
Chapter 9
Position Control via Force Feedback
in the Port-Hamiltonian Framework

Mauricio Muñoz-Arias, Jacquelien M.A. Scherpen and Daniel A. Dirksz

Abstract In this chapter, position control strategies via force feedback are presented
for standard mechanical systems in the port-Hamiltonian framework. The presented
control strategies require a set of coordinate transformations, since force feedback in
the port-Hamiltonian framework is not straightforward. With the coordinate trans-
formations force feedback can be realized while preserving the port-Hamiltonian
structure. The port-Hamiltonian formalism offers a modeling framework with a clear
physical structure and other properties that can often be exploited for control design
purposes, which is why we believe it is important to preserve the structure. The pro-
posed control strategies offer an alternative solution to position control with more
tuning freedom and exploit knowledge of the system dynamics.

9.1 Introduction

We are honored to write this chapter at the occasion of the 60th birthday of Henk
Nijmeijer. I (the second author) know Henk as an influential and stimulating teacher
during my study Applied Mathematics at the University of Twente more than 25
years ago. When I performed my traineeship and master thesis project under his
supervision, he raised my interest in doing a Ph.D. in the field of systems and con-
trol. The corresponding research environment in Twente was open, international and
inspiring, and Henk contributed significantly to that, being one of the leaders in the
field of nonlinear control systems. In recent years, we started to collaborate and
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publish together. I wish for new collaborations and exchange of ideas in the future.
Congratulations Henk!

The current technological advances continuously increase the demand for robots
and intelligent systems that are fast, accurate, and able to perform tasks under different
circumstances. Sensing andusing forcemeasurements are examples of how reliability
and performance of such robotic systems can be improved for almost all tasks in
which a manipulator comes in contact with external objects [3, 10, 24]. Position
control with force feedback for robotic systems has been thoroughly discussed in [3,
10, 18, 19, 25] and the references therein for the Euler–Langrange (EL) framework.
In the EL framework, control design is based on selecting a suitable storage function
that ensures position control. However, the desired storage function under the EL
framework does not qualify as an energy function in any physically meaningful sense
as stated in [3, 19].

In this chapter, we present position control strategies via force feedback for stan-
dardmechanical systems in the PH framework. The port-Hamiltonian (PH)modeling
frameworkof [13, 26] has received a considerable amount of interest in the last decade
due to its insightful physical structure. Moreover, it is well known that a larger class
of (nonlinear) physical systems can be described in the PH framework. The pop-
ularity of PH systems can be largely accredited to its application for analysis and
control design of physical systems, as shown in [6–8, 20, 21, 26] and many others.
Control laws in the PH framework are derived with a clear physical interpretation via
direct shaping of the closed-loop energy, interconnection, and dissipation structure,
see [6, 26]. In this chapter, we apply the PH modeling framework, since it allows
extensions on the system coordinates, which facilitates the incorporation of force
feedback in the input of the systems. Lastly, the presented control strategy preserves
the PH structure, thus granting the aforementioned advantages to the closed-loop
system.

The results presented in this chapter are based on [15], and extend the results
presented in [16] and [17]. In [16] a class of standard mechanical systems in the
PH framework with force feedback and zero external forces has been introduced,
for mechanical systems with a constant mass-inertia matrix. However, applying the
results from [16] to systems with a nonconstant mass-inertia matrix is not trivial.
In [17] preliminary results are presented for the more general class of mechanical
systems with a nonconstant mass-inertia matrix. In this chapter, we combine these
previous results into a PH framework for position control with force feedback for
standard mechanical systems.

The main contribution of this chapter is the introduction of an alternative posi-
tion control strategy for mechanical systems that includes force feedback, in the PH
framework. We present a control approach based on the modeled internal forces of
a standard mechanical system; for this approach the system is extended with the
internal forces into a PH system, which is then asymptotically stabilized. Further-
more, we analyze the disturbance attenuation properties to external forces, i.e., when
the external forces are constant we show that the system has a constant steady-
state error, and we apply an integral type control to compensate for position errors
caused by these constant forces. We reformulate the stability analysis and analyze
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the robustness against external forces of the control strategy. The resulting controller
has nicely tunable properties and interpretations, outperforming most of the existing
force feedback control strategies. In addition, we develop a strategy assuming that
we have force sensors that give measurements of the (real) total forces in the system,
i.e., the internal plus external forces. Those measurements can be used to realize
rejection of the external forces in the system.

The chapter is organized as follows. In Sect. 9.2.1, we provide a general back-
ground in the PH framework [6]. In Sect. 9.2.2, we apply the results of [27] to equiva-
lently describe the original PH system in a PH formwhich has a constant mass-inertia
matrix in the Hamiltonian via a change of coordinates. This coordinate transforma-
tion simplifies the extension of the results in [16] to systems with a nonconstant
mass-inertia matrix. A PH model of a robot manipulator of two-DOF is introduced
in order to show a mass-inertia decomposition case. Furthermore, in Sect. 9.2.3 we
briefly recall the Hamilton–Jacobi inequality related to L2 analysis. In Sect. 9.2.4,
we recap the constructive procedure of [14] to modify the Hamiltonian function of
a forced PH system in order to generate Lyapunov functions for nonzero equilibria,
i.e., a system in the presence of nonzero constant external forces. In Sect. 9.3, we
realize a dynamic extension in order to include the modeled internal forces, while
preserving the PH structure. In Sect. 9.4, we present the position control which uses
feedback of the modeled forces. We also look at the disturbance attenuation proper-
ties when there are external forces, and we apply a type of integral control when the
external forces are constant. For constant forces the system converges to a constant
position different than the desired one, justifying the application of integral control.
In Sect. 9.5, we assume that we have measurements of the total forces in the system,
and use these measurements for control. Consequently, we show that we can realize
rejection of the total forces in the system while preserving the PH structure. Finally,
simulations are given in Sect. 9.6 to motivate our results for position control, and
concluding remarks are provided in Sect. 9.7.

9.2 Preliminaries

This section provides the background for the main contributions presented in this
chapter. We deal here with the analysis of physical systems described in the PH
framework, canonical transformations, and stability analysis in the presence of a
disturbance, and a constant force in the input of system.

9.2.1 Port-Hamiltonian Systems

We briefly recap the definition, properties and advantages of modeling and control
with the PH formalism.
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The PH framework is based on the description of systems in terms of energy
variables, their interconnection structure, and power ports. PH systems include a large
family of physical nonlinear systems. The transfer of energy between the physical
system and the environment is given through energy elements, dissipation elements,
and power preserving ports [6, 13], based on the study of Dirac structures.

