
Chapter 4
Synchronisation and Emergent Behaviour
in Networks of Heterogeneous Systems:
A Control Theory Perspective

Elena Panteley and Antonio Loría

Abstract Generally speaking, for a network of interconnected systems, synchroni-
sation consists in themutual coordination of the systems’motions to reach a common
behaviour. For homogeneous systems that have identical dynamics this typically con-
sists in asymptotically stabilising a common equilibrium set. In the case of heteroge-
neous networks, in which systems may have different parameters and even different
dynamics, there may exist no common equilibrium but an emergent behaviour arises.
Inherent to the network, this is determined by the connection graph but it is indepen-
dent of the interconnection strength. Thus, the dynamic behaviour of the networked
systems is fully characterised in terms of two properties whose studymay be recast in
the domain of stability theory through the analysis of two interconnected dynamical
systems evolving in orthogonal spaces: the emergent dynamics and the synchroni-
sation errors relative to the common behaviour. Based on this premise, we present
some results on robust stability by which one may assess the conditions for practical
asymptotic synchronisation of networked systems. As an illustration, we broach a
brief case-study on mutual synchronisation of heterogeneous chaotic oscillators.

4.1 Introduction

As its etymology suggests, synchronisation may be defined as the adjustment of
rhythms of repetitive events (phenomena, processes, …) through sufficiently strong
interaction. In dynamical systems theory, we also speak of synchronised systems if
theirmovements are coordinated in time and/or space. It can be of several types: if one
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system “dominates” over the rest, we speak of master–slave synchronisation; in this
case, the motion of the so-called master system becomes a reference for the motion
of the so-called slave system(s). Alternatively, synchronisation may be mutual, in
which case a set of systems synchronise theirmovementswithout specified hierarchy.
Controlled synchronisation of dynamical systems consists, generally speaking, in
ensuring that two or more systems coordinate their motions in a desired manner.

Synchronisation has been a subject of intense research in several disciplines before
control theory: it was introduced in the 1970s in the USSR in the field of mechanical
vibration by Professor Blekhman. Ever since, research on synchronisation has been
popular among physicists, e.g. in the context of synchronisation of chaotic systems
since the early 1990s, but also among engineers, especially on automatic control.
In this community, the paradigm of synchronisation was largely popularised by H.
Nijmeijer. His seminal paper [12] is a landmark tutorial on master–slave synchroni-
sation and his pioneer work [13] on mutual synchronisation (of mechanical systems)
preceeds the bulk of literature on a paradigm that is nowadays better known in our
comunity under the name of consensus—see [19].

Consensus pertains to the case in which a (large) group of interconnected sys-
tems mutually synchronise their behaviours. In this case, we speak of networks of
systems. These are not just large-scale and complex systems but they are charac-
terised by decentralised, distributed, networked compositions of (semi)autonomous
elements. These new systems are, in fact, systems of systems. The complexity of
network interconnected systems may not be overestimated. For instance, in neu-
ronal networks, experimental evidence shows that inhibition/excitation unbalance
may result in excessive neuronal synchronisation, which, in turn, may be linked to
neuro-degenerative diseases such as Parkinson and epilepsy. In energy transforma-
tion networks, the improper management of faults, overloads or simply adding to or
subtracting a generator from the transportation network may result in power outages
or even in large-scale (continent-wide) blackouts.

In this chapter, we briefly describe a framework, whichwas originally and recently
introduced in [15], for analysis and control of synchronisation of networked heteroge-
neous systems that is, with different parameters or even completely distinct dynamic
models.

We limit our study to the analysis paradigm, as opposed to that of controlled syn-
chronisation. At the expense of technological and dynamical aspects related directly
to the network communication (delays, noise, etc.), we focus on structural properties
of the network that affect the synchronisation of the agents’ motions in one way or
another. More precisely, the following issues play a key role in analysis and control
of synchronisation of networked systems:

• the coupling strength;
• the network topology;
• the type of coupling between the nodes, i.e. how the units are interconnected;
• the dynamics of the individual units.
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Among the latter, our technical results establish how the coupling strength affects
synchronisation. Our analysis is carried out from a dynamical systems and stability
theory viewpoint.

4.2 The Networked Systems Synchronisation Paradigm

Let us consider a network of dynamical systems modelled via ordinary differential
equations,

ẋi = fi (xi ) + Bui , i ∈ I := {1, . . . , N } (4.1a)

yi = Cxi , (4.1b)

where xi ∈ R
n , ui ∈ R

m and yi ∈ R
m denote the state, the input and the output of the

i th unit, respectively. The network’s topology is usually described via graph theory:
a network of N nodes is defined by its N × N adjacency matrix D = [di j ] whose
(i, j) element, denoted by di j , specifies an interconnection between the i th and j th
nodes. See [19].

The interaction among nodes depends, in general, on the strength of the coupling
and on the nodes’ state variables or on functions of the latter, i.e. outputs which define
the coupling terms. The interaction is also determined by the form of coupling,
i.e. the way how the output of one node affects another; this can be linear, as it
is fairly common to assume, but it may also be nonlinear, as in the well-known
example of Kuramoto’s oscillator model in which the interconnection is made via
sinusoids—see [3].

