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Abstract We discuss the strategies for the calculation of quantum transport in dis-
ordered graphene systems from the quasi-one-dimensional to the two-dimensional
limit. To this end, we employ real- and momentum-space versions of the non-
equilibrium Green’s function formalism along with acceleration algorithms that
can overcome computational limitations when dealing with two-terminal devices of
dimensions that range from the nano- to the micro-scale. We apply this formalism
for the case of rectangular graphene samples with a finite concentration of single-
vacancy defects and discuss the resulting localization regimes.

1 Introduction

Methodological approaches for the calculation of quantum transport in non-ideal
systems are often compromised by computational restrictions, as complex arith-
metics and matrix operations that can involve N3 processes (where N �N are matrix
dimensions) may be necessary. The problem increases when simulations are used for
the interpretation of experimental results, as sample dimensions of real devices often
range from nanometers to micrometers. It is therefore important to define strategies
for the calculation of the conduction characteristics of two-terminal systems with
comparable structural characteristics as in real-world experiments. A particular
case within this context is the calculation of quantum transport in two-dimensional
systems like graphene [1], where disorder is inherently found due to the membrane-
like structure of the material, in the form of defects [2] or due to interaction with
external parameters like the metallic contacts [3] or the substrate [4]. Additionally,
disorder can be engineered through ion-beam processes [5], nano-pattering and
nano-lithography [6] or through chemical funtionalization [7]. In all cases, the
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intrinsic conduction characteristics of the graphene system get significantly altered,
with alterations being strongly related to the defect-type or interaction. Such direct
relationship between the resulting conduction alteration and its defect origin, make
the quantum treatment of transport in graphene-based systems indispensable.

In this paper we discuss strategies for the statistical calculation of quantum
transport in disordered graphene systems based on a multiscale approach for the
description of the electronic structure and the non-equilibrium Green’s function
formalism [8]. We pay particular attention to the computational techniques that can
allow for the calculation of the conduction variations when gradually passing from
the quasi-one-dimensional limit (graphene nanoribbons) to the two-dimensional
case (graphene). We finally discuss localization phenomena, the formation of
conduction gaps, transport length scales and conductance characteristics for single-
vacancy defected graphene.

2 Methodology

Quantum transport is calculated in two-terminal graphene devices, i.e. devices that
comprise of a single graphene channel of finite dimensions in contact with two semi-
infinite leads. For the sake of simplicity here we consider ideal contacts, i.e. contacts
made of graphene with the same lateral width as the channel material. We start from
the single-particle retarded Green’s function matrix

G r."/ D Œ"S � H � ˙L � ˙R��1; (1)

where " is the energy, H the real-space Hamiltonian and S the overlap matrix, which
in the case of an orthonormal basis set is identical with the unitary matrix I. ˙L;R are
self-energies that account for the effect of ideal semi-infinite contacts, which can be
calculated as:

˙L.R/ D �
�

L.R/gL.R/�L.R/ (2)

Here �L;R are interaction Hamiltonians that describe the coupling between the
contacts and the device and gL;R the surface Green functions of the contacts, which
can be computed through optimized iterative techniques [9]. The transmission
probability of an incident Bloch state with energy " can be thereon computed as
the trace of the following matrix product:

T."/ D Trf�LG
r�RŒG r��g; (3)

where

�L.R/ D if˙L.R/ � Œ˙L.R/�
�g (4)
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are the spectral functions of the two contacts. The reflection coefficient of a single
quantum channel can be defined as R D 1 � T. According to the Landauer-Buttiker
theory [8], conductance can be calculated as:

G D 2e2

h
T; (5)

where G0 D 2e2=h � 77:5�S is the conductance quantum.
The electronic structure of graphene can be easily calculated within a next-

neighbor tight-binding (TB) model. Such a description accounts only for the linear
combination of � atomic orbitals of graphene, which is however sufficient for the
low-energy spectrum of the material. Hence, the next-neighbor TB Hamiltonian can
be written as

H D �t
X

<i;j>;�

c�
i;� cj;� C H:c:; (6)

where ci.c
�
i / is the annihilation (creation) operator for an electron with spin � at

site i, and t is the hopping integral with a typical value t D 2:7 eV. As the objective
of the study is to calculate the transport properties of disordered graphene, here we
consider the presence of a single type of defect, i.e. carbon vacancies. The simplest
and most common method to include a vacancy in a site i of the graphene lattice
is to remove its � electron from the model by switching to infinite the related on-
site energy term "i in the Hamiltonian, or equivalently, by switching to zero the
hopping tij terms between the defected and the neighboring sites. However, a more
accurate treatment of the resulting defect states within the electronic spectrum has to
take into account the structural reconstruction around the defected site. A method to
incorporate such information within the TB model is to perform calculations with
methods of higher accuracy (e.g. the density functional theory) and calibrate the
TB Hamiltonian in order to reproduce the ab initio results. Here, based on density
functional theory calculations of defected graphene quantum dots [10], the tuned
values of the on-site energy of the defect site and the hopping integrals between this
and neighboring sites have been set to "i D 10 eV and tij D 1:9 eV, respectively. This
example is a typical paradigm of the multiscale approach often used for conductance
calculations in doped and defected graphene systems.

