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Abstract Bifurcation theory plays a key role in the qualitative analysis of dynam-
ical systems. In nonlinear circuit theory, bifurcations of equilibria describe qualita-
tive changes in the local phase portrait near an operating point, and are important
from both an analytical and a numerical point of view. This work is focused
on quadratic turning points, which, in certain circumstances, yield saddle-node
bifurcations. Algebraic conditions guaranteeing the existence of this kind of points
are well-known in the context of explicit ordinary differential equations (ODEs). We
transfer these conditions to semiexplicit differential-algebraic equations (DAEs), in
order to impose them to branch-oriented models of nonlinear circuits. This way, we
obtain a description of the conditions characterizing these turning points in terms of
the underlying circuit digraph and the devices’ characteristics.

1 Introduction

The context of the present work is the study of bifurcation phenomena in nonlinear
circuits. We have focused on quadratic turning points, which are related to certain
local bifurcations in dynamical systems, in particular to the saddle-node bifurcation.
With terminological abuse, we will often use the expression “turning point” to mean
a “quadratic turning point”. We are interested in the analysis of turning points in the
equations governing nonlinear circuits, which have the structure of a semiexplicit
DAE. Therefore, our first efforts are directed to adequate the classical conditions
characterizing turning points in ODEs to a semiexplicit index-one DAE context
(Sect. 2). Afterwards, in Sect. 3, we will analyze these reformulated conditions in
terms of the circuit topology and the devices’ characteristics. Finally, Sect. 4 briefly
compiles some concluding remarks.
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Turning points in explicit ODEs Let us recall the algebraic conditions defining
quadratic turning points in ODEs. Consider the ordinary differential equation

x0 D f .x; �/; (1)

with x 2 R
n, and f sufficiently smooth and depending on a parameter � 2 R.

Provided that f .x�; ��/ D 0, .x�; ��/ is called a quadratic turning point of (1) if
the conditions 1–3 below are satisfied [4].

1. rk fx.x�; ��/ D n � 1;
2. wT f�.x�; ��/ ¤ 0;
3. wT fxx.x�; ��/.v; v/ ¤ 0.

Here v (resp. w) denotes a right (resp. left) eigenvector of the zero eigenvalue of
the matrix of partial derivatives fx.x�; ��/. Such turning points are important e.g. in
numerical continuation theory [1]. If, additionally,

4. the algebraic multiplicity of the null eigenvalue of fx.x�; ��/ is one; and
5. the remaining eigenvalues of fx.x�; ��/ have non-zero real parts,

then .x�; ��/ is called a saddle-node bifurcation point, because the system under-
goes a saddle-node bifurcation as � crosses �� [5, 7, 10]. Near .x�; ��/ we will
observe that when � < �� (resp. when � > ��) there are no equilibria, whereas
for � > �� (resp. � < ��) there are two hyperbolic equilibrium points. These two
equilibria differ in the sign of one real eigenvalue, being in particular a saddle and a
node when x 2 R

2.

2 Turning Points in Semiexplicit DAEs

Our purpose is to characterize the existence of turning points and saddle-node
bifurcations in electrical circuit models and, specifically, in branch-oriented models.
These models have the structure of a semiexplicit DAE [3, 8], that is,

y0 D h. y; z; �/ (2a)

0 D g. y; z; �/; (2b)

where y 2 R
r, z 2 R

p, � 2 R, and h and g are sufficiently smooth. We will group
together y and z into a single variable x D . y; z/ 2 R

n, with n D r C p. For later use
let us also define the matrices

M D
�

hy hz

gy gz

�
; QM D

�
M

.det M/x

�
: (3)
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Specifically, we will work in a local index-one context [3, 8]; this means that the
matrix of partial derivatives gz.y�; z�; ��/ is non-singular. By the implicit function
theorem this implies that there is a local map  . y; �/ such that 0 D g. y; z; �/ if
and only if z D  . y; �/; with  y D �.gz/

�1gy. This, together with (2a), enables
one to express the local dynamics of the DAE (2) in terms of the reduced ODE

y0 D �. y; �/; (4)

with �. y; �/ D h. y;  . y; �/; �/: In turn, this makes it possible to define an
equilibrium .y�; z�; ��/ of the semiexplicit index-one DAE (2) as a (quadratic)
turning point (resp. a saddle-node bifurcation point) if the reduction (4) satisfies
the conditions 1–3 (respectively 1–5) stated in Sect. 1.