A class of PH system, introduced in [13], is described by

Σ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = [J (x) − R (x)]
∂ H (x)

∂x
+ g (x) w

y = g (x)�
∂ H (x)

∂x

(9.1)

with x ∈ R
N the states of the system, the skew-symmetric interconnection matrix

J (x) ∈ R
N ×N , the positive-semidefinite dampingmatrix R (x) ∈ R

N ×N , and the
Hamiltonian H (x) ∈ R. Thematrix g (x) ∈ R

N ×M weights the action of the control
inputs w ∈ R

M on the system, and w, y ∈ R
M with M ≤ N , form a power port

pair. We now restrict the description to a class of standard mechanical systems.
Consider a class of standard mechanical systems of n-DOF as in (9.1), e.g., an

n-DOF rigid robot manipulator. Consider furthermore the addition of an external
force vector. The resulting system is then given by

[
q̇
ṗ

]

=
[

0n×n In×n

−In×n −D (q, p)

]
⎡

⎢
⎣

∂ H (q, p)

∂q
∂ H (q, p)

∂p

⎤

⎥
⎦+
[
0n×n

G (q)

]

u +
[
0n×n

B (q)

]

fe (9.2)

y = G (q)�
∂ H (q, p)

∂p
, (9.3)

with the vector of generalized configuration coordinates q ∈ R
n , the vector of gen-

eralized momenta p ∈ R
n , the identity matrix In×n , the damping matrix D (q, p) ∈

R
n×n , D (q, p) = D (q, p)� ≥ 0, y ∈ R

n the output vector, u ∈ R
n the input vector,

fe ∈ R
n the vector of external forces,N = 2n, matrix B (q) ∈ R

n×n , and the input
matrix G (q) ∈ R

n×n everywhere invertible, i.e., the PH system is fully actuated. The
Hamiltonian of the system is equal to the sum of kinetic and potential energy,

H (q, p) = 1

2
p�M−1 (q) p + V (q) , (9.4)

where M (q) = M� (q) > 0 is the n × n inertia (generalizedmass) matrix and V (q)

is the potential energy.
We consider the PH system (9.2) as a class of standard mechanical systems with

external forces.
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Remark 9.1 The robot dynamics is given in joint space in (9.2), and here the external
forces fe ∈ R

n are introduced. The geometric Jacobian maps the external forces in
the work space, Fe, to the (generalized) external forces in the joint space, fe, [25].
In this chapter the following holds,

fe = J (q)� Fe, Fe ∈ R
N , (9.5)

and the geometric Jacobian is given by

J (q) =
[
Jv (q)

Jω (q)

]

∈ R
6×n, (9.6)

where Jv (q) ∈ R
3×n , and Jω (q) ∈ R

3×n are the linear, and angular geometric
Jacobians, respectively, and N = {3, 6}. If the Jacobian is full rank, we can always
find fe ∈ R

n that corresponds to Fe. Then, it is not a limitation to suppose B (q) = In .
This separation between joint and work spaces is important here, because we control
the robot by acting on the generalized coordinates q, i.e., in the joint space, but we
grasp objects with the end-effector in the work space.

Example 9.1 Consider the systemgiven by the two-DOFshoulder of thePERA, [23].
A picture of the PERA is shown in Fig. 9.1. A Denavit–Hartenberg representation of
the PERA, see [25], is given in Fig. 9.2. The shoulder consists of a link actuated by
two motors. The model of the shoulder consists of a mass ms , a link length ls , and a
linear damping ds > 0. The states of the system are x = (q, p)�, where (q, p) ∈ R

2

are the generalized coordinates q1, and q2, and p1, p2 are the generalized momenta
of the system. The system is described in the PH form by

Fig. 9.1 PERA at the University of Groningen
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Fig. 9.2 Denavit–Hartenberg representation of the PERA [12]

[
q̇
ṗ

]

=
[

02×2 I2×2

−I2×2 D (q, p)

]
⎡

⎣
∂V (q)

∂q
M (q)−1 p

⎤

⎦+
[
0
G

]

us +
[
0
B

]

fe (9.7)

ys = G�M (q)−1 p (9.8)

with an input matrix G = I2×2 (fully actuated), a vector of external forces fe ∈ R
2,

an input–output port pair (us, ys), Hamiltonian of the form

H (q, p) = 1

2
p�M (q)−1 p + V (q) (9.9)

with V (q) the potential energy, and a mass-inertia matrix M (q) ∈ R
2×2, s.t.,

M (q) = diag (a, b) where

a = msl
2
s cos (q2)

2 + I1 + I2 (9.10)

b = msl
2
s + I2 (9.11)

and with I1, and I2 the inertias of the joints. Furthermore, the gravity vector is

∂V (q)

∂q
=
[

gmsls cos (q2) sin (q1)

gmsls sin (q2) cos (q1)

]

(9.12)
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with g the gravitational acceleration. The shoulder is experiencing Coulomb fric-
tion that we have determined, and validated experimentally, [2, 12]. The dissipation
matrix has the form

D (q, p) = D (q̇) = diag
(
ds1 (q̇1) , ds2 (q̇2)

)
, (9.13)

where q̇ = M−1 (q) p, and with

dsi =
(

Fci + (Fsi − Fci

)
e|q̇i |q̇−1

si

) (
α fi + q̇2

i

)−0.5 + Fvi q̇i , (9.14)

where Fci , Fsi , and Fvi are the Coulomb, static, and viscous friction coefficients,
respectively, and the Coulomb friction force is approximated as in [9] with posi-
tive (small) constants αi , q̇si is the constant due to the Stribeck velocity [1], and
i = 1, 2. �

9.2.2 Canonical Transformations of Port-Hamiltonian
Systems

We recap here the results of [7, 8] in terms of generalized coordinate transformations
for PH systems, and we apply the results of [27] to equivalently describe the original
PH system in a PH formwhich has a constant mass-inertia matrix in the Hamiltonian.

A generalized canonical transformation of [7] is applied in (9.1) via a set of
transformations

x̄ = Φ (x) (9.15)

H̄ (x̄) = H (x) + U (x) (9.16)

ȳ = y + α (x) (9.17)

ū = u + β (x) (9.18)

that changes the coordinates x into x̄ , the Hamiltonian H into H̄ , the output y into
ȳ, and the input u into ū. It is said to be a generalized canonical transformation for
PH systems if it transforms a PH system (9.1) into another one.

The class of generalized canonical transformations are characterized by the fol-
lowing theorems.

Theorem 9.1 ([8]) Consider the PH system (9.1). For any smooth scalar func-
tion U (x) ∈ R, and any smooth vector function β (x) ∈ R

M , there exists a pair of
smooth functions Φ (x) ∈ R

N and α (x) ∈ R
M such that the set of equations (9.15)–

(9.18) yields a generalized canonical transformation. The function Φ (x) yields a
generalized canonical transformation with U (x) and β (x) if and only if the partial
differential equation (PDE)
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∂Φ

∂ (x, t)

⎛

⎝ (J − R)
∂U

∂x

�
+ (K − S)

∂ (H + U )

∂x

�
+ gβ

−1

⎞

⎠ = 0 (9.19)

holds with a skew-symmetric matrix K (x), and a symmetric matrix S (x) satisfying
R (x) + S (x) ≥ 0. We have left out the arguments of Φ (x), H (x), J (x), R (x),
S (x), K (x), U (x), g (x), and β (x), for notational simplicity. Furthermore, the
change of output α (x), and the matrices J̄ (x̄), R̄ (x̄), and ḡ (x̄), are given by

α (x) = g (x)�
∂U (x)

∂x
(9.20)

J̄ (x̄) = ∂Φ (x)

∂x
(J (x) + K (x))

∂Φ (x)

∂x

�
(9.21)

ḡ (x̄) = ∂Φ (x)

∂x
g (x) (9.22)

R̄ (x̄) = ∂Φ

∂x
(R (x) + S (x))

∂Φ (x)

∂x

�
. (9.23)

Theorem 9.2 ([8]) Consider the PH system described by (9.1) and transform
it by the generalized canonical transformation with U (x) and β (x) such that
H (x) + U (x) ≥ 0. Then, the new input-output mapping ū → ȳ is passive with stor-
age function H̄ (x̄) if and only if

∂ (H + U )

∂ (x)

�
⎛

⎝ (J − R)
∂U

∂x

�
− S

∂ (H + U )

∂x

�
+ gβ

−1

⎞

⎠ ≥ 0. (9.24)

Suppose that (9.19) holds, that H (x) + U (x) is positive-definite and that the system
is zero-state detectable. Then, the feedback u = −β (x) − C (x) (y + α (x)) with
C (x) ≥ ε I > 0 renders the system asymptotically stable. Suppose moreover that
H + U is decrescent and that the transformed system is periodic, then, the feedback
renders the system uniformly asymptotically stable.

