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Preface

From July 22 until July 25, 2014, the 10th International Conference on “Scientific
Computing in Electrical Engineering” (SCEE) was held in Wuppertal, Germany. It
was jointly organized by the Chair of Applied Mathematics and Numerical Analysis
and the Chair of Electromagnetic Theory, Bergische Universität Wuppertal.

Due to a generous donation, we were able to use the beautiful Historische
Stadthalle Wuppertal as our conference venue: a remarkable building in Wil-
helminian style, which was inaugurated in 1900. There we welcomed our partici-
pants in the Offenbach Saal for all our talks, and we had registration, poster sessions,
conference cafe, and personal meetings in the impressive Wandelhalle.

The tenth edition of the SCEE brought together more than 90 scientists from
the fields of applied mathematics, electrical engineering, and the computer sciences
as well as scientists from industry. Again, it created an excellent working atmo-
sphere, especially due to its unique workshop character, where all talks and poster
introductions were presented in the plenary. In addition, we had very clear talks
and poster presentations, lively and fruitful discussions, and a great deal of personal
networking.

We had a large variety of different talks from excellent invited scientists
representing both academia and industry, including an inspiring opening talk by
Stéphane Clénet. Our keynote speakers were (in alphabetical order):

Piergiorgio Alotto (Università di Padova, Italy), “Parallelization and Sparsifica-
tion of a Surface-Volume Integral Code for Plasma-Antenna Interaction”
Stéphane Clénet (Arts & Métiers ParisTech, France), “Approximation Methods
to Solve Stochastic Problems in Computational Electromagnetics”
Andreas Frommer (University of Wuppertal, Germany), “Computing f .A/b: The
Action of a Matrix Function on a Vector”
Daniel Klagges (Kostal GmbH & Co. KG, Germany), “Simulation of Power
Electronics in Automotive Product Development”
Antonino La Magna (CNR Catania, Italy), “Graphene Nano-device Design from
First Principles Calculations”

v
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Markus Pistauer (CISC Semiconductor GmbH, Austria), “High-Level Simula-
tion of Cyber-Physical Systems”
Joost Rommes (Mentor Graphics, France), “Different Views on Model-Order
Reduction for the Electronics Industry”
Sebastian Schöps (TU Darmstadt, Germany), “Iterative Schemes for Coupled
Multiphysical Problems in Electrical Engineering”

Participants of the SCEE 2014 at Schloss Burg, Germany

The topics above are representative of the conference’s range. From Tuesday to
Friday, we had a total of 30 oral presentations. And in two sessions, 24 posters were
presented and discussed.

A special highlight of the SCEE 2014 was our conference excursion to the nearby
Wupper valley. Starting at the “Müngstener Brücke” bridge, we went on a small
hike, following the river to “Schloss Burg.” Visiting the charming residence of
the “Counts of Berg,” we were told the history of the region “Bergisches Land”
and enjoyed a joint dinner, where many ideas and new research directions were
discussed.

The book in your hands collects the conference outcomes as proceeding papers.
All these papers have successfully passed a standard peer review process. The
contributions are divided into five parts, which reflect the main focus areas of the
SCEE 2014:

I Device Modeling, Electric Circuits, and Simulation
II Computational Electromagnetics

III Coupled Problems
IV Model-Order Reduction
V Uncertainty Quantification



Preface vii

In the end, we feel we have compiled a very useful and interesting collection. We
wish to thank all the participants for their valued contributions to the SCEE 2014
and to this book.

Wuppertal, Germany Andreas Bartel
November 2015 Markus Clemens

Michael Günther
E. Jan W. ter Maten
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Part I
Device Modelling, Electric Circuits

and Simulation

Today’s electric and electronic industries rely heavily on computer aided engineer-
ing tools. The high complexity of devices and the increasing speed of innovation
cycles necessitate virtual prototyping. This allows such production at a competitive
time to market because virtual experiments are faster and cheaper than their physical
ancestors. Thus numerical tools for those simulations play a key role in the electrical
engineering industry. The research focuses in particular on (a) improving the
general efficiency and robustness of simulations and (b) the interaction/coupling
of multiphysical problems.

The former focus is addressed by Bittner and Brachtendorf in ‘Latency Exploita-
tion in Wavelet-based Multirate Circuit Simulation’ in the case of Design Automa-
tion of radio frequency (RF) circuits, where the information signal or envelope is
modulated by a carrier signal with a center frequency typically in the GHz range.
To overcome the prohibitively small time steps in transient simulation demanded by
Nyquist’s sampling theorem, multirate schemes can be used that transform the DAE
network equations into a system of partial DAEs, for short PDAEs. To even speed up
classical multirate strategies, wavelet techniques are used combined with subcircuit
partitioning strategies to exploit the latencies in different parts of the circuit.

The latter focus is addressed by Ciuprina et al. in ‘Mixed Domain Macromodels
for RF MEMS Capacitive Switches’ for RF applications again, which follows the
companion model approach for a multiphysical device, i.e., instead of simulating
the coupled PDE models directly one replaces the device by a subcircuit model,
which can be used within circuit simulation packages directly. Here a method is
discussed to extract macromodels for radio frequency micromechanical switches,
for short RF MEMS switches, which preserve both the multiphysical and the RF
behaviour of the device. The outcome is a Spice model, which is controlled by the
MEMS actuation voltage and is excited with the RF signal. The modelling errors
obtained range from 1 % for the mechanical characteristics to less than 3 % for the
RF characteristics.

With decreasing dimensions, new materials attract more attention such as
graphene. Deretzis, Romano, and La Magna discuss in ‘Electron quantum transport
in disordered graphene’ computational strategies for the calculation of quantum
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transport in disordered graphene systems from the quasi-one-dimensional to the
two-dimensional limit. Usally these strategies suffer from cubic computational
costs. Different versions of the non-equilibrium Green’s function formalism along
with acceleration algorithms can overcome these computational limitations when
dealing with two-terminal devices of dimensions that range from the nano- to the
micro-scale.

Despite the focus on more computational aspects, some problems in nonlinear
circuit theory are still unsolved, which are important from both an analytical
and a numerical point of view. A problem in bifurcation theory is discussed by
de la Vega and Riaza in ‘Turning points of nonlinear circuits’, which focuses
on quadratic turning points. These points may yield saddle-node bifurcations,
describing qualitative changes in the solutions. Existence conditions for these points
are generlized from the ODE case to the case of semi-explicit DAEs, leading
to a characterization in terms of the underlying circuit digraph and the devices’
characteristics.



Electron Quantum Transport in Disordered
Graphene

I. Deretzis, V. Romano, and A. La Magna

Abstract We discuss the strategies for the calculation of quantum transport in dis-
ordered graphene systems from the quasi-one-dimensional to the two-dimensional
limit. To this end, we employ real- and momentum-space versions of the non-
equilibrium Green’s function formalism along with acceleration algorithms that
can overcome computational limitations when dealing with two-terminal devices of
dimensions that range from the nano- to the micro-scale. We apply this formalism
for the case of rectangular graphene samples with a finite concentration of single-
vacancy defects and discuss the resulting localization regimes.

1 Introduction

Methodological approaches for the calculation of quantum transport in non-ideal
systems are often compromised by computational restrictions, as complex arith-
metics and matrix operations that can involve N3 processes (where N�N are matrix
dimensions) may be necessary. The problem increases when simulations are used for
the interpretation of experimental results, as sample dimensions of real devices often
range from nanometers to micrometers. It is therefore important to define strategies
for the calculation of the conduction characteristics of two-terminal systems with
comparable structural characteristics as in real-world experiments. A particular
case within this context is the calculation of quantum transport in two-dimensional
systems like graphene [1], where disorder is inherently found due to the membrane-
like structure of the material, in the form of defects [2] or due to interaction with
external parameters like the metallic contacts [3] or the substrate [4]. Additionally,
disorder can be engineered through ion-beam processes [5], nano-pattering and
nano-lithography [6] or through chemical funtionalization [7]. In all cases, the

I. Deretzis • A. La Magna (�)
Istituto per la Microelettronica e Microsistemi (CNR-IMM), Z.I. VIII strada 5, 95121 Catania,
Italy
e-mail: ioannis.deretzis@imm.cnr.it; antonino.lamagna@imm.cnr.it

V. Romano
Dipartimento di Matematica e Informatica, Università di Catania, Via A. Doria 6, 95125 Catania,
Italy

© Springer International Publishing Switzerland 2016
A. Bartel et al. (eds.), Scientific Computing in Electrical Engineering, Mathematics
in Industry 23, DOI 10.1007/978-3-319-30399-4_1
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4 I. Deretzis et al.

intrinsic conduction characteristics of the graphene system get significantly altered,
with alterations being strongly related to the defect-type or interaction. Such direct
relationship between the resulting conduction alteration and its defect origin, make
the quantum treatment of transport in graphene-based systems indispensable.

In this paper we discuss strategies for the statistical calculation of quantum
transport in disordered graphene systems based on a multiscale approach for the
description of the electronic structure and the non-equilibrium Green’s function
formalism [8]. We pay particular attention to the computational techniques that can
allow for the calculation of the conduction variations when gradually passing from
the quasi-one-dimensional limit (graphene nanoribbons) to the two-dimensional
case (graphene). We finally discuss localization phenomena, the formation of
conduction gaps, transport length scales and conductance characteristics for single-
vacancy defected graphene.

2 Methodology

Quantum transport is calculated in two-terminal graphene devices, i.e. devices that
comprise of a single graphene channel of finite dimensions in contact with two semi-
infinite leads. For the sake of simplicity here we consider ideal contacts, i.e. contacts
made of graphene with the same lateral width as the channel material. We start from
the single-particle retarded Green’s function matrix

G r."/ D Œ"S �H �˙L �˙R�
�1; (1)

where " is the energy, H the real-space Hamiltonian and S the overlap matrix, which
in the case of an orthonormal basis set is identical with the unitary matrix I.˙L;R are
self-energies that account for the effect of ideal semi-infinite contacts, which can be
calculated as:

˙L.R/ D ��L.R/gL.R/�L.R/ (2)

Here �L;R are interaction Hamiltonians that describe the coupling between the
contacts and the device and gL;R the surface Green functions of the contacts, which
can be computed through optimized iterative techniques [9]. The transmission
probability of an incident Bloch state with energy " can be thereon computed as
the trace of the following matrix product:

T."/ D Trf�LG
r�RŒG

r��g; (3)

where

�L.R/ D if˙L.R/ � Œ˙L.R/�
�g (4)
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are the spectral functions of the two contacts. The reflection coefficient of a single
quantum channel can be defined as R D 1� T. According to the Landauer-Buttiker
theory [8], conductance can be calculated as:

G D 2e2

h
T; (5)

where G0 D 2e2=h � 77:5�S is the conductance quantum.
The electronic structure of graphene can be easily calculated within a next-

neighbor tight-binding (TB) model. Such a description accounts only for the linear
combination of � atomic orbitals of graphene, which is however sufficient for the
low-energy spectrum of the material. Hence, the next-neighbor TB Hamiltonian can
be written as

H D �t
X

<i;j>;�

c�i;�cj;� C H:c:; (6)

where ci.c
�
i / is the annihilation (creation) operator for an electron with spin � at

site i, and t is the hopping integral with a typical value t D 2:7 eV. As the objective
of the study is to calculate the transport properties of disordered graphene, here we
consider the presence of a single type of defect, i.e. carbon vacancies. The simplest
and most common method to include a vacancy in a site i of the graphene lattice
is to remove its � electron from the model by switching to infinite the related on-
site energy term "i in the Hamiltonian, or equivalently, by switching to zero the
hopping tij terms between the defected and the neighboring sites. However, a more
accurate treatment of the resulting defect states within the electronic spectrum has to
take into account the structural reconstruction around the defected site. A method to
incorporate such information within the TB model is to perform calculations with
methods of higher accuracy (e.g. the density functional theory) and calibrate the
TB Hamiltonian in order to reproduce the ab initio results. Here, based on density
functional theory calculations of defected graphene quantum dots [10], the tuned
values of the on-site energy of the defect site and the hopping integrals between this
and neighboring sites have been set to "i D 10 eV and tij D 1:9 eV, respectively. This
example is a typical paradigm of the multiscale approach often used for conductance
calculations in doped and defected graphene systems.

The previous formalism can be considered as the base-formalism for the
calculation of quantum transport in laterally confined graphene systems, as the
device Hamiltonian H is written in real space. Considering that direct matrix
inversions needed for the calculation of the Green function require N3 operations,
it becomes obvious that such an approach can be solely applied for rather short
graphene nanoribbons, i.e. laterally confined stripes of graphene. Notwithstanding
the computational power offered by modern processing units, it is difficult for
this non-optimized approach to reach dimensions higher than the nanoscale. This
aspect introduces a non-negligible problem, especially when direct comparisons
between theory and experiments are needed, as graphene samples used for electrical
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measurements often have�m dimensions. It is then obvious that new methodologies
as well as optimized numerical approaches are crucial for the calculation of quantum
transport in such systems. Scaling as a function of the device length can be achieved
by taking advantage of the sparsity in the matrices used within the transport
formalism (e.g. Hamiltonian and overlap matrices), in order to reduce the required
computations. A linear scaling of matrix operations with the system size can be
reached through O.N/ techniques [11, 12] by creating tridiagonal blocks within the
device Hamiltonian. However, even in this case, scalability is limited to the device
length, whereas the lateral confinement remains a problem.

A way to overcome the lateral scalability problem in the quantum transport
calculation of disordered graphene structures is to consider systems with lateral
periodicity and use the discretization of the wave vector perpendicular to the
transport direction in order to define the width of the device. Hence, in this case
the electronic structure description starts with the k-space Hamiltonian matrix

H.k?/ D
X

m

Hnmeik? � .dm�dn/; (7)

where k? is the Bloch wave vector within the first Brillouin zone and matrices Hnm

are written in real space on the previously discussed TB basis set, noting that for
n ¤ m, Hnm are interaction matrices between neighboring unit cells, whereas in
the case of n D m, Hnn refers to the Hamiltonian matrix of unit cell n. The single-
particle retarded Green’s function matrix then becomes

G r
k?
."/ D Œ"Sk?

�Hk?
�˙L;k?

�˙R;k?
��1; (8)

whereas all equations of the non-equilibrium Green’s function formalism maintain
the same form. The total conductance of the system in this case is the sum of
the single conductances calculated at each sampled k-point and the total width of
the device is W D T? � nk, where T? is the translation vector and nk the total
number of k-points for the � ! X path of the rectangular Brillouin zone. We note
here that the device unit cell can be any rectangular graphene ribbon that can be
periodically repeated along the direction which is perpendicular to transport, with
the smallest possible cell being adequate for calculations in ideal (non-defected)
systems or systems with line defects parallel to the contacts. However, when random
defectiveness is the case, the use of rectangular supercells is mandatory. In this case
the bigger the periodic supercell used for each k-point calculation, the smaller the
error due to periodicity will be. Finally, particular attention has to be paid when
performing statistical calculations in disordered graphene systems. Here statistical
variations (e.g. the fluctuations of the conductance) can only be correctly evaluated
by the real-space formalism, whereas statistical means (e.g. the total conductance)
can be correctly evaluated by both real- and momentum space formalisms.
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3 Results

3.1 Ideal Graphene

The conductance of ideal graphene systems is characterized by significant qual-
itative variations when quantum confinement becomes important, i.e. in the case
of narrow graphene nanoribbons. In this case the formation of sub-bands in the
electronic structure [13] gives rise to integer plateaus in the calculated conductance.
Figure 1 shows the ideal conductance of graphene nanoribbons with armchair-type
edges and variable widths. It is important to note that within the nearest-neighbor TB
picture, narrow armchair ribbons can be either metallic or semiconducting, strictly
based on the number of dimer lines that define their width. A simple geometric rule
deriving from such calculation shows that 8p 2 N, ribbons with Na D 3p C 2

dimer lines are metallic while the rest are semiconducting. The main differences
observed in the calculated conductance when gradually increasing the lateral width
W of the ribbons are: (a) the total conductance proportionally increases with W,
as new conduction channels are added to the device, (b) the conductance plateaus
progressively become smaller and (c) the band gaps (when they exist) also follow a
decreasing trend. From Fig. 1 it is also clear to see that after a transition range when
W � 50 � 100 nm, both conductance plateaus and bandgaps become extremely
small and the V-shape of two-dimensional graphene conductance appears. A further
increase of W only gives rise to quantitative differences whereas the conductivity of
the system remains the same.

Considering calculations in ideal systems, the transport signatures of both one-
and two-dimensional graphene should be clearly identifiable in experiments, as
in the former case conductance plateaus should appear, whereas in the latter
the conductance should reveal a V-shape. In practice, experimentally it is very

Fig. 1 Ideal conductance of graphene ribbons with armchair-type edges and variable widths
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difficult to demonstrate a quantized graphene conductance even for very narrow
graphene ribbons [14]. The origin of this discrepancy is often identified in the
presence of disorder, in the form of either structural defects or in the interaction
between graphene and its substrate or contacts. It therefore becomes clear that
the calculation of quantum transport in graphene considering plausible sources of
disorder is fundamental for the correct assessment of the experimental results by the
simulations.

3.2 Defected Graphene

Structural defects are very common in graphene samples as they can be generated
during the mechanical, chemical or epitaxial growth process. Apart from the local
transformation of the hexagonal graphene lattice, such defects give rise to quasi-
localized states within the eigenspectrum [15] with resonances that are characteristic
of the defect type [16]. The simplest structural defect in graphene is the single
vacancy, whose defect states have resonances which impact more heavily on the
valence band of the low-energy spectrum rather than on the conduction band,
resulting in a conductance asymmetry [17]. Considering a disordered graphene
system with just this type of defect, it is very interesting to visualize the alterations
of the conductance characteristics as well as the transition of the various localization
regimes when altering the geometrical characteristics of the devices.

Figure 2 shows conductance means (solid lines) and fluctuations (points) for a
statistical calculation of 100 replicas of a graphene system with fixed W D 9:88 nm
and defect concentration 0.5 %, while scaling the device length L from 20 to
212 nm. Starting from L D 20 nm, the conductance distribution has the following
characteristics: (a) the ideal symmetry of the graphene conductance around the
charge neutrality point breaks, as a result of the resonances of the single-vacancy
states that have a higher density at the valence band of the system rather than the

Fig. 2 Scaling of the conductance distribution as a function of length for a graphene nanoribbon
with W D 9:88 nm and a fixed vacancy concentration of 0.5 %. Solid lines represent the mean
conductance obtained from 100 different configurations of the system (shown as points)
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conduction band. In particular a defect state at " � �0:35 eV gives rise to a local
dip of the conductance. (b) Notwithstanding the ideal conductance of this system is
characterized by plateaus due to its relatively small width (see Fig. 1), the presence
of defects suppresses such feature. It can be therefore argued that even for relatively
low defect concentrations it is very difficult to recover quantization features in the
conductance. (c) Conductance fluctuations are present throughout the calculated
energy spectrum with the conductance variation being ıG � 2e2=h, implying a
weak localization regime with universal conductance fluctuations regardless of the
number of conduction channels. By gradually increasing the length of the device
the following conductance alterations can be seen: (a) the total conductance of
the system follows a decreasing trend as a result of the increase of the scattering
processes within the device. (b) A transport gap opens at an energy range�0:5 eV �
" � 0 eV due to the total scattering of the electron waves at such energies from the
defect states. It is also very important to see that at this energy region the opening
of such a transport gap is accompanied by a strong suppression of the conductance
fluctuations ıG, which also defines a change in the localization regime. A method
for defining if a disordered system operates within the weak or strong localization
regimes is by calculating its characteristic localization length 	 from:

< G >/ e� 2L
	 (9)

Then, a system with fixed W and defect concentration can be characterized as being
in the weak localization regime if the device length L � 	, and similarly, being
in the strong localization regime if L 	 	. For the case of the ribbon of Fig. 2 the
calculated value of 	 for " D �0:15 eV (i.e. an energy value within the transport gap)
is found to be 39.24 nm, implying that for the two configurations with L D 105 nm
and L D 212 nm, the system is within the strong localization regime at this energy.
It is important to note that the localization length strongly depends on the density
of defects. Table 1 shows the calculated 	 for the graphene ribbon of W D 9:88 nm
and single-vacancy concentrations of 0.2, 0.5, 1, and 2 % at energy " D �0:15 eV.
It is clear that 	 becomes smaller as the defect concentration increases.

The influence of the device geometry on the conductance distribution of a
disordered graphene system is also important when scaling concerns its lateral
width. Figure 3 shows conductance means (solid lines) and fluctuations (points) for
a statistical calculation of 100 replicas of a graphene system with fixed L D 20 nm
and defect concentration (0.5 %),while varying the device width W from 4.3 to
21 nm. Apart from a gradual increase of the conductance due to the insertion of new

Table 1 Localization length
	 for a graphene nanoribbon
with width W D 9:88 nm and
single-vacancy concentrations
of 0.2, 0.5, 1, and 2 % at
energy " D �0:15 eV

Vac. (%) 	 (nm)

0.2 50.40

0.5 39.24

1.0 28.39

2.0 25.64
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Fig. 3 Scaling of the conductance distribution as a function of width for a graphene nanoribbon
with L D 20 nm and a fixed vacancy concentration of 0.5 %. Solid lines represent the mean
conductance obtained from 100 different configurations of the system (shown as points)

conductance channels as the device becomes larger, there are also some qualitative
aspects that denote transitions between localization regimes. In particular, it is
clear that in the narrower graphene ribbons (W D 4:3 nm and W D 6:2 nm) the
defect concentration is high enough for the creation of transport gaps at energy
resonances relative to single-vacancy defect states, where also the conductance
fluctuations are partially suppressed. Such characteristics are typical of the strong
localization regime for disordered graphene nanoribbons. On the contrary, the same
defect concentration fails in opening a transport gap for wider ribbons, and similarly,
the conductance fluctuations recover characteristics which can be attributed to the
weak localization regime. The key issue that emerges here is that for the same
level of disorder, strong localization can be achieved easier for narrower graphene
samples rather than for wider ones. Another important issue regards the conductance
fluctuations ıG in the weak localization regime, which appear to be independent
from the width of the device, maintaining a fixed value around the conductance
mean.

A further increase of the width for the disordered graphene ribbon shows that
above a certain value of W, differences become only quantitative, as the total
conductance increases proportionally with W. Figure 4 shows the mean conductance
calculated for a graphene system with L D 20 nm, W D 39:4 nm and the same
defect concentration as before. For this calculation the k-space formalism has been
employed, using a rectangular graphene supercell of L D 20 nm and W D 9:88 nm,
while sampling the Brillouin zone � ! X path at nk D 4 k-points (we note that the
k-point sampling is not arbitrary, but considers an equidistant separation of the entire
� ! X ! � path in Œ2�nkC1� regions). Further increases of the width practically
give rise to the same conductivity. This aspect brings to discussion the definition of
the transition range between quasi-one-dimensional and two-dimensional transport.
Our calculations show that such transition depends on the concentration of the
defects, with systems having higher concentrations transiting faster towards the
two-dimensional limit. In all cases, the presence of disorder should facilitate the
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Fig. 4 Mean conductance as a function of energy for a graphene ribbon with W D 39:4 nm,
L D 20 nm and a fixed vacancy concentration of 0.5 %. The mean value has been calculated over
100 replicas of equivalent systems with variable random positions of the defect sites

transition of a graphene system to the two-dimensional situation with respect to the
ideal case (see Fig. 1).

4 Discussion

The objective of this paper has been to discuss the computational strategies for
the calculation of quantum transport in disordered graphene systems, in a way
that these can be relevant to experimental conductance measurements. To this
end, both real- and momentum-space formulations of the non-equilibrium Green’s
function formalism have been employed along with acceleration algorithms that
can make calculations computationally more affordable. Within this context, the
paper has tried to evidence that the dimensions of the graphene channels as well
as their level of disorder can be fundamental for the manifestation of different
transport features and localization regimes. As a general picture, our results have
evidenced that narrow graphene nanoribbons are more influenced by defectiveness
with respect to wider ones, as the strong localization regime can be reached easier.
We have moreover seen that disorder facilitates the transition of the conduction
characteristics from the one-dimensional to the two-dimensional limit.

Although the level of knowledge regarding quantum transport calculations in
graphene-based systems is by now well consolidated, there are still plenty of
challenges and open issues that have to be affronted in the forthcoming years. A
first aspect has to do with the level of complexity in the modeling of defectiveness,
as often calculations consider single-type defects, contrary to the intrinsically more
complex experimental scenario. A second issue regards the correct assignment
of statistical distributions in quantities like the conductance fluctuations [17, 18],
especially in the presence of asymmetric disorder (e.g. when defect states are not
symmetric with respect to the charge neutrality point). Finally an important issue
remains the calculation of disorder effects on the transport characteristics of two-
dimensional materials beyond graphene, as in most cases the nearest-neighbor TB
Hamiltonian is not adequate for these systems.
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Latency Exploitation in Wavelet-Based
Multirate Circuit Simulation

Kai Bittner and Hans Georg Brachtendorf

Abstract The simulation of radio frequency (RF) circuits is one of the severest
problems in Design Automation: the information signal or envelope is modulated
by a carrier signal with a center frequency typically in the GHz range. Due to
Nyquist’s sampling theorem the time steps in conventional transient analysis are
prohibitively small. A technique to overcome Nyquist’s bottleneck is the multirate
method which reformulates the ordinary circuit’s differential algebraic equations
(DAEs) as a system of partial DAEs (PDAEs). In this paper further improvements
of the wavelet multirate circuit simulation technique are presented. In the new
algorithm we use different grids for the approximation of the solution on different
circuit parts, exploiting latency. In particular, for circuits comprising latent parts the
grids can be much sparser, which results in the reduction of the overall problem size
and leads to a faster simulation.

1 Introduction

In simulation of RF circuits one faces waveforms with a spectrum centered around
a center frequency, which is typically in the GHz range for modern communication
standards. Due to the Nyquist’s theorem the waveforms must be discretized with
a sampling rate, which is at least twice as high as the highest relevant frequency
in the spectrum. Classical transient solvers which solve the initial value problem
(IVP) show unacceptably long run times. To overcome this bottleneck envelope
methods based on a reformulation of the ordinary DAEs by partial DAEs, known
as multirate PDAE have been developed [1–8]. However, despite this tremendous
progress, the run time is often prohibitively long for circuits such as PLLs. In this
paper improvements based on latency exploitation are proposed, which utilize some
specific properties of (sub-) circuits of RF circuitry and properties of the multirate
PDAE.

K. Bittner (�) • H.G. Brachtendorf
University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria
e-mail: Kai.Bittner@fh-hagenberg.at; Hans-Georg.Brachtendorf@fh-hagenberg.at

© Springer International Publishing Switzerland 2016
A. Bartel et al. (eds.), Scientific Computing in Electrical Engineering, Mathematics
in Industry 23, DOI 10.1007/978-3-319-30399-4_2

13

mailto:Kai.Bittner@fh-hagenberg.at
mailto:Hans-Georg.Brachtendorf@fh-hagenberg.at


14 K. Bittner and H.G. Brachtendorf

For speeding up conventional transient analysis, several attempts have been made
for exploiting latency and other specific properties of circuit DAEs. An excellent
overview of these methods can be found, e.g., in [9]. In [10] a relaxation method
denoted as timing analysis has been presented based essentially on one Gauss-Seidel
(GS) iteration per time step. This method has an emphasis on CMOS circuits where
the diagonal part of the Jacobian matrix is dominant. Alternatively, the waveform
relaxation (WR), e.g., [11, 12], has attracted attention for several decades. Here
the circuit is divided into sub-circuits wherein the coupling of these sub-circuits is
relatively week. Each sub-circuit is simulated for a time period while the remaining
sub-circuits are idle or latent. The method is repeated until convergence is achieved.
WR may be interpreted as a block Gauss-Seidel for a time period. It has been
developed for CMOS circuits, too. In [13] the latency insertion method (LIM) has
been proposed, which has its origin in electromagnetic field simulation. Essentially,
the discretization grid for the unknown currents and voltages are shifted. The
technique is advantageous when delays of interconnects are dominant. The time
steps however are limited similar to the CFL condition. Node tearing, often with
latency exploitation, has been reported, e.g., in [14–17]. In [15, 17] the sub-circuits
are allowed to have separate integration step sizes reflecting their activity level.

For all the cited methods a careful partitioning and/or time step control is required
to achieve convergence. The method for the latency exploitation considered in this
paper, which is based both on the multirate PDAE and spline-wavelet technique, has
none of these restrictions.

2 The Multirate Circuit Simulation Problem

We consider circuit equations in the charge/flux oriented modified nodal analysis
(MNA) formulation, which yields a mathematical model in the form of a system of
differential-algebraic equations (DAEs):

d
dt q
�
x.t/

�C g
�
x.t/

� D s.t/: (1)

For RF circuits the circuit DAE (1) exhibits multirate behavior, i.e., (most) of the
signal waveforms have a bandpass spectrum, where the spectrum is centered around
a center frequency, which is typically in the GHz range for state of the art mobile
phone standards. The time steps employing conventional solvers for ordinary DAEs
must be kept sufficiently small to avoid aliasing of the numerical solution. The
run time is therefore prohibitively long. One method to overcome this bottleneck
reformulates the underlying ordinary DAEs by a system of partial DAEs [1, 2].
Several modifications of this method have been proposed [3–7, 18]. To separate
different time scales the problem is reformulated as a multirate PDAE, i.e.,

�
@
@�
C !.�/ @

@t

�
q
�Ox.�; t/�C g

�Ox.�; t/� D Os��; t� (2)
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Fig. 1 Several signals in a frequency divider chain as part of a PLL

with mixed initial-boundary conditions x.0; t/ D X0.t/ and x.�; t/ D x.�; t C P/. A
solution of the original circuit equations can be found along certain characteristic
lines [8].

Discretization with respect to � (Rothe’s method) using a linear multistep method
results in a periodic boundary value problem in t of the form

!k
d
dt qk

�
Xk.t//Cfk.Xk; t/ D 0; (3)

Xk.t/ DXk.tC P/;

where Xk.t/ is the approximation of Ox.�k; t/ for the k-th time step �k (cf. [8, 19]). The
periodic boundary value problem (3) can be solved by several methods, as Shooting,
Finite Differences, Harmonic Balance, etc. Here, we consider the spline wavelet
based method introduced by the authors in [19], following ideas from [20, 21]. One
problem of traditional methods is that all signals in the circuit are discretized over
the same grid. This can pose a problem if different signal shapes are present in the
circuit, which may be approximated more efficiently if individual grids are used for
each of the signals. As an example we consider a chain of 5 frequency dividers (as
part of a PLL). In each step the frequency is reduced by a factor 2 as one can see in
Fig. 1, where the solution for a fixed � is shown. Obviously, for the low frequency
signals towards the end of the divider chain a much sparser grid would be sufficient
for an accurate representation, in comparison to the high frequency input signal.

3 Division into Subcircuits

Although the representation of each signal over its own individual grid seems to
give maximal flexibility, this approach leads to several problems, which make the
simulation inefficient. One problem is that the evaluation of the circuit depends on
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the evaluation of device models, which is usually very costly, e.g., for transistor
models used nowadays. Usually a device model has to be evaluated for every
grid point. For a four terminal transistor we need therefore to evaluate the device
model for four different grids. In many cases this will be more costly than the
evaluations for one optimized single grid, which is against our intention to reduce
the computational effort. This effort might be reduced if one has a strategy to
“synchronize” the grids, but that does not seem to be a trivial task. On the other
side, the signals show often similar behavior, at least on parts of the circuit, such
that the same grid might be (nearly) optimal for many signals. Thus, it might be a
better idea to collect signals of similar shape and use the same grid for all of these
signals. Then we have to store only a few grids, which makes it also easier to design
an effective grid adaptation strategy. Therefore, we consider groups of signals with
similar shape appearing in a part of the circuit. In the current implementation a priori
knowledge of the circuit design is required.

The circuit is divided into N subcircuits which are connected at terminal nodes.
To facilitate different expansions of signals on the subcircuits we replace each
common node by a pair of nodes connected by a perfect conductor, which is
referred to as node tearing. Namely, we introduce the “connection” Ck;`

�;
 , if the
�-th node of subcircuit k is identified with the 
-th node in subcircuit `, as one
can see in Fig. 2. Thus, the circuit equations from the modified nodal analysis
(MNA) of the subcircuits have to be supplemented by additional conditions for
the connections. The perfect conductor for the connection is modeled as voltage
source of voltage zero. That is, we need the current through the connection Ck;`

�;
 , as
additional unknowns ik� and i`
 for each of the two involved subcircuits.

In addition to the resulting circuit equations

d
dt q

k
�
xk.t/

�C gk
�
xk.t/; t

� D 0; k D 1; : : : ;N (4)

Fig. 2 Splitting of a circuit
into subcircuits witch
connections
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of the N subcircuits, we need for each connection Ck;`
�;
 that voltages and currents

coincide, that is we include the equations

uk
�.t/ � u`
.t/ D 0 and ik�.t/C i`
.t/ D 0: (5)

For the correct understanding of the above formulation one needs to recall that
uk
�.t/ and ik�.t/ are components of the vector xk.t/ of unknowns, which contains

all node voltages (except ground) and currents through voltage sources, inductors,
and connections.

The splitting into subcircuits introduces the additional Eq. (5), which will
increase the problem size. This may lead to a loss of performance if the splitting
is done poorly. For a successful use of our method the splitting, either done by hand
or automatically, should follow some rules. First, a splitting should only be done
if the signal shapes in the resulting subcircuits differ enough to justify the use of
different discretization grids, which are significantly coarser than the grid for the
(sub)circuit, which is splitted. Furthermore, the splitting should only generate few
new connections. We expect that the second requirement is often fulfilled if the first
requirement is satisfied

4 Spline Galerkin Discretization and Wavelet Based
Adaptivity

Our goal is to approximate the solution of the Eqs. (4) and (5) by spline functions as
it was done in [19]. However, we want to use an adapted spline representation for
each subcircuit, i.e.,

xi.t/ D
niX

kD1
ci

k'
i
k.t/; i D 1; : : : ;N;

where the families f� i
k W k D 1; : : : ; nig are periodic B-spline bases for spline

spaces over grids of spline knots Ti WD fti
k 2 .0;P� W k D 1; : : : ; nig, which may

be mutually different. We use a Petrov-Galerkin discretization to obtain a system of
nonlinear equations, which determines the coefficients ci

k. In particular, we integrate
the Eqs. (4) and (5) over subintervals, i.e.,

Z � i
`

� i
`�1

d
dt q

i
�
xi.t/

�C gi
�
xi.t/; t

�
dt D 0; ` D 1; : : : ; ni;
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for each subcircuit and

Z � i
`

� i
`�1

ui
�.t/ � u j


.t/ dt D 0; ` D 1; : : : ; ni (6)

Z �
j
`

�
j
`�1

ii�.t/C i j

.t/ dt D 0; ` D 1; : : : ; nj (7)

for each connection Ci;j
�;
 between two subcircuits. The splitting points � i

` are chosen
in close relation to the spline grid, namely such the ti

` 2 .� i
`�1; �

i
`/. By using the

grid Ti in (6) but Tj in (7), we assure that the number of unknowns and equations
coincide.

The wavelet based coarsening and refinement methods described in [19, 22] are
used to generate adaptive grids for an efficient signal representation. An advantage
of this approach is that grid and solution from the previous envelope time step are
used to generate an initial guess for Newton’s method. Since the waveforms change
only slowly with � , we have usually a very good initial guess on a nearly optimal
grid and the solution is obtained with only few iteration steps.

5 Numerical Test

The algorithm was implemented in C++ and tested on a PLL with frequency divider.
The solutions for a fixed �k are shown in Fig. 1.

For comparison we show in Fig. 3 the spline grid generated by the classical spline
wavelet method (see [19]) using the same grid for all signals. We have plotted the
grid points ti against their index i, which allows to recognize the local density of the
grid.
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Fig. 4 Several signals in a frequency divider chain as part of a PLL

The grids used in our new multiple grid method can be seen in Fig. 4. Obviously,
one gets much better adapted, smaller grids for the lower frequency signals. This
leads to a reduction of the total number of equations from roughly 130,000 to
85,000. The number of nonzeros in the Jacobian for Newton’s method is reduced
from 5,000,000 to 2,500,000. Consequently the time for assembling resp. solving
the linear system was reduced from 4 to 2 s respectively 8 to 4 s.

A further effect is that the larger the nonlinear system, the harder it is to solve
by Newton’s method, which results in more Newton iterations as well as shorter
envelope time steps. Thus, an envelope simulation with a frequency modulated
signal over 0.3 s worked well for the multiple grid method and was done in 37 min.
A similar simulation with the single grid method needed almost 5 h.

6 Conclusion

An improvement of the spline wavelet based envelope method from [19] has been
developed. It uses different spline grids for different parts of the circuit. This leads
to a more efficient representation of the solution, which results in a significant
reduction of computation time.
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Turning Points of Nonlinear Circuits

Ignacio García de la Vega and Ricardo Riaza

Abstract Bifurcation theory plays a key role in the qualitative analysis of dynam-
ical systems. In nonlinear circuit theory, bifurcations of equilibria describe qualita-
tive changes in the local phase portrait near an operating point, and are important
from both an analytical and a numerical point of view. This work is focused
on quadratic turning points, which, in certain circumstances, yield saddle-node
bifurcations. Algebraic conditions guaranteeing the existence of this kind of points
are well-known in the context of explicit ordinary differential equations (ODEs). We
transfer these conditions to semiexplicit differential-algebraic equations (DAEs), in
order to impose them to branch-oriented models of nonlinear circuits. This way, we
obtain a description of the conditions characterizing these turning points in terms of
the underlying circuit digraph and the devices’ characteristics.

1 Introduction

The context of the present work is the study of bifurcation phenomena in nonlinear
circuits. We have focused on quadratic turning points, which are related to certain
local bifurcations in dynamical systems, in particular to the saddle-node bifurcation.
With terminological abuse, we will often use the expression “turning point” to mean
a “quadratic turning point”. We are interested in the analysis of turning points in the
equations governing nonlinear circuits, which have the structure of a semiexplicit
DAE. Therefore, our first efforts are directed to adequate the classical conditions
characterizing turning points in ODEs to a semiexplicit index-one DAE context
(Sect. 2). Afterwards, in Sect. 3, we will analyze these reformulated conditions in
terms of the circuit topology and the devices’ characteristics. Finally, Sect. 4 briefly
compiles some concluding remarks.
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Turning points in explicit ODEs Let us recall the algebraic conditions defining
quadratic turning points in ODEs. Consider the ordinary differential equation

x0 D f .x; �/; (1)

with x 2 R
n, and f sufficiently smooth and depending on a parameter � 2 R.

Provided that f .x�; ��/ D 0, .x�; ��/ is called a quadratic turning point of (1) if
the conditions 1–3 below are satisfied [4].

1. rk fx.x�; ��/ D n � 1;
2. wT f�.x�; ��/ ¤ 0;
3. wT fxx.x�; ��/.v; v/ ¤ 0.

Here v (resp. w) denotes a right (resp. left) eigenvector of the zero eigenvalue of
the matrix of partial derivatives fx.x�; ��/. Such turning points are important e.g. in
numerical continuation theory [1]. If, additionally,

4. the algebraic multiplicity of the null eigenvalue of fx.x�; ��/ is one; and
5. the remaining eigenvalues of fx.x�; ��/ have non-zero real parts,

then .x�; ��/ is called a saddle-node bifurcation point, because the system under-
goes a saddle-node bifurcation as � crosses �� [5, 7, 10]. Near .x�; ��/ we will
observe that when � < �� (resp. when � > ��) there are no equilibria, whereas
for � > �� (resp. � < ��) there are two hyperbolic equilibrium points. These two
equilibria differ in the sign of one real eigenvalue, being in particular a saddle and a
node when x 2 R

2.

2 Turning Points in Semiexplicit DAEs

Our purpose is to characterize the existence of turning points and saddle-node
bifurcations in electrical circuit models and, specifically, in branch-oriented models.
These models have the structure of a semiexplicit DAE [3, 8], that is,

y0 D h. y; z; �/ (2a)

0 D g. y; z; �/; (2b)

where y 2 R
r, z 2 R

p, � 2 R, and h and g are sufficiently smooth. We will group
together y and z into a single variable x D . y; z/ 2 R

n, with n D rC p. For later use
let us also define the matrices

M D
�

hy hz

gy gz

�
; QM D

�
M

.det M/x

�
: (3)
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Specifically, we will work in a local index-one context [3, 8]; this means that the
matrix of partial derivatives gz.y�; z�; ��/ is non-singular. By the implicit function
theorem this implies that there is a local map  . y; �/ such that 0 D g. y; z; �/ if
and only if z D  . y; �/; with  y D �.gz/

�1gy. This, together with (2a), enables
one to express the local dynamics of the DAE (2) in terms of the reduced ODE

y0 D �. y; �/; (4)

with �. y; �/ D h. y;  . y; �/; �/: In turn, this makes it possible to define an
equilibrium .y�; z�; ��/ of the semiexplicit index-one DAE (2) as a (quadratic)
turning point (resp. a saddle-node bifurcation point) if the reduction (4) satisfies
the conditions 1–3 (respectively 1–5) stated in Sect. 1.

Theorem 1 provides conditions for system (2) to have a turning point. Additional
conditions for the existence of a saddle-node point will be formulated in terms of
the reduction (4); this point of view will be exploited in Sect. 3.

Theorem 1 Consider the semiexplicit DAE (2) and assume there exists a point
.x�; ��/ such that h.x�; ��/ D 0 and g.x�; ��/ D 0, with gz.x�; ��/ non-singular.
Then .x�; ��/ is a quadratic turning point if the following conditions are satisfied:

1. rk M.x�; ��/ D n � 1;

2.

�
h�
g�

�
.x�; ��/ … im M .x�; ��/;

3. rk QM.x�; ��/ D n.

Proof Write x� D .y�; z�/ and note that .y�; ��/ is an equilibrium point of (4),
because �.y�; ��/ D h.y�; z�; ��/ D 0. We check below that conditions 1–3 in
Sect. 1 hold for the reduction (4) at .y�; ��/.

1. If we compute �y in terms of the maps h and g, we obtain

�y D
�
hy hz

� � I
�.gz/

�1gy

�
D hy � hz.gz/

�1gy;

which is the Schur complement of gz in M [6]. The corank of a matrix and the
corank of its Schur reduction are equal, therefore rk M.x�; ��/ D n � 1 implies
rk�y.y�; ��/ D r � 1.

2. The second condition is wT��.y�; ��/ ¤ 0, where w is an eigenvector associated
to the zero eigenvalue of the matrix AT with A D �y.y�; ��/; note that wTA D
0 , wT ? im A. Therefore, wT��.y�; ��/ ¤ 0 , ��.y�; ��/ … im A, that is,
.h� � hzg�1

z g�/.x�; ��/ … im .hy � hz.gz/
�1gy/.x�; ��/ which is equivalent to

�
h�
g�

�
.x�; ��/ … im

�
hy hz

gy gz

�
.x�; ��/:
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3. Equation wT�yy.y�; ��/.v; v/ ¤ 0 can be recast as �yy.y�; ��/.v; v/ …
im �y.y�; ��/. The fact that for a C2 map f W Rn ! R

n satisfying cork f 0.x�/ D 1
we have .det f 0.x//0v ¤ 0 , f 00.x/.v; v/ … im f 0.x/, where v is a non-
null vector belonging to Kerf 0.x/, allows us to transform this condition into
.det .�y//y.y�; ��/v ¤ 0, where v 2 Ker�y.y�; ��/. Additionally, because �y is
the Schur complement of gz in M, we have det �y D det

�
g�1

z

�
det M, and then

.det .�y//y D .det
�

g�1
z

�
/x det M

 
I

�.gz/
�1gy

!
C det

�
g�1

z

�
.det M/x

 
I

�.gz/
�1gy

!
:

Condition 1 states that rk M.x�; ��/ D n � 1, thus det .M.x�; ��// D 0.
Additionally, det

�
g�1

z

�
.x�; ��/ ¤ 0; therefore condition 3 is satisfied if and only if

�
.det M/y .det M/z

� � I
�.gz/

�1gy

�
.x�; ��/v ¤ 0;

for some (hence any) non-vanishing vector v belonging to Ker�y.y�; ��/. Because
of the identity Ker�y.y�; ��/ D Ker.hy � hz.gz/

�1gy/.x�; ��/, condition 3 is then
equivalent to the requirement that the system

.hy � hz.gz/
�1gy/.x

�; ��/v D 0 (5a)

..det M/y � .det M/zg
�1
z gy/.x

�; ��/v D 0 (5b)

only possesses the trivial solution. Equivalently, the matrix of coefficients of (5),

M1 D
�

hy � hz.gz/
�1gy

det My � det Mzg�1
z gy

�
.x�; ��/;

must have maximum column rank. But M1 is the Schur complement of gz in the
matrix QM.x�; ��/ arising in the statement of condition 3 of Theorem 1; hence, the
maximum column rank condition on M1 is transferred to QM.x�; ��/. This means
that condition 3 in Sect. 1 holds for (4) at .y�; ��/ and the proof is complete.

3 Nonlinear Circuits Exhibiting Turning Points

In this section, we characterize the existence of turning points and saddle-node
bifurcations for nonlinear circuits, under certain restrictions to be specified later.
For this purpose, we use branch-oriented circuit models [8] defined by:

C.vc/v
0
c D ic (6a)

L.il/i
0
l D vl (6b)
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0 D Bcvc C Blvl C Bgvg C Bnvn C Bjvj C BvV (6c)

0 D Qcic C Qlil C Qg
1.vg/C Qn
2.vn/C Qj�C Qviv; (6d)

where we denote the branch voltages by v, the currents by i, and use the subscripts
c, l, g, n, j and v to denote capacitors, inductors, passive resistors, non-passive
resistors, current sources and voltage sources, respectively. All devices may be
nonlinear, often without explicit mention. We assume that there exists only one
non-passive resistor and a unique DC current source, whose current ij D � is the
parameter of the system. The reader may think of a tunnel diode as an example of
a (locally) non-passive resistor. We also assume that there exists an equilibrium
point that we will denote by .x�; ��/ D .v�

c ; i
�
l ; i

�
c ; v

�
l ; v

�
g ; v

�
n ; v

�
j ; i

�
v ; �

�/. The
incremental capacitance and inductance matrices, C and L, are both non-singular
at .x�; ��/ and, finally, V is the vector of voltages in the DC voltage sources.

System (6) has the semiexplicit DAE structure displayed in (2) with y D .vc; il/
and z D .ic; vl; vg; vn; vj; iv/. Note that Eqs. (6a) and (6b) stand for the constitutive
relations of capacitors and inductors, whereas Eqs. (6c) and (6d) are the expression
of Kirchhoff laws. In (6d) we have eliminated the resistors currents using the
constitutive relations 
1 and 
2. In the formulation of Kirchhoff laws we have made
use of the so-called loop and cutset matrices B, Q, which are well-known in digraph
theory and whose main properties are compiled in Lemma 1 [2, 9].

Lemma 1 The loop and cutset matrices B, Q of a digraph verify the following.

