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Abstract Multirate GARK schemes define a multirate extension of GARK
schemes, generalized additive Runge-Kutta schemes. In contrast to additive
schemes, GARK schemes allow for different stage values as arguments of different
components of the right hand side. They introduce additional flexibility when
compared to traditional partitioned Runge-Kutta methods, and therefore offer
additional opportunities for the development of flexible solvers for systems with
multiple scales, or driven by multiple physical processes.

Consequently, multirate GARK schemes allow for exploiting multirate behaviour
in both the right-hand sides and in the components in a rather general setting,
and are thus especially useful for coupled problems in a multiphysics setting. We
apply MGARK schemes to a benchmark example from thermal-electrical coupling,
characterized by a slow and fast part with a stiff and non-stiff characteristic, resp.
We test two MGARK schemes: (a) an IMEX method, which completely utilizes
the dynamics and differing stability properties of the coupled subsystem; and (b) a
fully implicit schemes, which inherits the stability properties from both underlying
schemes without any coupling constraint.

1 Introduction

Multiphysical systems are often characterized by a very different dynamical behav-
ior in the subsystems, with time constants differing by orders of magnitude. To be
efficient, numerical time integration schemes have to exploit this multirate behavior,
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which is physically given and allows for a static partitioning of the subsystems into
slow and fast parts, resp.

Multirate time integration schemes aim at exploiting this property by applying
different time step sizes to the subsystems, according to their different activity
level. To get higher order schemes, these schemes have to fulfill additional order
conditions, and at the same time preserve the stability properties of the respective
subsystems.

This paper discusses the application of a new class of multirate schemes,
multirate GARK [1] schemes based on a generalized view on additive Runge-Kutta
schemes [3], to a multiphysical problem from electro-thermal coupling.

The paper is organized as follows: Sect. 2 gives a synopsis on multirate GARK
schemes and their relation to GARK schemes. Section 3 introduces two multirate
GARK schemes, based on an explicit-implicit and implicit-implicit pair of order-2
basis schemes. Section 4 discusses the numerical results obtained for both schemes.
The last section concludes with final remarks and an outlook.

2 Multirate GARK Schemes

We consider a two-way partitioned system

y0 D f . y/ D f fsg. y/ C f ffg; y.t0/ D y0 ; (1)

with a slow component fsg, and an active (fast) component ffg. Note that this setting
contains component-wise splitting as a special case:
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�
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0
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�
: (2)

The slow component is solved with a large step H, and the fast one with
small steps h D H=M. We will consider the multirate generalization of GARK
schemes [3] with M micro steps h D H=M, as given in the following

Definition 1 (Multirate GARK Method [1]) One macro-step of a generalized
additive multirate Runge-Kutta method with M equal micro-steps reads
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The base schemes are Runge-Kutta methods, .Aff;fg; bffg/ for the slow component
and .Afs;sg; bfsg/ for the fast component. The coefficients Afs;f;�g and Aff;s;�g for
� D 1; : : : ; M realize the coupling between the two components.

2.1 Order Conditions

The MGARK scheme can be written as a GARK scheme [3] over the macro-step
H with the fast stage vectors Yffg WD Œ Yff;1g T ; : : : ; Yff;Mg T �T . The corresponding
Butcher tableau reads (with the vector 1 WD .1; : : : ; 1/T of ones)

1
M Aff;fg 0 � � � 0 Aff;s;1g

1
M 1bffg T 1

M Aff;fg � � � 0 Aff;s;2g
:::

: : :
:::

1
M 1bffg T 1

M 1bffg T : : : 1
M Aff;fg Aff;s;Mg

1
M Afs;f;1g 1

M Afs;f;2g � � � 1
M Afs;f;Mg Afs;sg

1
M bffg T 1

M bffg T : : : 1
M bffg T bfsg T

Therefore the order conditions for MGARK schemes can be derived from the
corresponding ones for GARK schemes [3]. Up to order two the order conditions
given in Table 1 have to be fulfilled.

Table 1 Order conditions for
MGARK schemes

p Order condition

1 bfsg T11 D 1

bffg T11 D 1

2 bfsg T Afs;sg11 D 1
2

bfsg T
�PM

�D1 Afs;f;�g
�

11 D M
2

bffg T Aff;fg11 D 1
2

bffg T
�PM

�D1 Aff;s;�g11
�

D M
2
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2.2 Stability

We consider systems (1) where each of the component functions is dispersive (with
constants �fsg < 0; �ffg < 0):

D
f fsg. y/ � f fsg.z/ ; y � z

E
� �fsg ky � zk2 ;

D
f ffg. y/ � f ffg.z/ ; y � z

E
� �ffg ky � zk2 ;

with respect to the same scalar product h � ; � i. As for two solutions y.t/ and Qy.t/
of (1), each starting from a different initial condition, the norm of the solution
difference �y.t/ D Qy.t/ � y.t/ is non-increasing, we demand a similar property
from the numerical approximations: the MGARK scheme is said to be nonlinearly
stable, if the inequality

k ynC1 � QynC1k � k yn � Qynk

holds for any two numerical approximations ynC1 and QynC1 obtained by applying the
scheme to the ODE (1) with dispersive functions and with initial values yn and Qyn.

