
Chapter 7
Emergence of Oscillations in Networks
of Time-Delay Coupled Inert Systems

Erik Steur and Alexander Pogromsky

Abstract We discuss the emergence of oscillations in networks of single-input–
single-output systems that interact via linear time-delay coupling functions.Although
the systems itself are inert, that is, their solutions converge to a globally stable
equilibrium, in the presence of coupling, the network of systems exhibits ongoing
oscillatory activity. We address the problem of emergence of oscillations by deriving
conditions for; 1. solutions of the time-delay coupled systems to be bounded, 2. the
network equilibrium to be unique, and 3. the network equilibrium to be unstable.
If these conditions are all satisfied, the time-delay coupled inert systems have a
nontrivial oscillatory solution. In addition, we show that a necessary condition for
the emergence of oscillations in such networks is that the considered systems are at
least of second order.

7.1 Introduction

This chapter is concerned with networks of identical single-input-single-output
systems that interact via linear time-delay coupling functions. A little bit more pre-
cise, the coupling for a system in a network is defined to be the weighted difference
of the time-delayed output of its neighbors and its own, non-delayed output. The
delay models in this case the time it takes a signal to propagate from its source to its
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destination, and therefore it is reasonable to assume that the systems have immediate
access to their own outputs. We consider the case that the systems are inert, that is,
in absence of coupling each system has a globally asymptotically stable equilibrium.
We address the problem that, nevertheless, oscillations emerge in network of the
time-delay coupled systems.

The problem of emergence of oscillations in coupled inert systems goes back
to the early fifties of the previous century, starting with Alan Turing’s work on
morphogenesis [25]. About twenty years later, Steven Smale, being inspired by the
work of Turing, proposed a fourth-ordermodel of chemical kinetics that, even though
the model is inert or “dead”, two identical copies of them in diffusive interaction
become “alive”, in the sense that they start to oscillate for an infinite amount of time
[18]. According to Smale there is a paradoxical aspect to the model:

One has two dead (mathematically dead) cells interacting by a diffusion process, which has
a tendency in itself to equalize the concentrations. Yet in interaction, a state continues to
pulse indefinitely.

Because of the importance of the class of equations coupled via diffusion in many
fields of science, Smale posed the sharp problem to “axiomatize” the necessary
conditions for diffusion-driven oscillations. A partial solution to his problem was
proposed in [23],1 where the dynamics of two Lur’e systems in diffusive interaction
was studied using frequency methods. In that paper, it was shown that diffusion-
driven oscillations are possible with third-order systems. It was proved in [14] that
diffusion-driven oscillations cannot emerge from a unique equilibrium in case the
systems are of order lower than three. In that samepaper, constructive conditionswere
presented for the emergence of diffusion-driven oscillations. It is worth mentioning
that oscillationsmay emerge in networks of diffusively coupled systems of order two;
In that case the oscillations are born after a secondary bifurcation of equilibria [1].

The above-mentioned studies all considered diffusive coupling, which is (typi-
cally) symmetric and delay-free. We introduce a time-delay in the coupling terms.
Such time-delay coupling functions appear, among others, in network of neurons [6],
electrical circuits [16], and networked control systems [17].

We present conditions for emergence of oscillations in networks of time-delay
coupled inert systems. In particular, we present conditions for the solutions of the
time-delay coupled systems to be bounded, we discuss when the network equilib-
rium is unique, and we derive a condition (at the level of the dynamics of the systems
that comprise the network) for the network equilibrium to be unstable. If all these
conditions are satisfied the coupled system is oscillatory. Our results imply immedi-
ately that only if the dimension of the systems is at least two, then in time-delayed
interaction onemay have oscillatory activity in the network. The results we present in
this chapter extend our previous results reported in [22] in the sense that we remove
the restriction to undirected networks.

We remark that we will only consider the case that the coupled systems can
not only be oscillatory for zero time-delay. The reason for this is that the results

1A minor flaw in that paper was corrected in [24].
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of [14, 15], which consider the delay-free case, remain true for sufficiently small
time-delays. A proof of this claim follows almost immediately from Rouché’s theo-
rem, cf. [5].