The previous formalism can be considered as the base-formalism for the
calculation of quantum transport in laterally confined graphene systems, as the
device Hamiltonian H is written in real space. Considering that direct matrix
inversions needed for the calculation of the Green function require N3 operations,
it becomes obvious that such an approach can be solely applied for rather short
graphene nanoribbons, i.e. laterally confined stripes of graphene. Notwithstanding
the computational power offered by modern processing units, it is difficult for
this non-optimized approach to reach dimensions higher than the nanoscale. This
aspect introduces a non-negligible problem, especially when direct comparisons
between theory and experiments are needed, as graphene samples used for electrical
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measurements often have �m dimensions. It is then obvious that new methodologies
as well as optimized numerical approaches are crucial for the calculation of quantum
transport in such systems. Scaling as a function of the device length can be achieved
by taking advantage of the sparsity in the matrices used within the transport
formalism (e.g. Hamiltonian and overlap matrices), in order to reduce the required
computations. A linear scaling of matrix operations with the system size can be
reached through O.N/ techniques [11, 12] by creating tridiagonal blocks within the
device Hamiltonian. However, even in this case, scalability is limited to the device
length, whereas the lateral confinement remains a problem.

A way to overcome the lateral scalability problem in the quantum transport
calculation of disordered graphene structures is to consider systems with lateral
periodicity and use the discretization of the wave vector perpendicular to the
transport direction in order to define the width of the device. Hence, in this case
the electronic structure description starts with the k-space Hamiltonian matrix

H.k?/ D
X

m

Hnmeik? � .dm�dn/; (7)

where k? is the Bloch wave vector within the first Brillouin zone and matrices Hnm

are written in real space on the previously discussed TB basis set, noting that for
n ¤ m, Hnm are interaction matrices between neighboring unit cells, whereas in
the case of n D m, Hnn refers to the Hamiltonian matrix of unit cell n. The single-
particle retarded Green’s function matrix then becomes

G r
k?

."/ D Œ"Sk? � Hk? � ˙L;k? � ˙R;k? ��1; (8)

whereas all equations of the non-equilibrium Green’s function formalism maintain
the same form. The total conductance of the system in this case is the sum of
the single conductances calculated at each sampled k-point and the total width of
the device is W D T? � nk, where T? is the translation vector and nk the total
number of k-points for the � ! X path of the rectangular Brillouin zone. We note
here that the device unit cell can be any rectangular graphene ribbon that can be
periodically repeated along the direction which is perpendicular to transport, with
the smallest possible cell being adequate for calculations in ideal (non-defected)
systems or systems with line defects parallel to the contacts. However, when random
defectiveness is the case, the use of rectangular supercells is mandatory. In this case
the bigger the periodic supercell used for each k-point calculation, the smaller the
error due to periodicity will be. Finally, particular attention has to be paid when
performing statistical calculations in disordered graphene systems. Here statistical
variations (e.g. the fluctuations of the conductance) can only be correctly evaluated
by the real-space formalism, whereas statistical means (e.g. the total conductance)
can be correctly evaluated by both real- and momentum space formalisms.
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3 Results

3.1 Ideal Graphene

The conductance of ideal graphene systems is characterized by significant qual-
itative variations when quantum confinement becomes important, i.e. in the case
of narrow graphene nanoribbons. In this case the formation of sub-bands in the
electronic structure [13] gives rise to integer plateaus in the calculated conductance.
Figure 1 shows the ideal conductance of graphene nanoribbons with armchair-type
edges and variable widths. It is important to note that within the nearest-neighbor TB
picture, narrow armchair ribbons can be either metallic or semiconducting, strictly
based on the number of dimer lines that define their width. A simple geometric rule
deriving from such calculation shows that 8p 2 N, ribbons with Na D 3p C 2

dimer lines are metallic while the rest are semiconducting. The main differences
observed in the calculated conductance when gradually increasing the lateral width
W of the ribbons are: (a) the total conductance proportionally increases with W,
as new conduction channels are added to the device, (b) the conductance plateaus
progressively become smaller and (c) the band gaps (when they exist) also follow a
decreasing trend. From Fig. 1 it is also clear to see that after a transition range when
W � 50 � 100 nm, both conductance plateaus and bandgaps become extremely
small and the V-shape of two-dimensional graphene conductance appears. A further
increase of W only gives rise to quantitative differences whereas the conductivity of
the system remains the same.