1. BK (resp. QK) has full column rank if and only if the branches specified by K do
not contain any cutset (resp. loop).

2. The loop and cutset spaces are orthogonal to each other, that is, if columns of Q
and B are arranged in the same order, then QBT D 0.

3. Suppose the branches of a given digraph are split in four disjoint sets K1, K2, K3
and K4, and denote by Bi and Qi the submatrices of the loop and cutset matrices
defined by Ki; assume additionally that P is a positive definite matrix. Then

Ker

�
B1 0 B3
0 Q2 Q3P

�
D KerB1 � KerQ2 � f0g:

These properties allow us to prove Theorem 2, which characterizes turning points
and saddle-node bifurcations for the circuit model (6). By a K-loop (resp. K-cutset)
we mean a loop (resp. cutset) defined only by elements of K; this way, for instance a
JCN-cutset is a cutset defined only by current sources, capacitors and/or non-passive
resistors. JLN-cutsets, VC-loops, etc. are defined analogously.

Theorem 2 In the setting defined above, assume that 
 0
2.v

�
n / D 0, 
 00

2 .v
�
n / ¤ 0 at

the equilibrium point .x�; ��/. This equilibrium is then a turning point of (6) if

• there is a unique JCN-cutset, which includes the current source, the non-passive
resistor and at least one capacitor; and

• there are no JLN-cutsets, VC-loops or JVL-loops.
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If, additionally, L and C are symmetric positive definite and there are no VCL-loops,
then the turning point yields a saddle-node bifurcation.

Proof The matrices gz.x�; ��/ and M.x�; ��/ read for system (6) as:

gz.x
�; ��/ D

 
0 Bl Bg Bn Bj 0

Qc 0 QgG 0 0 Qv

!
; M.x�; ��/ D

0
BBB@

0 0 C�1 0 0 0 0 0

0 0 0 L�1 0 0 0 0

Bc 0 0 Bl Bg Bn Bj 0

0 Ql Qc 0 QgG 0 0 Qv

1
CCCA;

where G D 
 0
1.v

�
g / is the incremental conductance matrix of passive resistors,

which is positive definite. In light of item 3 in Lemma 1, non-trivial entries in
Kergz.x�; ��/ must come either from Ker

�
Bl Bn Bj

�
or from Ker

�
Qc Qv

�
. Since

there are neither JLN-cutsets nor VC-loops, we conclude that gz.x�; ��/ is non-
singular.

1. The non-singularity of C, L allows us to study the rank of the matrix M.x�; ��/
in terms of

�
Bc 0 Bg Bn Bj 0

0 Ql QgG 0 0 Qv

�
:

By applying item 3 of Lemma 1, non-zero entries of KerM.x�; ��/ must come
either from Ker

�
Bc Bn Bj

�
or from Ker

�
Ql Qv

�
. Since there is a unique JCN-

cutset and no JVL-loops, we have null
�
Bc Bn Bj

� D 1, where null stands for

the nullity, that is, the dimension of the kernel, null
�
Ql Qv

� D 0 and therefore
null M.x�; ��/ D 1, that is, rk M.x�; ��/ D n � 1, which is condition 1 in
Theorem 1.

2. The 2nd condition in Theorem 1 may be restated as null M.x�; ��/ D
null OM.x�; ��/, with

OM.x�; ��/ D

0

BB@

0 0 C�1 0 0 0 0 0 0

0 0 0 L�1 0 0 0 0 0

Bc 0 0 Bl Bg Bn Bj 0 0

0 Ql Qc 0 QgG 0 0 Qv Qj

1

CCA :

Proceeding as above, we observe that non-trivial entries in Ker OM.x�; ��/must be
due to those in Ker

�
Bc Bn Bj

�
or in Ker

�
Ql Qv Qj

�
. The absence of JVL-loops

implies null OM.x�; ��/ D null
�
Bc Bn Bj

�
and therefore null M D null OM.

3. The third condition in Theorem 1 says that the matrix QM (cf. (3)) has full column
rank or, equivalently, rk QM D n. Provided that null M D 1, requiring QM to have
full column rank is equivalent to .det M/xv ¤ 0, where v is any vector that spans
KerM. For any point Ox D .vc; il; ic; vl; vg; v

�
n ; vj; iv/, M.Ox; �/ is a singular matrix
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because 
 0
2.v

�
n / D 0. Thus, .det M/x D

�
0 0 0 0 0 a 0 0

�
and a ¤ 0 because


 00
2 .v

�
n / ¤ 0.

The absence of VL-loops and the existence of a JCN-cutset imply that vectors
belonging to KerM have the form of v where vT D .v1; 0; 0; 0; 0; v6; v7; 0/.
Additionally, the fact that there are no JC-cutsets implies v6 ¤ 0; it follows
that the multiplication of .det M/x by vectors of KerM does not vanish.

4. To complete the proof it remains to show that the absence of VCL-loops leads
to a saddle-node bifurcation. To do this we make use of conditions 4 and 5 in
Sect. 1.

In order to prove that the zero eigenvalue is simple, we will show that the
intersection of the kernel and the image of �y D .hy � hz.gz/

�1gy/ at .x�; ��/
only contains the null vector. First, a vector u belongs to im �y if and only if Ou
belongs to im M, with OuT D �

uT 0
�
, that is, if and only if there exists a vector v

satisfying

u1 D C�1v3 (7a)

u2 D L�1v4 (7b)

0 D Bcv1 C Blv4 C Bgv5 C Bnv6 C Bjv7 (7c)

0 D Qlv2 C Qcv3 C QgGv5 CQvv8: (7d)

On the other hand, a vector u belongs to Ker�y if and only if

�
C�1 0 0 0 0 0

0 L�1 0 0 0 0

�
.g�1

z /

�
Bc 0

0 Ql

�
u D

�
0

0

�
:

In order to satisfy this relation there must be a vector y such that

.g�1
z /

�
Bcu1
Qlu2

�
D

0

BBBBBBB@

0

0

y1
y2
y3
y4

1

CCCCCCCA

,
�

Bcu1
Qlu2

�
D gz

0

BBBBBBB@

0

0

y1
y2
y3
y4

1

CCCCCCCA

;

that is,

Bcu1 D Bgy1 C Bny2 C Bjy3 (8a)

Qlu2 D QgGy1 CQvy4: (8b)

Using the orthogonality of the cutset and loop spaces, namely, the fact that KerB
and KerQ are orthogonal to one another (cf. [2]), it is not difficult to obtain
from (8) the relation yT

1Gy1 D 0; y1 must then vanish because G is positive



28 I.G. de la Vega and R. Riaza

definite. Making use of (7a) and (7b), Eqs. (8a) and (8b) then read as

0 D BcC�1v3 � Bny2 � Bjy3 (9a)

0 D QlL
�1v4 �Qvy4: (9b)

Therefore if u 2 Ker�y \ im �y, then (7c), (7d) and (9) must hold. Applying
the aforementioned orthogonality property to (7c) and (9b) we obtain that
vT
4 L�1v4 D 0 and from Eqs. (7d) and (9a), vT

3 C�1v3 D 0. Altogether this yields
u D 0.

5. It remains to be proved that if there are no VCL-loops then �y.x�; ��/ has
no purely imaginary eigenvalues. A complex number � is an eigenvalue of
�y.x�; ��/ if and only if

�

�
I 0
0 0

�
�
�

hy hz

gy gz

�
.x�; ��/

is singular or, equivalently, there exists non-trivial solutions to

0 D ��1BcC
�1ic C �BlLil C Bgvg C Bnvn C Bivi (10a)

0 D Qcic CQlil CQgGvg C Qviv: (10b)

The orthogonality of the cutset and cycle spaces implies that if Qp D 0 and Bq D
0 then pTq D 0. Applying this result to the conjugate of (10b) in conjunction
with (10a), we obtain

0 D ��1i�c C�1ic C �i�l Lil C v�
g Gvg; (11)

where � stands for the Hermitian (conjugate transpose). If we take the sum of (11)
and its Hermitian, we obtain:

0 D 2Re.��1/i�c C�1ic C 2Re.�/i�l Lil C v�
g .GC GT/vg: (12)

For purely imaginary eigenvalues, Re.��1/ D Re.�/ D 0 and therefore we
must have vg D 0 for (12) to hold. System (10) can be then simplified to:

0 D ��1BcC�1ic C �BlLil C Bnvn C Bivi (13a)

0 D Qcic C Qlil C Qviv: (13b)

Since there are no VCL-loops,
�
Qc Ql Qv

�
has full column rank and, conse-

quently, ic D il D iv D 0 must hold to satisfy (13b). The absence of JLN-cutsets
then yields vn D vi D 0 from (13a). This means that (10) only has the trivial
solution, and this rules out purely imaginary eigenvalues. The proof of Theorem 2
is then complete.
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4 Concluding Remarks

We have performed a circuit-theoretic analysis of the existence of turning points and
saddle-node bifurcations in nonlinear circuits. The analysis of these phenomena in
broader contexts, including e.g. other non-passive devices, higher-index configura-
tions or parameters with other roles, as well as the study of other related bifurcations
in similar terms, are in the scope of future research.

Acknowledgements Research supported by Project MTM2010-15102 of Ministerio de Ciencia e
Innovación, Spain.
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Mixed Domain Macromodels for RF MEMS
Capacitive Switches

Gabriela Ciuprina, Aurel-Sorin Lup, Bogdan Diţă, Daniel Ioan, Ştefan
Sorohan, Dragoş Isvoranu, and Sebastian Kula

Abstract A method to extract macromodels for RF MEMS switches is proposed.
The macromodels include both the coupled structural-electric behavior of the switch
as well as its RF behavior. The device with distributed parameters is subject to
several analyses from which the parameters of the macromodel are extracted, by
model reduction.

From the coupled structural-electrostatic analysis the parametric capacitance
and the effective stiffness coefficients of the switch are extracted. From the RF
characteristics in the up stable state, the transmission line parameters are extracted.
Finally, all parameters are combined in a Spice circuit model, which is controlled
by the MEMS actuation voltage and is excited with the RF signal.

The procedure is applied to a capacitive switch. Relative modeling errors with
respect to the non-reduced model, considered as reference, of less than 3 % for the
RF characteristics and less than 1 % for the mechanical characteristics are obtained.

1 Introduction

RF MEMS switches are devices containing electrostatic actuated movable parts with
two stable states (up and down), used to allow or block the propagation of RF
signals in various applications. They are based on micromachining technologies,
being more suitable than solid electronic switching devices [1]. A typical capacitive
RF switch contains an elastic bridge over a coplanar waveguide line (Fig. 1).
The capacitance between the grounded bridge and the signal line, isolated with a
dielectric layer is strongly dependent on the bridge position.

The design of this device focuses not only on the RF performances (S param-
eters at the RF ports) in its stable states, but also on other relevant quantities
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ground lines

RF signal line
dielectric

membrane

substrate

UP State

DOWN State

RF signal line

ground line

switch

IN 
RF port

OUT
RF port

Fig. 1 Typical capacitive RF switch of bridge type. Left—the movable part (membrane, or bridge)
is placed transversely with respect to a coplanar wave guide RF signal line. Middle—the switch
has two stable states: up and down. Right—the switch is used in an RF circuit, being able to allow
the signal to pass (if it is in the up state), or block it (in down state)

(pull-in/out voltages at the actuation terminals, commutation time between the sta-
ble states) related to its switching from one stable state to the other. The investigation
of the latter aspects needs multiphysics simulations since several physical effects
(mechanical motion, air damping, electrostatic actuation) come together. Even since
the early development of these devices, the computational challenges identified are
the multiphysics modeling, required for the estimation of the switching properties,
and the nonlinear macromodeling or the nonlinear order reduction, which is very
important for the designers who need dynamical device level models. The effective
macromodels should be accurate enough and have few degrees of freedom, and they
have to be correlated to design parameters such as dimensions and material proper-
ties, with the aim of being embedded in system-level models [2]. The multiphysics
modeling is still a difficult challenge [3]. A common approach for design is to use
separate macromodels for the physical domains involved, depending on the inves-
tigated properties. The RF macromodels, consist of short sections of transmission
lines (TLs) and R, L, C elements, and they are used to model the S-parameters of
the switch in its stable states. The values of the capacitance are different for the
down and up states. They are computed with simple formulas based on an uniform
electrostatic field assumption as in [4], whereas R and L are computed from down-
state simulations with an EM field solver and fitting of the obtained S parameters.

Circuit macromodels are also proposed for the multiphysics domain, as in
[5], where large signal dynamic circuit simulation models for MEMS devices
using controlled current sources are proposed and implemented in APLAC. The
importance of device models at global level is that they can be combined and
integrated into existing design environments [6]. Aspects related to the mixed-
domain electromechanical and electromagnetic simulation of RF-MEMS devices
and network are reported in [7] . The author develops and use lumped component
models for elementary components such as the flexible beams and the rigid plates.
The elements are implemented in the VerilogA programming language, within
the Cadence IC development environment, the simulations being completed in
Spectre. This strategy is discussed also in [8] where macromodels are derived
using a hierarchical modeling approach that use the generalized Kirchhoff network
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theory. Combined techniques that derive both lumped and distributed components
are used to obtain a fully coupled model described in a hardware description
language. A MEMS component model library is offered by this team at http://
rfmems.sourceforge.net/.

The goal of this paper is to obtain a combined macromodel, that includes both
the multiphysics behavior and the RF behavior of the switch. For this, the device
with distributed parameters is subject to several analyses from which the parameters
of the macromodel are extracted, by model reduction. Finally, all parameters are
combined in a Spice circuit model. The test used is the capacitive bridge-type switch
proposed by Qian (Fig. 1) and its detailed description can be found in [9].

2 Multiphysics Macromodel

In order to change the stable state of the switch (e.g., from up to down), an electric
voltage has to be applied between the central line and the membrane. The electric
force that appears moves the mobile part until the mechanical contact is achieved;
when the voltage is zeroed, the system moves back to the initial position due to the
elastic forces in the membrane. During the movement, there is also a damping force
due to the relative moment of the mobile plate with respect to the gas that surrounds
it. It is obvious that the movement is non-uniform: the velocity is not constant,
the acceleration is non-zero, so when writing equilibrium equations in a reference
system attached to the mobile plate, an inertial force has to be considered. The most
simple reduced order model appropriate for this coupled structural-electrostatic-
fluid formulation corresponds to the equation of motion of a mobile plate of a
parallel plate capacitor, suspended by a spring, when an actuation voltage is applied
between its plates [1]:

m
d2 z

d t2
C b

d z

d t
C kzC ksz

3 D FES.u; z/; (1)

where m is the effective mass, b is the effective damping coefficient, k is the
linear elasticity constant, ks is the nonlinear elasticity (spring) constant, FES is the
electrostatic force, which depends on the applied voltage u and the displacement of
the membrane z. If the applied actuation voltage is not high enough, the electrostatic
force might be not high enough to ensure the contact, but only to change the
gap between the armatures. If the actuation voltage is higher than a certain value
called pull-in voltage Vpi then the mobile part collapses on the fixed part. The
pull-in voltage is an important characteristic of a switch and therefore, it has to
be caught by a multiphysics macromodel. When solving a set of static multiphysics
coupled simulations, corresponding to increasing values of the applied actuation
voltage, an instability occurs when the pull-in voltage is reached. Figure 2 shows
the computational domain of a 2D model for the Qian switch [9] and the Dirichlet
boundary conditions used by the multiphysics formulation.

http://rfmems.sourceforge.net/.
http://rfmems.sourceforge.net/.
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Fig. 2 2D Multiphysics domain: up—drawing at scale; down left—drawing not at scale, showing
the geometric parameters: beam length Lm D 280�m; beam height Hm D 0:4�m; dielectric
thickness Td D 0:1�m; height of the RF signal line Hcpw D 0:4�m; height of the RF signal line
Hgr D 4�m; Wcpw D Wcpw1 D 120�m. For some postprocessing, the beam width Wm D 280�m
is needed; down right—computational multiphysics domain and boundary/interface conditions

In order to extract the lumped effective parameters k and ks, it is enough that
a set of static coupled (structural-electrostatic) finite element analysis simulations
for several applied voltages u D V0, be carried out for the model described above.
Equation (1) written for the static case suggests the following extraction algorithm
for the effective elastic coefficients:

1. Do coupled static numerical simulations (e.g. FEM) for increasing values of the
actuation voltage u. Record position z.u/ and electrostatic energy WES.u/;

2. Compute the dependence of the switch capacitance C.z/ D 2WES=u2, where
u D u.z/, on the membrane displacement. Approximate the dependence 1=C.z/
with a first order least square approximation c1z C c2. The result of this step is
shown in Fig. 3—left.

3. Compute the dependence of the electrostatic force FES.z/ on the displacement
by using the generalized force theorem FES.z/ D .u2=2/d C.z/=dz. Since the
simulations at step 1 were static, this electrostatic force is equal to the elastic
force that acts on the membrane.

4. Do a cubic least square approximation of the dependence found at step 3 in
order to find k and ks. A less accurate model can be obtained if the least square
approximation is of order 1, meaning that ks is neglected. The result of this step
is shown in Fig. 3—right.

The SPICE circuit that synthesizes Eq. (1) in which the damping term is not
considered is shown in Fig. 4. The actuation voltage is modeled by the independent
voltage source V1. The behavioral current source B1 models the electrostatic force.
The behavioral current source B2 models the elastic force. The current flowing
through the mass capacitor is the inertial force. All the important mechanical and
electric characteristics—displacement z.t/, velocity v.t/, capacitance C.z/ and its
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Fig. 3 Extraction of effective elastic coefficients from the multiphysics simulation: left—rational
approximation of the capacitance; right—various possible approximations: linear or cubic least
square; analytical evaluation of the elasticity coefficient is valid only for very small displacements

Fig. 4 Equivalent SPICE multiphysics macromodel. The “currents” flowing through this model
are forces. The displacement in�m is the voltage at node nd_sVal and is used by the source B2 to
provide the elastic force. The velocity in �m/ms is the voltage at node nd_vVal. The capacitance
of the switch is the voltage at node nd_CapVal. The derivative of the capacitance with respect to
the gap is the voltage at node nd_derC and is used by B1 to provide the electrostatic force
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Fig. 5 Static simulations:
FEM vs. SPICE equivalent
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derivative with respect to the displacement dC=dz are voltages in this schematic.
Scaled values have been used.

The set of static simulations of this circuit are shown in Fig. 5 and reveal a relative
error of the pull-in voltage with respect to its value from the FEM multiphysics
model, of 3.55 % if a linear approximation of the elastic force is used, and a relative
error of 0.82 % if a cubic approximation of the elastic force is used. The cubic
approximation is not only very accurate for the pull in voltage, but also for all the
dependence z.u/.

3 Mixed RF-Multiphysics Macromodel

To allow the coupling with the rest of the RF circuit, the macromodel of the switch
has to include both a model for the RF signal lines and a model for the switch itself.
The signal lines are best described by transmission lines (TL) models, whereas for
the switching part lumped components are used (Fig. 6). Thus, the resulting RF
macromodel includes both distributed and lumped parameters. The transmission
lines placed on both sides are considered identical, of length l, complex impedance
Zc and complex propagation constant 
 .

In order to extract the line parameters of the TLs, an EM full-wave simulation of
the switch in the up position has been done, as described in [10]. Electromagnetic
circuit element (EMCE) boundary conditions were applied to surfaces on the bound-
ary of the domain that correspond to the RF terminals, and the mathematical model
thus obtained was numerically discretized with the finite integration technique.
From the frequency simulation of this numerical model the impedance transfer
matrix Z is obtained. On the other hand, the analysis of the schematic in Fig. 6
in which TLs relationships are used leads to the following analytical expressions for
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Fig. 6 Typical RF macromodel. The switch model is represented by an admittance Y is synthe-
sized by using lumped R, L, C series connected components
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Fig. 7 EM simulation vs. mixed macromodel RF simulation: left—return loss (S11 signal pass),
right—insertion loss (S21, signal pass)

the transfer impedance components:

Z12 D Z21 D
1

�
; where � D 2cosh.
 l/ sinh.
 l/

Zc

C Y cosh2.
 l/; (2)

Z11 D Z22 D
1

�

�
sinh2.
 l/C cosh2.
 l/C ZcY sinh.
 l/ cosh.
 l/

�
: (3)

From the multiphysics simulation discussed in the previous section, the dependence
on z of the switch capacitance C was extracted. Assuming for the moment that we
neglect R and L, the admittance needed in the formulas above is Y D j!C and
it follows that the line parameters can be deduced quite straightforward from the
formulas above. Values for the line parameters are obtained for every frequency,
and an average value was computed for the frequency range of interest (Fig. 7).

The mixed macromodel is obtained by replacing the switch capacitance in the
RF schematic by a model that connects it with the multiphysics macromodel, as
in Fig. 8. A fixed capacitance has been added in parallel with the parametric one.
It corresponds to the electric field lines that close through the substrate, and it has
been computed by a separate electrostatic problem for the substrate. The validation
of the model built so far is done by comparing the RF results (S parameters,
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Fig. 8 Mixed macromodel: the RF part, the switch model is a current source controlled by the
capacitance value that is taken from the multiphysics part (voltage at node n_CapVal in the
multiphysics part of the schematic)

where S D .Z � Z0I/.Z C Z0I/�1, Z0 being a reference impedance, according to
http://eceweb1.rutgers.edu/~orfanidi/ewa/ch14.pdf) of the mixed schematic with the
results from the EM simulation (Fig. 7). A relative error of 2.5 % in Frobenius norm
is obtained.

4 Conclusions

A mixed macromodel of a RF-MEMS switch, with few degrees of freedom, was
extracted from several analyses of the device with distributed parameters. All
parameters are combined in a single Spice circuit model, which is controlled by
the MEMS actuation voltage and is excited with the RF signal. A relative error less
than 3 % in the S parameters and less than 1 % in the pull-in voltage is obtained,
which is very satisfactory given the low order imposed for the reduced model. Our
future studies will continue, the next step being to improve the multiphysics part, by
including damping and contact phenomena, in order that the macromodel be able
to carry out RF simulations up to the down position as well as transient simulations
needed for the extraction of switching time and pull-out voltage.
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Part II
Computational Electromagnetics

Maxwell’s equations of Electromagnetism were first published in 1865—now in
2015 it is exactly 150 years later as I write this text. These coupled partial differential
equations provide a complete mathematical model to describe any macroscopic
electromagnetic phenomenon—ranging from electric, magnetic or electromagnetic
fields that are almost completely undetectable to human senses. (Well, except for
a small range in the electromagnetic spectrum related to visible light and infrared
heat radiation and for some second level effects to the human body exposed to strong
electric and magnetic fields. And then you might also become seriously ill or even
die when having been exposed to ionizing electromagnetic fields such as x-ray or
gamma radiation for too long. . . )

The ability to describe electromagnetic fields by mathematically solving these
Maxwell equations (or derived variants thereof) has had a strong impact on
our technological society within the last 150 years. Essentially they are being
instrumental to the way how we communicate today and power our homes or the
majority of gadgets in our life that make use of electromagnetic energy.

More than half a decade ago computer-based methods were added to the toolbox
of mathematical solution methods available for the electromagnetic field theory. It is
worth to note at this point, that the famous Finite Difference Time Domain Method
(FDTD method), by now a commonly used standard method for the solution of
the Maxwell equations for transient electromagnetic wave phenomena published
by K. Yee in 1966, will become half a century old by next year. By now, the
computer aided solution of Maxwell’s equations—summarized as Computational
Electromagnetics (CEM)—is a long established branch of Scientific Computing
research.

In the following chapter of this book we find six paper contributions from various
authors presenting their results to the numerical calculation of electric, magnetic
and electromagnetic fields. These papers each report on progress achieved either in
the development of novel field formulations, for different discretization schemes or
they present advances in sophisticated mathematical solution techniques and in high
performance computing.
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T. Banova et al. describe in the paper “Systematic determination of eigenfields in
Frequency domain” a large scale parallel eigenvalue solver for a billiard resonator
problem.

R. Casagrande et al. prove in their paper “DG Treatment of Non-Conforming
Interfaces in 3D Curl-curl equations” that the use of these interfaces combined with
interior penalty methods will result in the loss of one order of convergence that is
critical when using lowest order edge element formulations.

M. Jochum and crew reformulate the time-harmonic Maxwell’s equations in
terms of potentials in “ A symmetric and low-frequency stable potential formulation
for the finite-element simulation of electromagnetic fields” which allows to calculate
electro-and magneto-quasistatic problems combined in one formulation.

C. Jerez-Hankes et al. provide in their paper “Local Multiple Traces Formulation
for High-Frequency Scattering Problems by Spectral Elements” a novel ready-
to-precondition boundary integral formulation to solve 2D Helmholtz scattering
problems including objects with high-contrast ratio.

C. Richter et al. develop an computationally efficient solver for large scale 3D
electrostatic FEM problems in electric insulator design by using multiple GPUs in
“Multi-GPU Acceleration of Algebraic Multigrid Preconditioners”.

D. Zheng et al. compare three different Green’s function methods for the fast
solution of electric space charge studies in accelerator physics in “On several
Green’s function methods for fast Poisson solver in free space”

This short collection of papers showcases Computational Electromagnetics to
be a very active, interdisciplinary research field combining novel methods and
advanced techniques in applied mathematics and computer science with sophis-
ticated models in electromagnetic field theory—aiming at improvements in the
computer aided simulation of complex application problems in physics and in
electrical engineering.



Systematic Determination of Eigenfields
in Frequency Domain

Todorka Banova, Wolfgang Ackermann, and Thomas Weiland

Abstract This paper addresses numerical procedures utilized to the accurate and
robust calculation of thousands of eigenpairs for the Dirac billiard resonator. The
main challenges posed by the present work are: first, the capability of the approaches
to tackle the large-scale eigenvalue problem, second, the ability to accurately
extract many, i.e. order of thousands, interior eigenfrequencies for the considered
problem, and third, the efficient implementation of the underlying approaches. The
eigenfield calculations are accomplished in two steps. Initially, the finite integration
technique or the finite element method with higher order curvilinear elements is
applied, and further, the (B-)Lanczos method with its variations is exploited for the
eigenpair determination. The comparative assessment of the numerical results to
the complementary measurements confirms the applicability of the approaches and
points out the significant reductions of computational costs. Finally, all of the results
indicate that the suggested techniques can be used for precise determination of many
eigenfrequencies.

1 Introduction

Over the last years, the increasing number of applications has stimulated the
development of new methods and software for the numerical solution of large-
scale eigenvalue problems. At the same time, the realistic applications frequently
challenge the limit of both computer hardware and numerical algorithms, as one
might possibly need large number of eigenpairs for matrices with dimension in
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Fig. 1 Superconducting microwave Dirac billiard cavity containing 888 metal cylinders with
radius r D 4mm and height h D 3mm, squeezed between two metallic plates. The resonator
is constructed from brass and coated with lead. As the lattice constant equals a D 12mm, the
resulting photonic crystal has a total size of 249:42mm � 420mm � 3mm

excess of several millions. In the present work, the investigations of the properties of
a graphene using a microwave photonic crystal (Dirac billiard resonator) [1, 2] also
emphasize the necessity for calculation of thousands of interior eigenfrequencies.
Graphene is a monoatomic layer of carbon atoms arranged in a regular hexagonal
pattern. Additionally, it can be described as one-atom thick layer of the mineral
graphite [3, 4]. High-quality graphene is very strong, light, nearly transparent, and
an excellent conductor of heat and electricity. Its interaction with other materials
and light, and its inherently two-dimensional nature produce unique properties. Due
to its peculiar electronic properties, the carbon allotrope attracted a lot of attention
over the last years, which culminated in a Nobel Prize in 2010.

It is worth mentioning that the band structure of the photonic crystal, which
is displayed in Fig. 1, possesses similar properties. More precisely, the photonic
crystal considered in the present work is given by a three-dimensional Dirac billiard
resonator composed of 888 metallic cylinders, which are arranged on a triangular
lattice and squeezed between two metal plates. The cylinders are characterized with
radius r D 4mm and height h D 3mm. As the lattice constant equals a D 12mm,
the resulting photonic crystal has a total size of 249:42mm � 420mm � 3mm.
Each cylinder is screwed to the top and the bottom brass plate to ensure a proper
mechanical stability and thus, reproducibility of the measurements. Finally, both
the lid and the body are leaded in order to reach superconductivity by cooling
with liquid helium at low temperatures (4:2K). Herewith, precise statistics for
the superconducting Dirac billiard cavity can be generated only if thousands
of eigenfrequencies are calculated. The problem to compute a large number of
eigenfrequencies along with their associated eigenvectors is given by the condition
that they are located inside the spectrum.

Reflecting the state that an analytical solution for the electromagnetic problem of
a Dirac billiard is not available, this work resorts to a numerical solution. Namely,
if the finite element method [5] is utilized to solve the electromagnetic problem
of a superconducting cavity, the numerical solution of a generalized large-scale
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eigenvalue problem

A x D �B x (1)

for given real symmetric matrices A and B is considered at the end. Thereon, the
algebraic eigenvalue problem is solved with the B-Lanczos solvers [6]. Supposing
that the numerical solution of the same problem is treated by the finite integration
technique [7], finally it yields to a standard eigenvalue problem

A x D � x (2)

for a given symmetric sparse matrix A 2 R
n�n. The novelty of this work is towards

efficient, robust, and accurate determination of many interior eigenpairs for (2). For
validation purposes, the numerical results are compared to the measurements.

Despite the fact that various types of numerical methods for eigenvalue deter-
mination (Krylov-Schur, Jacobi-Davidson, Arnoldi) are available in different soft-
ware packages, not as many are specifically adapted for computing thousands
of eigenpairs. The Lanczos method [8] with its variations is very attractive
for the aforementioned project necessities, as it reduces the original eigenvalue
problem to a tridiagonal one and takes a significant advantage over its competitors,
which concentrate on individual frequency samples per iteration. Among the
basic implementations of the Lanczos algorithm, a combination with a filtering
method is used as a valuable tool to enable the computation of interior eigenpairs.
Moreover, the solvers exploit all parallelism from a multi-threaded and multi-
process implementation of the used libraries. Analogously, this facilitates a higher
mesh resolution to be considered, whereby the computational costs will be kept on
an acceptable level.

2 Eigenvalue Determination in Frequency Domain

Within this work, the excited electromagnetic fields inside closed resonators are
considered under the assumption of perfectly electric conducting walls. Prior to
frequency-domain simulations, the related geometry is modeled and decomposed
into hexahedral or tetrahedral elements with the CST Microwave Studior [9].
Afterward, the corresponding mesh information is passed to the CEM3D solver [5]
in order to produce the sparse matrices that are used as input for the eigenmode
solvers. Here, the CEM3D program solves the electromagnetic problem either
with the finite integration technique or with a higher order finite element method.
Respectively, the outcome is either a standard or a generalized eigenvalue problem,
derived from the Maxwell’s equations for a loss-free and source-free bounded
domain with perfectly electric conducting walls on its surface.
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2.1 Lanczos Method with Polynomial Filtering

The Lanczos algorithm with polynomial filtering (cf. Fig. 2) replaces the matrix-
vector product A vj in the Lanczos algorithm [6] by �.A/ vj, where � is a polynomial
being determined from the knowledge on the distribution of the sought eigenvalues.
The main goal of the polynomial filtering is to enhance the Lanczos projection
scheme by processing the vectors vj, such that their components in the unwanted
parts of the spectrum are relatively reduced to those in the wanted parts. By means
of a three-term recurrence formula

ˇjC1 vjC1 D �.A/ vj � ˛j vj � ˇj vj�1; (3)

the Lanczos recursion with polynomial filtering generates a highly-structured (in
fact tridiagonal) real symmetric matrix T, which is defined as

T D

2

6666664

˛1 ˇ2
ˇ2 ˛2 ˇ3

ˇ3 ˛3
: : :

: : :
: : : ˇj

ˇj ˛j

3

7777775
: (4)

Fig. 2 Lanczos algorithm with polynomial filtering for the solution of the standard eigenvalue
problem (2). The polynomial filter �.�/ is expanded in the proper scaled and shifted basis of the
Chebyshev polynomials
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Herein, the major practical advantage of this method is the tridiagonal reduction
of the eigenvalue problem that yields minimal storage requirements, as do the
associated algorithms for its eigenvalue and eigenvector computations.

According to the descriptive view in Fig. 2, the iterative process implements
the modified Gram-Schmidt process, where in every Lanczos iteration the newest
Lanczos vector vjC1 is determined by orthogonalizing the vector �.A/ vj with
respect to ˛j vj and ˇj vj�1. Due to the roundoff errors, which result from the finite
computer arithmetic, and the convergence of the eigenvalues of the matrix T to
the eigenvalues of the original matrix �.A/, spurious eigenvalues are attributed
to the losses in the orthogonality of the Lanczos vectors. Therefore, the Lanczos
vectors are reorthogonalized in line 9 of Fig. 2. Various reorthogonalization schemes
have been proposed in the literature to correct the loss of orthogonality of the Lanc-
zos vectors. Within this work, the implemented Lanczos method with polynomial
filtering uses a full reorthogonalization for simplicity [10]. That is, the orthogonality
of the current Lanczos vector vj against all the previous vectors v1; : : : ; vj�1 is
reinstated at each step j.

A fundamental problem lies in computing an appropriate polynomial � in order
to approximate a step function that covers the interval of the desired eigenvalues
Œ	; ��. It should be noted that the matrices A and �.A/ share the same eigenvectors,
and the matrix �.A/ has eigenvalues �.�1/; : : : ; �.�n/, where �1; : : : ; �n are the
eigenvalues of the matrix A. If the polynomial �.�/ is chosen such that �.Œ	; ��/
is in an extreme region of the spectrum, the eigenvalues of the matrix �.A/ in
�.Œ	; ��/ will be approximated first. Afterwards, the corresponding eigenvectors
can be used to extract the eigenvalues of the matrix A in Œ	; ��. However, a high-
degree polynomial approximation to a discontinuous step function exhibits parasitic
oscillations. Therefore, a two-stage process is adapted [11]. First, a smooth function
similar to the step function is selected and then a polynomial approximation �.�/ to
this function is applied in the least-squares sense (see line 1 of Fig. 2).

A variant, known as the filtered conjugate residual polynomial algorithm is
proposed in [11]. Here, the functions are expanded in the proper scaled and shifted
basis of the Chebyshev polynomials. Thus, all inner product operations as well
as the adding and the scaling operations of two expanded polynomials can be
easily performed with the expansion coefficients. As a consequence of the 3-term
recurrence of the Chebyshev polynomials, the polynomial multiplication by � can be
also easily implemented. The details are omitted here and can be found in [11, 12].
Due to the fact that the procedure is performed in a polynomial space, for the
standard eigenvalue problem the matrix is never invoked and therefore, the resulting
computing costs are negligible.

The convergence of the algorithm is checked in line 7 of Fig. 2. With a given
tolerance ", the desired eigenvalues are deemed to have converged at the j iteration
if the number of sought eigenvalues of Tj is the same as the number of eigenvalues
of Tj�1 and the error of the sought eigenvalues, measured in the relative and the
average sense, is below the tolerance ".
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3 Application Example: Dirac Billiard Resonator

The dedicated eigenmode solvers are implemented in C++ and based on PETSc data
structures [13]. At this point, it should be pointed out that the parallel vectors and
the sparse matrices are easily and efficiently assembled through the mechanisms
provided by PETSc. Additionally, the PETSc library enables parallel computing
by employing the MPI standard for all message-passing communication. Moreover,
the implemented solvers employ the Intel MKL 10.2 library with LAPACK [14].
In case of the standard eigenvalue problem (2), the algorithm presented in Sect. 2.1
performs repeated computations of matrix-vector products, which are the only large-
scale operations included within this approach. On the other hand, the solution of
the problem (1) introduces a factorization of the matrix B. The details are omitted
and can be found in [6].

The frequency spectrum from 19 to 31GHz is numerically calculated (1656
eigenpairs in total) and then, compared with the measurements.1 During the
measurements, the analyzed structure is cooled down to a temperature of 4:2K,
which is naturally accompanied with a geometrical shrinkage. Thus, the raw
measurement data are scaled with a factor that compensates for the difference
in the dimensions of the measured and the simulated structure. In the numerical
studies, the eigenfrequencies are determined for the cases when the Dirac billiard
is discretized with 4;515;840 hexahedrons and 630;348 tetrahedrons by using the
Lanczos solver with polynomial filtering and the B-Lanczos solver with shift-
and-invert, respectively. The Lanczos solver with polynomial filtering is set to
calculate the above mentioned eigenfrequencies in two simulations, whereas the B-
Lanczos solver with shift-and-invert computed the sought eigenfrequencies in eight
simulations.

Prior to comparing the level-density analyses based on the eigenvalues deter-
mined with the different approaches, additional information about the accounted
computational resources is presented. In the simulation studies, it was experienced
that 15 cluster nodes are suited for problems with more than 106 mesh cells
when using the Lanczos solver with polynomial filtering. To be precise, each
node has two six-core Intel Xeon X5650 3:0GHz processors along with 24GB
of available working memory. On the other side, the B-Lanczos solver with shift-
and-invert is run on a powerful computer with 256GB of RAM memory and two
quad-core Intel Xeon E5-2643 processors, clocked at 3:3GHz. The computational
time as well as the memory consumptions for the eigenpair determination are
summarized in Table 1.

The results for the level-density analysis are compared in Fig. 3. On the abscissa
are given the frequencies in GHz, whereas the ordinate presents the occurrences,
i.e. obtained with the help of a Lorentz function [15], which belong to a specific

1The measurements are kindly provided from the Institute for Nuclear Physics at Technical
University of Darmstadt [2, 15].
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Table 1 Computational time and memory consumptions for the determination of 1656 eigenpairs
with the Lanczos solver with polynomial filtering and the B-Lanczos solver with shift-and-invert

Lanczos with polynomial filtering B-Lanczos with shift-and-invert

Eigenfrequencies 1656 1656

Time (days) 0.4 1.6

Memory/eig (MB) 201.3 295.2

Fig. 3 Comparison of the numerical results to the complementary measurements [2, 15] for a
superconducting Dirac billard cavity. The B-Lanczos solver with shift-and-invert and the Lanczos
solver with polynomial filtering are exploited for the computation of the eigenpairs

frequency. The red line shows the reflection spectrum measured with antennas
placed at different positions inside of the photonic crystal. The locations of the
antennas are chosen in the center of three cylinders, forming a triangle, in order
to minimize the disturbance of the propagating mode at the Dirac frequency.

In the considered frequency spectrum, only one band with a Dirac point around
23:5GHz is present. Below 19GHz and above 31GHz band gaps can be noticed.
As displayed in this figure, it is clear that the number of resonances in the range of
23:5GHz decreases greatly. This behavior reflects the vanishing density of states at
the Dirac point. The experimental reflection spectrum also has a clearly pronounced
minimum around 23:5GHz, i.e. within the frequency range where the Dirac point is
expected, and shows the characteristic cusp structure. The sharp resonances at the
edges of the bands are related to the so-called van Hove singularities. Evidently, the
measured spectrum closely resembles those obtained by the numerical simulations.
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4 Conclusions

In this paper, the statistical properties of a Dirac billiard resonator are investigated
via an employment of different numerical approaches to calculate thousands of its
eigenpairs. The numerical approaches are initially based on the finite integration
technique or the finite element method with higher order curvilinear elements, and
afterwards, the (B-)Lanczos method with its variations takes advantage over its
competitors for the solution of the (generalized) eigenvalue problem.

In addition to the need to ensure high precision of the proposed approaches,
the numerically calculated eigenfrequencies are compared side by side with the
reference data, which are determined by the measurements. Hereby, the findings
show that the proposed approaches deliver solutions, which agree well with the
reference data, gaining high accuracy and efficiency in eigenfield determination.
Beside the accuracy, the robustness of the underlying approaches is also investigated
throughout this work. Finally, all of the results indicate that the suggested techniques
can be applicable in different areas of applications, where a precise determination
of plenty of eigenfrequencies takes a crucial role.
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DG Treatment of Non-conforming Interfaces
in 3D Curl-Curl Problems

Raffael Casagrande, Christoph Winkelmann, Ralf Hiptmair,
and Joerg Ostrowski

Abstract We consider 3D Curl-Curl type of problems in the presence of arbitrary,
non-conforming mesh-interfaces. The Interior Penalty/Nitsche’s Method (Stenberg,
Computational mechanics, 1998) is extended to these problems for edge functions
of the first kind. We present an a priori error estimate which indicates that one
order of convergence is lost in comparison to conforming meshes due to insufficient
approximation properties of edge functions. This estimate is sharp for first order
edge functions: In a numerical experiment the method does not converge as the
mesh is refined.

1 Introduction

The Curl-Curl equation,

r � .��1r � A/ D ji; (1)

can be used to calculate the magnetic field that originates from a stationary current
ji. Herein � denotes the magnetic permeability, A is the magnetic vector potential
and the magnetic field is B D r �A. The Magnetostatic model (1) is a special case
of the temporally gauged Eddy Current model (note that (2) reduces to (1) in static
cases as well as in regions where the electric conductivity � vanishes) ,

�
dA
dt
Cr � .��1r � A/ D ji: (2)
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Fig. 1 Initially conforming
sub-meshes become
non-conforming when the
upper sub-mesh starts moving

In some applications like the simulation of electric machines or magnetic actuators,
magnetic fields have to be computed in the presence of moving, rigid parts. Then
one may use separate, moving sub-meshes for them in order to avoid remeshing.
However, this leads to so-called “sliding interfaces”, i.e. meshes with hanging nodes
(cf. Fig. 1).

Our aim is to construct a method which solves (1) such that the solution is
not affected by the “non-conformity” of the sub-meshes at the common interface.
This problem has been studied in depth in the framework of so called Mortar
Methods where the continuity requirements are incorporated directly into the trial-
space [1] or they are enforced by additional Lagrange Multipliers [2]. These
approaches have been proven to be successful, but they require the inversion of a
full matrix respectively additional unknowns. A related approach uses a primal/dual
formulation and couples the systems in a weak sense across the interface [3].

We pursue a different approach that fits into the framework of Discontinuous
Galerkin (DG) methods which support non-conforming meshes naturally. A Locally
Discontinuous Galerkin scheme for sliding meshes has already been proposed and
analyzed in [4]. We will study a simpler method which has it’s origins in Nitsche’s
Method. The idea is to penalize tangential discontinuities along the non-conforming
interface, but not in the interior of the subdomains where we use a standard FEM
discretization. The method has been analyzed for the Poisson Equation in [5] where
it was shown that a symmetric positive definite system matrix results. We aim to
extend this idea to (1).

It is important to realize that (1) and (2) (if � D 0 anywhere) don’t have a unique
solution (in the L2-norm). In this work, we will therefore study the regularized
problem,

r � .��1r � A/C "A D ji; in ˝ (3)

n � A D gD on @˝: (4)

Here " > 0 is the regularization parameter that renders the solution unique. We
discuss the influence and necessity of the regularization term in [6]. Finally we want
to point out that the boundary condition (4) implies .r � A/ �n D B �n D 0 on @˝
which reflects the decay of the fields away from the source.

We start our discussion by introducing DG notations (Sect. 2) that we need in
order to introduce the interior penalty formulation in Sect. 3. Section 3 also analyzes
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the behavior of the discrete solution as the mesh is refined (h-refinement) and the
role of the approximation space is studied. The theoretical results are compared to
numerical experiments in Sect. 4. We finish our discussion by a short conclusion and
outlook (Sect. 5).

2 Preliminaries

Before we can introduce the Symmetric Weighted Interior penalty (SWIP) formula-
tion of (3)–(4) we introduce some definitions and notations:

Subdomains and Sub Meshes Let us assume that the domain˝ , on which (3)–(4) is
posed, is a simply connected polyhedron with Lipschitz boundary. Furthermore we
assume˝ to be split into two non-overlapping subdomains˝1[˝2 D ˝. On each
subdomain we introduce a sequence of shape regular, simplical meshes in the sense
of Ciarlet such that the union TH D TH ;1 [ TH ;2 is quasi-uniform at the non-
conforming interface � D ˝1 \ ˝2 (cf. [6], Definition 1). It is easy to check that
meshes created by the motion of individual sub-meshes (cf. Fig. 1) fit this definition.

Magnetic Permeability We assume there exists a partition P˝ D
˚
˝i;�

�
such that

each ˝i;� is a polyhedron and such that the permeability � > 0 is constant on each
˝i;�. Furthermore the mesh sequence TH is compatible with the partition P˝ : For
each Th 2 TH , each element T 2 Th belongs to exactly one ˝i;� 2 P˝ . I.e. the
magnetic permeability is allowed to jump over element boundaries, and in particular
over the non-conforming interface � .

Polynomial Approximation Later on we will seek our discrete solution in the
piecewise polynomial space (cf. [7]),

Pk
3.Th/ WD

˚
p 2 L2.˝/

ˇ̌ 8T 2 Th; pjT 2 Pk
3.T/

�
(5)

where Th 2 TH and Pk
3.T/ is the usual space of polynomials up to degree k on

mesh element T. Note that functions of Pk
3.Th/ are discontinuous across element

boundaries.

Mesh Faces, Jump and Average Operators We denote by Fh D F b
h [F i

h the set
of all boundary and inner faces of a given mesh Th. FT stands for all faces of the
mesh element T 2 Th. For each mesh face F, vector valued function Ah 2 Pk

3.Th/
3,

we define

if F 2 F i
h; F D @Ti \ @Tj W ŒAh�T D nF �

�
AhjTi

� AhjTj

�
;

if F 2 F b
h ; F D @Ti \ @˝ W ŒAh�T D nF � AhjTi

;

if F 2 F i
h; F D @Ti \ @Tj W fAhg! D !1 AhjTi

C !2 AhjTj
;

if F 2 F b
h ; F D @Ti \ @˝ W fAhg! D AhjTi

:

(jump)

(average)

Here nF always points from Ti to Tj and !i 2 Œ0; 1� such that !1 C !2 D 1.
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3 Symmetric Weighted Interior Penalty (SWIP) Formulation

We chose an arbitrary subspace Vh 
 Pk
3.Th/

3 as discrete test and trial space, and
use integration by parts (cf. [7, 8] for details) to arrive at the SWIP formulation
of (3): Find Ah 2 Vh such that

aSWIP
h .Ah;A0

h/C "
Z

˝

Ah �A0
h D `h.A0

h/ 8A0
h 2 Vh (6)

with

aSWIP
h .Ah;A0

h/ D
Z

˝

�
��1r � Ah

� � �r � A0
h

� �
X

F2Fh

Z

F

˚
��1r � Ah

�
!
� 	A0

h



T

�
X

F2Fh

Z

F

˚
��1r � A0

h

�
!
� ŒAh�T C

X

F2Fh

�
�;F

aF

Z

F
ŒAh�T �

	
A0

h



T
;

(7)

`h.A0
h/ D

Z

˝

ji �A0
h �

X

F2Fb
h

Z

F

˚
��1r � A0

h

�
!
� .n � gD/

C
X

F2Fb
h

�
�;F

aF

Z

F

	
A0

h



T
� .n � gD/: (8)

where aF D 1
2
.hT1 C hT2 / is the average diameter of the adjacent elements of face F

and � is the penalty parameter. The weights are chosen as


�;F WD 2

�1 C �2 ; !1 WD �1

�1 C �2 ; !2 WD �2

�1 C �2 :

Remark If Vh 
 H.curl/, then all inner tangential jumps in (7) will drop out and
only jumps at the boundary remain. I.e. we are left with a standard FEM formulation
where the inhomogeneous boundary conditions (4) are enforced in a weak sense.