7.2 Preliminaries

Let R and C denote the real numbers and complex numbers, respectively. R+ is the
set of positive real numbers and R+ = R+ ∪ {0} is the set of the nonnegative real
numbers. For a number x = a + bi ∈ C with a, b ∈ R and i being the imaginary
unit, i2 = −1, we denote �(x) = a and �(x) = b. Let C+ := {x ∈ C | �(x) ∈ R+}
and C+ := {x ∈ C | �(x) ∈ R+}. Given positive integers p, q, and r , for X ⊂ R

p

and Y ⊂ R
q we denote by C r (X ,Y ) the space of continuous functions from X

into Y that are at least r -times continuously differentiable. If r = 0 we simply write
C (X ,Y ) instead of C 0(X ,Y ). We denote C := C ([−τ, 0],RNn) and we let this
space be equipped with the norm

‖φ‖ = sup
−τ≤θ≤0

|φ(θ)| , φ ∈ C .

Here |·| is the Euclidean norm in RNn , |x | = √
x
x , where 
 denotes transposition.

For a positive integer k we let Ik denote the k × k identity matrix and 1k denotes the
column vector of length k with all entries equal to 1.

Let ξ ∈ C ([0,∞),R) be bounded on the whole interval of definition. Such a
function is oscillatory (in the sense of Yakubovich) if limt→∞ ξ(t) does not exist. In
that spirit we say that a system is oscillatory if it admits the following properties: 1.
the solutions of the system are uniformly (ultimately) bounded (such that solutions are
defined on [0,∞)) and, 2. the system has a finite number of hyperbolically unstable
equilibria.2 In other words, if the initial data are not an equilibrium solution or do
not belong to a stable manifold of an equilibrium, then at least one state variable of
an oscillatory system is an oscillatory function of time.

7.3 Problem Setting

Weconsider networks consisting of N single-input-single-output systems of the form

{
ẋ j (t) = f (x j (t)) + Bu j (t)
y j (t) = Cx j (t)

(7.1)

2An equilibrium solution of a delay differential equation is called hyperbolic if the roots of its
associated characteristic equation have nonzero real part, cf. [9].
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with j = 1, . . . , N , states x j (t) ∈ R
n , inputs u j (t) ∈ R, outputs y j (t) ∈ R, f :

R
n → R

n is a sufficiently smooth function and matrices B,C of appropriate dimen-
sion with CB a positive constant. We shall assume that:

C1. the system (7.1)with u j ≡ 0 has a unique equilibrium x0, i.e., f (x0) = 0,which
is globally asymptotically stable and locally exponentially stable.

Note that local exponential stability of the equilibrium is equivalent to all eigenvalues
of the matrix

J0 = J (x0),

with J (x) = ∂ f
∂x j (x) being the Jacobian matrix of f at x , having strictly negative real

part, i.e., J0 is Hurwitz.
Systems (7.1) interact via linear time-delay coupling functions of the form

u j (t) = σ
∑

�

a j�[y�(t − τ) − y j (t)] (7.2)

where positive constant σ is the coupling strength, positive constant τ is the (prop-
agation) delay, and nonnegative constants a j� are the interconnection weights. In
particular, a jl is positive if and only if there is a connection from system � to system
j . Define the N × N matrix A = (

a j�
)
. Matrix A is the (weighted) adjacency matrix

of the graph that specifies the interaction structure. Note that we allow the graph to
be directed. We shall assume that the matrix A is irreducible and has zero diagonal
entries. This is equivalent to saying that the graph is simple, i.e., there is at most one
edge from node j to node � and self-connections are absent, and strongly connected,
i.e., every pair of systems can be joined by a sequence of directed edges. In addition,
we assume that

C2. each row-sum of A equals 1.

The latter assumption is not strictly necessary but it simplifies notation significantly.
Moreover, this assumption ensures that the synchronous (oscillatory) state exists,
cf. [12, 19]. We remark that C2 implies, by the Gershgorin Disc Theorem, that all
eigenvalues of A are located in the closed unit disc in C.