Theorem 1 provides conditions for system (2) to have a turning point. Additional
conditions for the existence of a saddle-node point will be formulated in terms of
the reduction (4); this point of view will be exploited in Sect. 3.

Theorem 1 Consider the semiexplicit DAE (2) and assume there exists a point
.x�; ��/ such that h.x�; ��/ D 0 and g.x�; ��/ D 0, with gz.x�; ��/ non-singular.
Then .x�; ��/ is a quadratic turning point if the following conditions are satisfied:

1. rk M.x�; ��/ D n � 1;

2.

�
h�
g�

�
.x�; ��/ … im M .x�; ��/;

3. rk QM.x�; ��/ D n.

Proof Write x� D .y�; z�/ and note that .y�; ��/ is an equilibrium point of (4),
because �.y�; ��/ D h.y�; z�; ��/ D 0. We check below that conditions 1–3 in
Sect. 1 hold for the reduction (4) at .y�; ��/.

1. If we compute �y in terms of the maps h and g, we obtain

�y D �
hy hz

� � I
�.gz/

�1gy

�
D hy � hz.gz/

�1gy;

which is the Schur complement of gz in M [6]. The corank of a matrix and the
corank of its Schur reduction are equal, therefore rk M.x�; ��/ D n � 1 implies
rk�y.y�; ��/ D r � 1.

2. The second condition is wT��.y�; ��/ ¤ 0, where w is an eigenvector associated
to the zero eigenvalue of the matrix AT with A D �y.y�; ��/; note that wTA D
0 , wT ? im A. Therefore, wT��.y�; ��/ ¤ 0 , ��.y�; ��/ … im A, that is,
.h� � hzg�1

z g�/.x�; ��/ … im .hy � hz.gz/
�1gy/.x�; ��/ which is equivalent to

�
h�
g�

�
.x�; ��/ … im

�
hy hz

gy gz

�
.x�; ��/:
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3. Equation wT�yy.y�; ��/.v; v/ ¤ 0 can be recast as �yy.y�; ��/.v; v/ …
im �y.y�; ��/. The fact that for a C2 map f W Rn ! R

n satisfying cork f 0.x�/ D 1

we have .det f 0.x//0v ¤ 0 , f 00.x/.v; v/ … im f 0.x/, where v is a non-
null vector belonging to Kerf 0.x/, allows us to transform this condition into
.det .�y//y.y�; ��/v ¤ 0, where v 2 Ker�y.y�; ��/. Additionally, because �y is
the Schur complement of gz in M, we have det �y D det

�
g�1

z

�
det M, and then

.det .�y//y D .det
�

g�1
z

�
/x det M

 
I

�.gz/
�1gy

!
C det

�
g�1

z

�
.det M/x

 
I

�.gz/
�1gy

!
:

Condition 1 states that rk M.x�; ��/ D n � 1, thus det .M.x�; ��// D 0.
Additionally, det

�
g�1

z

�
.x�; ��/ ¤ 0; therefore condition 3 is satisfied if and only if

�
.det M/y .det M/z

� � I
�.gz/

�1gy

�
.x�; ��/v ¤ 0;

for some (hence any) non-vanishing vector v belonging to Ker�y.y�; ��/. Because
of the identity Ker�y.y�; ��/ D Ker.hy � hz.gz/

�1gy/.x�; ��/, condition 3 is then
equivalent to the requirement that the system

.hy � hz.gz/
�1gy/.x

�; ��/v D 0 (5a)

..det M/y � .det M/zg
�1
z gy/.x

�; ��/v D 0 (5b)

only possesses the trivial solution. Equivalently, the matrix of coefficients of (5),

M1 D
�

hy � hz.gz/
�1gy

det My � det Mzg�1
z gy

�
.x�; ��/;

must have maximum column rank. But M1 is the Schur complement of gz in the
matrix QM.x�; ��/ arising in the statement of condition 3 of Theorem 1; hence, the
maximum column rank condition on M1 is transferred to QM.x�; ��/. This means
that condition 3 in Sect. 1 holds for (4) at .y�; ��/ and the proof is complete.

