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Preface 1

This book consists of three parts. Each part focuses on a field of research that has
been central to the scientific career of Henk Nijmeijer; namely (1) nonlinear control
systems, (2) synchronization in networked systems, (3) control of nonlinear
mechanical systems.

Part I on “Nonlinear Control Systems” commences with a contribution of Arjan
van der Schaft entitled “Controlled Invariant Distributions and Differential
Properties.” Henk Nijmeijer and Arjan van der Schaft defended their Ph.D. theses
on the same day and worked under the supervision of the same “promotor” (Jan
C. Willems) on the topic of nonlinear geometric control theory, ultimately culmi-
nating in the well-known textbook entitled “Nonlinear Dynamical Control
Systems,” published by Springer in 1990. Chapter 1 of this book revisits the topic
of controlled invariant distributions as also studied by Henk Nijmeijer and Arjan
der Schaft in their earlier work and makes a direct link to the topics of convergent
dynamics and contraction analysis that recently received wide attention in the
systems and control community.

Chapter 2 is contributed by Tengfei Liu and Zhong-Ping Jiang and presents
results on the distributed control of nonlinear systems. In particular, small-gain
methods for the distributed control of nonlinear systems are proposed and an
application to the distributed formation control problem of nonholonomic mobile
robots is detailed. The tracking control of mobile robots has been a topic of fruitful
collaboration between Henk Nijmeijer and Zhong-Ping Jiang for many years.

Chapter 3 is contributed by Alexey Pavlov and Nathan van de Wouw. This
chapter reviews the class of nonlinear convergent systems and highlights many
applications of the convergence property to nonlinear analysis and control prob-
lems, such as global output regulation, frequency domain analysis of nonlinear
systems, model reduction, stable inversion, and extremum seeking control. Many
of these recent results have culminated from earlier joint research of the authors
with Henk Nijmeijer, when Alexey Pavlov performed his Ph.D. studies at the
Eindhoven University of Technology in the early 2000s.
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Part II of this book is devoted to one of Henk Nijmeijer’s favorite topics of
research: synchronization. It starts with a chapter written by Elena Panteley and
Antonio Lora, which focusses on the synchronization and emergent behavior in
networks of heterogeneous systems. The authors bring forth a new perspective on
how to analyze synchronization for a network of systems with nonidentical
dynamics.

Toshiki Oguchi authors Chap. 5, in which the topics of state predictors and
anticipating synchronization for nonlinear delay systems are addressed. These
topics have been a mutual and on-going research interest of the author and Henk
Nijmeijer.

Chapter 6, contributed by Wim Michiels, focuses on delay systems. It centers on
delays effects in dynamical systems and provides insightful analysis and control
interpretations. Extensions of these results towards networks of interconnected
nonlinear dynamical systems are discussed, with a focus on the synchronization
problem.

Part II of the book closes with a contribution entitled “Emergence of Oscillations
in Networks of Time-Delay Coupled Inert Systems” authored by Erik Steur and
Sasha Pogromski. It presents results of the emergence of oscillations in networks of
nonlinear single-input single-output systems that interact via linear, time-delayed
coupling functions.

Part III of this book concerns the control of nonlinear mechanical systems. It
opens with Chap. 8 authored by Dennis Belleter and Kristin Pettersen on
“Leader-Follower Synchronisation for a Class of Underactuated Systems.” It deals
with the control of marine vehicles, such as underactuated autonomous surface
vessels and autonomous underwater vehicles, a topic of joint interest to Henk
Nijmeijer and Kristin Pettersen.

Chapter 9, entitled “Position Control via Force Feedback for a Class of Standard
Mechanical Systems in the Port-Hamiltonian Framework,” is authored by Mauricio
Munoz-Arias, Jacquelien Scherpen, and Daniel Dirksz. It presents position control
strategies for standard mechanical systems in the port-Hamiltonian framework via
force feedback.

The book closes with a contribution of Krzysztof Tchoń “The Endogenous
Configuration Space Approach: An Intersection of Robotics and Control Theory.”
The endogenous configuration approach is a control theory oriented methodology
of robotics research, dedicated to mobile manipulators, which leads to motion
planning algorithms.

Eindhoven Nathan van de Wouw
February 2016 Erjen Lefeber

Ines Lopez Arteaga
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Preface 2

This book has been written at the occasion of the 60th birthday of Prof. Henk
Nijmeijer on March 16, 2015, and commemorates the role of Henk Nijmeijer in
both the Dutch and the international (nonlinear) systems and control communities.

At the occasion of this birthday, the Dynamics and Control group of the
Department of Mechanical Engineering of the Eindhoven University of
Technology, the Netherlands, (chaired by Henk Nijmeijer) has taken the initiative
to organize a one-day international workshop on “Nonlinear Systems” in honor of
Henk Nijmeijer’s sixtieth birthday, which was organized on January 21, 2016, in
the Auditorium of the Eindhoven University of Technology, Eindhoven, the
Netherlands.

During this workshop, Henk’s colleagues, international collaborators, and for-
mer students have contributed by giving a seminar on a topic related to their joint
research.

This book collects research contributions of many international scientists and
former students of Henk, with whom he has had extensive research collaborations
and/or who have been inspired and supported by him to take on challenging and

vii



exciting research problems in the fields of nonlinear control systems, synchro-
nization, coordinated and distributed control, model reduction and the dynamic
analysis, and control of mechanical systems.

After his M.Sc. graduation (cum laude) in 1979 at the Rijksuniversiteit
Groningen (RUG), the Netherlands, Henk Nijmeijer performed his Ph.D. studies
(from 1980 to 1983) at the Center for Mathematics and Informatics (CWI) in
Amsterdam, the Netherlands. His Ph.D. research focused on nonlinear geometric
control theory and resulted, under the supervision of Jan van Schuppen and pro-
motor Jan C. Willems (University of Groningen), in the Ph.D. thesis entitled
“Nonlinear multivariable control: a differential geometric approach.” At that time,
Henk had intensive research collaborations with Arjan van der Schaft, who was also
performing his Ph.D. research under the supervision of Jan C. Willems. This col-
laboration has ultimately led to the well-known textbook “Nonlinear Dynamical
Control Systems”, published by Springer in 1990, based on their lecture notes for a
yearly taught DISC (Dutch Institute for Systems and Control) graduate course since
1987. Notably, a new edition of this book will appear in 2016, further evidencing
the lasting impact of this book on the international nonlinear systems community.

In 1983, Henk took on a position as Assistant Professor, and later as Associate
Professor, at the Department of Applied Mathematics of the University of Twente,
Enschede, the Netherlands. His work remained focused on nonlinear control sys-
tems, but in the 1990s he also increasingly engaged in research related to the control
of nonlinear mechanical systems, such as mobile robots and robotic manipulators.

The combination of his strong expertise on the mathematical foundations of
nonlinear control theory and his interest in the dynamics and control of mechanical
systems has undoubtedly played a role in Henk taking on a part-time Full Professor
position in 1997 at the Department of Mechanical Engineering of the Eindhoven
University of Technology, Eindhoven, the Netherlands. This part-time position
ultimately led to a full-time professor position at this department in 2000, where he
started the “Dynamics and Control” group, which he still chairs today. The name
of the group reflects Henk’s unique affinity with both the modeling and analysis of
dynamical systems and control theory. Since 2000, Henk has continued to pursue
fundamental research in nonlinear systems and control on topics such as output
regulation, synchronization, hybrid systems, networked and delay systems, and
model reduction, but combined this successfully with an increasing focus on
engineering applications, such as vehicle dynamics, robotics, mechanical design,
acoustics, mechatronics, and cooperative and automated driving. In doing so, he has
been a mentor and an inspiring colleague for many of his co-workers in the group,
which grew to be an internationally recognized center for research and teaching in
dynamical systems and control, as evidenced by the excellent ratings from inter-
national review committees concerning the review periods of 2001–2006 and
2007–2012. Affiliated to Mechanical Engineering Department at the Eindhoven
University of Technology, Henk has engaged in collaborations with both Dutch
industries and industries abroad, such as for example ASML, Philips, Bosch
Rexroth B.V., Océ, Kulicke and Soffa, Ford, DAF, FEI Company, VDL, CCM,
Shell, Statoil, NXP, Prodrive, Vredestein, Honeywell, MAN, MTT, and many
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more. The Dynamics and Control group also generated the spin-off companies
Sorama, focusing on sound imaging, and Rose B.V., focusing on robotics for care.
As such, Henk effectively strives to combine fundamental research with its val-
orization in industry and society.

Henk has also strongly contributed to the education of new generations of
engineers and scientists in the field of dynamics and control, for which there is a
great need in the high-tech “Brainport” region of Eindhoven in the Netherlands.
Under the supervision of Henk Nijmeijer, 35 Ph.D. students and over 250 M.Sc.
students have graduated since the year 2000 at the Eindhoven University of
Technology. Moreover, he has also played an important role in the Dutch Institute
for Systems and Control (DISC), the Dutch national graduate school for systems
and control. In fact, he was already playing an important role in the Dutch Network
of Systems and Control, which has offered a national graduate program in systems
and control since 1987 and is the predecessor of DISC. He has been involved in
DISC since its founding in 1995 by lecturing a course on nonlinear control systems
with Arjan van der Schaft for many years, and by organizing summer schools on
the control of mechanical systems. Since 2000, he has been a DISC board member
and, as of 2015, Henk became Scientific Director of DISC.

Henk has published a large number of journal and conference papers, and
several books, including the classical “Nonlinear Dynamical Control Systems”
(Springer Verlag, 1990, co-author Arjan van der Schaft), “Synchronization of
Mechanical Systems” (2003, World Scientific, together with Alejandro
Rodriguez-Angeles), “Dynamics and Bifurcations of Non-smooth Mechanical
Systems” (Springer Verlag, 2004, together with Remco Leine), “Uniform Output
Regulation of Nonlinear Systems: A Convergent Dynamics Approach” (Birkhäuser,
2005, together with Alexey Pavlov and Nathan van de Wouw), and many more.

Henk has also been strongly committed to the international systems and control
community and has served our community in many ways. He is Council Member
of the International Federation of Automatic Control (IFAC), and is/has been the
organizer and/or IPC Chair of numerous international conferences and workshops.
He is editor-in-chief of the Journal of Applied Mathematics, editor of the
Communications on Nonlinear Systems and Numerical Simulation, corresponding
editor of the SIAM Journal on Control and Optimization, and is/has been board
member of the International Journal of Control, Automatica, the Journal of
Dynamical Control Systems, the International Journal of Bifurcation and Chaos, the
International Journal of Robust and Nonlinear Control, the Journal of Nonlinear
Dynamics, and the Journal of Applied Mathematics and Computer Science.

Henk became a Fellow of the IEEE in 2000 and was awarded the IEE Heaviside
Premium in 1987. Together with Kristin Pettersen, he received the 2006 IEEE
Transactions on Control Systems Technology Outstanding Paper Award. Recently,
he also received the 2015 IEEE Control Systems Technology Award (together with
Marcel Heertjes, Alexey Pavlov and Nathan van de Wouw). These awards are
exemplary of his remarkable achievements and the impact of his work in the field.
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Dear Henk, this book is dedicated to you by all editors and authors. Thank you
very much for inspiring us to take on exciting new research challenges in nonlinear
dynamics and control, for your everlasting support and mentorship. It has been a
great pleasure working with you and we hope to continue to do so for many years to
come.

Eindhoven Nathan van de Wouw
February 2016 Erjen Lefeber

Ines Lopez Arteaga
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Chapter 1
Controlled Invariant Distributions and
Differential Properties

Arjan van der Schaft

Abstract The theory of (controlled) invariant (co-)distributions is reviewed, empha-
sizing the theory of liftings of vector fields, one-forms and (co-)distributions to the
tangent and cotangent bundle. In particular, it is shown how invariant distributions
can be equivalently described as invariant submanifolds of the tangent and cotangent
bundle. This naturally leads to the notion of an invariant Lagrangian subbundle of the
Whitney sum of tangent and cotangent bundle, which amounts to a special case of the
central equation of contraction analysis. The interconnection of the prolongation of
a nonlinear control system (living on the tangent bundle of the state space manifold)
with its Hamiltonian extension (defined on the cotangent bundle) is shown to result
in a differential Hamiltonian system. The invariant submanifolds of this differen-
tial Hamiltonian system corresponding to Lagrangian subbundles are seen to result
in general differential Riccati and differential Lyapunov equations. The established
framework thus yields a geometric underpinning of recent advances in contraction
analysis and convergent dynamics.

1.1 Introduction

In this chapter I will first recall the classical concepts of invariant and controlled
invariant (co-)distributions, which are fundamental notions in nonlinear geometric
control theory as developed starting from the seventies of the previous century. This
will be done in the spirit of the paper [17] and of Chap.13 in the book [18], by using
the notions of liftings of vector fields, functions, and one-forms from a manifold to
its tangent and cotangent bundle in a systematic way. Furthermore, I will provide two
equivalent characterizations of invariance, and elucidate the necessary and sufficient
condition for (local) controlled invariance as obtained in [17].

A.J. van der Schaft (B)
Johann Bernoulli Institute for Mathematics and Computer Science,
Jan C. Willems Center for Systems and Control, University of Groningen,
Groningen, The Netherlands
e-mail: a.j.van.der.schaft@rug.nl

© Springer International Publishing Switzerland 2017
N. van de Wouw et al. (eds.), Nonlinear Systems, Lecture Notes
in Control and Information Sciences 470, DOI 10.1007/978-3-319-30357-4_1
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4 A.J. van der Schaft

Secondly, starting from [25], I will discuss how the notion of invariance of (co-)
distributions can be generalized to invariance of subbundles of the Whitney sum of
the tangent and cotangent bundle. By specializing to Lagrangian subbundles this is
shown to lead to the basic equation of contraction theory, and thus under an addi-
tional zero-curvature condition to the classical Demidovich condition for convergent
dynamics. Furthermore, I will argue that this geometric approach can be seen to be
part of a larger story, where incremental analysis approaches are formulated geomet-
rically using differential properties.

This chapter is dedicated to my colleague from the very start Henk Nijmeijer, at
the occasion of the celebration of his 60th birthday. This seems to be fit, since the con-
tents of this chapter start with the theory of our first joint publication [17] in 1982, and
link, via our book Nonlinear Dynamical Control Systems [18], to later fundamental
contributions of Henk within the area of convergent dynamics and synchronization.
Furthermore, the chapter stresses the importance of a geometric language for non-
linear control.

The scientific work and careers of Henk and myself have been very close for
a long time, with our Ph.D. defenses at the same day with the same “promotor”
(Jan C. Willems) in the Aula of the University of Groningen, our joint Alma Mater.
Furthermore, we were for a very long time close colleagues at the University of
Twente, turning Twente into a center for nonlinear control theory. Moreover, despite
the unavoidable turmoils in our careers, we have always remained good friends.
Happy 60th birthday Henk!

1.2 Lifts to the Tangent and Cotangent Bundle

Throughout this chapter all objects (manifolds, functions, vector fields, one-forms,
(co-)distributions, subbundles, etc.) will be assumed to be smooth (infinitely often
differentiable).

Recall from [27] (see also [2, 4, 18]), how functions, vector fields and one-forms
on a state space manifold X can be lifted to functions, vector fields and one-forms
on the tangent and cotangent bundles TX and T ∗X . This will also lead to the
definition of the lift of distributions and co-distributions to the tangent bundle.

First we introduce the notions of complete and vertical lifts of functions, vector
fields and one-forms to the tangent bundle. Given a function h onX , the complete lift
of h to TX , hc : TX → R, is defined by hc(x, δx) = 〈dh, δx〉(x), with 〈·, ·〉(x)
denoting the duality pairing between elements of the cotangent space and the tangent
space at x ∈ X . In local coordinates x = (x1, . . . , xn) forX and the induced local
coordinates (x, δx) = (x1, . . . , xn, δx1, . . . , δxn) for TX this reads

hc(x, δx) =
n∑

a=1

∂h

∂xa
(x) δxa . (1.1)



1 Controlled Invariant Distributions and Differential Properties 5

The vertical lift of a function h to a function on TX , denoted by hv : TX → R, is
defined by hv(x, δx) = h ◦ τX , where τX : TX → X denotes the tangent bundle
projection τX (x, δx) = x . In local induced coordinates hv(x, δx) = h(x).

Given a vector field f on X , the complete lift f c of f to TX is defined as the
unique vector field satisying L f chc = (L f h)c, for any function h on X (with L f h
denoting the Lie-derivative of the function h along the vector field f , and similarly
for L f chc). It can be proved [27] that this requirement uniquely determines f c.
Alternatively, ifΦt : X → X , t ∈ [0, ε), denotes the flowof f , then f c is the vector
field whose flow is given by (Φt )∗ : TX → TX . In induced local coordinates
(x1, . . . , xn, δx1, . . . , δxn) for TX ,

f c(x, δx) =
n∑

a=1

fa(x)
∂

∂xa
+

n∑

a,b=1

∂ fa
∂xb

(x)δxb
∂

∂(δxa)
. (1.2)

Finally, the vertical lift f v of f to TX is the vector field on TX such that L f vhc =
(L f h)v, for any function h. In induced local coordinates for TX

f v(x, δx) =
n∑

a=1

fa(x)
∂

∂(δxa)
. (1.3)

Thirdly, let α be a differential one-form on X . The complete lift of α is the
differential one-form on TX defined by setting

αc(q)(Z) := Z(α̂), Z ∈ TzTX , z ∈ TX , (1.4)

where α̂ : TX → R is the function given as

α̂(X p) = α(p)(X p), X p ∈ TpX , p ∈ X . (1.5)

If α is given in local coordinates as α = ∑n
i=1 αi (x)dxi , then it readily follows that

αc(x, δx) =
n∑

i=1

∂αi

∂x j
(x)δx jdxi +

n∑

i=1

αi (x)dδxi . (1.6)

Finally the vertical lift of α is the differential one-form αv on TX defined as

αv := π∗
X α, πX : TX → X projection, (1.7)

i.e., in local coordinates

αv(x, δx) =
n∑

i=1

αi (x)dx
i . (1.8)



6 A.J. van der Schaft

Using the local coordinate expressions the following useful identities are easily ver-
ified.

Proposition 1.1 For any function h : X → R, any vector fields X, X1 and X2 on
X , and any differential one-form α on X , we have

Xc(hv) = (X (h))v = Xv(hc), Xc(hc) = (X (h))c, Xv(hv) = 0, (1.9)

αc(Xv) = (α(X))v = αv(Xc), αc(Xc) = (α(X))c, αv(Xv) = 0, (1.10)

[Xc
1 , Xc

2 ] = [X1, X2]c, [Xc
1 , Xv

2 ] = [X1, X2]v, [Xv
1 , Xv

2 ] = 0, (1.11)

dhc = (dh)c, dhv = (dh)v. (1.12)

Liftings of distributions and co-distributions to the tangent bundle are nowdefined
as follows. Recall [18] that a distribution D on X is a map that assigns to every
p ∈ X a subspace D(p) ⊂ TpX in such a way that around each p ∈ X there exist
vector fields Xi , i ∈ I (with I an arbitrary index set), such that for q ∈ X close to
p the subspace D(q) is given as D(q) = span {Xi (q) | i ∈ I }. We will also call D a
subbundle of the tangent bundle TX .

Similarly [18], a co-distribution P on X (or, a subbundle of T ∗X ) is locally
given as span {αi (q) | i ∈ I }, q ∈ X , with αi differential one-forms on X .

Recall [18] that given a distribution D we can define the annihilating
co-distribution P = ann D. Dually, given a co-distribution P we can define the
kernel distribution D = ker P . For any D and P we have D ⊂ ker(ann D) respec-
tively P ⊂ ann(ker D), while if D and P are constant-dimensional then equality in
both expressions holds.

Definition 1.1 Let thedistributionD onX be locally given asD(q) = span {Xi (q) |
i ∈ I }, q ∈ X , with Xi vector fields onX . Then the lift (also called prolongation)
of D is the distribution Ḋ on TX defined as

Ḋ(z) = span {Xc
i (z), X

v
i (z) | i ∈ I }, z ∈ TX . (1.13)

Analogously, let the co-distribution P onX be given as P(q) = span {αi (q) | i ∈ I },
q ∈ X , with αi differential one-forms onX , then the lift of P is the co-distribution
Ṗ on TX defined as

Ṗ(z) = span {αc
i (z), α

v
i (z) | i ∈ I }, z ∈ TX . (1.14)

In case D and P are involutive and constant-dimensional we obtain the following
simple local representations of Ḋ and Ṗ . By Frobenius’ Theorem we can find local
coordinates x = (x1, . . . , xn) such that D = span { ∂

∂x1 , . . . ,
∂

∂xk }, k = dim D. Then
in the induced local coordinates (x, δx) for TX we have

Ḋ = span

{
∂

∂x1
, . . . ,

∂

∂xk
,

∂

∂δx1
, . . . ,

∂

∂δxk

}
. (1.15)
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Similarly if P = span{dxl+1, . . . , dxn}, n − l = dim P , then

Ṗ = span{dxl+1, . . . , dxn, dδxl+1, . . . , dδxn}. (1.16)

In general we obtain:

Proposition 1.2 Let D be a distribution, and P be a co-distribution on X . Then

(a) If D = ker P, then Ḋ = ker Ṗ.
(b) If P = ann D, then Ṗ = ann Ḋ.
(c) If D (resp. P) has constant dimension then Ḋ (resp. Ṗ) has constant dimension.
(d) If D (resp. P) is involutive then Ḋ (resp. Ṗ) is involutive.
(e) If Xc ∈ Ḋ for a vector field X on X , then X ∈ D.

Next, the lifts of functions and vector fields to the cotangent bundle are defined; see
again [27]. As before, for the tangent bundle case, the vertical lift hv : T ∗X → R

of a function h : X → R is defined by hv = h ◦ πX , where πX : T ∗X → X
denotes the cotangent bundle projection πX (x, p) = x . In induced local coordinates
(x, p) := (x1, . . . , xn, p1, . . . , pn) for T ∗X we have hv(x, p) = h(x).

Since there is a natural symplectic form on the cotangent bundle T ∗X we can
define the Hamiltonian vector field on T ∗X corresponding to hv, denoted by Xhv ,
and called the vertical Hamiltonian lift. In induced local coordinates (x, p) for T ∗X

Xhv = −
n∑

a=1

∂h

∂xa
(x)

∂

∂(pa)
. (1.17)

Furthermore, for any vector field f on X define the Hamiltonian function H f :
T ∗X → R as

H f (x, p) = 〈p, f (x)〉. (1.18)

In local induced coordinates (x, p)wehave H f (x, p) = pT f (x). The corresponding
Hamiltonian vector field on T ∗X , denoted by XH f , is called the complete Hamil-
tonian lift. In induced local coordinates for T ∗X

XH f =
n∑

a=1

fa(x)
∂

∂xa
−

n∑

a,b=1

∂ fb
∂xa

(x)pb
∂

∂(pa)
. (1.19)

For later usewemention that given a lift (complete or vertical) of a vector field f to the
tangent bundle, as well as a lift (Hamiltonian or vertical) to the cotangent bundle, we
can combine the two lifts into a vector field defined on theWhitney sum TX ⊕ T ∗X
(that is, the basemanifoldX together with the fiber space TxX × T ∗

x X at any point
x ∈ X ). An example (to be used later on) is the combination of the complete lift
f c on TX with the Hamiltonian extension XH f on T ∗X , which defines a vector
field on TX ⊕ T ∗X , which will be denoted as f c ⊕ XH f . Furthermore, since the
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vertical lifts f v (to TX ) and Xhv (to T ∗X ) do not have components on the base
manifoldX wemay also define the combined vector field f v ⊕ Xhv on theWhitney
sum TX ⊕ T ∗X for any vector field f and function h.

1.3 Invariance of Distributions and Co-Distributions

First recall the standarddefinitions of invarianceof a (co-)distributionwith respect to a
vector field from geometric control theory, see e.g., [18]. Consider an n-dimensional
state space manifold X with tangent bundle TX and cotangent bundle T ∗X .
Consider furthermore a vector field f on X . A distribution D on X is called
invariant with respect to f if L f X ∈ D for any vector field X in D, or equivalently,
around p it holds that L f Xi ∈ D, i ∈ I . Here L f denotes the Lie-derivative with
respect to f ; i.e., L f X = [ f, X ]. Invariance of Dwith respect to f will be abbreviated
to L f D ⊂ D.

Similarly, a co-distribution P on X (or, a subbundle of T ∗X ) locally given as
span {αi (q) | i ∈ I }, q ∈ X , with αi differential one-forms onX , is called invariant
if L f P ⊂ P , that is, L f α ∈ P for any one-form α in P , or equivalently around p,
L f αi ∈ P, i ∈ I . Invariance of P with respect to f will be abbreviated to L f P ⊂ P .

Note that L f D ⊂ D implies L f (ann D) ⊂ ann D for any distribution D, and
that L f P ⊂ P implies L f (ker P) ⊂ ker P for any co-distribution P .

Using the geometric notions of lifting discussed in the previous section, the invari-
ance of (co-)distributions can be described in the following equivalent ways. Let us
start with the case of distributions. Note that any distribution D on X can be also
described by the following submanifold of TX :

D := {(x, δx) ∈ TX | δx ∈ D(x)}. (1.20)

Secondly, note that a vector field f on X is described by the map F : X → TX
given as F(x) = (x, f (x)) ∈ TX .

Proposition 1.3 The distribution D on X is invariant with respect to the vector
field f onX if and only if one of the following two equivalent conditions is satisfied:

(i) F∗D ⊂ Ḋ,
(ii) f c is tangent to D .

Proof The equivalence with (i) is already proved in [18]. For the equivalence with
condition (ii) consider local coordinates x and induced local coordinates x, δx for
TX . Then the vector field f c at a point (x, δx = X (x)) ∈ D ⊂ TX is given by

[
f (x)

∂ f
∂x (x)X (x)

]
=

[
f (x)

∂X
∂x (x) f (x) − L f X (x)

]
=

[
f (x)

∂X
∂x (x) f (x)

]
−

[
0

L f X (x)

]
, (1.21)
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where the first vector in the last term denotes a tangent vector toD . Hence if L f D ⊂
D then the vector field f c is tangent toD . Conversely, if f c is tangent toD then this
implies that the second vector in the last term is tangent to D for all X (x) ∈ D(x),
which amounts to L f D ⊂ D. 
�
Note that the equality expressed in (1.21) can be written in a coordinate-free way as

F∗X = Xc − [ f, X ]v (1.22)

for any vector field X .
Similarly, any co-distribution P on X can be described by the following sub-

manifold of T ∗X :

P := {(x, p) ∈ T ∗X | p ∈ P(x)}. (1.23)

Then we obtain:

Proposition 1.4 The distribution P on X is invariant with respect to the vector
field f onX if and only if one of the following two equivalent conditions is satisfied:

(i) F∗ Ṗ = P,
(ii) XH f is tangent toP .

Proof Again, the equivalence with condition (i) is already shown in [18]. For the
second condition, consider coordinates x and induced local coordinates (x, p) for
T ∗X . Then the vector field XH f at a point (x, p = α(x)) ∈ P ⊂ T ∗X is given by

[
f (x)

−(
∂ f
∂x )

T (x)α(x)

]
=

[
f (x)

∂α
∂x (x) f (x) − L f α(x)

]
=

[
f (x)

∂α
∂x (x) f (x)

]
−

[
0

L f α(x)

]
,

where the first vector in the last term denotes a tangent vector toP . Thus if L f P ⊂ P
holds then the vector field XH f is tangent to P . Conversely, if XH f is tangent to
P then this implies that the second vector in the last term is tangent to P for all
α(x) ∈ P(x), which amounts to L f P ⊂ P . 
�
Note the slight asymmetry with respect to the condition F∗D ⊂ Ḋ in the invariant
distribution case. This is due to the definitions of F(x) = (x, f (x)) and Ṗ implying
that for any P and f we have P ⊂ F∗ Ṗ .

Conditions (ii) in the above two propositions are especially appealing because
they imply that invariance of (co-)distributions can be equivalently interpreted as
invariance of submanifolds (of the tangent, respectively cotangent, bundle). In a
certain sense this unifies the treatment of invariance in geometric control theory,
where usually [18] the distinction is made between invariant (co-)distributions and
invariant manifolds (of the state space manifold).
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1.3.1 Controlled Invariance

The above geometric framework turned out to be especially useful for a generaliza-
tion of the notion of invariance for distributions and co-distributions to controlled
invariance, cf. [17] and Chap.13 of [18]. Consider a nonlinear control system

ẋ = f (x, u), x ∈ X , u ∈ U , (1.24)

where U is an m-dimensional control manifold (e.g., U = R
m). A distribution

D on the n-dimensional state space manifold X is called invariant with respect
to the system (1.24) if D is invariant with respect to the vector fields f (·, u) for
every u ∈ U . Furthermore, the distribution D is called locally controlled invariant
if there locally exists a feedback map u = u(x, v), v ∈ U , rank ∂u

∂v = m, such that
D is invariant with respect to the closed-loop dynamics ẋ = f (x, u(x, v)) with new
inputs v ∈ U .

The basic theorem is as follows. Define the system map F : X × U → TX by
F(x, u) = (x, f (x, u)), and note the following consequence of Proposition 1.4.

Proposition 1.5 Consider the nonlinear dynamics (1.24) given by the system map
F : X × U → TX . Let D be a distribution on X . Define De as the unique dis-
tribution on X × U such that

π∗De = D, π̄∗De = 0, (1.25)

with π , resp. π̄ , being the natural projection of X × U on X , resp. U. Then D is
invariant for (1.24) if and only if

F∗De ⊂ Ḋ. (1.26)

(Local) controlled invariance is now characterized as follows.