7.4 Conditions for Oscillation

Given that C1 and C2 hold true we establish conditions for

1. the solutions of the coupled system (7.1), (7.2) to be uniformly bounded and
uniformly ultimately bounded;

2. the network equilibrium
X0 = 1N ⊗ x0

to be the unique, but unstable equilibrium.
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Clearly, if both points hold true, the coupled system is oscillatory. Uniqueness of the
network equilibrium is not necessary for the existence of oscillations. However, the
stability properties of additional equilibria are difficult to assess as the locations of
these additional equilibriumsolutions dependonσ . In addition, it isworthmentioning
that for a unique equilibrium the state of the coupled system can be oscillatory only
if one of its outputs is an oscillatory function of time. Indeed, in case none of the
outputs is an oscillatory function the value of each coupling function is (or converges
to) zero such that, by C1, the system is not oscillatory.

7.4.1 Bounded Solutions

Consider a single system (7.1) and let u j (·) be a piece-wise continuous input function
being defined on [0, T ), T ∈ R+, and taking values in a compact set U ⊂ R. Let
x j (·) = x j (·; x j

0 , u
j [0, T )) be the solution of system (7.1) corresponding to input

u j (·) being defined on [0, T ] and coinciding with x j
0 at t = 0. Then we define a

(strictly) C r -semipassive system as follows.

Definition 7.1 Suppose that there is a function S ∈ C r (Rn,R+), called the storage
function, such that

S(x j (t)) − S(x j (0)) ≤
∫ t

0

[
(y ju j )(s) − H(x j (s))

]
ds (7.3)

with H ∈ C (Rn,R) and t ∈ (0, T ]. If there is a constant R > 0 and a nonnegative
nondecreasing function h : R+ → R+ such that

H(s) ≥ h(|s|) (7.4)

for all |s| ≥ R, then system (7.1) is called C r -semipassive. If (7.4) holds for all
|s| ≥ R with a function h that is strictly increasing and such that h(s) → ∞ as
s → ∞, then system (7.1) is called strictly C r -semipassive.

Remark 7.1 In case the storage function S is continuously differentiable, i.e., r ≥ 1,
then (7.3) can be replaced by the differential inequality

Ṡ(7.1)(x
j (t)) ≤ (y ju j )(t) − H(x j (t)),

where the subscript (7.1) means that the derivative of S is taken along solutions of
(7.1) for given input u j (·).
Lemma 7.1 (Boundedness) Let w0,w1 : [0, ∞) → [0, ∞) be strictly increasing
functions that satisfy w0(0) = w1(0) = 0 and w0(s),w1(s)→∞ as s→∞. Suppose
that each system (7.1) is strictlyC 1-semipassive with storage function S that satisfies

w0(
∣∣x j (t)

∣∣) ≤ S(x j (t)) ≤ w1(
∣∣x j (t)

∣∣).
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Then for each fixed σ and fixed τ the solutions of the coupled systems (7.1), (7.2)
are uniformly bounded and uniformly ultimately bounded.

Proof (Sketch, a full proof is found in [20]) Let φ ∈ C ,

φ(θ) =
⎛
⎜⎝

φ1(θ)
...

φN (θ)

⎞
⎟⎠ , φ1(θ), . . . , φN (θ) ∈ R

n, θ ∈ [−τ, 0],

and consider the functional

V (φ) = ν1S(φ1(0)) + ν2S(φ2(0)) + · · · + νN S(φN (0))

+ σ

2

∑
j

ν j a j�

∫ 0

−τ

(
φ�


(s)C
Cφ�(s)
)
ds.

Here νi are positive constants such that

(
ν1 ν2 · · · νN

)
(IN − A) = ν
(IN − A) = 0.

The existence of the positive vector ν ∈ R
N is implied by the Perron–Frobenius

theorem for irreducible matrices, cf. [10]. Note that the matrix IN − A is irreducible
as A is assumed to be irreducible. Then, invoking the strict semipassivity property
and after some simple algebraic manipulations, we find that

V̇ (φ) ≤ −ν1H(φ1(0)) − ν2H(φ2(0)) − · · · − νN H(φN (0)) ≤ −W (|φ(0)|) + M

for some strictly increasing function W : R+ → R+ and positive constant M . An
application of Theorem4.2.10 of [3] completes the proof. �

7.4.2 Uniqueness and Instability of the Network Equilibrium

We shall start with establishing conditions for instability of the network equilibrium.
Using C2 we can write the coupled system dynamics as

ẋ(t) = F(x(t)) + σ [(A ⊗ BC)x(t − τ) − (IN ⊗ BC)x(t)] (7.5)

where

x(t) =

⎛
⎜⎜⎜⎝
x1(t)
x2(t)