3.1 A Priori Error Estimate

Using the theory of DG Methods one can derive the following error estimate [6]:

Theorem 1 Let A 2 V� WD H.curl;˝/ \ H2.P˝/3 be a solution of the strong
formulation (3)–(4) (in the sense of distributions) and let Ah 2 Vh 
 Pk

3.Th/
3 solve

the variational formulation (6). Then there exist constants C > 0, C� > 0, both
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independent of h, �, such that for � > C�,

kA � AhkSWIP < C inf
vh2Vh
kA � vhkSWIP;�; (9)

and the discrete problem (6) is well-posed.

The associated function spaces and norms are defined by

H2.P˝/
3 WD

n
A 2 L2.˝/3

ˇ̌8˝i;� 2 P˝ W Aj˝i;�
2 H2.˝i;�/

3
o
;

kAk2SWIP WD k��1=2r � Ak2L2.˝/ C k"1=2Ak2L2.˝/ C
X

F2Fh


�;F

aF
k ŒA�T k2L2.F/;

(10)

kAk2SWIP;� WD kAk2SWIP C
X

T2Th

hTk��1=2 r � AjT k2L2.@T/:

Theorem 1 tells us that the total error is bounded by the best approximation error.
In the following we will bound the best approximation error in the k � kSWIP;� norm
for two concrete choices of Vh.

Edge Functions of the First Kind In this section we assume Vh D Rk.˝1/ ˚
Rk.˝2/ � Pk

3.Th/, where Rk is the space of k-th order edge functions (cf. [9], Sect.
5.5) of the first kind. The following polynomial approximation result gives a bound
on the right-hand side of (9):

Theorem 2 Assume the exact solution A 2 V WD H.curl;˝/ \ HsC1.˝1 ˚˝2/
3

with integer 1 � s � k, then there exists a projector �h W V 7! Vh such that

kA � �hAkSWIP;� < Chs�1 �kAkHsC1.˝1/3
C kAkHsC1.˝2/

�
:

Where C is independent of h.

Sketch of Proof The approximation space Vh consists of two standard edge element
spaces in˝1,˝2. We can thus use the standard projection operator rh, as it is defined
in [9], for edge functions on ˝1, ˝2 to compose our global projection operator �h:

�h.A/ WD
�
rh
�

Aj˝1
�
; rh

�
Aj˝2

��
:

Next, we note that all the tangential jumps in (7) and (10) that lie on inte-
rior, conforming faces drop out and only jumps over F 2 F b;�

h WD F b
h [
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˚
F 2 F i

h

ˇ̌
F � ˝1 \˝2

�
remain. Thus,

kA � �hAk2SWIP;� D k��1=2r � .A � �hA/k2L2.˝/ C k"1=2.A � �hA/k2L2.˝/
C

X

F2Fb;�
h


�;F

aF
k ŒA � �hA�T k2L2.F/ C

X

T2Th

hTk��1=2r � .A � �hA/k2L2.@T/;

D T1 C T2 C T3 C T4:

The terms T1;T2;T4 are easily bounded in terms of O.h2s/ by standard polynomial
approximation results (cf. Theorem 5.41 in [9]). However, for T3 we have to use
Lemma 5.52 in [9] to achieve a rate O.h2s�2/ which unfortunately dominates the
other terms. The fact that the error contribution T3 is confined to a neighborhood of
the interface, respectively the boundary, does not help, because the solution may be
concentrated there as well.

Piecewise Polynomials For the sake of completeness we shortly present an
approximation result for the case Vh D Pk

3.Th/:

Theorem 3 Assume the exact solution A 2 V WD H.curl;˝/ \ HsC1.P˝/3 with
integer 1 � s � k, then there exists a projector �P

h W V 7! Vh such that

kA � �P
h AkSWIP;� < ChskAkHsC1.P˝/3

where C is independent of h.

For the proof of this theorem we refer the reader to the proof of Theorem 3.21
in [8]. The important point is that piecewise polynomials Pk

3.Th/ yield the expected
rate of convergence because they span the full polynomial space.

4 Numerical Results

We consider a 3D sphere with radius 1 that is split into two half-spheres which
are then meshed individually (Fig. 2). We impose the analytical solution A D
.sin y; cos z; sin x/ and choose ji, gD correspondingly (� D 1, " D 10�6).

Figure 3 shows the error for a sequence of quasi-uniform meshes which
approximate the boundary linearly. We can see that piecewise polynomials yield
always the expected rate of converge, O.h/, but this does not hold for edge functions:
For Vh D R1.˝1/˚R1.˝2/ the error fluctuates significantly depending on the angle
(see Fig. 4) and for � D 2:86 (solid line) no convergence is observed. This shows
that the estimate in Theorem 2 is sharp for k D 1. For k D 2 we would expect O.h/
convergence but for all configurations we observe a rate of order at least O.h1:5/
because in this experiment the solution is not concentrated at the interface/boundary:
T3 decays faster than in the worst case.
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Fig. 2 The meshes for the two half spheres. The upper hemi-sphere is turned against the lower
hemisphere by � D 2:86 degrees to create a non-conforming mesh

Fig. 3 The relative H.curl/ error vs. mesh size h for rotation angle � D 2:86 degrees (solid lines).
The dashed gray lines correspond to � D 90n=.50�/ degrees, n 2 f0; 1; : : : ; 49g

Finally, Fig. 4 shows the relative error for different rotation angles for a fixed
mesh width h. This confirms the previous result in that the error for Vh D R1.˝1/˚
R1.˝2/ depends on the geometry of the overlapping meshes. For Vh D P1.Th/,
respectively Vh D R2.˝1/˚ R2.˝2/ the error does not depend on � .
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Fig. 4 The relative H.curl/ error vs. the rotation angle for h D 0:261

5 Conclusion and Outlook

We have shown that a straightforward generalization of the Interior Penalty/Nitsche’s
Method to 3D Curl-Curl problems does not yield the expected rate of convergence
if edge functions of the first kind are used. Generally one order of convergence is
lost, i.e. for k-th order edge functions we observe O.hk�1/ convergence as the mesh
is refined. The reason for this is that Rk doesn’t span the full polynomial space Pk.
Moreover, the result is sharp for k D 1, i.e. the method fails completely for first
order edge functions. This problem can be cured by using either the full polynomial
space P1 or by using second order edge functions R2.

The proposed SWIP scheme leads to a sparse, symmetric positive definite matrix
which yields, together with the conjugate gradient method, a fast and robust solution
scheme. Furthermore � can be discontinuous across the non-conforming interface.

Outlook The proof of Theorem 2 suggests that it suffices to use 2nd order edge
functions solely in elements adjacent to the non-conforming interface to achieve
O.h/ convergence. This is easily implemented using hierarchical edge functions [10]
and reduces the required number of degrees of freedom drastically. Another open
question is whether the problem can still be solved using CG if the regularization
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term in (3) is dropped because the system matrix then becomes positive semi-
definite and the right-hand side is no longer in its range. Also, it is unclear whether
the SWIP bilinear form offers a spectrally accurate discretization of the Curl-Curl
operator [11] for " D 0 and thus the convergence rate of CG may deteriorate as
h! 0.
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A Symmetric and Low-Frequency Stable
Potential Formulation for the Finite-Element
Simulation of Electromagnetic Fields

Martin Jochum, Ortwin Farle, and Romanus Dyczij-Edlinger

Abstract A low-frequency stable potential formulation is presented. It covers lossy
and lossless regions, results in symmetric finite-element matrices, and guarantees
unique solutions. This contribution improves upon the authors’ prior work by
including general impressed currents and charge distributions. Moreover, it clarifies
the interface condition to be imposed on the gauge on the common boundaries of
the lossy and lossless regions.

1 Introduction

In recent years, the stability of finite-element (FE) formulations for the time-
harmonic Maxwell equations in the low-frequency (LF) regime has gained a lot
of attention. It is well known that the electric field formulation (EFF) breaks down
in the static limit [1]. Various alternatives have been suggested [1–6], but none of
them is completely satisfactory: The formulation of Dyczij-Edlinger et al. [1] does
not consider ohmic losses, the method of Hiptmair et al. [2] leads to non-symmetric
matrices and non-unique solutions, the purely algebraic approach of Ke et al. [3]
relies on numerical break-down, and [4, 5] require an LF threshold and cannot
recover magnetostatic fields. A promising approach is [6]; however, its matrices
are non-symmetric.

In a recent publication [7], the authors presented an LF stable potential for-
mulation that covers lossy and lossless domains and yields symmetric matrices
and unique solutions. However, it requires all impressed currents to be solenoidal,
and the lossless region to be free of charges. This contribution improves upon
[7] by including general impressed currents and charge distributions. Moreover, a
variational framework is provided that clarifies the interface condition to be imposed
on the gauge on the common boundary of the lossy and lossless regions.
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2 Time-Harmonic Boundary Value Problem

We write E and H for the electric and magnetic field strength, and Ji for the
impressed current density, and � for the electric charge density. The wavenumber,
characteristic impedance, and speed of light in free space are denoted by k0, �0,
and c0; the relative magnetic permeability and electric permittivity by �r and
"r, respectively, and the electric conductivity by � . We will also use the relative
magnetic reluctivity 
r D ��1

r . The indices C and N stand for “conducting” .� ¤ 0/
and “non-conducting” .� D 0/, respectively.

Let ˝ be a topologically simple domain which is partitioned into a conducting
sub-domain ˝C and a non-conducting region ˝N . The interface of ˝N and ˝C is
denoted by � and the unit surface normal by On.

We consider the Maxwell equations in the frequency domain,

�0 r�H D .�0� C ik0"r/EC �0Ji in ˝; (1a)

r�E D �ik0�0�rH in ˝; (1b)

r � .�rH/ D 0 in ˝; (1c)

r � ."rE/ D c0�0� in ˝; (1d)

subject to the boundary conditions (BC)

E � On D 0 on @˝; (2a)

On � .�rH/ D 0 on @˝; (2b)

and the interface conditions

.EC � EN/ � On D 0 on �; (3a)

.HC �HN/ � On D 0 on �; (3b)

Œ.�rH/C � .�rH/N� � On D 0 on �; (3c)

fŒ.�0� C ik0"r/EC �0Ji�C � .ik0"rEC �0Ji/Ng � On D 0 on �: (3d)

3 Source Modeling in the Lossless Domain

Taking the divergence of Ampère’s Law (1a) leads to the continuity equation

r � Œ.�0� C ik0"r/E� D ��0 r � Ji: (4)

In the lossy domain ˝C, the prescription of Ji fixes the sources of the electric field.
Hence (1d) is not a governing equation for the electromagnetic fields. Rather, the
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charge density � becomes a dependent quantity which is obtained from E in a post-
processing step, via (1d). Moreover, there are no particular constraints on Ji.

In the lossless domain ˝N , (4) simplifies to

ik0 r � ."rE/ D ��0 r � Ji: (5)

Substituting (1d) for the left-hand side of (5) shows that Ji and � are linked by

r � Ji D �ik0c0�: (6)

For k0 D 0, � becomes an independent excitation for the electrostatic problem
in ˝N :

r�E D 0; (7)

r � ."rE/ D c0�0�: (8)

4 Electric Field Formulation and Low-Frequency Instability

A classical example of a formulation that breaks down in the static limit is given by
the time-harmonic EFF. The corresponding boundary value problem (BVP) reads

r�.
r r�E/C ik0�0�E � k20"rE D �ik0�0Ji in ˝; (9a)

E � On D 0 on @˝; (9b)

where Ji is given. As long as k0 > 0 holds, (9a) incorporates the continuity
equation (4) in lossy regions˝C and the electric flux balance (1d) in lossless regions
˝N , respectively, as can be seen by taking the divergence of (9a):

ik0 r � Œ.�0� C ik0"r/E� D �ik0�0 r � Ji in ˝C; (10)

�k20 r � ."rE/ D �ik0�0 r � Ji D �k20c0�0� in ˝N : (11)

However, the two constraints are imposed in wavenumber-dependent form and
vanish for k0 D 0. Instability in the LF regime .k0 � 1/, and non-uniqueness
in the static limit .k0 D 0/ follow.

5 Low-Frequency Stable Potential Formulations

To overcome the shortcomings of the EFF, the authors presented in [7] a gauged
potential formulation that provides the basis for this work. We define a scaled
magnetic vector potential A 2 Hcurl

0 .˝/ and an electric scalar potential V 2 H1
0.˝/
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by

�0�rH D r�A; (12)

E D �r V � ik0A: (13)

We introduce some subspace QHcurl
0 .˝/ � Hcurl

0 .˝/ via the inexact Helmholtz
splitting

Hcurl
0 .˝/ D QHcurl

0 .˝/˚r H1
0.˝/: (14)

In the discrete setting, (14) is realized by a tree-cotree splitting of the FE basis
functions of lowest order [8]. If hierarchical FEs with an explicit basis for higher-
order gradients [9, 10] are employed, that basis is discarded; see [1].

Equation (14) enables us to represent A in terms of a reduced potential Ac 2QHcurl
0 .˝/ and an auxiliary scalar potential  2 H1

0.˝/:

A D Ac Cr  with Ac 2 QHcurl
0 .˝/;  2 H1

0.˝/: (15)

Thus,

�0�rH D r�Ac; (16)

E D �r V � ik0.Ac Cr  /: (17)

5.1 Boundary Value Problem in Terms of Potentials

In the lossy sub-domain˝C we state

r� .
r r�Ac/C .�0� C ik0"r/ Œik0 .Ac Cr /CrV� D �0Ji in ˝C; (18a)

�r � Œ.�0� C ik0"r/ .Ac Cr /� D 0 in ˝C: (18b)

Therein (18a) represents Ampère’s Law (1a), and (18b) is a gauge condition. In the
lossless sub-domain˝N we employ Ampère’s Law (1a), again, and the electric flux
balance (1d):

r� .
r r�Ac/C ik0"r Œik0 .Ac Cr /CrV� D �0Ji in ˝N ; (19a)

�r � f"r Œik0 .Ac Cr /CrV�g D �0c0� in ˝N : (19b)

A gauge will be imposed in the discrete setting. Note that (19a) implies (19b) for
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k0 > 0; see Sect. 5.3. BCs corresponding to (2) are given by

Ac � On D 0 on @˝; (20a)

 D 0 on @˝; (20b)

V D 0 on @˝: (20c)

Interface conditions will be discussed in Sect. 5.4.

5.2 Weak Formulation in Lossy Sub-Domain

Testing (18a) by wc 2 QHcurl
0 and r N , with N 2 H1

0 , and (18b) by NV 2 H1
0 yields

Z

˝C

r�wc � .
r r�Ac/C wc � .�0� C ik0"r/ Œik0 .Ac Cr  /Cr V� d˝

D �0
Z

˝C

wc � Ji d˝ C �0
Z

�

wc � .H � OnCN/ d�; (21)

Z

˝C

r N � f.�0� C ik0"r/ Œik0 .Ac Cr  /Cr V�g d˝

D �0
Z

˝C

r N � Ji d˝ �
Z

�

N Œ.�0� C ik0"r/EC �0Ji� � OnCN d�;

(22)
Z

˝C

r NV � Œ.�0� C ik0"r/ .Ac Cr  /� d˝

D
Z

�

NV Œ.�0� C ik0"r/ .Ac Cr  /� � OnCN d�: (23)

It can be shown that (22) is a weak form of the continuity equation

�r � f.�0� C ik0"r/ Œik0 .Ac Cr /CrV�g D ��0r � Ji: (24)

5.3 Weak Formulation in Lossless Sub-Domain

Testing (19a) by wc 2 QHcurl
0 and r N , with N 2 H1

0 , and (19b) by NV 2 H1
0 yields

Z

˝N

r�wc � .
r r�Ac/C wc � .ik0"r/ Œik0 .Ac Cr /CrV� d˝

D �0
Z

˝N

wc � Ji d˝ C �0
Z

�

wc � .H � OnNC/ d�; (25)
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ik0

Z

˝N

r N � "r Œik0 .Ac Cr  /Cr V� d˝

D �0
Z

˝N

r N � Ji d˝ �
Z

�

N .ik0"rEC �0Ji/ � OnNC d�;

(26)
Z

˝N

r NV � "r Œik0 .Ac Cr  /Cr V� d˝

D �0c0
Z

˝N

NV� d˝ �
Z

�

NV ."rE/ � OnNC d�: (27)

It can be shown that (26) is a weak form of the continuity equation

�ik0 r � f"r Œik0 .Ac Cr /CrV�g D ik0�0c0� D ��0r � Ji: (28)

It is apparent that (28) is a wavenumber-scaled version of (19b), in accordance with
the lack of a gauge in ˝N . The fact that (28) vanishes in the static case suggests to
replace (26) by a suitable gauge condition, on the FE level.

5.4 Interface Conditions

The interface conditions (3a) and (3c) require that

.Ac;C � Ac;N/ � On D 0 on �; (29)

 C �  N D 0 on �; (30)

VC � VN D 0 on �; (31)

which is to be imposed in strong form, by single-valued potentials on the interface.
The interface conditions (3b) and (3d) are imposed in weak form, by requiring that
the boundary integrals in (21) and (25) as well as in (22) and (26) cancel out.

Finally, we require that the boundary integrals in (23) and (27) cancel. This
means, the gauge condition (18b) is supplemented by the constraint

Œ.�0� C ik0"r/C .Ac Cr /C C ."rE/N � � On D 0 on �: (32)

5.5 Finite-Element Representation and Gauge

The discrete formulation is obtained by restricting the spaces QHcurl
0 .˝/ and H1

0.˝/

to finite-dimensional FE spaces [9, 10]. Assuming (complex)-symmetric material
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tensors, it can be seen from the weak forms of Sects. 5.2 and 5.3 that the resulting FE
matrices will also be complex-symmetric, which can be exploited to reduce memory
consumption and compute time. The computationally cheapest choice of gauge in
˝N is to set all FE coefficients x associated with  basis functions in the interior
of ˝N to zero. In this case (26) still contributes to unknowns on � .

6 Numerical Examples

6.1 Partially Filled Cavity

Figure 1a shows a box-shaped cavity, which is half-filled by a lossy dielectric. To
compare the LF properties of the EFF and the present approach, the frequency-
dependence of the spectral condition number of the system matrix is shown in
Fig. 1b. In the frequency range under consideration, the condition number remains
almost constant for the new formulation, whereas that of the EFF grows rapidly as
the frequency tends to zero. Saturation at 1021 : : : 1025 is due to numerical noise.

6.2 RLC Circuit

The voltage-driven RLC circuit shown in Fig. 2 constitutes our second example. The
wires and electrodes are taken to be lossy, whereas all other materials are assumed to
be lossless. The field plots of Fig. 3 demonstrate that all relevant physical effects are
represented correctly: In the static case, the structure serves as an ideal open circuit.

Fig. 1 Half-filled cavity: spectral condition number �2 of FE matrix vs. frequency for FE basis
functions of different degree p. dashed line: E method; solid line: present approach. Materials:
�N=�C=1, "N="C=1, �N = 0 S/m, �C = 1 S/m. (a) Structure. (b) Spectral condition number �2
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Fig. 2 RLC circuit. (a) Structure. Dimensions are in mm. (b) Mesh

Fig. 3 RLC circuit: field patterns for different operating frequencies

As the frequency rises, significant currents and magnetic fields start to develop. In
parallel, the skin and proximity effect become clearly visible in the wires.
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Local Multiple Traces Formulation
for High-Frequency Scattering Problems
by Spectral Elements

Carlos Jerez-Hanckes, José Pinto, and Simon Tournier

Abstract We provide a novel ready-to-precondition boundary integral formulation
to solve Helmholtz scattering problems by heterogenous penetrable objects in
two dimensions exhibiting high-contrast ratios. By weakly imposing transmission
conditions and integral representations per subdomain, we are able to devise a robust
Galerkin-Petrov formulation employing weighted Chebyshev polynomials. Matrix
entries are computed by fast Fourier transforms and regularization techniques.
Computational results provided are consistent for large contrast scatterers and
frequency sweep as well as efficient Calderón-type preconditioning.

1 Introduction

We consider the modeling of time-harmonic electromagnetic waves scattered by
penetrable heterogeneous objects in R

2 using Boundary Integral Equations (BIEs).
Specifically, our interest lies in bounded scatterers composed of several subdomains,
each of them characterized by constant but distinct wavenumbers exhibiting large
ratios. Consequently, for a given excitation frequency, a subdomain may contain
a large number of wavelengths, a situation referred to as medium or medium-high
frequency regimes.1 Such problems can be encountered in real life as, for instance,
when designing phased-array antennae or analyzing electromagnetic compatibility.

From a computational perspective, this frequency regime renders standard
low-order implementations either very expensive or simply impractical and one
naturally adopts higher order approximations. For homogenous scatterers, several

1If the subdomain has a length Li and waves propagating therein have a wavelength �i, we consider
situations reaching Li=�i Š 1000 with maxij �i=�j � 100. The case of very high frequencies will
not be considered as it can only be practically resolved by asymptotic methods.
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approaches based on Fourier-spectral Galerkin discretizations have been proposed
with particular emphasis on non-penetrable objects [1, 2, 5, 9].

In the present work, we continue the analysis of the strategy devised in [8]
to tackle such problems using the local Multiple Traces Formulations (MTFs)
[3, 4, 6]. The MTF requires all unknown boundary traces to be defined independently
per subdomain while transmission conditions are enforced weakly. In [8], we
showed that in the continuous case, the resulting first-kind Fredholm equation
possesses unique solutions with a block structure amenable to parallelization and
operator preconditioning. Moreover, we provided numerical results for spectral trace
discretization and confirmed the strong reduction in GMRes iterations.

We now proceed to recall a few definitions, assess computational costs and
discuss the method’s robustness for different wavenumbers and frequency sweep.

2 Generalized Local Multiple Traces Formulation

For the sake of brevity, we refer the reader to the notation, definitions and derivations
introduced in [6, 8] and consider the geometry depicted in Fig. 1. Under this setting,
�i are wavenumbers and � denotes joint Dirichlet and Neumann trace operators. The
partial differential problem can be cast as follows: to seek u such that for g being
the traces of an incoming plane wave it holds,

��u � �2i u D 0; 8 x 2 ˝i; i D 0; 1; 2; (1a)

Œ�u� D g; 8 x 2 �01 [ �02; (1b)

Œ�u� D 0; 8 x 2 �12; (1c)

C radiation conditions when kxk ! 1: (1d)

where u on ˝0 represents the scattered wave while inside ˝1 [ ˝2 u is the total
wave.

Fig. 1 Simple model geometry. Observe normal definitions
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Transmission conditions will be weakly enforced across each interface �ij. For
this, one introduces restriction-orientation-and-extension operators eXij which act
at each interface by restricting boundary unknowns, orienting Neumann traces and
extending by zero onto the adjacent subdomain boundary. This is required to set
up a single subdomain boundary equation. On each subdomain, volume Helmholtz
equations are replaced by their integral representation counterparts. From here, one
derives Calderón identities for each pair of Dirichlet and Neumann trace unknowns
�i by testing with functions defined accordingly. More precisely,

˝
�i ; 'i

˛
� D

��
1

2
IdC Ai

�
�i ; 'i

�

�
(2)

D
��

1
2
Id � Ki Vi

Wi
1
2
IdC K0

i

��
�i

D

�i
N

�
;

�
' i

D

' i
N

��

�
;

where the standard boundary integral operators (BIOs) show up and the subscript �
denotes cross-duality products as defined in [6, Sect. 2], [3, Sects. 2.2 &2.3]. Please
observe that this spectral form of the local MTF differs slightly from the versions
described in [3, 4, 6], in that (2) must be taken over broken spaces for both test and
trial functions as described in [8, Sect. 2]. With this, we can write down the MTF
for two subdomains as follows: find � D .�0;�1;�2/ such that for a suitable g it
holds,

hM� ; 'i D
*
M

0

@
�0

�1

�2

1

A ;

0

@
'0

'1

'2

1

A
+

�

D
*0

@
g0

g1

g2

1

A ;

0

@
'0

'1

'2

1

A
+

�

; (3)

where

M WD
0

@
A0 � 1

2
eX01 � 12eX02

� 1
2
eX10 A1 � 1

2
eX12

� 1
2
eX20 � 12eX21 A2

1

A (4)

reveals the block structure of the operator and one can show that the system (3) is
well-posed [8, Theorem 1].

3 Discretization by Spectral Elements

As described in [8, Sect. 3], trial and test spaces for discretizing (3) are constructed
as vectors of piecewise Dirichlet and Neumann functions per interface �ij. Specif-
ically, each component of these vector functions is defined as a pullback of first
and second kind Chebyshev polynomials defined on the canonical segment O� WD
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Œ�1; 1�, denoted by Tn, Un, n 2 N0, respectively. Test functions will be multiplied by
the weight function !.x/ WD p1 � x2 to derive convenient orthogonality relations.

Thus, for the domain ˝i with interface �ij parametrized by the function hij W
O� ! �ij, the n-th trial and l-th test vector functions, �ij

n and qik
l , respectively, are

given by the following expressions:

�ij
n WD .Tn;Un/ ı .hij/

�1; qik
l WD .!Ul; !Ul/ ı .hik/

�1:

With the above, and after rearranging�-dual products, we can build the Galerkin-
Petrov matrix originating from the MTF operator M. If L denotes any of the BIOs,
matrix entries take the general structure:

Iijk
L Œn; l� WD

˝
LijkPn ; !Ul

˛ D
Z

O�

Z

O�
Fijk

L .s; t/Pn.t/!.s/Ul.s/dsdt; (5)

where Fijk
L represents the associated BIO kernel including the mappings required

to push the interfaces �ij and �ik onto O� , and Pn is either kind of Chebyshev
polynomial pushed back to O� . As described in [8, Sect. 3.3], depending on whether
the interfaces �ij and �ik coincide or not, singular behaviors show up in the
integrands. We use standard regularization techniques to extract the singularities [7],
i.e. the kernel Fijk

L .s; t/ is written as the sum of singular and continuous parts, where
the singular part SL.s; t/ corresponds to the Laplacian kernel and has a known
analytical decomposition:

SL.s; t/ D
1X

mD0
f sing
m .t/Um.s/; (6)

where the terms f sing
m .t/ are polynomials of order m in t with order coefficients

behaving according to the order of the operator, e.g. the coefficients decrease
as O.1=m/ and increase as O.m/ for the weakly and hyper- singular operators,
respectively. However, when the integration paths—interfaces �ij and �jk—do not
coincide in (5), this term is unnecessary and we set f sing

m � 0 in (6). The continuous
kernel Rijk

L WD Fijk
L � SL is approximated via Chebyshev polynomials for a fixed t as

a degenerate kernel, i.e.

RL.s; t/ �
McX

mD0
f reg
m .t/Um.s/; (7)

using of the FFT to compute coefficients fm.t/ for a suitable choice2 of Mc 2 N.
Then, if fl WD f sing

l C f reg
l , by applying the orthogonality properties of second kind

2In [8] we used M to account for the maximum polynomial order and Nc to denote the number of
terms considered in the degenerate kernel approximation.
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Chebyshev polynomials, i.e.

hUl ; !Umi O� D
�

2
ılm;

one can quickly reduce the double integration to only one of the form as follows:

ILŒn; l� D
Z

O�

Z

O�
.SL.s; t/C RL.s; t//Pn.s/!.t/Ul.t/dsdt

�
Z

O�

Z

O�

 1X

mD0
f sing
m .t/Um.s/C

McX

mD0
f reg
m .t/Um.s/

!
Pn.t/!.s/Ul.s/dsdt

D �

2

Z

O�

�
f sing
l .t/C f reg

l .t/
�

Pn.t/dt D �

2

Z

O�
fl.t/Pn.t/dt;

(8)
which is finally computed using Gauss-Legendre quadrature.

4 Computational Cost

It is possible to show that the previous scheme has a lower computational cost (in
terms of number of operations) than a classical scheme based on pure quadrature
for relative large problems.

Let us assume a maximum polynomial or modal order used for all discretized
trace spaces with value N 2 N. Then, the number of trial and test functions
considered is equal to 2N C 2 per subdomain so that the full matrix size is
.2N C 2/2 �ND as we have ND subdomains. For short, the matrix size is then
O.ND �N2/.

Let us first consider the case of computing the matrix entries via double
quadrature. If I.N/ denotes the number of operations needed to compute a single
integral with number of quadrature points determined by N, the computational cost
of the full Petrov-Galerkin matrix is O

�
N2 � I.N/2�. Since the quadrature scheme

will depend linearly on the order of the polynomials used, I.N/ is proportional to N,
and the cost becomes O

�
ND �N4

�
.

Now, for the scheme described in Sect. 3, the main advantage is that all Fourier
transforms can be pre-computed, so that for each quadrature point a Fourier
transform with Mc points has to be taken. The cost of this pre-computation is
O .ND �N �Mc log.Mc//. After that, each integral of the Petrov-Galerkin discretiza-
tion is transformed into a single integral, generating a total cost:

O
�
ND �N2 � .Mc log.Mc/C N/

�
;

which is significantly better than performing a double quadrature even for large Mc.
Lastly, we observe that the values of Mc depend strongly on the wavenumbers of
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the specific problem as discussed below but the accuracy obtained by the scheme is
better than the one provided by full quadrature for similar computation costs.

5 Numerical Results

We now present numerical simulations for the unit circle divided in two halves so
that three subdomains are created: ˝0 WD fx 2 R

2; kxk2 > 1g; ˝1 WD fx 2
R
2; kxk2 < 1; x1 < 0g; and, ˝2 WD fx 2 R

2; kxk2 < 1; x1 > 0g. This geometry
contains all the difficulties portraying Lipschitz domains with sharp corners. As
a rule of thumb, the free parameter used in the Chebyshev degenerate kernel
expansion we will consider is set to Mc D 2ceil.3N CmaxiD0;1;2 �i/C 128.

Depending on the wavenumber values for ˝1 and ˝2, we define two general
scenarii called symmetric (�1 D �2) and asymmetric (�1 ¤ �2). For the symmetric
case, the L2-error is computed using as reference the associated Mie series. For the
asymmetric scenario, since no exact solutions are available, we check the L2-norm of
the interface jump relations and also the fulfillment of the weak Calderón identities,
i.e. for each domain ˝i, test functions ql and discrete solution �i

N , we measure the
residual:

˝
2Ai�

i
N ; ql

˛ � ˝�i
N ; ql

˛
:

Then, by sweeping in l and choosing the maximum value, we define a measure for
the residual error in Calderón identities, referred to as error in weak Calderón in
Figs. 2 and 3.

5.1 Convergence Analysis

We derive convergence results by assuming fixed frequency and permittivity values.
From Mie series analysis and standard spectral methods, we should observe
convergence starting at Ni D 1:4�i with Ni being the number of modes describing
the subdomain trace data. This hints at expecting different number of modes per
subdomain required to represent physical wavelengths. However, as we will see,
this only holds for the symmetric case. Figure 2a, b reveal consistent convergence
behaviors for all three error measures, thereby validating the error proxies taken
by measuring jump and Calderón conditions. Figure 2a, b show the convergence
dependence on the contrast by changing the number of modes required to achieve
similar error magnitudes.

Matters change for the asymmetric case (Fig. 2c, d), as the exterior number of
modes N0 required is now related to the highest value of the �i.
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Fig. 2 Convergence analysis results for symmetric and asymmetric cases. (a) k0 D 10 ,"1 D
2; "2 D 2;N1;2 D 1:4�1;2. (b) k0 D 10 ,"1 D 3; "2 D 3;N1;2 D 1:4�1;2. (c) k0 D 10 , "1 D
2; "2 D 3;N1;2 D 1:4�1;2. (d) k0 D 10 , "1 D 2; "2 D 3;N1;2 D 1:4maxf�1; �2g

5.2 Frequency Range Analysis

Figure 3a portrays errors for different exterior wavenumbers �0 and different
contrasts using a fixed Ni D 1:4ki rule. This implies that for �0 D 100, the size of the
linear system to solve is 1500 � 1500 ("1;2 D 2). If the same rule is applied for the
asymmetric case, the method fails to provide convergence. In this case, the strategy
followed is to use the same maximum amount of modes originated by the largest �i.
Figure 3b shows positive results for such a strategy. However, a robust rule of thumb
is not clear and one can also observe an increase in errors as frequency moves up. We
are currently trying to determine whether this is inherent to our method or related to
the strategy used to set the number of modes.



80 C. Jerez-Hanckes et al.

Fig. 3 Frequency sweep results. (a) Symmetric case Ni D 1:4ki C 7. (b) Asymmetric case "1 D
2; "2 D 3

5.3 Krylov Iterative Solver: Built-In Preconditioner

When the wavenumber increases, the Helmholtz equation becomes more indefinite,
deteriorating the convergence rate of Krylov subspace iterative solvers and, for our
first kind formulation, quickly urging for preconditioning. Calderón identities used
to establish the MTF also lead to a built-in preconditioner [6, Sect. 5.5], [3, Sect. 4],
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Fig. 4 GMRes residual error computations for symmetric and asymmetric cases. (a) Symmetric
case. (b) Asymmetric case "1 D 2; "2 D 3

[8, Sect. 4.5]:

A WD diag.A0;A1;A2/; (9)

whose discrete form is easily computed. The exact discrete version involves a
duality pairing matrix which is block-diagonal with entries computed via orthog-
onality properties of Chebyshev polynomials. Specifically, we derive diagonal and
bi-diagonal blocks according to the Neumann or Dirichlet dual pairing [8, Sect. 4.5].
The preconditioning matrix explicitly reads:

P D M�1
assA;

where A is the discretization of (9) and M�1
ass is the duality pairing matrix. Since the

structure of the duality pairing matrix is block diagonal, the numerical extra cost of
its inverted matrix-vector product is negligible compared to the dense matrix vector
product by A. We use the naive strategy to only factorize by LU the relatively small
bi-diagonal blocks, which in practice means a simple reordering, and then apply
sparse substitutions at each iteration of GMRes [10] .

Figure 4 shows the convergence history for the homogeneous case (�1 D �2 D 1)
and for the heterogeneous case (�1 D 50 ; �2 D 1), both comparing GMRes without
and within the block diagonal preconditioner at moderate frequency (�0 D 10) and
high frequency (�0 D 100).

6 Conclusions and Future Work

We have provided a formulation capable of dealing robustly with large contrasts and
high-frequency problems. Numerical results for a simple configuration validate our
claims. Further analysis should be carried out to determine optimal parametrization
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for the number of modes to be used. Extensions to more general geometries and
three-dimensional scatterers are under development.
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Multi-GPU Acceleration of Algebraic Multigrid
Preconditioners

Christian Richter, Sebastian Schöps, and Markus Clemens

Abstract A multi-GPU implementation of Krylov subspace methods with an
algebraic multigrid preconditioners is proposed. With this, large linear system are
solved which result from electrostatic field problems after discretization with the
Finite Element Method. As data is distributed across multiple GPUs the resulting
impact on memory and execution time are discussed for a given problem solved
with either first or second order ansatz functions.

1 Introduction

The solution of partial differential equations as they occur e.g. in electrostatics is
of high importance in design and evaluation of virtual prototypes, e.g. of electric
high-voltage system components. For this Finite Elements (FE) are very popular
in electromagnetics, in particular for static and low frequency field simulations.
After applying space and time discretization and possibly a nonlinear solver as e.g.
the Newton-Raphson scheme, the resulting problem is a large symmetric positive
definite linear algebraic system of equations. For solving these linear systems
Krylov subspace method like conjugate gradients (CG) are a common approach [1].
The acceleration of the solution procedure with sophisticated preconditioners, i.e.,
the algebraic multigrid (AMG) method based on smoothed aggregation with graphic
processing units is discussed in this paper.

As multicore systems are standard today, recent research focuses on GPUs as
hardware accelerators. Sparse matrix vector (SpMV) operations can be implemented
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efficiently on GPUs in general [2] and particularly in applications from electromag-
netics [3]. The advantages of GPU acceleration have been demonstrated for Finite
Differences [4] as well as FE [5, 6]. The major bottleneck of a GPU is its limited
local memory that determines the maximum size of a problem that can be solved at
once without swapping data between the GPU and the host memory which usually
has a serious impact on the performance. Consequently, when it comes to problems
exceeding the memory size of a single GPU the use of multiple GPUs becomes
mandatory. But even for smaller problems the CG method can be accelerated by
using multiple GPUs [7].

The results in this paper extend those reported in [8]. While previously the
proposed addon of a multi-GPU-AMG solver to the CUSP library was presented for
the first time, in this paper the results for second order ansatz functions and larger
problems, exceeding the memory of one GPU, are discussed. Second order ansatz
functions change the density of the matrix by increasing the number of non-zero
matrix entries per degree of freedom. With the larger discrete problem exceeding
one GPUs’ memory it is shown that the code can solve large problems not only in
theory, but in a real-world example.

The paper is structured as follows: first the problem formulation is introduced.
In Sect. 2 the multi-GPU implementation is described in detail. A numerical
example shows the effects when taking into account multiple GPUs for solving
electromagnetic problems with either first or second order ansatz functions. In the
end the work is summarized.

1.1 Problem Formulation

When solving an electrostatic problem, an elliptic boundary value problem has to
be solved on a computational domain˝ , i.e.,

� r � .".r/r�.r// D f .r/ (1)

for r 2 ˝ and where " is the spatially distributed permittivity, f a given field
source, � the electric scalar potential with adequate boundary conditions, like a
homogeneous Dirichlet constraint �j@˝ D 0. Discretizing the problem with FE
results in a linear system of equations with a positive definite system matrix. The
in-house simulation code ‘MEQSICO’ [9] is used that is capable of solving static
and quasi-static electric and magnetic field problems and coupled multiphysical
problems with high-order FEM ansatz functions [10]. An exemplary electrostatic
problem is shown in Fig. 1 which is described by (1).
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Fig. 1 CAD model and scalar potential of a high-voltage-insulator presented in [11]

1.2 Algebraic Multigrid

The AMG method is used as a preconditioner for a conjugate gradient solver
[12]. Apart from classical AMG it can be based on smoothed aggregation [13]
as employed in this paper. AMG consists of two parts: in the setup-phase, levels
of increasing coarseness are assembled from the degrees of freedom. To enable
the different grid levels to interact the prolongation and restriction operators are
constructed, which connect two consecutive levels. With the so-called Galerkin
product, a triple matrix product, the system matrix of the coarser level is constructed.

The multigrid preconditioner is applied in every iteration step within the solve-
phase of the CG method. At first the given linear system is subject to a smoothing
step and the afterwards computed residual is restricted to the next coarse level.
Within this next level the described function is called recursively. After returning
from the next coarse level, the result is corrected by an error calculated on the
coarser grid level and a smoothing step is applied again. Instead of calling further
recursive calls the system is solve on the coarsest level. The coarsest system is
solved by direct or iterative solvers. Details of this V-cycle approach are given in
[14, 15].

While the complex calculations of the setup phase are performed only once for a
given system matrix, the solve phase is executed in every iteration step. Consisting
only of some SpMVs the multigrid V-cycle in the solve phase is less time intense.
These operations can be performed very efficiently on GPUs [2].
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2 Algebraic Multigrid on Multiple GPUs

The CUSP library [16] is a well-established and fast library for solving linear
equation systems on GPUs. Providing efficient implementations for matrix-vector
operations and a set of solvers including an AMG-Preconditioner [17] it is well
suited as a starting point for our multi-GPU approach. The AMG preconditioner [17]
has a high memory demand due to the multiple grids, each storing its own system
matrix as well as matrices for restriction and prolongation. To overcome the
limitations we propose to distribute the data across multiple GPUs. As CUSP is
an evolving software library the decision was made to implement a multi-GPU
extension as an add-on to this library. The environment uses templated C++ classes
and can interact with CUSP. Main parts of the addon are classes for multi-GPU
vectors and matrices, communication routines for data exchange between the GPUs
and a multi-GPU PCG solver with an AMG-preconditioner that solves the system
on multiple GPUs in parallel.

2.1 Multi-GPU Datatypes

The major part of memory is spent on the storage of matrices. Therefore redundancy
has to be avoided. To achieve this the matrices are split up in a row wise manner and
the resulting parts are copied to the individual GPUs. During the splitting process
the input matrix is converted into the Compressed Sparse Row (CSR) format, split
up and the resulting parts are reconverted. Due to this the splitup is performed fast
with almost no calculation effort and the resulting parts are load balanced as the
entries per row remain unchanged supposing that each row has approximately the
same number of non-zero elements. With respect to the construction of the multi-
GPU matrix class and due to the fact that vectors have only low memory demand
compared to a matrix, the vector class holds a full copy of every vector on each
GPU. The vector part corresponding to the GPU is defined on the full vector via
a vector view, i.e., a kind of pointer. When performing an operation it is executed
simultaneously on all GPUs using OpenMP. During a vector-vector operation each
GPU performs the operation only on the corresponding vector parts. A matrix-
vector operation is performed on every GPU using the CUSP SpMV routine with
the full vector as input and the corresponding vector view as output. Therefore it
is important that the whole input vector is up to date on each GPU. This has to be
ensured by communication routines.

2.2 Inter-GPU Communication

The exchange of data between the GPUs is the most critical part of the implemen-
tation. Sparse operations on a single GPU are already limited by the bandwidth of
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the connection between the GPUs global memory and its processing unit. When it
comes to inter-GPU communication there is a large gap between the GPUs internal
bandwidth and the connecting Peripheral Component Interconnect Express (PCIe)
bandwidth. A contemporary GPU like the Nvidia Tesla K20X as used in this work
has a theoretical bandwidth of 250 GB/s. The PCIe bus which connects the GPUs
has a bandwidth of 8 GB/s. Therefore sophisticated communication schemes have
been developed to minimize the burden of communication. With the copy-1n routine
a whole vector is distributed from one GPU to all GPUs involved in the calculation.
With “direct access”1 data can be copied from one GPU to another without going
through the host. Due to this and by using asynchronous memory copy functions
data can be copied between different GPUs in parallel. With these measures the
bandwidth scales linearly with the number of parallel processes. As a result the
vector is not copied to each GPU one after another but instead it is realized as
follows: the first part of the vector is copied from the first GPU to the second one,
from the second to the third and so on. In the meantime the second memory segment
is transferred from the first to the second GPU in parallel. This can be realized
because of the two copy engines of contemporary GPUs enabling them to send and
receive data at the same time. The most important routine is the gather-nn routine.
It is used when each GPU holds only its own piece of data and a vector has to
be updated such that every vector holds a up-to-date version of the whole vector.
This is the case before every SpMV. Here the same principle is used as described
above. Each GPU copies its piece data to the next GPU in the cycle. When the
transmission is finished the GPU sends the next piece of data it has just received
to the next GPU. In this way each GPU sends and receives data during the whole
procedure maximizing the parallel throughput.

2.3 Preconditioned Conjugate Gradients

The AMG preconditioner is set up by the CUSP library. As shown in [18] it should
be set up on the host to overcome memory limitations of a single GPU. Within
the multi-GPU splitup routine, the preconditioner is divided level by level and
distributed across all GPUs involved. The multi-GPU CG routine then solves the
problem by handing over the multi-GPU preconditioner and the original right hand
side and solution vectors. The routine is build analogously to the CUSP AMG-CG,
but uses multi-GPU routines. Due to the implementation only minimal changes are
necessary in an existing code and the behavior in terms of residual reduction per
step is almost identical.

1This technology was introduced with CUDA 4.0 within the framework of a “unified address
space”, i.e., a virtual address space for the host and all GPUs attached.
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3 Numerical Example

As an example a real-world FE problem is solved using first and second order ansatz
functions. The example, a high voltage insulator as is presented in [11], is shown
in Fig. 1. The discrete model has 1:5 � 106 degrees of freedom and a linear system
matrix consisting of 21 � 106 nonzero entries. When using second order ansatz
functions the linear problem expands to 12� 106 dof and 340� 106 nonzero matrix
entries. In both cases the problem is solved to a relative residual norm of 1� 10�12.
Calculations are performed on a server running CentOS 6.5. It is equipped with two
Intel Xeon E5-2670 CPUs and 128 GB RAM. Four Nvidia Tesla K20Xm GPUs are
attached to the host. To ensure data integrity, error-correcting code (ECC) is enabled.
Thus the effective bandwidth of each GPU is reduced from 250 to 200 GB/s. Host
parallelization is done by OpenMP on the host. On the devices architecture model
3.5 is used. The code is compiled with CUDA 5.0, Thrust 1.8.0, CUSP 0.4.0 and
GCC 4.4.7 with -O3. For comparison the problem is also solved on the host using the
CUSP host version which has been shown to outperform [18] state of the art libraries
like PetSc [19] or Trilinos ML [20]. The setup phase is performed on the host where
it is stored and distributed to the GPUs. The preconditioner is only setup once and
can be reused for multiple right hand sides, i.e., for several timesteps in a quasistatic
simulation. The speedup of the GPU implementations over the host implementation
is depicted in Fig. 2. It shows the individual speedup when solving the problem
with first and second order ansatz functions for a varying number of GPUs. The
problem cannot be solved on one GPU with second order ansatz functions due to
memory limitations and therefore no results are presented. One can see that with
first order ansatz functions a speedup of 7.7 times is achieved when using one GPU.
It can be increased to a factor 10.8 with two GPUs but decreases to 9.5 when using
four GPUs. This has two reasons: firstly the communication processes become so
costly that the speedup in calculation cannot compensate for them. The data per
GPU is not sufficient to keep the GPUs busy. Secondly every calculation and data
movement operation needs a certain fixed time to be launched. This has a higher
effect when the time to perform the operation is lower. The second order case differs
from the first order one. The speedup is again more than doubled compared to the

Fig. 2 Speedup of the
solve-phase for the first- and
second-order-problem on a
varying number of GPUs
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Fig. 3 Memory-usage per
GPU for the first- (upper bar)
and second-order-problem
(lower bar) on a varying
number of GPUs

0 2 4 6 8 10

1 GPU

2 GPUs

4 GPUs

memory usage in GB →

Matrix
x and b
AMG−PC
CG vectors

first order case. It is increased to 18.1 on two GPUs and over 23 when using four
GPUs. This speedup over the first order GPU calculation has two major reasons.
At first the time the GPUs spend for calculations is larger because of the increased
work each GPU has to do. This minimizes launch effects. Then the matrix itself
is much denser with second order ansatz functions with an average of over 28.2
instead of 14.7 entries per row of the system matrix. This means that the calculations
increase compared to the number of degrees of freedom, which are transferred at
every individual communicational operation.

Figure 3 shows the memory consumption for the given problem. It is separated
by the order of the ansatz functions and number of GPUs in use. Each bar is the sum
of the individual parts of the CG-solver. The use of second order ansatz functions
is shown to lead to a much higher memory demand. With the number of GPUs
involved the memory demand per GPU of the matrices decreases linearly because
they are split up and no information is saved redundantly. In contrast to this the
memory demand for a vector remains unchanged because each GPU has to hold the
full vector. Since the matrices memory demand is dominating the overall scaling
remains almost linear. Another reduction of memory demand can be achieved by
erasing redundancies between the matrix and the AMG preconditioner. In CUSP
the system matrix is saved redundantly in the preconditioner as the system matrix
for the finest level. As this is not needed in the proposed addon a further reduction
is obtained.

