On Several Green’s Function Methods for Fast
Poisson Solver in Free Space

Dawei Zheng and Ursula van Rienen

Abstract We summarize four closely related numerical solution methods for Pois-
son’s equation in free space: Green’s function method, integrated Green’s function
method, reduced integrated Green’s function method, and cutting integrated Green’s
function method. A new and final routine called cutting reduced Green’s function
method is carried out as well. These methods can be used for different practical
problems to accelerate the calculation. Numerical examples are also given to
compare the introduced methods.

1 Introduction

Poisson’s equation is broadly used in many areas, such as electrostatics, mechanical
engineering and theoretical physics—for instance in gravitational potential calcula-
tion and in beam dynamics simulations in particle accelerators. Particle accelerators
have a long history. In fact, the first basics go back to Crookes who discovered
cathode rays (1870), Thompson who showed that the cathode rays are composed of
electrons (1896) and Rontgen who discovered X-rays (1895). The first milestone on
the path to particle accelerators for high energy physics was Rutherford’s scattering
of alpha particles on a gold foil (1909). Modern accelerators for high energy physics
still basically use the principle of scattering experiments. Since the energy of the
electrons in cathodic ray tubes is limited, in the 1930s new types of generators
for higher electric fields have been developed. Examples are the Van de Graff
generator (1929) and the Cockcroft-Walton generator (1932) or the first cyclotron
by Lawrence (1931). To overcome the limitations of these machines and achieve
much higher energies of the electrons, radio-frequency (RF) cavities started to be
used (and now are key elements of all accelerators) in which the energy of the
high-frequency field is transferred to the passing electrons (or other elementary
particles). Accelerators for high energy physics are either ring-like machines such
as the Large Hadron Collider (LHC) at CERN or linear accelerators such as the

D. Zheng (<) » U. van Rienen

Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Str. 2, 18059
Rostock, Germany

e-mail: dawei.zheng @uni-rostock.de; ursula.van-rienen @uni-rostock.de

© Springer International Publishing Switzerland 2016 91
A. Bartel et al. (eds.), Scientific Computing in Electrical Engineering, Mathematics
in Industry 23, DOI 10.1007/978-3-319-30399-4_10

mailto:dawei.zheng@uni-rostock.de
mailto:ursula.van-rienen@uni-rostock.de

92 D. Zheng and U. van Rienen

design study for the International Linear Collider (ILC). The elementary particles
are highly relativistic, i.e. have practically speed of light, and have very high
energies. Synchrotron light sources, which are used for material studies, exploit the
electromagnetic radiation which arises when an electron is forced (by magnets) on a
curved path. Elaborating this principle more and more, new generations of brilliant
light sources have been designed such as the European X-ray free-electron laser
(XFEL) which is currently being built at DESY in Hamburg. Further, accelerators
are used in medicine for cancer therapy.

No matter which type of accelerator is regarded, all of them start with a particle
source where the elementary particles are produced (e.g. cathode, photocathode,
ion source), some magnetic focusing elements and sections in which the stream of
particles is bunched and a first acceleration takes place. Thus, a bunch is a large
number of charged elementary particles. It achieves its relativistic speed and its
higher and higher energy passing through RF cavities.

As long as the particles are non-relativistic, their self-electric space charge field
is influencing the particles in the bunch while space charge fields don’t play a role
anymore for the highly relativistic particles. The space charge effect is of crucial
importance for the next generation accelerators with their ultrashort, very dense
bunches of high power, such as in the XFEL, since this naturally implies higher
space charge effects. If one wouldn’t do a careful design study, one possible effect
could be e.g. that the bunch, which indeed should stay in tight dimensions, extremely
grows due to the space charge effect and hits the wall of the vacuum chamber.
The specific bunch characteristics of future accelerators makes simulation studies
of space charge effects more challenging than before.