...

xN (t)

⎞
⎟⎟⎟⎠ , F(x(t)) =

⎛
⎜⎜⎜⎝

f (x1(t))
f (x2(t))

...

f (xN (t))

⎞
⎟⎟⎟⎠ ,
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and ⊗ denotes the Kronecker (tensor) product. A linearization of (7.5) around the
network equilibrium X0 yields the dynamics

˙̃x(t) = [IN ⊗ (J0 − σ BC)] x̃(t) + (σ A ⊗ BC)x̃(t − τ). (7.6)

It is well known that the zero solution of the linear system (7.6) is unstable for some
σ > 0 and τ > 0 if (and only if) its associated characteristic equation

Δ(λ; σ, τ) = 0 (7.7)

with

Δ(λ; σ, τ) := det (λINn − IN ⊗ (J0 − σ BC) − (σ A ⊗ BC) exp(−λτ))

has a root in C+ for that σ and τ , cf. [9, 11]. However, computing the roots of the
characteristic equation (7.7) for a large number of points in the (σ, τ )-parameter
space may be cumbersome. As a solution, we will present (sufficient) conditions for
instability of the network equilibrium at the level of the dynamics of the system (7.1).
For that purpose we denote

H (s) = C(s In − J0)
−1B = p(s)

q(s)

the linear transfer function from u j to y j of the system (7.1) at its equilibrium. Here
p(s) is a polynomial of degree n − 1 and q(s) is a polynomial of degree n.3 It is
assumed that p and q are co-prime.

Lemma 7.2 (Instability) Suppose that C2 holds true. Let

η = inf
ω>0

� (H (iω)) .

If η < 0, then for each σ ≥ −1
2η there exists a τ > 0 such that the characteristic

equation (7.7) has a root in C+.

The proof of the lemma is provided in the Appendix.
It is important to note that the condition for instability in Lemma 7.2 is delay-

dependent. As we have remarked already in the introduction, we focus in this chapter
only on delay-dependent conditions for oscillations.

We continue with conditions for uniqueness of the network equilibrium.

Lemma 7.3 (Uniqueness of the network equilibrium) Let C1 hold true and denote
the eigenvalues of A by λ̄ j , j = 1, . . . , N. Let λ∗ be the smallest real-valued eigen-
value of A. Choose σ̄ ∈ (0,∞] as the largest number for which the matrix

3As CB > 0 the system (7.1) has relative degree one.
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J (ξ) − σ(1 − λ∗)BC

is nonsingular for all ξ ∈ R
n and all σ ∈ [0, σ̄ ). Then the network equilibrium solu-

tion X0 = 1N ⊗ x0 is the unique equilibrium solution of (7.5) for σ ∈ [0, σ̄ ).

The proof of the lemma is provided in the Appendix.

7.4.3 Oscillations in Networks of Inert Systems

Lemmata7.1, 7.2, and7.3 provide conditions for the coupled systems tohavebounded
solutions, the network equilibrium to be unique, and the existence of a time-delay
τ > 0 for which this equilibrium is unstable. The following theorem summarizes
these results.

Theorem 7.1 (Conditions for oscillation) Consider the coupled system (7.1), (7.2)
and suppose that C1 and C2 hold true. Suppose in addition that

• the systems (7.1) are strictly C 1-semipassive with a storage function that satisfies
the conditions of Lemma 7.1;

• the matrix
J (ξ) − σ(1 − λ∗)BC

is nonsingular for all ξ ∈ R
n and all σ ∈ [0, σ̄ ), where λ∗ is the smallest real-

valued eigenvalue of A;
• η = infω>0 � (H (iω)) < 0 and

−1

2η
< σ̄ .

Then for each σ ∈
[

−1
2η , σ̄

)
there exists a τ > 0 for which the coupled system is

oscillatory.