Considering calculations in ideal systems, the transport signatures of both one-
and two-dimensional graphene should be clearly identifiable in experiments, as
in the former case conductance plateaus should appear, whereas in the latter
the conductance should reveal a V-shape. In practice, experimentally it is very

Fig. 1 Ideal conductance of graphene ribbons with armchair-type edges and variable widths
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difficult to demonstrate a quantized graphene conductance even for very narrow
graphene ribbons [14]. The origin of this discrepancy is often identified in the
presence of disorder, in the form of either structural defects or in the interaction
between graphene and its substrate or contacts. It therefore becomes clear that
the calculation of quantum transport in graphene considering plausible sources of
disorder is fundamental for the correct assessment of the experimental results by the
simulations.

3.2 Defected Graphene

Structural defects are very common in graphene samples as they can be generated
during the mechanical, chemical or epitaxial growth process. Apart from the local
transformation of the hexagonal graphene lattice, such defects give rise to quasi-
localized states within the eigenspectrum [15] with resonances that are characteristic
of the defect type [16]. The simplest structural defect in graphene is the single
vacancy, whose defect states have resonances which impact more heavily on the
valence band of the low-energy spectrum rather than on the conduction band,
resulting in a conductance asymmetry [17]. Considering a disordered graphene
system with just this type of defect, it is very interesting to visualize the alterations
of the conductance characteristics as well as the transition of the various localization
regimes when altering the geometrical characteristics of the devices.

Figure 2 shows conductance means (solid lines) and fluctuations (points) for a
statistical calculation of 100 replicas of a graphene system with fixed W D 9:88 nm
and defect concentration 0.5 %, while scaling the device length L from 20 to
212 nm. Starting from L D 20 nm, the conductance distribution has the following
characteristics: (a) the ideal symmetry of the graphene conductance around the
charge neutrality point breaks, as a result of the resonances of the single-vacancy
states that have a higher density at the valence band of the system rather than the

Fig. 2 Scaling of the conductance distribution as a function of length for a graphene nanoribbon
with W D 9:88 nm and a fixed vacancy concentration of 0.5 %. Solid lines represent the mean
conductance obtained from 100 different configurations of the system (shown as points)
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conduction band. In particular a defect state at " � �0:35 eV gives rise to a local
dip of the conductance. (b) Notwithstanding the ideal conductance of this system is
characterized by plateaus due to its relatively small width (see Fig. 1), the presence
of defects suppresses such feature. It can be therefore argued that even for relatively
low defect concentrations it is very difficult to recover quantization features in the
conductance. (c) Conductance fluctuations are present throughout the calculated
energy spectrum with the conductance variation being ıG � 2e2=h, implying a
weak localization regime with universal conductance fluctuations regardless of the
number of conduction channels. By gradually increasing the length of the device
the following conductance alterations can be seen: (a) the total conductance of
the system follows a decreasing trend as a result of the increase of the scattering
processes within the device. (b) A transport gap opens at an energy range �0:5 eV �
" � 0 eV due to the total scattering of the electron waves at such energies from the
defect states. It is also very important to see that at this energy region the opening
of such a transport gap is accompanied by a strong suppression of the conductance
fluctuations ıG, which also defines a change in the localization regime. A method
for defining if a disordered system operates within the weak or strong localization
regimes is by calculating its characteristic localization length 	 from:

< G >/ e� 2L
	 (9)

Then, a system with fixed W and defect concentration can be characterized as being
in the weak localization regime if the device length L � 	, and similarly, being
in the strong localization regime if L 	 	. For the case of the ribbon of Fig. 2 the
calculated value of 	 for " D �0:15 eV (i.e. an energy value within the transport gap)
is found to be 39.24 nm, implying that for the two configurations with L D 105 nm
and L D 212 nm, the system is within the strong localization regime at this energy.
It is important to note that the localization length strongly depends on the density
of defects. Table 1 shows the calculated 	 for the graphene ribbon of W D 9:88 nm
and single-vacancy concentrations of 0.2, 0.5, 1, and 2 % at energy " D �0:15 eV.
It is clear that 	 becomes smaller as the defect concentration increases.