Here, we consider a network composed of N heterogeneous diffusively coupled
nonlinear dynamical systems in normal form:

ẏi = f 1i (yi , zi ) + ui (4.2a)

żi = f 2i (yi , zi ). (4.2b)

As it may be clear from the notation, each unit possesses one input ui and one
output yi of the same dimension, i.e. ui , yi ∈ R

m . The state zi corresponds to that
of the i th agent’s zero dynamics—see [7]. The functions f 1i : Rm × R

n−m → R
m ,

f 2i : Rm × R
n−m → R

n−m are assumed to be locally Lipschitz.
It is convenient to remark that there is little loss of generality in considering

systems in normal form, these are equivalent to systems of the form (4.1) under the
assumption that the matrices B ∈ R

n×m and C ∈ R
m×n satisfy a similarity condition

for C B that is, if there exists U such that U−1C BU = Λ where Λ is diagonal
positive—see e.g. [17, 18].

We also assume that the units possess certain physical properties reminiscent of
energy dissipation and propagation. Notably, one of our main hypotheses is that the
solutions are ultimately bounded; we recall the definition below.
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Definition 4.1 (Ultimate boundedness) The solutions of the system ẋ = f (x),
defined by absolutely continuous functions (t, x◦) �→ x , are said to be ultimately
bounded if there exist positive constants Δ◦ and Bx such that for every Δ ∈ (0,Δ◦),
there exists a positive constant T (Δ) such that, for all x◦ ∈ BΔ = {x ∈ R

n : |x | ≤ Δ}
they satisfy

|x(t, x◦)| ≤ Bx for all t ≥ T .

If this boundholds for any arbitrarily largeΔ then the solutions are globally ultimately
bounded.

Ultimate boundedness is a reasonable assumption for the class of systems of
interest here, such as oscillators. In a more general context, boundedness holds, for
instance, if the units are strictly semi-passive—cf. [14].

Our second main assumption concerns the zero dynamics.

Assumption 4.1 For any compact sets Bz ⊂ R
n−m , By ⊂ R

m there exist N contin-
uously differentiable positive definite functions V◦k : Bz → R+ with k ≤ N , class
K∞ functions γ1k , γ2k and constants ᾱk , βk > 0 such that

γ1k(|z|) ≤ V◦k(z) ≤ γ2k(|z|)

∇V◦k(z)
[

f 2k ( y, z) − f 2k ( y, z′)
] ≤ −ᾱk |z − z′|2 + βk

where ∇V◦k := ∂V◦k
∂ z , for all z, z′ ∈ Bz and y ∈ By .

Assumption4.1 may be interpreted as a condition of incremental stability of the zero
dynamics in a practical sense. Note that when βk = 0, we recover the characterisation
provided in [1].

4.2.1 Network Model

We assume that the network units are connected via diffusive coupling, i.e. for the
i th unit the coupling is given by

ui = −σ

N∑

j=1

di j (yi − y j ), (4.3)

where the scalar σ corresponds to the coupling gain between the units and the individ-
ual interconnections weights, di j , satisfy the property di j = d ji . Assuming that the
network graph is connected and undirected, the interconnections amongst the nodes
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are completely defined by the adjacency matrix, D = [di j ]i, j∈I , which is used to
construct the corresponding Laplacian matrix,

L =

⎡

⎢⎢
⎢
⎣

∑N
i=2 d1i −d12 . . . −d1N

−d21
∑N

i=1,i �=2 d2i . . . −d2N

...
...

. . .
...

−dN1 −dN2 . . .
∑N−1

i=1 dNi .

⎤

⎥⎥
⎥
⎦

.

By construction, all row-sums of L are equal to zero. Moreover, since L is symmetric
and the network is connected it follows that all eigenvalues of the Laplacian matrix
are real and, moreover, L has exactly one eigenvalue (say, λ1) equal to zero, while
others are positive, i.e. 0 = λ1 < λ2 ≤ · · · ≤ λN .

Next, we introduce a compact notation that is convenient for our purposes of
analysis. We introduce the following vectors of outputs, inputs and states, respec-
tively:

y =
⎡

⎢
⎣

y1
...

yN

⎤

⎥
⎦ ∈ R

m N , u =
⎡

⎢
⎣

u1
...

uN

⎤

⎥
⎦ ∈ R

m N , x =
⎡

⎢
⎣

x1
...

xN

⎤

⎥
⎦ ∈ R

nN , xi =
[

yi
zi

]
∈ R

n

as well as the function F : RnN → R
nN , defined as

F(x) =
⎡

⎢
⎣

F1(x1)
...

FN (xN )

⎤

⎥
⎦ , Fi (xi ) =

[
f 1i (yi , zi )

f 2i (yi , zi )

]

i∈I
. (4.4)

With this notation, the diffusive coupling inputs ui , defined in (4.3), can be re-written
in the compact form

u = −σ [L ⊗ Im]y,

where the symbol ⊗ stands for the right Kronecker product.1 Then, the network
dynamics becomes

ẋ = F(x) − σ [L ⊗ Em]y (4.5a)

y = [IN ⊗ E�
m ]x, (4.5b)

where E�
m = [Im, 0m×(n−m)]. The qualitative analysis of the solutions to the latter

equations is our main subject of study.