Using the second and third condition of the theorem (see also Lemmas7.2 and
7.3) one easily determines a (range of) coupling strength(s) for which there exist

τ such that oscillations emerge. In particular, for any σ ∈
[

−1
2η , σ̄

)
one can use

bifurcation software such as DDE-Biftool [7] for finding the values of τ for which
the characteristic equation (7.7) has a root inC+. A viable strategy for computing the

bifurcation diagram in the (σ, τ )-parameter space is to startwith someσH ∈
[

−1
2η , σ̄

)
and τ = 0. Then increase τ until at τ = τH aHopf bifurcation is detected. (We remark
that the bifurcation that causes instability of the network equilibrium is necessarily a
Hopf bifurcationbecause otherwise the conditionofLemma7.3wouldbeviolated.)A
curve ofHopf bifurcation points can then be computed using a continuation algorithm
starting from (σH , τH ). See, for instance, [12] for an example.
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Theorem7.1 also provides almost immediately a necessary condition on the
dimension n of the systems (7.1) for oscillations to emerge.

Corollary 7.1 If C1 and C2 hold true, then a necessary condition for a network of
inert systems (7.1) that interact via coupling functions (7.2) to be oscillatory is that
n ≥ 2.

Proof Anexamplewithn = 2 is provided in the next section and examples of systems
of order larger than two can be easily constructed.We complete the proof by showing
that the equilibriumof a network of coupled inert systemswith n = 1 is always stable.
Let U be a nonsingular matrix such that

U−1AU = Λ̄

with Λ̄ the Jordan normal form of A. Denote by λ̄ j , j = 1, . . . , N the eigenvalues
of A. After pre-multiplication of (7.7) by det(U−1 ⊗ In) and post-multiplication of
(7.7) by det(U ⊗ In) it is straightforward to see that the characteristic equation (7.7)
can have a root λ ∈ C+ only if there is a j ∈ {1, 2, . . . , N } such that

λ − J0 + σ [1 − λ̄ j exp(−λτ)] = 0 (7.8)

for some τ > 0. (See also the proof of Lemma 7.2 in the Appendix.) However, as J0
is a negative constant by C1 and |λ̄ j | ≤ 1 for all j by C2 there exists no λ ∈ C+ that
solves (7.8). �

7.5 Example

We shall illustrate our results in networks of inert FitzHugh–Nagumo (FHN) model
neurons [8]. The dynamics of thismodel neuron are given by the following equations:

{
ẋ j
1 (t) = 0.08(x j

2 (t) − 0.8x j
1 (t))

ẋ j
2 (t) = x j

2 (t) − 1
3 (x

j
2 (t))

3 − x j
1 (t) − 0.559 + u j (t)

with output y j (t) = x j
2 (t). One can easily verify that the isolated FHNmodel neuron

has a locally exponentially stable equilibriumat x0 = (−1.225 −0.980
)

.Moreover,

it is shown in [21] that the FHN model neuron is strictly C∞-semipassive with a
quadratic storage function. Hence, we conclude that the solutions of any network of
FHN model neurons are uniformly (ultimately) bounded for any nonnegative σ and
τ . To check whether we can have oscillations in a network of FHN model neurons,
we determine the transfer function H (s):

H (s) = (
0 1

) (
s I −

(−0.064 0.08
−1 1 − (−0.980)2

))−1 (
0
1

)
.
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Fig. 7.1 a The cube network
with uniform bidirectional
interactions, and b the ring
network with uniform
unidirectional interactions

(a) (b)

Wefind thatη = infω>0 �(H (iω)) = −0.205,which is attained atω = ω∗ = 0.417.
Thus for coupling strengths

σ > σ = 0.5

0.205
,

there exist τ > 0 for which the zero solution of the linearized system is unstable,
hence the network equilibrium is unstable. In addition, because

det(J (ξ) − σ(1 − λ̄ j )BC) = (ξ2)
2 + 1

4 + σ(1 − λ̄ j )

is positive for any ξ = (
ξ1 ξ2

)
 ∈ R
2, any σ ≥ 0 and any real-valued λ̄ j ∈ [−1, 1],

we conclude that the network equilibrium X0 = 1k ⊗ x0 is unique. Thus if σ > σ

there exist values of τ for which the coupled FHN model neurons are oscillatory.
We have performed a numerical analyses with a cube network and a ring network,

which are shown in Fig. 7.1a and b, respectively. The example with the cube network
has been taken from [22]. For both networks, we have determined the regions of
instability in the (σ, τ )-parameter space with 0 ≤ σ ≤ 8 and 0 ≤ τ ≤ 20. These
regions, which are computed with DDE-Biftool [7] using the strategy explained in
the previous section, are shown in Fig. 7.2a for the cube network and Fig. 7.2b for
the ring network. In these plots the areas shown in gray correspond to the regions
of hyperbolic instability of the network equilibrium. The thick black curves are the
stability crossing curves; At a stability crossing curve the characteristic equation
(7.7) has a purely imaginary root.