As a consequence of stability theory for GARK schemes, an MGARK scheme
applied to a component-wise partitioned right-hand side (2) is nonlinearly stable, if
both base schemes are algebraically stable [1].

3 Two Basic GARK Schemes for Multiphysics Application

In general, one is interested in a rough approximation of coupled multiphysics
problems, which reflect the impact of the couplings of both systems. Hence we
restrict to MGARK schemes of order 2. As we are interested in the nonlinear
stability properties of MGARK schemes, and how the stability properties of both
base schemes influence the stability of the overall scheme, we define two new IMEX
and IMIM schemes as basic methods:

• MGARK-IMEX-2: The implicit-explicit version solves the fast, stiff part with
an implicit base scheme, and the slow, non-stiff part with an explicit one. The
coefficients are given by
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bffg D 1; Aff;fg D 1

2
; Aff;s;�g D �

1
2

0
� 8� D 1; : : : ; M:

The slow components are implicitly solved together with the fast components of
the first micro step. The fast components of the remaining micro steps can be
computed explicitly.

Note that only the fast part is algebraically stable, but neither the slow part nor
the joint system.

• MGARK-IMIM-2: To get an overall stable scheme, both parts are solved by an
implicit base scheme. The coefficients are given by
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2
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1
2

0
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Note that again the slow components are implicitly defined together with the
fast components after the first micro step. The fast components of the remaining
micro steps can be computed one after the other by solving nonlinear systems in
the dimension of the active part only.

As both base schemes are algebraically stable, the MGARK method inherits
this property for a component-wise partitioning.

4 Numerical Test Results for a Benchmark Example

We will test both MGARK implementations for a thermal–electrical multiphysics
system, for specifications see [2]; its circuit diagram is given in Fig. 1 (left). The
thermal component defines the slow (and non-stiff) part, the electrical component
the fast (and stiff) part of the system.

The distributed temperature T of the resistor (wire) is described by the 1-D
heat equation, which is semi-discretised using a finite volume approach, see Fig. 1
(right). Due to the electric current, the resistor is heated and so the resistance of this
device changes: R D R.T/. The characteristic curve of the diode is also temperature
dependent. The voltages are modeled by a nodal analysis using Kirchhoff’s laws.
Finally we get a partitioned system of ordinary differential equations like in (1). The
vector of unknowns y D .u3; u4; e; T/T comprises the voltages u3 and u4 at nodes
3 and 4, resp., the dissipated energy e in the thermally dependent resistor and the
vector of temperatures T in the semi-discretised resistor. The multirate behaviour
of this system is given by the physical properties: the voltages and the dissipated
energy change very fast (due to the source of the network), and the temperature in
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Fig. 1 Circuit and discretised resistor
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Fig. 2 Numerical results for the fast and slow subsystems (macro step size vs. achieved accu-
racy, measured in Euclidean norm): MGARK-IMIM-2 (left) and MGARK-IMEX-2 (right) with
parameters H D 10�3 , m D 5. The solid lines represent the slope of order 2

the resistor changes much slower. Hence the partitioning according to the dynamical
behaviour is quite natural:

yffg WD
0
@ u3

u4

e

1
A ; yfsg WD T:

The numerical results for both Multirate GARK schemes are given in Fig. 2. The
IMIM scheme nicely shows in both fast and slow subsystems an order-2 behavior
for all step sizes. The accuracy of the IMEX scheme in the slow part (which is
not algebraically stable and computed explicitly), however, seems to be reduced for
small step sizes.
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5 Conclusion

By testing Multirate GARK schemes on a multiphysical test example from electro-
thermal coupling, we have shown the feasibility of this multirate approach for both
implicit-implicit and implicit-explicit pairing of basic schemes. Whereas the IMIM
scheme shows an order-2 behavior for both subsystems at all step sizes, the IMEX
schemes has a reduced accuracy in the slow system for small step sizes only. This
behavior fits to the theoretical properties of both schemes: the IMIM scheme is
algebraically stable in both subsystems, whereas the IMEX scheme is only stable in
the fast (electric) part.

As next steps, we will follow three directions: (a) we will apply MGARK
schemes to a range of multiphysical problems in a more realistic setting; (b) we
will further analyze the stability of IMEX-MGARK schemes and its dependence
on the coupling structure for both weak and slow coupling; (c) the excellent
stability properties of IMIM-MGARK schemes suggest to use these schemes as
basic schemes in a Multirate-MOR approach.
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