.
We start our discussion by introducing DG notations (Sect. 2) that we need in

order to introduce the interior penalty formulation in Sect. 3. Section 3 also analyzes
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the behavior of the discrete solution as the mesh is refined (h-refinement) and the
role of the approximation space is studied. The theoretical results are compared to
numerical experiments in Sect. 4. We finish our discussion by a short conclusion and
outlook (Sect. 5).

2 Preliminaries

Before we can introduce the Symmetric Weighted Interior penalty (SWIP) formula-
tion of (3)–(4) we introduce some definitions and notations:

Subdomains and Sub Meshes Let us assume that the domain ˝ , on which (3)–(4) is
posed, is a simply connected polyhedron with Lipschitz boundary. Furthermore we
assume ˝ to be split into two non-overlapping subdomains ˝1 [ ˝2 D ˝. On each
subdomain we introduce a sequence of shape regular, simplical meshes in the sense
of Ciarlet such that the union TH D TH ;1 [ TH ;2 is quasi-uniform at the non-
conforming interface � D ˝1 \ ˝2 (cf. [6], Definition 1). It is easy to check that
meshes created by the motion of individual sub-meshes (cf. Fig. 1) fit this definition.

Magnetic Permeability We assume there exists a partition P˝ D ˚
˝i;�

�
such that

each ˝i;� is a polyhedron and such that the permeability � > 0 is constant on each
˝i;�. Furthermore the mesh sequence TH is compatible with the partition P˝ : For
each Th 2 TH , each element T 2 Th belongs to exactly one ˝i;� 2 P˝ . I.e. the
magnetic permeability is allowed to jump over element boundaries, and in particular
over the non-conforming interface � .

Polynomial Approximation Later on we will seek our discrete solution in the
piecewise polynomial space (cf. [7]),

Pk
3.Th/ WD ˚

p 2 L2.˝/
ˇ
ˇ 8T 2 Th; pjT 2 Pk

3.T/
�

(5)

where Th 2 TH and Pk
3.T/ is the usual space of polynomials up to degree k on

mesh element T. Note that functions of Pk
3.Th/ are discontinuous across element

boundaries.

Mesh Faces, Jump and Average Operators We denote by Fh D F b
h [ F i

h the set
of all boundary and inner faces of a given mesh Th. FT stands for all faces of the
mesh element T 2 Th. For each mesh face F, vector valued function Ah 2 Pk

3.Th/3,
we define

if F 2 F i
h; F D @Ti \ @Tj W ŒAh�T D nF �

�
AhjTi

� AhjTj

�
;

if F 2 F b
h ; F D @Ti \ @˝ W ŒAh�T D nF � AhjTi

;

if F 2 F i
h; F D @Ti \ @Tj W fAhg! D !1 AhjTi

C !2 AhjTj
;

if F 2 F b
h ; F D @Ti \ @˝ W fAhg! D AhjTi

:

(jump)

(average)

Here nF always points from Ti to Tj and !i 2 Œ0; 1� such that !1 C !2 D 1.
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3 Symmetric Weighted Interior Penalty (SWIP) Formulation

We chose an arbitrary subspace Vh � Pk
3.Th/3 as discrete test and trial space, and

use integration by parts (cf. [7, 8] for details) to arrive at the SWIP formulation
of (3): Find Ah 2 Vh such that

aSWIP
h .Ah; A0

h/ C "

Z

˝

Ah � A0
h D `h.A0

h/ 8A0
h 2 Vh (6)

with

aSWIP
h .Ah; A0

h/ D
Z

˝

�
��1r � Ah

� � �r � A0
h

� �
X

F2Fh

Z

F

˚
��1r � Ah

�
!

� �
A0

h

�
T

�
X

F2Fh

Z

F

˚
��1r � A0

h

�
!

� ŒAh�T C
X

F2Fh

���;F

aF

Z

F
ŒAh�T � �

A0
h

�
T

;

(7)

`h.A0
h/ D

Z

˝

ji � A0
h �

X

F2Fb
h

Z

F

˚
��1r � A0

h

�
!