Theorem 1.1 Consider the nonlinear system (1.24) with system map F : X ×
U → TX . Let D be an involutive distribution of constant dimension onX . Define
the vertical distribution V onX × U as the kernel of π∗, where π : X × U → X
is the projection on X . Assume that the distribution

Ṽ := {Z ∈ V | F∗Z ∈ Ḋ} (1.27)

on X × U has constant dimension. Then D is locally controlled invariant if and
only if

F∗De ⊂ Ḋ + F∗V . (1.28)

Remark 1.1 Notice that (1.28) may be equivalently replaced by the requirement

F∗(π−1
∗ (D)) ⊂ Ḋ + F∗V . (1.28′)
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From a geometric point of view the above theorem yields the following characteri-
zation of local controlled invariance. Let D satisfy the assumptions of Theorem 1.1,
and denote P = ann D. Then E := ker F∗ Ṗ is an involutive distribution on M ×U .
Moreover if (1.28) holds, then E is constant-dimensional and satisfies

π∗E = D. (1.29)

Furthermore, by definition of E and by Proposition 1.2

F∗E = F∗(ker F∗ Ṗ) ⊂ ker Ṗ = Ḋ. (1.30)

Then it is easy to see that, at least locally, there exists an involutive distribution De

on X × U with De ⊂ E, π∗De = D and with dim De = dim D. This distribution
De defines a feedback map u = u(x, v) that renders D invariant for the closed-loop
dynamics by requiring that the leaves of De correspond to the submanifolds where
v is constant.

1.4 Invariant Lagrangian Subbundles and Contraction
Analysis

Remarkably, there is close geometric connection between the previous theory of (con-
trolled) invariance of (co-)distributions with the theory of convergent dynamics, as
originating in classical work in differential equations, see e.g., [10, 20] for treatments
and references, and revisited in the theory of contraction analysis, see e.g., [12–16].
The key idea, see [25], is to interpret (co-)distributions as subbundles of TX , respec-
tively T ∗X , and to generalize the notion of invariance of (co-)distributions to invari-
ance of subbundles of the Whitney sum TX ⊕ T ∗X .

Definition 1.2 A subbundle K of TX ⊕ T ∗X is a vector bundle overX with fiber
K (x) ⊂ TxX × T ∗

x X at any point x ∈ X . The subbundle K is called invariantwith
respect to a vector field f on X if

(L f X, L f α) ∈ K for any (X, α) ∈ K . (1.31)

Remark 1.2 If K has only zero components in T ∗
x X for any point x ∈ X , then K

can be identified with a distribution onX . Alternatively, if K has only zero compo-
nents in TxX for any point x ∈ X , then it can be identified with a co-distribution on
X . In these cases invariance of K amounts to invariance of the identified distribution,
respectively co-distribution.

Remark 1.3 The above definition of invariance of K is formally identical to the
definition of an infinitesimal symmetry of aDirac structure; see [3, 6, 23] for details.
(A Dirac structure is a subbundle of TX ⊕ T ∗X which is maximally isotropic with
respect to the duality product.)
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Associated to the subbundle K define the submanifold K of TX ⊕ T ∗X as
follows

K := {(x, δx, p) ∈ TX ⊕ T ∗X | (δx, p) ∈ K (x)}. (1.32)

We have the following characterization of invariance of K . Recall from Sect. 1.2 the
definition of the lift f c ⊕ XH f on the Whitney sum TX ⊕ T ∗X .

Proposition 1.6 The subbundle K is invariant with respect to the vector field f on
X if and only if the submanifold K is invariant for the vector field f c ⊕ XH f on
TX ⊕ T ∗X .

Proof In coordinates x and induced local coordinates for TX and T ∗X the vector
field f c ⊕ XH f at a point (x, X (x), α(x)) ∈ K ⊂ TX ⊕ T ∗X is given by

⎡

⎢⎢⎢⎣

f (x)
∂ f

∂x
(x)X (x)

−(
∂ f

∂x
)T (x)α(x)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

f (x)
∂X

∂x
(x) f (x) − L f X (x)

∂α

∂x
(x) f (x)) − L f α(x)

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

f (x)
∂X

∂x
(x) f (x)

∂α

∂x
(x) f (x)

⎤

⎥⎥⎥⎦ −
⎡

⎣
0

L f X (x)
L f α(x)

⎤

⎦ ,

where the first vector in the last term denotes a tangent vector to K . Thus if (1.31)
holds then the vector field f c ⊕ XH f is tangent to K . Conversely, if f c ⊕ XH f is
tangent to K then this implies that the second vector in the last term is tangent to
K for all (X (x), α(x)) ∈ K (x), which amounts to (1.31), i.e., invariance of K . 
�

In the rest of this section we will consider a special type of subbundle of the
Whitney sum TX ⊕ T ∗X defined as follows.

Definition 1.3 A subbundle K of TX ⊕ T ∗X is called a Lagrangian subbundle
if K (x) ⊂ TxX × T ∗

x X is a Lagrangian subspace (with respect to the canonical
symplectic form on TxX × T ∗

x X [1]) for every x ∈ X .

All subbundles

K (x) = {(δx, p) | V (x)p = U (x)δx,

V (x)UT (x) = U (x)V T (x), rank
[
U (x) V (x)

] = n} (1.33)

with U (x), V (x) n × n matrices depending on x (with n the dimension of the state
space manifoldX ), are Lagrangian, and conversely, all Lagrangian subbundles can
be represented in this way.

Additionally assume that the projection of K (x) ⊂ TxX ⊕ T ∗
x X on TxX is

equal to the whole tangent space TxX for all x ∈ X . Then in any set of local
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coordinates x1, . . . , xn for X the Lagrangian subbundle K is spanned by pairs of
vector fields and one-forms

(
∂

∂xi
, πi

)
, i = 1, . . . , n,

where the one-forms πi (x) = π1i (x)dx I + · · · πni (x)dxn, i = 1, . . . , n satisfy,
because of the fact that K is Lagrangian, the symmetry property

π j i (x) = πi j (x), i, j = 1, . . . , n.

Conversely, all subbundles K with K (x) = {(δx, p) | p = Π(x)δx}, whereΠ(x) is
a symmetric matrix, are Lagrangian.

Now consider any such Lagrangian subbundle K with K (x) = {(δx, p) | p =
Π(x)δx}, with Π(x) symmetric. Invariance of such a Lagrangian subbundle K with
respect to f c ⊕ XH f can be seen to amount to [25]

(
∂ f

∂x

)T

(x)Π(x) + Π(x)
∂ f

∂x
(x) + ∂Π

∂x
(x) f (x) = 0. (1.34)

This is a limiting case of the central equation of contraction analysis [10, 13, 21],
which amounts to

(
∂ f

∂x

)T

(x)Π(x) + Π(x)
∂ f

∂x
(x) + ∂Π

∂x
(x) f (x) = −Q(x) (1.35)

for some positive semi-definite matrix Q(x). Geometrically, this means that the
submanifold K corresponding to the Lagrangian subbundle K is invariant for the
extended vector field f c ⊕ XH f + q, where q is the vector field in local coordinates
x given by

q(x) =
∑

i, j

Qi j (x)δx
j ∂

∂pi
. (1.36)

We will call (1.35) a differential Lyapunov equation, cf. [25].
Alternatively, (1.34) can be interpreted fromaRiemannian geometry point of view,

by identifying it as the equation for aKilling vector field [21]; see also [2]. Indeed, the
symmetric matrix Π(x), in case it is positive-definite, defines a Riemannian metric
onX , in which case (1.34) amounts to the vector field f being a Killing vector field
for this Riemannian metric, characterized by the property

L f < X,Y >=< L f X,Y > + < X, L f Y >, (1.37)

for any vector fields X,Y , with < ·, · > denoting the Riemannian metric defined by
the positive-definite matrix Π(x). Finally, if this Riemannian metric has curvature
zero, then in appropriate coordinates x the matrix Π(x) takes the form of a constant
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matrix P , and (1.35) reduces to the Demidovich condition [19, 20]

(
∂ f

∂x

)T

(x)P + P
∂ f

∂x
(x) = −Q(x). (1.38)

As an open problem we mention the characterization of locally controlled invariant
Lagrangian subbundles, in a similar geometric spirit as the characterization of locally
controlled invariant distributions sketched before.

1.4.1 Prolongation of Nonlinear Control Systems to Tangent
and Cotangent Bundle and Further Differential
Properties

The previous geometric interpretation of the basic equation of contraction analysis
is part of a larger story translating incremental analysis tools into differential prop-
erties. A basic notion in this larger story is the prolongation (or lift) of a nonlinear
control system to the tangent and cotangent bundle, using the notions of the lifts
of functions and vector fields to tangent and cotangent bundle as described in the
previous subsection. This can be done as in [4], see also [2, 24].

Consider a nonlinear control system Σ with state space manifold X , affine in
the inputs u and with outputs y determined by the state x ,

Σ : ẋ = f (x) +
m∑

j=1

u j g j (x)

y j = h j (x), j = 1, . . . , r,

(1.39)

where x ∈ X , and u = (u1, . . . , um) ∈ U ⊂ R
m . The set U is the input space,

which is assumed to be an open subset of Rm . Finally, Y = R
r is the output space.

The prolongation of the nonlinear control system to the tangent bundle and the
cotangent bundle is constructed as follows; cf. [4].

Given an initial state x(0) = x0, take any coordinate neighborhood of X con-
taining x0. Let t ∈ [0, T ] → x(t) be the solution of (1.39) corresponding to the
admissible input function t ∈ [0, T ] → u(t) = (u1(t), . . . , um(t)) and the initial
state x(0) = x0, such that x(t) remains within the selected coordinate neighbor-
hood. Denote the resulting output by t ∈ [0, T ] → y(t) = (y1(t), . . . , yr (t)), with
y j (t) = Hj (x(t)). Then the variational system along the input-state-output trajectory
t ∈ [0, T ] → (x(t), u(t), y(t)) is given by the following time-varying system

δ̇x(t) = ∂ f

∂x
(x(t))δx(t)

+
m∑

j=1

u j (t)
∂g j

∂x
(x(t))δx(t)
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+
m∑

j=1

δu j (t)g j (x(t)) (1.40)

δy j (t) = ∂h j

∂x
(x(t))δx(t), j = 1, . . . , r,

with state δx(t) ∈ T ∗
x(t)X , where δu = (δu1, . . . , δum)T , δy = (δy1, . . . , δyr )

T

denote the input and output vectors of the variational system. (Note that ∂h j

∂x (x)
denotes a row vector.)

The reason behind the terminology “variational” comes from the following fact:
let (x(t, ε), u(t, ε), y(t, ε)), t ∈ [0, T ], be a family of input-state-output trajectories
of (1.39) parameterized by ε ∈ (−c, c), c > 0, with x(t, 0) = x(t), u(t, 0) = u(t)
and y(t, 0) = y(t), t ∈ [0, T ]. Then the infinitesimal variations

δx(t) = ∂x

∂ε
(t, 0), δu(t) = ∂u

∂ε
(t, 0), δy(t) = ∂y

∂ε
(t, 0), (1.41)

satisfy (1.40).

Remark 1.4 For a linear system ẋ = Ax + Bu, y = Cx the variational systems
along any trajectory are simply given as δ̇x = Aδx + Bδu, δy = Cδx .

The prolongation (or prolonged system) of (1.39) comprises the original sys-
tem (1.39) together with its variational systems, that is the total system

ẋ = f (x) + ∑m
j=1 u j g j (x)

δ̇x(t) = ∂ f
∂x (x(t))δx(t)+∑m

j=1 u j (t)
∂g j

∂x (x(t))δx(t)+
∑m

j=1 δu j (t)g j (x(t))

y j = h j (x), j = 1, . . . , r

δy j (t) = ∂h j

∂x (x(t)) δx(t), j = 1, . . . , r,

(1.42)

with inputs u j , δu j , j = 1, . . . ,m, outputs y j , δy j , j = 1, . . . , r, and state vector x ,
δx .

Using the previous subsection, the prolonged system (1.42) on the tangent space
TX can be intrinsically defined in the following coordinate-free way. Denote the
elements of TX by xl = (x, δx), where τX (xl) = x ∈ X with τX : TX → X
again the tangent bundle projection.

Definition 1.4 ([4]) The prolonged system δΣ of a nonlinear system Σ of the
form (1.39) is defined as the system

δΣ :
ẋl = f c(xl) + ∑m

j=1 u j gcj (xl) + ∑m
j=1 δu j gvj (xl)

y j = hvj (xl), j = 1, . . . , r
δy j = hcj (xl), j = 1, . . . , r,

(1.43)
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with state xl = (x, δx) ∈ TX , inputs u j , δu j , j = 1, . . . ,m, and outputs y j , δy j ,
j = 1, . . . , r .

Note that the prolonged system δΣ has state space TX , input space TU and output
space TY . One can easily check that in any system of local coordinates x for X ,
u for U , and y for Y , and the induced local coordinates x, δx for TX , u, δu for
TU , y, δy for TY , the local expression of the system (1.43) equals (1.42).

Remark 1.5 For a linear system ẋ = Ax + Bu, y = Cx the prolonged system is
simply the product of the systemwith the copy system δ̇x = Aδx + Bδu, δy = Cδx .

The prolongation of the nonlinear control system Σ to the cotangent bundle is
defined as follows. Associated to the variational system (1.40) there is the adjoint
variational system, defined as

ṗ(t) = −
(

∂ f
∂x

)T
(x(t))p(t)

−∑m
j=1 u j (t)(

∂g j

∂x )T (x(t))p(t)

−∑r
j=1 du j (t)

∂T h j

∂x (x(t))

dy j (t) = pT g j (x(t)), j = 1, . . . ,m,

(1.44)

with state variables p ∈ T ∗
x(t)X , and adjoint variational inputs and outputs du j , j =

1, . . . , r , dy j , j = 1, . . . ,m. Then, the original nonlinear system Σ together with
all its adjoint variational systems defines the total system

ẋ = f (x) + ∑m
j=1 u j g j (x)

ṗ(t) = −(
∂ f
∂x )

T (x(t))p(t)

−∑m
j=1 u j (t)(

∂g j

∂x )T (x(t))p(t)

−∑r
j=1 du j (t)

∂T h j

∂x (x(t))

y j = h j (x), j = 1, . . . , r

dy j (t) = pT g j (x(t)), j = 1, . . . ,m,

(1.45)

with inputs u j , du j , outputs y j , dy j and state x , p. This total system is called the
Hamiltonian extension. In a coordinate-freeway theHamiltonian extension is defined
as follows.

Definition 1.5 ([4]) The Hamiltonian extension dΣ of a nonlinear system Σ of the
form (1.39) is defined as the system

dΣ :
ẋe = XH f (xe) + ∑m

j=1 u j XHg j (xe) + ∑r
j=1 du j Xhvj (xe)

y j = hvj (xe), j = 1, . . . , r
dy j = Hgj (xe), j = 1, . . . ,m,

(1.46)

with state xe = (x, p) ∈ T ∗X , inputs u j , du j and outputs y j , dy j .
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Note that the Hamiltonian extension dΣ has state space T ∗X , and combined input
and output space T ∗U × T ∗Y , where (u, δy) ∈ T ∗U and (y, δu) ∈ T ∗Y .

Remark 1.6 For a linear system ẋ = Ax + Bu, y = Cx the Hamiltonian extension
is the product of the systemwith its adjoint system ṗ = −AT p − CT du, dy = BT p.

The prolongation δΣ of Σ to the tangent bundle can be combined with the Hamil-
tonian extension dΣ of Σ to the cotangent bundle. This will define a system on
the Whitney sum TX ⊕ T ∗X with inputs u, δu, du, states x, δx, p and outputs
y, δy, dy. It can be immediately verified that

d

dt
〈p, δx〉 = 〈dy, δu〉 − 〈du, δy〉, (1.47)

which equality is in fact underlying the definition of the adjoint variational system;
see also [4].

1.4.2 Differential Lyapunov Equations

In [25] it was shown how differential Riccati equations can be obtained by intercon-
necting the prolonged system δΣ with the Hamiltonian extension dΣ through the
interconnection laws

δu = −dy, du = δy, (1.48)

and to consider invariant Lagrangian subbundles for the resulting differential Hamil-
tonian system living on the Whitney sum TX ⊕ T ∗X . This yields a geometric
formulation of the approach developed e.g., in [11, 12, 14–16, 26].

Differential Lyapunov equations result from the case g j = 0, j = 1, . . . ,m, for
the original system Σ (i.e., no inputs). In this case the interconnection of the prolon-
gation δΣ and the Hamiltonian extension dΣ reduces to du = δy, and can be seen
to lead to the differential Hamiltonian system (see [25] for further details)

ż = f c ⊕ XH f (z) − ∑r
j=1 h

c
j Xhvj (z), z ∈ TX

y j = h j (x), j = 1, . . . , r.
(1.49)

The submanifold K corresponding to a Lagrangian subbundle K with K (x) =
{(δx, p) | p = Π(x)δx}, where Π(x) is a symmetric matrix, is an invariant sub-
manifold for (1.49) if and only if Π(x) satisfies the equation

(
∂ f

∂x

)T
(x)Π(x) + Π(x)

∂ f

∂x
(x) +

(
∂h

∂x

)T
(x)

∂h

∂x
(x) + ∂Π

∂x
(x) f (x) = 0. (1.50)

This is nothing else than the differential Lyapunov equation (1.35) as considered
before, where the matrix Q(x) in (1.35) is of a somewhat special form.
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1.5 Conclusions and Outlook

In this chapter (controlled) invariance of (co-)distributions has been reviewed using
the geometric notions of liftings to the (co-)tangent bundle, continuing upon the
approach initiated in [17] and further developed in [18]. It has been shown how the
geometric treatment of invariance of (co-)distributions can be extended to invariance
of Lagrangian subbundles, making a direct link to the theory of convergent dynamics
and contraction analysis.

Next to the classical topic of (controlled) invariant (co-)distributions, and the
recent developments on differential Lyapunov and differential Riccati equations,
the established geometric framework also opens other possibilities. An important
avenue for further research is the extension of the classical passivity and small-gain
framework, see e.g., [22], to the differential level. Indeed, in [7–9, 24] differential
passivity was defined and explored in this spirit. Furthermore, in [15, 24] differential
L2-gain was initiated. Despite the beauty of this approach and the insight provided,
the implications for control design of these recent developments are yet to be seen,
and probably require the combination with dynamical analysis tools.

Acknowledgments I would like to thank theDutch Nonlinear Systems Group for continuing inspi-
ration and support.
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Chapter 2
Some Recent Results on Distributed Control
of Nonlinear Systems

Tengfei Liu and Zhong-Ping Jiang

Abstract The spatially distributed structure of complex systems motivates the idea
of distributed control. In a distributed control system, the subsystems are controlled
by local controllers through information exchange with neighboring agents for coor-
dination purposes. One of the major difficulties of distributed control is due to
the complex characteristics such as nonlinearity, dimensionality, uncertainty, and
information constraints. This chapter introduces small-gain methods for distributed
control of nonlinear systems. In particular, a cyclic-small-gain result in digraphs is
presented as an extension of the standard nonlinear small-gain theorem. It is shown
that the new result is extremely useful for distributed control of nonlinear systems.
Specifically, this chapter first gives a cyclic-small-gain design for distributed output-
feedback control of nonlinear systems. Then, an application to formation control
problem of nonholonomic mobile robots with a fixed information exchange topol-
ogy is presented.

2.1 Introduction

Distributed control of multiagent systems under communication constraints has
attracted tremendous attention from the control community over the past 10 years;
see, for example, [45] using an adaptive gradient climbing strategy, [3, 5, 12, 21,
48] based on linear algebra and graph theory, [2, 53] using passivity and dissipativity
theory, [4, 16, 19, 34, 42, 43, 50, 51] with Lyapunov methods, [17] using the non-
linear small-gain theorem, and [54, 57, 58] based on output regulation. The recent
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hot topics such as formation control, consensus, flocking, swarm, rendezvous and
synchronization are all closely related to distributed coordinated control.

The distributed control problem for agents with second-order dynamics has been
mainly studied from the perspective of second-order consensus and flocking. Consid-
erable efforts have been devoted to solving the problems under switching information
exchange topologies. Related results include [4, 12, 46, 47, 55]. Specifically, [12,
46] used potential functions to define Lyapunov functions and the topologies are
allowed to be switching but undirected. Reference [47] presented a consensus result
for double integrator systems based on a refined graph theoretical method. Refer-
ence [4] proposed a variable structure approach-based consensus design method for
systems with switching but always connected information exchange topology. Sev-
eral recent results on distributed control can also be found in [15, 32, 41, 49, 59].
It should be pointed out that most of the papers mentioned above do not consider
systems under physical constraints (e.g., saturation of velocities), for which specific
distributed nonlinear designs are expected.

As a practical application of distributed control, the formation control of
autonomous mobile agents aims at forcing the agents to converge toward, and to
maintain, specific relative positions, by using available information, e.g., relative
position measurements. Recent formation control results can be found in [1, 7, 9,
10, 20, 30, 31, 44, 56], to name a few. The earlier results, e.g., [7, 56], assume
a tree sensing structure to avoid the technical difficulties caused by the loop inter-
connections. In [9, 10, 31, 44], the assumption of tree sensing structures is relaxed
at the price of using global position measurements. An exception is the wiggling
controller developed by [33] to drive the robots to stationary points, which does not
use global position measurements of the robots. In the results of coordinated path-
following as presented in [1, 20, 30], the global position measurement issue can be
easily addressed as each robot has access to its desired path. In our recent paper [38],
thanks to the use of nonlinear small-gain techniques [25, 35], the requirement on
global position measurements has been removed for formation control of unicycles
with fixed sensing topologies.

The discussion in this chapter starts with an example of a multivehicle formation
control system inwhich each vehicle ismodeled by an integrator. In the case of leader-
following with fixed topology, it is shown that the problem can be transformed into
the stability problem of a specific dynamic network composed of ISS subsystems.
This motivates a cyclic-small-gain result in digraphs, which is given in Sect. 2.2. It
is shown that the new result is extremely useful for distributed control of nonlinear
systems. Specifically, Sect. 2.3 presents a cyclic-small-gain design for distributed
output-feedback control of nonlinear systems. In Sect. 2.4, we study the distributed
formation control problem of nonholonomic mobile robots with a fixed information
exchange topology.
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x0 xi xN

v0 vi vN

Fig. 2.1 A multivehicle system

2.2 A Cyclic-Small-Gain Result in Digraphs

Example 2.1 Consider a group of N + 1 vehicles (multivehicle system) as shown
in Fig. 2.1, with each vehicle modeled by an integrator:

ẋi = vi , i = 0, . . . , N , (2.1)

where xi ∈ R is the position and vi ∈ R is the velocity of the i th vehicle. The vehicle
with index 0 is the leader while the other vehicles are the followers. The objective is
to control the follower vehicles to specific positions relative to the leader by adjusting
the velocities vi for i = 1, . . . , N . More specifically, it is required that

lim
t→∞(xi (t) − x j (t)) = di j , i, j = 0, . . . , N , (2.2)

where constants di j represent the desired relative positions. Clearly, to define the
problem well, di j = dik + dk j for any i, j, k = 0, . . . , N and di j = −d ji for any
i, j = 0, . . . , N . Also, by default, dii = 0 for any i = 0, . . . , N . In the literature of
distributed control, the vehicles are usually considered as agents and themultivehicle
system is studied as a multiagent system.

Compared with global positions, the relative positions between vehicles are often
easily measurable in practice, and are used for feedback in this example. Consid-
ering the position information exchange, agent j is called a neighbor of agent i if
(xi − x j ) is available to agent i , and Ni ⊆ {0, . . . , N } is used to denote the set of
agent i’s neighbors. We consider the case where each vehicle only uses the position
differences with the vehicles right before and after it, i.e., Ni = {i − 1, i + 1} for
i = 1, . . . , N − 1 and NN = {N − 1}.

Define x̃i = xi − x0 − di0 and ṽi = vi − v0. By taking the derivative of x̃i , we
have

˙̃xi = ṽi , i = 1, . . . , N . (2.3)

According to the definition of x̃i , x̃i − x̃ j = xi − x j − di j . Thus, the control objective
is achieved if limt→∞(x̃i − x̃0) = 0. Also, (x̃i − x̃ j ) is available to the control of the
x̃i -subsystem if (xi − x j ) is available to agent i . This problem is normally known as
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the consensus problem. If the position information exchange topology has a spanning
tree with agent 0 as the root, then the following distributed control law is effective:

ṽi = ki

∑

j∈Ni

(x̃ j − x̃i ), (2.4)

where ki is a positive constant. Moreover, if the velocities vi are required to be
bounded, one may modify (2.4) as

ṽi = ϕi

⎛

⎝
∑

j∈Ni

(x̃ j − x̃i )

⎞

⎠ , (2.5)

where ϕi : R → [vi , vi ] with constants vi < 0 < vi is a continuous, strictly increas-
ing function satisfying ϕi (0) = 0.With control law (2.5), vi ∈ [v0 + vi , v0 + vi ]. The
validity of the control laws defined by (2.4) and (2.5) can be directly verified using
the state agreement result in [34].

With control law (2.5), each x̃i -subsystem can be rewritten as

˙̃xi = ϕi

⎛

⎝
∑

j∈Ni

x̃ j − Ni x̃i

⎞

⎠ := fi (x̃), (2.6)

where Ni is the size of Ni and x̃ = [x̃0, . . . , x̃N ]T . Define Vi (x̃i ) = |x̃i | as an ISS-
Lyapunov function candidate for the x̃i -subsystem for i = 1, . . . , N . It can be verified
that for any δ > 0, there exists a continuous, positive definite α such that

Vi (x̃i ) ≥ 1

(1 − δi )Ni

∑

j∈Ni

V j (x̃ j ) ⇒ ∇Vi (x̃i ) fi (x̃) ≤ −αi (Vi (x̃i )) a.e., (2.7)

where, for convenience of notation, V0(x̃0) = 0. This shows the ISS of each x̃i -
subsystem with i = 1, . . . , N . If the network of ISS subsystems is asymptotically
stable, then the control objective is achieved.

We employ a digraph G f to represent the underlying interconnection structure of
the dynamic network. The vertices of the digraph correspond to agents 1, . . . , N ,
and for i, j = 1, . . . , N , directed edge ( j, i) exists in the graph if and only if x̃ j is an
input of the xi -subsystem. We useN i to represent the set of neighbors of agent i in
G f . Then, it is directly verified thatN i = Ni\{0}. Recall that V0(x̃0) = 0. Then, the
Ni in (2.7) can be directly replaced byN i . Figure2.2 shows the digraph G f for the
case in which each follower vehicle uses the position differences with the vehicles
right before and after it.

Notice that for any positive constants a1, . . . , an satisfying
∑n

i=1 1/ai ≤ n, it
holds that

∑n
i=1 di = ∑n

i=1(1/ai )ai di ≤ n maxi=1,...,n{ai di }, for all d1, . . . , dn ≥ 0.
Then, property (2.7) implies
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1 2 3 N

Fig. 2.2 An example of information exchange digraph G f , for which each vehicle uses the position
differences with the vehicles right before and after it. In this figure, N i = {i − 1, i + 1} for i =
2, . . . , N − 1, N 1 = {2} and N N = {N − 1}

Vi (x̃i ) ≥ N i

(1 − δi )Ni
max
j∈N i

{ai j Vj (x̃ j )} ⇒ ∇Vi (x̃i ) fi (x̃) ≤ −αi (Vi (x̃i )), (2.8)

where N i is the size ofN i and ai j are positive constants satisfying
∑

j∈N i
1/ai j ≤

N i . It can be observed that Ni = N i + 1 if 0 ∈ Ni and Ni = N i if 0 /∈ Ni .
Given specific ai j > 0, one can test the stability property of the closed-loop system

by directly checking whether the cyclic-small-gain condition is satisfied. But, for a
specific G f , can we find appropriate coefficients ai j to satisfy the cyclic-small-gain
condition, and how?

It should be noted that the effectiveness of control law (2.5) can be proved using
the result in [34]. Here, our objective is to transform the problem into a stability
problem of dynamic networks, and develop a result which is hopefully useful for
more general distributed control problems.

The main result in this section answers the question in Example 2.1.
Consider a digraph G f which has N vertices. For i = 1, . . . , N , define N i such

that if there is a directed edge ( j, i) from the j th vertex to the i-th vertex, then
j ∈ N i . Each edge ( j, i) is assigned a positive variable ai j . For a simple cycle O
of G f , denote AO as the product of the positive values assigned to the edges of the
cycle. For i = 1, . . . , N , denote C (i) as the set of simple cycles of G f through the
i-th vertex.

Lemma 2.1 If the digraph G f has a spanning tree T f with vertices i∗
1 , . . . , i∗

q as the

roots, then for any ε > 0, there exist ai j > 0 for i = 1, . . . , N, j ∈ N i , such that

∑

j∈N i

1

ai j
≤ N i , i = 1, . . . , N (2.9)

AO < 1 + ε, O ∈ C (i∗
1 ) ∪ · · · ∪ C (i∗

q ) (2.10)

AO < 1, O ∈
(

⋃

i=1,...,N

C (i)

)
\ (

C (i∗
1 ) ∪ · · · ∪ C (i∗

q )
)
, (2.11)

where N i is the size of N i .