1For two matrices A and B of any dimension, A ⊗ B consists in a block-matrix in which the i j th
block corresponds to ai j B.
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4.2.2 Dynamic Consensus and Practical Synchronisation

In a general setting, as for instance that of [13], for the purpose of analysis, synchro-
nisation may be qualitatively measured by equating a functional of the trajectories
to zero and measuring the distance of the latter to a synchronisation manifold, e.g.

S = {x ∈ R
nN : x1 = x2 = · · · = xN }. (4.6)

For networks of homogeneous systems, i.e. if fi = f j for all i , j ∈ I , synchroni-
sation is often described in terms of the asymptotically identical evolution of the
units, i.e. xi → x j . This is especially clear in the classical consensus paradigm of
simple integrators, in which we have xi → x j → const. In more complex cases, as
for instance in problem of formation tracking control, we may have that each unit
follows a (possibly unique) reference trajectory, that is, xi → x j → x∗(t). What is
more, controlled synchronisation is sometimes assimilated to a problem of “collec-
tive” tracking control—see e.g. [5, 13].

Hence, whether a set-point equilibrium or a reference trajectory, it seems natural
to formulate the consensus problem as one of asymptotic stability (or stabilisation
for that effect) of the synchronisation manifold S . Such stability problem may
be approached, for instance, using tools developed for semi-passive, incrementally
passive or incrementally input-output stable systems—see [6, 8, 9, 16, 17, 21]. If
the manifold S is stabilised, one says that the networked units are synchronised.
For networks of non-identical units, the paradigm is much more complex due to the
fact that the synchronisation manifoldS does not necessarily exist. Yet, it may also
be recast in terms of stability analysis.

To that end, we generalise the consensus paradigm by introducing what we call
dynamic consensus. We shall say that this property is achieved by the systems
interconnected in a network if their motions converge to one generated by what
we shall call emergent dynamics. In the case of undirected graphs, for which the
corresponding Laplacian is symmetric, the emergent dynamics is naturally defined
as the average of the units’ drifts, that is, the functions f 1s : Rm × R

n−m → R
m ,

f 2s : Rm × R
n−m → R

n−m defined as

f 1s (ye, ze) := 1

N

N∑

i=1

f 1i (ye, ze),

f 2s (ye, ze) := 1

N

N∑

i=1

f 2i (ye, ze)

hence, the emergent dynamics may be written in the compact form

ẋe = fs(xe) xe = [y�
e z�

e ]�, fs := [ f 1�s f 2�s ]�. (4.7)
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For the sake of comparison, in the classical (set-point) consensus paradigm, all
systems achieving consensus converge to a common equilibrium point, that is, fs ≡
0 and xe is constant. In the case of formation tracking control, Eq. (4.7) can be
seen as the reference dynamics to the formation. In the general case of dynamic
consensus, themotions of all the units converge to amotion generated by the emergent
dynamics (4.7).

Then, to study the behaviour of the individual network-interconnected systems,
relative to that of the emergent dynamics, we introduce the average state (also called
mean-field) and its corresponding dynamics. Let

xs = 1

N

N∑

i=1

xi , (4.8)

which comprises an average output, ys ∈ R
m , defined as ys = E�

m xs and the state of
the average zero dynamics, zs ∈ R

n−m , that is, xs = [y�
s , z�

s ]�. Now, by differentiat-
ing on both sides of (4.8) and after a direct computation in which we use (4.2), (4.3)
and the fact that the sums of the elements of the Laplacian’s rows equal to zero, i.e.

1

N

N∑

i=1

−σ
[
di1(yi − y1) + · · · + di N (yi − yN )

] = 0,

we obtain

ẏs = 1

N

N∑

i=1

f 1i (yi , zi ), (4.9a)

żs = 1

N

N∑

i=1

f 2i (yi , zi ). (4.9b)

Then, in order to write the latter in terms of the average state xs , we use the functions
f 1s and f 2s defined above so, from (4.9), we derive the average dynamics

ẏs = f 1s (ys, zs) + 1

N

N∑

i=1

[
f 1i (yi , zi ) − f 1i (ys, zs)

]
, (4.10a)

żs = f 2s (ys, zs) + 1

N

N∑

i=1

[
f 2i (yi , zi ) − f 2i (ys, zs)

]
. (4.10b)

It is to be remarked that this model is intrinsic to the diffusively interconnected
network. Indeed, since the row-sums of the Laplacian equals to zero, the intercon-
nection strength σ does not appear in (4.10). Another interesting feature of Eq. (4.10)
is that they may be regarded as composed of the nominal part
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ẏs = f 1s (ys, zs)

żs = f 2s (ys, zs)

and the perturbation terms
[

f 1i (yi , zi ) − f 1i (ys, zs)
]
and

[
f 2i (yi , zi ) − f 2i (ys, zs)

]
.