The most prominent, classical methodology for numerical space charge studies is
known as the Particle-in-Cell (PIC) model [1]. The considered bunch is embedded in
the computational domain §2, which usually is a cubic or a cylindrical domain. The
computational domain §2 is discretized and the charge of the particles inside each
cell is assigned to neighboring grid points by algorithms like the Nearest Grid Point
(NGP) or the Cloud in Cell (CIC) schemes. Note, that so-called macro-particles
are introduced in order to achieve a computational load which is still manageable.
Then, the space charge has to be calculated, applied to the (macro-)particles and
the equation of motion has to be solved. A usual procedure is to use the Lorentz
transformation in each time step to transfer between the laboratory system and
the rest frame (of special relativity) and then compute the space charge fields in
the rest frame. The self-electric field can be derived by solving Poisson’s equation
(in the rest frame). It is transferred back to the laboratory system by the Lorentz
transformation with the Lorentz factor y.

In this contribution, we concentrate on the efficient solution of Poisson’s
equation:

dPo(x,y,2) de@xy.z) ek y.z X2
(pix.y.2) delxy.g dewx.y)):_p(YD e

dx? dy? dz? £0

On Several Green’s Function Methods for Fast Poisson Solver in Free Space 93

where p(x, v, z) is the charge density, & is the permittivity of vacuum and ¢(x, y, 7)
is the electrostatic potential, i.e. we study this problem in Cartesian coordinates in
3D. Free space boundary (or some say open boundary) conditions are regarded.
Although this is not true in the real accelerator, this consideration is well-introduced
and most common in the simulation of space charge effects as long as the bunch is
far enough apart from the walls of the enclosing vacuum tube. The common way to
solve this equation is to convolute the density of charged particles and the Green’s
function in free space, known as the Green’s function method. However, in some
cases such as a very long cigar-shape or short pancake-shape bunch the numerical
calculation may suffer from errors. The so-called integrated Green’s function (IGF)
[2, 3] has especially been invented for such issues. It deals with an analytical
integration rather than a numerical integration. However, the computation is rather
involved and time-consuming and thus calls for an improvement to higher efficiency.
We present some appropriate methods, as accurate as the IGF method yet
costing less CPU time for different practical problems. In general, the reduced
integrated Green’s function (RIGF) method is suitable for all problems applying
the IGF method—for instance the near-bunch field calculation. In contrast, the
cutting (integrated) Green’s function (CIGF) method is only advantageous for far-
bunch field calculation. A further new method, denoted as cutting reduced integrated
Green’s function (CRIGF) method can accelerate the calculations even more. This
routine can also be used in other Poisson solver codes to improve efficiency.

2 GF, IGF and RIGF Integral for Poisson’s Equation

The Green’s function-type methods are often-used methods to solve Poisson’s
equation in free space, i.e. with open boundaries. The Green’s function is given as:

1
Va7 + 6 =yP+ =)

Gx,x',y,y.,z,7) = (1)

Using the Green’s function, the solution of Poisson’s equation in R?, i.e. the
continuous electrostatic potential ¢, reads as [1, 2]:

1
4.7{80

p(x,y,2) = . / / / o, y.)Gx. X, y,y, z,2)dx¥dy'd7. ()
Now, regard a cubic computational domain £2 which is discretized by N,, N, and N,
steps, respectively, in each coordinate direction with equidistant step sizes Ay, hy, h,.
Then, the discrete integral formula is given by

1 Nx N‘ N, 4

OXi, yj, 20) ~ e Z Z Z P, ¥y)G X, i Vi 20 20) s 3)

7=1j=1k=1

94 D. Zheng and U. van Rienen

where the grid points (x;, y;, zx) are the center points of each integral. The integral
cell is equal to the individual grid cells with side lengths h,, h, and h,. Thus, the
integral over one grid cell reads as:

) Nithe/2 pyithy/2 p2th)2
G(xi X7, Yj V2t) = / / / G(xi, X'y, Yz, 2)dx'dy'd?.
xi—he/2 Jyi—hy/2 Jz—h /2
“)

In the following, for the different kinds of integrals, G will be specified by different
subscripts. Further, regarding the calculation of the Green’s function values we will
apply a coordinate translation, substituting w—w’ by w for w in {x, y, z} and thus use
w instead of w — w’. If we apply the midpoint rule, the numerical integral is known
as GF integral:

Gaor(xi yj, 21) = hehyh,G(xi, ;. 21).- 5
In many applications, the midpoint rule can readily be used. Yet, often higher

accuracy is needed. This can be achieved by higher order numerical integration
rules or by the IGF integral:

B Xit+he/2 pyithy/2 zk+h;/2
GIGF(-xiv Vi Zk) = / / / G(_x’, y’, Z/)dx/dy/dZ/
z

Xi—hy /2 Jyj—hy/2 v—hz/2
h hy h h hy h
= IGF(x; + —.,y; + =, Y CIGF(x + =y 4+ g — =
(x+2y,+ZZk+2) (x+2y,+2zk 2)
h hy h h h h
—IGF(x; + —,y; — =, 2y CIGF(x — =,y + =2, Tz
(X+2y/ 2Zk+2) (x 2y,+21k+2)
h hy h h hy h
IGF(x; — =,y — =,)+ IGF(xi + =,y — =5 — —
+IGF (x 5V ZZk+2)+ (x+2y, 5 2)

hy h h
_,Yj__ylk__z)a (6)

hy h h
+IGF(xi——,yj+—y,zk——z)—IGF(xi > >

2 2 2 2

where the IGF(x,y,z) function is the primitive function (antiderivative) of (1),
which can be expressed as:

. 1 2 Xy
IGF(x,y,7) = —————dxdydz = —— arctan(————)
Ve +yr+ 2 2 /x4y 4+ 22
2 2
_r arctan(#) _ arctan(L) + yzln(x
2 yVa2 +y? 4+ 22 xy/x2+y? 422

+Vx2 42+ 2) +xzin(y + Va2 4+ 2 + 22) +xyIn(z + Va2 +y2 4+ 22).
(N

On Several Green’s Function Methods for Fast Poisson Solver in Free Space 95

Here, we present the simple form from [3].

RIGF integral: In order to figure out the improvement of the IGF integral
compared to the GF integral, we define the local Green’s function integral relative
fraction as: 1 (x;, yj, z) = ‘SGGF(X,',yj,Zk)/GIGF(xi,yj,Zk) , where Gy = ||Gigr,—
GGFk ||l. To evaluate the variation of 1g(x;, y;, z) visually and easily in the grid, we
chose a computational domain with a large aspect ratio: Ly : Ly : L, =1 : 1 : 30,
where Ly, L, L; are the edge lengths of the cubical domain §2. It is discretized by
32 x 32 x 32 = 32,768 grid points (In calculation, Green’s function needs one
more point on each axis, i.e. 33 x 33 x 33 = 35,937 [2]). In Fig. 1 (left), we use
a boxplot of nG(:,:, zx). Each column corresponds to one slice of index k. We can
observe that the local relative errors exponentially decrease with an increasing value
of k (zx). Only in the very first slices, the errors are large and strongly varying. For
increasing k, the errors inside a slice and compared with the neighbor slices errors
coincide more and more.

The motivation of the RIGF integral is relatively natural and simple. In the
calculation of G(x,-, ¥j,2), the IGF integral GIGF(x,-, ¥j, k) has higher complexity
than the numerical GF integral GGF(x,-, ¥j, 2), i.e. for each GIGF(xi, ¥j, 2k) we have
to calculate eight terms in (6) and every term should be calculated by (7). Yet,
GGF(x,-, ¥j, z) has just one simple term, which is also faster to be evaluated. Thus, we
calculate the GIGF (i, yj, z) by the exact integral only over those grid cells where it is
necessary and everywhere else we replace it by the numerical integral Ger(x;, Vjs 2k)-
Practically, this means that only the near-origin parts, where the bunch is located, are
treated by the IGF model. The remaining parts of the integral are calculated by the
simpler standard GF model. We determine integer parameters (R., Ry, R.) indicating
at which grid line to switch from the IGF model to the GF model (see Fig. 1 (right)
blue line between £2;gr and $2¢r). For the following, we suppose that the large

0.0z

o018 |
0016 | 3

o™,
oot | "
ooz |

Relative error:qs(:.:__khz}

' ®_] R,

R TYYS Qeiy,
o LA LT TT YT PR TP TP TPy, B

Mesh Index k I T s N,

Fig. 1 (Left): The local relative error of the GF integral. (Right): A schematic plot of cutting
Green’s function domain for Cartesian coordinates

96 D. Zheng and U. van Rienen

aspect ratio direction is on the z-axis. Then the new integral reads as follows:

éRIGF(xi’ Vi Zk) — gIGF(-xis Yi» Zk)s (1 s 15 1) S (ivjv k) =< (va Rys Rz)a
Ger(xi,yj,2), otherwise;

It has been investigated how these parameters (R,,R,, R;) should be chosen.
There are two general key aspects which should be balanced in the chosen strategy:
the computational time and the achieved accuracy.