4 Conclusion

The limitations of a single GPU can be overcome by using multiple GPUs for
solving high dimensional discrete electric or magnetic field problems. This has been
shown with an addon to the CUSP library that enables multi-GPU computing for
FE simulations with first and second order ansatz functions. Memory consumption
scales approximately linear with the number of used GPUs. Furthermore, significant
speedups can be achieved by multiple GPUs, even though inter-GPU communi-
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cation has to be taken into account. Especially higher order simulations can be
accelerated significantly due to the higher density of their system matrices.
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On Several Green’s Function Methods for Fast
Poisson Solver in Free Space

Dawei Zheng and Ursula van Rienen

Abstract We summarize four closely related numerical solution methods for Pois-
son’s equation in free space: Green’s function method, integrated Green’s function
method, reduced integrated Green’s function method, and cutting integrated Green’s
function method. A new and final routine called cutting reduced Green’s function
method is carried out as well. These methods can be used for different practical
problems to accelerate the calculation. Numerical examples are also given to
compare the introduced methods.

1 Introduction

Poisson’s equation is broadly used in many areas, such as electrostatics, mechanical
engineering and theoretical physics—for instance in gravitational potential calcula-
tion and in beam dynamics simulations in particle accelerators. Particle accelerators
have a long history. In fact, the first basics go back to Crookes who discovered
cathode rays (1870), Thompson who showed that the cathode rays are composed of
electrons (1896) and Röntgen who discovered X-rays (1895). The first milestone on
the path to particle accelerators for high energy physics was Rutherford’s scattering
of alpha particles on a gold foil (1909). Modern accelerators for high energy physics
still basically use the principle of scattering experiments. Since the energy of the
electrons in cathodic ray tubes is limited, in the 1930s new types of generators
for higher electric fields have been developed. Examples are the Van de Graff
generator (1929) and the Cockcroft-Walton generator (1932) or the first cyclotron
by Lawrence (1931). To overcome the limitations of these machines and achieve
much higher energies of the electrons, radio-frequency (RF) cavities started to be
used (and now are key elements of all accelerators) in which the energy of the
high-frequency field is transferred to the passing electrons (or other elementary
particles). Accelerators for high energy physics are either ring-like machines such
as the Large Hadron Collider (LHC) at CERN or linear accelerators such as the
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design study for the International Linear Collider (ILC). The elementary particles
are highly relativistic, i.e. have practically speed of light, and have very high
energies. Synchrotron light sources, which are used for material studies, exploit the
electromagnetic radiation which arises when an electron is forced (by magnets) on a
curved path. Elaborating this principle more and more, new generations of brilliant
light sources have been designed such as the European X-ray free-electron laser
(XFEL) which is currently being built at DESY in Hamburg. Further, accelerators
are used in medicine for cancer therapy.

No matter which type of accelerator is regarded, all of them start with a particle
source where the elementary particles are produced (e.g. cathode, photocathode,
ion source), some magnetic focusing elements and sections in which the stream of
particles is bunched and a first acceleration takes place. Thus, a bunch is a large
number of charged elementary particles. It achieves its relativistic speed and its
higher and higher energy passing through RF cavities.

As long as the particles are non-relativistic, their self-electric space charge field
is influencing the particles in the bunch while space charge fields don’t play a role
anymore for the highly relativistic particles. The space charge effect is of crucial
importance for the next generation accelerators with their ultrashort, very dense
bunches of high power, such as in the XFEL, since this naturally implies higher
space charge effects. If one wouldn’t do a careful design study, one possible effect
could be e.g. that the bunch, which indeed should stay in tight dimensions, extremely
grows due to the space charge effect and hits the wall of the vacuum chamber.
The specific bunch characteristics of future accelerators makes simulation studies
of space charge effects more challenging than before.

The most prominent, classical methodology for numerical space charge studies is
known as the Particle-in-Cell (PIC) model [1]. The considered bunch is embedded in
the computational domain˝ , which usually is a cubic or a cylindrical domain. The
computational domain ˝ is discretized and the charge of the particles inside each
cell is assigned to neighboring grid points by algorithms like the Nearest Grid Point
(NGP) or the Cloud in Cell (CIC) schemes. Note, that so-called macro-particles
are introduced in order to achieve a computational load which is still manageable.
Then, the space charge has to be calculated, applied to the (macro-)particles and
the equation of motion has to be solved. A usual procedure is to use the Lorentz
transformation in each time step to transfer between the laboratory system and
the rest frame (of special relativity) and then compute the space charge fields in
the rest frame. The self-electric field can be derived by solving Poisson’s equation
(in the rest frame). It is transferred back to the laboratory system by the Lorentz
transformation with the Lorentz factor 
 .

In this contribution, we concentrate on the efficient solution of Poisson’s
equation:

�
d2'.x; y; z/

dx2
C d2'.x; y; z/

dy2
C d2'.x; y; z/

dz2

�
D ��.x; y; z/

"0
; .x; y; z/ 2 ˝
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where �.x; y; z/ is the charge density, "0 is the permittivity of vacuum and '.x; y; z/
is the electrostatic potential, i.e. we study this problem in Cartesian coordinates in
3D. Free space boundary (or some say open boundary) conditions are regarded.
Although this is not true in the real accelerator, this consideration is well-introduced
and most common in the simulation of space charge effects as long as the bunch is
far enough apart from the walls of the enclosing vacuum tube. The common way to
solve this equation is to convolute the density of charged particles and the Green’s
function in free space, known as the Green’s function method. However, in some
cases such as a very long cigar-shape or short pancake-shape bunch the numerical
calculation may suffer from errors. The so-called integrated Green’s function (IGF)
[2, 3] has especially been invented for such issues. It deals with an analytical
integration rather than a numerical integration. However, the computation is rather
involved and time-consuming and thus calls for an improvement to higher efficiency.

We present some appropriate methods, as accurate as the IGF method yet
costing less CPU time for different practical problems. In general, the reduced
integrated Green’s function (RIGF) method is suitable for all problems applying
the IGF method—for instance the near-bunch field calculation. In contrast, the
cutting (integrated) Green’s function (CIGF) method is only advantageous for far-
bunch field calculation. A further new method, denoted as cutting reduced integrated
Green’s function (CRIGF) method can accelerate the calculations even more. This
routine can also be used in other Poisson solver codes to improve efficiency.

2 GF, IGF and RIGF Integral for Poisson’s Equation

The Green’s function-type methods are often-used methods to solve Poisson’s
equation in free space, i.e. with open boundaries. The Green’s function is given as:

G.x; x0; y; y0; z; z0/ D 1p
.x � x0/2 C .y � y0/2 C .z� z0/2

: (1)

Using the Green’s function, the solution of Poisson’s equation in R3, i.e. the
continuous electrostatic potential ', reads as [1, 2]:

'.x; y; z/ D 1

4�"0
�
Z Z Z

�.x0; y0; z0/G.x; x0; y; y0; z; z0/dx0dy0dz0: (2)

Now, regard a cubic computational domain˝ which is discretized by Nx, Ny and Nz

steps, respectively, in each coordinate direction with equidistant step sizes hx, hy, hz.
Then, the discrete integral formula is given by

'.xi; yj; zk/ � 1

4�"0
�

NxX

i0D1

NyX

j0D1

NzX

k0D1
�.xi0 ; yj0 ; zk0/ QG.xi; xi0 ; yj; yj0 ; zk; zk0/; (3)
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where the grid points .xi; yj; zk/ are the center points of each integral. The integral
cell is equal to the individual grid cells with side lengths hx, hy and hz. Thus, the
integral over one grid cell reads as:

QG.xi; xi0 ; yj; yj0 ; zk; zk0/ D
Z xiChx=2

xi�hx=2

Z yjChy=2

yj�hy=2

Z zkChz=2

zk�hz=2

G.xi; x
0; yj; y

0; zk; z
0/dx0dy0dz0:

(4)

In the following, for the different kinds of integrals, QG will be specified by different
subscripts. Further, regarding the calculation of the Green’s function values we will
apply a coordinate translation, substituting w�w0 by w for w in fx; y; zg and thus use
w instead of w � w0. If we apply the midpoint rule, the numerical integral is known
as GF integral:

QGGF.xi; yj; zk/ D hxhyhzG.xi; yj; zk/: (5)

In many applications, the midpoint rule can readily be used. Yet, often higher
accuracy is needed. This can be achieved by higher order numerical integration
rules or by the IGF integral:

QGIGF.xi; yj; zk/ D
Z xiChx=2

xi�hx=2

Z yjChy=2

yj�hy=2

Z zkChz=2

zk�hz=2

G.x0; y0; z0/dx0dy0dz0

D IGF.xi C hx

2
; yj C hy

2
; zk C hz

2
/ � IGF.xi C hx

2
; yj C hy

2
; zk � hz

2
/

�IGF.xi C hx

2
; yj � hy

2
; zk C hz

2
/ � IGF.xi � hx

2
; yj C hy

2
; zk C hz

2
/

CIGF.xi � hx

2
; yj � hy

2
; zk C hz

2
/C IGF.xi C hx

2
; yj � hy

2
; zk � hz

2
/

CIGF.xi � hx

2
; yj C hy

2
; zk � hz

2
/� IGF.xi � hx

2
; yj � hy

2
; zk � hz

2
/; (6)

where the IGF.x; y; z/ function is the primitive function (antiderivative) of (1),
which can be expressed as:

IGF.x; y; z/
:D
Z Z Z

1p
x2 C y2 C z2

dxdydz D � z2

2
arctan.

xy

z
p

x2 C y2 C z2
/

�y2

2
arctan.

xz

y
p

x2 C y2 C z2
/� x2

2
arctan.

yz

x
p

x2 C y2 C z2
/C yz ln.x

C
p

x2 C y2 C z2/C xz ln.yC
p

x2 C y2 C z2/C xy ln.zC
p

x2 C y2 C z2/:

(7)
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Here, we present the simple form from [3].
RIGF integral: In order to figure out the improvement of the IGF integral

compared to the GF integral, we define the local Green’s function integral relative
fraction as: �G.xi; yj; zk/ D

ˇ̌
ı QGGF.xi; yj; zk/= QGIGF.xi; yj; zk/

ˇ̌
, where ı QGk D k QGIGFk�QGGFkk. To evaluate the variation of �G.xi; yj; zk/ visually and easily in the grid, we

chose a computational domain with a large aspect ratio: Lx W Ly W Lz D 1 W 1 W 30,
where Lx, Ly Lz are the edge lengths of the cubical domain ˝ . It is discretized by
32 � 32 � 32 D 32;768 grid points (In calculation, Green’s function needs one
more point on each axis, i.e. 33 � 33 � 33 D 35;937 [2]). In Fig. 1 (left), we use
a boxplot of �G.W; W; zk/. Each column corresponds to one slice of index k. We can
observe that the local relative errors exponentially decrease with an increasing value
of k (zk). Only in the very first slices, the errors are large and strongly varying. For
increasing k, the errors inside a slice and compared with the neighbor slices errors
coincide more and more.

The motivation of the RIGF integral is relatively natural and simple. In the
calculation of QG.xi; yj; zk/, the IGF integral QGIGF.xi; yj; zk/ has higher complexity
than the numerical GF integral QGGF.xi; yj; zk/, i.e. for each QGIGF.xi; yj; zk/ we have
to calculate eight terms in (6) and every term should be calculated by (7). Yet,
QGGF.xi; yj; zk/ has just one simple term, which is also faster to be evaluated. Thus, we
calculate the QGIGF.xi; yj; zk/ by the exact integral only over those grid cells where it is
necessary and everywhere else we replace it by the numerical integral QGGF.xi; yj; zk/.
Practically, this means that only the near-origin parts, where the bunch is located, are
treated by the IGF model. The remaining parts of the integral are calculated by the
simpler standard GF model. We determine integer parameters .Rx;Ry;Rz/ indicating
at which grid line to switch from the IGF model to the GF model (see Fig. 1 (right)
blue line between ˝IGF and ˝GF). For the following, we suppose that the large

Fig. 1 (Left): The local relative error of the GF integral. (Right): A schematic plot of cutting
Green’s function domain for Cartesian coordinates
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aspect ratio direction is on the z-axis. Then the new integral reads as follows:

QGRIGF.xi; yj; zk/ D

 QGIGF.xi; yj; zk/; .1; 1; 1/ � .i; j; k/ � .Rx;Ry;Rz/I
QGGF.xi; yj; zk/; otherwiseI

It has been investigated how these parameters .Rx;Ry;Rz/ should be chosen.
There are two general key aspects which should be balanced in the chosen strategy:
the computational time and the achieved accuracy.

With respect to the computational time, it would be an option to choose Rw D
.Nw C 1/=sw for w in fx; y; zg. The larger value of s, the less computational time is
needed by the IGF calculation. Regarding the cigar-shape bunch as an example, it
is reasonable to choose Rw D Nw C 1 for w in fx; yg. Then, the computational time
depends linearly on s which ranges from 1 (IGF routine) to Nz C 1 (GF routine):

tRIGF D Nz C 1 � Rz

Nz C 1 tGF C Rz

Nz C 1 tIGF D Rz

Nz C 1.tIGF � tGF/C tGF: (8)

On the other hand, with respect to the computational errors of the numerical
integral which imply errors of the final result as well, a different strategy would
be appropriate. Since the QGIGF is decreasing very fast with respect to the distance
from the center of the bunch, the location where it starts to remain more or less
stationary should be determined first. In practice, we use a reference function f .Nz/

to locate the stationary area. For example, we choose 1= log2 Nz as f .Nz/ to locate
k by k QGIGFk�1 � QGIGFkk= QGIGFk�1 < f .Nz/. Secondly, we determine the accuracy
tolerance: Choose the proper Rz given by the first k for which the magnitude of
ı QGk=ı QGk stable drops down to 10�s, s 
 0, where ı QGk D k QGIGFk � QGGFkk. Note, s
is the accuracy control integer for the RIGF. Of course, these parameters have to be
determined individually for different problems under study.

3 CRIGF Method for Poisson’s Equation

In many applications, the computational domain will be considerably larger than
the domain occupied by the charged bunch. As shown in Fig. 1 (right), the bunch
domain ˝Bunch (the shadowed domain) lies in the center of the computational
domain ˝ . In this case, of course, all terms with zero charge density � (factor of
the tilde Green’s function) can be omitted in the summation of (3). Based on the
convolution theory, the irrelevance of these terms should be still true if we take
a Fourier transform and use it in the fast Poisson solver. Therefore, the CIGF [4]
integral is recommended for high efficiency:

QGCIGF.xi; yj; zk/ D

 QGIGF.xi; yj; zk/; .1; 1; 1/ � .i; j; k/ � .Cx;Cy;Cz/I
0; otherwiseI
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where .Cx;Cy;Cz/ is determined by the domain-bunch ratio ˛w D LwBunch=
LwDomain, Lw is the length for w in fx; y; zg and Cw D Œ.2 C ˛w/=2˛w�. The
CIGF is as accurate as the IGF. For far-bunch domain space charge simulation,
the CIGF integral is efficient and does not waste calculations. When the near-bunch
domain simulation takes place, the CIGF is not valid anymore. However, the RIGF
can always be applied.

In total, we have the following CRIGF integral: The combination of RIGF and
CIGF as the CRIGF should be more efficient than the pure CIGF for the same
problem,

QGCRIGF.xi; yj; zk/ D
8
<

:

QGIGF.xi; yj; zk/; .1; 1; 1/ � .i; j; k/ � .Rx;Ry;Rz/I
QGGF.xi; yj; zk/; .Rx;Ry;Rz/ � .i; j; k/ � .Cx;Cy;Cz/I
0; otherwiseI

where .Cx;Cy;Cz/ and .Rx;Ry;Rz/ are chosen as above.
In order to make the calculation of (3) more efficient, we should implement it as

a cyclic convolution. The charge density �ex is obtained by padding � with zeros in
all expansion grid points, the tilde Green’s function QG is expanded symmetrically
as QGex. Using 3D discrete Fourier transformation F and convolution theory, the
expanded potential expression is given by:

Œ'ex�i;j;k D 1

4�"0
F�1fŒF QGex�i;j;k � ŒF�ex�i;j;kg2Nx;2Ny;2Nz : (9)

The routine of (9) can be further improved with respect to both- less storage
requirement and less time consumption [1]. We use a similar procedure. Then, the
storage requirement of the convolution method is 2Nx �Ny �Nz plus two temporary
2D arrays sized 2Ny�Nz and 2Ny�2Nz. In fact, our algorithm uses a pruned Fourier
transform, whose purpose is to save time while avoiding the wasteful transforms of
zeros in each direction.

4 Discussions and Examples

We regard a uniformly charged ellipsoid to achieve an analytical validation. For the
longitudinal-to-transverse ratio, we choose 30. The domain-bunch ratio is 2. The
relative errors are defined as follows:

�'.i; j; k/ WD
j'i;j;k � 'truei;j;k j
maxi;j;k j'truei;j;k j

; and O�' WD max
i;j;k

.�'.i; j; k//:

Here, the notations are, �'.i; j; k/, O�' , 'i;j;k and 'truei;j;k as the relative error of the
potential at index .i; j; k/, the global relative error of the potential, the computed



98 D. Zheng and U. van Rienen

Fig. 2 (Left): Comparison of different Green’s function integrals’ elapsed time with increasing
grid resolution. (Right): Convergence study of CRIGF, IGF and GF method

potential at index .i; j; k/ and the true potential for the same index, respectively. The
algorithm is implemented in C language on an Intel 2.6 GHz CPU.

Firstly, we compare the computation time of different GF integrals with increas-
ing grid resolution as shown in Fig. 2 (left). Here N D Nw, Rw D 8with w in fx; y; zg.
RIGF is nearly 10 times faster than IGF, while CRIGF is more than 20 times faster
for a domain-bunch ratio of 2. In Fig. 2 (right), we study the convergence of CRIGF
with s D 2 for the accuracy control comparing to IGF and GF. As we can see, the
CRIGF method agrees very well with the IGF method.

The whole implementation is carried out by using the FFTW [5] package. For
the serial algorithm, the speed-up is around 15–25 % including the calculation of
the discrete convolution. This needs to be further improved, since the convolution’s
calculation still takes most of the computational time. The efficiency results will
be updated in our future studies, either by implementing a parallel algorithm or by
applying a different discrete convolution routine.

5 Conclusion

In this paper, we introduced a 3D RIGF Poisson solver together with a routine
called CRIGF method for beam dynamics simulations. We tested the new method
with a model problem. On the practical side, RIGF is less time consuming, while it
achieves almost the same accuracy as IGF for the electric potential. So we suggest
to use the CRIGF routine rather than the IGF in order to speed up calculations.
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Part III
Coupled Problems

The chapter on Coupled Problems comprises five contributions. They range from
adequate modelling via specialized integration techniques to automated integration
by software agents. These papers underline the need for methods in multiphysical
settings with possibly largely differing time scales.

A rapid heating and subsequent quenching of steel components induces a change
of the microstructure of the material (phase change), which can be the basis of
surface steel hardening. This process needs to be precisely controlled to avoid
undesirable fatigue damage. Qingzhe Liu et al. describe in Simulation of thermome-
chanical behavior subjected to induction hardening a coupled model, which enables
the numerical treatment of this problem. This system is given by the equations
for electromagnetic field (Maxwell), the temperature evolution (heat equation), the
mechanical deformations and stresses (momentum balances), and an equation for
the steel phase transformations. The interplay of this coupled system includes Joule
heat, thermal expansion, mechanical dissipation, transformation-induced plasticity,
material/temperature dependent parameters. Eventually, the authors demonstrates
the power of the coupled model by comparing a finite element simulation with
physical experiments.

The paper by Andrea Cremasco et al. on Thermal Simulations for Optimization
of Dry Transformers Cooling System addresses a coupled fluid-thermal system.
In particular for optimization, one needs an efficient mathematical model for
computation. To this end, the authors propose to employ an equivalent ther-
mal/pressure network for their application. They could validated their model via
ANSYS Fluent simulations and via measurements (of temperature in thermal steady
state). Subsequently, a multi-objective optimization problem was formulated for
the cooling system of a transformer based on the developed network model. A
corresponding Pareto front was computed and optimal solutions identified.

Coupled systems will quite naturally involve multiple time scales. If these scales
are largely differing, an overall time step oversamples the slowly varying subsystem,
which is often the major part of the overall system. Therefore multirate schemes
aim at employing different time steps for the subsystems to enable the use of an
inherent time step and to avoid oversampling. The work by Michael Günther et al. on
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Multirate GARK schemes for multiphysics problems provides a multirate extension
for generalized additive Runge-Kutta schemes (GARK). The GARK-type methods
enable different stage values for different components of the right hand side. This
flexibility yields an opportunities to design multirate methods. In particular stability
of corresponding multirate methods can be inherited from the underlying implicit
schemes without further coupling constraint. First numerical results are shown for a
benchmark from thermal-electric network analysis.

Co-Simulation is a term often used in applications to describes the coupling
of various simulators to tackle complex real-life problems. A system of software
agent in terms of the contribution by Matthias Jüttner et al. represents a software
framework for coupled partial differential equations. In Iterative Software Agent
Based Solution of Multiphysics Problems, they employ autonomous agents, which
conduct the solving procedure of a specific subproblem and which may invoke
commercial or in-house codes for the respective physical domain. This is based
on a weak coupling, where convergence may be achieved by iteration. The idea is
demonstrated numerically for a 3D waveguide system, where electromagnetism and
heat transfer are coupled.

Due to the current policy changes in energy production, that is, the exit from
nuclear and fossil-fuel energy in some countries, photovoltaic systems obtained
more attention. The contribution by Timo Rahkonen and Christian Schuss on Tools
for Aiding the Design of Photovoltaic Systems describes a set of simulation tools for
the aiding the design of fixed and mobile photovoltaic energy harvesting systems in
particular for moving panels. The main goal of the discussed methods is to estimate
the available power and to include effects as self-heating, ambient temperature and
bypassing to enable a fast and robust maximum power point tracking. To this end,
the electric part of the photovoltaic panel is modelled via a nonlinear circuit using a
pn-diode. This model is coupled to an equivalent circuit for the temperature.

These contributions give a small glimpse on the importance and richness of the
field of coupled problems.



Thermal Simulations for Optimization of Dry
Transformers Cooling System

Andrea Cremasco, Paolo Di Barba, Bogdan Cranganu-Cretu, Wei Wu,
and Andreas Blaszczyk

Abstract An efficient computational model based on principles of thermo-fluid
dynamics is crucial for thermal design and optimization of transformers. In this
paper we propose a Thermal/Pressure Network (TPN) model of a dry transformer
encapsulated in enclosure with natural or forced cooling. The network model has
been validated by Computational Fluid Dynamics (CFD) simulations with ANSYS
Fluent and then applied for the computation of real transformers, comparing results
to thermal measurements. Finally, the parameterized transformer TPN model has
been utilized in an optimization loop in order to improve the cooling system. In this
respect, the use of a gradient-free optimization algorithm under a multi-objective
frame is recommended to avoid local minima and smooth the dependency on the
initial guess.

1 Introduction

For air-insulated (dry) transformers, the heat generated in the windings is transferred
via convection to the bulk air above and then dissipated to the ambient air through
the ventilation system, see Fig. 1. For a numerical simulation of such complex phe-
nomena a very resource demanding CFD analysis is required [1], therefore, design-
ers of transformers typically create their own simplified calculation procedures
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Fig. 1 Dry transformer with
ventilation system including
fan (which can be switched
off) and the enclosure
inlet/outlet openings, with
grids and optional filters used
to protect the transformers
against designated conditions

based on empirical assessments and parameters of heat transfer phenomena that
are valid for a specific transformer technology [2]. Such procedures are integrated
into transformer design systems and used for optimization, thanks to very fast
computation times.

In this paper we propose a new method for the thermal simulation of a dry
transformer together with the cooling system. The new method is based on a coupled
Pressure/Thermal Network (TPN) model, as described in [3]. The new method
offers much better computational performance than the detailed CFD; since the TPN
method is founded on thermo-fluid dynamics principles, it can be extended to all
transformer technologies and cooling configurations including dry transformers as
presented in [4].

The basic concept of the network approach is presented in Sect. 2. In this section
we included an example for a CFD-based validation of a simple network element
representing convection from a vertical wall.

The major new achievement reported in this paper is a network model for
a dry-type transformer operated in an enclosure with ventilation openings. The
transformer is cooled naturally or by means of fans installed inside the enclosure.
The new model has been validated based on CFD computation for a simplified
axial-symmetric transformer configuration. With the new network model we could
reproduce with reasonable accuracy the fluid flow for different conditions: fans
on/off, ventilation openings open/partially closed/closed. We applied the same TPN
approach to the computation of real transformers in order to compare results with
heat run test measurements. The result of CFD and experimental validations are
presented in Sect. 3.
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Finally, the fast speed of the network model calculation (less than a second
for a typical design) made it possible to apply this method to design transformers
in industrial design process and to optimize the cooling system based on multi-
objective optimization [5], as shown in an example included in Sect. 4.

2 Network Concept and Network Elements

The TPN method is a lumped-parameter modelling approach based on substitut-
ing geometrical parts like windings, cooling ducts, enclosure walls, ventilation
openings, fans, etc. by network elements in form of sources, resistors or sub-
circuits representing thermo-fluid dynamic phenomena. The basic concepts of
TPN, definition of network elements, coupling between the networks and the
mathematical background of the solution method have been described in [3]. In
Table 1 a short summary is presented.

In order to illustrate how the CFD validation of network elements has been
performed, we present here a result for convection from the outer surface of the
transformer coil to the bulk air. The height H of the cylindrical coil is variable
in a typical range between 500 and 2000mm. The heat flux P=A D 150W/m2 is
dissipated through the cylindrical vertical wall, with radius r D 350mm. The goal is
calculation of the average temperature of the wall #wall assuming natural convection
to the ambient air at temperature #amb D 20 ıC (radiation is not included).

Table 1 Characteristics of thermal and pressure networks and electrical analogy

Network type Electric (analogy) Thermal Pressure

Quantities,
units

Current I (A) Power P (W) Mass-flow rate Pm (kg/s)

Voltage U (V) Temperature �# (K) Pressure �p (Pa)

Resistance R .˝/ Thermal Res. Rt (K/W) Flow res. S (1/(m � s))

Network
principles

Current, voltage law
P

i Pi D 0,
P

i �#i D 0
P

i Pmi D 0,
P

i �pi D 0

Ohm’s law: R D U=I Rt D �#=P S D �p= Pm
Thermo-fluid dynamic principles for
network elements evaluationsa, b, c

Newton’s law (convect.):
P D hA�# ,
Stefan-Boltzmann law
(radiation), see [6]

Bernoulli’s principle:
Friction: �p D 1=2 	�v2,
Buoyancy:
�p D gHp.�ref � �/

Coupling equation P D Pmcp�#

Symbols: h heat transfer coefficient, A heat transfer area, 	 friction factor, � fluid density, v fluid
velocity (assumed uniform), g gravitation, Hp pressure height, cp specific heat
a In the pressure network only relative pressure resulting from friction and buoyancy is included.
Therefore, we can assume that the fluid properties are independent of�p. The fluid density depends
on static pressure according to ideal gas laws
b All fluid properties are temperature dependent, which results in non-linear resistors and sources
of both pressure and thermal networks
c The flow resistance S depends for turbulent flows on velocity, which results in a strongly
non-linear behavior of S, the thermal resistance Rt is also velocity dependent, in particular for
convection in cooling ducts [4]
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Fig. 2 CFD vs. network results for outer wall temperature of a transformer coil. Wall average
temperature: #wall D RtP C #amb with thermal resistance for convection Rt D 1=.h � A/ and
heat transfer coefficient h D .Nu � kf/=lch, where kf is thermal conductivity and lch D H is
characteristic length. The Nusselt number Nu is based on similarity theory, with the following
correlations: Nu D c1Ran1 with c1 D 0:54, n1 D 1=4 for laminar flow, curve 1a (Rayleigh
number Ra < 109); c1 D 0:1, n1 D 1=3 for turbulent flow, curve 1b (Ra > 109). Curves 2, 3
are based on correlations for constant temperature and constant heat flux models respectively, see
Eq. 4.33–4.36 [8]

The results are presented in Fig. 2. The CFD solution is based on heat transfer
coupled to Navier-Stokes equations, using k!-SST turbulence model [7]. The
network result, including computation of convection resistor Rt as defined in Table 1,
is based on thermodynamic correlations explained in Fig. 2. For all H variations, the
difference between temperatures calculated by CFD and the TPN models is less than
5–6 ıC, which is still acceptable for applying resistor Rt in the model of the cooling
system (see Fig. 4 between HV winding and bypass-duct). Improvements and tuning
of Rt can be a subject of future work.

3 Modelling of Cooling System

CFD Analysis and TPN Modelling For the CFD analysis we selected an equiva-
lent axial-symmetric transformer model including a core leg, coil, fan and enclosure
with bottom and top ventilation openings, see Fig. 3. The coil consists of a low
voltage winding, LV, divided into two radially stacked segments, LV1 and LV2,
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Fig. 3 Left: fluid flow recirculation of the fan. Right: temperature distribution

a barrier B and a high voltage winding HV casted in solid insulation; the region
between the coil and the vertical wall of enclosure is called bypass-duct. The
enclosure includes inlet and outlet ventilation openings at the bottom and the top
respectively, whose friction was taken into account in CFD with pressure jump
boundary conditions [7].

The cold air enters the enclosure from the inlet and flows through the cooling
ducts between winding segments; for natural cooling (AN = air natural) the fluid is
driven by buoyancy only, while for the forced cooling (AF = air forced) its major
part is blown by fans. In both cases, there is air circulation from the bottom to the
top of the coil, resulting in hot fluid flowing out from the enclosure through the
outlet and taking heat away.

As the main extension of the standalone transformer model investigated in [4],
we introduced the “Bypass Duct” as well as “Top” and “Bottom Fluids”, see
Fig. 4. Together with “Coil Ducts” these elements are responsible for controlling
the temperature of the fluid according to the mass and power flow rates in each
corresponding network branch (based on the coupling equation in Table 1). The
fluid flow direction in the bypass-duct is reversible, see dashed lines in Fig. 4 and
the Pmbypass values in Fig. 5. Its direction depends on the performance of the fans and
the ventilation grids. Due to reverse bypass flows and the recirculation of the hot air
the temperature distribution inside the enclosure can be significantly influenced as
shown in Fig. 5.

In the TPN the friction of the enclosure ventilation openings (called here vents)
is modelled by a non-linear resistor whose characteristic is based on the equation
�pgrid D 1=2 	grid � v

2 in Table 1. The velocity v is calculated as v D Pm=.�Aopen/,
while Aopen is the open surface area of the vents. 	grid is the friction factor of the
vents, which depends on construction parameters such as the dimension and shape of
the holes, the density of the grid and the presence of filters; these features are related
to the Ingress Protection (IP) class of the enclosure [9]: for example dense grids with
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Fig. 4 Concept of the equivalent network model

Fig. 5 Temperature maps and results comparison between CFD and TPN model (AF)

filters provide higher IP class but reduce cooling because of the stronger friction.
When comparing efficiency of different grids it is convenient to relate the pressure
drop not to the open but to the total area Atot of the vent (area that is occupied by
the vent in the enclosure wall): Aopen D r Atot, with ratio r < 1. After applying this
relation to calculation of the velocity and the pressure drop (see equations above)
we define an equivalent friction factor 	�

grid D 	grid=r2, which has been used for all
computations in this paper. The value range for 	�

grid between 10 and 600 is typical
for grids of transformer enclosures in a wide range of IP classes.

TPN Model Validation: CFD and Heat Run Tests In the Figs. 6, 7, 8 we show
a comparison between CFD and TPN model results for the average temperature
#ave of windings and enclosure walls as well as for the mass flow rate Pm through
the enclosure vents and bypass-duct. All the results are referred to the same model
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Fig. 6 LV and HV windings average temperature #ave

with load losses, varying only IP class to which different values of 	�
grid are related;

radiation heat transfer has been included.
The temperature deviation is never beyond 6 ıC and the CFD trends are followed

by TPN, see Figs. 6 and 7. The mass flow rate deviation is always lower than 10
(g/s). The TPN model predicts the distribution of the flow inside the enclosure
even when high 	�

grid limits the flow-rate of the outgoing fluid, causing a downward
inversion of the flow in the bypass-duct (this corresponds to a negative value for Pm,
see Fig. 8).

We applied the TPN method to a real transformer tested with enclosure: the #ave

of the windings was derived from electric resistance measurements after reaching
the thermal steady state, see Table 2. The deviation from measurements falls into an
applicable range of transformer designing.
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Fig. 7 Enclosure top, side and bottom walls #ave

4 Optimization of Cooling System

In this section we present a formulation of the multi-objective optimization problem
applied to the network equivalent model of the dry transformer; the aim is to identify
the Pareto front of the non dominated solutions, trading off three design criteria
(objective functions). The objective functions to minimize and the design variables
are described in Table 3.

In Fig. 9 the 2D projections of the 3D objective space are shown, with Pareto
optimal solutions. Results have been obtained by means of the Non Dominated
Sorting Algorithm NSGA-II [10]; finding the Pareto front lasted few hours on a
standard processor for personal computing.

A posteriori, having identified the Pareto front, the designer can extract a single
optimal solution taking into account extra preferences like e.g. the pressure vs.
volume flow rate characteristics of a real fan.
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Fig. 8 Enclosure inlet and bypass-duct Pm
Table 2 Temperature (ıC) comparison between heat run test measurements and TPN model with
natural (AN) and forced (AF) ventilation

Ventilation LV winding HV winding

Measured TPN Deviation Measured TPN Deviation

AN 98.1 98.5 0.4 97.8 97.5 �0.3

AF 87.2 83.3 �3.9 95.8 93.5 �2.3

5 Conclusions. Next Steps

In this work we introduced the new model of equivalent Thermal/Pressure networks
for dry transformer cooling systems. The CFD validation and comparison with heat
run tests confirmed the applicability of the model to a wide range of enclosure
Ingress Protection (IP) classes for natural and forced cooling. The new model has
been integrated into a transformer design system (used in ABB) and will be a
subject of tuning and statistical evaluations based on a large number of transformer
designs. The presented application of finding the Pareto front from a multi-objective
optimization will be considered as a possible extension of the transformer design
system.
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Table 3 Formulation of the optimization problem

Objective function to minimize Description

#ave D ˙kTwind;k Vwind;k

˙k Vwind;k
(ıC) Average temperature of the coil: the winding temperatures

Twind are weighted by the winding volumes Vwind

�pfan D pfan;out � pfan;in, (Pa) Pressure jump provided by the fan a

qrec;% D
�
1� Pminlet

Pmfan

�
� 100 Recirculation index: if qrec;% D 0, then Pminlet D Pmfan and

there is no recirculation

Design variable Bounds Description

Qfan (m3/s) (0.10, 0.35) Fan volume flow rate. Note that there are two fans in parallel
per coil, each one blowing the same Qfan

dfan (m) (0.15, 0.40) Axial distance of the fan out-take from the coil bottom, see
Fig. 3

kv D Aoutlet
Ainlet

(0.7, 1.3) Vent surface ratio, subject to the constraint on the enclosure
design: Atot D Aoutlet C Ainlet D 7m2. Vent surface is defined
as Ainlet D Atotkv=.1C kv/, Aoutlet D Atot=.1C kv/

a The pressure jump �pfan provided by a fan blowing a certain volume flow rate Qfan depends for
example on the vent open surface or the distance dfan. A real fan can supply higher Qfan when lower
�pfan is required, improving the cooling of the transformer

Fig. 9 2D projections of the 3D objective space. For the extracted optimal solution: Qfan D 0:25

m3/s, dfan D 0:21m, kv D 1:04
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Multirate GARK Schemes for Multiphysics
Problems

Michael Günther, Christoph Hachtel, and Adrian Sandu

Abstract Multirate GARK schemes define a multirate extension of GARK
schemes, generalized additive Runge-Kutta schemes. In contrast to additive
schemes, GARK schemes allow for different stage values as arguments of different
components of the right hand side. They introduce additional flexibility when
compared to traditional partitioned Runge-Kutta methods, and therefore offer
additional opportunities for the development of flexible solvers for systems with
multiple scales, or driven by multiple physical processes.

Consequently, multirate GARK schemes allow for exploiting multirate behaviour
in both the right-hand sides and in the components in a rather general setting,
and are thus especially useful for coupled problems in a multiphysics setting. We
apply MGARK schemes to a benchmark example from thermal-electrical coupling,
characterized by a slow and fast part with a stiff and non-stiff characteristic, resp.
We test two MGARK schemes: (a) an IMEX method, which completely utilizes
the dynamics and differing stability properties of the coupled subsystem; and (b) a
fully implicit schemes, which inherits the stability properties from both underlying
schemes without any coupling constraint.

1 Introduction

Multiphysical systems are often characterized by a very different dynamical behav-
ior in the subsystems, with time constants differing by orders of magnitude. To be
efficient, numerical time integration schemes have to exploit this multirate behavior,

M. Günther (�)
Applied Math. & Numerical Analysis, Bergische Universität Wuppertal, Wuppertal, Germany
e-mail: guenther@math.uni-wuppertal.de

C. Hachtel
Bergische Universität Wuppertal, Institute of Mathematical Modelling, Analysis and
Computational Mathematics (IMACM), Gaußstraße 20, D-42119 Wuppertal, Germany
e-mail: hachtel@math.uni-wuppertal.de

A. Sandu
Department of Computer Science, Virginia Polytechnic Institute and State University,
Computational Science Laboratory, 2202 Kraft Drive, Blacksburg, VA 22060, USA
e-mail: asandu@cs.vt.edu

© Springer International Publishing Switzerland 2016
A. Bartel et al. (eds.), Scientific Computing in Electrical Engineering, Mathematics
in Industry 23, DOI 10.1007/978-3-319-30399-4_12

115

mailto:guenther@math.uni-wuppertal.de
mailto:hachtel@math.uni-wuppertal.de
mailto:asandu@cs.vt.edu


116 M. Günther et al.

which is physically given and allows for a static partitioning of the subsystems into
slow and fast parts, resp.

Multirate time integration schemes aim at exploiting this property by applying
different time step sizes to the subsystems, according to their different activity
level. To get higher order schemes, these schemes have to fulfill additional order
conditions, and at the same time preserve the stability properties of the respective
subsystems.

This paper discusses the application of a new class of multirate schemes,
multirate GARK [1] schemes based on a generalized view on additive Runge-Kutta
schemes [3], to a multiphysical problem from electro-thermal coupling.

The paper is organized as follows: Sect. 2 gives a synopsis on multirate GARK
schemes and their relation to GARK schemes. Section 3 introduces two multirate
GARK schemes, based on an explicit-implicit and implicit-implicit pair of order-2
basis schemes. Section 4 discusses the numerical results obtained for both schemes.
The last section concludes with final remarks and an outlook.

2 Multirate GARK Schemes

We consider a two-way partitioned system

y0 D f . y/ D f fsg. y/C f ffg; y.t0/ D y0 ; (1)

with a slow component fsg, and an active (fast) component ffg. Note that this setting
contains component-wise splitting as a special case:

y D
�

ys
yf

�
; f s D

�
fs
0

�
; f f D

�
0

ff

�
: (2)

The slow component is solved with a large step H, and the fast one with
small steps h D H=M. We will consider the multirate generalization of GARK
schemes [3] with M micro steps h D H=M, as given in the following

Definition 1 (Multirate GARK Method [1]) One macro-step of a generalized
additive multirate Runge-Kutta method with M equal micro-steps reads

Yfsg
i D yn CH

sfsgX

jD1
afs;sg

i;j f fsg �Yfsg
j

�
C h

MX

�D1

sffgX

jD1
afs;f;�g

i;j f ffg �Yff;�g
j

�
;

Yff;�g
i D yn C h

��1X

lD1

sffgX

jD1
bffg

j f ffg �Yff;lg
j

�
C H

sfsgX

jD1
aff;s;�g

i;j f fsg �Yfsg
j

�
C
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Ch
sffgX

jD1
aff;fg

i;j f ffg �Yff;�g
j

�
; � D 1; : : : ;M;

ynC1 D yn C h
MX

�D1

sffgX

iD1
bffg

i f ffg �Yff;�g
i

�
C H

sfsgX

jD1
bfsg

i f fsg �Yfsg
i

�
:

The base schemes are Runge-Kutta methods, .Aff;fg; bffg/ for the slow component
and .Afs;sg; bfsg/ for the fast component. The coefficients Afs;f;�g and Aff;s;�g for
� D 1; : : : ;M realize the coupling between the two components.

2.1 Order Conditions

The MGARK scheme can be written as a GARK scheme [3] over the macro-step
H with the fast stage vectors Yffg WD ŒYff;1g T ; : : : ;Yff;Mg T �T . The corresponding
Butcher tableau reads (with the vector 1 WD .1; : : : ; 1/T of ones)

1
M Aff;fg 0 � � � 0 Aff;s;1g

1
M 1bffg T 1

M Aff;fg � � � 0 Aff;s;2g
:::

: : :
:::

1
M 1bffg T 1

M 1bffg T : : : 1
M Aff;fg Aff;s;Mg

1
M Afs;f;1g 1

M Afs;f;2g � � � 1M Afs;f;Mg Afs;sg

1
M bffg T 1

M bffg T : : : 1
M bffg T bfsg T

Therefore the order conditions for MGARK schemes can be derived from the
corresponding ones for GARK schemes [3]. Up to order two the order conditions
given in Table 1 have to be fulfilled.

Table 1 Order conditions for
MGARK schemes

p Order condition

1 bfsg T11 D 1

bffg T11 D 1

2 bfsg T Afs;sg11 D 1
2

bfsg T
�PM

�D1 Afs;f;�g

�
11 D M

2

bffg T Aff;fg11 D 1
2

bffg T
�PM

�D1 Aff;s;�g11
�

D M
2
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2.2 Stability

We consider systems (1) where each of the component functions is dispersive (with
constants 
fsg < 0; 
ffg < 0):

D
f fsg. y/� f fsg.z/ ; y � z

E
� 
fsg ky � zk2 ;

D
f ffg. y/� f ffg.z/ ; y � z

E
� 
ffg ky � zk2 ;

with respect to the same scalar product h � ; � i. As for two solutions y.t/ and Qy.t/
of (1), each starting from a different initial condition, the norm of the solution
difference �y.t/ D Qy.t/ � y.t/ is non-increasing, we demand a similar property
from the numerical approximations: the MGARK scheme is said to be nonlinearly
stable, if the inequality

k ynC1 � QynC1k � k yn � Qynk

holds for any two numerical approximations ynC1 and QynC1 obtained by applying the
scheme to the ODE (1) with dispersive functions and with initial values yn and Qyn.

As a consequence of stability theory for GARK schemes, an MGARK scheme
applied to a component-wise partitioned right-hand side (2) is nonlinearly stable, if
both base schemes are algebraically stable [1].

3 Two Basic GARK Schemes for Multiphysics Application

In general, one is interested in a rough approximation of coupled multiphysics
problems, which reflect the impact of the couplings of both systems. Hence we
restrict to MGARK schemes of order 2. As we are interested in the nonlinear
stability properties of MGARK schemes, and how the stability properties of both
base schemes influence the stability of the overall scheme, we define two new IMEX
and IMIM schemes as basic methods:

• MGARK-IMEX-2: The implicit-explicit version solves the fast, stiff part with
an implicit base scheme, and the slow, non-stiff part with an explicit one. The
coefficients are given by

bfsg D
�
1
2
1
2

�
; Afs;sg D

�
0 0

1 0

�
; Afs;f;1g D

�
0

M

�
;

Afs;f;�g D
�
0

0

�
8� D 2; : : : ;M;
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bffg D 1; Aff;fg D 1

2
; Aff;s;�g D � 1

2
0
� 8� D 1; : : : ;M:

The slow components are implicitly solved together with the fast components of
the first micro step. The fast components of the remaining micro steps can be
computed explicitly.

Note that only the fast part is algebraically stable, but neither the slow part nor
the joint system.

• MGARK-IMIM-2: To get an overall stable scheme, both parts are solved by an
implicit base scheme. The coefficients are given by

bfsg D
�
0

1

�
; Afs;sg D

�
0 0

0 1
2

�
; Afs;f;1g D

�
0
M
2

�
;

Afs;f;�g D
�
0

0

�
8� D 2; : : : ;M;

bffg D 1; Aff;fg D 1

2
; Aff;s;�g D � 1

2
0
� 8� D 1; : : : ;M:

Note that again the slow components are implicitly defined together with the
fast components after the first micro step. The fast components of the remaining
micro steps can be computed one after the other by solving nonlinear systems in
the dimension of the active part only.

As both base schemes are algebraically stable, the MGARK method inherits
this property for a component-wise partitioning.

4 Numerical Test Results for a Benchmark Example

We will test both MGARK implementations for a thermal–electrical multiphysics
system, for specifications see [2]; its circuit diagram is given in Fig. 1 (left). The
thermal component defines the slow (and non-stiff) part, the electrical component
the fast (and stiff) part of the system.

The distributed temperature T of the resistor (wire) is described by the 1-D
heat equation, which is semi-discretised using a finite volume approach, see Fig. 1
(right). Due to the electric current, the resistor is heated and so the resistance of this
device changes: R D R.T/. The characteristic curve of the diode is also temperature
dependent. The voltages are modeled by a nodal analysis using Kirchhoff’s laws.
Finally we get a partitioned system of ordinary differential equations like in (1). The
vector of unknowns y D .u3; u4; e;T/T comprises the voltages u3 and u4 at nodes
3 and 4, resp., the dissipated energy e in the thermally dependent resistor and the
vector of temperatures T in the semi-discretised resistor. The multirate behaviour
of this system is given by the physical properties: the voltages and the dissipated
energy change very fast (due to the source of the network), and the temperature in
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Fig. 1 Circuit and discretised resistor
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Fig. 2 Numerical results for the fast and slow subsystems (macro step size vs. achieved accu-
racy, measured in Euclidean norm): MGARK-IMIM-2 (left) and MGARK-IMEX-2 (right) with
parameters H D 10�3 , m D 5. The solid lines represent the slope of order 2

the resistor changes much slower. Hence the partitioning according to the dynamical
behaviour is quite natural:

yffg WD
0

@
u3
u4
e

1

A ; yfsg WD T:

The numerical results for both Multirate GARK schemes are given in Fig. 2. The
IMIM scheme nicely shows in both fast and slow subsystems an order-2 behavior
for all step sizes. The accuracy of the IMEX scheme in the slow part (which is
not algebraically stable and computed explicitly), however, seems to be reduced for
small step sizes.
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5 Conclusion

By testing Multirate GARK schemes on a multiphysical test example from electro-
thermal coupling, we have shown the feasibility of this multirate approach for both
implicit-implicit and implicit-explicit pairing of basic schemes. Whereas the IMIM
scheme shows an order-2 behavior for both subsystems at all step sizes, the IMEX
schemes has a reduced accuracy in the slow system for small step sizes only. This
behavior fits to the theoretical properties of both schemes: the IMIM scheme is
algebraically stable in both subsystems, whereas the IMEX scheme is only stable in
the fast (electric) part.