The former corresponds exactly to (4.7), only re-written with another state variable.
In the case that dynamic consensus is achieved (that is, in the case of complete syn-
chronisation) and the graph is balanced and connected, we have (yi , zi ) → (ys, zs).
Nonetheless, in the case of a heterogeneous network, asymptotic synchronisa-
tion is in general hard to achieve hence, yi /→ ys and, consequently, the terms[

f 1i (yi , zi ) − f 1i (ys, zs)
]
and

[
f 2i (yi , zi ) − f 2i (ys, zs)

]
do not vanish.

Thus, from a dynamical systems’ viewpoint, the average dynamics may be con-
sidered as a perturbed variant of the emergent dynamics. Consequently, it appears
natural to study the problem of dynamic consensus, recast in that of robust stability
analysis, in a broad sense. On one hand, in contrast to the more commonly studied
case of state synchronisation, we shall admit that synchronisation may be established
with respect to part of the variables only, i.e. with respect to the outputs yi . More pre-
cisely, for the former case, similarly to (4.6), we introduce the state synchronisation
manifold

Sx = {x ∈ R
nN : x1 − xs = x2 − xs = · · · = xN − xs = 0} (4.11)

and, for the study of output synchronisation, we analyse the stability of the manifold

Sy = {y ∈ R
m N : y1 − ys = y2 − ys = · · · = yN − ys = 0}. (4.12)

Since, in the general case of heterogeneous networks, the perturbation terms may
prevail it becomes natural to study synchronisation in a practical sense, that is, by
seeking to establish stability of the output or state synchronisation manifoldsSy or
Sx in a practical sense only. This is precisely defined next.

Consider a parameterised system of differential equations

ẋ = f (x, ε), (4.13)

where x ∈ Rn , the function f : Rn → R
n is locally Lipschitz and ε is a scalar para-

meter such that ε ∈ (0, ε◦] with ε◦ < ∞. Given a closed set A , we define the norm
|x |A := inf

y∈A
|x − y|.

Definition 4.2 For the system (4.13), we say that the closed set A ⊂ R
n is prac-

tically uniformly asymptotically stable if there exists a closed set D such that
A ⊂ D ⊂ R

n and

(1) the system is forward complete for all x◦ ∈ D ;
(2) for any given δ > 0 and R > 0, there exist ε∗ ∈ (0, ε◦] and a classK L function

βδR such that, for all ε ∈ (0, ε∗] and all x◦ ∈ D such that |x◦|A ≤ R, we have
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|x(t, x◦, ε)|A ≤ δ + βδR
(|x◦|A , t

)
.

Remark 4.1 Similarly, to the definition of uniform global asymptotic stability of a
set, the previous definition includes three properties: uniform boundedness of the
solutions with respect to the set, uniform stability of the set and uniform practical
convergence to the set.

The following statement, which establishes practical asymptotic stability of sets,
may be deduced along the lines of the proof of the main result in [4].

Proposition 4.1 Consider the system ẋ = f (x), where x ∈ R
n and f is continuous

and locally Lipschitz. Assume that the system is forward complete, there exists a
closed set A ⊂ R

n and a C1 function V : Rn → R+ as well as functions α1, α2 ∈
K∞, α3 ∈ K and a constant c > 0, such that, for all x ∈ R

n,

α1(|x |A ) ≤ V (x) ≤ α2(|x |A )

V̇ ≤ −α2(|x |A ) + c.

Then, for any R, ε > 0 there exists a constant T = T (R, ε) such that for all t ≥ T
and all x◦ such that |x◦|A ≤ R

|x(t, x◦)|A ≤ r + ε,

where r = α−1
1 ◦ α2 ◦ α−1

3 (c).

4.3 Network Dynamics

In the previous section, we motivated, albeit intuitively, the study of dynamic con-
sensus and practical synchronisation as a stability problem of the attractor of the
emergent dynamics as well as of the synchronisation manifold. In this section, we
render this argument formal by showing that the networked dynamical systemsmodel
(4.5) is equivalent, up to a coordinate transformation, to a set of equations composed
of the average system dynamics (4.10) with average state xs and a synchronisation
errors equation with state e = [e�

1 . . . e�
N ]�, where ei = xi − xs for all i ∈ I . It is

clear that x ∈ Sx if and only if e = 0; hence, the general synchronisation problem
is recast in the study of stability of the dynamics of e and xs .

4.3.1 New Coordinates

Let us formally justify that the choice of coordinates xs and e completely and appro-
priately describe the networked systems’ behaviours.
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Considering a network with an undirected and connected graph, the Laplacian
matrix L = L� has a single zero eigenvalue λ1 = 0 and its corresponding right and
left eigenvectors vr1, vl1 coincide with v = 1√

N
1 where 1 ∈ R

N denotes the vector

[1 1 . . . 1]�. Moreover, since L is symmetric and non-negative definite, there exists
(see [2, Chap. 4, Theorems2 and 3]) an orthogonal matrix U (i.e. U−1 = U�) such
that L = UΛU� withΛ = diag{[0 λ2 . . . λN ]}, where λi > 0 for all i ∈ [2, N ], are
eigenvalues of L . Furthermore, the i th column ofU corresponds to an eigenvector of
L related to the i th eigenvalue, λi . Therefore, recognising v as the first eigenvector,
we decompose the matrix U as:

U =
[

1√
N

1 U1

]
, (4.14)

where U1 ∈ R
N×N−1 is a matrix composed of N − 1 eigenvectors of L related to

λ2, . . . , λN and, since the eigenvectors of a real symmetric matrix are orthogonal,
we have

1√
N

1�U1 = 0, U�
1 U1 = IN−1.