3 Nonlinear Circuits Exhibiting Turning Points

In this section, we characterize the existence of turning points and saddle-node
bifurcations for nonlinear circuits, under certain restrictions to be specified later.
For this purpose, we use branch-oriented circuit models [8] defined by:

C.vc/v
0
c D ic (6a)

L.il/i
0
l D vl (6b)
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0 D Bcvc C Blvl C Bgvg C Bnvn C Bjvj C BvV (6c)

0 D Qcic C Qlil C Qg�1.vg/C Qn�2.vn/C Qj�C Qviv; (6d)

where we denote the branch voltages by v, the currents by i, and use the subscripts
c, l, g, n, j and v to denote capacitors, inductors, passive resistors, non-passive
resistors, current sources and voltage sources, respectively. All devices may be
nonlinear, often without explicit mention. We assume that there exists only one
non-passive resistor and a unique DC current source, whose current ij D � is the
parameter of the system. The reader may think of a tunnel diode as an example of
a (locally) non-passive resistor. We also assume that there exists an equilibrium
point that we will denote by .x�; ��/ D .v�

c ; i
�
l ; i

�
c ; v

�
l ; v

�
g ; v

�
n ; v

�
j ; i

�
v ; �

�/. The
incremental capacitance and inductance matrices, C and L, are both non-singular
at .x�; ��/ and, finally, V is the vector of voltages in the DC voltage sources.

System (6) has the semiexplicit DAE structure displayed in (2) with y D .vc; il/
and z D .ic; vl; vg; vn; vj; iv/. Note that Eqs. (6a) and (6b) stand for the constitutive
relations of capacitors and inductors, whereas Eqs. (6c) and (6d) are the expression
of Kirchhoff laws. In (6d) we have eliminated the resistors currents using the
constitutive relations �1 and �2. In the formulation of Kirchhoff laws we have made
use of the so-called loop and cutset matrices B, Q, which are well-known in digraph
theory and whose main properties are compiled in Lemma 1 [2, 9].

Lemma 1 The loop and cutset matrices B, Q of a digraph verify the following.

1. BK (resp. QK) has full column rank if and only if the branches specified by K do
not contain any cutset (resp. loop).

2. The loop and cutset spaces are orthogonal to each other, that is, if columns of Q
and B are arranged in the same order, then QBT D 0.

3. Suppose the branches of a given digraph are split in four disjoint sets K1, K2, K3
and K4, and denote by Bi and Qi the submatrices of the loop and cutset matrices
defined by Ki; assume additionally that P is a positive definite matrix. Then

Ker

�
B1 0 B3
0 Q2 Q3P

�
D KerB1 � KerQ2 � f0g:

These properties allow us to prove Theorem 2, which characterizes turning points
and saddle-node bifurcations for the circuit model (6). By a K-loop (resp. K-cutset)
we mean a loop (resp. cutset) defined only by elements of K; this way, for instance a
JCN-cutset is a cutset defined only by current sources, capacitors and/or non-passive
resistors. JLN-cutsets, VC-loops, etc. are defined analogously.

Theorem 2 In the setting defined above, assume that � 0
2.v

�
n / D 0, � 00

2 .v
�
n / ¤ 0 at

the equilibrium point .x�; ��/. This equilibrium is then a turning point of (6) if

• there is a unique JCN-cutset, which includes the current source, the non-passive
resistor and at least one capacitor; and

• there are no JLN-cutsets, VC-loops or JVL-loops.
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If, additionally, L and C are symmetric positive definite and there are no VCL-loops,
then the turning point yields a saddle-node bifurcation.