Proof Weonly consider the case of q = 1. The case of q ≥ 2 can be proved similarly.
Denote i∗ as the root of the tree.
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Define a0
i j = 1 for 1 ≤ i ≤ N , j ∈ N i . If ai j = a0

i j for 1 ≤ i ≤ N , j ∈ N i , then

∑

j∈N i

1

a0
i j

≤ N i , i = 1, . . . , N (2.12)

AO = 1, O ∈
⋃

i=1,...,N

C (i). (2.13)

Consider one of the paths leading from root i∗ in the spanning tree T f . Denote
the path as (p1, . . . , pm) with p1 = i∗.

One can find a1
p2 p1 = a0

p2 p1 + ε0p2 p1 > 0 with ε0p2 p1 > 0 and a1
p2 j = a0

p2 j − εp2 j >

0 with εp2 j > 0 for j ∈ N p2\{p1} such that if ai j = a1
i j for i = p2 and ai j = a0

i j for
i �= p2, then (2.12) is satisfied, and also

AO < 1 + ε′ for O ∈ C (p1), (2.14)

AO < 1 for O ∈ C (p2)\C (p1) (2.15)

with 0 < ε′ < ε.
Then, one can find a1

p3 p2 = a0
p3 p2 + ε0p3 p2 > 0 with ε0p3 p2 > 0 and a1

p3 j = a0
p3 j −

ε0p3 j > 0 with ε0p3 j > 0 for j ∈ N p3\{p2} such that if ai j = a1
i j for i ∈ {p2, p3}, and

ai j = a0
i j for i /∈ {p2, p3}, then (2.12) is satisfied, and also

AO < 1 + ε′′ for O ∈ C (p1), (2.16)

AO < 1 for O ∈ (C (p2) ∪ C (p3)) \C (p1) (2.17)

with 0 < ε′ ≤ ε′′ < ε.
By doing this for i = p2, . . . , pm , we can find a1

i j > 0 for i ∈ {p2, . . . , pm}, j ∈
N i , such that

AO < 1 + ε1 for O ∈ C (p1), (2.18)

AO < 1 for O ∈ (C (p2) ∪ · · · ∪ C (pm)) \C (p1) (2.19)

with 0 < ε0 < ε.
By considering each path leading from the root i∗ in the spanning tree one by

one, we can find a1
i j > 0 for i ∈ {1, . . . , N }, j ∈ N i , such that if ai j = a1

i j for i ∈
{1, . . . , N }, j ∈ N i , then (2.12) and (2.11) are satisfied and

AO < 1 + ε1 for O ∈ C (i∗
1 ) ∪ · · · ∪ C (i∗

q ), (2.20)

where 0 < ε1 < ε.
Note that the left-hand sides of inequalities (2.9), (2.10), and (2.11) continuously

depend on ai j for i ∈ {1, . . . , N }, j ∈ N i . One can find a2
i j > 0 for i ∈ {1, . . . , N },
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j ∈ N i , such that if ai j = a2
i j for i ∈ {1, . . . , N }, j ∈ N i , then conditions (2.9),

(2.10), and (2.11) are satisfied. ��
Example 2.2 Continue Example 2.1. DefineL = {i ∈ {1, . . . , N } : 0 ∈ Ni }. Con-
sidering the relation between Ni and N i , and N i ≤ N , the cyclic-small-gain condition
can be satisfied by the network of ISS subsystems with property (2.8) if

AO <
(1 − δ̄)N (N + 1)

N
, O ∈

⋃

i∈L
C (i), (2.21)

AO < (1 − δ̄)N , O ∈
⎛

⎝
⋃

i∈{1,...,N }
C (i)

⎞

⎠ \
(

⋃

i∈L
C (i)

)
, (2.22)

where δ̄ = maxi=1,...,N {δi }.
Using Lemma 2.1, if graph G f has a spanning tree with the agents belonging

to L as the roots, one can find a constant δ̄ > 0 and constants ai j > 0 satisfying∑
j∈N i

1/ai j ≤ N i such that conditions (2.21) and (2.22) are satisfied. The graph
shown in Fig. 2.2 satisfies this condition.

Lemma 2.1 proves very useful in constructing distributed controllers for nonlinear
agents to achieve convergence of their outputs to an agreement value. It provides for
a form of gain assignment in the network coupling.

2.3 Distributed Output-Feedback Control

In this section, the basic idea of cyclic-small-gain design for distributed control is
generalized to high-order nonlinear systems. Consider a group of N nonlinear agents,
of which each agent i (1 ≤ i ≤ N ) is in the output-feedback form:

ẋi j = xi( j+1) + Δi j (yi , wi ), 1 ≤ j ≤ ni − 1 (2.23)

ẋini = ui + Δini (yi , wi ) (2.24)

yi = xi1, (2.25)

where [xi1, . . . , xini ]T := xi ∈ R
ni with xi j ∈ R (1 ≤ j ≤ ni ) is the state, ui ∈ R is

the control input, yi ∈ R is the output, [xi2, . . . , xini ]T is the unmeasured portion
of the state, wi ∈ R

nwi represents external disturbances, and Δi j ’s (1 ≤ j ≤ ni ) are
unknown locally Lipschitz functions.

The objective of this section is to develop a new class of distributed controllers
for the multiagent system based on available information such that the outputs yi for
1 ≤ i ≤ N converge to the same desired agreement value y0. This problem is called
the output agreement problem in this chapter.
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Different from decentralized control, the major objective of distributed control is
to control the agents in a coordinated way for some desired group behavior. For the
output agreement problem, the objective is to control the agents so that the outputs
converge to a desired common value. Information exchange between the agents is
required for coordination purposes. In practice, the information exchange is subject
to constraints. As considered in Example 2.1, the position x0 of the leader vehicle is
only available to some of the follower vehicles, and the formation control objective
is achieved through information exchange between the neighboring vehicles.

For distributed control of the multiagent nonlinear system (2.23)–(2.25), we
employ a digraph G c to represent the information exchange topology between the
agents.DigraphG c contains N vertices corresponding to the N agents and M directed
edges corresponding to the information exchange links. Specifically, if yi − yk is
available to the local controller design of agent i , then there is a directed link from
agent k to agent i and agent k is called a neighbor of agent i ; otherwise, there is no link
from agent k to agent i . SetNi ⊆ {1, . . . , N } is used to represent agent i’s neighbors.
In this section, an agent is not considered as a neighbor of itself and thus i /∈ Ni for
1 ≤ i ≤ N . Agent i is called an informed agent if it has access to the knowledge of
the agreement value y0 for its local controller design. LetL ⊆ {1, . . . , N } represent
the set of all the informed agents.

The following assumption is made on the agreement value and system (2.23)–
(2.25).

Assumption 2.1 There exists a nonempty set Ω ⊆ R such that

1. y0 ∈ Ω;
2. for each 1 ≤ i ≤ N , 1 ≤ j ≤ ni ,

|Δi j (yi , wi ) − Δi j (zi , 0)| ≤ ψΔi j (|[yi − zi , wT
i ]T |) (2.26)

for all [yi , wT
i ]T ∈ R

1+nwi and all zi ∈ Ω , whereψΔi j ∈ K∞ is Lipschitz on com-
pact sets and known.

It should be noted that a priori information on the bounds of y0 (and thus Ω)
is usually known in practice. In this case, condition 2 in Assumption 2.1 can be
guaranteed if for each zi , there exists a ψ

zi
Δi j

∈ K∞ that is Lipschitz on compact sets
such that

|Δi j (yi , wi ) − Δi j (zi , 0)| = |Δi j ((yi − zi ) + zi , wi ) − Δi j (zi , 0)|
≤ ψ

zi
Δi j

(|[yi − zi , wT
i ]T |). (2.27)

Then, ψΔi j can be defined as ψΔi j (s) = supzi ∈Ω ψ
zi
Δi j

(s) for s ∈ R+. In fact, there
always exists a ψ

zi
Δi j

∈ K∞ that is Lipschitz on compact sets to fulfill condition
(2.27) if Δi j is locally Lipschitz.

It is also assumed that the external disturbances are bounded.
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Assumption 2.2 For each i = 1, . . . , N , there exists a w̄i ≥ 0 such that

|wi (t)| ≤ w̄i (2.28)

for all t ≥ 0.

The basic idea is to design observer-based local controllers for the agents such that
each controlled agent i is IOS, and moreover, has the UO property. Then, the cyclic-
small-gain theorem in digraphs can be used to guarantee the IOS of the closed-loop
multiagent system and then the achievement of output agreement.

By introducing a dynamic compensator

u̇i = vi (2.29)

and defining x ′
i1 = yi − y0 and x ′

i( j+1) = xi( j+1) + Δi j (y0, 0) for 1 ≤ j ≤ ni , we can
transform each agent i defined by (2.23)–(2.25) into the form of

ẋ ′
i j = x ′

i( j+1) + Δi j (yi , wi ) − Δi j (y0, 0), 1 ≤ j ≤ ni + 1 (2.30)

ẋ ′
ini

= vi + Δini (yi , wi ) − Δini (y0, 0) (2.31)

y′
i = x ′

i1 (2.32)

with the output tracking error y′
i = yi − y0 as the new output and vi as the new control

input.
Moreover, the dynamic compensator (2.29) guarantees that the origin is an equi-

librium of the transformed agent system (2.30)–(2.32) if it is disturbance-free, and
the distributed control objective can be achieved if the equilibrium at the origin of
each transformed agent system is stabilized.

The local controller for each agent i is designed by directly using the available
ym

i , defined as follows:

ym
i = 1

Ni + 1

⎛

⎝
∑

k∈Ni

(yi − yk) + (yi − y0)

⎞

⎠ , i ∈ L (2.33)

ym
i = 1

Ni

∑

k∈Ni

(yi − yk), i ∈ {1, . . . , N }\L , (2.34)

where Ni is the size ofNi . For the convenience of discussions, we represent ym
i with

the new outputs as

ym
i = y′

i − μi (2.35)
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with

μi = 1

Ni + 1

∑

k∈Ni

y′
k, i ∈ L (2.36)

μi = 1

Ni

∑

k∈Ni

y′
k, i ∈ {1, . . . , N }\L . (2.37)

2.3.1 Distributed Output-Feedback Controller

Owing to the output-feedback structure, we design a local observer for each trans-
formed agent system (2.30)–(2.32):

ξ̇i1 = ξi2 + Li2ξi1 + ρi1(ξi1 − ym
i ) (2.38)

ξ̇i j = ξi( j+1) + Li( j+1)ξi1 − Li j (ξi2 + Li2ξi1), 2 ≤ j ≤ ni (2.39)

ξ̇i(ni +1) = vi − Li(ni +1)(ξi2 + Li2ξi1), (2.40)

where ρi1 : R → R is an odd and strictly decreasing function, and Li2, . . . , Lini are
positive constants. In the observer, ξi1 is an estimate of y′

i , and ξi j is an estimate of
x ′

i j − Li j y′
i for 2 ≤ j ≤ ni + 1.

Here, (2.38) is constructed to estimate y′
i using ym

i which is influenced by the
outputs y′

k (k ∈ Ni ) of the neighbor agents (see (2.35)). The nonlinear function ρi1

in (2.38) is used to assign an appropriate nonlinear gain to the observation error
system. As shown later, it is the key to make each controlled agent IOS with specific
gains satisfying the cyclic-small-gain condition.

With the estimates, a nonlinear local control law is designed as

ei1 = ξi1, (2.41)

ei j = ξi j − κi( j−1)(ei( j−1)), 2 ≤ j ≤ ni + 1 (2.42)

vi = κi(ni +1)(ei(ni +1)), (2.43)

where κi1, . . . , κi(ni +1) are continuously differentiable, odd, strictly decreasing, and
radially unbounded functions.

Consider Zi = [x ′
i1, . . . , x ′

i(ni +1), ξi1, . . . , ξi(ni +1)]T as the internal state of each
controlled agent composed of the transformed agent system (2.30)–(2.32) and the
local observer-based controller (2.38)–(2.43). The block diagram of controlled agent
i with μi as the input and y′

i as the output is shown in Fig. 2.3.
The following proposition presents the UO and IOS properties of each controlled

agent i .

Proposition 2.1 Each controlled agent i composed of (2.30)–(2.32) and (2.38)–
(2.43) has the following UO and IOS properties with μi as the input and y′

i as the
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−+ymilocal observerlocal control law

vi ∫ ui
agent i

yi +
−

y0

y′
i

µi

Fig. 2.3 The block diagram of each controlled agent i

output: for all t ≥ 0,

|Zi (t)| ≤ αUO
i (|Zi0| + ‖μi‖[0,t]) (2.44)

|y′
i (t)| ≤ max

{
βi (|Zi0|, t), χi (‖μi‖[0,t]), γi (‖wi‖[0,t])

}
, (2.45)

for any initial state Zi (0) = Zi0 and any μi , wi , where βi ∈ K L and χi , γi , αi ∈
K∞. Moreover, γi can be designed to be arbitrarily small, and for any specified
constant bi > 1, χi can be designed such that χi (s) ≤ bi s, for all s ≥ 0.

Due to space limitations, the proof of Proposition 2.1 is not provided here. The
interested reader may consult [39] for reference.

2.3.2 Cyclic-Small-Gain Synthesis

With the proposed distributed output-feedback controller, the closed-loopmultiagent
system has been transformed into a network of IOS subsystems. This subsection
presents the main result of output agreement and provides a proof based on the
cyclic-small-gain result in digraphs.

Theorem 2.1 Consider the multiagent system in the form of (2.23)–(2.25) satisfying
Assumptions 2.1 and 2.2. If there is at least one informed agent, i.e., L �= ∅, and
the communication digraph G c has a spanning tree with the informed agents as the
roots, then we can design distributed observers (2.38)–(2.40) and distributed control
laws (2.29), (2.41)–(2.43) such that all the signals in the closed-loop multiagent
system are bounded, and the output yi of each agent i can be steered to within
an arbitrarily small neighborhood of the desired agreement value y0. Moreover, if
wi = 0 for i = 1, . . . , N, then each output yi asymptotically converges to y0.

Proof Notice that for any constants a1, . . . , an > 0 satisfying
∑n

i=1(1/ai ) ≤ n, it
holds that

n∑

i=1

di =
n∑

i=1

1

ai
ai di ≤ n max

1≤i≤n
{ai di } (2.46)
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for all d1, . . . , dn ≥ 0.
Recall the definition of μi in (2.36) and (2.37). We have

|μi | ≤ δi max
k∈Ni

{aik |y′
k |}, (2.47)

where δi = Ni
Ni +1 if i ∈ L , δi = 1 if i /∈ L , and aik are positive constants satisfying

∑

k∈Ni

1

aik
≤ Ni . (2.48)

Then, using the fact that theNi in (2.47) are time invariant, property (2.45) implies

|y′
i (t)| ≤ max

{
βi (|Zi0|, t), biδi max

k∈Ni

{aik‖y′
k‖[0,t]}, γi (‖wi‖[0,t])

}
(2.49)

for any initial state Zi0 and any wi , for all t ≥ 0.
It can be observed that the interconnection topology of the controlled agents is in

accordance with the information exchange topology, represented by digraph G c. For
i ∈ N , k ∈ Ni , we assign the positive value aik to the edge (k, i) in G c. Denote C
as the set of all simple cycles in G c andCL as the set of all simple cycles through the
vertices belonging to L . Denote AO as the product of the positive values assigned
to the edges of the cycle O ∈ C .

Note that bi can be designed to be arbitrarily close to one. By using the cyclic-
small-gain theorem for networks of IOS systems, the closed-loop multiagent system
is IOS if

AO
N

N + 1
< 1, O ∈ CL (2.50)

AO < 1, O ∈ C \CL . (2.51)

IfG c has a spanning tree with vertices belonging toL as the roots, then according
to Lemma 2.1, there exist positive constants aik satisfying (2.48), (2.50), and (2.51).
Then, the closed-loop distributed system is UO and IOS with wi as the inputs and
y′

i as the outputs. With Assumption 2.2, the external disturbances wi are bounded.
The boundedness of the signals of the closed-loop distributed system can be directly
verified under Assumption 2.2.

By designing the IOS gains γi arbitrarily small (this can be done according to
Proposition 2.1), the influence of the external disturbances wi is made arbitrarily
small, and y′

i can be driven to within an arbitrarily small neighborhood of the origin.
Equivalently, yi can be driven to within an arbitrarily small neighborhood of y0. In
the case of wi = 0 for i = 1, . . . , N , each output yi asymptotically converges to y0.
This ends the proof of Theorem 2.1. ��
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2.3.3 Robustness to Time Delays of Information Exchange

If there are communication delays, then ym
i as defined in (2.33) and (2.34) should be

modified as

ym
i (t) = 1

Ni + 1

⎛

⎝
∑

k∈Ni

(yi (t) − yk(t − τik(t))) + (yi (t) − y0)

⎞

⎠ , i ∈ L (2.52)

ym
i (t) = 1

Ni

∑

k∈Ni

(yi (t) − yk(t − τik(t))), i ∈ {1, . . . , N }\L , (2.53)

where τik : R+ → R+ represents nonconstant time delays of exchanged information.
In this case, ym

i (t) can still be written in the form of ym
i (t) = y′

i (t) − μi (t) with

μi (t) = 1

Ni + 1

∑

k∈Ni

y′
k(t − τik(t)), i ∈ L (2.54)

μi (t) = 1

Ni

∑

k∈Ni

y′
k(t − τik(t)), i ∈ {1, . . . , N }\L . (2.55)

We assume that there exists a τ̄ ≥ 0 such that, for i = 1, . . . , N , k ∈ Ni , 0 ≤
τik(t) ≤ τ̄ holds for all t ≥ 0. By considering μi and wi as the external inputs,
each controlled agent i composed of (2.30)–(2.32) and (2.38)–(2.43) is still UO and
property (2.49) should be modified as

|y′
i (t)| ≤ max

{
βi (|Zi0|, t), biδi max

k∈Ni

{aik‖y′
k‖[−τ̄ ,∞)}, γi (‖wi‖[0,∞))

}
(2.56)

for any initial state Zi0 and any wi , for all t ≥ 0.
Using the time-delay version of the cyclic-small-gain theorem, we can still guar-

antee the IOS of the closed-loop multiagent system with y′
i as the outputs and wi as

the inputs, following analysis similar to that for the proof of Theorem 2.1.

2.4 Formation Control of Nonholonomic Mobile Robots

Formation control of autonomous mobile agents is aimed at forcing agents to con-
verge toward, and maintain, specific relative positions. Distributed formation control
of multiagent systems based on available local information, e.g., relative position
measurements, has attracted tremendous attention from the robotics and control com-
munities.
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Fig. 2.4 Kinematics of the
unicycle robot, where (x, y)

represents the Cartesian
coordinates of the center of
mass of the robot, v is the
linear velocity, θ is the
heading angle, and ω is the
angular velocity

v

(x,y)

X

Y

0

Motivated by the cyclic-small-gain design for distributed output-feedback con-
trol of nonlinear systems in Sect. 2.3, this section proposes a class of distributed
controllers for leader-following formation control of unicycle robots using the prac-
tically available relative positionmeasurements. The kinematics of the unicycle robot
are demonstrated by Fig. 2.4.

For this purpose, the formation control problem is first transformed into a state
agreement problem of double integrators through dynamic feedback linearization.
The nonholonomic constraint causes a singularity for the dynamic feedback lin-
earization when the linear velocity of the robot is zero. This issue should be well
taken into consideration for the validity of the transformed double integrator mod-
els. Then, distributed formation control laws are developed. To avoid the singularity
problem caused by the nonholonomic constraint, saturation functions are introduced
to the control design to restrict the linear velocities of the robots to be larger than
zero. It should be noted that linear analysis methods may not be directly applicable
due to the employment of the saturation functions. Then, the closed-loop system is
transformed into a dynamic network of IOS systems. The cyclic-small-gain result in
digraphs is used to guarantee the IOS of the dynamic network and thus the achieve-
ment of formation control.

With the effort mentioned above, the proposed design has three advantages:

1. The proposed distributed formation control law does not use global position mea-
surements or assumes tree position sensing structures.

2. The formation control objective can be practically achieved in the presence of
position measurement errors.

3. The linear velocities of the robots can be designed to be less than certain desired
values, as practically required.
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This section considers the formation control problem of a group of N + 1 mobile
robots. For i = 0, 1, . . . , N , the kinematics of the i th robot are described by the
unicycle model:

ẋi = vi cos θi (2.57)

ẏi = vi sin θi (2.58)

θ̇i = ωi , (2.59)

where [xi , yi ]T ∈ R
2 represent the Cartesian coordinates of the center of mass of the

i th robot, vi ∈ R is the linear velocity, θi ∈ R is the heading angle, and ωi ∈ R is the
angular velocity.

The robot with index 0 is the leader robot, and the robots with indices 1, . . . , N
are follower robots. The linear velocity vi and the angular velocity ωi are considered
as the control inputs of the i th robot for i = 1, . . . , N . For this system, the formation
control objective is to control each i th follower robot such that

lim
t→∞(xi (t) − x j (t)) = dxi j (2.60)

lim
t→∞(yi (t) − y j (t)) = dyi j (2.61)

with dxi j , dyi j being appropriate constants representing the desired relative positions,
and

lim
t→∞

(
(θi (t) − θ j (t)) mod 2π

) = 0 (2.62)

for any i, j = 0, . . . , N , where mod represents the modulo operation. For con-
venience of notation, let dxii = dyii = 0 for any i = 0, . . . , N . We assume that
dxi j = dxik − dxk j and dyi j = dyik − dyk j for any i, j, k = 0, . . . , N .

Assumption 2.3 on v0 is made throughout this section.

Assumption 2.3 The linear velocity v0 of the leader robot is differentiable with
bounded derivative, i.e., v̇0(t) exists and is bounded on [0,∞), and has upper and
lower constant bounds v0, v0 > 0 such that v0 ≤ v0(t) ≤ v0, for all t ≥ 0.

One technical problem of controlling groups of mobile robots is that accurate
global positions of the robots are usually not available for feedback, and relative
position measurements should be used instead. A digraph can be employed to repre-
sent the relative position sensing structure between the robots. The position sensing
digraph G has N + 1 vertices with indices 0, 1, . . . , N corresponding to the robots.
If the relative position between robot i and robot j is available to robot j , then G has
a directed edge from vertex i to vertex j ; otherwise G does not have such an edge.

The goal of this section is to present a class of distributed formation controllers for
mobile robots using local relative position measurements as well as the velocity and
acceleration information of the leader. The basic idea of the design is to first transform
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the unicycle model into two double integrators through dynamic feedback lineariza-
tion under constraints, and at the same time, to reformulate the formation control
problem as a stabilization problem. Then, distributed control laws are designed to
make each controlled mobile robot IOS. Finally, the cyclic-small-gain theorem is
used to guarantee the achievement of the formation control objective.

2.4.1 Dynamic Feedback Linearization

In this subsection, the distributed formation control problem is reformulated with
the dynamic feedback linearization technique. For details of dynamic feedback lin-
earization and its applications to nonholonomic systems, please consult [6, 14].

For each i = 0, . . . , N , introduce a new input ri ∈ R such that

v̇i = ri . (2.63)

Define vxi = vi cos θi and vyi = vi sin θi . Then, ẋi = vxi and ẏi = vyi . Take the deriv-
atives of vxi and vyi , respectively. Then,

(
v̇xi

v̇yi

)
=

(
cos θi −vi sin θi

sin θi vi cos θi

)(
ri

ωi

)
. (2.64)

In the case of vi �= 0, by designing

(
ri

ωi

)
=

(
cos θi sin θi

− sin θi
vi

cos θi
vi

) (
uxi

uyi

)
, (2.65)

the unicyclemodel (2.57)–(2.59) can be transformed into two double integrators with
new inputs uxi and uyi :

ẋi = vxi , v̇xi = uxi , (2.66)

ẏi = vyi , v̇yi = uyi . (2.67)

Define x̃i = xi − x0 − dxi , ỹi = yi − y0 − dyi , ṽxi = vxi − vx0, ṽyi = vyi − vy0,
ũxi = uxi − ux0, and ũ yi = uyi − uy0. Then,

˙̃xi = ṽxi , ˙̃vxi = ũxi , (2.68)

˙̃yi = ṽyi , ˙̃vyi = ũ yi . (2.69)

The formation control problem is solvable, ifwe candesign control laws for system
(2.68)–(2.69) with ũxi and ũ yi as the control inputs, so that vi �= 0 is guaranteed, and
at the same time,
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lim
t→∞ x̃i (t) = 0, (2.70)

lim
t→∞ ỹi (t) = 0. (2.71)

It should be noted that the validity of (2.66)–(2.67) (and thus (2.68)–(2.69)) for the
unicycle model is under the condition that vi �= 0. Such requirement is basically
caused by the nonholonomic constraint of the mobile robot. This leads to the major
difference between this problem and the distributed control problem for double inte-
grators.

To use (2.68)–(2.69) for control design, each follower robot should have access to
ux0, uy0, which represent the acceleration of the leader robot. This requirement can
be fulfilled if the leader robot can calculate ux0, uy0 using r0, ω0, θ0, v0 according
to (2.65) and transmit them to the follower robots. Note that ω0, θ0, v0 are usually
measurable, and r0 is normally available as it is the control input of the leader robot.

2.4.2 A Class of IOS Control Laws

As an ingredient for the distributed control design, this subsection presents a class
of nonlinear control laws for the following double integrator system with an external
input, such that the closed-loop system is UO and IOS:

η̇ = ζ (2.72)

ζ̇ = μ (2.73)

η̂ = η + w, (2.74)

where [η, ζ ]T ∈ R
2 is the state, μ ∈ R is the control input, w ∈ R represents an

external input, η̂ can be considered as a measurement of η subject to w, and only
(η̂, ζ ) are used for feedback.As shown later, each controlled robot can be transformed
into the form of (2.72)–(2.74) withw representing the interaction between the robots.

Lemma 2.2 For system (2.72)–(2.74), consider a control law taking the form:

μ = −kμ(ζ − φ(η̂)). (2.75)

For any constant φ > 0, one can find an odd, strictly decreasing, continuously dif-
ferentiable function φ : R → [−φ, φ] and a positive constant kμ satisfying

−kμ

4
<

dφ(r)

dr
< 0 (2.76)

for all r ∈ R, such that the closed-loop system (2.72)–(2.75) is UO with zero offset,
and is IOS with the identity function as the gain, i.e., the following properties hold:



38 T. Liu and Z.-P. Jiang

|η(t)| ≤ β(|[η(0), ζ(0)]T |, t) + ‖w‖t (2.77)

|ζ(t)| ≤ |ζ(0)| + αU O(‖η‖t + ‖w‖t ) (2.78)

for some β ∈ K L , αU O ∈ K∞, and all t ≥ 0.

It is necessary to note that condition (2.76) is easily checkable for practical imple-
mentation of the control law (2.75).

2.4.3 Distributed Formation Controller Design
and Small-Gain Analysis

As discussed in Sect. 2.4.1, for the validity of (2.68)–(2.69) of the formation control
design, vi should be guaranteed to be nonzero. For a specified λ∗ satisfying 0 < λ∗ <

v0, by designing a control law for the i th robot such that

max
{|ṽxi |, |ṽyi |

} ≤
√
2

2
(v0 − λ∗) ≤

√
2

2
(v0 − λ∗), (2.79)

it can be guaranteed that |vi | =
√

v2xi + v2yi = √
(vx0 + ṽxi )2 + (vy0 + ṽyi )2 ≥ λ∗ >

0 and thus vi �= 0. In this way, singularity is avoided.
Practically, the linear velocity of each robot is usually required to be less than a

desired value. For any given λ∗ > v0, we can also guarantee |vi | ≤ λ∗ by designing
a control law such that

max
{|ṽxi |, |ṽyi |

} ≤
√
2

2
(λ∗ − v0). (2.80)

For specified constantsλ∗, λ∗, v0, v0 satisfying 0 < λ∗ < v0 < v0 < λ∗, we define

λ = min

{√
2

2
(v0 − λ∗),

√
2

2
(λ∗ − v0)

}
. (2.81)

Then, conditions (2.79) and (2.80) can be satisfied if

max
{|ṽxi |, |ṽyi |

} ≤ λ. (2.82)

The proposed distributed control law is composed of two stages: (a) initialization
and (b) formation control. The initialization stage is employed because the formation
control stage cannot solely guarantee vi �= 0 if (2.79) is not satisfied at the beginning
of the control procedure. With the initialization stage, the linear velocity and the
heading direction of each follower robot can be controlled to satisfy (2.82) within
some finite time. Then, the formation control stage is triggered, and thereafter, the
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satisfaction of (2.82) is guaranteed, and at the same time, the formation control
objective is achieved.

Initialization Stage

For this stage, we design the following control law:

ωi = φθ i (θi − θ0) + ω0 (2.83)

ri = φvi (vi − v0) + v̇0 (2.84)

for each i th follower robot, where φθ i , φvi : R → R are nonlinear functions.
Define θ̃i = θi − θ0 and ṽi = vi − v0. Taking the derivatives of θ̃i and ṽi , respec-

tively, and using (2.83) and (2.84), we have

˙̃
θi = φθ i (θ̃i ), (2.85)

˙̃vi = φvi (ṽi ). (2.86)

By designing φθ i , φvi such that−φθ i (s), φθ i (−s),−φvi (s), φvi (−s) are positive def-
inite for s ∈ R+, we can guarantee the asymptotic stability of systems (2.85) and
(2.86). Moreover, there exist βθ̃ , βṽ ∈ K L such that |θ̃ (t)| ≤ βθ̃ (|θ̃ (0)|, t) and
|ṽ(t)| ≤ βṽ(|ṽ(0)|, t).