As next steps, we will follow three directions: (a) we will apply MGARK
schemes to a range of multiphysical problems in a more realistic setting; (b) we
will further analyze the stability of IMEX-MGARK schemes and its dependence
on the coupling structure for both weak and slow coupling; (c) the excellent
stability properties of IMIM-MGARK schemes suggest to use these schemes as
basic schemes in a Multirate-MOR approach.
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Iterative Software Agent Based Solution
of Multiphysics Problems

Matthias Jüttner, André Buchau, Desirée Vögeli, Wolfgang M. Rucker,
and Peter Göhner

Abstract A novel approach is presented using software agents for an iterative and
distributed solution of multiphysics problems. Overall convergence is achieved by
using the individual capabilities of interworking agents. Every agent solves a partial
single physics problem based on specialized, commercial or in-house code. The
autonomy of each agent allows a physics adapted solution process without the
need of a predefined solver sequence. The applied software agents are described
in detail. Here, we focus on weak uni- and bidirectional field coupled multiphysics
problems. This framework can also be used for node or boundary coupling as well
as for optimising partial physics simulation. A coupled 3D electromagnetic wave
propagation and heat transfer problem inside a waveguide is examined as numerical
example.

1 Introduction

Methods for simulating single physics problems on high-performance computers
were state of the art for many years. During the last years, tools were extended to
cluster, cloud and graphical processing unit (GPU) computing to achieve further
parallelism [1]. Recent developments combine different single physics implemen-
tations to a multiphysics framework by considering them as black boxes [2].
Improvements on software maintenance and functionality were achieved on costs
of performance and memory usage [3]. For a practical usage, expert knowledge is
needed in the fields of physics, their coupling and the numerical solution. However,
engineers as users are experts within one or maybe a few physics. Therefore,
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Fig. 1 Different methods of
multiphysics coupling shown
for two physics. The
segregation of a monolithic
multiphysics problem also
represents a common way for
parallelization. A central unit
combines the partial results
for an overall solution

an initial partitioning of a multiphysics problem (as in Fig. 1) seems odd at the
beginning.

In practice, models are step-wise extended to consider multiphysics effects. This
step-wise development starts from multiple independent physical models and uses
shared variables to couple independent models to a multiphysics system. For solving
several multiphysics problems, a monolithic as well as a segregated approach lead
in practice to a valid solution [4]. For parallelizing the monolithic approach, the
problem must be partitioned, while the segregated approach is natively parallel.
Only connections of former independent problems lead to sequential dependencies.

Here, the work flow of distributed interacting single physics experts is projected
into a multiphysics simulation environment. This system handles different physics
with new encapsulated software agents and automatically coupling the physics. The
agents autonomously interact with each other and share collective values. With
this, a 3D coupled electromagnetic wave propagation and heat transfer problem
inside a waveguide is solved exemplary. The hereinafter presented framework also
promotes a physics based parallel calculation. In Sect. 2 an overview about software
agents and their design is given. An explanation how that system is used for solving
multiphysics problems is given in Sect. 3. In Sect. 4, the solver systems capabilities
are demonstrated by a numerical example. A conclusion is given in Sect. 5.

2 Software Agent System

Software agents are encapsulated (software) entities with individual goals [5]. They
are well tested in automation technologies for solving complex and distributed
problems. A software agent tries to reach its goal by acting autonomously. It
interacts with other agents of the system and its environment, while keeping a
persistent state. The following list presents the main concepts of agents.

• Encapsulation: An agent encapsulates information. It has a certain knowledge of
its environment and of its own capabilities.

• Persistence: An agent has its own control flow and keeps its internal state during
lifetime. It is independent of an external activation.

• Autonomy: An agent is able to act autonomously and make decisions by itself.
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Fig. 2 Internal structure of a software agent. This allows the agent to act autonomously based on
its abilities, and interact with other agents and its environment to solve complex tasks in a very
flexible way

• Interaction: An agent can interact with other agents of the system. By doing this,
agents are able to combine their knowledge and collaborate.

• Activity: An agent reacts to changes in its environment and can evoke changes.
• Goal-oriented: An agent has own goals that may change during lifetime. It is able

to plan and execute activities by itself and react to situations by changing its plan.

If several agents work together, the system is called multi-agent system (MAS). Its
setup can change during runtime. The internal structure [6] is shown in Fig. 2.

In the following, software agents are used as physics experts. They couple single
physics simulations to a multiphysics problem. An interface to an external simula-
tion library enables the agent to manipulate the model, couple it with other physics
and control and supervise the attached solver within the simulation library [7]. An
early attempt for 2D boundary coupled systems is given in [8]. Here, the presented
work handles weakly coupled systems with different experts. Problems solvable
with monolithic solvers only, are handled by a single expert (see Fig. 1). For estab-
lishing a coupling between the agents, the agents share information about coupling
and calculation capabilities. This description provides information about calculation
resources, numerical methods, solvable equations, possible boundary conditions,
provided results, and derived values as a list. Implementing the agents was done
using corresponding design rules [5]. The programming language must handle
the complexity of agents’ communication, provide the agents itself, manage the
attached simulation interface, and handle exchanged numerical data in a powerful
and parallel way. To use state of the art software development techniques, Java was
chosen [9] together with the Java Agent DEvelopment framework (JADE) [10].

3 Solver System

For practical reasons, two types of software agents are required. A coordination
agent (CO) splits the XML-file based multiphysics problem, created with nowadays
computer aided design (CAD) tools into multiple single physics problems. Multiple
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calculation agents (CA) cooperatively solve the coupled sub-problems. For the finite
element method (FEM), the problem is given as

Ku D b; (1)

K represents the stiffness matrix, u the solution and b the load. For a multiphysics
problem K is usually not symmetric due to different influences between the physics.
For a problem with two physics, u can be grouped and the problem reformulated as

.C ı K/ u D
�

C11K1 C12K12

C21K21 C22K2

� �
u1
u2

�
D
�

b1
b2

�
: (2)

ı representing the Hadamard product and C an activation matrix for the coupling.
An uncoupled problem has a C equal to the identity matrix I. For a fully coupled
system all non-diagonal matrices (e.g. C12;C21) become I. In a loop wise coupled
system, the main and upper diagonal matrices become I, including the element of the
first column and last row. For more than two physics, this fits best for an iterative
sequential solution. If K includes further couplings (eg. K24), a parallelization is
possible and automatically applied with this approach. Initially, no coupling is
considered C12 D C21 D 0 and two CAs are used for this problem.

Agent 1
Agent 2

solves

�
u01
u02

�
D
�

K�1
1 b01

K�1
2 b02

�
(3)

in parallel. Each agent uses its own backbox simulation environment for its
partial problem. Tests with different environments or solvers can be performed
simultaneously by additional agents. The fastest agent for a partial problem survives.
The fastest agent for a partial problem currently survives. As soon as any agent
finished its calculation (e.g. agent 1), all agents get informed about an available
result and derived values. Conditions are a first time calculated result or changes in
the result u1 compared to a previous calculation cycle u�

1 . Based on its own features
list, each agent decides whether to couple or to ignore and continue calculating. In
case of coupling material dependent parameters, K2 is reassembled. If new sources
gets available, the coupling matrix C21 changes to I. The new problem

�
u11
u12

�
D

2

64
u01

K�1
2

�
b2 �K21u01

�
„ ƒ‚ …

b12

3

75 (4)

is solved, while calculated intermediate results are used as initial values for further
calculations. Equation (4) can be seen as a first iterative step solving Eq. (2) using
Jacobi method. The new b12 handles non-linear coupling between the physics.
The strength of coupling changes during an iterative process [11]. Stabilising the
system should be possible with relaxation methods like Aitken �2 or gradient
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based ones [12]. Obviously, at least one partial problem must converge during
the iterative solution process. The iterative method ends, if the relative changes
for ui or derived values are below a limit "i, i representing the agent number. In
Fig. 3 the unidirectional result propagation implementation for two CAs is shown.
If more than one expert with the same knowledge works on a problem, methods
like the Finite Element Tearing and Interconnection (FETI) domain decomposition
approaches allows to engage the agents [13]. As more agents dealing with a
problem, as further the parallelisation will be, limited by the communication
overhead that is not considered here. Solver selection algorithms [14] as well
as learning algorithms are imaginable. Adapted meshes for the different physics
have been already tested [7]. Another application of this approach comes together
with co-simulation and different time-steps [15] of the agents. In all cases, the
individuality of the agents allows to optimize the process.

Fig. 3 Unidirectional result propagation process for two agents. Agent 1 starts computing Eq. (3).
Agent 2 notices another agent working on the same problem and asks for existing results. If no
results are provided, agent 2 starts computing Eq. (3) in parallel. Agent 1 finishes its calculation
first and publishes the results to agent 2. This pauses its iterative solver to integrate the offered
results, if it’s possible. Afterwards, the calculation is continued until agent 2 is ready to publish its
results
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4 Numerical Example

The solution process of a coupled electromagnetic wave propagation problem
and a heat transfer problem is shown for a lossy dielectric within a waveguide
surrounded by air. It demonstrates the principle of the iterative agent based solution
of multiphysics problems. Here, three agents are needed. Agent 0 represents a CO,
agent 1 and agent 2 CAs. In Fig. 4 the MAS setup is shown.
The agents run on an Intel(R) Core(TM) i7-2600 CPU with 4 cores, max. 3:4GHz,
16GB .1333MHz/ RAM and Microsoft Windows 8.1 Enterprise 64-bit. Agent 1
handles the electromagnetic wave problem according to

�EC �rk
2
0."r � j�

!"0
/E D 0: (5)

Here�r is the relative permeability, k0 the wave number of free space, "r the relative
permittivity, � the electrical conductivity, ! the angular frequency, and "0 the free
space permittivity. Eq. (5) is solved in the frequency domain within the waveguide.
All over the model, the thermal problem is considered. It is defined by

��T C Q D 0: (6)

and solved by agent 2 for a stationary case. � represents the thermal conductivity
and Q is a heat source. According to the FEM approach, the electric field strength E
and the temperature T are the dependent variables u1 and u2 in Eq. 2. A convective

Fig. 4 Setup of the MAS for a coupled two physics problem. The commissioner hands over the
multiphysics problem and receives the simulation results. The coordination agent distributes the
problem and the calculation agents solve parts of the problem, they are versed to do. Exchanging
value allows a coupled iterative solution
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Fig. 5 Solver sequence for the coupled problem including the dependent variables (left), the
problem dependent errors (right), the global iteration counter (bottom) and the active agents (top)

heat flux with the heat flux coefficient h at the boundaries given as

n � �rT D h.Text � T/ (7)

makes a stationary simulation possible. Coupling is dynamically established by
a heat source Q representing the total power dissipation density in agent 2
and the temperature dependent electric conductivity �.T/ in agent 1. The slow
heating process (within seconds) compared to the high frequency wave propagation
.10GHz/ allows to consider the heat source Q as constant over time. The numerical
solver is chosen from agent 1 to be BICGStab and from agent 2 to be a non-linear
Newton method combined with a FGMRES. Agent 0 segregates the multiphysics
problem into two single physics problems and distributes them to agent 1 and
agent 2. After receiving the problems, agent 1 and agent 2 start computing in parallel
(Fig. 5).

Values between the marked points for temperature T and the electric field E are
linear interpolated. Here, Eq. (6) is successfully solved first. Due to the temperature
dependent electric conductivity �.T/ at agent 1, results of agent 2 have to be
considered in agent 1. Once a solution for agent 1 is found, agent 2 is informed about
the results. Now, the total power dissipation density of the electromagnetic wave is
available and can used as heat source Q in Eq. (6). The bidirectional coupling leads
to a loop. Table 1 shows the maximum node wise difference of the exchanged values
compared to the previous values. Due to the small changes "2 for the temperature,
the loop ends. Additionally, a comparison between the agent based solver system
and a segregated solver for a given iterative sequence is given. Identical meshes and
a BiCGStab solver for both agents are used. The error is computed as maximum
node wise difference of the solution vectors.

306 linear iterations were necessary to solve the electric field problem in a purely
sequential process. A computation time advantage of the agent based solver is
gained by solving the initially uncoupled problems in parallel. The computation
of agent 1 is interrupted when the results of agent 2 get available (see Fig. 5). Here
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Table 1 Solver sequence for the waveguide

Agent Variable Integrate Max. difference Lin. iterations Max. error Rel. error %

2 T None First 36 5 � 10�14 2 � 10�14

1 E New Source.T/ First 306 5 � 10�4 6 � 10�4

2 T New Source.Q/ 25K 77 0:71 0:21

1 E Update.T/ 7:64 W
m3 1 5 � 10�4 7 � 10�4

2 T Update.Q/ 6 � 10�6 K 43 0:72 0:22

Fig. 6 Visualisation of results from agent 2 and agent 1

agent 1 was interrupted after 160 linear iterations and only 212 additional iterations
were needed to solve Eq. (4) after integrating results of agent 2. This shows, that
iterations are spared, if partial results with final values are integrated before finishing
the calculation, and more than two agents are working at a problem. The results
of the solved waveguide problem for a mode 10 transverse electromagnetic wave
(TE10) at 10GHz and a convective heat flux at the boundaries of 1 W

m2 �K are shown
in Fig. 6.

5 Conclusion

The step-wise development of multiphysics problems enables a parallelized way of
solving coupled multiphysics problems. Based on the idea of interworking experts,
several requirements were discussed for implementing this software system. Moti-
vated by the affinity of multi-agent systems to the expert system, an algorithm for
uni- and bidirectional coupling was presented. Details about their implementations
as well as advantages of the system were given. The solution of a practical example
finally demonstrates the performance of the presented expert system. Engaging
more agents to further parallelize and optimize the solution process is a future task.
Same holds for the selection mechanism of the numerical solver used in each agent.
Using the system to solve strongly coupled problems with attached weakly coupled
physics is now possible.
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Simulation of Thermomechanical Behavior
Subjected to Induction Hardening

Qingzhe Liu, Thomas Petzold, Dawid Nadolski, and Roland Pulch

Abstract Induction hardening is one of the most important heat treatments of steel
components. This paper presents a mathematical and numerical model developed
for a coupled problem of Maxwell’s equations describing the electromagnetic fields,
the balance of momentum which determines internal stresses and deformations
resulting from thermoelasticity and phase transformation induced plasticity, a rate
law to determine the distribution of different phases and the heat equation to
determine the temperature distribution in the workpiece. The equations are solved
using a finite element method. A good agreement between the simulation results
and experiment performed to determine the deformation is observed. In addition,
the distribution of residual stresses after the heat treatment is well predicted.

1 Introduction

For many applications in mechanical engineering, especially in automotive industry,
there is a growing demand in components made of steel sheets. Therefore, to
improve the quality of boundary layers of these sheets is a significant task since
one must carefully control the process precisely in order not to harden the complete
sheet which may lead to undesirable fatigue effects.

Surface hardening is a well known method for enhancing mechanical properties
of steel components. The aim of this heat treatment is to increase the hardness
of the boundary layers of components made from steel by rapid heating and
subsequent quenching. The reason why the hardness increases relies on a change
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Fig. 1 Induction hardening
of a disc (by Stiftung Institut
für Werkstofftechnik IWT,
Bremen)

in the microstructure of the workpiece during the surface hardening which produces
the desired hardening effect.

Depending on heat sources there are different surface hardening procedures. The
most import ones are flame hardening, laser hardening and induction hardening. In
comparison to flame and laser, induction hardening is advantageous with regard to
energy consumption because of the Joule effect resulting from eddy currents.

Figure 1 shows such an experimental set up which consists of an induction
coil (inductor), an alternating current power supply, a cooling apparatus and the
workpiece (in this experimental set up a disc made from steel) itself as basic
components. During the heating stage of this process the inductor is connected to the
power supply, the flow of the alternating current through the induction coil induces
eddy currents inside the workpiece that lead to increase in temperature due to the
Joule effect. Then the current is switched off and the workpiece is quenched by
cooling liquid which leads to the desired hardening effect on the boundary layer of
the workpiece.

A mathematical model for induction surface hardening accounts for the elec-
tromagnetic effects as well as for the thermomechanical behavior and the phase
transitions that are caused by enormous changes in temperature during the heat
treatment.

The paper is organized as follows. In Sect. 2 we give a brief survey of the
complete mathematical model of induction hardening which has been investigated
intensively in [2]. Section 3 is devoted to the numerical discretization of the
problem. Here a finite element method is applied to solve the system of partial
differential equations. The aspect arising from different time scales which needs to
be considered in the simulation is addressed. Section 4 focuses on the simulation
results of the coupled problem of electromagnetics and thermomechanics in the
process of inductive heating for discoid samples made of steel 42CrMo4 (AISI
4140). In comparison to [7] in which only the quenching process has been con-
sidered we implement the full procedure, i.e., the induction heating and following
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quenching process. Especially we present numerical results of mechanical effects
like the residual stress distribution as well as thermally induced distortions where the
TRIP (transformation induced plasticity) was involved since this effect is significant
in the induction hardening (cf. [6]). From the simulation results a good agreement
with experiments according to the deformation is observed and the distribution of
residual stresses after the heat treatment is well predicted. Further numerical results
of gears samples made of the material AISI 4140 including the determination of the
most important properties of the parts for industrial practice, e.g. hardness pattern,
residual stresses and distortion have been presented in [3]. The paper ends with a
short conclusion and an outlook.

2 The Mathematical Model

For the complete process of heating and cooling we consider the model components
corresponding to the electromagnetic field, the temperature evolution, the phase
transformations as well as the mechanical deformations and stresses. It accounts for
a coupled problem of Maxwell’s equations describing the electromagnetic fields, the
balance of momentum which determines internal stresses and deformations caused
by thermoelasticity and TRIP and the heat equation describing the evolution of
temperature distribution in the workpiece. Figure 2 depicts the interrelations among
these physical model components. To model the coupled problem of electromagnet-
ics and thermomechanics we first define spatial computational domains. Let G � R

3

be a domain which surrounds the inductor˝ and the workpiece˙ .

Fig. 2 Mathematical
subproblems for induction
hardening and their interplays
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The electromagnetic effects in G are described by Maxwell’s equations that
consist of a system of partial differential equations with respect to the electric field
E, the magnetic induction B, the magnetic field H and electric displacement field D,
i.e.:

curl E D �@tB
div B D 0

curl H D JC @tD
div D D &

(1)

where J denotes the current density and & the charge density. In addition Ohm’s law
yields

J D 
E

where 
 is the electric conductivity and by constitutive laws we obtain

D D "E; B D �H

with material dependent electrical permittivity " and magnetic permeability �. We
introduce the magnetic vector potential A such that

B D curl A;

and impose the Coulomb gauge

div A D 0:

Then following [2] we employ the vector potential formulation of Maxwell’s
equations which has been derived based on Helmholtz decomposition. More details
can be found in [3].

With regard to phases, at the beginning of the heating process the workpiece
consists of a mixture of ferrite, pearlite, and bainite. At the end of the heating
process the outer layers of the workpiece have been transformed to austenite. The
phase evolution of austenite is described along the ideas given in [9]. Then upon
rapid quenching the austenite fraction is transformed to martensite. The rate laws
describing phase evolutions during cooling have been presented in [6, 7].

The thermomechanical behavior in the complete process can be modeled by
laws of energy balance and balance of momentum (cf. [3]). The coupling interface
between temperature and deformation is thermal expansion and backward mechan-
ical dissipation.
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In summary, the governing equations of the electromagnetic field, the tempera-
ture evolution, the mechanical deformations and stresses as well as the steel phase
transformations read as follows:


@tAC curl ��1curl A � Jsrc D 0; in G
�c"@t� � div kr� D F; in ˙

�div � D 0; in ˙
Pz � f.z; �; t/ D 0; in ˙

P"trip � g.� ; �; z; Pz/ D 0; in ˙

(2)

where the variables .A; �; � ; z; "trip/ denote the magnetic vector potential, the
temperature, the stress tensor, phase fraction and phase transformation induced
plasticity (TRIP) strain, respectively. For isotropic materials the stress tensor �

which is a matrix valued function admits a expression in terms of the displacement
u (cf. [3, 7]). Here the divergence of the tensor � is a vector field defined by the
divergence for each row of the tensor matrix. The material dependent parameters
.
; �; �; c"; k/ denote electrical conductivity, magnetic permeability, density of the
workpiece, specific heat and heat conductivity. Jsrc denotes the source current
density satisfying �div Jsrc D 0, F summarizes the source term caused by Joule
heat, mechanical dissipation and latent heat due to phase transitions. Here the vector
potential formulation of Maxwell’s equations is taken into account, the heating
equation has been derived from energy balance, the deformation equation is based
on balance of momentum, the rate of change of phase fractions f results from the
Johnson-Mehl-Avrami equation (cf. [8]) and Schröder’s approach, see e.g. [5]. The
equation describing the evolution of TRIP "trip is derived from the Franitza-Mitter-
Leblond proposal (cf. [1]).

All material parameters depend strongly upon the temperature � and phase
distribution z. The intermediate coupling interface of heating equation [the second
equation of (2)] and mechanical equation [the third equation of (2)] comprises the
thermal strain, denoted by "th which corresponds to the mechanical strain resulting
from temperature change and can be expressed by thermal expansion coefficient and
the mechanical dissipation, i.e.,

� W . P"th C P"trip/

which reactively influences temperature and is involved in the source term of heating
equation. Moreover, the term of Joule heat 
 j@tAj2 couples electromagnetics and
thermomechanics.
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3 Numerical Discretization

The workpiece boundary is dissected into a part �s which is free from any acting
force and a part �u where the workpiece is fixed. The method of lines (MOL) is
applied for discretization of Eq. (2). The first step is to discretize the partial differ-
ential equations with respect to space while keeping the time variable continuous.
Here the spatial discretization is achieved by tetrahedral mesh generation.

Using curl-conforming finite elements we introduce the solution space of the
vector potential A:

H.curl;G/ D ˚v W G! R
3
ˇ̌
v; curl v 2 ŒL2.G/�3 and div v D 0; v � n D 0 on @G

�

where n denotes the normal to the boundary. For the temperature � and the phase
fraction z we use classical H1-conforming elements

H1.˙/ D ˚v W ˙ ! R
ˇ̌
v 2 L2.˙/;rv 2 ŒL2.˙/�3�

while the displacement u is approximated by vector-valued H1 elements

Xu.˙/ D ˚v W ˙ ! R
3
ˇ̌
v 2 ŒH1.˙/�3; v �nj�s D 0; vj�u D 0

�
:

With these definitions in mind we use a finite element method (FEM) to calculate
the unknowns by computing their projections on corresponding finite dimensional
subspaces. More precisely, the FE-discretized system (2) is already a system of
DAEs for the variables: vector potential, temperature, displacement, phase fractions
and TRIP. Concerning discretization in time we solve the heat equation together
with the balance of momentum and the ODEs describing the phase transition and
TRIP using a ‘large’ time step �t resulting from the typical time scale of the heat
conduction. To solve the electromagnetic problem in the time interval �t we use a
time step ıt� �t that is related to the source term of the vector potential equation.
Here we use a time stepping scheme of order two with time step ıt. For more details
we refer the reader to [3].

4 Simulation and Experimental Verification

The numerical simulations are carried out on a disc with diameter 47.7 mm made
of steel 42CrMo4 (Fig. 3). From symmetry reasons we restrict ourselves to compute
only a segment with an angle of �

20
(cf. Fig. 4). The cross sections are subject to

the symmetric boundary conditions, that means the displacement on the symmetric
cuts equals zero in normal direction and the normal directional space derivatives of
the displacement along the cross sections are zero (cf. [7]). All material parameters
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Fig. 3 Disc geometry provided by Stiftung Institut für Werkstofftechnik IWT, Bremen

Fig. 4 The reduced computational domain with FE-mesh

associated with 42CrMo4 for the simulations are provided by IWT (Stiftung Institut
für Werkstofftechnik, Bremen), and parameters for phase transitions are taken
from [4]. All numerical results presented here accompanied with the thermally
induced deformation are scaled by 40 to improve their visualizations. According
to experimental setting we use a medium frequency 12 kHz with power 100 kW,
relative power 63% and current 575A, and assume that the surrounding room
temperature is 20 ıC.

The simulation results of such an induction heating process are visualized.
Figure 5 shows progressive temperature values at different heating stages. Owing
to the enormous increase in temperature the workpiece suffers from gross distortion
caused by thermal expansion during heating. The subsequent cooling process leads
to thermal contraction as well as TRIP. Figure 6 shows the corresponding Euclidean
norm of the displacement at the beginning of cooling stage and the end of cooling,
respectively.
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Fig. 5 Temperature evolution at the beginning of heating (t D 0:00 s), the beginning of cooling
(t D 1:3 s), and the end of cooling (t D 14:3 s). The deformation is scaled by 40

Fig. 6 Euclidean norm of the displacement at the beginning of cooling (t D 1:3 s), and the end of
cooling (t D 14:3 s). The deformation is scaled by 40

Besides, the size change of disc diameter at t D 14:3 s (the end of cool-
ing) has been calculated. In Fig. 7 it is obvious that at the boundary layer a
maximal stretch of size 9:9 �m is observed. Compared with the original size of
the workpiece the dimensional change is relatively slight. A comparison with
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Fig. 7 Size changes of disc
diameter; (a) simulated
results scaled by 40, (b)
experimental measurements
performed by Stiftung Institut
für Werkstofftechnik IWT,
Bremen; deformations are
depicted by the contour
which is magnified 200 times

Fig. 8 Axial and tangential
residual stresses at the
sectional symmetry plane
after induction heat treatment

experimentally measured values shows a very good conformance since the absolute
error j11:6� 9:9j�m (cf. Fig. 7) is negligible in industrial practice.

The compressive residual stress distribution in the workpiece which is generated
during the phase transformations is considered as one of the most important effects
for the enhancement of strength. A numerical result of axial and tangential residual
stresses after induction hardening is presented in Fig. 8.

5 Conclusions

In the mathematical treatment of the complete process of induction hardening
including heating and quenching stages, a coupled problem of electromagnetics,
thermomechanics and phase transitions is taken into account. The numerical
simulations based on an FEM are carried out to predict the temperature evolution as
well as mechanical behaviors.

Since only simple symmetric workpieces (disc) have been considered in the
simulation, the solution with symmetric boundary conditions is not dependent on the
angular coordinate and the segment angular openness is not relevant. Consideration
of workpieces with complex geometries, helical gears for instance, should be a
further application.

In addition, investigations of the effect of uncertain data for the simulation
results, optimal control of the inductive heating under consideration of the growth
of the high temperature phase austenite remain open problems.
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Tools for Aiding the Design of Photovoltaic
Systems

Timo Rahkonen and Christian Schuss

Abstract This paper presents a collection of tools for aiding the design and
system simulations of fixed and mobile photovoltaic energy harvesting systems. The
presented tools help to estimate the available power, and to study the requirements
of the maximum power point tracking. The effects caused by panel self-heating and
active bypassing in series connected panel systems are studied.

1 Introduction

Photovoltaic (PV) modules are commonly used for harvesting renewable electrical
energy, and numerous tools exist to estimate the performance of fixed installations
[1, 2]. However, for simulating the performance of fast maximum power point
tracking (MPPT) algorithms and partial shading on a moving PV installation, for
example, a dedicated simulation setup needs to be built. This paper collects together
all the core functionalities needed for such simulations, and discusses especially
non-static effects. Section 2 reviews how the achievable insolation is calculated.
Section 3 concentrates on the modelling of PV, emphasizing the double-diode
behavior, and the effects of self-heating and bypassing. Finally, Sect. 4 concludes
the paper.

2 Estimating the Insolation

A good estimate of Sun’s trajectory is needed to maximize the energy collection
of fixed solar panels. The most precise Equation of Time (EoT) models take into
account the eccentricity of Earth’s orbit and the axis tilt that cause a peak +/�5 min
analemma error between the solar and local mean time. Yet, for estimating the
daily insolation a very high time precision is not really needed, because the Sun’s
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azimuth and elevation trajectory during the day matters, but not the exact time of
the solar noon, for example. Hence, a relatively simple algorithm [3, 4] can be used
to estimate solar coordinates instead of the more precise equation-of-time like [5].

Much more important is the effect of systematic shadowing and average atmo-
spheric conditions. Average insolation data is available from many measurement
stations [6, 7], and also the aeronautical METAR weather reports [8] from the
nearest airport can be used to estimate the average cloudiness and percentage of
clear sky. Aviation typically reports cloud cover on a scale of (0–8)/8.

Our implementation for predicting daily and yearly insolation consists of the
following. An equation-of-time function returns the Sun’s azimuth (AZ) and
elevation (EL) angle. Using the elevation angle, the effective atmospheric mass
(AM) is calculated according to [9] to include the atmospheric losses, as illustrated
in Fig. 1. The amount of diffuse (non-direct) illumination depends on the albedo of
the surrounding terrain and the elevation of the viewing angle, but here a fixed 10 %
is used for simplicity.

Next the Sun’s position data is compared against a shadow mask storing the
nearby obstacle profile: If the Sun is below the shadow elevation in a given azimuth
angle, the direct sun ray is blocked and only the diffuse illumination is received. The
obstacle profile can be collected by a mobile camera for example, if the field-of-view
of the camera is known.

Altogether, the received radiation power P can be calculated by

P D Io � TAM � ..1� D/ � ShM � APV � cos.�/C D � APV/ (1)

where Io is the direct irradiance (about 1 kW/m2), TAM is the transmittance due to
AM losses, D is the relative amount of diffuse illumination (here 0.1), ShM is a 0/1
shadow mask blocking or enabling the direct illumination, APV is the area of the PV
panel and � is the angle between PV’s normal vector and Sun’s direction vector. Due
to the diffuse illumination term, even when the line-of-sight is blocked, a clear sky
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Fig. 1 Model of atmospheric mass (AM) and the direct and diffuse irradiation vs. Sun’s altitude
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Fig. 2 Sun’s trajectory and obstacles (left) and incident power and diffuse power (right) vs. time
throughout the year in Oulu, Finland (65N)

gives diffuse irradiation equal to D � Io. Now it is easy to sweep the PV orientation
to find the best orientation for achieving the maximum insolation. After the P.time/
response is known, it is easy to integrate the daily and yearly energy collection.

An example of using Eq. (1) is shown in Fig. 2 where the Sun’s trajectory is
plotted during the year in Oulu, Finland at lat. 65N. Data is calculated every 5 min,
and once a week. Due to location near the arctic circle the Sun hardly sets in June,
but its elevation is always lower than 50ı, and around Christmas the Sun rises only
a couple of degrees above the horizon. The red curve shows an example obstacle
profile, and it is seen that in summer time the Sun shines above the neighboring
building in the morning, but otherwise the building blocks the direct irradiation.
The effect of this is shown in the right plot where the hourly irradiation is shown
for a PV facing south at an elevation angle of 40ı. The shallow tails model the
diffuse illumination that comes from the sky and is not shadowed when the direct
line-of-sight is broken or when the Sun is already on the back side of the PV.

The importance of the diffuse illumination is further illustrated in Fig. 5 where
a small PV has been directly illuminated only for 3 h a day. In this case the diffuse
illumination contributes 25 % of the total daily insolation.

The above calculations were verified by comparing them with measurements
in Fig. 3, where the elevation of a south-facing PV is varied. It can be seen that
in the beginning of April a vertical tracking does not affect much to the energy
harvesting, as the maximum throughout the day is achieved at an elevation angle
of ca. 30ı. Instead, horizontal tracking would help in collecting the morning and
evening sunlight.

The above is mostly aimed for fixed PV installations, but equally well in a mobile
arrangement (e.g. on car’s rooftop or in a bike) you need to know Sun’s altitude.
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Fig. 3 Measured effective area of a south-facing PV with different elevation angles at 3 April. The
lowest curve is flat horizontal alignment, then in 5ı steps

Instead, the shadow profile is more complex and frequent, and this emphazises the
need for a very quickly reacting maximum power point tracking.

3 Modeling the PV

3.1 The PV Model

A PV panel is usually modeled at circuit level by a parallel combination of the
photocurrent source and a pn diode, and one series and one parallel resistance.
The nonlinear nature of the diode current equation makes the solution of voltage
iterative. To avoid convergence problems caused by the steep exponential response,
the iteration steps taken by Newton-Raphson iteration algorithm need to be limited.

The I-V curve of the diode easily shows a double-diode behaviour due to
recombination effects. This is illustrated in Fig. 4 where the short-circuit current Isc

and open-circuit voltage Voc of a small garden lamp PV has been collected during
the day. On a Voc�log.Isc/ axis the points follow two lines with different slopes. The
slope at low current levels is more shallow, and is caused by carrier recombination
inside the PV. This can be easily modeled by presenting the diode current as a sum
of two exponential functions with different parameters. This is inherently built into
the Spice diode model, where it is controlled by parameters NR and ISR (emission
coefficient and gain terms of the second diode, respectively).
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Fig. 4 Measured photovoltaic log.Isc/� Voc pairs during a day

3.2 Ambient Effects in the PV

The power available from photovoltaics is very dependent on two ambient condi-
tions: The irradiance and the temperature. The calculation of the insolation was
shown above. Yet, also the effects of air/PV interface are important—for example,
a cheap plastic cover of PV garden lamps can easily attenuate 15 % of the incoming
light. Moreover, surface reflection depends on the angle of arrival, and this causes
additional losses when the sunlight is almost parallel to the PV. At input angles
higher than 70ı the actual illumination can be some tens of percent lower than
suggested by Eq. (1). This effect can easily be included into (1).

The characteristics of the diode depends heavily on the ambient temperature: The
diode voltage typically drops by �1...�2mV/degrees with increasing temperature,
and a 30ı change in the temperature can vary the available power by 10 %. Hence
it is important to model temperature effects. Here not only the ambient temperature
matters: the dark PV suffers from serious self-heating in bright daylight and warms
up heavily. It is also worth noting that a PV transfers some power away from the
module in electrical form: A PV biased in the maximum peak operating point heats
less than a PV biased at V=Voc, for example.
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Fig. 5 Left: Measured Isc (blue) and estimated junction temperature (green). Right: Voc measured
(green), estimated by log.Isc/ (red) and with the estimated junction temperature (red)

3.3 Estimating the Self-Heating

When measuring the response of PV panels, Isc is very linearly proportional to the
illumination, and Voc is a good indication of the junction temperature of the PV.
Figure 5 shows an example where a small PV is placed in sunlight in a cold day in
March. When the Sun comes out of shadow, both the optical current Isc and the open
circuit voltage Voc of the PV increase, but within 20 min the PV has heated up so
much that the Voc has reduced almost back to its initial value.

As the self-heating has 5–10 % effect to the operating point and achievable
power, we built a lowpass thermal model similar to one thermal resistance and
capacitance [10], where the junction temperature lags the incoming power (esti-
mated by the measured Isc). In the right plot of Fig. 5 the blue curve is the measured
Voc, green is the Voc;est1 estimated on current and constant temperature, and the red
one utilizes a self-heating model with a single 10 min time constant. The estimated
junction temperature is shown in green in left plot. This modelling is important
especially if the behavior of an energy harvester is analyzed in a vehicle, where
shadow and illumination change quickly and often. During the first minutes in sun-
light the efficiency is highest, and the MPP tracker needs to utilize that.

3.4 Modelling and Modifying the Connections

We typically have several PV modules in series or parallel connection. In a parallel
connection a partial shadowing causes a proportional decrease in Isc but only a slight
decrease in Voc value. In a (more typical) series connection one shadowed module
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Fig. 6 Measured V-I curve and V-P curves of a partially shadowed PV with two series connected
blocks and bypass diodes [11]

limits the current passing in all PVs. In this case it is very quickly beneficial to
bypass the shadowed PV entirely, either by using bypass diodes or active switches.
Bypassing causes a clear drop in the Voc but allows the current flow, as shown in the
measurements in Fig. 6.

Analyzing the connections and bypass circuits is easy in a circuit simulator that
automatically solves the resulting voltages, but experimenting different controllers
is difficult. To aid the system simulations, we built in Matlab a Newton-Raphson
solver, where an arbitrary number of PVs and their bypass diodes can be simulated,
together with changing illumination profiles and MPPT. The importance of this is
that a partial shadowing causes a big jump in the maximum power operating point,
and typical MPPT algorithms can react slowly or even get stuck to the wrong local
maximum. Hence, modelling of this effect is needed for developing of fast and
robust MPPT units.

3.5 Modelling the MPPT Requirements

The power of the PV depends on its operating voltage, and the voltage Vmpp

for maximum power depends rather linearly on the ambient temperature and
logarithmically on the strength of the illumination. The maximum is rather broad
(made even more constant because of self-heating), and hence it makes sense to
check how much the operating point may vary to maintain e.g. 90 % efficiency.
This is illustrated on the right plot of Fig. 7 where the peak operating voltages and
C= � 10% limits are shown for �20 (upper) and C80ı (lower) temperatures for
1:1000 illumination range. It can be seen that a 1:10 illumination changes do not
cause more than 10 % loss in efficiency even without any MPPT (provided that
the operating power at maximum illumination is slightly below the maximum).
A 1:100 illumination change causes already a similar operating point change as
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temperatures

a 50ı temperature change, and definitely needs to be compensated for. These kind
of variations can be observed when driving a car on a road surrounded by trees or
buildings, and in this case the MPPT controller needs to react to these very quickly.

4 Summary

We have built models for PV system simulation both into circuit simulator and for
system simulations in Matlab environment, with an emphasis in studying moving
PV systems with quickly varying operating conditions. In fixed installations the
emphasis is on calculating Sun’s position, obstacles, and directing the panels so that
they collect maximum amount of energy. In movable installations the direction is
arbitrary, but any way Sun’s altitude is important to know. In either case, the amount
of diffuse illumination is important.

Regarding PVs we showed two effects that affect the requirements set for the
maximum power point tracking. First, the panels show self-heating with ca. 10 min
time constant, and this both affects the achievable power and emphasizes the speed
of the MPPT: If the PV is dominantly in shadow, it is very beneficial to react quickly
to the first glimpse of direct sunlight before the PV heats up and efficiency drops.
Second, the active bypassing of shadowed series connected panels causes very large
changes in the optimum operating point, and the MPPT algorithm needs to be able
to react quickly to these.
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Part IV
Model Order Reduction

In Model Order Reduction focus is on error estimates and in balancing between
moments (and thus size of the reduced model in the neighbourhood of an expansion
point) and in using more expansion points. This applies both to frequencies as well
as to parameter values. Here two papers address these points. Another point is how
a reduced model is used. Is a bigger system with feed-back between output to input
of the reduced model still stable: can the reduced model be made passive? And can
application of a reduced model be beneficial in a system with multirate dynamics?
These are considered in two other papers. For the use of parametric Model Order
Reduction in Uncertainty Quantification we refer to the next part of of the book.

The paper by L. Feng, P. Meuris, W. Schoenmaker and P. Benner: Parametric
and Reduced-Order Modeling for the Thermal Analysis of Nanoelectronic Struc-
tures, tackles parametric or parameterized Model Order Reduction. The method,
developed by the Max Planck Institute, Magdeburg, Germany, was succesfully
applied to an industrial heat problem of a protective package example, provided
by the company MAGWEL, Leuven, Belgium. One assumes linear state-space
formulations in which the occuring matrices depend on a (suitably chosen, abstract)
parameter vector p D . p1; : : : ; pm/

T , where the matrices depend linearly on
p1; : : : ; pm. By this one can always evaluate the matrices when they have been
determined in advance for a set pk

1; : : : ; p
k
m, k D 1; : : :m. How to select the pk

i is part
of an MOR process where adaptively expansion points for the frequency and for the
parameters are chosen according to minimizing an a posteriori error estimate. This
error estimate applies to any MOR approach. Here it is demonstrated in a Krylov-
method framework for which a very efficient algorithm was developed for dealing
with the expansion in the parameters. Inherently there is a choice between using
more moments of expansions or using more expansion points - the choice affects
the sparsity of the result of the reduced matrices.

The paper by S. Grivet-Talocia, A. Ubolli, A. Chinea and M. Bandinu: On
tuning passive black-box macromodels of LTI systems via adaptive weighting
considers linear, time-invariant systems for reduction and enforces passivity in a
postprocessing step. The approach is demonstrated to a power distribution network.
For given least-square weights and given scattering matrices OSk between incident
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(a. j!/) and reflected (b. j!/) power waves with b. j!k/ D OSka. j!k/ one determines
the transfer function S via Vector Fitting. Next for embedding the system into a
bigger one it is assumed that a D MbC Nu where M introduces feed-back effects
and u is the independent source. The output of the bigger system is y D PbC Qu.
The found S and Sk lead to corresponding H and Hk as transfers between u and
y. The least-square weights are adapted such that frequencies for which the errors
between H and Hk are important are emphasized. Here the passivity enforcement
comes into play for which some approaches are discussed.

The paper by E. Rita Samuel, L. Knockaert and T. Dhaene: Multipoint Model
Order Reduction using Reflective Exploration exploits an adaptive technique for
determining frequency points as expansion points, which is available in a toolbox
developed at the University of Ghent during the last years.1 It is demonstrated for
the Krylov method PRIMA. For a given expansion point the order of the moment
expansion can be increased by considering the difference between the last two
approximation models. For the error a root mean square relative error at a discrete
grid is considered. As long as the difference is too large the order is increased with
the number of the ports. When the correction is small enough a new expansion
point is selected from frequencies on the discrete grid where the error between the
transfers of the last model and the original model is largest. The approach is applied
to a transmission line model with six ports.

The paper by C. Hachtel, A. Bartel and M. Günther: Interface Reduction for
Multirate ODE-Solver aims to an interesting goal: combining model order reduction
to facilitate purposes to efficiently time integrate systems with different dynamics.
These can be systems where the dynamics is different at different geometrical
locations. It can also be a partitioning in coordinates of the unknown solution vector
that involves different physical quantities. In both cases it is interesting to reduce
a large part with low dynamics (slow part) and combine that with the remaining
active part. Actually the slow part is linearized. Next the interface between active
and slow part is considered. Such an interface offers more general coupling between
models (not just between boundary values). Model Order Reduction automatically
reveals which interface unknowns are more important than others. The approach is
demonstarted on an example consisting of a fast circuit that is coupled to heat by a
detailed heat model (slow part) of a resistor.

1http://www.sumo.intec.ugent.be/.

http://www.sumo.intec.ugent.be/


Parametric and Reduced-Order Modeling
for the Thermal Analysis of Nanoelectronic
Structures

Lihong Feng, Peter Meuris, Wim Schoenmaker, and Peter Benner

Abstract In this work, we discuss the parametric modeling for the thermodynamic
analysis of components of nanoelectronic structures and automatic model order
reduction of the consequent parametric models. Given the system matrices at
different values of the parameters, we introduce a simple method of extracting
system matrices which are independent of the parameters, so that parametric models
of a class of linear parametric problems can be constructed. Then the reduced-order
models of the large-scale parametric models are automatically obtained using a
posteriori output error bounds for the reduced-order models. A thermal problem
with conductance variations is studied as an example to illustrate the proposed
parametric modeling and model order reduction techniques.

1 Introduction

Parameter variations have become essential and have to be taken into account in
today’s design of micro- and nano-electronic (-mechanical) problems as well as
coupled electro-thermal problems. In design processes, modeling and simulation at
many values of the parameters are necessary. For many simulation tools, modeling
and simulation have to be done at several instances of the parameters. That means,
given fixed values of the parameters, a certain numerical discretization method (e.g.,
the finite element method) is set up for that value, and numerical integration is then
performed to get the output response corresponding to that value. The only available
data from the software often are the (mass, damping) matrices corresponding to
certain samples of the parameters.

It is desired that a single discretized system is valid for all possible values of
the parameters, so that discretization does not have to be implemented anew for
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each fixed value, which can save much simulation time. In this paper, we propose a
simple method of extracting matrices which are independent of any fixed value of
the parameters. These matrices constitute a realization of a single parametric system
which can be repeatedly used in simulation for any variations of the parameters.
The approach is in particular suitable for the thermal analysis of nanoelectronic
structures, as the parameters here often enter in a linear affine form which is needed
for this extraction of a parametric model.

Simulating the consequent parametric system is, however, still very time consum-
ing, because of the large scale of the system. We propose to use parametric model
order reduction (PMOR) to compute a small reduced-order model (ROM), so that
a single ROM is accurate for all possible values of the parameters. It is therefore
cheap and sufficient to simulate only the ROM.

Different PMOR methods have been proposed so far; a survey of PMOR methods
can be found in [2]. In this paper, we use a multi-moment-matching PMOR
method [1] to construct the reduced-order model. These methods are popular in
practical applications since they are easy to implement and need less computations
than most of the other methods. Furthermore, we propose to use an a posteriori
output error bound [4] to automatically construct the ROM. This makes model order
reduction automatic.

The paper is organized as follows. In Sect. 2, we propose a simple method of
extracting the state-space representation of a class of parametric problems. Sec-
tion 3 reviews the basic idea of PMOR method based on multi-moment-matching.
Section 4 and shows an algorithm that adaptively implements the multi-moment-
matching PMOR method based on an a posteriori output error bound for the ROM.
Section 5 addresses a thermal problem of a package, where the thickness of the top
layer of the package varies and is taken as a parameter. We show that using any
three samples of the parameters, one can easily extract a linear parametric system
for the problem. A parametric ROM is automatically obtained using the proposed
algorithm in Sect. 4, and meets the requirements of accuracy and compactness.
Section 6 concludes the paper.

2 Parametric Modeling

In this section we introduce a method for extracting system matrices of a class of
parametric problems, so that the parametric representation of the models in state-
space form can be derived. Assume that the parametric problem can be generally
described by the following differential equation,

@tu.t; zI p/CL Œu.t; zI p/� D 0; t 2 Œ0;T�; z 2 ˝; p 2P;

where L Œ � � is a linear spatial differential operator, p D . p1; : : : ; pm/ is a vector
of parameters, ˝ � R

d.d D 1; 2; 3/ is the spatial domain and P 2 R
m is the

parameter domain.
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Using finite-element simulation software, discretization in space can be done
only at a fixed value p� of p, and one may get the discretized system

E. p�/ dx.t;p/
dt D A. p�/x.t; p/C B. p�/u.t/;

y.t; p/ D C. p�/x.t; p/C D. p�/u.t/;

where only E. p�/;A. p�/ 2 R
n�n, B. p�/ 2 R

n�lI , C. p�/ 2 R
lO�n, and D. p�/ 2

R
lO�lI at a fixed value p� of p are available. Here, x 2 R

n is the state vector, and
y 2 R

lO is the output response. For design purposes, the simulation results at many
fixed values of p should be derived and analyzed. If simply using the software,
then the discretization must be repeated at many values of p. To avoid repeated
discretization in space, and hence to save design time, it is desired that a parametric
representation of the model is available.

We will show that if E. p/;A. p/;B. p/;C. p/;D. p/ are in the form of

M. p/ D M1p1 C : : :CMmpm; (1)

then one can easily compute M1; : : : ;Mm based on the data of M. p/ at m fixed
values of p. Here and below, M. p/ stands for any of the matrices E. p/, A. p/, B. p/,
C. p/, D. p/. Hence, the parametric representation of (2) is available, i.e.,

E. p/ dx.t;p/
dt D A. p/x.t; p/C B. p/u.t/;

y.t; p/ D C. p/x.t; p/C D. p/u.t/:
(2)

The discretized parametric model in (2) prevents repeated discretization at all values
of p. Notice that the parameters pi may be abstract parameters, such as functions of
the geometrical and/or physical parameters. Please also see the numerical example
in Sect. 5, where p2 D 1=p, and p is the layer thickness of the package.