Consider a class of standard mechanical systems (9.2) in the PH framework with
a nonconstant mass-inertia matrix M (q). The aim of this section is to transform the
original system (9.2) into a PH formulation with a constant mass-inertia matrix via a
generalized canonical transformation [7]. The presented change of variables to deal
with a nonconstant mass- inertia matrix has first been proposed in [27].

Consider the system (9.1) with nonconstant M (q), and a coordinate transforma-
tion as

x̄ = Φ (x) = Φ (q, p) �
(

q̄
p̄

)

=
(

q − qd

T (q)−1 p

)

=
(

q − qd

T (q)� q̇

)

(9.25)
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with a constant desired position qd ∈ R
n , andwhere T (q) is a lower triangularmatrix

such that
T (q) = T

(
Φ−1 (q, p)

) = T̄ (q̄) (9.26)

and

M (q) = T (q) T (q)� = T̄ (q̄) T̄ (q̄)� . (9.27)

Consider now the Hamiltonian H (q, p) as in (9.4), and using (9.25), we realize
H̄ (x̄) = H

(
Φ−1 (x̄)

)
and V̄ (q̄) = V

(
Φ−1 (q̄)

)
as

H̄ (x̄) = 1

2
p̄� p̄ + V̄ (q̄) . (9.28)

The new form of the interconnection and damping matrices of the PH system are
realized via the coordinate transformation (9.25), the mass-inertia matrix decompo-
sition (9.27), and the new Hamiltonian (9.28), [26]. The resulting PH system is then
given by

[ ˙̄q
˙̄p
]

=
[

0n×n T̄ (q̄)−�

−T̄ (q̄)−1 J̄2 (q̄, p̄) − D̄ (q̄, p̄)

]

⎡

⎢
⎢
⎣

∂ H̄ (q̄, p̄)

∂ q̄
∂ H̄ (q̄, p̄)

∂ p̄

⎤

⎥
⎥
⎦

+
[
0n×n

Ḡ (q̄)

]

v +
[
0n×n

B̄ (q̄)

]

fe (9.29)

ȳ = Ḡ (q̄)�
∂ H̄ (q̄, p̄)

∂ p̄
(9.30)

with a new input u = v ∈ R
n , and where the skew-symmetric matrix J̄2 (q̄, p̄) takes

the form

J̄2 (q̄, p̄) = ∂
(
T̄ (q̄)−1 p̄

)

∂ q̄
T̄ (q̄)−� − T̄ (q̄)−1 ∂

(
T̄ (q̄)−1 p̄

)

∂ q̄

�
(9.31)

with

(q, p) = Φ−1 (q̄, p̄) (9.32)

together with the matrix D̄ (q̄, p̄), and the input matrices Ḡ (q̄), and B̄ (q̄), are
described by
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D̄ (q̄, p̄) = T̄ (q̄)−1 D
(
Φ−1 (q̄, p̄)

)
T̄ (q̄)−� , (9.33)

Ḡ (q̄) = T̄ (q̄)−1 G (q̄) , (9.34)

B̄ (q̄) = T̄ (q̄)−1 B (q̄) , (9.35)

respectively. Via the transformation (9.25), we then obtain a class of mechanical
systems with a constant (identity) mass-inertia matrix in the Hamiltonian function
as in (9.28), which equivalently describes the original system (9.2) with nonconstant
mass-inertia matrix.

Example 9.2 Consider the robotmanipulator of Example 9.1. Given themass-inertia
matrix M (q) = diag (a, b) with a, and b as in (9.10) and (9.11), respectively, we
compute a T (q) as in (9.27), s.t.,

T (q) =
[√

a 0
0

√
b

]

=
[√

msl2s cos (q2)
2 + I1 + I2 0

0
√

msl2s + I2

]

(9.36)

with I1, and I2 the inertias of the joints, and ms , ls as the mass and the length of
the shoulder of the robot, respectively. Based on T (q), we can compute the matrices
J̄2 (q̄, p̄), D̄ (q̄, p̄), Ḡ (q̄), and B̄ (q̄), as in (9.31), (9.33)–(9.35).

The coordinate transformation of this section is used in the rest of this chapter in
order to deal with nonconstant mass-inertia matrices.

9.2.3 Hamilton–Jacobi Inequality

In order to show the usefulness of some results on position controlwith force feedback
presented later, we apply the Hamilton–Jacobi inequality useful forL2 gain analysis
of nonlinear systems [26]. Toward this end we analyze theL2-gain of a closed-loop
system w.r.t. an L2 disturbance δ.

Consider the time-invariant nonlinear system

˙̂x = F
(
x̂
)+ G̃
(
x̂
)
δ

ŷ = h
(
x̂
) (9.37)

with states x̂ , input disturbance δ, output ŷ and continuously differentiable vec-
tor functions F

(
x̂
)
, G̃
(
x̂
)
and h
(
x̂
)
. Let γ be a positive constant, then the L2-

gain bound is found if for a γ there exists a continuously differentiable, positive-
semidefinite function W

(
x̂
)
that satisfies the Hamilton–Jacobi inequality (HJI)
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(
∂W
(
x̂
)

∂ x̂

)�
F
(
x̂
)+ 1

2

1

γ 2

(
∂W
(
x̂
)

∂ x̂

)�
G̃
(
x̂
)

G̃
(
x̂
)� ∂W

(
x̂
)

∂ x̂
+ 1

2
h
(
x̂
)� h
(
x̂
) ≤ 0

(9.38)
for x̂ ∈ R

N . The system (9.37) is then finite-gainL2 stable and its gain is less than
or equal to γ .