By directly using the property of continuous functions, there exist δv0 > 0 and
δθ0 > 0 such that, for all v0 ∈ [v0, v0], θ0 ∈ R, |δv0| ≤ δv0 and |δθ0| ≤ δθ0,

|(v0 + δv0) cos(θ0 + δθ0) − v0 cos θ0| ≤ λ, (2.87)

|(v0 + δv0) sin(θ0 + δθ0) − v0 sin θ0| ≤ λ. (2.88)

Recall that for any β ∈ K L , there exist functions α1, α2 ∈ K∞ such that β(s, t) ≤
α1(s)α2(e−t ), for all s, t ∈ R+ according to [52, Lemma 8].With control law (2.83)–
(2.84), there exists a finite time TOi for the i th robot such that |θi (TOi ) − θ0(TOi )| ≤
δθ0 and |vi (TOi ) − v0(TOi )| ≤ δv0, and thus condition (2.82) is satisfied at time TOi .

It should be noted that if vi (0) ≤ λ∗, then control law (2.84) guarantees vi (t) ≤ λ∗
for t ∈ [0, TOi ] because of v0(t) ≤ v0 < λ∗.

Formation Control Stage

At time TOi , the distributed control law for the i th follower robot is switched to the
formation control stage.

In this stage, we design

ũxi = −kxi (ṽxi − φxi (zxi )) (2.89)

ũ yi = −kyi (ṽyi − φyi (zyi )), (2.90)

where φxi , φyi : R → [−λ, λ] are odd, strictly decreasing, and continuously differ-
entiable functions and kxi , kyi are positive constants satisfying
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Fig. 2.5 An example for φxi
and φyi

0 r

(r)

− kxi/4 < dφxi (r)/dr < 0 (2.91)

− kyi/4 < dφyi (r)/dr < 0 (2.92)

for all r ∈ R. An example for φxi and φyi is shown in Fig. 2.5.
The variables zxi and zyi are defined as

zxi = 1

Ni

∑

j∈Ni

(xi − x j − (dxi − dx j )) (2.93)

zyi = 1

Ni

∑

j∈Ni

(yi − y j − (dyi − dyj )), (2.94)

where Ni is the size of Ni with Ni representing the position sensing structure. If
j ∈ Ni , then the position sensing digraph G has a directed edge ( j, i) from vertex j
to vertex i . Note that dxi − dx j , dyi − dyj in (2.93) and (2.94) represent the desired
relative position between the i th robot and the j th robot. By default, dx0 = dy0 = 0.

In the formation control stage, the control inputs ri and ωi are defined as (2.65)
with uxi = ũxi + ux0 and uyi = ũ yi + uy0.

Consider the (ṽxi , ṽyi )-system defined in (2.68) and (2.69). With condition (2.82)
satisfied at time TOi , the boundedness of φxi and φyi together with the control law
(2.89) and (2.90) guarantees the satisfaction of (2.82) after TOi . For the proof of this
statement, we can consider

{
(ṽxi , ṽyi ) : max{|ṽxi |, |ṽyi |} ≤ λ

}
as an invariant set of

the (ṽxi , ṽyi )-system.
The main result of distributed formation control is summarized below.

Theorem 2.2 Consider the multirobot model (2.57)–(2.59) and the distributed
control laws defined by (2.63), (2.65), (2.83), (2.84), (2.89), and (2.90) with para-
meters kxi , kyi satisfying (2.91) and (2.92). Under Assumption 2.3, if the position
sensing digraph G has a spanning tree with vertex 0 as the root, then for any
constants dxi , dyi ∈ Rwith i = 1, . . . , N, the coordinates (xi (t), yi (t)) and the angle
θi (t) of each ith robot asymptotically converge to (x0(t) + dxi , y0(t) + dyi ) and
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θ0(t) + 2kπ with k ∈ Z, respectively. Moreover, given any λ∗ > v0, if vi (0) ≤ λ∗
for i = 1, . . . , N, then vi (t) ≤ λ∗, for all t ≥ 0.

The two-stage distributed control law results in a switching incident of the control
signal for each follower robot during the control procedure. The trajectories of such
systems can be well defined in the spirit of Rademacher (see, e.g., [13]), and the
performance of the system can be analyzed by considering the two stages one by
one.

2.4.4 Small-Gain Analysis and Proof of Theorem 2.2

Recall the definition of λ in (2.81). With condition (2.82) satisfied after TOi , we
have vi �= 0 and thus the validity of (2.65), for all t ≥ TOi . Under the condition of
vi (0) ≤ λ∗, the boundedness of vi (t), i.e., vi (t) ≤ λ∗, can also be directly proved
based on the discussions in Sect. 2.4.3.

Denote x̃0 = 0 and ỹ0 = 0. We equivalently represent zxi and zyi as

zxi = 1

Ni

∑

j∈Ni

(xi − dxi − x0 − (x j − dx j − x0))

= 1

Ni

∑

j∈Ni

(x̃i − x̃ j ) = x̃i − 1

Ni

∑

j∈Ni

x̃ j (2.95)

and similarly,

zyi = ỹi − 1

Ni

∑

j∈Ni

ỹ j . (2.96)

Denote

ωxi = 1

Ni

∑

j∈Ni

x̃ j , (2.97)

ωyi = 1

Ni

∑

j∈Ni

ỹ j . (2.98)

Then, control laws (2.89) and (2.90) are in the form of (2.75).
In the following proof, we only consider the (x̃i , ṽxi )-system (2.68). The (ỹi , ṽyi )-

system (2.69) can be studied in the same way.
Define TO = maxi=1,...,N {TOi }. Using Lemma 2.2, for each i = 1, . . . , N , the

closed-loop system composed of (2.68) and (2.89) has the following properties: for
any x̃i0, ṽxi0 ∈ R, with x̃i (TO) = x̃i0 and ṽxi (TO) = ṽxi0,
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|x̃i (t)| ≤ βxi (|[x̃i0, ṽxi0]T |, t − TO) + ‖ωxi‖[TO ,t] (2.99)

|ṽxi (t)| ≤ |ṽxi0| + αxi (‖x̃i‖[TO ,t] + ‖ωxi‖[TO ,t]), (2.100)

where βxi ∈ K L and αxi ∈ K∞.
Notice that for any constants a1, . . . , an > 0 satisfying

∑n
i=1(1/ai ) ≤ n, it holds

that
∑n

i=1 di = ∑n
i=1(1/ai )ai di ≤ n max1≤i≤n{ai di }, for alld1, . . . , dn ≥ 0.Wehave

|ωxi | ≤ δi max
j∈N i

{ai j |x̃ j |}, (2.101)

where δi = (Ni − 1)/Ni , N i = Ni\{0}, and ∑
j∈N i

(1/ai j ) ≤ Ni − 1 if 0 ∈ Ni ;

δi = 1, N i = Ni , and
∑

j∈N i
(1/ai j ) ≤ Ni if 0 /∈ Ni .

Then, properties (2.99) and (2.100) imply

|x̃i (t)| ≤ βxi (|[x̃i0, ṽxi0]T |, t − TO) + δi max
j∈N i

{ai j‖x̃ j‖[TO ,t]}, (2.102)

|ṽxi (t)| ≤ |ṽxi0| + αxi (‖x̃i‖[TO ,t] + δi max
j∈N i

{ai j‖x̃ j‖[TO ,t]}). (2.103)

Define the follower sensing digraph G f as a subgraph of G . Digraph G f has N
vertices with indices 1, . . . , N corresponding to the vertices with indices 1, . . . , N
of G and representing the follower robots. From the definitions ofN i and G f , it can
be observed that, for i = 1, . . . , N , if j ∈ N i , then there is a directed edge ( j, i)
from the j th vertex to the i th vertex in G f . Clearly, G f represents the interconnection
topology of the network composed of the (x̃i , ṽxi )-systems (2.68).

DefineF0 = {i ∈ {1, . . . , N } : 0 ∈ Ni }. DenoteC f as the set of all simple cycles
of G f , and denote C0 ⊆ C f as the set of all simple cycles through the vertices with
indices belonging toF0.

For i = 1, . . . , N , j ∈ N i , we assign the positive value ai j to edge ( j, i) in G f .
For a simple cycleO ∈ C f , denote AO as the product of the positive values assigned
to the edges of the cycle.

Consider x̃i with i = 1, . . . , N as the outputs of the network composed of the
(x̃i , ṽxi )-systems (2.68). Using the IOS small-gain theorem for general nonlinear
systems in [27, 28], x̃i (t) with i = 1, . . . , N converge to the origin if

AO
N − 1

N
< 1 for O ∈ C0, (2.104)

AO < 1 for O ∈ C f \C0. (2.105)

Note that AO(N − 1)/N < 1 is equivalent to AO < N/(N − 1) = 1 + 1/(N − 1).
If G has a spanning tree with vertex 0 as the root, then G f has a spanning tree

with the indices of the root vertices belonging to F0. According to Lemma 2.1,
there exist positive constants ai j such that both conditions (2.104) and (2.105) are
satisfied. For system (2.68), with the convergence of each x̃i to the origin and the
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boundedness of ũxi , we can guarantee the convergence of ṽxi to the origin using
Barbălat’s lemma [29]. Similarly, we can prove the convergence of ṽyi to the origin.
Using the definitions of ṽxi and ṽyi , the convergence of θi to θ0 + 2kπ with k ∈ Z

can be concluded. This ends the proof of Theorem 2.2.

2.4.5 Robustness to Relative Position Measurement Errors

Measurement errors can decrease the performance of a nonlinear control system. In
this section, we discuss the robustness of our distributed formation controller in the
presence of relative position measurement errors.

It can be observed that the initialization stage of the distributed control law defined
in (2.83) and (2.84) is not affected by the position measurement errors. Also, condi-
tion (2.82) still holds for t ≥ TOi for i = 1, . . . , N .

For the formation control stage, in the presence of relative position measurement
errors, the zxi and zyi defined for the distributed control law (2.89) and (2.90) should
be modified as

zxi = 1

Ni

∑

j∈Ni

(
xi − x j − (dxi − dx j ) + ωx

i j

)
(2.106)

zyi = 1

Ni

∑

j∈Ni

(
yi − y j − (dyi − dyj ) + ω

y
i j

)
, (2.107)

where Ni is the size of Ni and ωx
i j , ω

y
i j ∈ R represent the relative position mea-

surement errors corresponding to (xi − x j ) and (yi − y j ), respectively. Due to the
boundedness of the designed φxi and φyi in (2.89) and (2.90), condition (2.82) is
still satisfied in the presence of position measurement errors, which guarantees the
validity of (2.65).

Here, we only consider each x̃i -subsystem. The ỹi -subsystems can be studied in
the same way. By defining

ωxi = 1

Ni

∑

j∈Ni

(
x̃ j + ωx

i j

)
, (2.108)

we have zxi = x̃i − ωxi . With such definition, if the measurement errors ωx
i j are

piecewise continuous and bounded, then each x̃i -subsystem still has the IOS and UO
properties given by (2.99) and (2.100), respectively.

As in the discussion above (2.101), we have
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|ωxi | ≤ max

⎧
⎨

⎩
ρi

Ni

∑

j∈Ni

(|x̃ j |), ρ ′
i

Ni

∑

j∈Ni

(|ωx
i j |)

⎫
⎬

⎭

:= max

⎧
⎨

⎩
ρi

Ni

∑

j∈Ni

(|x̃ j |), ωe
xi

⎫
⎬

⎭

≤ max
j∈N i

{
δi ai j |x̃ j |, ωe

xi

}
, (2.109)

where ρi , ρ
′
i > 0 satisfying 1/ρi + 1/ρ ′

i ≤ 1, and δi = ρi (Ni − 1)/Ni , N i =
Ni\{0} and

∑
j∈N i

(1/ai j ) ≤ Ni − 1 if 0 ∈ Ni ; δi = ρi , N i = Ni and
∑

j∈N i

(1/ai j ) ≤ Ni if 0 /∈ Ni .
In the existence of the relative position measurement errors, we can still guarantee

the IOS of the closed-loop distributed system by using the cyclic-small-gain theorem.
In this case, the cyclic-small-gain condition is as follows:

AO
ρ(N − 1)

N
< 1 for O ∈ C0, (2.110)

AOρ < 1 for O ∈ C f \C0, (2.111)

where ρ := maxi∈{1,...,N }{ρi } is larger than one according to 1
ρi

+ 1
ρ ′

i
≤ 1, and can be

chosen to be very close to one. Lemma 2.1 can guarantee (2.110) and (2.111) if G
has a spanning tree with vertex 0 as the root. Thus, the proposed distributed control
law is robust with respect to relative position measurement errors.

2.4.6 A Numerical Example

Consider a group of 6 robots with indices 0, 1, . . . , 5. Notice that the robot with index
0 is the leader. The neighbor sets of the robots are defined as follows: N1 = {0, 5},
N2 = {1, 3}, N3 = {2, 5}, N4 = {3},N5 = {4}.

By default, the values of all the variables in this simulation are in SI units. For
convenience,weomit the units. The desired relative position of the follower robots are
definedbydx1 = −√

3d/2, dx2 = −√
3d/2, dx3 = 0, dx4 = √

3d/2, dx5 = √
3d/2,

dy1 = −d/2, dy2 = −3d/2, dy3 = −2d, dy4 = −3d/2, dy5 = −d/2 with d = 30.
Figure2.6 shows the position sensing graph of the formation control system. Clearly,
the position sensing graph has a spanning tree with vertex 0 as the root.

It should be noted that the control law for each follower robot also uses the velocity
and acceleration information of the leader robot, the communication topology of
which is not shown in Fig. 2.6.
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Fig. 2.6 The position
sensing graph of the
formation control system

2 3 4

1 5

0

The control inputs of the leader robot are r0(t) = 0.1 sin(0.4t) and ω0(t) =
0.1 cos(0.2t). With such control inputs, the linear velocity v0 with v0(0) = 3 sat-
isfies v0 ≤ v0(t) ≤ v0 with v0 = 3 and v0 = 3.5.

Choose λ∗ = 0.45 and λ∗ = 6.05. The distributed control laws for the initializa-
tion stage are in the form of (2.83) and (2.84) with φθ i (r) = φvi (r) = −0.5(1 −
exp(−0.5r))/(1 + exp(−0.5r)) for i = 1, . . . , 5. The distributed control laws for
the formation control stage are in the form of (2.89) and (2.90) with kxi = kyi = 2
and φxi (r) = φyi (r) = −1.8(1 − exp(−0.5r))/(1 + exp(−0.5r)) for i = 1, . . . , 5.
With direct calculation, it can be verified that the designed kxi , kyi , φxi , φyi satisfy
(2.91) and (2.92). Also, φxi (r), φyi (r) ∈ [−1.8, 1.8], for all r ∈ R. With v0 = 3 and
v0 = 3.5, the control laws can restrict the linear velocities of the follower robots to
be in the range of [3 − 1.8

√
2, 3.5 + 1.8

√
2] = [0.454, 6.046] ⊂ [λ∗, λ∗].

The initial states of the robots are chosen as

i (xi (0), yi (0)) vi (0) θi (0)
0 (0, 0) 3 π/6
1 (−40, 10) 4 π

2 (−20,−40) 3.5 5π/6
3 (5,−40) 2.5 0
4 (50,−10) 2 −2π/3
5 (50, 10) 3 0

The measurement errors are ωx
i j (t) = 0.3(cos(t + iπ/6) + cos(t/3 + iπ/6) +

cos(t/5 + iπ/6) + cos(t/7 + iπ/6)) and ω
y
i j (t) = 0.3(sin(t + iπ/6) + sin(t/3 +

iπ/6) + sin(t/5 + iπ/6) + sin(t/7 + iπ/6)) for i = 1, . . . , N , j ∈ Ni .
The linear velocities and the angular velocities of the robots are shown in Fig. 2.7.

The stage changes of the distributed controllers are shown in Fig. 2.8 with “0” repre-
senting initialization stage and “1” representing formation control stage. Figure2.9
shows the trajectories of the robots. The simulation verifies the theoretical results.
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Fig. 2.7 The linear velocities and the angular velocities of the robots

Fig. 2.8 The stages of the distributed controllers
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Fig. 2.9 The trajectories of the robots. The dashed curve represents the trajectory of the leader

2.5 Concluding Remarks

This chapter has presented cyclic-small-gain tools for distributed control of nonlinear
multiagent systems.

In Sect. 2.3, with the proposed distributed observers and control laws, the outputs
of the agents can be steered to within an arbitrarily small neighborhood of the desired
agreement value under external disturbances. Asymptotic output agreement can be
achieved if the system is disturbance-free. The robustness to bounded time delays of
exchanged information can also be guaranteed. Section2.3 only considers the case
with time-invariant agreement value y0. It is practically interesting to further study
the distributed nonlinear control for agreement with a time-varying agreement value.
Recent developments on the output-feedback tracking control of nonlinear systems
(see, e.g., [22]) should be helpful for the research in this direction.

The distributed formation control law proposed in Sect. 2.4 uses relative position
measurements without assuming a tree structure. For this purpose, the formation con-
trol problem is first transformed into a state agreement problem of double integrators
with dynamic feedback linearization [6]. Then, a class of distributed nonlinear control
laws is designed. With the proposed distributed nonlinear control law, the closed-
loop system can be transformed into a network of IOS systems, and the achievement
of the formation control objective can be guaranteed by using the cyclic-small-gain
theorem. The special case in which there are only two robots and the desired relative
positions are zero has been studied extensively in the past literature; see [8, 24] and
the references therein.

By showing that a distributed control problem can be transformed into the sta-
bility/convergence problem of a dynamic network composed of IOS subsystems,
Sects. 2.2–2.4 provide some partial answers to the question asked by Open Prob-
lem #5 in [28]: “Application of small-gain results for distributed feedback design of
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large-scale nonlinear systems.” More discussions on the application of the cyclic-
small-gain theorem to distributed control can be found in [36, 37, 39].
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Chapter 3
Convergent Systems: Nonlinear Simplicity

Alexey Pavlov and Nathan van de Wouw

Abstract Convergent systems are systems that have a uniquely defined globally
asymptotically stable steady-state solution. Asymptotically stable linear systems
excited by a bounded time varying signal are convergent. Together with the superpo-
sition principle, the convergence property forms a foundation for a large number of
analysis and (control) design tools for linear systems. Nonlinear convergent systems
are in many ways similar to linear systems and are, therefore, in a certain sense sim-
ple, although the superposition principle does not hold. This simplicity allows one to
solve a number of analysis and design problems for nonlinear systems and makes the
convergence property highly instrumental for practical applications. In this chapter,
we review the notion of convergent systems and its applications to various analyses
and design problems within the field of systems and control.

3.1 Introduction

In many controller design problems, a controller is designed to ensure that some
desired solution of the closed-loop system is asymptotically stable with a desired
region of attraction. Traditionally, this is considered as a stabilization problem for
the desired solution. However, if we take a step back and look at this design problem
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from a distance, we can see that the controller actually provides the closed-loop
system with a system property: the closed-loop system has an asymptotically stable
steady-state solution with the given region of attraction (e.g., local, global, or some
given set of initial conditions). In addition to that, this steady-state solution has
desired properties, e.g., desired output value.

This system point of view on the controller design problem allows one to define
an important system property, which is common for linear asymptotically stable
systems, but which is far from being straightforward for nonlinear systems: the con-
vergence property. A system is called convergent if it has a unique, in a certain sense,
globally asymptotically stable solution, called the steady-state solution. Originally,
the term “convergence” was coined in the Russian literature in the 1950s. In [41], the
notion was defined for nonstationary systems that are periodic in time. In that refer-
ence, such a system is called convergent if it has a unique globally asymptotically
stable periodic solution. Later, in [10] (see also [34]) this definition was naturally
extended to nonlinear systems with arbitrary (not necessarily periodic in time) right-
hand sides. These references, together with [56] laid a foundation of basic results for
establishing this property for nonlinear systems based on Lyapunov functions, matrix
inequalities, and frequency domain methods. Almost 50years later, notions similar
to convergence received significant attention in the literature: contraction analysis,
incremental stability and passivity, incremental input-to-state stability, etc. [1–3, 13,
15, 22, 27–29, 32, 44–46, 49, 50, 57]. A comparison establishing differences and
similarities between incremental stability on the one hand and convergence on the
other hand is provided in [46].

A brief historical overview on convergent systems and subsequent developments
of this and similar notions can be found in [34]. Since that paper many new develop-
ments on convergent systems have appeared. In particular, sufficient conditions for
convergence for different classes of systems have been pursued [8, 9, 25, 26, 35, 37,
39, 42, 43, 54]. Together with theoretical developments on convergent systems and
related notions, the benefit of such system-level stability property has been demon-
strated by its use to tackle fundamental system-theoretic problems. Further study
of convergent systems indeed demonstrated that this notion is very instrumental for
a number of design and analysis problems within nonlinear systems and control,
such as synchronization, observer design, output tracking and disturbance rejection,
the output regulation problem, model reduction, stable inversion of non-minimum
phase systems, steady-state performance optimization of control systems, variable
gain controller design and tuning and extremum seeking control. For linear systems
many of these problems are solved in a relatively simple way. It turns out that this
simplicity comes not only from the superposition principle, but also from the con-
vergence property (for linear systems it is equivalent to asymptotic stability of the
system with zero input). Unlike the superposition principle, which holds only for
linear systems, the convergence property may still hold for a nonlinear system. It
appears that convergent nonlinear systems enjoy, to a large extent, the simplicity
inherent to linear asymptotically stable systems. This allows one to solve, based on
the notion of convergence, a number of challenging nonlinear control and analysis
problems.
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In this chapter, we will revisit the notion of convergence and review its applica-
tion to various problems within systems and control. We deliberately omit technical
details and generality, keeping focus on the ideas. All technical details and gen-
eral formulations can still be found in the corresponding references. The chapter is
organized as follows. Definitions, sufficient conditions, and basic properties of con-
vergent systems are given in Sect. 3.2. Applications of this notion are reviewed in
Sects. 3.3–3.9. Conclusions are given in Sect. 3.10.

3.2 Convergent Systems

Consider the nonlinear system

ẋ = F(x, t), x ∈ R
n, t ∈ R, (3.1)

where F(x, t) is locally Lipschitz in x and piecewise continuous in t .1

Definition 3.1 ([10]) System (3.1) is called convergent if

(i) there is a unique solution x̄(t) that is defined and bounded for t ∈ R,
(ii) x̄(t) is globally asymptotically stable.

If x̄(t) is uniformly (exponentially) asymptotically stable, then system (3.1) is called
uniformly (exponentially) convergent.2

Since the time-varying component in a system is usually due to some input, we
can define convergence for systems with inputs.

Definition 3.2 System

ẋ = F(x,w(t)), w(t) ∈ R
m, t ∈ R, (3.2)

is (uniformly, exponentially) convergent for a class of inputs I if it is convergent
for every input w(t) ∈ I from that class.

To emphasize the dependence of the steady-state solution on the input w(t), it is
denoted by x̄w(t). Note that any solution of convergent system (3.2) forgets its initial
conditions and converges to the steady-state solution, which is determined by the
input w(t). Relations between input w(t) and steady-state solution x̄w(t) can be
further characterized by several additional properties.

1For simplicity, in this chapter, we consider only continuous-time systems with locally Lipschitz
right-hand sides. Definitions and basic results for discrete-time systems and for continuous-time
systems with discontinuous right-hand sides can be found in [18, 36, 38, 39, 56].
2A more general definition of convergent systems, where the steady-state solution has an arbitrary
domain of attraction (not necessarily global as in this chapter) can be found in [35].
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Definition 3.3 ([35]) The system (3.2) that is convergent for a class of piecewise
continuous bounded inputs is said to have the Uniformly Bounded Steady-State
(UBSS) property if for any r > 0 there exists R > 0 such that if a piecewise contin-
uous inputw(t) satisfies |w(t)| ≤ r for all t ∈ R, then the corresponding steady-state
solution satisfies |x̄w(t)| ≤ R for all t ∈ R.

Definition 3.4 ([35]) System (3.2) is called input-to-state convergent if it is uni-
formly convergent for the class of bounded piecewise continuous inputs and, for
every such input w(·), system (3.2) is input-to-state stable3 with respect to the
steady-state solution x̄w(t), i.e., there exist a K L -function β(r, s) and a K∞-
function γ (r) such that any solution x(t) of system (3.2) corresponding to some
input ŵ(t) := w(t) + Δw(t) satisfies

|x(t) − x̄w(t)| ≤ β(|x(t0) − x̄w(t0)|, t − t0) + γ

(
sup

t0≤τ≤t
|Δw(τ )|

)
. (3.3)

In general, the functions β(r, s) and γ (r) may depend on the particular input w(·).

3.2.1 Conditions for Convergence

Simple sufficient conditions for exponential convergence were given by B.P. Demi-
dovich in [10, 34]. Here we present a slightly modified version of that result, which
covers input-to-state convergence.

Theorem 3.1 ([10, 35]) Consider system (3.2) with the function F(x,w) being C1

with respect to x and continuous with respect to w. Suppose there exist matrices
P = PT > 0 and Q = QT > 0 such that

P
∂F

∂x
(x,w) + ∂F

∂x

T

(x,w)P ≤ −Q, ∀x ∈ R
n, w ∈ R

m . (3.4)

Then, system (3.2) is globally exponentially convergent with the UBSS property and
input-to-state convergent for the class of bounded piecewise continuous inputs.

For systems of Lur’e-type form, sufficient conditions for exponential convergence
were obtained by V.A. Yakubovich [56]. Consider the system

ẋ = Ax + Bu + Hw(t)

y = Cx + Dw(t) (3.5)

u = −ϕ(y,w(t)),

where x ∈ R
n is the state, y ∈ R is the output, w(t) ∈ R

m is a piecewise continuous
input and ϕ(y,w) is a static nonlinearity.

3See [48] for a definition of the input-to-state stability property.
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Theorem 3.2 ([35, 56]) Consider system (3.5). Suppose the matrix A is Hurwitz,
the nonlinearity ϕ(y,w) satisfies

|ϕ(y2,w) − ϕ(y1,w)| ≤ K |y2 − y1| , (3.6)

for all y1, y2 ∈ R and w ∈ R
m, and the frequency response function Gyu( jω) =

C( jωI − A)−1B from u to y satisfies

sup
ω∈R

|Gyu( jω)| =: γyu <
1

K
. (3.7)

Then, system (3.5) is exponentially convergent with the UBSS property and input-to-
state convergent for the class of piecewise continuous bounded inputs.4

Below follows an alternative result, not based on quadratic Lyapunov functions.

Theorem 3.3 ([35]) Consider system (3.2). Suppose there exist C1 functions V2(x)
and V1(x1, x2), K -functions α2(s), α3(s), α5(s), γ (s), and K∞-functions α1(s),
α4(s) satisfying the conditions

α1(|x1 − x2|) ≤ V1(x1, x2) ≤ α2(|x1 − x2|), (3.8)

∂V1

∂x1
(x1, x2)F(x1,w) + ∂V1

∂x2
(x1, x2)F(x2,w) ≤ −α3(|x1 − x2|), (3.9)

α4(|x |) ≤ V2(x) ≤ α5(|x |), (3.10)

∂V2

∂x
(x)F(x,w) ≤ 0 for |x | ≥ γ (|w|) (3.11)

for all x1, x2, x ∈ R
n and w ∈ R

m. Then, system (3.2) is globally uniformly con-
vergent and has the UBSS property for the class of bounded piecewise continuous
inputs.

One can show that conditions of Theorems 3.1–3.3 imply incremental stability [2].
In fact, the proof of convergence in these results is based on two basic components:

(1) incremental stability: it guarantees global asymptotic stability of any solution,
(2) existence of a compact positively invariant set: it guarantees existence of a solu-

tion x̄(t) that is bounded on R [10, 56]. By virtue of (1), x̄(t) is globally asymp-
totically stable, which proves convergence.

Although here incremental stability is used in the sufficient conditions for conver-
gence given above, in general these two properties are not equivalent. However, as

4This result is a particular case of a more general condition on Gyu( jω) in the form of Circle
criterion [56].
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shown in [46], uniform convergence and incremental stability are equivalent on com-
pact positively invariant sets. In the latter reference, also a necessary and sufficient
condition for uniform convergence is formulated, which reads as follows.

Theorem 3.4 ([46])Assume that system (3.1) is globally uniformly convergent, with
associated steady-state solution x̄(t). Assume that the function F is continuous in
(x, t) and C1 with respect to the x variable. Assume also that the Jacobian ∂

∂x f (x, t)
is bounded, uniformly in t . Then there exist a C1 function V : R × R

n → R+, func-
tions α1, α2 and α3 ∈ K∞, and a constant c ≥ 0 such that

α1(|x − x̄(t)|) ≤ V (t, x) ≤ α2(|x − x̄(t)|), (3.12)

∂V

∂t
+ ∂V

∂x
F(x, t) ≤ −α3(|x − x̄(t)|) (3.13)

and
V (t, 0) ≤ c, t ∈ R. (3.14)

Conversely, if a differentiable function V : R × R
n → R+ and functions α1, α2

and α3 ∈ K∞, and a constant c ≥ 0 are given such that for some trajectory x̄ :
R → R

n estimates (3.12)–(3.14) hold, then system (3.1) must be globally uniformly
convergent and the solution x̄(t) is the unique bounded solution as in Definition 3.1.

For interconnections of convergent systems, one can obtain similar results as
for interconnections of systems with a stable equilibrium. In particular, a series
connection of input-to-state convergent (ISC) systems is again an ISC system [35].
Feedback interconnection of two ISC systems is again an ISC system under a small-
gain condition on the gain functions γ (r) for each subsystem, see details in [6].
Theorems 3.1–3.3 in combination with these interconnection properties provide a
practical toolbox of sufficient conditions for the convergence property.