Suppose that m groups of matrices E. pai/;A. pai/;B. pai/;C. pai/;D. pai/ have
been obtained (e.g., by simulation software) at m different samples pai , i D 1; : : : ;m.
Using the formulation in (1), one can get a group of equations as below,

M1p
a1
1 C : : : C Mmpa1

m D M. pa1 /;
:::;

M1p
am
1 C : : : C Mmpam

m D M. pam/:

The above equations can be re-written as

.Pm ˝ In/

0

B@
M1

:::

Mm

1

CA D

0

B@
M. pa1 /
:::

M. pam/

1

CA ; (3)



158 L. Feng et al.

where In 2 R
n�n is the identity matrix, and

Pm D

0
B@

pa1
1 : : : pa1

m
:::

:::

pam
1 : : : pam

m

1
CA 2 R

m�m:

It is possible to select the samples pai whose corresponding m � m matrix Pm in (3)
is nonsingular, such that

0
B@

M1

:::

Mm

1
CA D .P�1

m ˝ In/

0
B@

M. pa1 /
:::

M. pam/

1
CA ;

where the property of tensor product (Kronecker product): .U˝Q/�1 D U�1˝Q�1,
8U 2 R

nU�nU , and Q 2 R
nQ�nQ invertible, is used. Finally, the matrices Mi, i D

1; : : : ;m, can be easily computed from the following equations,

M1 D M. pa1 /Qp11 C : : : C M. pam/Qp1m;
:::;

Mm D M. pa1 /Qpm1 C : : : C M. pam/Qpmm:

(4)

Here,

P�1
m D

0

B@
Qp11 : : : Qp1m
:::

:::

Qpm1 : : : Qpmm

1

CA :

One important property of the above computation is that it is independent of the
large dimension n. For any large-scale matrices in (2), only the inverse of a small
m � m matrix Pm is needed to compute all Mi, for Mi D Ei;Ai;Bi;Ci;Di, i D
1; : : : ;m.

Simulating the system in (2) may still take a lot of time when the dimension n
is large and when it has to be simulated at many samples of p. In the next section
we propose to use PMOR to construct a parametric reduced-order model, so as to
replace the original large system in (2) in simulations. Since the size of the reduced-
order model is usually much smaller than n, simulation can be accomplished in a
much shorter and reasonable time period.
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3 PMOR Based on Multi-Moment-Matching

There are various PMOR methods in the literature, among which the method based
on multi-moment-matching is probably the most easy one to implement, and has
a low computational complexity [1]. The multi-moment-matching PMOR method
computes a projection matrix V based on the series expansion of the state vector x
in the frequency domain. The system in (2) in the frequency domain is

.sE. p/� A. p//x.s; p/ D B. p/u.s/;
y.s; p/ D C. p/x.s; p/CD. p/u.s/:

(5)

Given expansion points p0 D Œp01; : : : ; p0m�, and s0, x.s; p/ in (5) can be expanded as

x.s; p/ D ŒI � .�1G1 C : : :C �mGm C �mC1GmC1 C : : :C �2mG2m/�
�1BMu.s/

D
1P

iD0
.�1G1 C : : :C �2mG2m/

iBMu.s/;

where �i D spi � s0p0i , �mCi D pi � p0i , Gi D �Œs0E. p0/ � A. p0/��1Ei, GmCi D
Œs0E. p0/� A. p0/��1Ai, i D 1; 2; : : : ;m, and BM D Œs0E. p0/ � A. p0/��1B. p/.

Defining R0 D Œs0E. p0/ � A. p0/��1ŒB1; : : : ;Bm� and Rj D ŒG1; : : : ;Gp�Rj�1,
j D 1; : : : ; q, a matrix Vs0;p0 , whose columns form an orthonormal basis of the
subspace spanned by the R0

is, is computed as

rangefVs0;p0g D spanfR0;R1; : : : ;Rqgs0;p0 : (6)

Using V WD Vs0;p0 , we obtain the parametric reduced-order model via Galerkin
projection,

VT E. p/V dxr.t;p/
dt D VTA. p/Vxr.t; p/C VTB. p/u.t/;

yr.t; p/ D VTC. p/Vxr.t; p/C D. p/u.t/:

Notice that the number of columns in Rj increases exponentially with j. When the
number of the parameters in p is larger than 2, or when there are many inputs,
multiple point expansion should be used to keep the size of the reduced-order model
as small as possible. The idea is straight forward. Given a group of expansion points
si; pi; i D 0; : : : ; k, (the superscript i for p is not a power, it only indicates the ith
expansion point), a matrix Vsi;pi can be computed for each pair si, pi as

rangefVsi;pig D spanfR0;R1; : : : ;Rqrgsi;pi : (7)

The final projection matrix V is obtained from the orthogonalization of all matrices
Vsi;pi ,

V D orthfVs0;p0 ; : : : ;Vsk;pkg: (8)
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For similar accuracy, the number qr in (7) can usually be taken much smaller than q
in (6). Consequently, the size of the reduced-order model can be kept small.

Different expansion points si; pi may lead to reduced-order models with different
accuracy. In the next section, we introduce a technique for adaptively selecting the
expansion points according to an a posteriori error bound�.s; p/ for the ROM. The
error bound guarantees the reliability of the reduced-order model, while providing
a way of automatically constructing the ROM.

4 Adaptively Selecting the Expansion Points

For a multiple-input and multiple-output (MIMO) system, the error bound �.s; p/
is defined as

�.s; p/ D max
ij
�ij.s; p/:

Here �ij.s; p/ is the error bound for the .i; j/th entry of the transfer function matrix
of the ROM, i.e.,

jHij.s; p/ � OHij.s; p/j � �ij.s; p/:

For a single-input and single-output system, there is no need to take the maximum.
�ij.s; p/ can be computed as

�ij.s; p/ D
jjrdu

i .s; p/jj2jjrpr
j .s; p/jj2

ˇ.s; p/
C j.Oxdu/�rpr

j .s; p/j;

where rpr
j .s; p/ D bj � ŒsE � A�Oxpr , Oxpr D V.sVT EV � VTAV/�1VTbj, rdu

i .s; p/ D
�cT

j � ŒNsET � AT �Oxdu, Ns is the conjugate of s, and Oxdu D �VduŒNs.Vdu/TETVdu �
.Vdu/TATVdu��1.Vdu/TcT

j . Here for ease of notation, p is dropped from the matrices
E. p/;A. p/;B. p/;C. p/. bj is the jth column of B. p/. ci is the ith row of C( p). The
variable ˇ.s; p/ is the smallest singular value of the matrix sE. p/�A. p/. The matrix
Vdu can be computed, for example, using (7) and (8), by replacing R0; : : : ;Rqr with
Rdu
0 ;R

du
1 ; : : : ;R

du
qr , where the matrices siE. pi/� A. pi/ in R0; : : : ;Rqr are substituted

by NsiET. pi/�AT. pi/, and Ej by ET
j , Aj by AT

j , Bj by BT
j , j D 1; : : : ;m. The derivation

of �.s; p/ is detailed in [4].
Given the error bound �.s; p/ for the ROM, the expansion points pi, si can be

adaptively selected, and the projection matrix V can be automatically computed
as shown in Algorithm 1. It is worth pointing out that although the error bound is
parameter-dependent, many p-independent terms constituting the error bound can be
precomputed only once, and repeatedly used in the algorithm for the many samples
of p in �train, e.g., the terms VTM1V; : : : ;VTMmV , etc..
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Algorithm 1 Adaptively selecting expansion points Os, Op, and automatically comput-
ing V
1: V D Œ�I Vdu D Œ�;
2: Choose some "tol < 1; set " D 1;
3: Choose �train: a set of samples of s and p, taken over the interesting domain;
4: Choose initial expansion points: Os, Op;
5: while " > "tol do
6: range.VOs; Op/ D spanfR0;R1; : : : ;Rqr gOs;Op;
7: range.Vdu

Os;Op/ D spanfRdu
0 ;R

du
1 ; : : : ;R

du
qr

gOs;Op;
8: V D orthfV;VOs;Opg;
9: Vdu D orthfVdu;Vdu

Os;Opg;

10: .Op; Os/ D arg max
s;p2�train

�.s; p/;

11: " D �.Os; Op/ ;
12: end while.

5 Numerical Experiments

We take a thermal model of a package [3] to study the proposed techniques.
Integrated circuits are put into protective packages to allow easy handling and
assembly onto printed circuit boards and to protect the devices from damage. The
heat flowing in the package is produced in the integrated circuit and in the electrical
leads.

A finite-integration technique (FIT) for the modeling of the package leads
to thermal fluxes that are proportional to the dual areas of the mesh cells and
inversely proportional to the lengths of the edges in the mesh cells. Therefore,
when considering meshes that are topologically equivalent for different package
thicknesses, the parametric dependence of the matrices will take the form as

M. p/ D M0 C pM1 C 1=pM2;

where p is the package thickness. The second term originates from the linear
dependence of dual areas corresponding to the cell edges perpendicular to the
thickness, whereas the third term originates from dual areas associated to cell edges
tangential to the thickness orientation.

It is clear that the above formulation is a special case of (1), where p1 is fixed
as p1 D 1, and p2 D p, p3 D 1=p. Only the inverse of a 3 � 3 matrix needs to be
computed. After the inverse of the 3 � 3 matrix is obtained, the equations in (4) can
be used to compute M0;M1;M2. The final parametric system is in the form of (2). It
is a MIMO system, with 34 inputs and 68 outputs.

Furthermore, Algorithm 1 is employed to automatically compute the parametric
reduced-order model. We used 6 samples of p 2 .0; 100�, and one sample of s D
2�fj�, f 2 Œ0; 108�: s0 D 200�j�, j� D p�1, to constitute the training set �train in
Algorithm 1. The algorithm essentially selects the expansion points for p, since we
force a single expansion point for s. There are two iterations, and two expansion
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points are selected for p. The reduced model is of size r D 58. For each selected
expansion point, we construct Vsi;pi with only two terms R0 and R1 (qr D 1 in Steps
6–7, Algorithm 1), in order to avoid the exponential increase in Rj, j > 1. Table 1
lists the iterations and the error bounds at each iteration step. Figures 1 and 2 plot the
temperature and the current at two different parts of the package. The temperature is
of big magnitude, while the current is of very small magnitude, showing that there
is no current at that part of the circuit. The reduced model catches the accuracy of
both at 120 samples of p, and 100 time steps for each sample.

Table 1
Vsi ;pi D spanfR0;R1gsi ;pi ,
i D 1; 2, "tol D 10�3,
n D 8549, r D 58

Iteration i .s0; pi/ �.s0; pi/

1 .0:3834; 200� j 0:0153

2 .0:0677; 200� j 5� 10�4

Fig. 1 FOM n D 8549, ROM r D 58, inputs 34, outputs 68. Left: temperature computed by the
ROM. Right: relative error of the temperature computed by the ROM

Fig. 2 FOM n D 8549, ROM r D 58, inputs 34, outputs 68. Left: current computed by the ROM.
Right: Absolute error of the current computed by the ROM
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6 Conclusions

We have proposed a simple automatic parametric modeling technique for a class
of linear parametric problems, and shown that automatic parametric model order
reduction can be realized with the guidance of an a posteriori error bound. The above
techniques have been successfully applied to a thermal problem of a package. A
compact and reliable reduced-order model has been automatically obtained, which
offers the possibility of being integrated into dedicated electro-thermal simulation
software to accelerate design automation.

Acknowledgements This work is supported by the collaborative project nanoCOPS, Nanoelec-
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Program under Grant Agreement Number 619166.
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On Tuning Passive Black-Box Macromodels
of LTI Systems via Adaptive Weighting

Stefano Grivet-Talocia, Andrea Ubolli, Alessandro Chinea, and Michelangelo
Bandinu

Abstract This paper discusses various approaches for tuning the accuracy of
rational macromodels obtained via black-box identification or approximation of
sampled frequency responses of some unknown Linear and Time-Invariant system.
Main emphasis is on embedding into the model extraction process some information
on the nominal terminations that will be connected to the model during normal
operation, so that the corresponding accuracy is optimized. This goal is achieved
through an optimization based on a suitably defined cost function, which embeds
frequency-dependent weights that are adaptively refined during the model construc-
tion. A similar procedure is applied in a postprocessing step for enforcing model
passivity. The advantages of proposed algorithm are illustrated on a few application
examples related to power distribution networks in electronic systems.

1 Introduction

Several engineering design flows are often based on a partial knowledge of the
dynamic behavior of individual devices, components, or subsystems. This situation
arises when such components are measured with finite resolution, when the
corresponding responses are obtained from finite-precision numerical simulation
of first-principle field equations, or even when these responses are available from a
component vendor. In order to use such components, suitable simulation models are
required, in order to verify full system performance since early design stages.

In this work, we concentrate on electronics applications, for which reliable
models of the Power Distribution Network (PDN) at chip, package, board and
system level are required [1–3]. The PDN can be regarded as a large-scale Linear
and Time-Invariant (LTI) dynamic system [4, 5]. A first-principle formulation would
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lead to a state-space or descriptor formulation with billions of states and hundreds
of inputs/outputs. However, such detailed first-principle descriptions are usually
not available to the power integrity engineer, who is responsible for compliance
verification at the system level. Moreover, even if such descriptions were available,
the resulting complexity of system-level verification would be overwhelming.
Hence, there is a strong need for accurate and broadband reduced-order models.

We concentrate here on the construction of state-space PDN macromodels in a
black-box setting, via identification from a finite set of frequency response samples.
The main tool that we employ is frequency-domain rational approximation, for
which several good algorithms exist, such as Vector Fitting [6–10], followed by
a postprocessing step aimed at enforcing passivity [11–15]. Passivity is in fact
a fundamental requirement for ensuring model robustness and global stability of
successive system-level transient simulations.

The main problem that we address is the sensitivity of the state-space macro-
model to the termination networks to which the model will be connected during
normal operation. This sensitivity may be the root cause for major accuracy degra-
dation, so that a model that is very accurate in the input-output representation that
is adopted for its construction may result quite inaccurate during normal operation.
This degradation results from the feedback mechanisms that the terminations induce
on the model dynamics [16, 17].

We propose a simple algorithm to alleviate this accuracy degradation, based
on the definition of suitably and adaptively defined frequency-dependent weights,
which are used to construct an optimized cost function embedding information
on the nominal termination scheme for the model. Minimization of this cost
function during model identification and passivity enforcement leads to an effective
compensation of the model sensitivity, with resulting improved accuracy. Various
examples from real applications demonstrate the effectiveness of this approach.

2 Problem Statement

Let us consider a P-port PDN system, known through a set of K frequency samples
of its P � P scattering matrix

OSk � OS. j!k/; k D 1; : : : ;K: (1)

The scattering representation is such that b. j!/ D OS. j!/a. j!/ where a;b are the
power waves that are incident into and reflected from the structure, respectively. This
representation is preferred here since it is guaranteed to exist for any LTI system.
We want to construct a regular state-space model

Px.t/ D Ax.t/C Ba.t/

b.t/ D Cx.t/C Da.t/
(2)
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with transfer (scattering) matrix

S.s/ D C.sI �A/�1BCD ; (3)

so that

• a cumulative least squares fitting error with respect to the original data (1)

E2w D
KX

kD1
E2w;k D

KX

kD1
w2kkS. j!k/ � OSkk2F (4)

is minimized, where wk are appropriate frequency-dependent weights and F

denotes the Frobenius norm;
• the model is passive, so that

�max.S. j!// D kS. j!/k2 � 1 ; 8! 2 R ; (5)

where �max denotes the maximum singular value of its matrix argument.

In standard applications, the weights in (4) are uniformly set to wk D 1, or at best
to wk D 1=&k when the variance &2k of noise affecting raw data is known. Here, we
want to construct these weights such that a second objective is met. We assume that
the nominal termination scheme is fully known and characterized in the frequency-
domain as

a.s/ D M.s/b.s/C N.s/u.s/;

y.s/ D P.s/b.s/CQ.s/u.s/;
(6)

where u is a vector collecting independent sources embedded in the termination
network, y collects the output variables of interest, and M;N;P;Q are suitable
transfer matrices. Note that the port inputs b of the termination network (6) are
the outputs of the macromodel (2), and viceversa. Our objective is minimization of
the error

�2 D
KX

kD1
�2

k D
KX

kD1
kH. j!k/ � OHkk2F ; (7)

where H. j!k/ and OHk are the transfer functions between input u and output y, based
on the model S. j!k/ of (3) and on the raw data OSk of (1), respectively.
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3 Iterative Rational Approximation via Adaptive Weighting

A simple first-order approximation of the relationship between the frequency-
dependent model error Ek and transfer function error�k leads to

�k � SkEk; (8)

where Sk can be interpreted as a sensitivity of H. j!k/ with respect to perturbations
in the model responses S. j!k/ under nominal termination conditions (6). Therefore,
if we set wk D Sk and we minimize (4) during model construction, we expect that
the resulting model will achieve an equivalent minimization of (7). As documented
in [16], this approach still leaves margins for improvement, in addition to requiring
the explicit computation of the sensitivity. We resort to a simpler and more effective
iterative approach, based on the following steps.

1. At the first iteration � D 0, we initialize the weights as w.0/k D 1 for all k.
2. For each iteration � D 0; 1; : : : , we compute a state-space macromodel (3) by

minimizing (4). This is obtained by a standard application of the Vector Fitting
(VF) algorithm [6–10].

3. Once the model is available, the corresponding frequency-dependent transfer
function error �.�/

k is computed. If �.�/
k < ı at all frequencies, where ı is the

desired target accuracy, the iteration is stopped.
4. Otherwise, a new frequency-dependent weight for next iteration is defined as

w.�C1/
k D w.�/k �F .�

.�/
k /; (9)

where F W RC 7! R
C denotes a non-decreasing function such that F .	/ D 1

for 	 � ı. Then, the iteration index is increased �  �C 1, and the scheme is
restarted from step 2.

The redefinition of the weights in (9) further emphasizes those frequencies for which
the transfer function error is significant, without affecting the other frequencies. The
result of this process is both the termination-tuned model S.s/ and the corresponding
set of optimal weights wk. The convergence properties of this iteration are related to
the specific choice of F . A detailed convergence analysis is in progress and will be
documented in a future report.

4 Passivity Enforcement

Once a state-space macromodel is available, its passivity should be verified.
We perform this check by computing the set I including all purely imaginary
eigenvalues �i D j!i of the associated Hamiltonian matrix [12] (we assume
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kDk2 � 1)

M D
�

AC B.I �DTD/�1DTC B.I � DTD/�1BT

�CT.I� DDT/�1C �AT �CTD.I� DTD/�1BT

�
: (10)

If I is empty, the model is already passive and no other action is required.
Otherwise, the model needs to be corrected to eliminate local passivity violations,
intended as violations of condition (5) within localized frequency bands ˝i D
.!i; !iC1/. The boundary points of each violation band ˝i correspond to the
imaginary part of some Hamiltonian eigenvalue in set I .

The passive model to be determined is parameterized by perturbing the state-
output map QC D CC�C, corresponding to a model perturbation

QS.s/ D S.s/C�S.s/; �S.s/ D �C.sI �A/�1B : (11)

A set of local passivity constraints is obtained by considering each individual
singular value trajectory �r. j!/ that exceeds one within a given violation band
˝i, finding its local maximum N�i;r D �r. j N!i;r/ with N!i;r 2 ˝i, and linearizing the
relationship between this singular value and the decision variables �C. Imposing
that this linearized singular value falls below one gives the linear inequality
constraints

zT
i;rvec.�C/ � 1 � N�i;r; 8i; r ; (12)

to be enforced concurrently while minimizing the model perturbation (11).
Most existing passivity enforcement schemes [11–15] aim at minimizing the L2

norm of the model perturbation, which can be characterized as

k�Sk22 D
1

2�

Z C1

�1
k�S. j!/k22 d! D tr

�
�C Gc�CT� ; (13)

where Gc is the controllability Gramian of the original model. Minimization of (13)
subject to (12) optimizes the model accuracy, but may degrade the accuracy of the
target transfer function H.s/, since no weighting is considered. We propose two
different approaches to overcome this limitation.

The first approach is to consider a frequency-weighted controllability Gramian
Gw instead of Gc in (13). This Gramian is constructed based on an augmented state-
space system providing a realization of

�Sw.s/ D �S.s/F.s/ ; (14)

where F.s/ is a minimum-phase transfer function such that jF. j!k/j2 � w2k , where
wk are the optimal weights from the fitting. More details can be found in [17].
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A second and more straightforward approach is to construct a data-based cost
function. We consider the model deviation at frequency j!k, which we write as

E 2
k D

��� QS. j!k/ � OSk

���
2

F
D
����C Kk C S. j!k/� OSk

���
2

F
; (15)

where Kk D . j!kI�A/�1B, and where OSk are the original frequency samples. Based
on this expression, we define a weighted cost function as

E 2 D
KX

kD1
w2kE

2
k ; (16)

to be minimized subject to the passivity constraints (12).
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Fig. 1 Magnitude (top) and phase (bottom) of the input impedance for different models of PDN
example 1, compared to the nominal impedance. See text for a detailed description
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5 Numerical Examples

We apply the proposed passive model identification process to two different
PDN structures, whose scattering responses are available through a broadband
electromagnetic simulation. In both cases, the nominal termination conditions are
also available in terms of current sources with an RC internal impedance to represent
on-chip loading, various decoupling capacitors of different sizes to be placed at the
package and board ports, and one Voltage Regulator Module (VRM). The transfer
function of interest is the input impedance observed from one of the on-chip ports,
subject to the above loading conditions at all other ports.

Figure 1 reports magnitude and phase of the reference (exact) PDN impedance
for the first structure (thin solid line), based on nominal terminations, and computed
using the raw scattering data. This response is compared to the non-passive model
obtained from the proposed iteratively reweighted rational approximation (dashed
line). We see that the accuracy of this initial model is excellent. The passive model
obtained by perturbation based on a standard cost function (13) is seriously degraded
(dotted line), as can be justified by the (rescaled) sensitivity function, also depicted
in the top panel (dash-dotted line). The model obtained using a frequency-weighted
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Fig. 2 As in Fig. 1, but for PDN example 2
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Gramian (plus markers) shows some improvement, but only using the proposed
data-based cost function we are able to match almost perfectly the reference (black
dot markers).

Similar conclusions can be drawn from a second application example, which
refers to a different PDN structure, with similar overall characteristics and nominal
termination scheme. The corresponding curves are depicted in Fig. 2.

6 Conclusions

We have presented a simple approach for the identification of broadband black-box
macromodels of LTI systems subject to passivity constraints, and with an input-
output accuracy tuned to particular loading conditions. The proposed algorithm
is based on a set of adaptively defined frequency-dependent weights, which are
used in both rational approximation and passivity enforcement stages of model
identification. Numerical results obtained for two chip-package power distribution
networks demonstrate the excellent performance of proposed technique.
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Multipoint Model Order Reduction Using
Reflective Exploration

Elizabeth Rita Samuel, Luc Knockaert, and Tom Dhaene

Abstract Reduced order models obtained by model order reduction methods must
be accurate over the whole frequency range of interest. Multipoint reduction
algorithms allow to generate accurate reduced models. In this paper, we propose
the use of a reflective exploration technique for obtaining the expansion points
adaptively for the reduction algorithm. At each expansion point the corresponding
projection matrix is computed. Then, the projection matrices are merged and
truncated based on their singular values to obtain a compact reduced order model.
Three conductor transmission line example is used to illustrate the technique.

1 Introduction

For the accurate modeling of modern integrated circuits and high-speed systems,
electromagnetic (EM) methods [1–3] have become an indispensable analysis and
design tool. However, a major drawback of EM method is that it usually generate
very large systems of equations. The optimization and simulation of these large scale
models is computationally expensive, not to say unfeasible. Therefore, model order
reduction (MOR) techniques are crucial to reduce the size of large scale models and
the computational cost of the simulations, while retaining the important physical
features of the original system.

The basic idea of MOR techniques is to reduce the size of a system described by
ordinary differential equations, but preserve the dominant behavior of the original
system. MOR techniques, for instance, the asymptotic waveform evaluation (AWE)
[4], Krylov subspace projection based algorithms [5–7], and truncated balanced
realization (TBR) methods [8] have been topics of intense research in the EM
modeling field in recent years.

Multipoint MOR methods have been developed over the years [5, 9–11], which
allows to generate accurate reduced models over the whole frequency range of
interest. This paper focuses on the adaptive selection of the expansion points using
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a reflective exploration (RE) technique. It is a selective sampling algorithm, where
the model is improved incrementally using the best possible data at each iteration,
allowing it to propose candidate exploration points [12]. An error-based exploration
is performed to find the expansion points. After obtaining the expansion points,
the corresponding projection matrices are computed using any of the Krylov based
MOR techniques. The projection matrices are then merged and truncated based
on their singular values to obtain a more compact projection matrix. Then the
reduced order models are obtained by congruence transformation using the compact
projection matrix.

This paper is organized as follows. Section 2 gives a brief overview of the PRIMA
algorithm [7] and of multipoint model order reduction. In Sect. 3 the proposed
technique using RE with model compacting is described. Finally in Sect. 4 the
proposed method is illustrated using three conductor transmission line example.

2 Brief Overview of Multipoint MOR

The PRIMA algorithm [7] is used for obtaining the projection matrices.

2.1 PRIMA

Consider a MIMO descriptor system of the form

EPx.t/ D Ax.t/C Bu.t/

y.t/ D Cx.t/C Du.t/: (1)

The transfer function is

H.s/ D C.sE � A/�1BC D: (2)

Let s0 be a suitably chosen expansion point such that the matrix s0E � A is
nonsingular. Then the transfer function can be rewritten as:

H.s/ D C.s0E� AC .s � s0/E/�1BCD

D C.IC .s� s0/M/�1RCD (3)

where M D .s0E � A/�1E, R D .s0E � A/�1B. The qth block Krylov-subspace is
given by

Kq.M;R/ D colspanŒR MR M2R : : : M.q�1/R�: (4)
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This yields the projection matrix Vq, which is the column orthogonal matrix com-
puted from the Krylov subspace Kq.M;R/, from which, using congruence transfor-
mation (5), the reduced state-space matrices (Aq;Eq;Bq;Cq;Dq ) are obtained:

Aq D VT
q AVq; Eq D VT

q EVq; Bq D VT
q B; Cq D CVq; Dq D D: (5)

2.2 Multipoint Projection Matrix

After MOR, the resulting model must not only be accurate at one frequency point but
over the whole frequency range of interest. For this reason, the multipoint reduction
algorithm is used [9]. At each expansion point, the projection matrix is computed as
described in Sect. 2.1. Then, for N expansion points, the corresponding projection
matrices Vqi (i D 1; 2; : : : ;N) are merged to give;

Vcomm D colspanŒVq1 Vq2 : : : VqN �: (6)

The merged projection matrix is not truncated using its singular values during the
iterative procedure of the reflective exploration. But the matrix is truncated after
all the expansion points are adaptively chosen which is described in the following
section.

3 Proposed Technique

3.1 Reflective Exploration

The process of selecting samples and building the model in an adaptive way is
referred to as reflective exploration (RE) [12]. RE is an effective technique when it is
very expensive to obtain the frequency response of the model from EM simulators.
For the exploration a reflective function is required to select a new sample. The
proposed algorithm uses the root mean square (RMS) error (7) between the obtained
best models as the reflective function.

Err.I/est D

s
PKs

kD1

PPin
iD1

PPout
jD1

jHI;.ij/.sk/�HI�1;.ij/.sk/j2
jHI;.ij/.sk/j2

PinPoutKs
(7)

where, Ks, Pin and Pout are the number of frequency samples considered on a dense
grid, input and output ports of the system, respectively. The exploration consists of
an adaptive modeling loop and an adaptive sampling loop.

1. Adaptive Modeling Loop: The algorithm starts with two expansion points at !min

and !max of the frequency range of interest. The reduced order q at these points
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Fig. 1 Flowchart for
reflective exploration

is equal to the number of ports of the system for the first iteration, I. Then with a
common projection matrix as explained in Sect. 2, the reduced model is obtained.
Then in the next iteration again the projection matrix is computed for a reduced
order equal to two times the number of ports of the system. If the RMS error
between the two best models (i.e., the model obtained in the Ith and the .I � 1/th
iteration) exceeds an estimated error threshold ıest, then the reduced order q is
again increased by the number of ports for the respective expansion points.

2. Adaptive Sampling Loop: When the difference in RMS error between the Ith and
.I � 1/th, is less than a threshold ıcomp, a new expansion point is selected. For
selecting the new expansion point a dense grid is considered for the frequency
range and the error per frequency is computed by taking the norm l2, of the
frequency response of the best model (HI) and the original model (Hact):

Errsk D norm.Hact.sk/� HI.sk/; 2/I k D 1; : : : ;Ks: (8)

The frequency point on the grid at which Errsk is maximum is considered as the new
expansion point. It is important to consider a constant dense grid for the frequency
throughout the algorithm. This process is iteratively repeated until the RMS error
between the original frequency response and the reduced model is 10�3. Figure 1
shows the reflective exploration algorithm.

3.2 Model Compacting

After obtaining the best reduced order model from the iterative procedure, it might
be possible to further compact the model with the information obtained from the
singular values � of Vcomm (6). The economy-size svd is computed for the common
projection matrix Vcomm (6), to obtain the singular values � of the merged projection
matrix. In matlab the economy-sized svd is computed as shown:

U˙VT D svd.Vcomm; 0/ (9)
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Fig. 2 Flowchart for the
truncation of the projection
matrix

Here, U and V are orthogonal matrices, which are known as the left and right
singular values. The diagonal of ˙ gives the singular values � of the system. The
reduced order for the system is defined based on the first qcomm significant singular
values of Vcomm, which is computed by adaptively setting a threshold to the ratio
of the singular values to the largest singular value as shown in Fig. 2. The ROM
obtained by the truncation of the merged projection matrix with respect to the
singular value, is compared with the best model obtained from reflective exploration.
If the RMS error is less than 10�4, then we shall truncate the singular values, else
we keep the model with the reduced order obtained using the reflective exploration.
The compact projection matrix Qcomm is equal to the left singular value U where the
column is truncated to a size qcomm based on the significance of the singular values.

Qcomm D U.W; 1 W qcomm/: (10)

Figure 2 shows the flowchart for the truncation of the singular values. After comput-
ing the compact projection matrix Qcomm, through congruence transformation (5) on
the original system (1) a reduced order model is obtained.

4 Numerical Results

Three conductor transmission lines of six ports described by an original state-space
of order 1203 is considered as shown in Fig. 3. The frequency range considered is
1 kHz–1 GHz.
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Fig. 3 Three conductor transmission line
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Fig. 4 Error per frequency used to select the new expansion point for the adaptive sampling loop

The sampling starts by considering two samples at the minimum and maximum
frequency. The reduced order for the first iteration is equal to 6. Then as discussed
in Sect. 2, the frequency response is computed using a common projection matrix.
In the next step the frequency response is computed for the same samples with
an increased order i.e; it is increased by the number of ports. Then we compute
the difference in response between the two models using (7). The error obtained
is 4:1979, which is greater than ıest D 10�3, the threshold set for the estimated
error. Therefore, the algorithm continues to increase the order till the difference
between successive estimated error is less than ıcomp D 10�1. Then the adaptive
sampling loop starts to find the new sample, by computing the norm of the frequency
responses of the two best models (8) over 200 samples of the frequency range. The
new sample point is considered at the frequency at which the error (8) is maximum
as shown in Fig. 4.
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Table 1 RMS error (7) after
each modeling loop in RE

Sample 2 3 4

RMS error (7) 1.7 9:8 � 10�2 1:2� 10�3
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Fig. 5 Magnitude of Y14 for the different iteration steps of RE

Then again the frequency response is computed with all the samples and also with
increment of the reduced order by the number of ports. Similarly in this manner the
sampling process is iterated till the estimated error (7) is less than threshold value
ıest D 10�3. Table 1 shows the number of samples used during each iteration of
RE to achieve an estimated error less than ıest. Figure 5, shows the admittance Y14
obtained during the RE for different iterations. A best model of dimension 96 is
obtained with sour samples within a CPU time of 11:2 s on an Intel.R/ Core.TM/

2 Duo P8700 2.53 GHz machine with 2 GB RAM and has been implemented in
Matlab R2012b on the Windows 7 platform.

Then the model is compacted as described in Sect. 3.2 w.r.t. the singular values
to a ROM of dimension 61 with a RMS error (7) of 2:3 � 10�3. Thus the reflective
exploration technique with model compacting was able to automate the generation
of expansion points to obtain an accurate and compact reduced order model (Fig. 6).
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5 Conclusions

Multipoint model order reduction algorithms generates reduced order models that
are accurate over the whole frequency range of interest. Reflective exploration
technique is proposed in this paper for obtaining the expansion points adaptively
and also for choosing the reduced order per expansion point for the multipoint
reduction algorithm. For each expansion point the corresponding projection matrix
is computed and then the projection matrices are merged and truncated based on
their singular values to obtain a compact reduced order model. The technique has
been illustrated with a coupled transmission line example.
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Interface Reduction for Multirate ODE-Solver

Christoph Hachtel, Andreas Bartel, and Michael Günther

Abstract For systems of ordinary differential equations, where the components
exhibit a largely differing dynamic behaviour, multirate methods exploit this
structure to gain computational efficiency. A model order reduction applied to a
single subsystem keeps the dimension in the coupling unchanged. In the case of stiff
subsystems, where Jacobians are needed, the computational effort remains high. The
here presented interface reduction approach is a promising way to turn the reduced
dimension into an improved efficiency for multirate time domain simulation.

1 Introduction

The starting point is the following system of ordinary differential equations (ODEs)

Py D f.y; t/ (1)

with components of highly different dynamic behaviour. A multirate method
exploits this special structure to compute the numerical approximation in a more
efficient way. Thus, the system is split according to the dynamical behaviour:

PyA D fA.yA; yL; t/;

PyL D fL.yA; yL; t/;
(2)

where yA 2 R
nA denote the fast changing, active components and yL 2 R

nL the
slow changing, latent components (of y). The partitioning is either given by the
underlying physical properties of the modeled system or has to be detected e.g. by
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usage of error estimators [1] or based on step size control strategies. A multirate
method integrates the slow part with a large macro step H and the fast changing
subsystem with a small micro step h with h � H. Macro and micro step size are
computed using the same strategies as for the underlying (singlerate) integration
scheme(s). A partitioning into more than two subsystems is possible. For simplicity
of notation, we restrict ourselves to two subsystems. It is obvious that multirate
methods can be even more efficient if the dimension of the slow subsystem is very
large compared to the dimension of the active one.

For a system with a fixed and given partitioning, a model order reduction (MOR)
of the slow, high dimensional subsystem promises another gain of efficiency for
the time domain simulation. Here, the challenging part is to combine the reduced
dimension and the coupling interface with the other non-reduced subsystems.

The work is organised as follows. First we give an introduction to multirate
compound step methods and we repeat briefly the well-known concepts of MOR.
The combination of both techniques forms the heart of our work: multirate interface
reduction. For this setting, a multiphysics application fits to illustrate the capabilities
of this new approach. We are considering a regularised, academic test circuit with
thermal active and dependent elements and give first numerical results.

2 Multirate Compound-Step Methods

Given the partitioned ODE (2), the crucial part of multirate schemes is the realisation
of the coupling between the subsystems. In fact, this is one of the distinguishing
features of these techniques. In (2) and in all later equations, the coupling terms
are printed in colour. Multirate integration schemes for implicit methods were
first presented by Gear and Wells [2], where the coupling is simply achieved
by inter- and extrapolating the unknown values. Though this approach seems to
be a natural choice, several problems concerning the coupling terms appear. In
the last years methods that achieve the multirate integration by using a dynamic
refinement strategy became popular. These schemes integrate the whole system
with a large step size H. By using error estimators, the step size is only refined
for those components for which a given accuracy is not reached. Savcenco [1] uses
embedded Runge-Kutta schemes for error estimation, Constantinescu and Sandu [3]
are using Richardson extrapolation. These methods can handle systems for which a
partitioning according to the dynamic behaviour is not known a priori.

Here we follow the idea of compound step methods, which were first developed
using Runge-Kutta schemes by Kværnø and Rentrop [4] and then expanded to
W-methods [5]. The main idea is to compute the macro-step yL.t0 C H/ and the
first micro step yA.t0 C h/ coupled together in one compound step. The remaining
micro steps yA.t0 C ih/; i D 2; : : : ;m, can either be computed by interpolating
the slow components or by using a dense output formula for the slow part.
Compound step methods can be used for systems with a stronger coupling than
the inter-/extrapolation methods of [2]. Mixed-multirate compound step methods
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[6] allow the usage of different integration schemes for compound and remaining
micro steps. So the single methods can be chosen according to the properties of the
subsystems.

Linear (simply diagonal) implicit compound step methods like in [5] can be used
for (at least moderately) stiff systems only by the computational cost of solving one
system of linear equations per time step. The simplest version is the multirate linear
implicit Euler method, [3]: the method reads for the compound step

0
B@

h
@fA

@yA
� IA

h

m

@fA

@yL

mH
@fL

@yA
H
@fL

@yL
� IL

1
CA
�

yA.t0 C h/� yA.t0/
yL.t0 C H/� yL.t0/

�
D
�

hfA.yA.t0/; yL.t0//
HfL.yA.t0/; yL.t0//

�

(3)

and for the remaining micro steps holds

�
h
@fA

@yA
� IA

�
kA;i D �h fA.yA.t0 C ih/; QyL.t0 C ih//; i D 1; : : : ;m � 1

(4)

with kA;i D yA.t0 C .i C 1/h/ � yA.t0 C ih/ and QyL the interpolated values of
the slow components. The coupling between the slow and the active subsystem
is realised by the off-diagonal elements in the coefficient matrix of the system of
linear equations in (3). The multirate method (3)–(4) is of order one, but also in
higher order compound step methods with underlying linear implicit integration
schemes, e.g. [5, 6], the coupling is partly realised by the off-diagonal blocks of
the coefficient matrix. We can only expect high improvements in the computational
effort by applying multirate schemes if the number of active components is much
smaller than the number of slow components (nA � nL). So the question arises
whether one can exploit this structure for a more efficient computation not only by
using larger step sizes for the slow component but also reducing the dimension of
the slow part by MOR.

3 Model Order Reduction (MOR)

Since we only expect small variations in the slow components, we assume here that
the slow part is linear or at least linearised over a given macro step. This might be
not true for all nonlinear cases but covers relevant application. Nevertheless one has
to take care of the choice of step size while linearising a nonlinear model.
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Now the partitioned system (2) can be rewritten with system matrix A 2 R
nL;nL ,

input matrix B 2 R
nL;nA and output matrix C 2 R

nL;nL :

PyA D fA.yA; yL; t/ (5)

PyL D A � yL C B � yA (6)

yL D C � yL: (7)

Next we apply MOR to the internal variable yL. To this end, the system matrices
are projected on a low dimensional subspace by biorthogonal projection matrices
V;W 2 R

nL;r with r� nL. One ends up with a reduced slow subsystem

PyL;r DWTAV � yL;r CWTB � yA (8)

QyL D CV � yL;r: (9)

The motivation of applying MOR is to obtain a small dimensional variable yL;r

while the output QyL shall be approximated sufficiently accurate. The way how the
projection matrices V;W are computed are defined by the MOR method, for further
details see [7]. For the multirate-MOR setting, the usage of a certain MOR method
is not mandatory so the user can choose his favorite method.

Notice that the dimension of the output variable in (9), i.e., the dimension of the
coupling interface slow to active, will be not reduced in this setting. In fact, with a
non-reduced interface we cannot expect large improvements of the computational
efficiency solving the system of linear equations in the compound step (3) by using a
reduced slow subsystem. So we have to find a way to transfer the reduced dimension
to the coupling interface to gain efficiency in the compound step.

4 Interface Reduction

Often the active components do not depend on the detailed information of every
single slow component. So we may replace the coupling interface yL in (5) by a
low dimensional input uA D g.: : : ; zL; : : :/ while zL denotes the output of the slow
subsystem. The same can be made for the slow part (7). Adopting the notation for
coupled linear systems from [8], we get

PyA D fA.yA;uA; t/ PyL D fL.yL;uL; t/ WD A � yL C B � uL (10)

uA D g.zA; zL;u; t/ uL D KLA � zA CKLL � zL CH �u (11)

zA D h.yA; t/ zL D C � yL (12)

with input uX 2 R
qX , global input u, output zX 2 R

pX and coupling matrices
KLX , X 2 fA;Lg. The coupling functions g;h and matrices KLA;C are not given
by the system itself. Thus for the multirate setting they must be defined by the
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user exploiting some underlying properties, e.g. physical laws. These modifications
in the multirate setting will not change the diagonal blocks in the compound step
coefficient matrix (3), but for the off-diagonal blocks the mixed derivatives change
into

@fA

@yL
D @fA

@uA
� @g
@yL
D @fA

@uA
� @g
@zL
� @zL

@yL
D @fA

@uA
� @g
@zL
�C: (13)

@fL

@yA
D @fL

@uL
� @uL

@yA
D @fL

@uL
� @uL

@zA
� @zA

@yA
D B �KLA � @h

@yA
: (14)

On the right hand sides of (13) and (14) we find matrix products of the dimensions:

.nA � qA/ � .qA � pL/ � . pL � nL/ (15)

.nL � qL/ � .qL � pA/ � . pA � nA/: (16)

In a multirate context the dimension nA is supposed to be small. If the interface
functions g;h;KLA;C are chosen such that the dimension of their codomains are
small, then only one large dimension remains, namely the number of the slow
components nL. However, as we saw in Sect. 3, we can compute a reduced model of
dimension r for the slow part and use matrices Br and Cr in the mixed derivatives
of (13)–(14).

Using this framework we expect higher efficiency in a time domain simulation.
If we apply a MOR technique for which any error bounds are known also the error
due to MOR can be handled. Nevertheless the replacement of yX to uX can influence
the numerical properties of the integration method in particular the stability, which
is not yet investigated.

5 Simulation

To apply the theoretical considerations of the above sections, we use as benchmark
example the electric-thermal test circuit of [9] with the modifications given in [10].
It is a small electric circuit, in which some elements are modeled temperature depen-
dent. The circuit diagram is given in Fig. 1 (left). Due to electric current, the resistor
R.T/ is heated and so the resistance of this device changes. The characteristic curve
of the diode is also temperature dependent. The voltages are modeled by a nodal
analysis using Kirchhoff’s laws. For the temperature of the resistor (wire), the 1-D
heat equation is semi-discretised using a finite volume approach, see Fig. 1 (right).
Finally we get a system of ordinary differential equations like in (1) in terms of
the unknowns y D Œu3; u4; e;T�, where u3; u4 denote the voltages at node 3 and
4, e is the dissipated energy in the thermal dependent resistor and T the vector of
temperatures in the semi-discretised resistor. The multirate behaviour of this system
is given by the physical properties: the voltages and the dissipated energy change
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Fig. 1 Circuit diagram (left), and finite volume discretised resistor (right)

very fast (with source of the network), and the temperature in the resistor changes
much slower. Hence the partitioning according to the dynamical behaviour is quite
natural:

ŒPu3; Pu4; Pe� D fA.Œu3; u4; e�;T; t/ (17a)

PT D fL.Œu3; u4; e�;T; t/: (17b)

As mentioned in [10], the subsystem of the semi-discretised heat equation (17b) is
not a-priori linear, but it can be easily linearised without loss of much accuracy.
Hence a linear model order reduction of the thermal subsystem is possible.

For (17), the computational cost of the compound step (3) depends on the number
of discretisation points of the spatial variable of the thermal subsystem. If a high
accuracy is demanded this dimension can be large and the computational cost
increases. So the question is how the coupling interface can be modified such that
the dimension of the input of the active part and the output of the slow part is small.

The heating of the resistor, caused by the electric current, is computed by
the dissipated power p. The electric subsystem is computing the total dissipated
energy e in on macro step H. The ratio e=H defines the averaged power, which
we use for coupling [9]. Hence we add an output function to the active subsystem:
h.Œu3; u4; e�; t/ D e=H. To compute e, we have either to calculate differences of e or
we have to assign zero as the initial value for each macro step. If H is adjusted by a
step size control, it has to be handled as an independent parameter.

For the coupling interface slow to active, one has to consider the thermal
dependent, physical parameters, which are necessary in the circuit model and which
can be computed by a linear model. In our case, these are the total resistance R.T/
and the diode’s temperature Tdi. Additional input functions for the slow and the
active part are not necessary with this choice of coupling interfaces. As global input
variable u we have the source voltage v.t/ which is used in the active, electric
subsystem only. These modifications in the interface of the coupled system (17)
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lead to

ŒPu3; Pu4; Pe� D fA.Œu3; u4; e�;uA; t/ PT D A �TC B �uL (18a)

uA D ŒR.T/;Tdi; v.t/�
T uL D p (18b)

p D h.Œu3; u4; e�; t/ D e=H ŒR.T/;Tdi� D C �T: (18c)

For this system the off-diagonal blocks of the Jacobian matrix in the compound
step (3) become much smaller. Inspecting the dimensions like in (15) gives for @fA

@yL

the matrix sizes .3 � 2/ � .2� nL/ and for @fL
@yA

the dimension .nL � 1/ � .1� 3/. Now,
a model order reduction can decrease the number of thermal variables from nL to
a significant smaller number r. No large dimensional terms occur in this setting so
we expect a large gain concerning the computational effort using compound step
multirate methods for this multiphysics application.

For the simulation of the system we use the mixed multirate compound step
method of [6] which consists of a third order for the compound and a fourth order
linear implicit method for the remaining micro steps. For the model order reduction
we chose balanced truncation. We implemented the system and the integration
methods in Matlab 2013a. All relevant simulation parameters are listed in Table 1
and also the computation time can be seen there. The table shows the necessity
of an interface reduction when combining a multirate scheme with a model order
reduction: Only applying a model order reduction increases the computation time
due to the loss of special matrix structures (sparsity, band structure). Interface
reduction and MOR can decrease the computation time to 25 %. Here, we are
interested in two physical sizes: One is the temperature of the diode and the other is
the highest temperature in the resistor which is found at its middle. Figure 2 shows
the relative error of the multirate solution to the reference solution of these two
physical sizes. Figure 3 shows the voltage curve at node 3. The error is very small
and we can say that our method decreases the computation time significantly with
only a very small loss of accuracy.