In addition, we present the results of a number of numerical simulations, which are
performed with Matlab using the DDE23 solver. For each simulation we have used
constant initial data on the interval [−τ, 0]. This initial data is chosen to be a normally
distributed perturbation of the network equilibrium, with mean and variance of the
perturbation being set to 0 and 0.05, respectively.

Figure7.3 show the results of numerical simulation for the cube network with
σ = 3 and either τ = 8 or τ = 15. The left plots show the birth of oscillatory activ-
ity from the network equilibrium. The eight smaller plots show 100 time units of
steady state oscillatory activity. In case of σ = 3 and τ = 8 we observe an oscillation
where neurons 1, 3, 6 and 8 oscillate synchronously, neurons 2, 4, 5 and 7 oscillate
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Fig. 7.2 The regions of stability (white) and instability (grey) of the network equilibrium in the
(σ, τ )-parameter space for a the cube network, and b the ring network
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Fig. 7.3 Results of numerical simulation with the cube network for a σ = 3 and τ = 8, and b
σ = 3 and τ = 15
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Fig. 7.4 Results of numerical simulation with the ring network for a σ = 5 and τ = 2, b σ = 5
and τ = 7, and c: σ = 5 and τ = 12

synchronously, but the oscillations of the two synchronized clusters alternate. An
increase of the time-delay to τ = 15 results in completely synchronous oscillatory
activity. For more details about the (prediction of) resulting oscillatory activity in
this network we refer to [22].
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Figure7.4 show the results of numerical simulation for the ring network with σ =
5 and either τ = 2, τ = 7 or τ = 12. Again the left plots show the onset of oscillation
and the other plots show 100 time units of steady state oscillatory activity. In all
cases, we observe oscillatory activity in the form of persistent propagating waves.
In case of σ = 5 and τ = 2 stable rotating wave oscillations have emerged. Indeed,
the steady state oscillations are periodic and there is a constant time-shift between
the oscillations of any two adjacent neurons. For time-delay τ = 12 we observe the
emergence of stable standing wave steady state activity, which is characterized by the
synchronous activity of neurons 1, 3 and 5 that alternates with synchronous activity
of neurons 2, 4 and 6. A somewhat intermediate oscillatory behavior is found for
τ = 7. In this case, neurons 1 and 4 oscillate synchronously, neurons 2 and 5 are
synchronized, and the steady state oscillations of neurons 3 and 6 are completely
identical. However, the oscillations of neurons 1, 2 and 3, hence those of neurons 4,
5 and 6, take the form of a rotating wave. The emerged oscillatory activity in the ring
network can be analyzed and predicted using the theory presented in [12].

7.6 Conclusions

We have considered the problem of emergence of oscillatory activity in networks of
identical inert systems that interact via linear time-delay coupling.We have presented
conditions for

• the solutions of the coupled systems to be uniformly (ultimately) bounded;
• the network equilibrium, which is exponentially stable in absence of coupling, to
become unstable in the presence of coupling;

• the network equilibrium to be unique.

If all three points are satisfied the network of time-delay coupled system will be
oscillatory. Our conditions for the first two points above to hold true are expressed at
the level of the systems. In particular, a strict semipassivity property of the systems
ensures that the whole network has bounded solutions, and conditions for instability
of the network equilibrium can be verified by evaluating the transfer function (from
u j to y j ) of the uncoupled system in equilibrium. As a corollary to these results, we
have shown that a network of inert systems (7.1) with time-delay coupling (7.2) can
be oscillatory only if the systems are at least of second order.

We have illustrated our results with two networks, a cube and a ring, with FHN
model neurons as systems. For both networks we have determined the values of the
coupling strength σ and time-delay τ for which oscillations emerge. Trajectories
of the coupled systems are obtained for several values of the coupling strength and
time-delay by numerical integration of the governing equations. It is shown that
interesting patterns of oscillatory activity may emerge from a network equilibrium.