Sufficient conditions for convergence for other classes of systems, such as discrete-
time nonlinear systems, piecewise affine systems, linear complementarity systems,
switched systems, measure differential inclusions, delay differential equations, have
been pursued in [8, 9, 25, 26, 35, 37, 39, 43, 54].

3.2.2 Basic Properties of Convergent Systems

The convergence property is an extension of stability properties of asymptotically
stable linear systems with inputs:

ẋ = Ax + Bw, (3.15)

where A is Hurwitz. For any piecewise continuous input w(t) that is bounded on R,
this system has a unique solution x̄w(t) which is defined and bounded on R:
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x̄w(t) :=
∫ t

−∞
exp(A(t − s))Bw(s)ds. (3.16)

This solution is globally exponentially stable since A is Hurwitz. Therefore, system
(3.15) is exponentially convergent for the class of bounded piecewise continuous
inputs. This example also illustrates the selection of the steady-state solution in the
definition of convergent systems. The steady-state solution is not only a solution
that attracts all other solutions in forward time–all solutions of system (3.15) have
this property. It is key to realize that, among all these solutions, only one remains
bounded both in forward and backward time. The selection of this bounded on R

solution defines the steady state in a unique way for uniformly convergent systems
[35]. The natural choice for the definition of the steady-state solution is further
illustrated by the following property.

Property 3.1 ([10]) Suppose system (3.2) with a given input w(t) is uniformly
convergent. If the input w(t) is constant, the corresponding steady-state solution
x̄w(t) is also constant; if w(t) is periodic with period T , then the corresponding
steady-state solution x̄w(t) is also periodic with the same period T .

As it will be demonstrated in subsequent sections, the following two basic proper-
ties of convergent systems will be very instrumental in design and analysis problems
within systems and control:

(i) a convergent system defines a steady-state operator Fw(t) := x̄w(t) that maps
bounded onR inputs to bounded onR steady-state solutions and periodic inputs
to periodic steady-state solutions with the same period.

(ii) any solution of a uniformly convergent system starting in a compact positively
invariant setX is uniformly asymptotically stable inX .

Property (i) is highly instrumental in problems focused on steady-state dynamics,
while property (ii) significantly simplifies stability proofs for particular solutions.
The latter property follows from [46], where it is shown that for a compact positively
invariant set uniform convergence and incremental stability are equivalent. In sub-
sequent sections, we will demonstrate how these two basic properties can be used in
various design and analysis problems.

3.3 Controller and Observer Design

In controller and observer design problems for nonstationary systems (e.g., systems
with time-varying inputs), the common objective is to ensure, by means of controller
design, that a certain solution with desired properties is asymptotically stable with a
given domain of attraction (e.g., global). For example, in the observer design problem,
the desired solution is the solution of the observed system. In the output tracking
and disturbance rejection problem, the desired solution is the one that matches the
desired output of the system regardless of the disturbance.
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The conventional approach to prove whether a controller/observer solves these
problems consists of the following steps:

(a) find a solution of the closed-loop system/observer x̄(t) with desired properties,
(b) translate that solution to the origin through the transformation z(t) = x(t) −

x̄(t),
(c) prove asymptotic stability of z(t) ≡ 0 with a desired domain of attraction.

Although stability analysis of an equilibrium should be simpler, in many cases this
simplicity is essentially reduced by the coordinate transformation: the right-hand side
of the system in the new coordinates z typically depends on x̄(t). This makes the
analysis challenging and in some cases even prohibitively complex as, for example,
for piecewise affine systems [53]. On the other hand, the same design problems can
be approached using the property of convergence:

(1) design a feedback controller that ensures uniform convergence of the closed-
loop system: as a result, any solution starting in a compact positively invariant
set is uniformly asymptotically stable in this set.

(2) design a feedforward controller that ensures that the system with the feedback
and feedforward controllers has a solution x̄(t) with the desired properties.

Thus for any compact positively invariant set of initial conditions, the solution x̄(t)
will be uniformly asymptotically stable in this set. This approach allows one to avoid
the coordinate transformation z = x − x̄(t) and subsequent cumbersome stability
analysis of the transformed system.5

Let us illustrate the benefit of the above convergence-based approach in the scope
of the observer design problem. Consider the system

{
ẋ = F(x,w),

y = h(x,w)
(3.17)

with input w and output y. The objective is to design an observer that asymptotically
reconstructs from themeasured input and output the state x(t) starting at an unknown
initial condition x(t0) = x0. A conventional way to design an observer is to construct
it as a copy of the system dynamics with an output injection term:

{ ˙̂x = F(x̂,w) + L(y, ŷ,w),

ŷ = h(x̂,w),
(3.18)

where the injection function L(y, ŷ,w) satisfies L(y, y,w) ≡ 0. The latter condi-
tion guarantees that the observer, if initiated in the same initial condition as system
(3.17), x̂(t0) = x0, has a solution x̂(t) ≡ x(t), i.e., condition (2) above is satisfied.
If the injection term L(y, ŷ,w) is designed in such a way that the observer (3.18) is
uniformly convergent, then the desired solution x̂(t) ≡ x(t) is uniformly asymptot-
ically stable in any compact positively invariant set of initial conditions. Hence, one

5This benefit has recently also been explicitly recognized in [13].



3 Convergent Systems: Nonlinear Simplicity 59

can think of the observer design as aiming to ensure that the observer is a convergent
system rather than aiming at rendering the observer error dynamics asymptotically
stable.

The problem of controlled synchronization (e.g., master–slave synchronization)
has a lot in common with the observer design problem (see, e.g., [31]). Therefore, it
can be treated in the same way, as the observer design problem. The same holds for
the output tracking and disturbance rejection problems.

For a class of piecewise affine (PWA) systems, this convergence-based approach
allows one to solve the output tracking, synchronization, and observer design prob-
lems in a relatively simple manner [53]. For PWA systems these nonstationary prob-
lems become very hard to solve by conventional methods if the number of cells with
affine dynamics is larger than two.

For the tracking and disturbance rejection problems, in the approach mentioned
above one needs to answer the following questions:

• How to find a feedback that makes the closed-loop system uniformly convergent?
• How to find a bounded feedforward input that shapes the output of the steady-state
solution to a desired value, and whether such a feedforward exists at all?

For an answer to the first question the reader is referred, for example, to [35],
where controller design tools based on quadratic stability, backstepping, separation
principle and passivity were developed. The second question will be addressed in
the next section.

3.4 Stable Inversion of Nonlinear Systems

The problem of finding a bounded input that ensures the existence of a bounded
solution with a desired output is called the stable inversion problem. Conventionally,
it is studied after transforming the system into a normal form:

ξ̇ = p(ξ, ȳ, u), (3.19)

y(r) = q(ȳ, ξ) + s(ȳ, ξ)u, (3.20)

where y ∈ R is the output, u ∈ R is the input; ξ ∈ R
n and ȳ := (y, ẏ, . . . , y(r−1))T

constitute the state of the system. The functions p, q and s are locally Lipschitz and
s(ȳ, ξ) is nonzero for all ȳ and ξ . For simplicity of the presentation, we assume that
the normal form (3.19), (3.20) is defined globally. The reference output trajectory
is given by yd(t), which is bounded together with its r derivatives. From (3.20), we
compute an input u corresponding to the reference output trajectory yd(t):

u = s(ȳd , ξ)−1(y(r)
d − q(ȳd , ξ)) =: U (ξ, ȳd , y

(r)
d ), (3.21)
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where ȳd := (yd , ẏd , . . . , y
(r−1)
d )T . Substituting this control into (3.19), we obtain

the tracking dynamics

ξ̇ = p(ξ, ȳd(t),U (ξ, ȳd(t), y
(r)
d (t))) =: p̄(ξ, t). (3.22)

If we can find a bounded solution ξ̄ (t) of (3.22), then the corresponding bounded
input ud(t) can be computed from (3.21) by substituting this ξ̄ (t) for ξ . The desired
bounded solution of (3.19), (3.20) equals (ξ̄ T (t), ȳTd (t))T .

For minimum phase systems, bounded ȳd(t), y
(r)
d (t) ensure boundedness of any

solution of the tracking dynamics in (3.22) in forward time. For non-minimum phase
systems, this is not the case, since the tracking dynamics are unstable. However, there
may still exist a bounded solution, as it has been shown in [11, 12] for the local case.

To extend that result to the nonlocal case, we can, first, observe that the unstable
tracking dynamics can be convergent in backward time. In this case, all solutions
except for one diverge to infinity as t → +∞. The only bounded on R solution is
the steady-state solution from the definition of convergence.

We can apply similar reasoning to the case if (3.22) can be decomposed (after,
possibly, a coordinate transformation) into a series connection of two systems:

η̇ = F(η, t), η ∈ R
ns , (3.23)

ζ̇ = G(ζ, η, t), ζ ∈ R
nu . (3.24)

If system (3.23) is convergent and (3.24) with η as input is convergent in backward
time for the class of bounded continuous inputs, one can easily verify that the bounded
on R solution of (3.23), (3.24) is unique and it equals (η̄T (t), ζ̄ T

η̄ (t))T , where η̄(t)

is the steady-state solution of (3.23) and ζ̄η̄(t) is the steady-state solution of (3.24)
corresponding to η̄(t).

If the tracking dynamics can be represented as a feedback interconnection of a
convergent system in forward time and a convergent system in backward time,

η̇ = F(η, ζ, t), η ∈ R
ns , (3.25)

ζ̇ = G(ζ, η, t), ζ ∈ R
nu , (3.26)

then one can still ensure the existence of a unique bounded on R solution if a certain
small-gain condition is satisfied, as formalized in the result below.

Theorem 3.5 Consider system (3.25). Suppose that

1. system (3.25) with ζ as input is convergent for the class of continuous bounded
inputs with the corresponding steady-state operatorF being Lipschitz continu-
ous with a Lipschitz constant γF , i.e., ‖F ζ1 − F ζ1‖∞ ≤ γF‖ζ1 − ζ2‖∞,

2. system (3.26) with η as input is convergent in backward time for the class
of continuous bounded inputs with the corresponding steady-state operator G
being Lipschitz continuous with a Lipschitz constant γG, i.e., ‖G η1 − G η1‖∞ ≤
γG‖η1 − η2‖∞.
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If the small-gain condition
γFγG < 1, (3.27)

is satisfied, then system (3.25) has a unique bounded on R solution.

Finding the Lipschitz constant for the steady-state operator as well as a numerical
method for the calculation of the bounded solution are described in [33].

The simple convergence-based considerations presented above extend the local
results from [11, 12] on stable inversion of non-minimum phase systems to the
nonlocal nonlinear case.

3.5 The Output Regulation Problem

In [35], the notion of convergent systems was successfully applied to solve the output
regulation problem for nonlinear systems in a nonlocal setting. Before that, the output
regulation problem was solved for linear systems, see, e.g., [14], resulting in the
well-known internal model principle, and for nonlinear systems in a local setting [7,
20]. The application of the convergent systems property allowed us to extend these
results to nonlocal problem settings for nonlinear systems. In particular, necessary
and sufficient conditions for the solvability of the global nonlinear output regulation
problem were found [35].6 These conditions included, as their particular case, the
solvability conditions for the linear and the local nonlinear cases.

The output regulation problem can be treated as a special case of the tracking and
disturbance rejection problem,where the reference signal for the output and/or distur-
bance are generated by an external autonomous system. Consider systems modeled
by equations of the form

ẋ = f (x, u,w), (3.28)

e = hr (x,w), (3.29)

y = hm(x,w), (3.30)

with state x ∈ R
n , input u ∈ R

k , regulated output e ∈ R
lr , and measured output y ∈

R
lm . The exogenous signalw(t) ∈ R

m , which can be viewed as a disturbance in (3.28)
or as a reference signal in (3.29), is generated by an external autonomous system

ẇ = s(w), (3.31)

starting in a compact positively invariant set of initial conditionsW+ ⊂ R
m . System

(3.31) is called an exosystem.

6These results were obtained in parallel with [21], where an alternative approach to nonlocal non-
linear output regulation problem was pursued.
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The global uniform output regulation problem is to find, if possible, a controller
of the form

ξ̇ = η(ξ, y), ξ ∈ R
q , (3.32)

u = θ(ξ, y), (3.33)

for some q ≥ 0 such that the closed-loop system

ẋ = f (x, θ(ξ, hm(x,w)),w), (3.34)

ξ̇ = η(ξ, hm(x,w)) (3.35)

satisfies three conditions:

• regularity: the right-hand side of the closed-loop system is locally Lipschitz with
respect to (x, ξ) and continuous with respect to w;

• uniform convergence: the closed-loop system is uniformly convergent with the
UBSS property for the class of bounded continuous inputs;

• asymptotic output zeroing: for all solutions of the closed-loop system and the
exo-system starting in (x(0), ξ(0)) ∈ R

n+q and w(0) ∈ W+ it holds that e(t) =
hr (x(t),w(t)) → 0 as t → +∞.7

In conventional formulations of the output regulation problem, some other sta-
bility requirement on the closed-loop system is used instead of the requirement of
uniform convergence, e.g., (global) asymptotic stability of the origin for zero input or
boundedness of solutions. For linear and local nonlinear cases, it can be shown that
these requirements are equivalent to the requirement of the uniform convergence.
For nonlocal nonlinear problem settings, boundedness of solutions of the uniformly
convergent system follows from the definition of uniform convergence and bound-
edness of w(t). Thus the choice of uniform convergence as a “stability requirement”
is natural in this problem. It leads to a necessary and sufficient solvability condition
for the output regulation problem that includes, as its particular case, the solvability
conditions for the linear and local nonlinear output regulation problems, see e.g.,
[20]. This fact indicates that the right problem formulation for the nonlocal output
regulation problem is captured in this way.

From the controller design point of view, this problem can be addressed using
the same approach as described in Sect. 3.3: design a controller such that the closed-
loop system is (a) uniformly convergent with the UBSS property and (b) has a
solution along which the asymptotic output zeroing condition holds, see Sect. 3.3.
The questions to be addressed in this approach are, first, whether the structure of the
controlled system and the exo-system allows for a solution of the problem; second,
how to design a controller that makes the closed-loop system uniformly convergent;
and, third, how to check that this controller ensures existence of a solution with the
asymptotic output zeroing property.

7Other variants of the uniform output regulation problem can be found in [35].
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While the second question is addressed in a number of papers, see, e.g., [35], the
first and the third questions are answered by the following result.

Theorem 3.6 ([35]) Consider system (3.28)–(3.30) and exo-system (3.31) with a
compact positively invariant set of initial conditions W+ ⊂ R

m.

(i) The global uniform output regulation problem is solvable only if there exist
continuous mappings π(w) and c(w) defined in some neighborhood of Ω(W+)–
the ω-limit set for solutions of exo-system (3.31) starting in W+– and satisfying
the regulator equations

d

dt
π(w(t)) = f (π(w(t)), c(w(t)),w(t)), (3.36)

0 = hr (π(w(t)),w(t)), (3.37)

for all solutions of exo-system (3.31) satisfying w(t) ∈ Ω(W+) for t ∈ R.
(ii) If controller (3.32), (3.33) makes the closed-loop system uniformly convergent

with UBSS property for the class of bounded continuous inputs, then it solves the
global uniform output regulation problem if and only if for any w(t) ∈ Ω(W+)

the controller has a bounded solution with input ȳw(t) := hm(π(w(t)),w(t))
and output ūw(t) = c(w(t)).

Notice that solvability of the regulator equations implies that for any w(t) from
the omega-limit setΩ(W+), system (3.28) has a stable inversion ūw(t) for the desired
output e(t) ≡ 0. The second condition implies that the controller, being driven by
the output ȳw(t), can generate the control signal ūw(t). Since all solutions of the
exo-system starting in W+ converge to the omega-limit set Ω(W+), it is enough to
verify conditions (i) and (ii) only on Ω(W+).

Here we see that the notion of uniform convergence allows us to extend the solv-
ability conditions and controller design methods for the output regulation problem
from the linear and local nonlinear cases to nonlocal nonlinear case.

3.6 Frequency Response Functions for Nonlinear
Convergent Systems

Frequency response functions (FRF) for linear time invariant systems form a foun-
dation for a large number of analysis and design tools. One can define FRF for linear
systems through the Laplace transform. For nonlinear systems, however, the Laplace
transform is not defined. If we notice that, for linear systems, FRF can also be viewed
as a function that fully characterizes steady-state responses to harmonic excitations,
we can extend the notion of FRF to nonlinear convergent systems of the form

ż = F(x,w), (3.38)

y = h(x) (3.39)



64 A. Pavlov and N. van de Wouw

with x ∈ R
n , y ∈ R and scalar input w. Recall that convergent systems have a

uniquely defined periodic response to a periodic excitation (with the same period
time). We can define the FRF as a mapping that maps input w(t) = a sinωt to the
corresponding periodic steady-state solution x̄a,ω(t). As follows from the next result,
this mapping has quite a simple structure.

Theorem 3.7 ([38]) Suppose system (3.38) is uniformly convergent with UBSS
property for the class of continuous bounded inputs w(t). Then, there exists a
continuous function α : R3 → R

n such that for any harmonic excitation of the
form w(t) = a sinωt , the corresponding (asymptotically stable) steady-state solu-
tion equals

x̄aω(t) := α(a sin(ωt), a cos(ωt), ω). (3.40)

As follows from Theorem 3.7, the function α(v1, v2, ω) contains all information on
the steady-state solutions of system (3.38) corresponding to harmonic excitations.
For this reason, we give the following definition.

Definition 3.5 The function α(v1, v2, ω) defined in Theorem 3.7 is called the state
frequency response function. The function h(α(v1, v2, ω)) is called the output fre-
quency response function.

In general, it is not easy to find such frequency response functions analytically.
In some cases they can be found based on the following lemma.

Lemma 3.1 ([38]) Under the conditions of Theorem 3.7, if there exists a continuous
function α(v1, v2, ω) differentiable in v = [v1, v2]T and satisfying

∂α

∂v
(v, ω)S(ω)v = F(α(v, ω), v1), ∀ v, ω ∈ R

2 × R, (3.41)

then this α(v1, v2, ω) is the state frequency response function. Conversely, if the state
frequency response function α(v1, v2, ω) is differentiable in v, then it is a unique
solution of (3.41).

With this definition of the frequency response function,we can further defineBode
magnitude plots for convergent systems that wouldmap frequencyω and amplitude a
of the harmonic input to a measure of the steady-state output (e.g., L2 norm) normal-
ized with the input amplitude a. This extension of the Bode plot enables graphical
representation of convergent system steady-state responses at various frequencies
and amplitudes of the excitation (due to nonlinearity it will depend on both). In this
sense, such frequency response functions are instrumental in supporting frequency
domain analysis of nonlinear convergent systems, similar to that employed for linear
systems.
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3.7 Steady-State Performance Optimization

For linear systems, Bode plots are commonly used to evaluate steady-state sensitiv-
ities of the closed-loop system to measurement noise, disturbances, and reference
signals. If the performance of the closed-loop system, evaluated through the (fre-
quency domain) sensitivity functions, is not satisfactory, controller parameters can
be tuned to achieve desired or optimal steady-state performance. For nonlinear sys-
tems, such performance-based controller tuning is much more challenging. Even in
the simple case of a convergent closed-loop system with a linear plant being con-
trolled by a linear controller with a variable gain element [19, 55], this problem is far
from straightforward. First, one needs to evaluate/calculate steady-state responses to
the noise, disturbance and/or reference signals. In practice, this may be challenging
already for excitations with only one harmonic (see previous section). In reality, the
excitations will consist of multiple harmonics, and calculation of the steady-state
solution to these excitations can be a challenge in itself. Second, after the steady-
state solution is evaluated, one needs to find how to tune controller parameters to
improve/optimize certain performance characteristics of the steady state responses.

For a subclass of nonlinear convergent systems, both of these problems can be
solved numerically in a computationally efficient way. Let us consider Lur’e-type
systems of the form

ẋ = Ax + Bu + Hw(t) (3.42)

y = Cx + Dw(t) (3.43)

u = −ϕ(y,w(t), θ) (3.44)

e = Cex + Dew(t), (3.45)

where x ∈ R
n is the state, y ∈ R is the output, w(t) ∈ R

m is a piecewise continuous
input, and e ∈ R is a performance output. We assume that the nonlinearity ϕ : R ×
R

m × Θ → R is memoryless and may depend on nθ parameters collected in the
vector θ = [θ1, . . . , θnθ

]T ∈ Θ ⊂ R
nθ .We also assume that ϕ(0,w, θ) = 0 ∀w ∈ R

m

and θ ∈ Θ . For simplicity, we only consider the case in which the parameters θ

appear in the nonlinearity ϕ and none of the system matrices. An extension to the
latter situation is relatively straightforward. The functions Gyu(s),Gyw(s),Geu(s)
and Gew(s) are the corresponding transfer functions from inputs u and w to outputs
y and e of the linear part of system (3.42)–(3.45).

In this section, we consider the case of periodic disturbances w(t). Recall that if
system (3.42)–(3.45) satisfies the conditions of Theorem 3.2 for all θ ∈ Θ , then it
is exponentially convergent and thus for each periodic w(t) it has a unique periodic
steady-state solution x̄w(t, θ).

Once the steady-state solution is uniquely defined, we can define a performance
measure to quantify the steady-state performance of the system for a particular
T -periodic input w(t) and particular parameter θ . For example, it can be defined as
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J (θ) = 1

T

∫ T

0
ēw(t, θ)2dt, (3.46)

where ēw(t, θ) is the performance output response corresponding to the steady-state
solution. If we are interested in quantifying simultaneously the steady-state per-
formance corresponding to a family of disturbances, w1(t),w2(t), . . . ,wN (t), with
periods T1, . . . , TN , we, e.g., can choose a weighted sum of the functionals of the
form (3.46). The choice of the performance objective strongly depends on the needs
of the particular application.

System (3.42)–(3.45) may represent a closed-loop nonlinear control system with
θ being a vector of controller parameters. Ultimately, we aim to optimize the steady-
state performance of this system by tuning θ ∈ Θ . To this end, we propose to use
gradient-like optimization algorithms, which provide a direction for decrease of
J (θ) based on the gradient of ∂ J/∂θ(θ). This approach requires computation of the
gradient of J (θ). For the performance objective as in (3.46), the gradient equals

∂ J

∂θ
(θ) = 2

T

∫ T

0
ēw(t, θ)

∂ ēw
∂θ

(t, θ)dt, (3.47)

under the condition that ēw(t, θ) is C1 with respect to θ . Here we see that in order
to compute the gradient of J (θ) we need to know both ēw(t, θ) and ∂ ēw/∂θ(t, θ).
The following theorem provides, firstly, conditions under which x̄w(t, θ) (and there-
fore ēw(t, θ)) is C1 with respect to θ , and, secondly, gives us an equation for the
computation of ∂ ēw/∂θ(t, θ).

Theorem 3.8 ([40]) If system (3.42)–(3.45) satisfies the conditions of Theorem 3.2
for all θ ∈ Θ , and the nonlinearity ϕ(y,w, θ) is C1 for all y ∈ R, w ∈ R

m and θ in
the interior ofΘ , then the steady-state solution x̄w(t, θ) is C1 in θ . The corresponding
partial derivatives ∂ x̄w/∂θi (t, θ) and ∂ ēw/∂θi (t, θ) are, respectively, the unique T -
periodic solution Ψ̄ (t) and the corresponding periodic output μ̄(t) of the system

Ψ̇ = AΨ + BU + BWi (t) (3.48)

λ = CΨ (3.49)

U = −∂ϕ

∂y
(ȳ(t, θ),w(t), θ)λ (3.50)

μ = CeΨ, (3.51)

where Wi (t) = −∂ϕ/∂θi (ȳw(t, θ),w(t), θ).

To calculate the steady-state output ē(t, θ), notice that it is a solution of the
following equation:

ȳ = Gyu ◦ F ȳ + Gyww, (3.52)

ē = Geu ◦ F ȳ + Geww, (3.53)
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Fig. 3.1 Mixed-Time-
Frequency algorithm to
compute the steady-state
solutions Yk+1[m] = Gyu(imω)Uk+1[m]

U [m]
Y [m]

W [m]

u = −ϕ(y, w(t), θ)

Nonlinearity

Linear Dynamics

FFT IFFT
y(t)

u(t)

Frequency domain

Time domain

+Gyw(imω)W [m]

w(t)

where Gyu , Gyw, Geu and Gew are the linear operators mapping periodic inputs u(t)
and w(t) to periodic steady-state outputs y(t) and e(t) of the linear part of sys-
tem (3.42)–(3.45); and F is the operator defined by F y(t) := −ϕ(y(t),w(t), θ).
The conditions of Theorem 3.2 imply that the superposition operator Gyu ◦ F is a
contraction operator acting from L2(T ) to L2(T ). Therefore, ȳ (and then ē) can be
calculated from the iterative process

uk+1 = F yk (3.54)

yk+1 = Gyuuk+1 + Gyww, (3.55)

starting from an arbitrary initial guess y0. To speed up the calculation, this iterative
process can be implemented both in frequency domain (to compute Gyuuk+1 and
Gyww) and in time domain (to compute the output of the nonlinearity F yk). This
is schematically shown in Fig. 3.1, where Y , W and U denote the vectors of the
Fourier coefficients (indexed by m) of the signals y(t), w(t) and u(t), respectively.
and (I)FFT denotes the (inverse) Fast Fourier Transform.

If at every iteration we truncate the Fourier coefficients for uk(t) and w(t) to keep
only the N first harmonics (which is inevitable in any numerical implementation of
the algorithm), the algorithm will still converge from an arbitrary initial guess y0(t)
to a unique solution ȳN . The error caused by the truncation can be estimated by [40]:

‖ȳ − ȳN‖L2 ≤
{
sup|m|>N |Gyu(imω)|γyw

K‖w‖L2
1−γyu K

+ γyw‖w − wN‖L2

}
1

1−γyu K
, (3.56)

where γyw := supm∈Z |Gyw(imω)| and ‖w − wN‖L2 is the error of truncation of har-
monics in w(t) higher than N . From this estimate, we can conclude that by choosing
N high enough, one can reach any desired accuracy of approximation ȳ(t) by the
solution ȳN of the algorithm with the truncation. Notice that this algorithm with
truncation can be considered as a multiharmonic variant of the describing function
method, described in [30] for autonomous systems.
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After computing ȳw and ēw, one can then compute in the same way the partial
derivatives ∂ ēw/∂θ(t, θ), since system (3.48)–(3.51) satisfies the same conditions as
the original system (3.42)–(3.45) in Theorem 3.2. Then one can compute ∂ J/∂θ and
proceed to gradient-like optimization of θ .

Details on implementation of these numerical algorithms can be found in [40],
where they, in combination with a gradient optimization method, were applied for
tuning parameters of a variable gain controller for wafer stage control. The results
presented in [40] demonstratedvery fast convergenceof the algorithms for calculation
of the steady-state solution and its gradients, as well as efficient performance of the
gradient based tuning algorithm. This turns the algorithm into a powerful numerical
method for optimizing steady-state performance of nonlinear closed-loop systems
of Lur’e-type form.

In this section, we have shown how the convergence property can be instrumen-
tal in supporting the model-based performance optimization of nonlinear control
systems. In the next section, we also consider the problem of performance optimiza-
tion of nonlinear systems, where again performance is characterized by periodically
time-varying steady-state solutions. However, now it is assumed that nomodel or dis-
turbance information is available to support performance optimization and therefore
a model-free optimization approach called extremum seeking is adopted.

3.8 Extremum Seeking Control

Extremum seeking control is a model-free, online approach for performance opti-
mization for dynamical systems.The largemajority of theworks in extremumseeking
is considering the case in which the performance of the system is quantified in terms
of a (unknown) performance objective function depending on the equilibrium state
of the system [23, 51, 52]. However, in many cases the performance of a system is
characterized by time-varying behaviors; as an example, one can think of tracking
control problems for high-tech positioning systems, such as industrial robots, wafer
scanners or pick-and-place machines in which the machine’s functioning relies on
the accurate realization of time-varying (or periodic for repetitive tasks) reference
trajectories.

In this section, we will show how the concept of convergence can be a key under-
lying property of the dynamical system subjected to an extremum seeker when the
performance objective depends on periodic steady-state trajectories of the plant. For
more details on extremum seeking for nonlinear plants with periodic steady-state
solutions, we refer to [17].

Let us consider a nonlinear dynamical system of the form

ẋ = f (x, u, θ,w(t)), (3.57)

y = h(x,w(t)), (3.58)
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where x ∈ R
n , u ∈ R

m are the state and the input, w ∈ R
l is an input disturbance and

θ ∈ R is a system parameter. The disturbances w(t) are generated by an exo-system
of the following form:

ẇ = ϕ(w). (3.59)

We assume that for any initial condition w(0) ∈ R
l , the solution of the exo-system

(3.59) is uniformly bounded (in backward and forward time) and periodic with a
known constant period Tw > 0.

Consider a state-feedback controller of the following form8

u = α(x, θ). (3.60)

Now we assume that the closed-loop plant (3.57), (3.60) is uniformly convergent
for any fixed θ ∈ R. The convergence property implies that for any fixed θ ∈ R,
there exists a unique, bounded for all t ∈ R, uniformly globally asymptotically stable
steady-state solution x̄θ,w(t) of the closed-loop plant (3.57), (3.60).9 As explained in
Sect. 3.2, the convergence property implies that the steady-state response x̄θ,w(t) is
periodic with period Tw, given the nature of the exo-system, which produces periodic
disturbance inputs with period Tw.