Based on the latter observations, we introduce the coordinate transformation

x̄ = U �x, (4.15)

where the block diagonal matrix U ∈ R
nN×nN is defined as

U = U ⊗ In,

which, in view of (4.15), is also orthogonal. Then, we use (4.14) to partition the new
coordinates x̄ , i.e.

x̄ =
[

x̄1
x̄2

]
=

[ 1√
N

1�
N ⊗ In

U�
1 ⊗ In

]
x .

The coordinates x̄1 and x̄2 thus obtained are equivalent to the average xs and the
synchronisation errors e, respectively. Indeed, observing that the state of the average
unit, defined in (4.8), may be re-written in the compact form

xs = 1

N
(1� ⊗ In)x, (4.16)

we obtain x̄1 = √
N xs . On the other hand, x̄2 = 0 if and only if e = 0. To see the

latter, let U1 = U1 ⊗ In , then, using the expression

(A ⊗ B)(C ⊗ D) = AC ⊗ B D, (4.17)
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we obtain
U1U

�
1 = (U1U

�
1 ) ⊗ In

and, observing that

U1U
�
1 = IN − 1

N
11�,

we get

U1U
�
1 =

(
IN − 1

N
11�

)
⊗ In. (4.18)

Therefore, multiplying x̄2 = U �
1 x by U1 and using (4.18), we obtain

U1 x̄2 =
[(

IN − 1

N
11�

)
⊗ In

]
x

= x − 1

N

(
11� ⊗ In

)
x,

which, in view of (4.17), is equivalent to

U1 x̄2 = x − 1

N

(
1 ⊗ In

)(
1� ⊗ In

)
x

= x − (
1 ⊗ In

)
xs = e.

Since U1 has column rank equal to (N − 1)n, which corresponds to the dimension
of x̄2, we see that x̄2 is equal to zero if and only if so is e.

Even though the state space of (xs, e) is of higher dimension than that of the orig-
inal networked system (4.1), only both together, the synchronisation error dynamics
and the average dynamics, may give a complete characterisation of the network
behaviour. Thus, the states xs and e are intrinsic to the network and not the product
of an artifice with purely theoretical motivations.

We proceed to derive the differential equations in terms of the average state xs

and the synchronisation errors e.

4.3.2 Dynamics of the Average Unit

Using the network dynamics Eq. (4.5a), as well as (4.16), we obtain

ẋs = 1

N
(1� ⊗ In)F(x) − 1

N
σ(1� ⊗ In)[L ⊗ Em]y. (4.19)

Now, using the property of the Kronecker product, (4.17), and in view of the identity
1�L = 0, we obtain
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(1� ⊗ In)(L ⊗ Em) = (1�L) ⊗ (In Em) = 0.

This reveals the important fact that the average dynamics, i.e. the right-hand side
of (4.19), is independent of the interconnections gain σ , even though the solutions
xs(t) are, certainly, affected by the synchronisation errors; hence, by the coupling
strength.

Now, using (4.4) and defining

fs(xs) := 1

N

N∑

i=1

Fi (xs) (4.20)

we obtain

ẋs = fs(xs) + 1

N

N∑

i=1

[
Fi (xi ) − Fi (xs)

]
.

Therefore, defining

Gs(e, xs) := 1

N

N∑

i=1

[
Fi (ei + xs) − Fi (xs)

]
,

we see that we may write the average dynamics in the compact form,

ẋs = fs(xs) + Gs(e, xs). (4.21)

Furthermore, since the functions Fi , with i ∈ I , are locally Lipschitz so is the func-
tion Gs and, moreover, there exists a continuous, positive, non-decreasing function
k : R+ × R+ → R+, such that

|Gs(e, xs)| ≤ k
(|e|, |xs |

)|e|.

In summary, the average dynamics is describedby theEq. (4.21). That is, it consists
in the nominal system (4.7), which corresponds to the emergent dynamics, perturbed
by the synchronisation error of the network via the term Gs .

4.3.3 Dynamics of the Synchronisation Errors

To study the effect of the synchronisation errors, e(t), on the emergent dynamics, we
start by introducing the vectors
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Fs(xs) := [
F1(xs)

� . . . FN (xs)
�]�

(4.22)

F̃(e, xs) :=
⎡

⎢
⎣

F1(x1) − F1(xs)
...

FN (xN ) − FN (xs)

⎤

⎥
⎦ =

⎡

⎢
⎣

F1(e1 + xs) − F1(xs)
...