9.2.4 Stability Analysis for Constant External Forces

Consider a class of PH systems as described by (9.1). We now briefly recall the
procedure of [14], i.e., we analyze the stability of the system (9.1) for a constant, and
nonzero, input w = ū ∈ R

M , leading to a forced equilibrium x̆ ∈ R
N . The forced

equilibria x̆ are solutions of

[
J (x̆) − R (x̆)

] ∂ H

∂x
(x̆) + g (x̆) ū = 0 (9.39)

and if [J (x) − R (x)] is invertible for every x ∈ R
N , the unique solution of (9.39)

is
∂ H

∂x
(x) = K (x) ū where

K (x) = − [J (x) − R (x)]−1 g (x) . (9.40)

Based on (9.40), we define the matrices

Js (x) � K � (x) J (x)K (x) (9.41)

and

Rs (x) � K � (x) R (x)K (x) (9.42)

which we use below to find the embedded Hamiltonian system. Clearly, Js (x) and
Rs (x) satisfy Js (x) = −J�

s (x), and Rs (x) = R�
s (x) ≥ 0, respectively. Let us now

consider the following PH system

[
ẋ
ζ̇

]

= [Ja (x) − Ra (x)]

⎡

⎢
⎣

∂ Ha (x)

∂x
∂ Ha (x)

∂ζ

⎤

⎥
⎦ (9.43)

on the augmented state space (x, ζ ) ∈ R
N × R

M , endowedwith the structurematri-
ces
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Ja (x) =
[

J (x) J (x)K (x)

− (J (x)K (x))� Js (x)

]

(9.44)

Ra (x) =
[

R (x) R (x)K (x)

(R (x)K (x))� Rs (x)

]

(9.45)

with K (x), Js (x), and Rs (x) as in (9.40)–(9.42), respectively, and with an aug-
mented Hamiltonian

Ha (x, ζ ) � H (x) + Hs (ζ ) , Hs (ζ ) � −ū�ζ. (9.46)

Theorem 9.3 ([14]) Consider, a class of PH systems (9.1) with a constant input
w = ū, and the matrix [J (x) − R (x)] invertible for every x ∈ R

N . Define K (x)

by (9.40), and assume the functions Ki j to satisfy

∂Ki j

∂xk
= ∂Kk j

∂xi
, i, k ∈ n̄ � {1, . . . ,N } , j ∈ m̄ � {1, . . . ,M } . (9.47)

Also, assume that there exist locally smooth functionsC j : RN → R, called Casimirs
[14], satisfying

Ki j (x) = ∂C j

∂xi
(x) , j ∈ m̄, i ∈ n̄ (9.48)

and ζ j = C j (x) + c j , where c1, . . . , cM depend on the initial conditions of ζ (t) in
(9.43). Then, the dynamics of (9.1) with input u = ū is asymptotically stable at the
equilibrium point x̆ fulfilling (9.39), and it can be alternatively represented by

ẋ = [J (x) − R (x)]
∂ Hr

∂x
(x) (9.49)

where

Hr (x) � H (x) −
M∑

j=1

ū jζ j (9.50)

and Hr qualifies as a Lyapunov function for the forced dynamics (9.49).

Remark 9.2 The L2-gain analysis of Sect. 9.2.3 gives a bound on the relation
between an input δ and a output ŷ as in (9.37) of a proposed closed-loop system
for aL2-input disturbance δ. TheL2-gain analysis differs from Theorem 9.3 in the
sense that the L2-gain analysis is related to the output ŷ while the analysis in this
section is for the case where the system is asymptotically stable, i.e., the system
(9.29) has a new equilibrium point caused by a constant fe.
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9.3 Force Feedback via Dynamic Extension

In this section, a force feedback strategy is introduced for a mechanical system
in the PH framework. The force feedback is included to bring robustness and better
tunable properties in the position control strategy. In comparison with force feedback
in the EL framework [3, 24], the force feedback in the PH framework has nicely
interpretable control strategies, as well as cleaner tuning opportunities that grant a
better performance. The force feedback is achieved via a dynamic extension and
a change of variables that introduces a new state for the PH system (9.29). The
dynamics of the new state is realized such that it depends on the internal forces of
the mechanical system. The internal forces are given by a set of kinetic, potential,
and energy dissipating elements. The dynamic extension is realized such that the
extended system also has a PH structure. The present work is inspired by the results
of [4, 5, 22], which treat position feedback.

Denote the internal forces on the system (9.2) by fin (q, p), i.e.,

fin (q, p) = −∂ H (q, p)

∂q
− D (q, p)

∂ H (q, p)

∂p
(9.51)

with H (q, p) as in (9.4). Define a new state z ∈ R
n with dynamics depending on

the internal forces fin (q, p), such that,

ż = Y �T (q)−1 fin (q, p) (9.52)

with Y a constant matrix, to be defined later on. Consider now the coordinate trans-
formation

p̂ = p̄ − Az (9.53)

with p̄ defined in (9.25), and with A a constant matrix that we use later to tune our
controller. Furthermore, we can define for system (9.29) the control input

v = Ḡ (q̄)−1 Aż + v̄ (9.54)

where v̄ is a new input, which realizes an extended PH system with states p̂ and z,
i.e.,

⎡

⎣

˙̄q
˙̂p
ż

⎤

⎦ =
⎡

⎣
0n×n T̄ −� T̄ −�Y
−T̄ −1 J̄2 − D̄

(
J̄2 − D̄

)
Y

−Y �T̄ −1 −Y � ( J̄�
2 + D̄
) −Y � ( J̄�

2 + D̄
)

Y

⎤

⎦

︸ ︷︷ ︸

Ĵ(q̄, p̂,z)−R̂(q̄, p̂,z)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ Ĥ
(
q̄, p̂, z
)

∂ q̄
∂ Ĥ
(
q̄, p̂, z
)

∂ p̂
∂ Ĥ
(
q̄, p̂, z
)

∂z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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+
⎡

⎣
0n×n

Ḡ (q̄)

0n×n

⎤

⎦ v̄ +
⎡

⎣
0n×n

B̄ (q̄)

0n×n

⎤

⎦ fe (9.55)

ŷ = Ḡ (q̄)�
∂ Ĥ
(
q̄, p̂, z
)

∂ p̂
(9.56)

with Hamiltonian

Ĥ
(
q̄, p̂, z
) = 1

2
p̂� p̂ + 1

2
z�K −1

z z + V̄ (q̄) (9.57)

where Kz > 0, and Y = AKz . In (9.55) the arguments of T (q̄), J̄2(q̄, p̂), and
D̄(q̄, p̂), are left out for notational simplicity.

Remark 9.3 Although in (9.55) the ż dynamics are described in terms of J̄2(q̄, p̂),
D̄(q̄, p̂), and Ĥ(q̄, p̂, z), they are still the same as described by (9.52) with (9.51),
in the new coordinates (9.25).

It can be verified that system (9.55) is PH, since

Ĵ
(
q̄, p̂
) =
⎡

⎣
0n×n T̄ (q̄)−� T̄ (q̄)−� Y

−T̄ (q̄)−1 J̄2
(
q̄, p̂
)

J̄2
(
q̄, p̂
)

Y

−Y �T̄ (q̄)−1 −Y � J̄2
(
q̄, p̂
)� −Y � J̄2

(
q̄, p̂
)�

Y

⎤

⎦ (9.58)

is skew-symmetric, while

R̂
(
q̄, p̂
) =
⎡

⎣
0n×n 0n×n 0n×n

0n×n D̄
(
q̄, p̂
)

D̄
(
q̄, p̂
)

Y
0n×n Y � D̄

(
q̄, p̂
)

Y � D̄
(
q̄, p̂
)

Y

⎤

⎦ (9.59)

can be shown to be positive-semidefinite via the Schur complement. Notice that by
extending the dynamics of (9.29) with the internal forces ż in the input (9.54), we
include force feedback and preserve the PH structure.