We aim to find the fixed value of θ ∈ R that optimizes the steady-state perfor-
mance of the closed-loop plant (3.57), (3.60). To this end, we design a cost function
that defines performance in terms of the system output y. As a stepping stone, we
introduce various signal-norm-based performance measures of the following form:

L p(yd(t)) :=
(

1

Tw

∫ t

t−Tw

|y(τ )|pdτ

) 1
p

, (3.61)

L∞(yd(t)) := max
τ∈[t−Tw,t] |y(τ )| (3.62)

with p ∈ [1,∞). The argument yd(t) of the performance measures in (3.61), (3.62)
represents a (past) function segment of the output, characterizing the performance,
and is defined by yd(t) := y(t + τ) for all τ ∈ [−td , 0], for some td > Tw, see [17]
for details. We use one of the performance measures in (3.61), (3.62) in the design
of the cost function, which is given by

q = Qi (yd(t)) := g ◦ Li (yd(t)), i ∈ [1,∞], (3.63)

where the function g(·) further characterizes the performance cost.
Note that, by the grace of convergence, the cost function Qi is constant in steady

state. Finally, it is assumed that the steady-state performance map, i.e., the map from
constant θ to q in steady state, exhibits a uniquemaximum. It is thismaximum thatwe

8Sufficient smoothness of the functions f , h and α is assumed.
9In fact, a particular Lyapunov-based stability certificate is required for the solution x̄θ,w(t) in the
scope of this section, see [17].



70 A. Pavlov and N. van de Wouw

aim to find using an extremum seeking controller, without employing knowledge on
the plant dynamics, the performancemapor the amplitude or phase of the disturbance.

Next, we introduce the extremum seeker that will optimize (maximize) the steady-
state performance output q. The total extremum seeking scheme is depicted schemat-
ically in Fig. 3.2 and consists of a gradient estimator (estimating the gradient of the
cost function with respect to θ ) and an optimizer (devised to steer the parameter θ to
the optimum). The optimizer is given by

˙̂
θ = Ke, (3.64)

where K is the optimizer gain and e is the gradient estimate provided by the gradient
estimator. The gradient estimator employed here is based on a moving average filter
called the mean-over-perturbation-period (MOPP) filter:

e = ω

aπ

∫ t

t− 2π
ω

q(τ ) sin(ω(t − φ))dτ, (3.65)

whereω and a are the frequency and amplitude of the dither signal used to perturb the
parameter input to the plant (therewith facilitating gradient estimation), see Fig. 3.2,
and φ is a nonnegative constant. We note that both the performance measure in
(3.61)–(3.63) and the MOPP estimation filter in (3.65) introduce delay in the closed-
loop dynamics therewith challenging the analysis of stability properties of the result-
ing closed-loop system.

Still, it can be shown [17] that, under the assumptions posed above (in partic-
ular the convergence property), the total closed-loop system (3.57), (3.60), (3.63)
including extremum seeking controller (3.64), (3.65) is semi-globally practically
asymptotically stable in the sense that the parameter θ converges arbitrarily closely
to its optimal value and the state solution of the plant converges arbitrarily closely to
the optimal steady-state plant behavior, for arbitrarily large sets of initial conditions.

+ x

θ

θ̂

w(t)
y q

a sin(ωt) sin(ω(t − φ))

e

Convergent
system
(3.57), (3.60)

(3.63)

(3.64) (3.65)

Cost Qi

Optimizer Gradient
estimator

Fig. 3.2 Schematic representation of the extremum seeking scheme
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The latter can be achieved by making the parameters a, ω, and K of the extremum
seeker small enough.

Summarizing, the convergence property is instrumental in guaranteeing a unique
and asymptotically stable periodic output response, which allows for a unique steady-
state performance definition and, in turn, facilitates employing an extremum seeker
to optimize the performance characterized by periodic steady-state solutions.

3.9 Model Reduction

In this section, we show how the convergence property can be instrumental in the
scope of model reduction for a class of nonlinear systems.10 The class of systems
under consideration involves a feedback interconnection Σ = (Σlin,Σnl) between
a linear system

Σlin :

⎧
⎪⎨

⎪⎩

ẋ = Ax + Buu + Bvv

y = Cyx

w = Cwx,

(3.66)

where x ∈ R
n , y ∈ R

p, v ∈ R
s and w ∈ R

q , and a nonlinear system

Σnl :
{
ż = g(z,w)

v = h(z),
(3.67)

where, z ∈ R
r , see the left part of Fig. 3.3.

As will be made more precise below, we assume that the plant Σ is (input-to-
state) convergent and we will preserve such property after the model reduction.
At a conceptual level, the system being convergent (before and after reduction)
helps to reason about the quality of a reduced-order model. To understand this,
suppose that the plant and its reduction are not convergent. Then, these systems may
have complex nonlinear dynamics characterized by multiple (stable and/or unstable)

uu

ww

yy

v v̂ ŵΣlin Σ̂lin

ΣnlΣnl

Model

reduction

x x̂

zz

Fig. 3.3 Feedback interconnection plant dynamics and model reduction strategy

10The model reduction approach described here is based on [6].
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attractors, such as e.g., equilibria and limit cycles, each associated with a potentially
complex region of attraction. When reasoning about the quality of the reduction,
one typically desires to compare solutions of the reduced-order and original system,
especially when aiming to quantify a reduction error. It is hard to envision how
such a comparison could be made if both systems have multiple attractors, even
with regions of attraction defined on state spaces of different dimension (due to the
reduction). The assumption of convergence facilitates the unique comparison of the
output solutions of the reduced-order and original system, for a given identical input,
as both systems now have a unique attractor (characterized by the unique steady-state
solution); hence, the convergenceproperty significantly simplifies establishing a clear
definition of reduction error, as will be further explained below.

Figure3.3 also expresses the fact that we pursue model reduction of the total
system Σ by reducing the linear part Σlin of the dynamics and reconnecting the
reduced-order linear dynamics Σ̂lin to the nonlinear dynamics Σnl . This approach
is inspired by practical applications in which, firstly, the high-dimensional nature of
the dynamics is due to the linear dynamics and, second, the nonlinearities only act
locally. Examples of such systems, e.g., can be found inmechanical systems in which
the structural dynamics leads to high-dimensional models and local nonlinearities
relate to friction, hysteresis, or nonlinear actuator dynamics. Applications in which
such models arise can, e.g., be found in high-speed milling or drilling applications.
A benefit of such an approach in which model reduction is applied to the linear
subsystem only is the fact that a wide range of computationally efficient model
reduction methods for linear systems exist.

Assumption 3.1 Now, we adopt the following assumptions on the system Σ :

• Σlin is asymptotically stable (i.e., A isHurwitz), implying thatΣlin is input-to-state
convergent,

• Σnl is input-to-state convergent.

By the grace of the first bullet in Assumption 3.1, we have that there exist steady-state
operators defined asF (u, v) := x̄u,v, with x̄u,v being the steady-state solutions of the
convergent system Σlin , and Fi (u, v) = Ci x̄u,v, i ∈ {y,w}, where the latter define
the steady-state output operators of Σlin for outputs y and w. These steady-state
output operators are (by linearity) incrementally bounded as

‖Fi (u2, v2) − Fi (u1, v1)‖∞ ≤ χi x (γxu‖u2 − u1‖∞ + γxv‖v2 − v1‖∞), (3.68)

for i ∈ {y,w}. In (3.68), γxu , γxv denote the gain functions of the steady-state operator
F (u, v), whereas χi x represent incremental bounds on the output equations of Σlin .
The assumption in the second bullet of Assumption 3.1 implies that there exists a
steady-state operator Gw := z̄w, which satisfies ‖Gw2 − Gw1‖ ≤ γzw‖w2 − w1‖∞.
If additionally, there exists an incremental bound for the output function h of Σnl

such that ‖h(z2) − h(z1)‖∞ ≤ χvz‖z2 − z1‖∞, then we have that the steady-state
output operator Gvw := h(z̄w) of Σnl satisfies
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‖Gv(w2) − Gv(w1)‖∞ ≤ χvz ◦ γzw‖w2 − w1‖∞. (3.69)

All the gain functions above are class K∞ functions.
Next, the total nonlinear system Σ is assumed to satisfy the following small-gain

condition.

Assumption 3.2 There exist classK∞ functions ρ1 and ρ2 such that Σ satisfies the
small-gain condition

(id + ρ1) ◦ γxv ◦ χvz ◦ (id + ρ2) ◦ γzw ◦ χwx(s) ≤ s, (3.70)

for all s ≥ 0.

Assumption 3.2 implies, see [4, 6], that the feedback interconnection Σ is input-to-
state convergent.

As a next step, we assume that the reduced-order linear system Σ̂lin , see Fig. 3.3,
given by

Σ̂lin :

⎧
⎪⎨

⎪⎩

˙̂x = Âx̂ + B̂uu + B̂vv̂

ŷ = Ĉy x̂

ŵ = Ĉwx̂,

(3.71)

where x̂ ∈ R
k , with k < n establishing the order reduction, ŷ ∈ R

p, v̂ ∈ R
s and

ŵ ∈ R
q , is asymptotically stable. This implies that there exist steady-state output

operators for Σ̂lin: F̂i (u, v̂), i ∈ {y,w}, that are incrementally bounded, i.e.,

‖F̂i (u2, v̂2) − F̂i (u1, v̂1)‖∞ ≤ χ̂i x ◦ γ̂xv‖v̂2 − v̂1‖∞, (3.72)

for i ∈ {y,w}. Moreover, we assume that there exists an error bound for the reduction
of the linear part of the system according to

‖Ei (u2, v2) − Ei (u1, v1)‖∞ ≤ εiu‖u2 − u1‖∞ + εiv‖v2 − v1‖∞, (3.73)

where Ei (u, v) := Fi (u, v) − F̂i (u, v), for i ∈ {y,w}, and εi j , for i ∈ {y,w} and
j ∈ {u, v}, are positive constants.

In fact, the above assumption on the stability of the reduced-order system and the
availability of an error bound for the linear reduced-order system can be directly sat-
isfied since reduction techniques exist that guarantee the satisfaction of both assump-
tions. In fact, an a priori error bound exists when the reduced-order system Σ̂lin is
obtained by balanced truncation. Namely, an error bound on the norm on the impulse
response as in [16, 24] provides a bound on theL∞-induced system norm. Alterna-
tively, an error bound can be computed a posteriori using results from [47], typically
leading to a tighter bound.

Now, the following result can be formulated, which guarantees input-to-state
convergence of the nonlinear reduced-order system Σ̂ = (Σ̂lin,Σnl) and provides
and error bound for Σ̂ .
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Theorem 3.9 Let Σ = (Σlin,Σnl) satisfy Assumptions 3.1 and 3.2. Furthermore,
let Σ̂ = (Σ̂lin,Σnl) be a reduced-order approximation, where Σ̂lin is asymptotically
stable and let there exist an error bound as in (3.73) on the linear subsystem. Then,
the reduced-order nonlinear system Σ̂ is input-to-state convergent if there exist class
K∞ functions ρ̂1 and ρ̂2 such that the following small-gain condition is satisfied:

(id + ρ̂1) ◦ χvz ◦ (id + ρ̂2) ◦ (εwv + χwx ◦ γxv)(s) ≤ s, (3.74)

for all s ≥ 0.
When (3.74) holds, then the steady-state error ‖ȳu − ¯̂yu‖∞ is bounded as ‖ȳu −¯̂yu‖∞ ≤ ε‖u‖∞, where ε(r) is an error bound function.

For the proof and a detailed expression for the error bound function ε(r) we refer to
[6]. This error bound function ε(r) depends on the properties (gain functions) of the
original system Σ and the error bounds for the linear reduction (3.73). As the latter
error bound canbeobtained a priori (i.e., before the actual reduction is performed), the
error bound in Theorem 3.9 also represents an a priori error bound. Note, moreover,
that if the small-gain condition on the original system in Assumption 3.2 is satisfied
with some margin, the small-gain condition in (3.74) can be satisfied by making the
reduction of Σlin accurate enough, i.e., making εwv small enough.

Finally, we note that with this convergence-based approach tomodel reduction we
obtain an error bound on theL∞-norm of the reduction error. Alternative approaches
exist, see [4, 5], exploiting incrementalL2-gain or incremental passivity properties,
instead of convergence properties, to obtain reduced-order systems (for a class of
nonlinear systems of the same form as considered here) preserving such incremental
system properties and complying with an L2 error bound.

3.10 Conclusions

In this chapter, we have reviewed the notion of convergent systems and its applica-
tions to a wide range of design and analysis problems for nonlinear (control) systems.
It appears that nonlinear convergent systems inherit certain simplicity from asymp-
totically stable linear systems. This simplicity is not common to generic nonlinear
systems. It allows one to solve a number of analysis and design problems for non-
linear systems in a nonlocal setting and extend previously known local results to
nonlocal cases. For Lur’e-type systems it provides a powerful tool for optimization
of steady-state performance. Open problems for further work relate to convergence
properties for hybrid systems, to investigating how convergence and the existence
of FRFs can be used to support system identification for certain classes of nonlinear
convergent systems, and to applications of convergent systems to filtering.
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Synchronization in Networked Systems



Chapter 4
Synchronisation and Emergent Behaviour
in Networks of Heterogeneous Systems:
A Control Theory Perspective

Elena Panteley and Antonio Loría

Abstract Generally speaking, for a network of interconnected systems, synchroni-
sation consists in themutual coordination of the systems’motions to reach a common
behaviour. For homogeneous systems that have identical dynamics this typically con-
sists in asymptotically stabilising a common equilibrium set. In the case of heteroge-
neous networks, in which systems may have different parameters and even different
dynamics, there may exist no common equilibrium but an emergent behaviour arises.
Inherent to the network, this is determined by the connection graph but it is indepen-
dent of the interconnection strength. Thus, the dynamic behaviour of the networked
systems is fully characterised in terms of two properties whose studymay be recast in
the domain of stability theory through the analysis of two interconnected dynamical
systems evolving in orthogonal spaces: the emergent dynamics and the synchroni-
sation errors relative to the common behaviour. Based on this premise, we present
some results on robust stability by which one may assess the conditions for practical
asymptotic synchronisation of networked systems. As an illustration, we broach a
brief case-study on mutual synchronisation of heterogeneous chaotic oscillators.

4.1 Introduction

As its etymology suggests, synchronisation may be defined as the adjustment of
rhythms of repetitive events (phenomena, processes, …) through sufficiently strong
interaction. In dynamical systems theory, we also speak of synchronised systems if
theirmovements are coordinated in time and/or space. It can be of several types: if one
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system “dominates” over the rest, we speak of master–slave synchronisation; in this
case, the motion of the so-called master system becomes a reference for the motion
of the so-called slave system(s). Alternatively, synchronisation may be mutual, in
which case a set of systems synchronise theirmovementswithout specified hierarchy.
Controlled synchronisation of dynamical systems consists, generally speaking, in
ensuring that two or more systems coordinate their motions in a desired manner.

Synchronisation has been a subject of intense research in several disciplines before
control theory: it was introduced in the 1970s in the USSR in the field of mechanical
vibration by Professor Blekhman. Ever since, research on synchronisation has been
popular among physicists, e.g. in the context of synchronisation of chaotic systems
since the early 1990s, but also among engineers, especially on automatic control.
In this community, the paradigm of synchronisation was largely popularised by H.
Nijmeijer. His seminal paper [12] is a landmark tutorial on master–slave synchroni-
sation and his pioneer work [13] on mutual synchronisation (of mechanical systems)
preceeds the bulk of literature on a paradigm that is nowadays better known in our
comunity under the name of consensus—see [19].

Consensus pertains to the case in which a (large) group of interconnected sys-
tems mutually synchronise their behaviours. In this case, we speak of networks of
systems. These are not just large-scale and complex systems but they are charac-
terised by decentralised, distributed, networked compositions of (semi)autonomous
elements. These new systems are, in fact, systems of systems. The complexity of
network interconnected systems may not be overestimated. For instance, in neu-
ronal networks, experimental evidence shows that inhibition/excitation unbalance
may result in excessive neuronal synchronisation, which, in turn, may be linked to
neuro-degenerative diseases such as Parkinson and epilepsy. In energy transforma-
tion networks, the improper management of faults, overloads or simply adding to or
subtracting a generator from the transportation network may result in power outages
or even in large-scale (continent-wide) blackouts.

In this chapter, we briefly describe a framework, whichwas originally and recently
introduced in [15], for analysis and control of synchronisation of networked heteroge-
neous systems that is, with different parameters or even completely distinct dynamic
models.

We limit our study to the analysis paradigm, as opposed to that of controlled syn-
chronisation. At the expense of technological and dynamical aspects related directly
to the network communication (delays, noise, etc.), we focus on structural properties
of the network that affect the synchronisation of the agents’ motions in one way or
another. More precisely, the following issues play a key role in analysis and control
of synchronisation of networked systems:

• the coupling strength;
• the network topology;
• the type of coupling between the nodes, i.e. how the units are interconnected;
• the dynamics of the individual units.
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Among the latter, our technical results establish how the coupling strength affects
synchronisation. Our analysis is carried out from a dynamical systems and stability
theory viewpoint.

4.2 The Networked Systems Synchronisation Paradigm

Let us consider a network of dynamical systems modelled via ordinary differential
equations,

ẋi = fi (xi ) + Bui , i ∈ I := {1, . . . , N } (4.1a)

yi = Cxi , (4.1b)

where xi ∈ R
n , ui ∈ R

m and yi ∈ R
m denote the state, the input and the output of the

i th unit, respectively. The network’s topology is usually described via graph theory:
a network of N nodes is defined by its N × N adjacency matrix D = [di j ] whose
(i, j) element, denoted by di j , specifies an interconnection between the i th and j th
nodes. See [19].

The interaction among nodes depends, in general, on the strength of the coupling
and on the nodes’ state variables or on functions of the latter, i.e. outputs which define
the coupling terms. The interaction is also determined by the form of coupling,
i.e. the way how the output of one node affects another; this can be linear, as it
is fairly common to assume, but it may also be nonlinear, as in the well-known
example of Kuramoto’s oscillator model in which the interconnection is made via
sinusoids—see [3].

Here, we consider a network composed of N heterogeneous diffusively coupled
nonlinear dynamical systems in normal form:

ẏi = f 1i (yi , zi ) + ui (4.2a)

żi = f 2i (yi , zi ). (4.2b)

As it may be clear from the notation, each unit possesses one input ui and one
output yi of the same dimension, i.e. ui , yi ∈ R

m . The state zi corresponds to that
of the i th agent’s zero dynamics—see [7]. The functions f 1i : Rm × R

n−m → R
m ,

f 2i : Rm × R
n−m → R

n−m are assumed to be locally Lipschitz.
It is convenient to remark that there is little loss of generality in considering

systems in normal form, these are equivalent to systems of the form (4.1) under the
assumption that the matrices B ∈ R

n×m and C ∈ R
m×n satisfy a similarity condition

for C B that is, if there exists U such that U−1C BU = Λ where Λ is diagonal
positive—see e.g. [17, 18].

We also assume that the units possess certain physical properties reminiscent of
energy dissipation and propagation. Notably, one of our main hypotheses is that the
solutions are ultimately bounded; we recall the definition below.
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Definition 4.1 (Ultimate boundedness) The solutions of the system ẋ = f (x),
defined by absolutely continuous functions (t, x◦) �→ x , are said to be ultimately
bounded if there exist positive constants Δ◦ and Bx such that for every Δ ∈ (0,Δ◦),
there exists a positive constant T (Δ) such that, for all x◦ ∈ BΔ = {x ∈ R

n : |x | ≤ Δ}
they satisfy

|x(t, x◦)| ≤ Bx for all t ≥ T .

If this boundholds for any arbitrarily largeΔ then the solutions are globally ultimately
bounded.

Ultimate boundedness is a reasonable assumption for the class of systems of
interest here, such as oscillators. In a more general context, boundedness holds, for
instance, if the units are strictly semi-passive—cf. [14].

Our second main assumption concerns the zero dynamics.

Assumption 4.1 For any compact sets Bz ⊂ R
n−m , By ⊂ R

m there exist N contin-
uously differentiable positive definite functions V◦k : Bz → R+ with k ≤ N , class
K∞ functions γ1k , γ2k and constants ᾱk , βk > 0 such that

γ1k(|z|) ≤ V◦k(z) ≤ γ2k(|z|)

∇V◦k(z)
[

f 2k ( y, z) − f 2k ( y, z′)
] ≤ −ᾱk |z − z′|2 + βk

where ∇V◦k := ∂V◦k
∂ z , for all z, z′ ∈ Bz and y ∈ By .

Assumption4.1 may be interpreted as a condition of incremental stability of the zero
dynamics in a practical sense. Note that when βk = 0, we recover the characterisation
provided in [1].

4.2.1 Network Model

We assume that the network units are connected via diffusive coupling, i.e. for the
i th unit the coupling is given by

ui = −σ

N∑

j=1

di j (yi − y j ), (4.3)

where the scalar σ corresponds to the coupling gain between the units and the individ-
ual interconnections weights, di j , satisfy the property di j = d ji . Assuming that the
network graph is connected and undirected, the interconnections amongst the nodes
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are completely defined by the adjacency matrix, D = [di j ]i, j∈I , which is used to
construct the corresponding Laplacian matrix,

L =

⎡

⎢⎢⎢⎣

∑N
i=2 d1i −d12 . . . −d1N

−d21
∑N

i=1,i �=2 d2i . . . −d2N

...
...

. . .
...

−dN1 −dN2 . . .
∑N−1

i=1 dNi .

⎤

⎥⎥⎥⎦ .

By construction, all row-sums of L are equal to zero. Moreover, since L is symmetric
and the network is connected it follows that all eigenvalues of the Laplacian matrix
are real and, moreover, L has exactly one eigenvalue (say, λ1) equal to zero, while
others are positive, i.e. 0 = λ1 < λ2 ≤ · · · ≤ λN .

Next, we introduce a compact notation that is convenient for our purposes of
analysis. We introduce the following vectors of outputs, inputs and states, respec-
tively:

y =
⎡

⎢⎣
y1
...

yN

⎤

⎥⎦ ∈ R
m N , u =

⎡

⎢⎣
u1
...

uN

⎤

⎥⎦ ∈ R
m N , x =

⎡

⎢⎣
x1
...

xN

⎤

⎥⎦ ∈ R
nN , xi =

[
yi
zi

]
∈ R

n

as well as the function F : RnN → R
nN , defined as

F(x) =
⎡

⎢⎣
F1(x1)

...

FN (xN )

⎤

⎥⎦ , Fi (xi ) =
[

f 1i (yi , zi )

f 2i (yi , zi )

]

i∈I
. (4.4)

With this notation, the diffusive coupling inputs ui , defined in (4.3), can be re-written
in the compact form

u = −σ [L ⊗ Im]y,

where the symbol ⊗ stands for the right Kronecker product.1 Then, the network
dynamics becomes

ẋ = F(x) − σ [L ⊗ Em]y (4.5a)

y = [IN ⊗ E�
m ]x, (4.5b)

where E�
m = [Im, 0m×(n−m)]. The qualitative analysis of the solutions to the latter

equations is our main subject of study.

1For two matrices A and B of any dimension, A ⊗ B consists in a block-matrix in which the i j th
block corresponds to ai j B.
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4.2.2 Dynamic Consensus and Practical Synchronisation

In a general setting, as for instance that of [13], for the purpose of analysis, synchro-
nisation may be qualitatively measured by equating a functional of the trajectories
to zero and measuring the distance of the latter to a synchronisation manifold, e.g.

S = {x ∈ R
nN : x1 = x2 = · · · = xN }. (4.6)

For networks of homogeneous systems, i.e. if fi = f j for all i , j ∈ I , synchroni-
sation is often described in terms of the asymptotically identical evolution of the
units, i.e. xi → x j . This is especially clear in the classical consensus paradigm of
simple integrators, in which we have xi → x j → const. In more complex cases, as
for instance in problem of formation tracking control, we may have that each unit
follows a (possibly unique) reference trajectory, that is, xi → x j → x∗(t). What is
more, controlled synchronisation is sometimes assimilated to a problem of “collec-
tive” tracking control—see e.g. [5, 13].

Hence, whether a set-point equilibrium or a reference trajectory, it seems natural
to formulate the consensus problem as one of asymptotic stability (or stabilisation
for that effect) of the synchronisation manifold S . Such stability problem may
be approached, for instance, using tools developed for semi-passive, incrementally
passive or incrementally input-output stable systems—see [6, 8, 9, 16, 17, 21]. If
the manifold S is stabilised, one says that the networked units are synchronised.
For networks of non-identical units, the paradigm is much more complex due to the
fact that the synchronisation manifoldS does not necessarily exist. Yet, it may also
be recast in terms of stability analysis.

To that end, we generalise the consensus paradigm by introducing what we call
dynamic consensus. We shall say that this property is achieved by the systems
interconnected in a network if their motions converge to one generated by what
we shall call emergent dynamics. In the case of undirected graphs, for which the
corresponding Laplacian is symmetric, the emergent dynamics is naturally defined
as the average of the units’ drifts, that is, the functions f 1s : Rm × R

n−m → R
m ,

f 2s : Rm × R
n−m → R

n−m defined as

f 1s (ye, ze) := 1

N

N∑

i=1

f 1i (ye, ze),

f 2s (ye, ze) := 1

N

N∑

i=1

f 2i (ye, ze)

hence, the emergent dynamics may be written in the compact form

ẋe = fs(xe) xe = [y�
e z�

e ]�, fs := [ f 1�s f 2�s ]�. (4.7)
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For the sake of comparison, in the classical (set-point) consensus paradigm, all
systems achieving consensus converge to a common equilibrium point, that is, fs ≡
0 and xe is constant. In the case of formation tracking control, Eq. (4.7) can be
seen as the reference dynamics to the formation. In the general case of dynamic
consensus, themotions of all the units converge to amotion generated by the emergent
dynamics (4.7).

Then, to study the behaviour of the individual network-interconnected systems,
relative to that of the emergent dynamics, we introduce the average state (also called
mean-field) and its corresponding dynamics. Let

xs = 1

N

N∑

i=1

xi , (4.8)

which comprises an average output, ys ∈ R
m , defined as ys = E�

m xs and the state of
the average zero dynamics, zs ∈ R

n−m , that is, xs = [y�
s , z�

s ]�. Now, by differentiat-
ing on both sides of (4.8) and after a direct computation in which we use (4.2), (4.3)
and the fact that the sums of the elements of the Laplacian’s rows equal to zero, i.e.

1

N

N∑

i=1

−σ
[
di1(yi − y1) + · · · + di N (yi − yN )

] = 0,

we obtain

ẏs = 1

N

N∑

i=1

f 1i (yi , zi ), (4.9a)

żs = 1

N

N∑

i=1

f 2i (yi , zi ). (4.9b)

Then, in order to write the latter in terms of the average state xs , we use the functions
f 1s and f 2s defined above so, from (4.9), we derive the average dynamics

ẏs = f 1s (ys, zs) + 1

N

N∑

i=1

[
f 1i (yi , zi ) − f 1i (ys, zs)

]
, (4.10a)

żs = f 2s (ys, zs) + 1

N

N∑

i=1

[
f 2i (yi , zi ) − f 2i (ys, zs)

]
. (4.10b)

It is to be remarked that this model is intrinsic to the diffusively interconnected
network. Indeed, since the row-sums of the Laplacian equals to zero, the intercon-
nection strength σ does not appear in (4.10). Another interesting feature of Eq. (4.10)
is that they may be regarded as composed of the nominal part
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ẏs = f 1s (ys, zs)

żs = f 2s (ys, zs)

and the perturbation terms
[

f 1i (yi , zi ) − f 1i (ys, zs)
]
and

[
f 2i (yi , zi ) − f 2i (ys, zs)

]
.

The former corresponds exactly to (4.7), only re-written with another state variable.
In the case that dynamic consensus is achieved (that is, in the case of complete syn-
chronisation) and the graph is balanced and connected, we have (yi , zi ) → (ys, zs).
Nonetheless, in the case of a heterogeneous network, asymptotic synchronisa-
tion is in general hard to achieve hence, yi /→ ys and, consequently, the terms[

f 1i (yi , zi ) − f 1i (ys, zs)
]
and

[
f 2i (yi , zi ) − f 2i (ys, zs)

]
do not vanish.

Thus, from a dynamical systems’ viewpoint, the average dynamics may be con-
sidered as a perturbed variant of the emergent dynamics. Consequently, it appears
natural to study the problem of dynamic consensus, recast in that of robust stability
analysis, in a broad sense. On one hand, in contrast to the more commonly studied
case of state synchronisation, we shall admit that synchronisation may be established
with respect to part of the variables only, i.e. with respect to the outputs yi . More pre-
cisely, for the former case, similarly to (4.6), we introduce the state synchronisation
manifold

Sx = {x ∈ R
nN : x1 − xs = x2 − xs = · · · = xN − xs = 0} (4.11)

and, for the study of output synchronisation, we analyse the stability of the manifold

Sy = {y ∈ R
m N : y1 − ys = y2 − ys = · · · = yN − ys = 0}. (4.12)

Since, in the general case of heterogeneous networks, the perturbation terms may
prevail it becomes natural to study synchronisation in a practical sense, that is, by
seeking to establish stability of the output or state synchronisation manifoldsSy or
Sx in a practical sense only. This is precisely defined next.