Table 1 Simulation parameters and computation time for full order model (FOM) and reduced
order model (ROM) for simulation time [0 s, 0.12 s]

Model Monolithic Interface reduced

Parameters H m FOM ROM FOM ROM

nL D 50 r D 5 nL D 50 r D 5

Singlerate 5 � 10�5 1 4.81 s 5.65 s 2.65 s 1.91 s

Multirate 2:5 � 10�4 5 3.44 s 5.00 s 1.36 s 1.18 s
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6 Conclusion

Applying a model order reduction to a subsystem of a monolithic model the com-
putation time does not decrease as expected in a multirate time domain simulation.
In this paper we pointed out why a MOR in a unmodified multirate framework
does not lead to computational improvements. Furthermore, by introducing interface
reduction, we presented a way how the reduced dimension in a model order reduced
subsystem can be exploited also for multirate compound step methods. We put
up interface reduction approach to an academic multiphysics test system. The
observed error is not yet understood, its sources will be analysed in the future. Hence
interface reduction modifies the multirate ODE framework stability of the multirate
compound step method (cf. [11]) cannot be guaranteed any more so further work
about this open point is necessary.
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Part V
Uncertainty Quantification

In all papers in this part Uncertainty Quantification exploits Polynomial Chaos
Expansions. In two papers (parametric) Model Order Reduction techniques are
successfully applied to reduce systems, that have to be solved, in size. The
expansions are also of use in expanding special coefficient functions needed to
evaluate systems for optimization and for which sensitivity has to be efficiently
determined. And, finally, it is observed that uncertainty can also affects convergence
in combining numerical procedures from different sources.

The paper by S. Clénet: Approximation Methods to solve Stochastic Problems
in Computational Electromagnetics gives an introduction to the use of Polynomial
Chaos Expansions in which the solution of a parametric problem is expressed
in a basis of orthonormal polynomials that are evaluated at the parameter value.
It is illustrated for the vector potential in the case of static Maxwell equations,
both for a non-intrusive method, like Stochastic Collocation, as well as for an
intrusive approach, like Stochastic Galerkin. The success of the expansion depends
first on how fast the series converges, so that a finite expansion can be used as
approximation. However also the dimension of the parameter space counts as well
as methods for integrating several integrals. Different quadrature formulas along the
different coordinate axes in the parameter space can be used. Coefficient functions
in the equations can be approximated by finite expansions as well, or can be
expressed as sum of separable functions, like G.p/ DPT

jD1
QK

kD1 u j
k. pk/, in which

p D . p1; : : : ; pK/
T and where the u j

k. pk/ are unknowns to the problem and are
looked for in a low dimensional space. Also Proper Generalized Decomposition is
described. All these methods aim to reduce the memory size needed to determine
the coefficients in any expansion. Actually these are approaches that have nice links
to Model Order Reduction.

The paper by P. Benner and M.W. Hess: Reduced Basis Modeling for Uncertainty
Quantification of Electromagnetic Problems in Stochastically Varying Domains is a
paper where a parametric Model Order Reduction technique successfully is applied,
in this case by Reduced Basis Modeling. The reduced model reduces the costs of
evaluations by Monte Carlo Simulations or by Stochastic Collocation to analyze
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the uncertainty in the model with respect to small variations in geometry. A crucial
point is that all geometry is viewed as being mapped from a reference geometry on
which one can assemble the system matrices and the use of an affine transformation
to map to a particular realization. This approach assumes that each degree of
freedom in the mesh has the same meaning under affine transformations and that
the field solutions for different geometries are in the same functional space. Thus the
dimension of the mesh remains the same for each actual geometry. The Stochastic
Collocation is performed with Hermite Genz-Keister sparse grids, generated by the
Smolyak algorithm. These types of methods can exhibit a mean convergence rate of
O..log n/p=n/, using n points for p-dimensional integrands, while for Monte Carlo
the mean convergence rate is of the order O.1=

p
n/. The approach is demonstrated

for a stripline model of a coplanar waveguide involving ten geometrical parameters.
The paper by R. Pulch: Model Order Reduction for Stochastic Expansions of

Electric Circuits considers linear time-invariant dynamical systems in which all
matrices depend on some parameter p, with solution x.t;p/ and output vector
y.t;p/. Stochastic Collocation (SC) involving quadrature leads to separate systems
for the different nodes (parameter values) of the quadrature rule. One can write
this in one big system for x.t/ D .x.t;p1/; : : : ; x.t;pq// and with output the time-
dependent coefficients for the generalized polynomial expansion of y.t;p/. This
system has a block-tridiagonal structure and all sub-systems inherit stability from
the original dynamical system. Stochastic Galerkin (SG) provides a system of a
similar size, which is fully coupled. The author has proved that the SG system
sometimes looses the stability. This loss of stability does not affect the convergence
of the SG method on compact time intervals. Yet, then the asymptotic behaviour
becomes incorrect in time. This does not occur for the SC approach. For both
cases, to the big systems a Model Order Reduction technique is applied, in this case
Balanced Truncation exploiting an ADI implementation. Demonstration is made to
a bandpass filter with single input-single output involving 11 parameters. A Stroud
quadrature rule of order 5 was used for SC and a sparse grid of level 3 based on
Legendre quadrature for SG.

The paper by P. Putek, K. Gausling, A. Bartel, K.M. Gawrylczyk, J. ter Maten,
R. Pulch, and M. Günther: Robust topology optimization of a permanent magnet
synchronous machine using multi-level set and stochastic collocation methods con-
siders topology optimization for a permanent magnet (PM) synchronous machine
with material uncertainties, in this paper the reluctivities in the iron, the air-gaps and
in the PM. The variations of the (non)linear material characteristics are modeled by
the Polynomial Chaos Expansion method. During the iterative optimization process,
the shapes of the rotor poles, represented by zero-level sets, are simultaneously
optimized by redistributing the iron and the magnet material over the design domain.
The gradient directions of the multi-objective function are evaluated by utilizing the
Continuous Design Sensitivity Analysis (CDSA). The constraints are composed of
the mean and the standard deviation, which are provided by Stochastic Collocation
(SC). Incorporating the SC into the level set method allows to use already existing
deterministic solvers. Demonstration is made to a two-dimensional problem of a
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low cogging torque design of an Electrically Controlled Permanent Magnet Excited
Synchronous Machine.

The paper by K. Gausling and A. Bartel: First Results for Uncertainty Quantifi-
cation in Co-Simulation of Coupled Electrical Circuits considers how uncertainty
may affect convergence of numerical procedures. Co-simulation operates on time
windows ŒTn;Tn C H� and tries to compute the overall solution iteratively by
decoupling. After integration over the time window, one obtains new time profiles
for the unknowns of all parts of the partition. With these new time profiles one
can re-start the co-simulation process over the same time window to further update
the profiles. Thus one solves the subsystems multiple times. The benefit is that one
can use larger time windows than by using one iteration and performing stepsize
control. Co-simulation applied to coupled ordinary differential equations always
converges. The situation is different for coupled differential-algebraic equations. In
such cases convergence can only be guaranteed if a contraction condition is fulfilled.
The theory of co-simulation shows that its stability and its rate of convergence is
directly influenced by a) the sequence in which the subsystems are computed and b)
by the coupling interface. Creating a successful splitting already can be a piece of
art. Now, in case of uncertainties in parameters, the contraction factor will become
stochastic. Demonstration is made for a 2-level RLC network.

We finally remark that over the last years a popular library for Uncertainty
Quantification has been provided by DAKOTA, developed at Sandia National
Laboratories.1

1https://dakota.sandia.gov/.



Approximation Methods to Solve Stochastic
Problems in Computational Electromagnetics

Stéphane Clénet

Abstract To account for uncertainties on model parameters, the stochastic
approach can be used. The model parameters as well as the outputs are then random
fields or variables. Several methods are available in the literature to solve stochastic
models like sampling methods, perturbation methods or approximation methods.
In this paper, we propose an overview on the solution of stochastic problems in
computational electromagnetics using approximation methods. Some applications
will be presented in order to illustrate the possibilities offered by the approximation
methods but also their current limitations due to the curse of dimensionality.
Finally, recent numerical techniques proposed in the literature to face the curse of
dimensionality are presented for non-intrusive and intrusive approaches.

1 Introduction

Applying a discretisation scheme (Finite Element Method-FEM, Finite Integration
Technique-FIT, . . . ) to solve the Maxwell equations leads to valuable tools for
understanding and predicting the features of electromagnetic devices. With the
progress in the fields of numerical analysis, CAD and postprocessor tools, it is
now possible to represent and to mesh very complex geometries and also to take
into account more realistic material behaviour laws with non-linearities, hysteresis
. . . . Besides, computers have nowadays such capabilities that it is common to solve
problems with millions of unknowns. The modelling error due to the assumptions
made to build the mathematical model (the set of equations) and the numerical
errors due especially to the discretisation (by a FEM for example) can be negligible.
Consequently, in some applications represented by very accurate models (the
modelling and the numerical errors are negligible), if a gap exists between the
measurements, assuming perfect, and the results given by the numerical model,
it comes from deviations on input parameters which are not in the “real world”
equal to their prescribed values. The origins of these deviations are numerous and
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are related to either a lack of knowledge (epistemic uncertainties) or uncontrolled
variations (aleatoric uncertainties). For example, mechanical parts are manufactured
with dimensional tolerances whereas some dimensions, such as air gaps in electric
machines, are critical as they strongly influence performance. Besides uncertainties
in material composition, the material characteristics which change with uncontrolled
environmental factors (humidity, pressure, etc.) are also often unknown [41]. Even if
the environmental factors are perfectly known, in some situations, the behaviour law
parameters cannot be identified because measurements are not possible under the
right experimental conditions. Consequently, to be more realistic, numerical models
must now be able to take into account uncertainties.

The stochastic approach which consists in representing the uncertain parameters
as random variables, (the output variables are then also random variables) is one
possible way to model and to evaluate the influence of the uncertainties on the
parameters. Monte Carlo Simulation methods or perturbation methods are available
to solve stochastic problems since early 1950s [22, 34]. In the 1990s, researches on
quantification of uncertainties in numerical models using approximation methods
first began in the field of mechanical and civil engineering [19]. In the 2000s,
this approach has met a growing interest with the development of approximation
methods based especially on truncated polynomial chaos expansions that offer a
higher convergence rate than the Monte Carlo Simulation Method if the model
outputs present a sufficient regularity versus the input parameters.

In this paper, we propose a survey on the solution of stochastic problems in
computational electromagnetics using approximation methods. First, we present the
deterministic model based on FEM then the stochastic model is derived when the
input parameters are considered as random variables. The approximation method
is introduced which consist in finding a solution in a finite dimensional functional
space. Different numerical techniques, available in the literature, are described to
solve the stochastic problem. Then, a description of applications of the stochastic
approach in the field of computational electromagnetics is proposed in order to
illustrate the capabilities of such approach but also its current limitations particularly
due to the curse of dimensionality. Finally, recent numerical techniques proposed in
the literature to face the curse of dimensionality are presented.

2 Presentation of the Problem

2.1 Deterministic Problem

In the following, we will address the magnetostatic problem but the results can be
easily extended to other static and quasi static field problems. In the following, the
aim is to introduce notations when the magnetostatic problem is solved numerically
using the vector potential formulation and FEM. The partial differential equations
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to be solved on a domain D are:

curl H.x/ D J.x/ (1)

divB.x/ D 0 (2)

with H the magnetic field, B the magnetic flux density and J the current density that
is assumed to be known. In addition, boundary conditions on H and B are added and
also the behaviour law of the material which will be assumed to be written in the
form:

H.x/ D 
.x/B.x/ (3)

with 
 the reluctivity. To solve the problem, the vector potential formulation can be
used:

curlŒ
.x/curlA.x/� D J.x/ (4)

with A the vector potential. To find an approximate solution of this equation,
FEM is often applied. We seek for an approximation A of the vector potential in the
edge element space such that:

A.x/ D
NX

iD0
aiwi.x/ (5)

with N the number of Degrees of Freedom (DoF’s), wi the edge shape functions
and ai unknown real coefficients. By applying the Galerkin method to a weak form
of (4):

Z

D

.x/curl A.x/:curl wi.x/dx D

Z

D
J.x/wi.x/dx 8i 2 Œ1IN� (6)

Replacing A by its expression (5) in (6), a system of N linear equations with N
unknown coefficients ai is obtained which can be written in the form:

S A D F (7)

with S the stiffness matrix (NxN), F the source vector (Nx1) and A the vector of the
coefficients ai. We should mention that non-homogeneous boundary conditions can
be taken into account, additional entries are then added to the source vector F. The
coefficients sij of S and fi of F satisfy:

sij D
Z

D

.x/curlwj.x/:curlwi.x/dx fi D

Z

D
J.x/:wi.x/dx (8)
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Once the equation system (6) is solved, local quantities like the magnetic flux
density distribution or global quantities of interest like the flux, the torque can be
calculated in a post processing step.

2.2 Stochastic Problem

In the deterministic case, the input parameters like the dimensions related to the
geometry of the device, the material characteristics and the electromagnetic sources
are supposed to be perfectly known. If the input parameters of the model are subject
to variability, the solution of (7) will be also subject to variability. The stochastic
approach enables to quantify this variability. When accounting for the uncertainties
using the stochastic approach, the input parameters are then modelled by random
variables p(�) with � an elementary event. The joint probability density function is
supposed to be known (or each marginal probability density functions if the random
variables are independent). The outputs of the electromagnetic model become
then random and should be characterized. A stochastic partial differential equation
system is generally numerically solved by applying, like in the deterministic case
(see Sect. 2.1), a semi-discretisation in space [see (6)]. The DoF’s ai of the vector
potential [see (5)], which were real numbers in the deterministic case, becomes
random variables aiŒp.�/�. The matrix S and the vector F have random entries
sijŒp.�/� and fiŒp.�/� and the unknown vector A is random and satisfies:

SŒp.�/�AŒp.�/� D FŒp.�/� (9)

As already mentioned above, the input parameters p(�) of the model are related
either to the geometry or to the behaviour laws of the material or to the sources
(including non-homogeneous boundary conditions). Taking into account the ran-
domness on the source is quite straightforward especially when the deterministic
problem is linear [33]. In the following, we will assume that the sources are
deterministic. For the other kinds of randomness, the problem is more complicated.
The processing of uncertain geometries is slightly different than the processing
of uncertain behaviour laws and requires additional treatments. The most natural
way to account for randomness on the geometry consist in remeshing according
to the deformation but the remeshing leads to a discontinuous solution in the
space of the input parameters and can create additional numerical noise which
can disturb the random solution. Alternatives have been proposed in the literature
[28–30, 37, 38, 52] to avoid remeshing. In the following, we will focus mainly on
uncertainties on the behaviour laws. However, the quantification methods presented
in the following can be applied to solve problems with random geometries as
mentioned previously.

To solve (9), sampling techniques, like the Monte Carlo Simulation Methods
(MCSM) [22, 34], or perturbation methods [23, 42] can be applied. In this paper,
we will focus only on the approximation methods which are well fitted to solve (9)
when the entries of the vector A( p) are smooth functions of the input parameters p.
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3 Approximation Methods

We denote G the quantity of interest which can be an unknown of the problem (a
value of the circulation aiŒp.�/� of the vector potential along an edge i), a local
quantity like the value of the magnetic field or the Joule losses at one point of the
domain or a global quantity derived from the magnetic fields like the magnetic flux
flowing through a stranded inductor or the magnetic energy. An approximation of
the quantity G which is a function of the random input parameters p(�), is sought in
a finite dimensional function space of p(�) that is to say:

GŒp.�/� D
PX

iD0
gi�iŒp.�/� (10)

with gi coefficients to determine. The approximation functions �iŒp.�/� can
be chosen in different finite dimensional spaces [1, 33]. If the output G has a
finite variance and is sufficiently “smooth”, polynomial expansions are well suited.
If it exists some singularities (for example in the case random geometry), other
approximation spaces should be introduced [26]. Approximations based on the
Polynomial Chaos Expansion (PCE) are currently the most used in engineering.
PCE was first introduced by Wiener [50] to represent Gaussian processes. In
[51], Xiu et al. proposed a more general approach by referring to the Wiener-
Askey scheme. A PCE requires the random components pi.�/ of the vector p(�)
to be independent. If it is not the case, alternatives are proposed in the literature
either to modify the approximation space or to express the vector p(�) as a
function of a vector p’(�) of independent random variables (using isoprobabilistic
transformation for example). In the following, we will assume the random variables
pi.�/ independent with a probability density function (pdf) fi. y/. The size of the
random vector p(�) will be equal to K. We denote E[X(�)] the expectation of the
random variable X(�) [the expectation of X(�) is equal to the mean of X(�)]. We
introduce now the monovariate orthogonal polynomial  l

i . y/ of order l associated
to the parameter pi.�/. The polynomials  l

i . y/ are orthogonal with respect to the
pdf fi. y/ that is to say:

EŒ l
i . pi.�// 

m
i . pi.�//� D

Z C1

�1
 l

i . y/ m
i . y/fi. y/dy D ılm (11)

with ılm the kronecker symbol. The determination of the monovariate polynomi-
als  l

i . y/ is not an issue whatever the pdf of fi. y/ (see [51]). We define now the set
of multivariate orthogonal polynomials �˛Œp.�/� with ˛ a K-tuple such that:

�˛. p.�// D
KY

iD1
 
˛i
i . pi.�// with ˛ D .˛1; : : : ; ˛K/ ˛i 2 N (12)
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Since p.�/ is a vector of independent random variables, the multivariate polynomi-
als �˛. p.�// are orthogonal with respect to the joint probability density functionQK

iD1 fi and we have E[�˛. p.�//�ˇ. p.�//]=0 if ˛ ¤ ˇ. If the random variable
GŒp.�/� has a finite variance, the PCE refers to the representation of GŒp.�/� as a
linear combination of multivariate polynomials �˛. p.�//:

GŒp.�/� D
C1X

˛1D0
: : :

C1X

˛KD0
g˛�˛Œp.�/� (13)

In practice, the expansion (13) is truncated up to the multivariate polynomials of
order p (the sum ˛1 C : : : C ˛K is lower or equal than p). The total number of
multivariate polynomials P to be considered is:

P D .KC p/Š

KŠpŠ
(14)

In Table 1, we have reported the number of multivariate polynomials P of the space
of approximation as a function of the maximum polynomial order p and the number
K of input parameters. We can see that P increases exponentially with K which is
usually so-called the curse of dimensionality.

In the following, to simplify the notation, the multivariate polynomials�˛. p.�//
will be indexed by an integer i (1 � i � P) instead of the K-tuple ˛. The function
GŒp.�/� is approximated by a truncated expansion given by (10) of orthogonal
multivariate polynomials defined by (12). As already mentioned previously, after
applying the semi-discretisation in space, the terms aiŒp.�/� of the decomposition
of the vector potential AŒx;p.�/� are random [see (5)]. Each term aiŒp.�/� is
approximated using a truncated PCE (13). Finally, the vector potential AŒx;p.�/�
is approximated by the expression:

AŒx;p.�/� D
NX

iD0

PX

jD0
aij�j. p.�//wi.x/ (15)

The number of coefficients aij is equal to NxP. It is not seldom to meet in practise
deterministic models with a number of unknowns N of order 105. According to (14)
and Table 1, the unknown number NxP can be quickly very huge (of order 108) if
the number K of random input parameters is higher than a dozen.

Table 1 Example of the
multivariate polynomial
number as a function of the
maximum multivariate
polynomial order p and the
number of random inputs K

p D 1 p D 2 p D 3 p D 4

K D 2 3 6 10 15

K D 5 6 21 56 126

K D 10 11 66 286 1001

K D 20 21 231 1771 10; 626



Approximation Methods to Solve Stochastic Problems 205

In a postprocessing step, quantities of interest (energy, flux,. . . ) can be also
expressed using (10). Among the method proposed in the literature to deter-
mine these coefficients, some are called non-intrusive since they encapsulate a
deterministic model in an environment of stochastic procedures. A preprocessor
generates a sample of parameter values according to their probability density
function. A deterministic model is then run for each set of parameter values
of the sample and a new sample of output values is then obtained. From this
sample, a postprocessor determines the approximation of the output. Collocation
[14], regression [5] and projection methods belongs to this group of non-intrusive
methods. Some stochastic methods, so-called intrusive methods, require to access to
the heart of the deterministic model to be implemented like the Spectral Stochastic
Finite Element Method. In the following, to illustrate the main principles of intrusive
and non-intrusive methods, we will present the projection method and the Spectral
Stochastic Finite Element Method.

3.1 A Non-intrusive Method: Projection Method

Since the polynomials �i. p.�// are orthogonal, the coefficients aij satisfy:

aij D EŒai. p.�//�j. p.�//��

EŒ�2
j . p.�//��

(16)

D
R C1

�1 : : :
R C1

�1 ai. p1; : : : ; pK/�j. p1; : : : ; pK/f1. p1/ : : : fK. pK/dp1 : : : dpK
R C1

�1 : : :
R C1

�1 �2
j . p1; : : : ; pK/f1. p1/ : : : fK. pK/dp1 : : : dpK

The determination of aij yields the calculation of multidimensional integrals. The
denominator of (16) can be calculated generally analytically (dj D EŒ�2

j . p.�//�/
but not the numerator. Different methods can be used to approximate the mul-
tidimensional integral: MCSM, Gauss quadrature methods, sparse grid methods,
adaptive integration schemes. . . [3, 27]. All of them yield the following expression
for the approximation:

aij D
PQ

lD1 ai. pl/�j. pl/wl

dj
(17)

where wl are the weights and pl D . pl
1; : : : ; p

l
K/ the Q evaluation points. The

model (9) is solved for Q sets of the input parameters pl to determine ai. pl/ that
is to say that the deterministic model (7) has to be solved Q times with pl as input
parameters. One should notice that Q can increase dramatically with K. Let consider
for example a Gauss quadrature of order qi along the random direction i associated
to each parameter pi (1 � i � K). We denote by pl

i 1 � l � qi the evaluation
points and wl

i 1 � l � qi the associated weights. The points are the roots of the
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polynomial  q
i . y/ of order q introduced in (11). A multidimensional quadrature

can be obtained by tensorizing the monodimensional gauss quadratures along each
random dimension. In that case, the number of evaluation points Q is equal to
q1q2 : : : qK and so increases exponentially with the number K of parameters. The
number of evaluation points can be reduced by using sparse grids like Smolyak
cubature [46] but the exponential increasing with the dimension remains.

The coefficients gi of the approximation of any quantity of interest GŒp.�/�, like
the flux or the force, can be determined using the same approach. If G is the only
quantity of interest for the user, there is no need to access to the aiŒp.�/�’s. The
deterministic model is run Q times, as a black box, with the different parameter
values pl to calculate Q evaluations G[pl]. From the G[pl]’s, the coefficients gi are
approximated using a quadrature formula (see 17). The non-intrusive approach is
very convenient because the coupling with existing deterministic models, especially
commercial software, is straightforward.

One should note that the non-linearities on the behaviour laws are naturally taken
into account within the deterministic model that is to say that the non-intrusive
method is the same when dealing with either a linear model or a non-linear model.

3.2 Galerkin Method: Stochastic Finite Element Method

To solve stochastic partial differential equations, the Galerkin approach was first
introduced in the early 1990s by Ghanem et al. in mechanics [19]. It consists in
searching the solution in a tensorial space W.D/˝PK

P with W.D/ the standard finite
element space used in the deterministic case and PK

P the space of approximation
of random variables spanned by the basis functions .�iŒp.�/�/1�i�P introduced
previously [see (10)]. In magnetostatics, the vector potential is sought in a space
generated by the basis function �j. p.�//wi.x/. The solution should satisfy a weak
form of the initial problem. Let consider again our magnetostatic problem, the weak
form (6) is extended in the stochastic case and can be written [9]:

EŒ
Z

D

.x;p.�//curl A.x;p.�//:curlwi.x/dx �j. p.�//� (18)

D EŒ
Z

D
J.x/wi.x/dx �j. p.�//� 8i 2 Œ1IN� and 8j 2 Œ1IP�

Replacing AŒ(x/;p.�/� in (18) by its expression (15) and applying the weak
formulation for the NxP test functions �j. p.�//wi.x/, a NxP equation system is
obtained:

SsAs D Fs (19)

with Ss a (NxP)x(NxP) matrix, As the (NxP) vector of the unknowns aij and Fs a
(NxP) vector. The “intrusivity” of the method is related to the fact that the entries
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of Ss and Fs are integral functions of �j. p.�// and wi.x/. Their calculation requires
to have access to the procedures of the calculation of the terms sij and fi [see (8)]
of the deterministic model. The size of the system (NxP) can be extremely large
preventing the storage of the matrix As and so its solution. If the reluctivity can be
written as a sum of separable functions like,


.x;p.�// D
MX

iD1

iŒp.�/�gi.x) (20)

the system (19) can be rewritten taking advantage of the Kronecker product [43].
This representation of the reluctivity as a sum of separable functions can be obtained
either during the process of probabilistic modelling of the input data or by applying
a model reduction technique (Karuhnen-Loeve expansion for example). According
to this new expression, the matrix Ss can be written in the form [16]:

Ss D
MX

iD1
Ci ˝ Di (21)

The memory space required can be significantly reduces by storing only the 2M
matrices Ci and Di with Ci depending only on the functions wi.x/ and Di on the
functions�j. p.�//. It should be noticed that the matrices Ci can be easily extracted
from a deterministic standard finite element code. The determination of the matrix
Ss does not require a high modification of the deterministic code and so the “intru-
sivity” of the Galerkin approach can be highly alleviated using expression based
on separable functions. This approach can be extended to quasistatics. Besides,
dedicated solvers can be employed to solve the Eq. (19) by taking advantage the
expression (21) based on Kronecker products. Accounting for non-linearities in
the Galerkin approach is more tricky than in the non-intrusive case but remains
possible [44]. The Galerkin method, for given approximation spaces W.D/ and PK

P ,
minimizes the error of approximation in the “L2” sense which is not the case with
other approximation methods based on the evaluations of the deterministic model
(non intrusive methods like projection method, collocation method, regression
method). However, when a multivariate double orthogonal polynomial expansion is
used to approximate the stochastic dimension then the collocation and the Galerkin
methods are equivalent [9].

4 Applications

Approximation methods have been already applied in computational electromag-
netics to study EEG Source Analysis [17], Eddy Current in human body [18],
Eddy Current Non Destructive Testing [3, 4], Accelerator Cavities and Magnets
[2, 12, 45], Dosimetry [49], electrical machines [31, 39]. . . The development and
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the application of such models have started in the early 2000s and know a growing
interest in the community. The methods have been evaluated on academic examples
[9, 44] but one can notice a trend towards more and more realistic applications
which shows that the stochastic approach is getting more and more mature in the
community of computational electromagnetics. In [17], the projection method has
been applied uncertainties in the EEG source analysis. In [14], a 2D dosimetry
problem has been tested by comparing several non-intrusive approximation methods
and the Monte Carlo Simulation Method. It has been shown that the approximation
methods enable to reduce dramatically the number of evaluation points compared to
sampling technics. An Eddy Current-Non Destructive Testing problem where some
material characteristics are assumed to be random has been addressed. Samples
were not accessible for measurement (nuclear application) [35] to determine the
conductivity and the permeability of material like magnetite deposit. The lack
of knowledge was modelled by a stochastic approach considering the material
characteristic as random variables. The aim was to determine the influence of this
lack of knowledge on the model output, here the output sensor. In this application,
a sensitivity analysis showed that only one material characteristic among the 6
considered has an influence on the variability of the sensor output. In other words,
only the lack of knowledge of one material characteristic (p) has an influence on the
accuracy of the model. Consequently, to improve the accuracy, investigation shall
focus on the parameter p and not on the others. This study shows that the stochastic
approach is a powerful tool for improving the accuracy of models by determining
the input parameters whose uncertainties (due to a lack of knowledge) strongly
influence the quantity of interest. It can also be very helpful to develop indicators
based on measurements that are robust, that is to say that these indicators are few
influenced by the variability introduced by the imperfections on the device studied.
To solve this problem, the Galerkin method and a Projection method are compared
[3, 4]. It shows that the Galerkin approach can be competitive compared to a non-
intrusive approach. The influence of the lack of knowledge on the B(H) curve of
the ferromagnetic material has been also addressed in the case of a turbo alternator
[32]. The global sensitivity analysis based on the Sobol approach [11, 47, 48] allows
to determine the most influential parameters of the B(H) curve. It appears that the
magnetic flux density is the most influential but not the magnetic field H in the
saturation area. The proposed approach provides the quantity of interest domain
where the parameter uncertainties are the most influential and then allows to act in
order to reduce their variability by increasing the accuracy of the measurement in
the corresponding area.

The influence of the dimension and material characteristics variability on the
performances of an electrical machines produced in mass is also studied when the
number of random parameters is about a dozen [15, 31, 39]. The aim is to propose a
methodology based on a stochastic approach to assess the influence of the variability
of the manufacturing process on the performances of the electrical machines which
can be applied in robust design. The tolerancing using the stochastic approach has
been also studied for a permanent magnet machine [24].
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5 Facing the Curse of Dimensionality

If we want to go further with the stochastic approach which can be very useful
to solve numerous problems in engineering, the curse of dimensionality should be
overcome in order to be able to deal with real world problems where the number of
parameters is often greater than the dozen. In the following, we will present briefly
methods that have been proposed recently to overcome this challenge. We will keep
the distinction between non-intrusive and intrusive methods.

5.1 Non-intrusive Methods

First, to limit the number of calls of the deterministic model which grows exponen-
tially with the number of random parameters, the number of quadrature points qi

(see Sect. 3.1) can not be the same along each random direction pi.�/. In fact, if a
parameter pi has almost no influence on the variability of the quantity of interest G
then G needs to be evaluated only on one quadrature point p1i along the dimension
i, which limits the number of evaluations Q (Q=q1� ::� qi�1 � 1� qiC1� : : :� qK).
The number of quadrature points is optimized automatically based an error indicator
which can be for example the value of the variance of the quantity of interest.
Adaptive methods coupled with sparse grids and nested quadrature scheme have
shown their efficiency on practical application [3]. However, with a high parameter
number, the expansion based on truncated PCE becomes too large [see (14)]. To
limit the number of terms, a sparse basis should be constructed which can be
determined from the adaptive scheme or directly from a random sampling of the
quantity of interest. In [6, 13], the most significant terms of the PCE are extracted
using iterative algorithm aiming at reducing not only the error of approximation but
also the number of terms of the expansion. These methods are efficient if a small
fraction of coefficients gi in the exact expression (10) of the quantity of interest are
dominant.

Another alternative to reduce the number of terms of the expansion is to
decompose the quantity of interest under a sum of separable functions GŒp.�/� DPT

jD1 u j
1Œ p1.�/� : : : :u

j
K Œ pK.�/� with T the tensor rank. The functions u j

i Œ pj.�/� are
the unknowns of the problem and are sought in a one dimensional space for example
the space generated by the polynomials  l

i Œ pi.�/� [see (11)]. The calculation of the
optimal low rank approximation (the value of T as smaller as possible) is a difficult
task. Methods have been recently proposed in the literature to tackle this issue [40]
for stochastic problems.

Finally, an adaptive interpolation technique is proposed in [8] to determine
a sparse polynomial approximation using an iterative procedure. The evaluation
points pl are determined iteratively by comparing the error between the approx-
imation and the full model. These evaluation points must satisfy an admissible
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condition in order to obtain interpolant polynomials. For a class of parametric
elliptic problems, a fast convergence of the method has been proved.

5.2 Intrusive Methods

We have seen that the application of the Galerkin Method requires the solution
of a huge equation system (9) of size NxP. Under separability condition on the
behaviour law, this system of equations can be written in the form of (21) which
alleviates the storage space requirement. Dedicated solvers can be applied [4, 25]
but it does not decrease the size of the equation system. Model Order Reduction
Methods like Proper Orthogonal Decomposition (POD), Reduced Basis Method
enables to reduce the stochastic problem (9) to solve to an order R �� N (N
is the number of DoF’s of the spatial mesh)[21]. The unknown vector AŒp.�/�
is approximated by

PR
iD1 ar

i Œp.�/�A
r
i with Ar

i solutions of (9) for a given set of
parameters . p1; : : : ;pR/.1 Replacing AŒp.�/� in (9) leads to an overdetermined
system of N equations with R unknowns. Then, by applying the Galerkin method for
example, a reduced equation system of R equations with R unknowns is obtained
under the form SrŒp.�/�ArŒp.�/� D FŒp.�/�. The R functions ar

i Œp.�/� becomes
the unknowns which are then approximated by the expression (10) that is to say
ar

i Œp.�/� D
PP

jD0 ar
ij�iŒp.�/�. The terms ar

ij can be determined by applying the
methods presented in (3.2) or (3.1). This approach has been applied to solve a
dosimetry problem where the reduced basis method and a non-intrusive collocation
have been combined [14]. The efficiency of the model order reduction method relies
on the choice of the reduced basis spanned by the Ar

i . Error indicators, available in
the literature, can help for the determination of the reduced basis.

Another approach has been proposed in [36] and applied recently in electromag-
netism in [10] called the Proper Generalized Decomposition (PGD) [7, 10]. The idea
is to search a solution under the form:

AŒx;p.�/� D
TX

iD1
aPGD

i Œp.�/�APGD
i .x/ (22)

with APGD
i .x/ in W.D/ and aPGD

i Œp.�/� in PK
P [see (3.2)]. The couple of func-

tions (aPGD
i Œp.�/�,APGD

i .x/) is determined iteratively from the previous couples
(aPGD

j Œp.�/�,APGD
j .x/) 1 � j � i � 1. The process is stopped when the contribution

of the couple (aPGD
i Œp.�/�,APGD

i .x/) is “sufficiently” small. The term aPGD
i Œp.�/�

satisfies a system of P equations which depends on the terms APGD
i .x/ and the

1The vectors Ar
i must be linearly independent to enforce the uniqueness of the solution of the

reduced problem. If it is not the case, a Singular Value Decomposition (SVD) or a Gram-Schmidt
process can be applied to obtain linearly independent vectors.
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term APGD
i .x/ a system of N equations which depends on the functions aPGD

i Œp.�/�.
The determination of (aPGD

i Œp.�/�,APGD
i .x/) requires the solution of two coupled

equation systems of size N and P which are usually solved iteratively using a fixed
point method. If T couples are required we can see that we have only T�(N+P)
unknowns instead of NxP in the Galerkin approach [see (3.2)]. If the number
T of couples to approximate correctly the solution is small, this method is very
interesting in terms of memory storage and computation time. Moreover, under
“separabilty” conditions on the behaviour law [see (20)], the term aPGD

i Œp.�/� can
be sought under the following separable form:

aiŒp.�/� D
KY

jD1
aPGD

ij Œ pj.�/� (23)

Then aiŒp.�/� is obtained by solving K one dimensional problems which avoid
the curse of dimensionality when the number K of parameters is too large. The
PGD remains intrusive in the sense that, to be implemented, numerous additional
developments in a deterministic software are required. However, recently, a method
has been proposed to compute an approximation of the solution based on simple
evaluations of the residual of the deterministic problem [20].

6 Conclusion

In this paper, we have presented approximation methods to solve stochastic
problems based on partial differential equations. Examples of application in compu-
tational electromagnetism have been presented showing that the stochastic approach
based on approximation methods provide very useful tools for the study and the
design of electromagnetic devices. It has been shown that when the number of
random parameters is high, the approximation can leads to an unsolvable problem
(curse of dimensionality). To face this issue, recent methods proposed in the
literature have been listed.
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Reduced Basis Modeling for Uncertainty
Quantification of Electromagnetic Problems
in Stochastically Varying Domains

Peter Benner and Martin W. Hess

Abstract The reduced basis method (RBM) is a model order reduction technique
for parametrized partial differential equations (PDEs) which enables fast and
reliable evaluation of the transfer behavior in many-query and real-time settings. We
use the RBM to generate a low order model of an electromagnetic system governed
by time-harmonic Maxwell’s equations. The reduced order model then makes it
feasible to analyze the uncertainty in the model by a Monte-Carlo simulation.
Stochastic collocation is employed as a second technique to estimate the statistics.
In particular the combination of model order reduction and stochastic collocation
allows low computation times compared to Monte-Carlo simulations. We compare
the accuracy of Monte-Carlo simulation Hermite Genz-Keister stochastic collo-
cation and the RBM to compute the transfer function under uncertain geometric
parameters.

1 Introduction

As the simulation of integrated circuits requires a significant amount of computa-
tional power, the simulation of large-scale models benefits from using model order
reduction (MOR) techniques. The original system size of order 104 and higher is
typically reduced to a dimension of less than 100, which allows to examine the
frequency response of parametrized systems using the reduced order model. Of
particular interest are small random variations in geometry, due to inaccuracies in
the production process. A possible extension of this work is a coupling to a heat
problem, which introduces a temperature-dependent conductivity, and would add a
natural nonlinearity. The influence of the geometric variations is measured in the
expectation and variance of the transfer function.

As a sample application we consider a coplanar waveguide, which is governed
by time-harmonic Maxwell’s equations. The parametric model reduction technique
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we use is the reduced basis method (RBM), which generates low order models to
parametrized partial differential equations (PDEs). In recent years, the RBM has
been developed to apply to a wide range of problems, see [9] for an overview.

Section 2 introduces the model problem, Sect. 3 reviews the uncertainty quan-
tification problem, while Sect. 4 briefly covers the reduced basis model reduction.
The main contribution of the paper is in Sect. 5, where numerical comparisons
are performed between Monte-Carlo simulations, Hermite Genz-Keister stochastic
collocation and the use of RBM in the computation of the expected transfer behavior
and the standard deviation. Section 6 concludes our findings.

2 Model Problem

We treat the second order time-harmonic formulation of Maxwell’s equations in the
electric field E, in the frequency domain,

r � .��1r � E/C j!�E � !2"E D j!J in ˝; (1)

subject to essential boundary conditions E�n D 0 on �PEC and Neumann boundary
conditions .r � E/ � n D 0 on �PMC, where @˝ D �PEC [ �PMC in general. The
boundary �PEC applies to metal boundaries. A perfect electric conductance (PEC,
i.e. � ! 1) is assumed on the boundary �PEC. As a consequence, the tangential
parts of the electric field vanish, see [10]. In our model of a coplanar waveguide, all
boundaries are PEC.

The source current density is denoted by J, the imaginary number j, the
frequency ! and the material coefficients are the permeability �, conductivity � ,
and permittivity ". The field solution is sought in the space H.curl/, see [10].

The parameter dependent weak form, with a test function w applied to (1), is
established with the sesquilinear form

a.E;wI 
/ D ���1r � E;r � w
�C j! .�E;w/ � !2 ."E;w/ (2)

using the complex L2-inner product . � ; � / over ˝ and linear form f .wI 
/ D
j! .J;w/ as

a.E.
/;wI 
/ D f .wI 
/ 8w 2X ; (3)

using the function space

X D fu 2 H.curl/ju � n D 0 on �PECg: (4)

The parameter vector 
 is introduced to denote parametric dependence in
frequency ! and geometry. In particular, the sesquilinear form a.E;wI 
/ depends
on frequency and geometric variations and the linear form f .wI 
/ on the frequency.



RBM for UQ of Electromagnetic Problems in Stochastically Varying Domains 217

After discretization with H.curl/-conforming Nédélec finite elements [10], solv-
ing (3) reduces to solving a parameter-dependent sparse linear system A.
/x.
/ D
j!b.
/ for the state vector x.
/, which represents the electric field solution E.
/ in
the discrete space X.

Splitting the state vector x into real and complex parts x D xreal C jximag,
the complex linear system can be rewritten as an equivalent system of twice the
dimension over the real numbers. This leads to a real and symmetric system matrix,
which is the form we will use in our computations [5]. The parametric dependence
on 
 carries over through this transformation. The geometric variations lead to
an affine parameter dependence in the bilinear form (2), see [6] for a single,
deterministic geometric parameter. The affine decomposition for a single geometry
parameter is then extended to multiple parameters by splitting the computational
domain into distinct parts and applying the transformation given in [6] to each
subdomain.

2.1 Coplanar Waveguide

As an example model, we consider the coplanar waveguide, shown in Fig. 1. The
model setup is contained in a shielded box ˝ with perfect electric conducting
(PEC) boundary. We consider three perfectly conducting strip lines as shown in the
geometry. The system is excited at a discrete port (located at x D 70mm, y D 5mm
and extending from z D 0mm to z D 10mm) and the output is taken at a discrete

Fig. 1 Geometry of coplanar waveguide. The forcing term J is defined at the discrete port
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port on the opposite end of the middle strip line (located at x D 70mm, y D 95mm
and extending from z D 0mm to z D 10mm). These discrete ports are used to
model input and output currents/voltages. The metal parts, i.e., the shielded box
and the boundaries of the three metal sheets constitute �PEC. As a consequence, the
interiors of the metallic striplines are not part of the computational domain ˝ . The
metallic strip lines are immersed in a substrate (at coordinates z <D 16mm) of
conductivity � D 0:02S/m and relative permittivity "r D 4:4. In the low-loss upper
layer (at coordinates z > 16mm), the conductivity is � D 0:01S/m and relative
permittivity is "r D 1:07. The relative permeability is �r D 1 in the entire domain.

As deterministic parametric variation we look at the frequency ! 2
Œ1:3; 1:6�GHz. The full order simulation has been performed with the finite element
package FEniCS, [7]. For our numerical experiments, we used a discretization size
of 52,134 degrees of freedom leading to the linear systems A.
/x.
/ D b.
/.

3 Uncertainty Quantification

Let .˝p;F ;P/ denote a probability space. Given is a square integrable random
variable Y W ˝p ! IRp with probability density function f and a function g W IRp !
IRd, where p is the number of geometric parameters. The function g corresponds to
a mapping of realizations of a random variable to the output of the electromagnetic
system such that g.Y/ also is square-integrable, cf. [1].

We consider only geometric stochastic variations. However, the computational
approach is also applicable to more general parametric variations. We use Monte-
Carlo simulation, Hermite Genz-Keister stochastic collocation and show how
reduced basis model reduction can enhance the computational speed. Stochastic
collocation computes the expectation by a quadrature rule

E.g.Y// D
Z

�

g.x/f .x/dx �
nX

iD1
g.	i/wi; (5)

where the realizations 	i are the sample points, n denotes the sample size and the
weights wi are determined using the probability density function f . The number of
sample points depends on the quadrature rule and the number of parameters in an
irregular fashion, see [1] and the references therein. Monte-Carlo simulations use
equally weighted samples, which are generated using the underlying distribution. A
drawback of the Monte-Carlo simulation is its mean convergence rate of O.1=

p
n/,

while the stochastic collocation is performed with Hermite Genz-Keister sparse
grids, generated by the Smolyak algorithm. These types of methods can exhibit a
mean convergence rate of O..log n/p=n/ , see [8].

A reduced basis can be computed a priori to generate a reduced order model
for the parametric domain of interest. The reduced order model can then be used to
perform the stochastic collocation and Monte-Carlo simulation at the sample points.
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This significantly reduces computational costs, as each sample point evaluation uses
the reduced model. The dominating computational effort then lies in the number of
system solves used to generate the reduced model.

4 Reduced Basis Method for Time-Harmonic EM-Problems

The aim of the RBM is to determine a low order space XN � X of dimension N,
which approximates the parametric solution manifold M
 D fE.
/ 2 Xj
 2 Dg
well. The reduced basis method composes the space XN of snapshot solutions E.
i/.
Given such a space XN , it is possible to obtain accurate approximations EN.
/ 2 XN

to E.
/ by projecting (3) onto XN , i.e., solve

a.EN.
/;wN I 
/ D f .wN I 
/ 8wN 2 XN : (6)

The affine decomposition of the bilinear form is given as

a.E.
/;wI 
/ DPQa
qD1 �q

a.
/a
q.E.
/;w/; (7)

see [9] on how this can be established analytically.
Using the affine decomposition allows evaluating the error estimator with an

algorithmic complexity that is independent of the full order discretization size, cf.
[9].

The reduced space XN is built iteratively by a greedy sampling. Starting from
an initial reduced space (in our example this is spanned by the snapshots at the
expected values of the stochastic parameters), an error indicator is evaluated over
the parametric domain. The next snapshot will then be chosen where the maximum
of the error indicator is attained. The maximum dimension N is found, once the error
indicator reaches a desired tolerance. The error indicator considers the norm of the
residual r.w; 
/ D f .wI 
/ � a.EN.
/;w; 
/ weighted with a (�!p , �!p ) Gaussian
probability density function. We use the subscript !p to distinguish between
expectation and permeability as well as standard deviation and conductivity. The
error indicator is computed at each parameter sample location in each iteration step
of the model reduction. We refer to [9] for the efficient computation of the norm
of the residual making use of the affine decomposition (7), while the weighted
RB has been introduced in [3]. For all !p 2 ˝p, let ˝.!p/ denote the random
domain with boundary @˝.!p/. We employ a mapping to a deterministic domain
˝ for a reference parameter configuration 
 such that we can assemble the system
matrices for the domain ˝ and use an affine transformation to map to a particular
realization ˝.!p/. This approach assumes that each degree of freedom in the mesh
has the same meaning under affine transformations and that the field solutions for
different geometries are in the same functional space. Thus the dimension of the
mesh remains the same for each actual geometry. The geometric variations for the
coplanar waveguide are shown in Fig. 2.



220 P. Benner and M.W. Hess

Fig. 2 In the reference configuration, the width of the middle stripline is uniformly 6mm.
The width of the middle stripline varies for each colored part independently in the model
with ten geometric parameters. In [6] the affine transformations are shown for a deterministic
geometric parameter in the coplanar waveguide. In the model with ten geometric parameters, this
transformation is applied to each subsection

5 Numerical Experiments

Each stochastic parameter is modeled such that a corresponding part of the middle
stripline width varies as a (�!p D 6, �!p D 0:1) normally distributed random
variable. Each stochastic parameter is assumed to be stochastically independent
from the others. In Fig. 3 the transfer function is shown for different discretizations
of the geometric variation. These results were obtained by Monte-Carlo simulation.
To show the capabilities of the RBM in Uncertainty Quantification, we focus on the
example with two stochastic parameters (Fig. 4). We employ the SGMGA package
[2] for computation of Hermite Genz-Keister integration points and weights.

In Table 1 the Hermite Genz-Keister (HGK) stochastic collocation of order
4 serves as a reference solution for the expectation. As the Monte-Carlo (MC)
simulation coincides with other methods only to a degree of 10�3, the HGK of
4th order is a more viable reference choice. The Monte-Carlo simulation of the full
system took 14,000 samples. As comparison, the weighted RB has been used in a
Monte-Carlo simulation with 14,000 and 20,000 solves, where the computation
time is negligible, as the resulting systems are only of size 73 � 73. This RB
model size originates from the greedy sampling, which was set to terminate once
the change in the error indicator is O.1/. For the stochastic collocation RB the
reduced system has been evaluated at the Hermite Genz-Keister (HGK) points. The
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Fig. 3 Magnitude plot over [1.3, 1.6] GHz. The mean of the norm of the transfer function and
the phase is shown for four cases: without geometric variation (blue), two geometric parameters
(green), three geometric parameters (red) and ten geometric parameters (light blue). Computed
by Monte-Carlo simulation with a standard deviation of �!p D 0:1. Each parameter varies
independently as a (�!p D 6, �!p D 0:1) normally distributed random variable

Fig. 4 Relizations of the Monte-Carlo sampling with two geometric parameters (green). In black
the ˙3�!p deviations from the mean. Of the realizations, 97% are within the ˙3�!p deviation

reduced basis results confirm with an accuracy of 10�4. However, the computational
complexity does not only scale with the solved linear systems. The RB method
additionally requires the evaluation of the residual over the parametric domain,
which increases computational complexity by a factor between two and three.