Remark 9.4 In [16] we present results for the case when the mass-inertia matrix is
constant. The case for a constant M does not require the coordinate transformation
(9.25), and system (9.55) is then described by T = I , J̄2 = 0, D̄ = D, Ḡ = G,
B̄ = B, Y = M−1AKz and Hamiltonian

Ĥc = 1

2
p̂�M−1 p̂ + 1

2
z�Kzz + V̄ (q̄) (9.60)

instead of (9.57).

In this section, we have realized an extended mechanical system that includes
force feedback and preserves the PH structure. In the next section, we deal in more
detail with position control and stability analysis.
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9.4 Position Control with Modeled Internal Forces

In this section, a position control strategy with force feedback is introduced. We feed
back themodeled internal forces, and the resulting system preserves the PH structure.
The control laws here presented are better tunable and more insightful solutions in
comparison with the solutions given in the EL framework [3, 19].

9.4.1 Position Control with Zero External Forces

In this section, energy-shaping [11, 19, 26] and damping injection are combined
with force feedback (of modeled forces) to realize position control.

Theorem 9.4 Consider system (9.55) and assume fe = 0. Then, the control input

v = Ḡ(q̄)−1

(
∂ V̄ (q̄)

∂q̄
− K p (q̄ − qd)

)

− C ŷ (9.61)

with K p > 0, C > 0, and qd being the desired constant position, asymptotically
stabilizes the extended system (9.55) at (q̄, p̂, z) = (qd , 0, 0).

Proof This is awell-known result, see [26], butwe repeat the proof here for notational
reasons and for ease of reading. The control input (9.61) applied to system (9.55)
with fe = 0 realizes the closed-loop system described by

⎡

⎣

˙̄q
˙̂p
ż

⎤

⎦ =
⎡

⎣
0n×n T̄ −� T̄ −�Y
−T̄ −1 J̄2 − D̄ − ḠCḠ� (

J̄2 − D̄
)

Y
−Y �T̄ −1 −Y � ( J̄�

2 + D̄
) −Y � ( J̄�

2 + D̄
)

Y

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ Ĥd

∂ q̄
∂ Ĥd

∂ p̂
∂ Ĥd

∂z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
F(x̂)

(9.62)

ŷ = Ḡ� ∂ Ĥd

∂ p̂
(9.63)

with Hamiltonian

Ĥd = 1

2
p̂� p̂ + 1

2
(q̄ − qd)

�K p(q̄ − qd) + 1

2
z�K −1

z z, (9.64)

where the arguments of Ĥd(q̄, p̂, z), T (q̄), J̄2(q̄, p̂), D̄(q̄, p̂), Ḡ(q̄), and B̄(q̄) are
left out for simplicity. Take (9.64) as candidate Lyapunov function, which then gives
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˙̂Hd = −

⎡

⎢
⎢
⎣

∂ Ĥd

∂ p̂
∂ Ĥd

∂z

⎤

⎥
⎥
⎦

�
[

D̄ + ḠCḠ� −D̄Y
−Y � D̄ Y � D̄Y

]

︸ ︷︷ ︸
K

⎡

⎢
⎢
⎣

∂ Ĥd

∂ p̂
∂ Ĥd

∂z

⎤

⎥
⎥
⎦ . (9.65)

Since Ḡ(q̄) is full rank and C > 0, via the Schur complement it can be shown
that matrix K in (9.65) is positive definite. Subsequently, via LaSalle’s invariance
principlewe can prove that that the closed-loop system (9.62) is asymptotically stable
in q̄ = qd . �	

Substituting v in (9.54) by (9.61) then gives the total control input u for the original
system (9.2), which in terms of the original coordinates (q, p) becomes

u = G(q)−1T (q)

(

Aż + ∂V (q)

∂q
− K p(q − qd )

)

− CG(q)�
(

M(q)−1 p − T (q)−� Az
)

(9.66)
with ż as in (9.51). The above results correspond to the case when the external forces
on the system are zero, i.e., fe = 0. In the next subsection we look more in detail at
the case when fe 
= 0.

9.4.2 Disturbance Attenuation Properties

We now show the advantages of the proposed extended system with force feedback
for disturbance attenuation to unknown external forces. The closed-loop PH system
(9.62) with force feedback is asymptotically stable in the desired position qd when it
has zero forces exerted from the environment, i.e., fe = 0. To look at the effect of fe

being different from zero, we analyze theL2-gain w.r.t. anL2 disturbance fe, [26].
It follows that

Theorem 9.5 Consider a closed-loop system (9.62), an L2 disturbance fe, and
a constant matrix C with λc ∈ R

n being its set of eigenvalues. We then obtain a
disturbance attenuation of fe when the following conditions hold:

Γ1 (q, p) = −D (q, p) + G (q)�
(

−C + 1

2
In×n

)

G (q) + 1

2

1

γ 2
B (q) B (q)�

1

2
≤ 0

(9.67)

Γ2 (q) = AT (q)−� G (q)�
(

−C + 1

2
In×n

)

G (q)� T (q)−1 A

+ 1

2

1

γ 2
AT (q)−1 B (q) B (q)� T (q)−� A ≤ 0 (9.68)

Γ3 (q) = 1

2

1

γ 2
AT (q)−1 B (q) B (q)� ≥ 0 (9.69)
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λc ≥ 1

2
(9.70)

with γ being a positive constant.

Proof Consider the closed-loop system (9.62), but with fe 
= 0, i.e.,

⎡

⎣

˙̄q
˙̂p
ż

⎤

⎦ =
⎡

⎣
0n×n T̄ −� T̄ −�Y
−T̄ −1 J̄2 − D̄ − ḠCḠ� (

J̄2 − D̄
)

Y
−Y �T̄ −1 −Y � ( J̄�

2 + D̄
) −Y � ( J̄�

2 + D̄
)

Y

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ Ĥd

∂ q̄
∂ Ĥd

∂ p̂
∂ Ĥd

∂z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
⎡

⎣
0
B̄
0

⎤

⎦ fe

(9.71)

ŷ = Ḡ� ∂ Ĥd

∂ p̂
, (9.72)

where the arguments of Ĥd(q̄, p̂, z), T (q̄), J̄2(q̄, p̂), D̄(q̄, p̂), Ḡ(q̄), and B̄(q̄) are
left out for notational simplicity. We analyze the HJI (9.38) first for system (9.71)
withW

(
x̂
) = Ĥd

(
x̂
)
to determine if this could be a solution. Given δ = fe weobtain

−
(

∂ Ĥd

∂ x̂

)�
R̃

∂ Ĥd

∂ x̂
+ 1

2

1

γ 2

(
∂ Ĥd

∂ p̂

)�
B̄ B̄� ∂ Ĥd

∂ p̂
+ 1

2
ŷ� ŷ ≤ 0 (9.73)

with x̂ = (q̄, p̂, z), and

R̃
(
x̂
) =
⎡

⎣
0n×n 0n×n 0n×n

0n×n D̄
(
q̄, p̂
)+ Ḡ (q̄) CḠ (q̄)� D̄

(
q̄, p̂
)

Y
0n×n Y � D̄

(
q̄, p̂
)

Y � D̄
(
q̄, p̂
)

Y

⎤

⎦ . (9.74)

We compute the left-hand side term of the Hamilton–Jacobi inequality (9.38) based
on the function W