FN (eN + xs) − FN (xs)

⎤

⎥
⎦

i.e. F̃(e, xs) = F(x) − Fs(xs). Then, differentiating on both sides of

e = x − (1 ⊗ In)xs

and using (4.5a) and (4.21), we obtain

ė = −σ [L ⊗ Em ]y + F(x) − (1 ⊗ In) [ fs (xs ) + Gs (e, xs )]

= −σ [L ⊗ Em ]y + [F(x) − Fs (xs )] + Fs (xs ) − (1 ⊗ In) [ fs (xs ) + Gs (e, xs )]

= −σ [L ⊗ Em ]y + [
Fs (xs ) − (1 ⊗ In) fs (xs )

] + [
F̃(e, xs ) − (1 ⊗ In)Gs (e, xs )

]
. (4.23)

Next, let us introduce the output synchronisation errors eyi = yi − ys , that is, ey =
[e�

y1, . . . , e�
yN ]�, which may also be written as

ey = y − 1 ⊗ ys, (4.24)

and let us consider the first term and the two groups of bracketed terms on the right-
hand side of (4.23), separately. For the term

(
L ⊗ Em

)
y we observe, from (4.24),

that
[L ⊗ Em] y = [L ⊗ Em]

[
ey + 1 ⊗ ys

]

and we use (4.17) and the fact that L1 = 0 to obtain

[L ⊗ Em] y = [L ⊗ Em] ey .

Second, concerning the first bracket on the right-hand side of (4.23), we observe
that, in view of (4.20) and (4.22),

fs(xs) = 1

N
(1� ⊗ In)Fs(xs).

Therefore,

Fs(xs) − (1 ⊗ In) fs(xs) = Fs(xs) − 1

N
(1 ⊗ In)(1� ⊗ In)Fs(xs).

Then, using (4.17) we see that

1

N
(1 ⊗ In)(1� ⊗ In) = 1

N
(11�) ⊗ In. (4.25)



94 E. Panteley and A. Loría

So, introducing

P = InN − 1

N
(11�) ⊗ In,

we obtain

Fs(xs) − (1 ⊗ In) fs(xs) = P Fs(xs). (4.26)

Finally, concerning the term F̃(e, xs) − (1 ⊗ In)Gs(e, xs) on the right-hand side
of (4.23), we see that, by definition, G(e, xs) = 1

N

(
1� ⊗ In

)
F̃(e, xs), hence, from

(4.25), we obtain

(1 ⊗ In)Gs(e, xs) = 1

N

[
(11�) ⊗ In

]
F̃(e, xs)

and

F̃(e, xs) − (1 ⊗ In)Gs(e, xs) =
(

InN − 1

N
(11�) ⊗ In

)
F̃(e, xs)

= P F̃(e, xs). (4.27)

Using (4.26) and (4.27) in (4.23), we see that the latter may be expressed as

ė = −σ
[
L ⊗ Em

]
ey + P

[
F̃(e, xs) + Fs(xs)

]
.

The utility of this equation is that it clearly exhibits three terms: a term linear in
the output ey which reflects the synchronisation effect of diffusive coupling between
the nodes, the term P F̃(e, xs) which vanishes with the synchronisation errors, i.e. if
e = 0, and the term

P Fs(xs) =
⎡

⎢
⎣

F1(xs) − 1
N

∑N
i=1 Fi (xs)

...

FN (xs) − 1
N

∑N
i=1 Fi (xs)

⎤

⎥
⎦ =

⎡

⎢
⎣

F1(xs) − fs(xs)
...

FN (xs) − fs(xs)

⎤

⎥
⎦ ,

which represents the variation between the dynamics of the individual units and the
average unit. This term equals to zero, e.g. when the nominal dynamics, fi in (4.1a),
of all the units are identical that is, in the case of a homogeneous network (Fig. 4.1).

Fig. 4.1 Interaction between
synchronisation and the
collective dynamics
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4.4 Stability analysis

All is in place to present our main statements on stability of the networked systems
model (4.5). For the purpose of analysis, we use the equations previously developed,
in the coordinates e and xs , which we recall here for convenience:

ẋs = fs(xs) + Gs(e, xs), (4.28a)

ė = −σ
[
L ⊗ Em

]
ey + P

[
F̃(e, xs) + Fs(xs)

]
. (4.28b)

These equations correspond to those of two feedback interconnected systems, as it
is illustrated in Fig. 4.1. For the system (4.28a), we study the stability with respect
to a compact attractor which is proper to the emergent dynamics and we establish
conditions under which the average of the trajectories of the interconnected units
remains close to this attractor. For the system (4.28b) we study robust stability of the
synchronisation manifolds Sy and Sx .

4.4.1 Practical Synchronisation Under Diffusive Coupling

We formulate conditions that ensure practical global asymptotic stability of the sets
Sx andSy—see (4.11), (4.12). This implies practical state and output synchronisa-
tion of the network, respectively. Furthermore, we show that the upper bound on the
state synchronisation error depends on the mismatches between the dynamics of the
individual units of the network.