Proof The matrices gz.x�; ��/ and M.x�; ��/ read for system (6) as:

gz.x
�; ��/ D

 
0 Bl Bg Bn Bj 0

Qc 0 QgG 0 0 Qv

!
; M.x�; ��/ D

0
BBB@
0 0 C�1 0 0 0 0 0

0 0 0 L�1 0 0 0 0

Bc 0 0 Bl Bg Bn Bj 0

0 Ql Qc 0 QgG 0 0 Qv

1
CCCA;

where G D � 0
1.v

�
g / is the incremental conductance matrix of passive resistors,

which is positive definite. In light of item 3 in Lemma 1, non-trivial entries in
Kergz.x�; ��/ must come either from Ker

�
Bl Bn Bj

�
or from Ker

�
Qc Qv

�
. Since

there are neither JLN-cutsets nor VC-loops, we conclude that gz.x�; ��/ is non-
singular.

1. The non-singularity of C, L allows us to study the rank of the matrix M.x�; ��/
in terms of

�
Bc 0 Bg Bn Bj 0

0 Ql QgG 0 0 Qv

�
:

By applying item 3 of Lemma 1, non-zero entries of KerM.x�; ��/ must come
either from Ker

�
Bc Bn Bj

�
or from Ker

�
Ql Qv

�
. Since there is a unique JCN-

cutset and no JVL-loops, we have null
�
Bc Bn Bj

� D 1, where null stands for

the nullity, that is, the dimension of the kernel, null
�
Ql Qv

� D 0 and therefore
null M.x�; ��/ D 1, that is, rk M.x�; ��/ D n � 1, which is condition 1 in
Theorem 1.

2. The 2nd condition in Theorem 1 may be restated as null M.x�; ��/ D
null OM.x�; ��/, with

OM.x�; ��/ D

0
BB@
0 0 C�1 0 0 0 0 0 0

0 0 0 L�1 0 0 0 0 0

Bc 0 0 Bl Bg Bn Bj 0 0

0 Ql Qc 0 QgG 0 0 Qv Qj

1
CCA :

Proceeding as above, we observe that non-trivial entries in Ker OM.x�; ��/must be
due to those in Ker

�
Bc Bn Bj

�
or in Ker

�
Ql Qv Qj

�
. The absence of JVL-loops

implies null OM.x�; ��/ D null
�
Bc Bn Bj

�
and therefore null M D null OM.

3. The third condition in Theorem 1 says that the matrix QM (cf. (3)) has full column
rank or, equivalently, rk QM D n. Provided that null M D 1, requiring QM to have
full column rank is equivalent to .det M/xv ¤ 0, where v is any vector that spans
KerM. For any point Ox D .vc; il; ic; vl; vg; v

�
n ; vj; iv/, M.Ox; �/ is a singular matrix
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because � 0
2.v

�
n / D 0. Thus, .det M/x D �

0 0 0 0 0 a 0 0
�

and a ¤ 0 because
� 00
2 .v

�
n / ¤ 0.

The absence of VL-loops and the existence of a JCN-cutset imply that vectors
belonging to KerM have the form of v where vT D .v1; 0; 0; 0; 0; v6; v7; 0/.
Additionally, the fact that there are no JC-cutsets implies v6 ¤ 0; it follows
that the multiplication of .det M/x by vectors of KerM does not vanish.

4. To complete the proof it remains to show that the absence of VCL-loops leads
to a saddle-node bifurcation. To do this we make use of conditions 4 and 5 in
Sect. 1.