With respect to the computational time, it would be an option to choose R,, =
(N + 1)/s,, for win {x,y, z}. The larger value of s, the less computational time is
needed by the IGF calculation. Regarding the cigar-shape bunch as an example, it
is reasonable to choose R,, = N,, 4+ 1 for w in {x, y}. Then, the computational time
depends linearly on s which ranges from 1 (IGF routine) to N, 4+ 1 (GF routine):

N, +1—R R R
1RIGF = — “tGF + ~—tiGF = =

———(tigr — tgr) + tGr. 8
N+ 1 N+ 1 NZ_’_I(IGF Gr) + IGF (8)

On the other hand, with respect to the computational errors of the numerical
integral which imply errors of the final result as well, a different strategy would
be appropriate. Since the Ggr is decreasing very fast with respect to the distance
from the center of the bunch, the location where it starts to remain more or less
stationary should be determined first. In practice, we use a reference function f(V,)
to locate the stationary area. For example, we choose 1/ log, N, as f(NV;) to locate
k by ||GIGFk_1 - GIGFk|| / GiGri—1 < f(N,). Secondly, we determine the accuracy
tolerance: Choose the proper R, given by the first k for which the magnitude of
SGk/SGk stable drops down to 107, s > 0, where 8Gi = ||C~;IGF;< - GGFk |. Note, s
is the accuracy control integer for the RIGF. Of course, these parameters have to be
determined individually for different problems under study.

3 CRIGF Method for Poisson’s Equation

In many applications, the computational domain will be considerably larger than
the domain occupied by the charged bunch. As shown in Fig. I (right), the bunch
domain £2gych (the shadowed domain) lies in the center of the computational
domain £2. In this case, of course, all terms with zero charge density p (factor of
the tilde Green’s function) can be omitted in the summation of (3). Based on the
convolution theory, the irrelevance of these terms should be still true if we take
a Fourier transform and use it in the fast Poisson solver. Therefore, the CIGF [4]
integral is recommended for high efficiency:

Gior(xi,yj»z), (1, 1,1) < (i,j, k) < (Cy, Cy, Cy);

G Xiy Vis L = 1
crcr(Xi Yj K) 0, otherwise;

On Several Green’s Function Methods for Fast Poisson Solver in Free Space 97

where (Cy, Cy, C;) is determined by the domain-bunch ratio @, = L Bunch/
L. Domain> Lw is the length for w in {x,y,z} and C, = [(2 + a,)/2a,]. The
CIGF is as accurate as the IGF. For far-bunch domain space charge simulation,
the CIGF integral is efficient and does not waste calculations. When the near-bunch
domain simulation takes place, the CIGF is not valid anymore. However, the RIGF
can always be applied.

In total, we have the following CRIGF integral: The combination of RIGF and
CIGF as the CRIGF should be more efficient than the pure CIGF for the same
problem,

_ @IGF(xivijzk)v (15 17 1) E (isjs k) E (vaRvaZ);
Gericr(%i, ¥, 2) = § Gor(xi, ¥, 2k), (Re, Ry, R;) < (i,j, k) < (Cx, Cy, C,);
0, otherwise;

where (Cy, Cy, C;) and (R,, R, R;) are chosen as above.

In order to make the calculation of (3) more efficient, we should implement it as
a cyclic convolution. The charge density p,, is obtained by padding p with zeros in
all expansion grid points, the tilde Green’s function G is expanded symmetrically
as Gex. Using 3D discrete Fourier transformation § and convolution theory, the
expanded potential expression is given by:

1

[@exliji = Feog_l ([5Gl - [8 Pexlijik f2n, 28, 2N. -)

The routine of (9) can be further improved with respect to both- less storage
requirement and less time consumption [1]. We use a similar procedure. Then, the
storage requirement of the convolution method is 2N, x N, x N, plus two temporary
2D arrays sized 2N, X N, and 2N, x 2N . In fact, our algorithm uses a pruned Fourier
transform, whose purpose is to save time while avoiding the wasteful transforms of
zeros in each direction.