Afterword

This book chapter is written for the occasion of the 60th birthday of Henk Nijmeijer.
Both authors have sharedmany ideas, thoughts andpaperswithHenkon the collective
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behavior of coupled dynamical systems.We are certain to continue working together
with Henk on this fascinating topic for many more years.

Appendix

Proof of Lemma7.2

As mentioned in [4], the characteristic equation Δ(λ; σ, τ) can have a root in C+
(for some τ > 0) only if (at least) one of the following conditions is violated:

• IN ⊗ (J0 − σ BC) is a stable matrix;
• IN ⊗ (J0 − σ BC) + σ A ⊗ BC is a stable matrix;
• the spectral radius ρ4 of the frequency dependent matrix

[IN ⊗ (J0 − σ BC)]−1 [σ A ⊗ BC]

is strictly smaller than one for all frequencies:

ρ
(
[IN ⊗ (J0 − σ BC)]−1 [σ A ⊗ BC]

)
< 1 ∀ω > 0.

As already remarked in the introduction, we restrict ourselves to the case where the
network equilibrium is stable in case of zero time-delay. This implies that the first two
conditions are satisfied such that instability of the network equilibrium in presence
of time-delay requires the third condition to be violated. We show that the condition
of Lemma 7.2 implies this to be the case.

Using some elementary properties of the Kronecker product, cf. [2], we obtain
that

ρ ([iωInm − IN ⊗ (J0 − σ BC)]−1 [σ(A ⊗ BC)]) = ρ
(
σ A ⊗ [iωIn − J0 + σ BC)]−1BC

)
.

Condition C2 implies that A has an eigenvalue equal to 1 (with right eigenvector
in span {1N }). Then employing the fact that the eigenvalues of σ A ⊗ [iωIn − J0 +
σ BC)]−1BC are the product of all eigenvalues of σ A and all eigenvalues of [iωIn −
J0 + σ BC)]−1BC , cf. [2], we find that

ρ
(
σ [iωIn − J0 + σ BC)]−1BC

)
> 1

⇒ ρ ([iωInm − IN ⊗ (J0 − σ BC)]−1 [σ(A ⊗ BC)]) > 1.

4The spectral radius of a square (complex) matrix is the largest eigenvalue in absolute value of that
matrix.
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Fig. 7.5 If the Nyquist plot
of L (iω) = σH (iω))
intersects with{
s ∈ C | �(s) < − 1

2

}
, then

|L (iω∗)| > |1 + L (iω∗)|,
where
ω∗ = argminω>0� (L (iω))

�

�

L(iω)

−1 − 1
2

|1 + L(iω∗)| |L(iω∗)|

Some straightforward manipulations (that involve some theory about the inverse
of the sum of two matrices, cf. [13]) show that

ρ̄(ω; σ) := ρ
(
σ [iωIn − J0 + σ BC)]−1BC

)

= |σ p(iω)|
|q(iω) + σ p(iω)| =

∣∣∣∣ σH (iω)

1 + σH (iω)

∣∣∣∣ .
It follows from Fig. 7.5 that if the Nyquist plot ofL (iω) = σH (iω) intersects with{
s ∈ C | �(s) < 1

2

}
, then there exists ω∗ = argminω>0� (L (iω)) > 0 such that

|L (iω∗)| > |1 + L (iω∗)| ⇒ ρ̄(ω∗; σ) > 1.

In otherwords, ifη = infω>0 � (H (iω)) = � (H (iω∗)) < 0, then for eachσ ≥ −1
2η ,

ρ̄(ω∗; σ) > 1 ⇒ ρ
([iω∗ Inm − IN ⊗ (J0 − σ BC)

]−1 [σ(A ⊗ BC)]) > 1.

Fix σ ∗ ≥ −1
2η . We now show that ρ̄(ω∗; σ ∗) > 1 implies (7.7) to have a root in

C+. Define
β(λ; σ ∗, τ ) = 1 − α(λ; σ ∗) exp(−λτ)

with

α(λ; σ ∗) = σ ∗H (λ)

1 + σ ∗H (λ)
.