(
x̂
) = Ĥd

(
x̂
)
with Ĥd

(
x̂
)
as in (9.64), and on the functionF

(
x̂
)

of the closed-loop (9.62). Consequently, we obtain

∂W

∂ x̂

�
F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ Ĥd

∂q̄
∂ Ĥd

∂ p̂
∂ Ĥd

∂z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

⎡

⎣
0 T̄ −� T̄ −�Y

−T̄ −1 J̄2 − D̄ − ḠCḠ� (
J̄2 − D̄

)
Y

−Y �T̄ −1 −Y � ( J̄�
2 + D̄
) −Y � ( J̄�

2 + D̄
)

Y

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ Ĥd

∂ q̄
∂ Ĥd

∂ p̂
∂ Ĥd

∂z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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= −
(

∂ Ĥd

∂ p̂
+ Y

∂ Ĥd

∂z

)�
D̄

(
∂ Ĥd

∂ p̂
+ Y

∂ Ĥd

∂z

)

− ∂ Ĥd

∂ p̂

�
ḠCḠ� ∂ Ĥd

∂ p̂
,

(9.75)

where we have left out the arguments of W
(
x̂
)
, F
(
x̂
)
, Ḡ (q̄), T̄ (q̄), Ĥd

(
q̄, p̂, z
)
,

and D̄
(
q̄, p̂
)
, for notational simplicity. From ŷ as in (9.63), p̂ as in (9.53), D̄

(
q̄, p̂
)

as in (9.33), x̂ = (q̄, p̂, z
)
, and Y = AKz , we rewrite (9.75) as

∂W
(
x̂
)

∂ x̂

�
F
(
x̂
) = − ( p̂ + Y K −1

z z
)�

D̄
(
q̄, p̂
) (

p̂ + Y K −1
z z
)− ŷ�C ŷ

= −∂ H (q, p)

∂p

�
D (q, p)

∂ H (q, p)

∂p
− ŷ�C ŷ. (9.76)

Based on a input matrix G̃ (q̄) defined as

G̃
(
x̂
) =
⎡

⎣
0n×n

B̄ (q̄)

0n×n

⎤

⎦ (9.77)

with B̄ (q̄) as in (9.35), we compute the second term of the left-hand side of the
Hamilton–Jacobi inequality (9.38) as

Z̃
(
x̂
) = 1

2

1

γ 2

(
∂W
(
x̂
)

∂ x̂

)�
G̃
(
x̂
)

G̃� (x̂
) ∂W
(
x̂
)

∂ x̂

= 1

2

1

γ 2
p̂� B̄ (q̄) B̄ (q̄)� p̂ (9.78)

and we now substitute p̂ as in (9.53) in (9.78). Hence, we obtain

Z̃
(
x̂
) = 1

2

1

γ 2
( p̄ − Az)� B̄ (q̄) B̄ (q̄)� ( p̄ − Az)

= 1

2

1

γ 2

(
Υ (q, p)� Υ (q, p) − Υ (q, p)� Z − Z�Υ (q, p) + Z� Z

)
(9.79)

where

Z
(
x̂
) = B (q)� T (q)−� Az (9.80)

Υ (q, p) = B (q)�
∂ H (q, p)

∂p
. (9.81)

Finally, based on the output ŷ = h
(
x̂
)
, and the results (9.76), and (9.79), the

Hamilton–Jacobi inequality (9.38) is rewritten as
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− ∂ H (q, p)

∂p

�
D (q, p)

∂ H (q, p)

∂p
− ŷ�C ŷ + Z̃ + 1

2
ŷ� ŷ ≤ 0 (9.82)

with Z̃
(
x̂
)
as in (9.79). We now rewrite ŷ as

ŷ = Ḡ (q̄)�
∂ Ĥ
(
x̂
)

∂ p̂
= Ḡ (q̄)� p̂ = G (q)�

∂ H (q, p)

∂p
− G (q)� T (q)−1 Aẑ

(9.83)
and we replace (9.83) in (9.82). Lastly, we have that

⎡

⎣
∂ H (q, p)

∂p
z

⎤

⎦

� [
Γ1 (q, p) −Γ3 (q)�
−Γ3 (q) Γ2 (q)

]

︸ ︷︷ ︸
PH Ji

⎡

⎣
∂ H (q, p)

∂p
z

⎤

⎦ ≤ 0 (9.84)

The inequality (9.84) is satisfied when matrix PH Ji ≤ 0, which is the case if matrix
C of the control law (9.61) is designed such that the inequalities (9.67)–(9.70) hold,
with λc ∈ R

n being the set of eigenvalues of C . �	
Remark 9.5 TheHamilton–Jacobi inequality (9.84) based on the closed-loop system
(9.71) holds when the set of eigenvalues of the matrix C are chosen such that the
conditions forΓ1 (q, p),Γ2 (q),Γ3 (q), and λc are satisfied. It follows that increasing
the eigenvalues of C allows for a smaller γ , and thus, a smaller L2-gain bound.
Increasing the eigenvalues of C corresponds to increasing the damping injection.

In the next subsectionwe look at the special casewhen fe is unknown, but constant.

9.4.3 Stability Analysis for Constant External Forces

Here, we propose an equivalent description of the system (9.62), with a different
Hamiltonian functionwhich can be used as a Lyapunov function for constant nonzero
external forces, i.e., fe ∈ R

n/ {0}. We embed the extended system into a larger PH
system for which a series of Casimir functions are constructed. The analysis is based
on the results of [14].

We proceed to apply the results in Sect. 9.2.4 to the closed-loop system (9.62) with
constant nonzero external forces as input, i.e., ū = fe. We compute matrix K

(
x̂
)

as in (9.40), and obtain

K
(
x̂
) = −

⎡

⎢
⎢
⎢
⎣

T̄
(− J̄2 + D̄

)
T̄ � 0n×n T̄ Y −�

0n×n

(
ḠCḠ�)−1 −

(
ḠCḠ�)−1

Y −�

−Y −1T̄ � −Y −1
(

ḠCḠ�)−1
Y −1
(

ḠCḠ�)−1
Y −�

⎤

⎥
⎥
⎥
⎦

⎡

⎣
0n×n
B̄ (q̄)

0n×n

⎤

⎦ .