Theorem 4.1 (Output synchronisation) Let the solutions of the system (4.5) be glob-
ally ultimately bounded. Then, the set Sy is practically uniformly globally asymp-
totically stable with ε = 1/σ . If, moreover, Assumption4.1 holds, then there exists a
function β ∈ K 3∞ such that for any ε ≥ 0 and R > 0 there exist T ∗ > 0 and σ ∗ > 0
such that the solutions of (4.28b) with σ = σ ∗ satisfy

|e(t, x◦)| ≤ β(ᾱk, βk,Δ f ) + ε, ∀ t ≥ T ∗, x◦ ∈ BR := {x◦ : |x◦| ≤ R}

where
Δ f = max|x |≤Bx

max
k,i∈N

{
| f 2k (xk) − f 2i (xk)|

}
. (4.29)

The bound on the synchronisation errors, β, is a function of the constants ᾱk , βk

defined in Assumption4.1 as well as on the degree of heterogeneity of the network,
characterised by Δ f . In the definition of the latter, Bx corresponds to a compact
set to which the solutions ultimately converge by assumption. That is, Theorem4.1
guarantees, in particular, that the perturbing effect of heterogeneity in the network
may be diminished at will by increasing the interconnection strength.
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The proof of this theorem is provided in [15]. Roughly speaking, the first statement
(synchronisation) follows from two properties of the networked system—namely,
negative definiteness of the second smallest eigenvalue of the Laplacian metric L
andglobal ultimate boundedness.Now, global ultimate boundedness holds, e.g. under
the following assumption.

Assumption 4.2. For each i , the system (4.2) defines a strictly semi-passive map
ui �→ yi with continuously differentiable and radially unbounded storage func-
tions Vi : Rn → R+, where i ∈ I . That is, there exist positive definite and radially
unbounded storage functions Vi , positive constants ρi , continuous functions Hi and
positive continuous functions i such that

V̇i (xi ) ≤ y�
i ui − Hi (xi )

and Hi (xi ) ≥ i (|xi |) for all |xi | ≥ ρi .

Indeed, the following statement is reminiscent of [16, Corollary1].

Proposition 4.2. Consider a network of N diffusively coupled units (4.5). Let the
graph of interconnections be undirected and connected and assume that all the
units of the network are strictly semi-passive (i.e. Assumption4.2 holds). Then, the
solutions of the system (4.5) are ultimately bounded.

Proof. We proceed as in the proof of [16, Lemma1] and [22, Proposition2.1]. Let
Assumption4.2 generate positive definite storage functions Vi , as well as functions
i , Hi and constants ρi , defined as above and let

VΣ(x) :=
N∑

i=1

Vi (xi ).

Then, taking the derivative of VΣ(x) along trajectories of the system (4.5), we obtain

V̇Σ(x) ≤ −σ y�[
L ⊗ Im

]
y −

N∑

i=1

Hi (xi )

≤ −
N∑

i=1

Hi (xi ), (4.30)

where for the last inequality we used the fact that Laplacian matrix is semi-positive
definite. Next, let ρ̄ = max1≤i≤N {ρi } and consider the function ̄ : [ρ̄,+∞) → R≥0

as ̄(s) = min1≤i≤N {i (s)}. Note that ̄ is continuous and ̄(s) positive for all s ≥
ρ̄. Furthermore, for any |x | ≥ N ρ̄ there exists k ∈ I such that |xk | ≥ 1

N |x | ≥ ρ̄.
Therefore, for all |x | ≥ N ρ̄,

N∑

i=1

Hi (xi ) ≥ Hk(xk) ≥ ̄(|xk |) ≥ ̄

(
1

N
|x |

)
.
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Using the last bound in (4.30) we obtain, for all |x | ≥ N ρ̄,

V̇Σ(x) ≤ −̄

(
1

N
|x |

)
.

Hence, invoking [23, Theorem10.4] we conclude that the solutions of the system
(4.5) are ultimately bounded. ��

Some interesting corollaries, on state synchronisation, follow from Theorem4.1,
for instance, if the interconnections among the network units depend on the whole
state, that is, if y = x .

Corollary 4.1. Consider the system (4.5). Let Assumptions4.1 and 4.2 be satisfied
and let y = x. Then, the system is forward complete and the set Sx is practically,
uniformly, globally and asymptotically stable with ε = 1/σ .

The constant Δ f defined in (4.29) represents the maximal possible mismatch
between the dynamics of any individual unit and that of the averaged unit, on a ball
of radius Bx . The more heterogeneous is the network, the bigger is the constant Δ f .
Conversely, in the case that all the zero dynamics of the units are identical, we have
Δ f = 0. In this case, we obtain the following statement.

Corollary 4.2. Consider the system (4.5) under Assumptions4.1 and 4.2. Assume
that the functions f 2i , which define zero dynamics of the network units, are all identi-
cal, i.e. f 2i (x) = f 2j (x) for all i, j ∈ I and all x ∈ R

n. Then the setSx is practically
uniformly globally asymptotically stable with ε = 1/σ .

4.4.2 On Practical Stability of the Collective Network
Behaviour

Now we analyse the behaviour of the average unit, whose dynamics is given by the
Eq. (4.28a). We assume that the nominal dynamics of average unit (i.e. with e = 0)
has a stable compact attractorA and we establish that the stability properties of this
attractor are preserved under the network interconnection, albeit, slightly weakened.