Note that ρ̄(ω; σ ∗) = |α(iω; σ ∗)|. Consider the function κ : R+ → R, κ(ω) = 1 −
|α(iω; σ ∗)|2 = 1 − ρ̄2(ω; σ ∗). Note that limω→∞ κ(ω) = 1 as limω→∞ ρ̄(ω; σ ∗) =
0. Because ρ̄(ω∗; σ ∗) > 1 there exist a ω0 > 0 such that ρ̄(ω0; σ ∗) = 1. Let us
choose, without loss of generality, this ω0 such that for any small number δ > 0
we have ρ̄(ω0 − δ; σ ∗) > 1 and ρ̄(ω0 + δ; σ ∗) < 1, i.e., κ ′ = dκ

dω > 0 at ω = ω0. In
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addition, there is a τ0 > 0 for which β(iω0; σ ∗, τ0) = 0. Following [11], pp. 95, if
we differentiate β(λ; σ, τ) = 0 at λ = iω0 with respect to τ , we find

�
(
dλ

dτ

)−1

= 1

2ω0
κ ′(ω0) < 0.

This implies the existence of some τ ∗ < τ0 for which β(λ; σ ∗, τ ∗) has a root in C+.
Let U be a nonsingular matrix such that

U−1AU = Λ̄

with Λ̄ the Jordan normal form of A and let λ̄ j , j = 1, 2, . . . , N , be the eigenvalues
of A. After pre-multiplication of (7.7) by det(U−1 ⊗ In) and post-multiplication of
(7.7) by det(U ⊗ In), we conclude that the roots of (7.7) (of course, for σ = σ ∗) are
identical to the roots of

N∏
j=1

Δ j (λ; σ ∗, τ )

with
Δ j (λ; σ ∗, τ ) = det

(
λIn − (J0 − σ ∗BC) − σ ∗λ̄ j BC exp(−λτ)

)
.

By C2 there is always an eigenvalue of A equal to 1. Without loss of generality, we
let λ̄1 = 1 such that

Δ1(λ; σ ∗, τ ) = det
(
λIn − (J0 − σ ∗BC) − σ ∗BC exp(−λτ)

)
.

It is straightforward to verify that Δ1(λ; σ ∗, τ ) and β(λ; σ ∗, τ ) have the same roots.
Thus Δ1(λ; σ ∗, τ ) has a root in C+ for some τ ∗ < τ0, which implies that (7.7) has
a root in C+ for σ = σ ∗ and τ = τ ∗. �

Proof of Lemma7.3

Theproof follows fromarguments givenfirst in [15]. Firstwe show that the conditions
of the lemma imply that the Jacobian matrix of

F(x) − σ [(IN − A) ⊗ BC)]x (7.9)

is nonsingular at all x ∈ R
Nn . Let again U be a nonsingular matrix such that

U−1AU = Λ̄
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with Λ̄ the Jordan normal form of A. Then the Jacobianmatrix of (7.9) is nonsingular
if and only if ⎛

⎜⎝
J (x̃1)

. . .

J (x̃ N )

⎞
⎟⎠ − σ(IN − Λ̄) ⊗ BC

is nonsingular for all x̃ j ∈ R
n , j = 1, . . . , N . Due to the triangular structure of Λ̄

the above matrix is singular if and only if (at least) one of the matrices

J (ξ) − σ(1 − λ̄ j )BC, j = 1, . . . , N , ξ ∈ R
n

is singular. By construction the matrix BC has one positive diagonal entry and all
other entries equal zero. Thus J (ξ) − σ(1 − λ j )BC can only be singular if λ̄ j is real
valued. It follows that the conditions of the lemma imply that the Jacobian matrix is
nonsingular for all σ ∈ [0, σ̄ ).

Now we consider an auxiliary coupled system (7.5) with σ replaced by εσ with
parameter ε ∈ [0, 1]. By the conditions of the lemma the Jacobian matrix of this
auxiliary coupled system is, like the original coupled system, nonsingular at each
point in R

Nn . Now suppose that for this auxiliary coupled system there is some
ε = ε∗ ∈ (0, 1) for which there exists an equilibrium X∗

0 other than the network
equilibrium X0. Then, due to the implicit function theorem, this additional equilib-
rium point is determined by an equation of the form X∗

0 = F (ε∗). Decreasing ε

from ε∗ to zero implies the existence of an equilibrium other than X0 for ε = 0. This
contradicts C1, which states that the isolated system has a globally asymptotically
stable (hence unique) equilibrium. �
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