(9.85)
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Here, we left out the arguments of T̄ (q̄), Ḡ (q̄), J̄2
(
q̄, p̂
)
, and D̄

(
q̄, p̂
)
for notational

simplicity. If Ĝ (q̄) = (Ḡ (q̄) CḠ (q̄)�
)−1

, then (9.85) leads to

K
(
x̂
) =
⎡

⎣
0n×n

−Ĝ (q̄) B̄ (q̄)

Y −1Ĝ (q̄) B̄ (q̄)

⎤

⎦ . (9.86)

Following, the results of Theorem 9.3, we assume that the local smooth functions
C j (x), j ∈ n, satisfy the integrability condition (9.47). It follows that the dynamics
of (9.71) can be alternatively represented by (9.49) where Hr

(
x̂
)
is

Hr
(
x̂
) = Ĥd

(
x̂
)−

n∑

j=1

fe jC j (x)

= Ĥd
(
x̂
)+ f �

e Ĝ (q̄) p̂ − f �
e Y −1Ĝ (q̄) z + f �

e c, (9.87)

where x̂ = (q̄, p̂, z
)
, and Ĥd

(
x̂
)
as in (9.64). If we choose, the constant c =

−K f fe ∈ R
n , with K f > 0. Then, we can rewrite (9.87) as

Hr
(
x̂
) = 1

2

⎡

⎢
⎢
⎣

q̄ − qd

p̂
z
fe

⎤

⎥
⎥
⎦

�⎡

⎢
⎢
⎣

K p 0n×n 0n×n 0n×n

0n×n In×n 0n×n B̄�Ĝ�

0n×n 0n×n K −1
z −B̄�Ĝ�Y −�

0n×n Ĝ B̄ −Y −1Ĝ B̄ K f

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

P̂(q̄)

⎡

⎢
⎢
⎣

q̄ − qd

p̂
z
fe

⎤

⎥
⎥
⎦ > 0

(9.88)
where we have left out the arguments of Ḡ (q̄) and B̄ (q̄) for notational simplicity.
Since Ḡ (q̄) and B̄ (q̄) are full rank, and C > 0, via the Schur complement it can be
shown that matrix P̂ (q̄) in (9.88) is positive definite, and then the inequality (9.88)
holds. Furthermore, via Theorem 9.3, we have that

Ḣr
(
x̂
) = −∂ Hr

(
x̂
)

∂ x̂

�
R̃
(
x̂
) ∂ Hr
(
x̂
)

∂ x̂
≤ 0 (9.89)

and thus Hr
(
x̂
)
qualifies as a Lyapunov function for the forced dynamics (9.49).

Then, Ḣr
(
x̂
) ≤ 0, and given that

∂ Ĥd
(
x̂
)

∂ p̂
= p̂, and

∂ Ĥd
(
x̂
)

∂z
= K −1

z z, we know

that p̂, z → 0 as t → ∞. Given the dynamics of system (9.49), ˙̂p = ż = 0, it can
be verified that the largest invariant set for Ḣr

(
x̂
) = 0 equals

(
q̄ − qd − K −1

p B̄ (q̄)

fe, p̂, z
) = (0, 0, 0). LaSalle’s invariance then implies that the system is asymptot-

ically stable in
q̄ = qd + K −1

p B̄ (q̄) fe. (9.90)
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Remark 9.6 The L2-gain analysis of Sect. 9.4.2 gives a bound on the relation
between input δ = fe and the output ŷ of the closed-loop system (9.71) for an L2-
input disturbance δ. The L2-gain analysis differs from the results of Sect. 9.4.3 in
the sense that the L2-gain analysis evaluates a bound on the output ŷ in relation
to the size of the input δ, while the analysis in Sect. 9.4.3 is for the case where the
system is asymptotically stable, i.e., ŷ → 0, with a new equilibrium point caused by
a constant fe, i.e., q̄ , which is different from the desired equilibrium point qd . Notice
that the L2-gain bound is related to the amount of damping injected, while the new
equilibrium point (steady-state position) is related to the stiffness parameter K p.

9.4.4 Integral Position Control

The analysis in the previous section shows that, under the assumption that fe is con-
stant, we can expect a constant steady-state error in the position of system (9.71).
Furthermore, the analysis also justifies the application of integral control, since inte-
gral control compensates for constant steady-state errors. The main contribution of
this section is to realize a type of integral position control for a class of standard
mechanical systems with dissipation in the PH framework. For the extended system
(9.55), with fe constant, we propose a coordinate transformation to include the posi-
tion error in the new output. By having the position error in the passive output, we
can interconnect the closed-loop with an integrator in a passivity-preserving way,
i.e., preserving the PH structure. The results of this section are inspired by the works
of [4, 5, 22].

Theorem 9.6 Consider system (9.55) and assume fe 
= 0 and constant. Define the
integrator state ξ with dynamics

ξ̇ = −B̄(q̄)�( p̂ + Ki (q̄ − qd)) (9.91)

qd the desired constant position and Ki > 0 is a constant matrix. Then, the control
input

v = Ḡ(q̄)−1
(

∂ V̄ (q̄)

∂q̄
− K p (q̄ − qd ) − Ki ˙̄q − B̄(q̄)ξ

)

− CḠ(q̄)�
(

p̂ + Ki (q̄ − qd )
)

(9.92)
with K p > 0, and C > 0, asymptotically stabilizes the extended system (9.55) at
(q̄, p̂, z) = (qd , 0, 0), i.e., zero steady-state error.

Proof We use the results of [5]. Consider first the coordinate transformation

p̃ = p̂ + Ki (q̄ − qd) (9.93)
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with a constant matrix Ki > 0, which then implies that

˙̃p = ˙̂p + Ki ˙̄q (9.94)

since qd is constant. The control input (9.92) with integrator dynamics (9.91) then
realizes the closed-loop system

⎡

⎢
⎢
⎣

˙̄q
˙̃p
ż
ξ̇

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

−Ki K −1
p T̄ −� T̄ −�Y 0

−T̄ −1 J̄2 − D̄ − ḠCḠ� (
J̄2 − D̄

)
Y B̄

−Y �T̄ −1 −Y � ( J̄�
2 + D̄
) −Y � ( J̄�

2 + D̄
)

Y 0

0 −B̄� 0 0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ Ĥi

∂ q̄
∂ Ĥi

∂ p̃
∂ Ĥi

∂z
∂ Ĥi

∂ξ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9.95)

ỹ = Ḡ� ∂ Ĥi

∂ p̃
(9.96)

with Hamiltonian

Ĥi = 1

2
p̃� p̃ + 1

2
(q̄ − qd)

�K p(q̄ − qd) + 1

2
z�K −1

z z + 1

2
( fe − ξ)�( fe − ξ),

(9.97)
where the arguments of Ĥi (q̄, p̃, z, ξ), T (q̄), J̄2(q̄, p̃), D̄(q̄, p̃), Ḡ(q̄), and B̄(q̄) are
left out for notational simplicity. Furthermore, notice that

ỹ = Ḡ(q̄)� p̃ = Ḡ(q̄)�
(

p̂ + Ki (q̄ − qd)
)
. (9.98)

Take (9.97) as candidate Lyapunov function, which then gives

˙̂Hi = −

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ Ĥi

∂q̄

∂ Ĥi

∂ p̃

∂ Ĥi

∂z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

⎡

⎣
Ki K −1

p 0 0
0 D̄ (q̄, p̃) + Ḡ (q̄) CḠ (q̄)� −D̄ (q̄, p̃) Y
0 −Y � D̄ (q̄, p̃)� Y � D̄ (q̄, p̃)� Y

⎤

⎦

︸ ︷︷ ︸
U (q̄, p̃)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ Ĥi

∂q̄

∂ Ĥi

∂ p̃

∂ Ĥi

∂z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9.99)

Since Ḡ (q̄) is full rank, D̄ (q̄, p̃) ≥ 0, Ki > 0, K p > 0, C > 0, Kz > 0, Y = AKz

and A being a constant matrix, via the Schur complement it can be shown that matrix

U (q̄, p̃) ≥ 0, and thus ˙̂Hi ≤ 0 holds. Define the set
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O =
{
(q̄, p̃, z, ξ) | ˙̂Hi (q̄, p̃, z, ξ) = 0