� .n � gD/

C
X

F2Fb
h

���;F

aF

Z

F

�
A0

h

�
T

� .n � gD/: (8)

where aF D 1
2
.hT1 C hT2 / is the average diameter of the adjacent elements of face F

and � is the penalty parameter. The weights are chosen as

��;F WD 2

�1 C �2

; !1 WD �1

�1 C �2

; !2 WD �2

�1 C �2

:

Remark If Vh � H.curl/, then all inner tangential jumps in (7) will drop out and
only jumps at the boundary remain. I.e. we are left with a standard FEM formulation
where the inhomogeneous boundary conditions (4) are enforced in a weak sense.

3.1 A Priori Error Estimate

Using the theory of DG Methods one can derive the following error estimate [6]:

Theorem 1 Let A 2 V� WD H.curl; ˝/ \ H2.P˝/3 be a solution of the strong
formulation (3)–(4) (in the sense of distributions) and let Ah 2 Vh � Pk

3.Th/3 solve
the variational formulation (6). Then there exist constants C > 0, C� > 0, both
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independent of h, �, such that for � > C�,

kA � AhkSWIP < C inf
vh2Vh

kA � vhkSWIP;�; (9)

and the discrete problem (6) is well-posed.

The associated function spaces and norms are defined by

H2.P˝/3 WD
n

A 2 L2.˝/3
ˇ
ˇ 8˝i;� 2 P˝ W Aj˝i;�

2 H2.˝i;�/3
o

;

kAk2
SWIP WD k��1=2r � Ak2

L2.˝/
C k"1=2Ak2

L2.˝/
C

X

F2Fh

��;F

aF
k ŒA�T k2

L2.F/
;

(10)

kAk2
SWIP;� WD kAk2

SWIP C
X

T2Th

hTk��1=2 r � AjT k2
L2.@T/

:

Theorem 1 tells us that the total error is bounded by the best approximation error.
In the following we will bound the best approximation error in the k � kSWIP;� norm
for two concrete choices of Vh.

Edge Functions of the First Kind In this section we assume Vh D Rk.˝1/ ˚
Rk.˝2/ � Pk

3.Th/, where Rk is the space of k-th order edge functions (cf. [9], Sect.
5.5) of the first kind. The following polynomial approximation result gives a bound
on the right-hand side of (9):

Theorem 2 Assume the exact solution A 2 V WD H.curl; ˝/ \ HsC1.˝1 ˚ ˝2/
3

with integer 1 � s � k, then there exists a projector �h W V 7! Vh such that

kA � �hAkSWIP;� < Chs�1
�kAkHsC1.˝1/3 C kAkHsC1.˝2/

�
:

Where C is independent of h.

Sketch of Proof The approximation space Vh consists of two standard edge element
spaces in ˝1, ˝2. We can thus use the standard projection operator rh, as it is defined
in [9], for edge functions on ˝1, ˝2 to compose our global projection operator �h:

�h.A/ WD �
rh

�
Aj˝1

�
; rh

�
Aj˝2

��
:

Next, we note that all the tangential jumps in (7) and (10) that lie on inte-
rior, conforming faces drop out and only jumps over F 2 F b;�

h WD F b
h [
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˚
F 2 F i

h

ˇ
ˇ F � ˝1 \ ˝2

�
remain. Thus,

kA � �hAk2
SWIP;� D k��1=2r � .A � �hA/k2

L2.˝/
C k"1=2.A � �hA/k2

L2.˝/

C
X

F2Fb;�
h

��;F

aF
k ŒA � �hA�T k2

L2.F/
C

X

T2Th

hTk��1=2r � .A � �hA/k2
L2.@T/

;

D T1 C T2 C T3 C T4:

The terms T1; T2; T4 are easily bounded in terms of O.h2s/ by standard polynomial
approximation results (cf. Theorem 5.41 in [9]). However, for T3 we have to use
Lemma 5.52 in [9] to achieve a rate O.h2s�2/ which unfortunately dominates the
other terms. The fact that the error contribution T3 is confined to a neighborhood of
the interface, respectively the boundary, does not help, because the solution may be
concentrated there as well.