4 Discussions and Examples

We regard a uniformly charged ellipsoid to achieve an analytical validation. For the
longitudinal-to-transverse ratio, we choose 30. The domain-bunch ratio is 2. The
relative errors are defined as follows:

|§0iJ,k - (ptme,-t,;k|

Ne(i,j, k) := ’
max;; k |(Ptmei.j.k I

and 7, := max(n, (i.j. k).

Here, the notations are, 1y (i, /, k), fly, ¢ijx and @iue;;, as the relative error of the
potential at index (i,], k), the global relative error of the potential, the computed

98 D. Zheng and U. van Rienen

003 GF
+ 004 CRIGF
0 * I + i & ;
- GF IGF RIGF CIGF CRIGF ‘g 005
<, s
g § e
= @
- 05 + 1 o 005
& + o i
20 + " s ; " &0y
w " GIF IGF RIGF (:af;F CR!GF & 005 ‘-.\\
b + N=257 00 \
+ 0005 - o -
0 + : + " Py o .- hmirumnia. |
GF IGF RIGF CIGF CRIGF 40 S50 B0 7O B0 %W 100 110 120
Different GF integrals Grid number N

Fig. 2 (Left): Comparison of different Green’s function integrals’ elapsed time with increasing
grid resolution. (Right): Convergence study of CRIGF, IGF and GF method

potential at index (i, j, k) and the true potential for the same index, respectively. The
algorithm is implemented in C language on an Intel 2.6 GHz CPU.

Firstly, we compare the computation time of different GF integrals with increas-
ing grid resolution as shown in Fig. 2 (left). Here N = N,,, R, = 8 withwin {x, y, z}.
RIGF is nearly 10 times faster than IGF, while CRIGF is more than 20 times faster
for a domain-bunch ratio of 2. In Fig. 2 (right), we study the convergence of CRIGF
with s = 2 for the accuracy control comparing to IGF and GF. As we can see, the
CRIGF method agrees very well with the IGF method.

The whole implementation is carried out by using the FFTW [5] package. For
the serial algorithm, the speed-up is around 15-25 % including the calculation of
the discrete convolution. This needs to be further improved, since the convolution’s
calculation still takes most of the computational time. The efficiency results will
be updated in our future studies, either by implementing a parallel algorithm or by
applying a different discrete convolution routine.

5 Conclusion

In this paper, we introduced a 3D RIGF Poisson solver together with a routine
called CRIGF method for beam dynamics simulations. We tested the new method
with a model problem. On the practical side, RIGF is less time consuming, while it
achieves almost the same accuracy as IGF for the electric potential. So we suggest
to use the CRIGF routine rather than the IGF in order to speed up calculations.

On Several Green’s Function Methods for Fast Poisson Solver in Free Space 99

References

1. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. Institute of Physics
Publishing, Bristol (1992)

2. Qiang, J., Lidia, S., Ryne, R.D., Limborg-Deprey, C.: Three-dimensional quasistatic model for
high brightness beam dynamics simulation. Phys. Rev. ST Accel. Beams 9:044204 (2006)

3. Qiang, J., Lidia, S., Ryne, R.D., Limborg-Deprey, C.: Erratum: three-dimensional quasistatic
model for high brightness beam dynamics simulation. Phys. Rev. ST Accel. Beams 10:129901
(2007)

4. Zheng, D., Markovik, A., Poplau, G., van Rienen, U.: Study of a fast convolution method for
solving the space charge fields of charged particle bunches. Proc. IPAC 418-420 (2014)

5. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93:216-231
(2005)

	On Several Green's Function Methods for Fast Poisson Solver in Free Space
	1 Introduction
	2 GF, IGF and RIGF Integral for Poisson's Equation
	3 CRIGF Method for Poisson's Equation
	4 Discussions and Examples
	5 Conclusion
	References