}
. (9.100)

Given that ˙̂Hi (qd , 0, 0, ξ) = 0, ∀ξ , we have that ξ is free. Assume ξ − fe = c1 
= 0
constant with c1 ∈ R

n , thus ξ̇ = 0. Then, the dynamics ˙̃p is

˙̃p = B̄ (qd) (c1 + fe) 
= 0. (9.101)

Since (9.101) is constant, then p̃ will change over time, and hence, we have a con-
tradiction. Thus, the largest invariant set in O is M = {qd , 0, 0, fe}. Via LaSalle’s
invariance principle we conclude that the system (9.95) is asymptotically stable at
(q̄, p̃, z, ξ) = (qd , 0, 0, fe), which means that the constant disturbance is compen-
sated by ξ , i.e., ξ → fe. �	

Substituting v in (9.54) by (9.92) then gives the total control input u for the original
system (9.2), which in terms of the original coordinates q, p becomes

u = G(q)−1T (q)

(

Aż + ∂V (q)

∂q
− K p(q − qd) − Ki q̇

)

− G(q)−1B(q)ξ

− CG(q)�
(

M(q)−1 p − T (q)−� Az − T (q)−�Ki (q − qd)
)

(9.102)

with ż as in (9.52).
Here, we have applied an integral type control law as in (9.92) to compensate

for position errors caused by constant forces. We observe in Theorem 9.6 how our
integral control strategy follows naturally from the PH structure.

9.5 Position Control with Measured Forces

In the previous section, we have presented a position control strategy that exploits
feedback of the modeled internal forces. In other words, the forces used for feedback
are based on the dynamical model and the measured positions and velocities. In
this section, we assume we have force sensors, which provide the (real) total forces
working on the system. Then, we feed back the readings of the force sensors in the
input of the system (9.29). Notice that the measured total forces f in the system can
be described by

f (q, p) = fin (q, p) + B(q) fe (9.103)

with fin (q, p) as in (9.51). In the previous section, we used (9.51) to model and
compute the internal forces for feedback control. We can still use (9.51) to describe
the internal forces, while adding the external forces to model the total forces in the
system. Let f̄ (q̄, p̄) be the total forces multiplied by the matrix T (q) in (9.25), i.e.,

f̄
(
Φ−1 (q̄, p̄)

) = f̄ (q, p) = T (q)−1 f (q, p) (9.104)



204 M. Muñoz-Arias et al.

and consider now system (9.29). Notice that in terms of the coordinates q̄, p̄ that
f̄ (q̄, p̄) is then described by

f̄ (q̄, p̄) = −T̄ (q̄)−1 ∂ H̄ (q̄, p̄)

∂q̄
+ ( J̄2 (q̄, p̄) − D̄ (q̄, p̄)

) ∂ H̄ (q̄, p̄)

∂ p̄
+ B̄ (q̄) fe.

(9.105)
Define for system (9.29) the input

v = −Ḡ(q̄)−1 f̄ (q̄, p̄) + v̄ (9.106)

with v̄ being a new input vector, which then changes (9.29) into the PH system

[ ˙̄q
˙̄p
]

=
[

0 T̄ (q̄)−�

−T̄ (q̄)−1 0

]

⎡

⎢
⎢
⎣

∂ H̄τ (q̄, p̄)

∂q̄
∂ H̄τ (q̄, p̄)

∂ p̄

⎤

⎥
⎥
⎦+
[

0
Ḡ (q̄)

]

v̄ (9.107)

ȳ = Ḡ (q̄)�
∂ H̄τ (q̄, p̄)

∂ p̄
(9.108)

with Hamiltonian

H̄τ (q̄, p̄) = 1

2
p̄� p̄. (9.109)

We then obtain (9.29), with all forces canceled. We can thus control the system
without the problems described in Sect. 9.4.2. Notice that we need to describe (9.2)
in the equivalent form (9.29) in order to realize force rejection and preserve the PH
structure. In the original coordinates (q, p) the control input (9.106) is given by

u = −G(q)−1 f (q, p) + v̄ (9.110)

with f (q, p) as in (9.103). Notice that the advantage here is that we can apply control
methodswithout having toworry about the external forces (disturbances) and internal
forces (potential forces and friction). However, (9.110) implies that there is no tuning
possible in the application of force feedback. In Sect. 9.4.2 the disturbances are not
rejected, however, we have the possibility to tune the force feedback with the matrix
A.

In the next section we illustrate, via simulation of the system (9.7), the results of
Sects. 9.4 and 9.5 for obtaining asymptotic stability in a desired position.

9.6 Simulation Results: Two-DOF Shoulder System

Consider the system of Examples9.1 and 9.2. We have determined the parame-
ters of the two-DOF shoulder system of Fig. 9.1 as Ii = {0.013, 1.692}, Fci =
{0.005, 0.025}, Fsi = {1.905, 2.257}, Fvi = {4.119, 4.973}, and q̇si ={0.167, 0.170}.
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Fig. 9.3 Position control via force feedback (blue line) with fe = col (0, 0)� at t ≤ 5s. Integral
control (blue line) with fe = col (3,−3)� at t ≥ 10s. Total force rejection (red line) at t ≥ 0. Initial
conditions (q (0) , p (0))� = (0, 0, 0, 0)�. Solid line q1. Dashed line q2

We have a link length of lc = 0.249m, m = 3.9 kg; matrices A = diag (0.5, 0.7),
Kz = diag (2, 2), K p = diag (15, 15), and C = diag (10, 10); an initial position
q(0) = (0, 0), and desired position qd = (1, 0.5) rad. We obtain the desired posi-
tion qd = (1, 0.5)� from an initial position q (0) = (0, 0)� at t = t1 ≥ 3s with the
control law (9.61). Then, we apply a constant nonzero force, i.e., fe = (3,−3)�, at
t2 =≥ 5s, to the closed-loop system (9.62). Results are shown in Fig. 9.3. The new
position is q = K −1

p fe + qd = (1.2, 0.3)� (blue line) which corresponds to a differ-
ent equilibrium point as in (9.90). The results presented here validate the fact that the
PH system (9.62) remains stable with a constant nonzero input ū = fe. Furthermore,
we want to recover the desired position by applying the integral control law (9.102)
to the PH system (9.62) at t3 ≥ 10s, with a matrix Ki = diag (1, 0.5). We observe
how the system is stabilized again at the desired position qd at t ≥ 11s without a
steady-state error.

Finally, we apply a constant nonzero force, i.e., fe = (3,−3)�, to the two-DOF
inputs of the to the system (9.7), and apply (9.110) at t = t2 ≥ 5s, which includes
the measured forces of the sensors. Then, the equilibrium is achieved immediately,
independent of fe as seen in Fig. 9.3.

9.7 Concluding Remarks

We have provided a method for position control via force feedback in the PH setting.
The method relies on a structure preserving extension of the system. Disturbance
attenuation is studied, and robustness is obtained by extending the system once more
in a structure preserving way with integral type dynamics. Finally, we present a
method when forces are reconstructed and fed back directly from the sensor infor-
mation.
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The robotic armexample shows that performance of themethod is very good. Tests
with the robotic arm are under way, and show promising results, also in comparison
with other control methods.
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