Piecewise Polynomials For the sake of completeness we shortly present an
approximation result for the case Vh D Pk

3.Th/:

Theorem 3 Assume the exact solution A 2 V WD H.curl; ˝/ \ HsC1.P˝/3 with
integer 1 � s � k, then there exists a projector �P

h W V 7! Vh such that

kA � �P
h AkSWIP;� < ChskAkHsC1.P˝/3

where C is independent of h.

For the proof of this theorem we refer the reader to the proof of Theorem 3.21
in [8]. The important point is that piecewise polynomials Pk

3.Th/ yield the expected
rate of convergence because they span the full polynomial space.

4 Numerical Results

We consider a 3D sphere with radius 1 that is split into two half-spheres which
are then meshed individually (Fig. 2). We impose the analytical solution A D
.sin y; cos z; sin x/ and choose ji, gD correspondingly (� D 1, " D 10�6).

Figure 3 shows the error for a sequence of quasi-uniform meshes which
approximate the boundary linearly. We can see that piecewise polynomials yield
always the expected rate of converge, O.h/, but this does not hold for edge functions:
For Vh D R1.˝1/˚R1.˝2/ the error fluctuates significantly depending on the angle
(see Fig. 4) and for 	 D 2:86 (solid line) no convergence is observed. This shows
that the estimate in Theorem 2 is sharp for k D 1. For k D 2 we would expect O.h/

convergence but for all configurations we observe a rate of order at least O.h1:5/

because in this experiment the solution is not concentrated at the interface/boundary:
T3 decays faster than in the worst case.
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Fig. 2 The meshes for the two half spheres. The upper hemi-sphere is turned against the lower
hemisphere by 	 D 2:86 degrees to create a non-conforming mesh

Fig. 3 The relative H.curl/ error vs. mesh size h for rotation angle 	 D 2:86 degrees (solid lines).
The dashed gray lines correspond to 	 D 90n=.50�/ degrees, n 2 f0; 1; : : : ; 49g

Finally, Fig. 4 shows the relative error for different rotation angles for a fixed
mesh width h. This confirms the previous result in that the error for Vh D R1.˝1/ ˚
R1.˝2/ depends on the geometry of the overlapping meshes. For Vh D P1.Th/,
respectively Vh D R2.˝1/ ˚ R2.˝2/ the error does not depend on 	 .
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Fig. 4 The relative H.curl/ error vs. the rotation angle for h D 0:261

5 Conclusion and Outlook

We have shown that a straightforward generalization of the Interior Penalty/Nitsche’s
Method to 3D Curl-Curl problems does not yield the expected rate of convergence
if edge functions of the first kind are used. Generally one order of convergence is
lost, i.e. for k-th order edge functions we observe O.hk�1/ convergence as the mesh
is refined. The reason for this is that Rk doesn’t span the full polynomial space Pk.
Moreover, the result is sharp for k D 1, i.e. the method fails completely for first
order edge functions. This problem can be cured by using either the full polynomial
space P1 or by using second order edge functions R2.

The proposed SWIP scheme leads to a sparse, symmetric positive definite matrix
which yields, together with the conjugate gradient method, a fast and robust solution
scheme. Furthermore � can be discontinuous across the non-conforming interface.

Outlook The proof of Theorem 2 suggests that it suffices to use 2nd order edge
functions solely in elements adjacent to the non-conforming interface to achieve
O.h/ convergence. This is easily implemented using hierarchical edge functions [10]
and reduces the required number of degrees of freedom drastically. Another open
question is whether the problem can still be solved using CG if the regularization
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term in (3) is dropped because the system matrix then becomes positive semi-
definite and the right-hand side is no longer in its range. Also, it is unclear whether
the SWIP bilinear form offers a spectrally accurate discretization of the Curl-Curl
operator [11] for " D 0 and thus the convergence rate of CG may deteriorate as
h ! 0.
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