6 Conclusion

The RB approach to Uncertainty Quantification shows the potential to significantly
reduce the computational costs. While a weighted sampling gave accurate results
in the computed example, this result can be certified by using error estimators
in the statistical quantities, see [4] for more details. However, as the Monte-
Carlo simulation with a Reduced Basis is quickly performed, an heuristic stopping
criterion can be used, in the sense that when the oscillations in the expectation
become small, the RB enrichment can stop.
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Table 1 Comparison of methods using the stochastic collocation with Hermite Genz-Keister
(order 4) rule as reference

Method Linear solves Mean expectation Mean rel. error Mean std. deviation

HGK (4th) 2020 3.373268 Reference 0.1015

HGK (3rd) 900 3.373268 1:8 � 10�6 0.1015

HGK (2nd) 420 3.373266 3:3 � 10�5 0.1004

HGK (4th) RB 73 3.373436 5:4 � 10�4 0.1009

MC RB (20k) 73 3.373168 8:1 � 10�4 0.0963

MC 14,000 3.372528 1:1 � 10�3 0.1160

MC RB (14k) 73 3.383087 2:1 � 10�2 0.0959

The ‘mean expectation’ shows the arithmetic mean of the computed expected transfer function as
an indicator to compare the results. The ‘mean rel. error’ shows the mean of the relative error in
the transfer function with respect to the chosen reference solution. The ‘mean std. deviation’ shows
the arithmetic mean of the computed sample standard deviation over the frequency range. Each
parameter configuration requires 20 solves to resolve the transfer function. The table is ordered
with respect to accuracy of the methods
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Model Order Reduction for Stochastic
Expansions of Electric Circuits

Roland Pulch

Abstract We consider dynamical systems modelling linear electric circuits. Phys-
ical parameters are replaced by random variables for an uncertainty quantification.
The random process satisfying the dynamical system exhibits an expansion into
a series with orthonormal basis polynomials. We apply quadrature formulas to
determine an approximation of the unknown coefficient functions. The separate
systems for the different nodes of a quadrature rule are reinterpreted as a single
large system to enable a potential for model order reduction. For comparison, the
stochastic Galerkin method is also investigated for the same problem. We focus on
balanced truncation techniques for a reduction of the state space in the large systems.
Numerical results are presented using a band pass filter.

1 Introduction

The mathematical modelling of electric circuits yields dynamical systems of
ordinary differential equations (ODEs) or differential algebraic equations (DAEs),
see [5]. In case of huge dimensions of the state space, model order reduction (MOR)
is used to decrease the complexity of the problems, see [1, 3]. Moreover, random
variables can be included to describe uncertainties of physical parameters, i.e., the
resulting stochastic problem becomes more extensive than the original deterministic
formulation. We investigate an approach for an MOR of the stochastic problem,
which can be used for both small and large dynamical systems.

We consider linear ODE models with random parameters. Hence the solution
of the dynamical system represents a random process. We use an expansion of this
random process into an orthonormal basis following the technique of the polynomial
chaos, see [13].

On the one hand, the stochastic Galerkin (SG) method yields a larger coupled
system, which has to be solved just once to obtain an approximation of the
expansion of the random process, see [8, 9]. These large systems have been
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reduced successfully by moment matching techniques in [10]. On the other hand,
the stochastic collocation (SC) approach, see [9, 14], is based on a sampling
scheme or a quadrature formula (QF), cf. [4, 12]. Therein, a large number of
separate dynamical systems have to be solved, whereas also an approximation of the
unknown coefficient functions in the expansion is produced. We take the separate
systems as a single large system with a specific input-output behaviour to achieve a
high potential for MOR. A reduction of the dimension of the system is performed
by balanced truncation, see [1, Chap. 7].

We examine a test example, where the electric circuit represents a band pass filter.
Since error bounds are available for an MOR by balanced truncation, it is sufficient
to investigate the decay of the Hankel singular values to confirm the potential for an
efficient reduction.

2 Stochastic Modelling

We start from the linear time-invariant dynamical system

Px.t;p/ D A.p/x.t;p/C B.p/u.t/

y.t;p/ D Cx.t;p/
(1)

with the state variables x 2 R
n, the output variables y 2 R

q, the input signals u 2 R
k

and matrices A 2 R
n�n, B 2 R

n�k, C 2 R
q�n. The matrices A;B include the physical

parameters p 2 ˘ 
 R
p. Thus both the states and the outputs depend on time as

well as the parameters. The dimension n of the ODEs (1) can be small or large in
the following. Generalisations to descriptor formulations, which typically represent
DAEs, cf. [5], are straightforward.

We assume that the parameters exhibit uncertainties. For example, imperfections
of an industrial production cause variations of the parameters due to miniaturisation.
To quantify the uncertainties, the parameters are replaced by independent random
variables. Let � W ˘ ! R be their joint density function. We obtain an associated
Hilbert space L2.˘; �/ for functions depending on the random parameters. Now the
aim is to determine statistics of the outputs like the expected value and the variance,
for example, or more sophisticated quantities.

To compute probabilistic integrals approximately, a sampling technique or a QF
yields nodes fp1; : : : ;psg � ˘ and weights w1; : : : ;ws 2 R. Consequently, the
dynamical systems

Px.t;pj/ D A.pj/x.t;pj/C B.pj/u.t/ (2)

have to be resolved for j D 1; : : : ; s.
Let an orthonormal basis f˚1.p/; : : : ; ˚m.p/g be given for some subspace in

L2.˘; �/. Typically, orthogonal polynomials are chosen following the concept of
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the polynomial chaos, see [13]. An expansion of the outputs with respect to the
basis reads as

Qy.t;p/ WD
mX

iD1
vi.t/˚i.p/ with vi.t/ WD

Z

˘

y.t;p/˚i.p/�.p/ dp (3)

provided that the exact output y is in L2.˘; �/. The above probabilistic integration
is done component-wise. Our aim is to compute the coefficients vi in (3), since they
generate an approximation Qy of the exact outputs y. Moreover, the expected value
and the variance can be reproduced.

We approximate the coefficient functions of the stochastic expansion (3) by the
QF, i.e.,

vi.t/
:D

sX

jD1
wj˚i.pj/Cx.t;pj/ (4)

for i D 1; : : : ;m. Now a single system is constructed, which describes this approach
completely. Let Ox.t/ WD .x.t;p1/; : : : ; x.t;ps// 2 R

ns. Furthermore, we consider the
outputs Ov.t/ WD .v1.t/; : : : ; vm.t// 2 R

qm. Using (2) for j D 1; : : : ; s as well as (4)
for i D 1; : : : ;m, we define the larger system

POx.t/ D OAOx.t/C OBu.t/

Ov.t/ D OC Ox.t/: (5)

The system (5) consists of s separate subsystems (2), which are coupled only by
the definition of the outputs (4). Hence the matrix OA 2 R

ns�ns has a block diagonal
structure. It holds that OB 2 R

ns�k. The formulas (4) yield the matrix OC 2 R
qm�ns.

Alternatively, the SG approach generates a large system of the form (5) with
dimension nm, which is fully coupled, cf. [8, 9]. Therein, the unknowns Ox represent
an approximation of the coefficient functions in the expansion of the random
process x.t;p/ with respect to the basis functions, whereas the outputs Ov.t/ yield an
approximation of the coefficient functions in (3) again. The SG system sometimes
looses the stability, although all systems (1) are stable, see [11]. This loss of stability
does not affect the convergence of the SG method on compact time intervals. Yet the
asymptotic behaviour becomes incorrect in time. In contrast, the system (5) inherits
obviously the stability of the systems (1).

3 Model Order Reduction

In both the QF approach and the SG method, the dynamical system (1) changes into
a stochastic model with a much larger dimension of the state space. It follows that
both types of systems exhibit a high potential for MOR. The inputs for the stochastic
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models (5) coincide with the inputs of the original system (1). Hence the number of
inputs is much smaller than the dimension of the state space in (5), namely k� ns.
However, the number of outputs increases by the factor m of the number of basis
functions. Nevertheless, the ratio of outputs to state variables is qm

nm D q
n for the SG

scheme and qm
ns for the QF, which is the same as in the original system (1) and less

or equal provided that the number s of nodes is sufficiently large, respectively.
For linear time-invariant dynamical systems, the state space can be reduced by

moment matching techniques or balanced truncation, for example, see [1, 3, 6].
Once a reduced order model (ROM) of our system (5) is constructed, a transient
simulation directly yields an approximation of the coefficient functions and thus we
obtain the desired approximation (3) of the random process y.t;p/. This strategy can
be seen as an alternative to parametric MOR. In a parametric MOR, the system (1)
is reduced in a first step, while preserving the dependence on all p 2 ˘ . In a second
step, the probabilistic integrations are applied to the ROM. Yet this parametric MOR
can be applied only if the original system (1) is already large.

We focus on an MOR by balanced truncation, where the algorithm coincides for
both the QF and the SG method. Given a system (5), the controllability Gramian WC

and the observability Gramian WO are defined by the Lyapunov equations

OAWC CWC OA> D �OB OB> and OA>WO CWO OA D � OC> OC: (6)

We require symmetric decompositions

WC D ZCZ>
C and WO D ZOZ>

O (7)

of the solutions from (6). The singular value decomposition USV> D Z>
C ZO yields

the Hankel singular values S D diag.�1; �2; : : :/ with �` 
 �`C1. A truncation is
done via Sred WD diag.�1; : : : ; �r/, where just the r largest singular values are kept.
We obtain the transformation matrices

P WD S
� 1
2

red V>
redZ>

O and Q WD ZCUredS
� 1
2

red

with Ured;Vred containing just the first r columns of U;V . The matrices OAred WD
P OAQ, OBred WD P OB, OCred WD OCQ define a lower-dimensional dynamical system of
size r.

On the one hand, the symmetric decompositions (7) can be calculated directly by
the Cholesky factorisation, for example. However, the Gramians are dense matrices
independent of the structure of the matrix OA in our two types of methods. Thus the
Cholesky factors are also dense and a high computational effort occurs for large
systems. On the other hand, iterative methods yield low-rank approximations for
the factors ZC;ZO in (7), which is often more efficient. A popular algorithm is the
alternating directions implicit (ADI) iteration, see [1, Chap. 12.4]. In this scheme,
matrix-vector-multiplications as well as linear system solves have to be done for
matrices OA��I with the identity I and shift parameters�. The QF approach implies
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a much lower computational effort within these linear algebra operations than the
SG method, since the matrices are block diagonal for the QF. Yet both QF and SG
suffer from the large number of outputs within a straightforward ADI method.

4 Numerical Results for a Test Example

We apply the band pass filter depicted in Fig. 1 and its mathematical model from [7].
The dynamical system (1) exhibits the dimension n D 6, single input and single
output (q D k D 1). All capacitances, inductances and resistances are chosen
as random variables, where independent uniform distributions with 20 % variation
around the mean values are used. Thus p D 11 random parameters appear. Figure 2
shows the Bode plot of the transfer function for the selected mean values.

For the output of the stochastic model, we arrange an orthonormal basis using
all multivariate Legendre polynomials up to degree three. Hence m D 364 basis
functions are involved. We apply the Stroud quadrature scheme of order 5 with
s D 243 nodes, see [12]. Now the system (5) exhibits the dimension ns D 1458

of the state space and the number of outputs becomes qm D 364. The SG method

Fig. 1 Circuit of a band pass filter with L-C-˘ element

Fig. 2 Bode diagramme for the transfer function of the band pass filter
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results in a system (5) of dimension nm D 2184 with the same number of outputs.
A sparse grid of level 3 with 3103 nodes from the Smolyak construction based
on the one-dimensional Gauss-Legendre quadrature, see [4], yields the matrices
in the system (5) of the SG method. We use this highly accurate quadrature,
since the number of nodes does not affect the dimension of the coupled system.
Thus the quadrature error becomes negligible in comparison to the other error
sources in the SG method. Figure 3 depicts the sparsity pattern of the matrices OA
in both techniques. To illustrate the dynamics, Fig. 4 shows the eigenvalues of
the matrices OA. In particular, the two systems are stable. The CPU-times for the
computation of the matrices in the systems (5) is 1 s for QF and 73 s for SG.
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Fig. 3 Matrix OA in the system (5) for the QF (left) and the SG method (right). The percentage of
non-zero elements is 0.2 % and 1.1 %, respectively
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Fig. 4 Eigenvalues of the matrix OA in the system (5) for the QF (left) and the SG method (right)
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Fig. 5 Dominant Hankel
singular values of the
system (5) in QF (solid line)
and in SG (dashes line)
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Based on the controllability Gramian and the observability Gramian, we deter-
mine the Hankel singular values of the system (5) using a direct algorithm with
Cholesky factorisations of the Gramians. Figure 5 illustrates the 100 largest singular
values. We recognise that less than 90 singular values are above the machine
precision in both approaches. Since the Hankel singular values decrease rapidly,
the dimension of the systems (5) can be reduced efficiently by balanced truncation.
To include 99.9 % of the amount of all singular values in a ROM, it is sufficient to
reduce to the dimension r D 19 for the QF system and to r D 18 for the SG system
(i.e. .�1 C � � � C �r/=.�1 C �2 C � � � / 
 0:999). The CPU-times for the balanced
truncation technique were 36 s for QF and 160 s for SG due to the different size of
the systems.

To get an impression of the input-output behaviour, the absolute values of the
transfer function of the ROM from the QF approach are shown in Fig. 6. The
function for degree zero represents an approximation of the expected value, whereas
all other functions yield an approximation of the variance.

We compare briefly the accuracy of the MORs. The transfer function H.i!;p/
of the dynamical system (1) represents a scalar complex-valued random process
due to k D q D 1. The expected value as well as the standard deviation of this
transfer function are computed approximately by the ROMs. A reference solution is
determined using a sparse grid of level 4 with 25,653 nodes applied to the original
system (1). Table 1 demonstrates the maximum differences in the frequency interval
! 2 Œ0:1; 10� on the imaginary axis, where the real part and the imaginary part of
the transfer function are analysed separately. We observe a higher accuracy in the
SG method.
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Fig. 6 Absolute values of the components of the transfer function for different polynomial degrees
reconstructed from the ROM by the QF

Table 1 Maximum differences between ROM and a reference solution for approximations of
expected value and of standard deviation belonging to transfer function at frequencies ! 2 Œ0:1; 10�

Galerkin Quadrature

Expected value Real part 5.03e-05 4.12e-04
Imaginary part 4.85e-05 4.20e-04

Standard deviation Real part 3.14e-04 2.33e-02
Imaginary part 2.77e-04 1.33e-02

5 Conclusions

A stochastic model of linear dynamical systems can be solved by an expansion
with orthonormal basis functions. The stochastic Galerkin method yields a larger
fully coupled system, where MOR is applicable. We reinterpreted a quadrature rule
as a large weakly coupled system such that MOR is also feasible. We examined
both approaches in the reduction of a test example. Using balanced truncation via



Model Order Reduction for Stochastic Expansions of Electric Circuits 231

a direct method, the efficiency of both techniques agrees roughly when comparing
the accuracy and the computational work. An open question is if the quadrature
approach may cause significant savings in the computational effort of an iterative
method, because the required system matrix exhibits just a block diagonal form.
Furthermore, a strategy for systems with many outputs but few inputs proposed
in [2] should be investigated for both the Galerkin method and the quadrature
schemes, since these assumptions are satisfied in our stochastic problem.
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Robust Topology Optimization of a Permanent
Magnet Synchronous Machine Using
Multi-Level Set and Stochastic Collocation
Methods

Piotr Putek, Kai Gausling, Andreas Bartel, Konstanty M. Gawrylczyk,
E. Jan W. ter Maten, Roland Pulch, and Michael Günther

Abstract The aim of this paper is to incorporate the stochastic collocation method
(SCM) into a topology optimization for a permanent magnet (PM) synchronous
machine with material uncertainties. The variations of the non-/linear material
characteristics are modeled by the Polynomial Chaos Expansion (PCE) method.
During the iterative optimization process, the shapes of rotor poles, represented by
zero-level sets, are simultaneously optimized by redistributing the iron and magnet
material over the design domain. The gradient directions of the multi-objective
function with constraints, composed of the mean and the standard deviation, is
evaluated by utilizing the continuous design sensitivity analysis (CDSA) with the
SCM. Incorporating the SCM into the level set method yields designs by using
already existing deterministic solvers. Finally, a two-dimensional numerical result
demonstrates that the proposed method is robust and effective.
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1 Introduction

Nowadays, permanent-magnet (PM) machines have become more popular due
to their attractive features such as a high performance, efficiency, and power
density [1]. Therefore, they have found a broad use in industrial applications
such as robotics, computer peripherals, industrial drivers or automotive industry,
for example, in commercialized hybrid vehicles with different hybridization level,
e.g. [5, 8]. However, this type of motor construction suffers inherently from a
relatively high level of acoustic noise and mechanical vibration. In the case of a
PM machine, the interaction between the stator slot driven air-gap performance
harmonics and the magnet driven magnetomotive force (MMF) harmonics is mainly
responsible for producing a high cogging torque (CT). On the other hand, the torque
ripple developed in electromagnetic torque is caused by the cogging torque and
harmonic contents in the back-electromotive force (EMF). In addition, magnetic
saturations in the stator and rotor cores with the converted related issue may further
disturb the electromagnetic torque of the machine [2]. Therefore, the designers aim
above all at blackucing the torque fluctuations. In turn, this may significantly affect
the machine performance.

In this paper, we focus on optimizing topology a PM machine, as the machine
topology itself is a major contributor to the electromagnetic torque fluctuation.
Because the result of the design procedure is strongly affected by the unknown
material characteristics [12], the uncertainties in modeling the soft ferromagnetic
material are taken into account. In some applications [11], especially the relative
permeability of the magnetic material itself should be accounted to model more
accurately the magnetic flux density of permanent magnets. This parameter is also
in our model assumed as uncertain. The novel aspect of the proposed method is
the incorporation of stochastic modeling into the topology optimization method for
the low cogging torque (CT) design of an Electric Controlled Permanent Magnet
Excited Synchronous Machine (ECPSM).

2 Model Description

In the design of a PM machine, the shape/fabrication and the placement of magnets,
iron poles and air-gaps primarily determine the torque characteristic. A part of an
assembly drawing of such a device, considered as a case study in our paper, is given
in Fig. 1. The structure of the rotor comprises two almost identical parts, which
differ only in the magnetization direction of the constructed PM poles of the rotor.
The key feature of the machine is the installation of an additional DC control coil
that is fixed in the axial center of the machine, between two laminated stators.
The proper supply of this coil by the DC-chopper enables to control the effective
excitation of the machine. In the end, this results in a field weakening of 1:4, which
is of great importance in electric vehicles applications (Fig. 1).
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Fig. 1 Cross-section of an ECPSM and its main parameters (surface-mounted PM rotor, three-
phase windings, fixed excitation control auxiliary coil) [8]

The magnetic behavior can be described in terms of the unknown magnetic vector
potential (MVP) A D .0; 0; A/ for the quasi-linear curl-curl equation. In fact, in
order to reduce the computational burden, we consider a two dimensional (2-D)
model that is additionally simplified by neglecting the eddy current phenomena,
i.e., (� @A

@t D 0). Then, the curl-curl equation becomes a Poisson equation

r � ��.x; jrA.x/j2/rA.x/� �PMM.x/
� D J.x/; x 2 D � R

2; (1)

equipped with periodic boundary conditions�PBC on @D in order to further decrease
the computational burden. This establishes the computational domain D, cf. Fig. 3.
Here, the current density is denoted by J 2 L2.D/ and the remanent flux density of
the PM is denoted by M. Furthermore, the reluctivity � is as a real parameter, which
describes the isotropic material relation H D �.jBj2/B between the flux density
B D r�A and the field strength H. The parameter � depends on jBj D jrAj. In the
air-gap, the vacuum reluctivity �.jBj2/ D �0 is taken into account. The quality of the
design of a PM motor, on the one hand, is assessed by the cogging torque fluctuation
T. This quantity is calculated by using the Maxwell stress tensor method [1] as the
function of the rotor position �

T.�/ D �0
I

S
r �

�
.n � B.x//B.x/� jB.x/j

2

2
n
�

dS; (2)
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where n is the unit outward normal vector and S denotes any closed integration
surface in the air-gap surrounding the rotor and r denotes the position vector.
Its main contributor is the machine topology. Additionally in the bi-objective
optimization problem, the root mean square (rms) value of the magnetic field density
calculated in the air-gap along the path l is treated as the second criterion but only
in an approximate way as in [9]

B2r�rms D
1

L

Z �2

�1

jBrj2dl 
 ˛; (3)

where the coefficient ˛ denotes an assumed level of the magnetic flux density in the
air-gap (the fraction of Br�rms calculated for the initial configuration), L refers to the
length of the path l (from �1 to �2).

A further difficulty regards the reluctivity � : it is discontinuous across material
borders and it is nonlinear in ferromagnetic materials. Moreover, the ferromagnetic
material characteristics (deduced from measurements) suffers from uncertainties
[12]. In certain applications, especially the relative permeability of the magnetic
material should be modeled to obtain a more accurate magnetic flux density of
permanent magnets [11]. Since the uncertainties affect the results of the design
procedure, we have to include these uncertainties to enable a robust design. That
is, the reluctivity becomes a random field. To this end, we consider the following
parameters as uncertain � WD �

�PM; �Fe; �air�gap
� WD p in the stochastic reluctivity

model. The uncertainty of �air�gap is significant from the mathematical viewpoint; it
could account for inaccuracies of the gap or material inside the gap.

3 Stochastic Forward Problem

For uncertainty quantification, we modify the parameters � W � ! ˘ � R
3 using

independent random variables � .�/, defined on some probabilistic space .�;F ;P/

with a joint density � W ˘ ! R. In our case, it will be a uniform distribution
(ranging ˙10% around the respective nominal values).1 Consequently, the direct
problem is governed by the random-dependent PDEs system, considered here for

1For the UQ, the stochastic reluctivity model for the iron pole with the higher perturbation than
analyzed in the paper [10] was applied. Due to the used Stroud quadrature formulas, the same
distribution had to be assumed with a relatively high variance based on [11] for the reluctivity of a
PM. The last parameter was rather of “the mathematical relevance” and simulates the high impact
of the air-gap parameters into the electromagnetic torque [12].
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no load state (with the excitation density current J D 0)

8
<

:

r � ��Fe
�
x; jrA.x/j2; 	1

�rA.x/
� D 0; in DFe;

r � ��air�gap .x; 	2/rA.x/
� D 0; in Dair;

r � .�PM.	3/rA.x// D r � �PM.	3/M.x/; in DPM;

(4)

where A W D � � ! R with D D Dair [ DFe [ DPM, becomes a random field. The
statistical information like the expected value for a function f W ˘ ! R reads as

hf .�/i WD E Œf .�/� D
Z

˘

f .�.�//�.�/ d�; (5)

provided that the integral is finite. Furthermore, for two functions f ; g W ˘ ! R this
operator yields an inner product hf ; gi WD E .f .�/g.�// on L2.�/, see e.g. [7, 17].
If each component �i exhibits a finite second moment, then the random field A can
be expanded in the truncated polynomial chaos (PC) series [17]

A .x;�/ D
NX

iD0
vi .x/˚i .�/ (6)

with a priori unknown coefficient functions vi. Here, the basis functions .˚i/i2N
with ˚i W ˘ ! R are orthonormal polynomials, i.e., h˚i.�/; ˚j.�/i D ıij with the
Kronecker delta ıij. To calculate vi the SCM with Stroud quadrature formula [13, 18]
is used. The basic concept is to provide the solution of the deterministic problem at
each quadrature grid point �.k/, k D 0, . . . , K. The Stroud rules yield a relatively
small number of grid points for a quadrature of a fixed order. Thus, finally we
approximate statistical quantities like the mean and the standard deviation

E ŒA .x; �/�
:D v0.x/; std ŒA .x; �/�

:D
vuut

NX

iD1
jvi.x/j2 (7)

by using a multi-dimensional quadrature rule with corresponding weights wk

vi.x/ WD hA .x; �/ ; ˚i.�/i �
KX

kD0
wkA

�
x; �.k/

�
˚i.�

.k//: (8)

4 Multi-Level Set Representation

The level set method, first proposed in [6], has recently found a wide application
in electrical engineering to address the design, shape and topology optimization
problems, see e.g. [4, 8]. To trace the two interfaces between different materials
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Fig. 2 Distribution of the signed distance function

with some assumed variations such as air, iron and PM poles of rotor, the modified
multilevel set method (MLSM) has been used [9, 16]. Thus, we extend this
framework into the situation, where the material parameter exhibit some uncertainty.
These domains are described using two signed distance functions

D1 D fx 2 Dj�1 > 0 and �2 > 0g; D2 D fx 2 Dj�1 > 0 and �2 < 0g;
D3 D fx 2 Dj�1 < 0 and �2 > 0g; D4 D fx 2 Dj�1 < 0 and �2 < 0g; (9)

with �.x/ a signed distance function that is shown on Fig. 2.2 In this situation, the
reluctivity � and the remanent flux density coefficient br (of the PM-material) read
as

�.�; �/ D �1.	1/H.�1/H.�2/C �2.	2/H.�1/ .1 � H.�2//C
C�3.	3/ .1 � H.�1//H.�2/C �4.	4/ .1 �H.�1// .1 �H.�2// ;

(10)
br.�/ D br1.H.�1/H.�2/C br2.H.�1/ .1� H.�2//C

Cbr3..1 � H.�1//H.�2/C br4 .1 �H.�1// .1 �H.�2//
(11)

with the Heaviside function H. � /. The evolution of �i is described by the Hamilton-
Jacobi-type equation [6] (during optimization with pseudo-time t)

@�i

@t
D �r�i .x; t/

dx
dt
D Vn;i jr�ij ; (12)

where Vn;i is the normal component of the zero-level set velocity corresponding
to the objective function (14) and the forward problem (4). Figure 2 shows the
exemplary the distance function in fifth iteration of the optimized process, where

2Notice, D4 is an auxiliary set. We need in our application D1;D2;D3, only.
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shapes of rotors poles (the blue shape with black lines) are described by the zero-
level set.

5 Robust Topology Optimization Problem

The cogging torque minimization in the 2-D magnetostatic setting can be equiva-
lently formulated as minimization of the magnetic energy Wr variation [3, 9]. The
advantage of the latter formulation is the calculation of the sensitivity in an efficient
way as follows [3]:

@Wr

@p
D
Z




.�1 � �2/B1 �B2 � .M1 �M2/ �B2d
; in D (13)

with �1 and �2 the reluctivities for different domains. Since the energy operator is
self-adjoint, the dual and primary problem are the same. However, for the shape
optimization problem constrained by the elliptic PDEs (4) with random material
variations, the magnetic energy is defined as

Wr.�.�1; �2; �// D
Z

D
B.�1; �2/H.�1; �2/dxC

ID2X

iD0
ˇiTV.� i/; (14)

which is subjected to the constraint (3) with Br replaced by Br.�1; �2/, while
the TV. � / denotes the Total Variation regularization with the coefficients ˇi that
account for controlling the geometrical complexity of obtained shapes [8, 16].
Finally, this constraint has been introduced approximately to the optimization
problem as two area constraints (for each rotor pole separately), which are involved
in the level set method scheme, see, e.g., [4, 9].3 Furthermore, we formulate the
optimal shape optimization in the framework of the robust optimization [19] using
the statistical moments such as the expectation and the standard deviation

min
�
W E ŒWr.�/�C �1

p
Var ŒWr.�/�

s.t. W K �
�k
�

Ak D fk; k D 0; : : : ;K;
�max j � �j � �min j; j D 1; 2;

(15)

where �1 is a prescribed parameter, K denotes the stiffness matrix (at K C 1

quadrature grid points). In this case, it is possible to calculate the total derivative
of the function Eq. (14) based on only the analysis of the forward model in the
collocation points and taking Eqs. (10), (11) and (13) and then (8), (7) into account.

3In our paper, they were defined in an analogical way as in [9]: G1.�/ D jDFEj=jDFE0 j � SFE D 0

and G2.�/ D jDPMj=jDPM0 j � SPM D 0 with the prescribed coefficients SFE and SPM.
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The similar approach, but for different type of the functional was used in [14, 15]
for the solution of stochastic identification/control problems for constrained PDEs
with random input data.

6 Numerical Results

The procedure described in the previous section has been applied to design the rotor
poles of the ECPSM for no-load state. The main parameters of the machine are given
in Table 1. The initial configuration of the ECPSM machine is depicted in Fig. 3
(left). The quantities that are taken subject to variations are the reluctivity of the iron
pole and the PM pole. Also the reluctivity of the air-gap is assumed to be uncertain.
To model the uncertainty, we choose a uniform distribution of the reluctivity with a
maximum deviation from a nominal value �.x; jrAj2/ of 10 %. The application of
Stroud-5 points for a system of the ECPSM machine with three parameters yields
K C 1 D 19 sample points f�ig18iD0 in the three-dimensional parameter space. The

Table 1 Main parameters of the ECPSM topology

2p: number of poles 12

rostat: outer radius of the stator 67.5 mm

ristat: inner radius of the stator 41.25 mm

las: axial length one part of the stator 35 mm

woslot: width of the slot opening 4.0 mm

ns: number of slots 36

m: number of phases 3

tm: thickness of magnets (NdFeB;Br D 1; 2T) 3.0 mm

Fig. 3 Topology of the ECPSM: initial (left), optimal (right)
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Fig. 4 Mean and standard deviation for initial and optimized topology of the ECPSM: cogging
torque (left), flux density under magnet and iron poles calculated in the air-gap (right)

optimized rotor poles are shown in Fig. 3 (right).4 For the optimal configuration the
CT is calculated over a half of the period to assess the stator teeth interaction with
the rotor poles, shown in Fig. 4 (left). The pick value of the CT expected value is
reduced about 69 %.

7 Conclusion

This paper demonstrated the incorporation of the SCM into the MLSM for the robust
topology optimization of a PM synchronous machine. For this purpose, the shape of
rotor poles was investigated. This methodology resulted in the minimization of the
level of noise and vibrations by the significant reduction of both the rectified mean
of the CT (70 %) and the standard deviation, while taking variations with respect
to manufacturing tolerances/imperfections into account. Unfortunately, the rectified
value of the flux density calculated in the air-gap decreased around 17 %, which is
a drawback of the used approach. This work also highlights the effectiveness of the
proposed methodology.
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First Results for Uncertainty Quantification
in Co-Simulation of Coupled Electrical Circuits

Kai Gausling and Andreas Bartel

Abstract This paper combines uncertainty quantification with co-simulation
numerically. Our focus is mainly on the behavior of the stochastic quantities during
the iterations in the co-simulation for a test circuit with uncertain parameters. For
this purpose we first classify the coupling structure of co-simulation model the
test circuit by using standard theory. Using the gPC expansion for the stochastic
process, we analyze the contraction and the rate of convergence of the co-simulation
process.

1 Introduction

Co-simulation is an important method for coupled systems in time domain. Espe-
cially, when dedicated simulation tools for the subsystems are available, it is a
relevant option. Co-simulation is performed on certain time periods or windows.
Thereby, each time integration for a part of the unknowns assumes that values for
the another unknowns are available. If the time window is just one time step one can
tune accuracy by applying stepsize control. Our approach of co-simulation allows
for larger time windows. Then, after integration over the time window, we have new
time profiles for the unknowns of all parts of the partition. With these new time
profiles we can re-start the co-simulation process over the same time window to
further update the profiles. Thus we solve multiple times the subsystem.

Co-simulation applied to coupled ordinary differential equations (ODEs) always
converges, see, e.g., [4]. The situation is different for coupled differential-algebraic
equations (DAEs). In such cases convergence can only be guaranteed if a contraction
condition is fulfilled, see, e.g., [1]. The theory of co-simulation shows that its

K. Gausling (�)
Chair of Applied Mathematics/Numerical Analysis, Bergische Universität Wuppertal, 42119
Wuppertal, Germany
e-mail: gausling@math.uni-wuppertal.de

A. Bartel
Applied Math. & Numerical Analysis, Bergische Universität Wuppertal, Wuppertal, Germany
e-mail: bartel@math.uni-wuppertal.de

© Springer International Publishing Switzerland 2016
A. Bartel et al. (eds.), Scientific Computing in Electrical Engineering, Mathematics
in Industry 23, DOI 10.1007/978-3-319-30399-4_24

243

mailto:gausling@math.uni-wuppertal.de
mailto:bartel@math.uni-wuppertal.de


244 K. Gausling and A. Bartel

stability and its rate of convergence is directly influenced by a) the sequence in
which the subsystems are computed and b) by the coupling interface, see, e.g., [3].

Co-simulation operates on time windows ŒTn;Tn C H� and tries to compute the
overall solution iteratively by decoupling. Let .k/ denote the current iteration and
.k � 1/ the old iterates, a co-simulation scheme can be encoded as:

PyD f.y; z/ $ PQyD F
�Qy.k/; Qz.k/; Qy.k�1/; Qz.k�1/�

0D g.y; z/ 0D G
�Qy.k/; Qz.k/; Qy.k�1/; Qz.k�1/� (1)

employing splitting functions F;G with compatibility F .y; z; y; y/ D f .y; z/ and
similarly for G. The actual successful splitting is usually part of the game and a
piece of art. Then the contraction condition to guarantee convergence reads, e.g.,
[1, 2]:

˛ WD kG�1
z.k/Gz.k�1/k2 < 1 (2)

with partial Jacobians Gu. It is still open, how uncertainties in coupled systems
change the contraction properties. In general, ˛ (2) may depend on components
from the model. In such cases contraction depends on the balance between several
parameters. Consequently, dealing with uncertain components in the co-simulation
may change the contraction condition (2), that is, ˛ will become stochastic.

Our paper is arranged as follows: In Sect. 2 we consider a linear test circuit
with uncertainties, where no algebraic constraint depend on old algebraic iterates
(see Sect. 3). Thus (2) holds for all further considerations. Section 4 provides an
introduction to the gPC as one suitable technique. Section 5 gives insight into our
simulation settings. Finally in Sect. 6, we discuss our simulation results, especially
the rate of convergence when co-simulation is applied in stochastic approaches.

2 Circuit Modeling and Uncertain Test Circuit

Usually, a mathematical model for electric circuits is obtained by modified nodal
analysis (MNA), e.g., [5]. This leads to a DAE

E .p/ PxC A .p/ x D f .t/

with dynamic part E, static part A, sources f and unknown x containing the node
potentials and some branch currents. Here, the matrices E, A depend on physical
parameters p D �

p1; : : : ; pq
�T

, which we assume to be uncertain. These parameters
are assumed to be independent random variables. Our test example is the 2-level
RLC network, Fig. 1, with uncertain components p D .R1; R2; C1; C2/

T . We
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Uin t

Iin

R1 L1 IL1

C1

R2 L2 IL2

C2

U0

U1 U2 U3 U4 U5

Fig. 1 Uncertain 2-level RLC circuit (reference model). h � i indicate uncertain parameters

Uin(t)

Iin

R1 L1

IL1

C1 ICo(t)

U (k,k 1)
Co

U0

U (k)
1 U (k)

2 U (k,k 1)
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I(k 1,k)
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UCo(t)

I(k 1,k)
Co

R2 L2

IL2

C2

U0

U (k)
3 U (k)

4 U (k)
5

Fig. 2 Split 2-level RLC network with source-coupling for a Gauss-Seidel type of co-simulation
(with uncertain R1;R2;C1;C2). Super-indices refer to the iteration count. The coupling variables
have two super-indices (e.g. U.k;k�1/

Co ), which covers the two cases: (1) subsystem 1 first, and (2)
subsystem 2 first

consider the two stochastic models for p, i.e., Gaussian and uniform distribution:
(i D 1; 2)

Ri � N .10k˝; �2Ri/; Ci � N .1pF; �2Ci/;

or Ri � U .10k˝ � ıRi; 10k˝ C ıRi/; Ci � U .1pF� ıCi; 1pFC ıCi/:
(3)

Furthermore we assume inductance L D 1mH and supply voltage Uin.t/ D
1V � cos.!t/ with ! D 2� � 5 � 103 Hz. Now MNA yields a DAE of index-1. To
apply co-simulation, we use source coupling [2] to split the system into two coupled
networks at node U3, see Fig. 2. Notice, both subsystems can be described by
the same (index-1) DAE. The subsystem at the left receives information from the
subsystem at the right by a current source and provides input to the system at the
right by a voltage source. The exchange of information between both subsystems
is organized by the additional variables UCo and ICo. Using a Gauss-Seidel type of
co-simulation, we have to define, which system is computed first.
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3 Abstract Coupling Analysis

To analyze co-simulation, one can use ‘standard theory’, e.g., [6]. To this end, we
express the circuit model of Fig. 2 in semi-explicit form with variables

Py1 D f1.y1; z1; z2/; 0 D g1.y1; z1/; y1 WD
	
UCo; IL1


T
; z1 WD

	
U1; U2; Iin


T
:

Py2 D f2.y2; z2/; 0 D g2.y1; y2; z2/; y2 WD
	
U5; IL2


T
; z2 WD

	
U3; U4; ICo


T
:

(4)
Applying technique of MNA one obtains equations for f1; g1; f2 and g2:

Subs. 1: 0 D

0

BBBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 C1 0

0 0 0 0 L1

0 0 0 0 0

1

CCCCCCCA

0

BBBBBBB@

PU1

PU2

PIin

PUCo

PIL1

1

CCCCCCCA

C

0

BBBBBBB@

�G1 G1 1 0 0

G1 �G1 0 0 1

0 0 0 0 �1
0 1 0 �1 0

�1 0 0 0 0

1

CCCCCCCA

0

BBBBBBB@

U1

U2

Iin

UCo

IL1

1

CCCCCCCA

�

0

BBBBBBB@

0

0

�ICo.t/

0

�Uin.t/

1

CCCCCCCA

; (5)

Subs. 2: 0 D

0

BBBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 C2 0

0 0 0 0 L2

0 0 0 0 0

1

CCCCCCCA

0

BBBBBBB@

PU3

PU4

PIco

PU5

PIL2

1

CCCCCCCA

C

0

BBBBBBB@

�G2 G2 1 0 0

G2 �G2 0 0 1

0 0 0 0 �1
0 1 0 �1 0

�1 0 0 0 0

1

CCCCCCCA

0

BBBBBBB@

U3

U4

Ico

U5

IL2

1

CCCCCCCA

�

0

BBBBBBB@

0

0

0

0

�Uco.t/

1

CCCCCCCA

; (6)

where @g1=@z1 and @g2=@z2 are regular. y1; y2 define the differential and z1; z2

the algebraic variables. Depending on what subsystem is computed first, we obtain
different splitting schemes. For subsystem 1 first it reads:

F. � ; � ; � ; � / WD
"

f1.y
.k/
1 ; z

.k/
1 ; 0; z

.k�1/
2 /

f2.0; 0; y
.k/
2 ; z

.k/
2 /

#
; G. � ; � ; � ; � / WD

"
g1.y

.k/
1 ; z

.k/
1 ; 0; 0/

g2.y
.k/
1 ; 0; y

.k/
2 ; z

.k/
2 /

#
:

(7)

Notice that no algebraic constraint depends on old algebraic iterates. Thus the
contraction factor ˛ vanishes for the splitting scheme (7). Furthermore it becomes
obvious, that introducing uncertainty in our co-simulation model does not manip-
ulate the properties of contraction. Consequently, convergence is guaranteed for
the splitting schemes (7) involving uncertainties by using a time step size H small
enough.
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4 Generalized Polynomial Chaos (gPC)

To compute the stochastic quantities of our uncertain model, the gPC expansion
method is used. The gPC expansion involving a finite number of P summands reads:

f .t;p/ � fgPC .t;p/ WD
P�1X

jD0
fj .t/ ˚j .p/ ; (8)

with unknown time-dependent coefficient functions fj .t/ and basis polynomials
˚j .p/, see, e.g., [7]. The polynomial basis represents an orthogonal system, which
depends of the random parameters. Due to the orthogonality of the basis, it is easy
to show that the mean and variance of the response respectively read:

IE Œ f .t;p/� D f0 .t/ ; Var
	
fgPC .t;p/


 D
P�1X

jD1
f 2j .t/ IE

	
˚2

j .p/


: (9)

The costly part of the gPC expansion is to determine the unknown coefficient
functions. For this purpose we employ stochastic collocation, e.g., [7]. The total
sensitivity coefficients, which denote the interactions between several parameters,
can be derived by regrouping the coefficient functions and subsequent normaliza-
tion.

5 Numerical Simulation

For all our investigations, a co-simulation is studied in one time window Œt0; t0CH�
with t0 D 0:4 ms. To obtain an adequate quality of approximation on H, a gPC
expansion with maximum polynomial order three is used, thus momenta up to order
three can be detected. We apply the stochastic collocation method which belongs to
the family of non-intrusive methods. We use the Legendre-quadrature rule, see, e.g.,
[7], of order five based on a tensor-product grid in probability space, which requires
to solve the model 81 times. Notice that these are sample points of ˝ .

Our algorithm works in the following manner: For each sample-point out of
˝ , the reference model is solved in time domain up to t0 to obtain initial values
which are close to the solution. Now we start co-simulation with k iteration steps
for each sample on Œt0; t0 C H� using the corresponding initial values. Furthermore,
constant extrapolation of the initial value is used for the initial guess x.0/.t/ on the
time window. Finally, we compute the stochastic momenta (depending on step k).
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6 Numerical Results

Using MATLAB R�we first investigate the error behavior related to the stochastic
process in the output voltage U5 using different levels of uncertainties for the
splitting scheme (7). For this purpose, we consider a range of deviations for the
resistances and capacitances, which are typical in electrical engineering. To this end
we are focusing our attention on the error in the total sensitivity coefficients. The
error of the solutions on the n-th time window after k iterations x.k/c .t/ is measured
by comparing with a reference solution xref.t/ computed by a monolithic simulation:
�
.k/
n .t/ D xref.t/ � x.k/c .t/; ı

.k/
n WD k�.k/

n k2;1. Thus, the l2 � norm is applied to
all unknowns for each point of time followed by the infinity norm which refers
the largest total error in H. To this end, we assume that the biggest discrepancy
is located at the end of the time window. Please note that our co-simulation
observations yet only apply to the time window H, which means that there is no error
transport between several time windows. For a quantitative evaluation we compute
the average error over all total sensitivity coefficients. As uncertainty we suppose
uniformly distributed parameters with the same variation between ıR1 D ıR2 D
0:1 .10%/�0:5 .50%/ for the resistances and ıC1 D ıC2 D 0:1 .10%/�0:5 .50%/
for the capacitances around the nominal respective values.

Figure 3 shows the average error for k D 1; 3; 5; 10 iterations in the co-
simulation. It becomes obvious, that for a high level of uncertainty the error becomes
larger. Furthermore, a continuous improvement in the error up to k D 10 can be
observed, especially in cases of high uncertainties for Ci and Ri. Accordingly, small
uncertainties in our co-simulation model requires a smaller number of iterations,
where the level of uncertainty in the capacitances mainly controls the rate of
convergence.

Next we investigate the contraction and the rate of convergence regarding all
node potentials U1; : : : ;U5 by calculating the expectation and standard deviation
for each quantity. Afterwards, a deterministic solution will be computed by using
the reference circuit, given in Fig. 1. In the case of uniformly distributed param-
eters, we suppose an variation about ıRi D 0:1 .10%/ for the resistances and
ıCi D 0:5 .50%/ for the capacitances. Figure 4 shows convergence for splitting
scheme (7). Thus all quantities have nearly the same rate of convergence for window
sizes 10�8 s < H < 10�4 s. It becomes obvious that a further reduction of the
window size does not reduce the error in the expectation and standard deviation.
This behavior differs to its deterministic solution, where an improvement up to the
machine precision is achieved. The reasons for this are diverse: the usage of Gauss-
Legendre quadrature formulas of order five produces a numerical quadrature error
in each coefficient function fj .t/ of (8). Furthermore, the accuracy of the stochastic
process is limited by using a finite number of summands in the gPC expansion.

In order to investigate the performance of contraction, we decrease the window
size by 10% down to Œ0:4; 0:49� ms. For our tests the minimum error is bounded
by the time integrator precision of 10�3 with which we solve the subsystems.
Figure 4 shows the performance of contraction for different quantities measured
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Fig. 3 Average error over all total sensitivity coefficients obtained by comparing with a reference
solution for k D 1; 3; 5; 10 iterations over H D 0:1 ms. Uniform distribution (Legendre
polynomials), Ri � U .10k˝ � ıRi; 10k˝ C ıRi/; Ci � U .1pF � ıCi; 1pF C ıCi/

Fig. 4 (left) Convergence in expectation, standard deviation and in the deterministic solution
concerning the node potentials U1;U2;U3;U4;U5 after 0:4 ms for different time step sizes H with
four iterations per time window. (right) Contraction measured by the relative average error in
dependence of the iterations k on the time window Œ0:4; 0:49� ms

by the relative average error. It becomes apparent that the performance for the
expectation is much better than for the standard deviation. Here, expectation is
already reproduced after five iteration steps, whereas the standard deviation requires
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Fig. 5 Expectation and standard deviation for U5;U3 using different numbers of iteration steps for
subsystem 1 first where uniformly distributed components are introduced. IE.k/c and �.k/c denotes the
solution of expectation and standard deviation over H for increasing number of iterations k

about ten iterations to achieve the maximum precision of ı.k/n D 10�3. Due to the
definition of the expectation, which is exactly represented by the first coefficient
function f0 .t/, see (9), it is resolved with a higher quadrature order than the standard
deviation. Hence, in contrast to the standard deviation no approximation error is
caused by using a finite number of coefficient functions in (8). This can explain
Fig. 4 right.

An example is given in Fig. 5, where the expectation and standard deviation
is presented only for the output voltage of each subsystem, i.e. node potential
U3 and U5, over the time window Œ0:4; 0:49� ms. As uncertainty we choose
Ri � U .10k˝ � 10%; 10k˝ C 10%/; Ci � U .1pF � 50%; 1pFC 50%/. Our
calculation aim is to provide a accurate band that must contain the solution of U3

and U5. Here, expectation is well approximated already after k D 3 iteration steps,
whereas the standard deviation requires more than five iterations to achieve an error
of approximately ı.k/n D 10�3. In addition there are oscillations in the standard
deviation of U3 over H, which are not be further analysed in this paper. However,
tests have shown that the oscillation can be minimized by reducing the window size.
All our investigations hold also by using Gaussian distribution settings given in (3).
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7 Conclusions

We have shown for our test case, that the number of iterations which are needed
to achieve a predefined accuracy is mainly controlled by the level of uncertainty.
Co-simulation models with higher uncertainties naturally require a larger number of
iterations. Furthermore, uncertainties in the capacitances have a greater impact than
uncertainties in the resistances regarding the rate of convergence. Concerning our
test example, the speed of contraction for expectation and standard deviation differs
from each other. Thus, different stochastic quantities requires a different number of
iterations to archive a suitable accuracy in co-simulation.

It is a future aim to combine co-simulation and UQ for electrical circuits, where
the contraction factor ˛ does not vanish.
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