Assumption 4.3. For the system (4.7), there exists a compact invariant setA ⊂ R
n

which is asymptotically stable with a domain of attraction D ⊂ R
n . Moreover, we

assume that there exists a continuously differentiable Lyapunov function VA : Rn →
R≥0 and functions αi ∈ K∞, i ∈ {1, . . . , 4} such that for all xe ∈ D we have

α1(|xe|A ) ≤ VA (xe) ≤ α2(|xe|A )

V̇A (xe) ≤ −α3(|xe|A )∣∣∣∣
∂VA

∂xe

∣∣∣∣ ≤ α4(|xe|).
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The second part of the assumption (the existence of V ) is purely technical whereas
the first part is essential to analyse the emergent synchronised behaviour as well as
the synchronisation properties of the network, recast as a (robust) stability problem.
The following statement applies to the general case of diffusively coupled networks.

Theorem 4.2. For the system (4.5), assume that the solutions are globally ultimately
bounded and Assumptions4.1, 4.3 hold. Then, there exist a non-decreasing function
γ : R+ × R+ → R+ and, for any R, ε > 0 there exists T ∗ = T ∗(R, ε), such that for
all t ≥ T ∗ and all x◦ such that |x◦|A ≤ R,

|xs(t, x◦)|A ≤ γ (Δ f , R) + ε.

In the case that the network is state practically synchronised, it follows that the
set A is practically stable for the network (4.5).

Corollary 4.3. Consider the system (4.5) under Assumption4.3. If the set Sx is
practically uniformly globally asymptotically stable for this system, then the attractor
A defined in Assumption4.3 is practically asymptotically stable for the average unit
(4.21).

4.5 Example

To illustrate our theoretical findings we present a brief case-study of analysis of
interconnected heterogeneous systems via diffusive coupling. We consider three of
the best known chaotic oscillators: the Rössler [20], the Lorenz [10] and the Lü
system [11]. The dynamics equations of these forced oscillators are the following:

LORENZ OSCILLATOR:

⎧
⎪⎨

⎪⎩

[
ẋ�

ẏ�

]

=
[

γ (y� − x�)

r x� − y� − x�z�

]

+ u�

ż� = x�y� − bz�

LÜ OSCILLATOR:

⎧
⎪⎪⎨

⎪⎪⎩

[
ẋm

ẏm

]

=
⎡

⎣− αβ

α + β
xm − ym zm + c

αym + xm zm

⎤

⎦ + um

żm = βzm + xm ym .

RÖSSLER OSCILLATOR:

⎧
⎪⎨

⎪⎩

[
ẋr

ẏr

]

=
[

ar xr + yr

−(xr − yr )

]

+ ur

żr = br + yr zr − cr zr .

The values of the parameters of the three systems are fixed in order for them to
exhibit a chaotic behaviour when unforced. These are collected in Table4.1.
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Table 4.1 Parameter values
of chaotic oscillators

Rössler Lorenz Lü 3rd order

ar = 0.15 γ = 16 α = −10

br = 0.2 r2 = 45.6 β = −4

cr = 10 b = 4 δ = 1

Since the three chaotic systems are oscillators their trajectories are globally ulti-
mately bounded, they converge to the strange attractors depicted in Fig. 4.2. In this
figure we also show the phase portrait for the average solutions xs(t) for the three
unforced oscillators (with u� = um = ur = 0). Then, we apply the respective inputs

u� = −σ
[
d13(y� − ym) + d12(y� − yr )

]
, d12 = 2, d13 = 4,

ur = −σ
[
d12(yr − y�) + d23(yr − ym)

]
, d23 = 3,

um = −σ
[
d13(ym − y�) + d23(ym − yr )

]
,

where y(·) are measurable outputs. We have simulated two scenarios: in the first case,
we assume that only the x(·) coordinates of each oscillator are measured hence,
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Fig. 4.2 Phase portraits of the three chaotic oscillators, Rössler, Lorenz and Lü, as well as that of
the average dynamics, in the absence of interconnection, i.e. with σ = 0
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y� := [x� 0]� ym := [xm 0]� yr := [xr 0]�

In Fig. 4.3, we depict the phase portrait for the Rössler system overlapped with that of
the average solutions. It is appreciated, on one hand, that the synchronisation errors
diminish as the interconnection gain is increased. On the other hand, the behaviour
of the oscillators’ solutions also changes: for relatively large values of σ (50 and 80),
the chaotic behaviour is lost and the systems stabilise.

In the second scenario, we assume that both x(·) and y(·) are measured hence,

y� := [x� y�]� ym := [xm ym]� yr := [xr yr ]�.

The simulation results in this case, for different values of the interconnection gain
σ , are showed in Figs. 4.4 and 4.5. With two inputs, the systems “loose” the chaotic
response and stabilise to an equilibrium. In Fig. 4.4 we plot the norm of the output
synchronisation errors |ey(t)| = |y(t) − 1 ⊗ ys(t)|; it is clearly appreciated that the
errors diminish as the interconnection gain increases. Finally, in Fig. 4.5 we show the
phase portraits for four different values of σ ; it is clear that output synchronisation
occurs.
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Fig. 4.3 Phase portraits of the Rössler oscillator compared to that of the average unit, for different
values of the interconnection gain σ
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Fig. 4.4 Norms of the output synchronisation errors, |ey(t)|, for different values of the intercon-
nection gain σ
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Fig. 4.5 Phase portraits of the three chaotic oscillators, Rössler, Lorenz and Lü, as well as that of
the average dynamics, with two inputs and for different values of the interconnection gain σ
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