Consider a parameterised system of differential equations

ẋ = f (x, ε), (4.13)

where x ∈ Rn , the function f : Rn → R
n is locally Lipschitz and ε is a scalar para-

meter such that ε ∈ (0, ε◦] with ε◦ < ∞. Given a closed set A , we define the norm
|x |A := inf

y∈A
|x − y|.

Definition 4.2 For the system (4.13), we say that the closed set A ⊂ R
n is prac-

tically uniformly asymptotically stable if there exists a closed set D such that
A ⊂ D ⊂ R

n and

(1) the system is forward complete for all x◦ ∈ D ;
(2) for any given δ > 0 and R > 0, there exist ε∗ ∈ (0, ε◦] and a classK L function

βδR such that, for all ε ∈ (0, ε∗] and all x◦ ∈ D such that |x◦|A ≤ R, we have
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|x(t, x◦, ε)|A ≤ δ + βδR
(|x◦|A , t

)
.

Remark 4.1 Similarly, to the definition of uniform global asymptotic stability of a
set, the previous definition includes three properties: uniform boundedness of the
solutions with respect to the set, uniform stability of the set and uniform practical
convergence to the set.

The following statement, which establishes practical asymptotic stability of sets,
may be deduced along the lines of the proof of the main result in [4].

Proposition 4.1 Consider the system ẋ = f (x), where x ∈ R
n and f is continuous

and locally Lipschitz. Assume that the system is forward complete, there exists a
closed set A ⊂ R

n and a C1 function V : Rn → R+ as well as functions α1, α2 ∈
K∞, α3 ∈ K and a constant c > 0, such that, for all x ∈ R

n,

α1(|x |A ) ≤ V (x) ≤ α2(|x |A )

V̇ ≤ −α2(|x |A ) + c.

Then, for any R, ε > 0 there exists a constant T = T (R, ε) such that for all t ≥ T
and all x◦ such that |x◦|A ≤ R

|x(t, x◦)|A ≤ r + ε,

where r = α−1
1 ◦ α2 ◦ α−1

3 (c).

4.3 Network Dynamics

In the previous section, we motivated, albeit intuitively, the study of dynamic con-
sensus and practical synchronisation as a stability problem of the attractor of the
emergent dynamics as well as of the synchronisation manifold. In this section, we
render this argument formal by showing that the networked dynamical systemsmodel
(4.5) is equivalent, up to a coordinate transformation, to a set of equations composed
of the average system dynamics (4.10) with average state xs and a synchronisation
errors equation with state e = [e�

1 . . . e�
N ]�, where ei = xi − xs for all i ∈ I . It is

clear that x ∈ Sx if and only if e = 0; hence, the general synchronisation problem
is recast in the study of stability of the dynamics of e and xs .

4.3.1 New Coordinates

Let us formally justify that the choice of coordinates xs and e completely and appro-
priately describe the networked systems’ behaviours.
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Considering a network with an undirected and connected graph, the Laplacian
matrix L = L� has a single zero eigenvalue λ1 = 0 and its corresponding right and
left eigenvectors vr1, vl1 coincide with v = 1√

N
1 where 1 ∈ R

N denotes the vector

[1 1 . . . 1]�. Moreover, since L is symmetric and non-negative definite, there exists
(see [2, Chap. 4, Theorems2 and 3]) an orthogonal matrix U (i.e. U−1 = U�) such
that L = UΛU� withΛ = diag{[0 λ2 . . . λN ]}, where λi > 0 for all i ∈ [2, N ], are
eigenvalues of L . Furthermore, the i th column ofU corresponds to an eigenvector of
L related to the i th eigenvalue, λi . Therefore, recognising v as the first eigenvector,
we decompose the matrix U as:

U =
[

1√
N

1 U1

]
, (4.14)

where U1 ∈ R
N×N−1 is a matrix composed of N − 1 eigenvectors of L related to

λ2, . . . , λN and, since the eigenvectors of a real symmetric matrix are orthogonal,
we have

1√
N

1�U1 = 0, U�
1 U1 = IN−1.

Based on the latter observations, we introduce the coordinate transformation

x̄ = U �x, (4.15)

where the block diagonal matrix U ∈ R
nN×nN is defined as

U = U ⊗ In,

which, in view of (4.15), is also orthogonal. Then, we use (4.14) to partition the new
coordinates x̄ , i.e.

x̄ =
[

x̄1
x̄2

]
=

[ 1√
N

1�
N ⊗ In

U�
1 ⊗ In

]
x .

The coordinates x̄1 and x̄2 thus obtained are equivalent to the average xs and the
synchronisation errors e, respectively. Indeed, observing that the state of the average
unit, defined in (4.8), may be re-written in the compact form

xs = 1

N
(1� ⊗ In)x, (4.16)

we obtain x̄1 = √
N xs . On the other hand, x̄2 = 0 if and only if e = 0. To see the

latter, let U1 = U1 ⊗ In , then, using the expression

(A ⊗ B)(C ⊗ D) = AC ⊗ B D, (4.17)



4 Synchronisation and Emergent Behaviour in Networks … 91

we obtain
U1U

�
1 = (U1U

�
1 ) ⊗ In

and, observing that

U1U
�
1 = IN − 1

N
11�,

we get

U1U
�
1 =

(
IN − 1

N
11�

)
⊗ In. (4.18)

Therefore, multiplying x̄2 = U �
1 x by U1 and using (4.18), we obtain

U1 x̄2 =
[(

IN − 1

N
11�

)
⊗ In

]
x

= x − 1

N

(
11� ⊗ In

)
x,

which, in view of (4.17), is equivalent to

U1 x̄2 = x − 1

N

(
1 ⊗ In

)(
1� ⊗ In

)
x

= x − (
1 ⊗ In

)
xs = e.

Since U1 has column rank equal to (N − 1)n, which corresponds to the dimension
of x̄2, we see that x̄2 is equal to zero if and only if so is e.

Even though the state space of (xs, e) is of higher dimension than that of the orig-
inal networked system (4.1), only both together, the synchronisation error dynamics
and the average dynamics, may give a complete characterisation of the network
behaviour. Thus, the states xs and e are intrinsic to the network and not the product
of an artifice with purely theoretical motivations.

We proceed to derive the differential equations in terms of the average state xs

and the synchronisation errors e.

4.3.2 Dynamics of the Average Unit

Using the network dynamics Eq. (4.5a), as well as (4.16), we obtain

ẋs = 1

N
(1� ⊗ In)F(x) − 1

N
σ(1� ⊗ In)[L ⊗ Em]y. (4.19)

Now, using the property of the Kronecker product, (4.17), and in view of the identity
1�L = 0, we obtain
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(1� ⊗ In)(L ⊗ Em) = (1�L) ⊗ (In Em) = 0.

This reveals the important fact that the average dynamics, i.e. the right-hand side
of (4.19), is independent of the interconnections gain σ , even though the solutions
xs(t) are, certainly, affected by the synchronisation errors; hence, by the coupling
strength.

Now, using (4.4) and defining

fs(xs) := 1

N

N∑

i=1

Fi (xs) (4.20)

we obtain

ẋs = fs(xs) + 1

N

N∑

i=1

[
Fi (xi ) − Fi (xs)

]
.

Therefore, defining

Gs(e, xs) := 1

N

N∑

i=1

[
Fi (ei + xs) − Fi (xs)

]
,

we see that we may write the average dynamics in the compact form,

ẋs = fs(xs) + Gs(e, xs). (4.21)

Furthermore, since the functions Fi , with i ∈ I , are locally Lipschitz so is the func-
tion Gs and, moreover, there exists a continuous, positive, non-decreasing function
k : R+ × R+ → R+, such that

|Gs(e, xs)| ≤ k
(|e|, |xs |

)|e|.

In summary, the average dynamics is describedby theEq. (4.21). That is, it consists
in the nominal system (4.7), which corresponds to the emergent dynamics, perturbed
by the synchronisation error of the network via the term Gs .

4.3.3 Dynamics of the Synchronisation Errors

To study the effect of the synchronisation errors, e(t), on the emergent dynamics, we
start by introducing the vectors
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Fs(xs) := [
F1(xs)

� . . . FN (xs)
�]�

(4.22)

F̃(e, xs) :=
⎡

⎢⎣
F1(x1) − F1(xs)

...

FN (xN ) − FN (xs)

⎤

⎥⎦ =
⎡

⎢⎣
F1(e1 + xs) − F1(xs)

...

FN (eN + xs) − FN (xs)

⎤

⎥⎦

i.e. F̃(e, xs) = F(x) − Fs(xs). Then, differentiating on both sides of

e = x − (1 ⊗ In)xs

and using (4.5a) and (4.21), we obtain

ė = −σ [L ⊗ Em ]y + F(x) − (1 ⊗ In) [ fs (xs ) + Gs (e, xs )]

= −σ [L ⊗ Em ]y + [F(x) − Fs (xs )] + Fs (xs ) − (1 ⊗ In) [ fs (xs ) + Gs (e, xs )]

= −σ [L ⊗ Em ]y + [
Fs (xs ) − (1 ⊗ In) fs (xs )

] + [
F̃(e, xs ) − (1 ⊗ In)Gs (e, xs )

]
. (4.23)

Next, let us introduce the output synchronisation errors eyi = yi − ys , that is, ey =
[e�

y1, . . . , e�
yN ]�, which may also be written as

ey = y − 1 ⊗ ys, (4.24)

and let us consider the first term and the two groups of bracketed terms on the right-
hand side of (4.23), separately. For the term

(
L ⊗ Em

)
y we observe, from (4.24),

that
[L ⊗ Em] y = [L ⊗ Em]

[
ey + 1 ⊗ ys

]

and we use (4.17) and the fact that L1 = 0 to obtain

[L ⊗ Em] y = [L ⊗ Em] ey .

Second, concerning the first bracket on the right-hand side of (4.23), we observe
that, in view of (4.20) and (4.22),

fs(xs) = 1

N
(1� ⊗ In)Fs(xs).

Therefore,

Fs(xs) − (1 ⊗ In) fs(xs) = Fs(xs) − 1

N
(1 ⊗ In)(1� ⊗ In)Fs(xs).

Then, using (4.17) we see that

1

N
(1 ⊗ In)(1� ⊗ In) = 1

N
(11�) ⊗ In. (4.25)
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So, introducing

P = InN − 1

N
(11�) ⊗ In,

we obtain

Fs(xs) − (1 ⊗ In) fs(xs) = P Fs(xs). (4.26)

Finally, concerning the term F̃(e, xs) − (1 ⊗ In)Gs(e, xs) on the right-hand side
of (4.23), we see that, by definition, G(e, xs) = 1

N

(
1� ⊗ In

)
F̃(e, xs), hence, from

(4.25), we obtain

(1 ⊗ In)Gs(e, xs) = 1

N

[
(11�) ⊗ In

]
F̃(e, xs)

and

F̃(e, xs) − (1 ⊗ In)Gs(e, xs) =
(

InN − 1

N
(11�) ⊗ In

)
F̃(e, xs)

= P F̃(e, xs). (4.27)

Using (4.26) and (4.27) in (4.23), we see that the latter may be expressed as

ė = −σ
[
L ⊗ Em

]
ey + P

[
F̃(e, xs) + Fs(xs)

]
.

The utility of this equation is that it clearly exhibits three terms: a term linear in
the output ey which reflects the synchronisation effect of diffusive coupling between
the nodes, the term P F̃(e, xs) which vanishes with the synchronisation errors, i.e. if
e = 0, and the term

P Fs(xs) =
⎡

⎢⎣
F1(xs) − 1

N

∑N
i=1 Fi (xs)

...

FN (xs) − 1
N

∑N
i=1 Fi (xs)

⎤

⎥⎦ =
⎡

⎢⎣
F1(xs) − fs(xs)

...

FN (xs) − fs(xs)

⎤

⎥⎦ ,

which represents the variation between the dynamics of the individual units and the
average unit. This term equals to zero, e.g. when the nominal dynamics, fi in (4.1a),
of all the units are identical that is, in the case of a homogeneous network (Fig. 4.1).

Fig. 4.1 Interaction between
synchronisation and the
collective dynamics
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4.4 Stability analysis

All is in place to present our main statements on stability of the networked systems
model (4.5). For the purpose of analysis, we use the equations previously developed,
in the coordinates e and xs , which we recall here for convenience:

ẋs = fs(xs) + Gs(e, xs), (4.28a)

ė = −σ
[
L ⊗ Em

]
ey + P

[
F̃(e, xs) + Fs(xs)

]
. (4.28b)

These equations correspond to those of two feedback interconnected systems, as it
is illustrated in Fig. 4.1. For the system (4.28a), we study the stability with respect
to a compact attractor which is proper to the emergent dynamics and we establish
conditions under which the average of the trajectories of the interconnected units
remains close to this attractor. For the system (4.28b) we study robust stability of the
synchronisation manifolds Sy and Sx .

4.4.1 Practical Synchronisation Under Diffusive Coupling

We formulate conditions that ensure practical global asymptotic stability of the sets
Sx andSy—see (4.11), (4.12). This implies practical state and output synchronisa-
tion of the network, respectively. Furthermore, we show that the upper bound on the
state synchronisation error depends on the mismatches between the dynamics of the
individual units of the network.

Theorem 4.1 (Output synchronisation) Let the solutions of the system (4.5) be glob-
ally ultimately bounded. Then, the set Sy is practically uniformly globally asymp-
totically stable with ε = 1/σ . If, moreover, Assumption4.1 holds, then there exists a
function β ∈ K 3∞ such that for any ε ≥ 0 and R > 0 there exist T ∗ > 0 and σ ∗ > 0
such that the solutions of (4.28b) with σ = σ ∗ satisfy

|e(t, x◦)| ≤ β(ᾱk, βk,Δ f ) + ε, ∀ t ≥ T ∗, x◦ ∈ BR := {x◦ : |x◦| ≤ R}

where
Δ f = max|x |≤Bx

max
k,i∈N

{
| f 2k (xk) − f 2i (xk)|

}
. (4.29)

The bound on the synchronisation errors, β, is a function of the constants ᾱk , βk

defined in Assumption4.1 as well as on the degree of heterogeneity of the network,
characterised by Δ f . In the definition of the latter, Bx corresponds to a compact
set to which the solutions ultimately converge by assumption. That is, Theorem4.1
guarantees, in particular, that the perturbing effect of heterogeneity in the network
may be diminished at will by increasing the interconnection strength.
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The proof of this theorem is provided in [15]. Roughly speaking, the first statement
(synchronisation) follows from two properties of the networked system—namely,
negative definiteness of the second smallest eigenvalue of the Laplacian metric L
andglobal ultimate boundedness.Now, global ultimate boundedness holds, e.g. under
the following assumption.

Assumption 4.2. For each i , the system (4.2) defines a strictly semi-passive map
ui �→ yi with continuously differentiable and radially unbounded storage func-
tions Vi : Rn → R+, where i ∈ I . That is, there exist positive definite and radially
unbounded storage functions Vi , positive constants ρi , continuous functions Hi and
positive continuous functions i such that

V̇i (xi ) ≤ y�
i ui − Hi (xi )

and Hi (xi ) ≥ i (|xi |) for all |xi | ≥ ρi .

Indeed, the following statement is reminiscent of [16, Corollary1].

Proposition 4.2. Consider a network of N diffusively coupled units (4.5). Let the
graph of interconnections be undirected and connected and assume that all the
units of the network are strictly semi-passive (i.e. Assumption4.2 holds). Then, the
solutions of the system (4.5) are ultimately bounded.

Proof. We proceed as in the proof of [16, Lemma1] and [22, Proposition2.1]. Let
Assumption4.2 generate positive definite storage functions Vi , as well as functions
i , Hi and constants ρi , defined as above and let

VΣ(x) :=
N∑

i=1

Vi (xi ).

Then, taking the derivative of VΣ(x) along trajectories of the system (4.5), we obtain

V̇Σ(x) ≤ −σ y�[
L ⊗ Im

]
y −

N∑

i=1

Hi (xi )

≤ −
N∑

i=1

Hi (xi ), (4.30)

where for the last inequality we used the fact that Laplacian matrix is semi-positive
definite. Next, let ρ̄ = max1≤i≤N {ρi } and consider the function ̄ : [ρ̄,+∞) → R≥0

as ̄(s) = min1≤i≤N {i (s)}. Note that ̄ is continuous and ̄(s) positive for all s ≥
ρ̄. Furthermore, for any |x | ≥ N ρ̄ there exists k ∈ I such that |xk | ≥ 1

N |x | ≥ ρ̄.
Therefore, for all |x | ≥ N ρ̄,

N∑

i=1

Hi (xi ) ≥ Hk(xk) ≥ ̄(|xk |) ≥ ̄

(
1

N
|x |

)
.
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Using the last bound in (4.30) we obtain, for all |x | ≥ N ρ̄,

V̇Σ(x) ≤ −̄

(
1

N
|x |

)
.

Hence, invoking [23, Theorem10.4] we conclude that the solutions of the system
(4.5) are ultimately bounded. ��

Some interesting corollaries, on state synchronisation, follow from Theorem4.1,
for instance, if the interconnections among the network units depend on the whole
state, that is, if y = x .

Corollary 4.1. Consider the system (4.5). Let Assumptions4.1 and 4.2 be satisfied
and let y = x. Then, the system is forward complete and the set Sx is practically,
uniformly, globally and asymptotically stable with ε = 1/σ .

The constant Δ f defined in (4.29) represents the maximal possible mismatch
between the dynamics of any individual unit and that of the averaged unit, on a ball
of radius Bx . The more heterogeneous is the network, the bigger is the constant Δ f .
Conversely, in the case that all the zero dynamics of the units are identical, we have
Δ f = 0. In this case, we obtain the following statement.

Corollary 4.2. Consider the system (4.5) under Assumptions4.1 and 4.2. Assume
that the functions f 2i , which define zero dynamics of the network units, are all identi-
cal, i.e. f 2i (x) = f 2j (x) for all i, j ∈ I and all x ∈ R

n. Then the setSx is practically
uniformly globally asymptotically stable with ε = 1/σ .

4.4.2 On Practical Stability of the Collective Network
Behaviour

Now we analyse the behaviour of the average unit, whose dynamics is given by the
Eq. (4.28a). We assume that the nominal dynamics of average unit (i.e. with e = 0)
has a stable compact attractorA and we establish that the stability properties of this
attractor are preserved under the network interconnection, albeit, slightly weakened.

Assumption 4.3. For the system (4.7), there exists a compact invariant setA ⊂ R
n

which is asymptotically stable with a domain of attraction D ⊂ R
n . Moreover, we

assume that there exists a continuously differentiable Lyapunov function VA : Rn →
R≥0 and functions αi ∈ K∞, i ∈ {1, . . . , 4} such that for all xe ∈ D we have

α1(|xe|A ) ≤ VA (xe) ≤ α2(|xe|A )

V̇A (xe) ≤ −α3(|xe|A )∣∣∣∣
∂VA

∂xe

∣∣∣∣ ≤ α4(|xe|).
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The second part of the assumption (the existence of V ) is purely technical whereas
the first part is essential to analyse the emergent synchronised behaviour as well as
the synchronisation properties of the network, recast as a (robust) stability problem.
The following statement applies to the general case of diffusively coupled networks.

Theorem 4.2. For the system (4.5), assume that the solutions are globally ultimately
bounded and Assumptions4.1, 4.3 hold. Then, there exist a non-decreasing function
γ : R+ × R+ → R+ and, for any R, ε > 0 there exists T ∗ = T ∗(R, ε), such that for
all t ≥ T ∗ and all x◦ such that |x◦|A ≤ R,

|xs(t, x◦)|A ≤ γ (Δ f , R) + ε.

In the case that the network is state practically synchronised, it follows that the
set A is practically stable for the network (4.5).

Corollary 4.3. Consider the system (4.5) under Assumption4.3. If the set Sx is
practically uniformly globally asymptotically stable for this system, then the attractor
A defined in Assumption4.3 is practically asymptotically stable for the average unit
(4.21).

4.5 Example

To illustrate our theoretical findings we present a brief case-study of analysis of
interconnected heterogeneous systems via diffusive coupling. We consider three of
the best known chaotic oscillators: the Rössler [20], the Lorenz [10] and the Lü
system [11]. The dynamics equations of these forced oscillators are the following:

LORENZ OSCILLATOR:

⎧
⎪⎨

⎪⎩

[
ẋ�

ẏ�

]
=

[
γ (y� − x�)

r x� − y� − x�z�

]
+ u�

ż� = x�y� − bz�

LÜ OSCILLATOR:

⎧
⎪⎪⎨

⎪⎪⎩

[
ẋm

ẏm

]
=

⎡

⎣− αβ

α + β
xm − ym zm + c

αym + xm zm

⎤

⎦ + um

żm = βzm + xm ym .

RÖSSLER OSCILLATOR:

⎧
⎪⎨

⎪⎩

[
ẋr

ẏr

]
=

[
ar xr + yr

−(xr − yr )

]
+ ur

żr = br + yr zr − cr zr .

The values of the parameters of the three systems are fixed in order for them to
exhibit a chaotic behaviour when unforced. These are collected in Table4.1.
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Table 4.1 Parameter values
of chaotic oscillators

Rössler Lorenz Lü 3rd order

ar = 0.15 γ = 16 α = −10

br = 0.2 r2 = 45.6 β = −4

cr = 10 b = 4 δ = 1

Since the three chaotic systems are oscillators their trajectories are globally ulti-
mately bounded, they converge to the strange attractors depicted in Fig. 4.2. In this
figure we also show the phase portrait for the average solutions xs(t) for the three
unforced oscillators (with u� = um = ur = 0). Then, we apply the respective inputs

u� = −σ
[
d13(y� − ym) + d12(y� − yr )

]
, d12 = 2, d13 = 4,

ur = −σ
[
d12(yr − y�) + d23(yr − ym)

]
, d23 = 3,

um = −σ
[
d13(ym − y�) + d23(ym − yr )

]
,

where y(·) are measurable outputs. We have simulated two scenarios: in the first case,
we assume that only the x(·) coordinates of each oscillator are measured hence,

−20 −10 0 10

−10

0

10

20

x
r
(t)

y r(t
)

ROSSLER

−20 0 20 40
−40

−20

0

20

40

60

x
l
(t)

y l(t
)

LORENZ

−20 −10 0 10 20 30
−30

−20

−10

0

10

20

x
m

(t)

y m
(t

)

3RD ORDER LU

−20 −10 0 10 20
−20

−10

0

10

20

x
s
(t)

y s(t
)

AVERAGE UNIT

Fig. 4.2 Phase portraits of the three chaotic oscillators, Rössler, Lorenz and Lü, as well as that of
the average dynamics, in the absence of interconnection, i.e. with σ = 0
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y� := [x� 0]� ym := [xm 0]� yr := [xr 0]�

In Fig. 4.3, we depict the phase portrait for the Rössler system overlapped with that of
the average solutions. It is appreciated, on one hand, that the synchronisation errors
diminish as the interconnection gain is increased. On the other hand, the behaviour
of the oscillators’ solutions also changes: for relatively large values of σ (50 and 80),
the chaotic behaviour is lost and the systems stabilise.

In the second scenario, we assume that both x(·) and y(·) are measured hence,

y� := [x� y�]� ym := [xm ym]� yr := [xr yr ]�.

The simulation results in this case, for different values of the interconnection gain
σ , are showed in Figs. 4.4 and 4.5. With two inputs, the systems “loose” the chaotic
response and stabilise to an equilibrium. In Fig. 4.4 we plot the norm of the output
synchronisation errors |ey(t)| = |y(t) − 1 ⊗ ys(t)|; it is clearly appreciated that the
errors diminish as the interconnection gain increases. Finally, in Fig. 4.5 we show the
phase portraits for four different values of σ ; it is clear that output synchronisation
occurs.
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Fig. 4.3 Phase portraits of the Rössler oscillator compared to that of the average unit, for different
values of the interconnection gain σ
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Fig. 4.4 Norms of the output synchronisation errors, |ey(t)|, for different values of the intercon-
nection gain σ
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Chapter 5
Anticipating Synchronization and State
Predictor for Nonlinear Systems

Toshiki Oguchi

Abstract This chapter discusses a synchronization problem, anticipating synchro-
nization, and its application in control design for nonlinear systems with delays. The
anticipating synchronization phenomena was initially reported by Voss (2000), and
Oguchi and Nijmeijer (2005) then generalized it from the framework of control the-
ory. This chapter revisits the anticipating synchronization problem and introduces a
state predictor based on synchronization. Furthermore, we discuss recent progress
on predictor design for nonlinear systems with delays.

5.1 Introduction

It is a great pleasure to contribute this chapter to the festschrift of Prof. Nijmei-
jer on the occasion of his 60th birthday. I had the opportunity to collaborate with
Prof. Nijmeijer while working at Eindhoven University of Technology as a visiting
researcher in 2003. Since then, we have continued to work together on the subject
of synchronization and control of multi-agent systems with delays. This chapter
revisits anticipating synchronization that occurs in master–slave systems, which was
my first joint work project with Henk. In addition, I discuss the use of anticipating
synchronization in control.

Recently, synchronization phenomena have been the subject of growing interest
in various fields, including applied physics, biology, applied mathematics, social
sciences, control engineering, and so on. As an extension of the synchronization of
coupled systems, Voss [1] discovered the occurrence of anticipating synchronization
of chaotic systems with time-delay in a unidirectional coupling configuration. Antic-
ipated synchronization can be recognized as a state prediction method that does not
require numerical integration. These phenomena are also observed in physical sys-
tems. Voss [2] demonstrated an experimental realization of such a phenomenon in an
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electronic circuit. Masoller [3] considered anticipating synchronization of chaotic
external-cavity semiconductor lasers with numerical simulation. Sivaprakasam et
al. [4] observed the occurrence of anticipating synchronization using chaotic semi-
conductor diode lasers. These chaotic systems are described by one-dimensional
systems with time-delay in the state, but anticipating synchronization can occur in
more general systems. In a previous study [5], we generalized the phenomenon from
the framework of control theory. Subsequently, we also considered the use of this
synchronization phenomenon as a predictor of nonlinear systems. More recently,
we have been attempting to use this synchronization-based predictor to extend the
applicability of the finite spectrum assignment [6] for nonlinear retarded systems [7].
In last half of this chapter, we introduce a prediction control scheme combined with
a synchronization-based predictor.

5.2 Anticipating Synchronization

This section revisits anticipating synchronization of coupled chaotic systems and
introduces a recent advance in this direction.

In the original study concerning anticipating synchronization [1], Voss first con-
sidered the following equation, which is a scalar system and behaves chaotically.

ẋ(t) = −αx(t) − β f (x(t − τ)), (5.1)

where x ∈ R, and α and β are constants. For this system, we consider the following
response system.

ż(t) = −αz(t) − β f (x(t)), (5.2)

where z ∈ R. The dynamics of the prediction error e(t) � z(t − τ) − x(t) is given by

ė(t) = −αe(t)

and a necessary and sufficient condition for the error e to converge to 0 is that
α > 0. Then, the synchronization manifold x = z(t − τ) is globally asymptotically
stable and this phenomenon is called anticipating synchronization or anticipatory
synchronization. Therefore, if α > 0, z(t) estimates the future value x(t + τ). In
this case, the availability of anticipating synchronization is not only independent
of the nonlinear function f but also of the length of time-delay τ . This prediction
method is simple, and the convergence property of the error dynamics is globally
guaranteed, but the convergence property is dependent on the dynamics of the master
system.

As a simple modification, we consider the following scalar retarded system [8].

ẋ(t) = −ax(t − τ) + b f (x(t − τ)), (5.3)
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Fig. 5.1 Chaotic attractor
for a = 0.2, b = 0.2, and
τ = 10
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where f (x) = tanh(10x). Choosing a = 0.2, b = 0.2, and τ = 10, the system (5.3)
has a chaotic attractor depicted in Fig. 5.1. For this system,we design the slave system
as follows.

ż(t) = −az(t − τ) + b f (x(t)) + k(z(t − τ) − x(t)). (5.4)

The prediction error dynamics for this case is given by

ė(t) = −(a − k)e(t − τ), (5.5)

where e(t) = z(t − τ) − x(t). Then, a necessary and sufficient condition for
asymptotic stability of (5.5) is that the following inequality holds

0 < (a − k)τ <
π

2
.

If k = 0, i.e., there is no correction term, this inequality does not hold for the
parameters stated above. For k satisfying a − π

2/τ < k < a, however, e = 0 is asymp-
totically stable, and then e asymptotically converges to zero, which means that z(t)
estimates the future value x(t + τ) of the master system (Figs. 5.2 and 5.3).

These prediction schemes can be generalized into multidimensional systems as
follows. Consider the following multidimensional difference-differential equation
system, {

ẋ(t) = A0x(t) + F(y(t − τ))

y(t) = h(x(t)),
(5.6)

where x ∈ R
n , y ∈ R

m , A0 ∈ R
n×n , F : Rm → R

n and h : Rn → R
m . For the system

(5.6), we consider the following prediction scheme,

ż(t) = A0z(t) + F(y(t)), (5.7)
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Fig. 5.2 The behaviors of
x(t) and z(t) with
x(θ) = 0.1 and z(θ) = 0 for
θ ∈ [−τ, 0]
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Fig. 5.3 Prediction error:
e(t) = z(t − τ) − x(t)
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in which z ∈ R
n . Since the dynamics of the prediction error e(t) = z(t − τ) − x(t)

is described by
ė(t) = A0e(t),

the error converges to zero if and only if matrix A0 is Hurwitz, i.e., A0 has all
eigenvalues in the open left half-plane. Therefore, if A0 is a Hurwitz matrix, the
output z(t) of the predictor (5.7) estimates the future value x(t + τ) of the state x(t).