The influence of the device geometry on the conductance distribution of a
disordered graphene system is also important when scaling concerns its lateral
width. Figure 3 shows conductance means (solid lines) and fluctuations (points) for
a statistical calculation of 100 replicas of a graphene system with fixed L D 20 nm
and defect concentration (0.5 %),while varying the device width W from 4.3 to
21 nm. Apart from a gradual increase of the conductance due to the insertion of new

Table 1 Localization length
	 for a graphene nanoribbon
with width W D 9:88 nm and
single-vacancy concentrations
of 0.2, 0.5, 1, and 2 % at
energy " D �0:15 eV

Vac. (%) 	 (nm)

0.2 50.40

0.5 39.24

1.0 28.39

2.0 25.64
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Fig. 3 Scaling of the conductance distribution as a function of width for a graphene nanoribbon
with L D 20 nm and a fixed vacancy concentration of 0.5 %. Solid lines represent the mean
conductance obtained from 100 different configurations of the system (shown as points)

conductance channels as the device becomes larger, there are also some qualitative
aspects that denote transitions between localization regimes. In particular, it is
clear that in the narrower graphene ribbons (W D 4:3 nm and W D 6:2 nm) the
defect concentration is high enough for the creation of transport gaps at energy
resonances relative to single-vacancy defect states, where also the conductance
fluctuations are partially suppressed. Such characteristics are typical of the strong
localization regime for disordered graphene nanoribbons. On the contrary, the same
defect concentration fails in opening a transport gap for wider ribbons, and similarly,
the conductance fluctuations recover characteristics which can be attributed to the
weak localization regime. The key issue that emerges here is that for the same
level of disorder, strong localization can be achieved easier for narrower graphene
samples rather than for wider ones. Another important issue regards the conductance
fluctuations ıG in the weak localization regime, which appear to be independent
from the width of the device, maintaining a fixed value around the conductance
mean.

A further increase of the width for the disordered graphene ribbon shows that
above a certain value of W, differences become only quantitative, as the total
conductance increases proportionally with W. Figure 4 shows the mean conductance
calculated for a graphene system with L D 20 nm, W D 39:4 nm and the same
defect concentration as before. For this calculation the k-space formalism has been
employed, using a rectangular graphene supercell of L D 20 nm and W D 9:88 nm,
while sampling the Brillouin zone � ! X path at nk D 4 k-points (we note that the
k-point sampling is not arbitrary, but considers an equidistant separation of the entire
� ! X ! � path in Œ2�nk C1� regions). Further increases of the width practically
give rise to the same conductivity. This aspect brings to discussion the definition of
the transition range between quasi-one-dimensional and two-dimensional transport.
Our calculations show that such transition depends on the concentration of the
defects, with systems having higher concentrations transiting faster towards the
two-dimensional limit. In all cases, the presence of disorder should facilitate the
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Fig. 4 Mean conductance as a function of energy for a graphene ribbon with W D 39:4 nm,
L D 20 nm and a fixed vacancy concentration of 0.5 %. The mean value has been calculated over
100 replicas of equivalent systems with variable random positions of the defect sites

transition of a graphene system to the two-dimensional situation with respect to the
ideal case (see Fig. 1).

4 Discussion

The objective of this paper has been to discuss the computational strategies for
the calculation of quantum transport in disordered graphene systems, in a way
that these can be relevant to experimental conductance measurements. To this
end, both real- and momentum-space formulations of the non-equilibrium Green’s
function formalism have been employed along with acceleration algorithms that
can make calculations computationally more affordable. Within this context, the
paper has tried to evidence that the dimensions of the graphene channels as well
as their level of disorder can be fundamental for the manifestation of different
transport features and localization regimes. As a general picture, our results have
evidenced that narrow graphene nanoribbons are more influenced by defectiveness
with respect to wider ones, as the strong localization regime can be reached easier.
We have moreover seen that disorder facilitates the transition of the conduction
characteristics from the one-dimensional to the two-dimensional limit.

Although the level of knowledge regarding quantum transport calculations in
graphene-based systems is by now well consolidated, there are still plenty of
challenges and open issues that have to be affronted in the forthcoming years. A
first aspect has to do with the level of complexity in the modeling of defectiveness,
as often calculations consider single-type defects, contrary to the intrinsically more
complex experimental scenario. A second issue regards the correct assignment
of statistical distributions in quantities like the conductance fluctuations [17, 18],
especially in the presence of asymmetric disorder (e.g. when defect states are not
symmetric with respect to the charge neutrality point). Finally an important issue
remains the calculation of disorder effects on the transport characteristics of two-
dimensional materials beyond graphene, as in most cases the nearest-neighbor TB
Hamiltonian is not adequate for these systems.
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