In order to prove that the zero eigenvalue is simple, we will show that the
intersection of the kernel and the image of �y D .hy � hz.gz/

�1gy/ at .x�; ��/
only contains the null vector. First, a vector u belongs to im �y if and only if Ou
belongs to im M, with OuT D �

uT 0
�
, that is, if and only if there exists a vector v

satisfying

u1 D C�1v3 (7a)

u2 D L�1v4 (7b)

0 D Bcv1 C Blv4 C Bgv5 C Bnv6 C Bjv7 (7c)

0 D Qlv2 C Qcv3 C QgGv5 C Qvv8: (7d)

On the other hand, a vector u belongs to Ker�y if and only if

�
C�1 0 0 0 0 0

0 L�1 0 0 0 0

�
.g�1

z /

�
Bc 0

0 Ql

�
u D

�
0

0

�
:

In order to satisfy this relation there must be a vector y such that

.g�1
z /

�
Bcu1
Qlu2

�
D

0
BBBBBBB@

0

0

y1
y2
y3
y4

1
CCCCCCCA

,
�

Bcu1
Qlu2

�
D gz

0
BBBBBBB@

0

0

y1
y2
y3
y4

1
CCCCCCCA
;

that is,

Bcu1 D Bgy1 C Bny2 C Bjy3 (8a)

Qlu2 D QgGy1 C Qvy4: (8b)

Using the orthogonality of the cutset and loop spaces, namely, the fact that KerB
and KerQ are orthogonal to one another (cf. [2]), it is not difficult to obtain
from (8) the relation yT

1Gy1 D 0; y1 must then vanish because G is positive
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definite. Making use of (7a) and (7b), Eqs. (8a) and (8b) then read as

0 D BcC�1v3 � Bny2 � Bjy3 (9a)

0 D QlL
�1v4 � Qvy4: (9b)

Therefore if u 2 Ker�y \ im �y, then (7c), (7d) and (9) must hold. Applying
the aforementioned orthogonality property to (7c) and (9b) we obtain that
vT
4 L�1v4 D 0 and from Eqs. (7d) and (9a), vT

3 C�1v3 D 0. Altogether this yields
u D 0.

5. It remains to be proved that if there are no VCL-loops then �y.x�; ��/ has
no purely imaginary eigenvalues. A complex number � is an eigenvalue of
�y.x�; ��/ if and only if

�

�
I 0
0 0

�
�
�

hy hz

gy gz

�
.x�; ��/

is singular or, equivalently, there exists non-trivial solutions to

0 D ��1BcC
�1ic C �BlLil C Bgvg C Bnvn C Bivi (10a)

0 D Qcic C Qlil C QgGvg C Qviv: (10b)

The orthogonality of the cutset and cycle spaces implies that if Qp D 0 and Bq D
0 then pTq D 0. Applying this result to the conjugate of (10b) in conjunction
with (10a), we obtain

0 D ��1i�c C�1ic C �i�l Lil C v�
g Gvg; (11)

where � stands for the Hermitian (conjugate transpose). If we take the sum of (11)
and its Hermitian, we obtain:

0 D 2Re.��1/i�c C�1ic C 2Re.�/i�l Lil C v�
g .G C GT/vg: (12)

For purely imaginary eigenvalues, Re.��1/ D Re.�/ D 0 and therefore we
must have vg D 0 for (12) to hold. System (10) can be then simplified to:

0 D ��1BcC�1ic C �BlLil C Bnvn C Bivi (13a)

0 D Qcic C Qlil C Qviv: (13b)

Since there are no VCL-loops,
�
Qc Ql Qv

�
has full column rank and, conse-

quently, ic D il D iv D 0 must hold to satisfy (13b). The absence of JLN-cutsets
then yields vn D vi D 0 from (13a). This means that (10) only has the trivial
solution, and this rules out purely imaginary eigenvalues. The proof of Theorem 2
is then complete.
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4 Concluding Remarks

We have performed a circuit-theoretic analysis of the existence of turning points and
saddle-node bifurcations in nonlinear circuits. The analysis of these phenomena in
broader contexts, including e.g. other non-passive devices, higher-index configura-
tions or parameters with other roles, as well as the study of other related bifurcations
in similar terms, are in the scope of future research.
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Innovación, Spain.
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