However, to achieve anticipating synchronization, the master system is required
to satisfy the following conditions:

(i) A0 is a Hurwitz matrix, and
(ii) the time-delayed term F(·) in the dynamics (5.6) depends on the output only.

These restrictions can be relaxed by adding a coupling term into the slave system
as follows. Consider the following possibly chaotic nonlinear system:



5 Anticipating Synchronization and State Predictor for Nonlinear Systems 107

−
K

ż = A0z +A1zτ

C

+

z(t)

+F (y)+ f(z)+ w

e−τs

ΣM

Σs

w(t)y(t)

Fig. 5.4 Configuration of the prediction scheme

ΣM :

⎧
⎪⎨

⎪⎩

ẋ(t) = A0x(t) + A1x(t − τ) + F(y(t − τ)) + f (x(t))

y(t) = Cx(t)

x(0) = x0,

(5.8)

where x ∈ R
n , A0 and A1 are n × n matrices, and f : Rn → R

n is a smooth vector
field. For the system (5.8), we construct the predictor

Σs :
{
ż(t) = A0z(t) + A1z(t − τ) + F(y(t)) + f (z(t)) + K {Cz(t − τ) − y(t)}
z(t) = z0, t ∈ [−τ, 0],

(5.9)
where z ∈ R

n and K ∈ R
n×m is a constant matrix. For simplicity of notation, we will

often suppress notation of the explicit dependence of time t when no confusion can
arise. The configuration of the prediction scheme is shown in Fig. 5.4.

Then, the dynamics of the prediction error e � zτ (t) − x(t), where zτ (t) � z(t −
τ), is given by

ė =A0e + (A1 + KC)eτ + f (e + x) − f (x)

�A0e + Adeτ + φ(x, e),
(5.10)

with φ(x, e) = f (e + x) − f (x). Clearly, e ≡ 0 is a solution of (5.10), and the sys-
tem (5.9) acts as a predictor for (5.8) if the error dynamics (5.10) has e = 0 as an
asymptotically stable equilibrium. Consequently, the anticipating synchronization
problem can be reduced to the stability problem of the prediction error dynamics.

If the master system does not have a nonlinear term f (x), the prediction error
dynamics is simply

ė = A0e + (A1 + KC)eτ ,

and the stability of the system is determined by the location of the roots of the
following characteristic equation.

det(s I − A0 − (A1 + KC)e−sτ ) = 0.
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Therefore, if the most-right root has a negative real part, e converges to zero, and
z(t) predicts the future value of x(t).

Next, we consider the case in which the nonlinear term f (x) in the system (5.8)
exists. By applying the Lyapunov stability theorem, several sufficient conditions for
the zero solution for Eq. (5.10) to be asymptotically stable have been proposed. In the
following section, we introduce sufficient conditions derived under several different
assumptions.

5.3 Synchronization Conditions

This section introduces some sufficient conditions for anticipating synchronization.

5.3.1 General Approach

We define the Jacobian of φ(x, e) with respect to e at e = 0 by

D(x) �
(∂φ(x, e)

∂e

)

e=0
,

whose components are functions of x . Then, the linearization of (5.10) about e = 0
is given by

ė = A0e + Adeτ + D(x)e. (5.11)

It is well known that if e = 0 of (5.11) is asymptotically stable, then e = 0 of (5.10)
is also asymptotically stable [9]. Therefore, using this linearized system, we obtain
the following lemma concerning the stability of the trivial solution e = 0 of (5.10).

Lemma 5.1 ([5]) Assume the nonempty set Ω ⊂ R
n is such that all trajectories of

the system ΣM converge to it. If there exist symmetric and positive-definite matrices
P, Γ0, Γ1 and Γ2 of dimension n × n satisfying

(A0 + Ad + D(x))T P + P(A0 + Ad + D(x)) + τ(AT
0 Γ0A0 + AT

d Γ1Ad

+ D(x)TΓ2D(x)) + τ PAd(Γ
−1
0 + Γ −1

1 + Γ −1
2 )AT

d P < 0

for all x ∈ Ω , then the zero solution of (5.10) is asymptotically stable.

Here, we assume that each entry of matrix D(x(t)) is bounded, and that the bound
is known a priori, because x is a trajectory of the master system. The approximated
error system (5.11) can then be rewritten by the following polytopic system:
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ė(t) = A0e(t) + Ade(t − τ) +
k∑

j=1

p j (x(t))Dje(t), (5.12)

where Dj are constant matrices and p j (x(t)) ∈ [0, 1] are polytopic coordinates sat-
isfying the convex sum property

∑k
j=1 p j (x(t)) = 1.

Lemma 5.2 ([5]) If there exist a symmetric and positive-definite matrix P > 0 and
positive-definite matrices Γk , 0 ≤ k ≤ m, of dimension n × n satisfying

( Ā + Dj )
T P + P( Ā + Dj )

+ τ
{
( Ā + Dj )

TΓ0( Ā + Dj ) + AT
d Γ1Ad + PAd(Γ

−1
0 + Γ −1

1 )AT
d P
}

< 0

(5.13)

for j = 1, . . . , k, where Ā = A0 + Ad, then the zero solution of (5.11) is asymptot-
ically stable.

Using Lemma5.2 we obtain the following theorem concerning how to choose the
gain K stabilizing system (5.10).

Theorem 5.1 Let τ > 0. If there exist a symmetric and positive-definite matrix P >

0 and a matrix Y such that the following LMI holds for each j = 1, . . . , k:

⎡

⎢⎢⎣

M j
11 + M jT

11 AT
0 P AT

1 P + CTY T P A1 + YC
PA0

−1
τ
P 0 0

PA1 + YC 0 −1
τ
P 0

AT
1 P + CTY T 0 0 −1

2τ P

⎤

⎥⎥⎦ < 0, (5.14)

where M j
11 = P(A0 + A1 + Dj ) + YC, then the zero solution of (5.10) is asymptot-

ically stable, and K = P−1Y is a stabilizing gain matrix.

5.3.2 Sector Condition

In this section, we consider the case where φ(x, e) in (5.10) is a scalar function
given by Bφ(y(t),Ce(t)). For simplicity, we assume that the master system is a
single output system, i.e., m = 1. In addition, we assume that the function φ(y, ye)
satisfies the following sector condition: there exist a constant α > 0 such that 0 ≤
φ(y, ye) ≤ αye for all y ∈ {y = Cx |x ∈ Ω}.

A possible criterion was derived by Huijberts et al. [10] in order to derive a
sufficient condition for anticipating synchronization of chaotic Lur’e systems. The
criterion described below is an extension of the improved delay- dependent stability
criterion byXu et al. [11] for systemswith a nonlinearity satisfying a sector condition.
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Theorem 5.2 ([10]) Let τ̄ be given and assume that there exist matrices P > 0,
Q > 0, Z > 0, Y , and W and a constant γ > 0 such that the following LMI is
satisfied.

⎡

⎢⎢⎢⎢⎣

PA0 + AT
0 P + Y + Y T + Q PA1 − Y + WT PB + γ λCT −τ̄Y τ̄ AT

0 Z
AT
1 P − Y T + W −Q − W − WT 0 −τ̄W τ̄ AT

1 Z
BT P + γ λC 0 −2γ 0 τ̄ BT Z

−τ̄Y T −τ̄WT 0 −τ̄ Z 0
τ̄ Z A0 τ̄ Z A1 τ̄ Z B 0 −τ̄ Z

⎤

⎥⎥⎥⎥⎦
< 0.

(5.15)
Then, the origin is an asymptotically stable equilibrium point for every 0 < τ ≤ τ̄ .

Remark 5.1 TheLMIcondition (5.15) inTheorem5.2 is derivedusing theLyapunov–
Krasovskii functional

V1(et ) = eT (t)Pe(t) +
∫ t

t−τ

eT (a)Qe(a)da +
∫ 0

−τ

∫ t

t+b
ėT (a)Zė(a)dadb,

(5.16)

where et denotes et = e(t + θ) for θ ∈ [−τ, 0]. On the other hand, to solve the
master–slave synchronization problem, Han [12] also proposed a synchronization
condition for Lur’e systemswith a delay coupling using a Lur’e–PostnikovLyapunov
functional candidate. Adjusting the functional for our problem as

V2(et ) = e(t)T Pe(t) +
∫ t

t−τ

eT (ξ)Qe(ξ)dξ

+
∫ t

t−τ

τ (τ − t + ξ)ėT (ξ)Rė(ξ)dξ + 2
∫ Ce(t)

0
γΨ (x1, ξ)dξ, (5.17)

where P , Q, and R are positive-definite matrices and γ is a positive constant, this
functional can cause the same stability condition as the LMI condition by replacing
τ R with Z .

In this section, we introduced some LMI-based condition for anticipating syn-
chronization. Since these results are based on the Lyapunov–Krasovskii functional
approach, the key point is how to evaluate nonlinear terms remaining in the predic-
tion error dynamics. Apart from those mentioned, synchronization conditions can be
derived by assuming the QUAD condition. Meanwhile, if the value of the remaining
nonlinear term is relatively small, it can be treated as a perturbation that vanishes at
e = 0 (see Appendix).

5.4 Predictor-Based Control

When we consider control systems in practical situations, there are greater or lesser
time-delays in real systems. This section considers use of the slave system in antic-
ipating synchronization as a predictor. For the past ten years, with the spread of
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networked systems, the study of time-delay systems has attracted a growing interest
in control engineering and science. In particular, a large number of useful results
have been obtained for linear systems. The study on delay compensation for linear
systems with input delays has a relatively long history, and the Smith predictor [13]
is one of the most popular delay compensators. Kravaris and Wright [14] proposed
an extension of the predictor for nonlinear systems by combining it with the input–
output linearization. Further extensions and modifications have been proposed by
many researchers. In recent years, input delay systems have attracted attention for a
delay compensation method via the backstepping transformation approach proposed
by Krstić [15]. In this section, as a completely different approach to these predictors,
we introduce the synchronization-based predictor.

To explain the fundamental idea, we consider the following linear system with
input delay. {

ẋ(t) = Ax(t) + bu(t − τ)

y(t) = cx(t),
(5.18)

where x ∈ R
n , u, y ∈ R, and τ > 0 is a time-delay. Here we assume that if τ = 0,

(A, b) is controllable and (c, A) is observable. In addition, we introduce the pure
delay operator σ that shifts the time from t to t − τ and is defined as

σλ(t) = λ(t − τ),

where λ(t) is a function defined on the interval [t − τ, t].
Using the pure delay operator σ , the system (5.18) can be rewritten as

ẋ(t) = Ax(t) + b(σu(t)).

For this system, the synchronization-based predictor is designed as follows.

ż(t) = Az(t) + bu(t) + H(y(t) − c(σ x(t))). (5.19)

The prediction error dynamics then is given by

ė(t) = Ae(t) − Hcσe(t), (5.20)

where e = zτ − x(t). If we choose H such that the zero solution of (5.20) is asymp-
totically stable, z(t − τ) converges to x(t).

Nowwe design a feedback law as u(t) = −Kz(t) using z(t) instead of x(t). Then,
substituting it into (5.18) and (5.19), the total dynamics can be written as

[
ẋ
ė

]
=
[
A − bK −bK

0 A − Hcσ

] [
x(t)
e(t)

]
. (5.21)
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The characteristic equation is given by

det

[
s I − (A − bK ) bK

0 s I − (A − Hcσ)

]

= det(s I − (A − bK ))det(s I − (A − Hcσ)) = 0,

where σ := e−sτ . From this equation, we know that the stability of the prediction
error dynamics and system with feedback are independent. This result corresponds
to a counterpart of the so-called “separation principle” of controller and observer.
From the above, we know that this predictor is an extension of the full state observer.
Furthermore, Nijmeijer and Mareels [16] stated the relationship between synchro-
nization and observer theory, and the relationship between anticipating synchroniza-
tion and this predictor is comparable to the relation between synchronization and the
full state observer.

5.4.1 System Configuration

Consider the following input delay system

{
ẋ(t) = f (x(t), u(t − τ))

y(t) = Cx(t),
(5.22)

where f is smooth with respect to x and u. We assume that when τ = 0 holds,
i.e., the system is delay-free, a feedback u = γ (x(t)) is so designed that the closed-
loop system achieves satisfactory stability.However, if τ �= 0, the closed-loop system
becomes ẋ(t) = f (x(t), γ (x(t − τ))) andmaybedestabilizedby the existence of the
delay. Ifwe could obtain the future value x(t + τ) of x , by applying a feedback u(t) =
γ (x(t + τ)), the closed-loop system would be given by ẋ(t) = f (x(t), γ (x(t))).

From such a viewpoint, we adopt a state predictor based on anticipating synchro-
nization to estimate the future value x(t + τ) of x , and the output of the predictor is
used in place of the actual state of the system in the feedback. The synchronization-
based predictor is described by

ż(t) = f (z(t), u(t)) + K {Cz(t − τ) − y(t)},

and the controller is given by u(t) = γ (z(t)).
The configuration of the proposed control scheme is shown in Fig. 5.5.
In this case, the dynamics of the prediction error definedby e(t) = z(t − τ) − x(t)

is given by

ė(t) = f (e(t) + x(t), u(t − τ)) − f (x(t), u(t − τ)) + KCe(t − τ),
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C

u(t) y(t)

z(t)

+

-

ẋ = f(x,u τ )

v(t)

ż = f(z,u (t))

K

z(t − τ)

+v(t)

e−sτ

u(t) = γ(z)

Predictor/Observer

Fig. 5.5 Configuration of the proposed control scheme

and we know that the stability of this dynamics also depends on u. Therefore, under
additional assumptions, we consider this problem.

First, we consider the following system.

{
ẋ(t) = f (x(t)) + gu(t − τ)

y(t) = Cx(t),
(5.23)

where x ∈ R
n , u, y ∈ R, f (0) = 0, h(0) = 0, and g is a constant vector.

The proposed synchronization-based predictor is then defined by

ż(t) = f (z(t)) + gu(t) + K (Cz(t − τ) − y(t)).

In addition, the prediction error dynamics is given by

ė(t) = f (e(t) + x(t)) − f (x(t)) + KCe(t − τ),

where e(t) = z(t − τ) − x(t). Therefore, by applying the synchronization criteria
discussed in Sect. 5.3, we can judge the stability of e = 0 or design the coupling
gain K .
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5.4.2 Linearizable Systems

Next, as a special case, we consider the following affine system.

{
ẋ(t) = f (x(t)) + g(x)u(t − τ)

y(t) = h(x(t)),
(5.24)

where x ∈ R
n , u, y ∈ R, f and g are smooth vector fields with f (0) = 0, and h is a

smooth function with h(0) = 0.
For the system (5.24), we assume that the following conditions hold for any

x ∈ R
n:

1. dim(span {dh, dL f h, . . . , dLn−1
f h}) = n,

2. [adi
f r, ad

j
f r ] = 0, 0 ≤ i, j ≤ n − 1,

3. [g, ad j
f r ] = 0, 0 ≤ j ≤ n − 1,

4. adi
f r for 0 ≤ i ≤ n − 1 are complete vector fields,

where r is the vector field solution of
⎡

⎢⎢⎣

〈dh, r〉
...〈

d(Ln−1
f h), r

〉

⎤

⎥⎥⎦ =
⎡

⎢⎣
0
...

1

⎤

⎥⎦ .

Here 〈·, ·〉 denotes an inner product on R
n .

Then, there exists a global diffeomorphism

x̄(t) = T (x(t))

such that the system (5.24) is globally transformable into the following linear observ-
able system [22]:

˙̄x(t) =

⎡

⎢⎢⎢⎣

0 0 · · · 0 −α0

1 0 · · · 0 −α1

. . . 0
...

0 0 · · · 1 −αn−1

⎤

⎥⎥⎥⎦ x̄(t) + Bu(t − τ)

:=Ax̄(t)(t) + Bu(t − τ) (5.25)

y(t) = [0 0 · · · 0 1
]
x̄(t) := Cx̄(t). (5.26)

where B is given by B = ∂T (x)
∂x g ◦ T−1(z). As a result, the predictor is constructed

by
˙̄z(t) = Az̄(t) + Bu(t) + K (Cz̄(t − τ) − y(t)). (5.27)

Then, the prediction error dynamics in the transformed coordinates is given by
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˙̄e(t) = Aē(t) + KCē(t − τ),

where e(t) = z̄(t − τ) − x̄(t), and the predicted value of x is given by

z(t) = T−1(z̄(t)).

Therefore, if the most-right root of the corresponding characteristic equation

det(s I − A − KCe−sτ ) = 0

has a negative real part, (5.27) works as a predictor for the system (5.24).
Conditions 1–3 guarantee that the system is globally linearized by a coordinate

transformation, and they are extremely restrictive.

5.4.3 An Example

We consider a simplified boiler subsystem described by the following equation.

⎧
⎪⎨

⎪⎩

ẋ(t) = A0x(t) + f (x(t)) + g1u1(t − τ) + g2u2(t − τ)

y(t) =
[
h1(x(t))

h2(x(t))

]
=
[
x2(t)

x5(t)

]
,

(5.28)

where x ∈ R
5, ui ∈ R, y ∈ R

2,

A0 =

⎛

⎜⎜⎜⎜⎜⎝

− 1
T1

0 0 0 0
1
T2

− 1
T2

0 0 0
0 0 − 1

T3
0 0

0 0 1
T4

− 1
T4

0
0 − 1

T5
0 a3

T5
0

⎞

⎟⎟⎟⎟⎟⎠
,

f (x) =
(
0,

1

a1T2
x5x1(t), 0, 0,

a2
T5

x24 (t)

)T

,

g1 =
(

1

T1
, 0, 0, 0, 0

)T

, g2 =
(
0, 0,

1

T3
, 0, 0

)T

,

where Ti and ai for i = 1, 2, 3 are constants, and τ is a constant time-delay. Fur-
thermore, the state variables xi for i = 1, . . . , 5 are normalized with percentage.
Since x5 is shifted the operating point γ into zero, the bound of x5 is given by
−γ ≤ x5 ≤ 100 − γ . Since this system has time-delays at the inputs, it is called an
input time-delay system.

If τ = 0 holds, then this system is exactly linearizable [17, 18] by the following
coordinate transformation and feedback.
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ξ(t) =
(
h1(x), L f h1(x), h2(x), L f h2(x), L

2
f h2(x)

)T

(
u1
u2

)
= G(x)−1

(−L2
f h1(x) + v1(t)

−L3
f h2(x) + v2(t)

)
,

(5.29)

where the non-singular matrix G(x) is given by

G(x) =
(
Lg1L f h1(x) Lg2L f h1(x)
Lg1L

2
f h2(x) Lg2L

2
f h2(x)

)
.

However, when τ is not 0, all nonlinear terms cannot be canceled out by applying
the same feedback (5.29). In order to accomplish exact linearization for nonzero
τ , the nonlinear terms at time t + τ must be evaluated at time t . Therefore, we
attempt to estimate the future value of the state x by using a predictor based on the
synchronization discussed above.

The state predictor based on synchronization is given by

ż(t) = A0z(t) + f (z) + g1u1(t) + g2u2(t) + K {Cz(t − τ) − y(t)}, (5.30)

where z(θ) = z0 for−� ≤ θ ≤ 0. The dynamics of the prediction error e(t) = z(t −
τ) − x(t) is given by

ė(t) = A0e(t) + KCe(t − τ) + { f (e + x) − f (x)}
� A0e(t) + KCe(t − τ) + F(e, x), (5.31)

where F(e, x) � f (e + x) − f (x), and this term satisfies

‖F(e, 0)‖ = 0 and ‖F(e, x)‖ < γ ‖e(t)‖.

The coupling gain K is designed as follows.
If there exist a symmetric and positive-definite matrix P > 0 and a matrix Y such

that the following LMI holds:

⎡

⎢⎢⎣

M11 + MT
11 AT

0 P CTY T YC
PA0

−1
τ
P 0 0

YC 0 −1
τ
P 0

CTY T 0 0 −1
2τ P

⎤

⎥⎥⎦ < 0, (5.32)

where M11 = P(A0 + γ I ) + YC , then the zero solution of system (5.31) is asymp-
totically stable and K = P−1Y is a stabilizing gain matrix. Consequently, it is guar-
anteed that the delayed output z(t − τ) of the predictor (5.30) converges to x(t).

By combining this state predictor with the linearizing feedback (5.29), we can
obtain the linearizing feedback with the state prediction as follows.
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(
u1
u2

)
= G(z)−1

(−L2
f h1(z) + v1(t)

−L3
f h2(z) + v2(t)

)

v1 � −s1h1(z) − s2L f h1(z) + y1,re f (t)

v2 � −s3h2(z) − s4L f h2(z) − s5L
2
f h2(x) + y2,re f (t),

where si are coefficients of Hurwitz polynomials:

λ2 + s2λ + s1
λ3 + s5λ2 + s4λ + s3

}

Figures5.6 and 5.7 show a simulation result. In this simulation, the time-delay
is τ = 2.0, the initial condition is given by y1(t) = 20 and y5(t) = 0 for t ≤ 0, the
stabilizing gain matrix by

K =
(−0.0560 −0.0983 0 0 0.0019

0.0001 0.0019 0 0.0005 −0.1952

)T

,

and the coefficients si are given by

(s1, s2, s3, s4, s5) = (1.0, 2.0, 1.0, 3.0, 3.0).

In Fig. 5.6, the dashed line represents the reference signal y1,re f , and y2,re f (t) = 0
for t ≥ 0. This figure shows that the boiler system is exactly linearized by application
of the obtained feedback. The prediction error e of the predictor (5.30) for t ≥ τ is
illustrated in Fig. 5.7. This figure shows that the prediction error converges to zero
and the predictor based on anticipating synchronization works well as the predictor
of x(t).

Fig. 5.6 Outputs y1 and y2
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Fig. 5.7 Prediction error
e(t) = z(t − τ) − x(t)
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5.5 Conclusions

In this chapter, we revisited anticipating synchronization of master–slave type cou-
pled systems. After introducing some synchronization conditions derived in the form
of LMIs, we proposed to use this scheme as a state predictor. Today, the major con-
cern in the field of chaos synchronization has shifted frommaster–slave synchroniza-
tion to network synchronization; anticipating synchronization, however, can only be
observed in the master–slave type system or unidirectional path networks. For exam-
ple, anticipating synchronization cannot appear in two bidirectional coupled systems
because x1(t − τ) = x2(t) or x2(t − τ) = x1(t) are not synchronization manifolds.
However, by using anticipating synchronization as the prediction scheme of the
system, the consensus problem of multi-agent systems with input delays is also
investigated [19].

Appendix: Stability of Systems with Uncertainties

We consider the following system with uncertainties and/or perturbation.

{
ẋ(t) = f (t, xt ) + g(t, xt ), ∀t ≥ 0

xt0 = φ(t) ∀t ∈ [−τ, 0], (5.33)

where x ∈ R
n , xt (θ) = x(t + θ) for θ ∈ [−τ, 0], φ ∈ C [−τ, 0], and g(t, xt ) denotes

the uncertainty and/or perturbation.
For a function φ ∈ C ([a, b],Rn), define the continuous norm ‖ · ‖c by ‖φ‖c :=

supθ∈[a,b] ‖φ(θ)‖, where ‖ · ‖ denotes the Euclidean norm of a vector.
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Suppose now that the nominal system

ẋ(t) = f (t, xt ) (5.34)

has a delay-dependent asymptotically stable equilibrium point at the origin. Then
the following theorem is well-known.

Theorem 5.3 ([9]) Let there exist a continuous functional V (t, φ) : R × C
[−τ, 0] → R such that

w1(‖φ(0)‖) ≤ V (t, φ) ≤ w2(‖φ‖c),

w1(r) → ∞ as r → ∞ and V̇ (xt ) ≤ 0.
Let Z be the set of those elements from C [−τ, 0] for which V̇ = 0 and Q is the

largest invariant set situated in Z. Then all solutions of (5.34) tend to Q as t → ∞.
In particular, if the set Q has the only zero element, then the trivial solution of (5.34)
is asymptotically stable.

Here V̇ is the right derivative of V along the solutions of (5.34), i.e.,

V̇ (xt ) := lim
h→0+ sup

1

h
(V (xt+h) − V (xt )).

To derive a sufficient condition for robust stability of perturbed systems, we use
the following type of Lyapunov–Krasovskii functional throughout this section.

V (xt ) = V0(x(t)) + V1(xt ), (5.35)

where V0 is a positive-definite function of x(t), and V1(xt ) consists of the sum of the
integrals of the functional x(t + θ), such as

V1(xt ) :=
∫ t

t−τ

V̄1(x(θ))dθ +
∫ 0

−τ

∫ t

t+s
V̄2(x(θ))dθds

+ · · · .

Note that the derivative of V1(xt ) with respect to time does not contain ẋ .
Then we obtain the following result.

Theorem 5.4 Let x = 0 be a delay-dependent asymptotically stable equilibrium
point of the nominal system (5.34). Let V (t, xt ) : R × C → R be a Lyapunov–
Krasovskii functional (5.35) that satisfies the following conditions:

(5.4a) α1‖ψ(0)‖2 ≤ V (t, ψ) ≤ α2‖ψ‖2c
(5.4b) the time derivative of V along the trajectories of the unperturbed system

(5.34) satisfies V̇(5.34)(t, ψ) ≤ −α3‖ψ(0)‖2
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where V̇(5.34) means the derivation of V along the solution of (5.34) and ψ ∈ QH :=
{ψ ∈ C [−τ, 0] : ‖ψ‖c < H}. In addition, suppose that
(5.4c)

∥∥∥ ∂V0(x)
∂x

∥∥∥ ≤ α4‖x‖
(5.4d) ‖g(t, 0)‖ = 0
(5.4e) ‖g(t, ψ)‖ < γ ‖ψ(0)‖
(5.4f) γ < α3

α4

where αi , i = 1, . . . , 4 and γ are positive constants. Then, the origin is an asymp-
totically stable equilibrium point of the perturbed system (5.33). Moreover, if all the
assumptions hold globally, then the origin is globally asymptotically stable.

Proof From the condition (5.4d), x = 0 is also an equilibrium point of the perturbed
system (5.33). The existence of V satisfying condition (5.4a) and (5.4b) guaran-
tees that the zero solution of the unperturbed system (5.34) is asymptotically stable
from the Lyapunov–Krasovskii theorem [9, 20]. The time derivative of V along the
trajectories of (5.33) satisfies

V̇ (xt ) ≤ −α3‖x(t)‖2 + LgV0

≤ −α3‖x(t)‖2 + α4γ ‖x(t)‖2
≤ −(α3 − α4γ )‖x(t)‖2.

From the Lyapunov–Krasovskii theorem, if γ < α3
α4
, the zero solution of the system

(5.33) is also asymptotically stable.

Example 5.1 We consider the following Chua’s circuit with time-delay [21].

ẋ =
⎡

⎣
−α(1 + b) α 0

1 −1 1
0 −β −γ

⎤

⎦ x +
⎡

⎣
−α(a − b)

0
0

⎤

⎦ϕ(x1) +
⎡

⎣
0
0

−β

⎤

⎦ ε sin(ηx1(t − τ))

:=A0x + Bϕ(x1) + B1ξ(x1(t − τ)) (5.36)

y(t) = [1 0 0
]
x := Cx,

where ϕ(x1) = 1
2 (|x1 + 1| − |x1 − 1|) and ξ(x1(t)) = sin(ηx1(t))with α = 10, β =

19.53, γ = 0.1636, a = −1.4325, b = −0.7831, η = 0.5, ε = 0.2 and τ = 0.019.
If we construct the following predictor,

Σs :
{
ż = A0z + Bϕ(z1) + B1ξ(y) + K {Cz(t − τ) − y}
z(t) = z0, t ∈ [−2τ, 0],

then the dynamics of the prediction error e(t) = z(t − τ) − x(t) is given by

ė = A0e + KCe(t − τ) + B{ϕ(e1 + x1) − ϕ(x1)}
� A0e + KCe(t − τ) + Bφ(x1, e1). (5.37)
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By choosing a Lyapunov–Krasovskii functional as

V (et ) =e(t)T Pe(t) +
∫ τ

0

∫ t

t−s
φT BT RBφduds +

1∑

j=0

∫ ( j+1)τ

jτ

∫ t

t−s
eT (u)Q je(u)duds,

and a coupling gain as K = [−12.1,−2.25, 3.71
]T
, anticipating synchronization

of the unperturbed systems can be accomplished. Now, we consider the effect of a
perturbation on anticipating synchronization. We assume that A0 in both the master
and slave systems contains uncertainties as follows.

A0 =
⎡

⎣
−α(1 + b) + Δ α 0

1 −1 + Δ 1
0 −β −γ + Δ

⎤

⎦ .

The prediction error dynamics is then obtained by

ė := A0e + KCe(t − τ) + Bφ(x1, e1) + g,

where g = ΔI e(t) In this case, if Δ is bounded, the perturbation satisfies the
conditions (5.4d) and (5.4e). In addition, we can obtain the corresponding para-
meters of condition (5.4f) of Theorem5.4 as follows: γ < 0.0594. Considering
x(0) = [1,−2, 0]T , x(θ) = 0 for θ < 0 as the initial condition of the master sys-
tem, z(θ) = 0 for θ < 0 as that of the slave system, and the perturbation Δ = 0.05,
the behavior of the prediction error e(t) = z(t − τ1) − x(t) is depicted in Fig. 5.8.
Since the prediction error converges to the origin, we know that the effect of the
perturbation vanishes, and the slave system works effectively as a predictor of the
master system.

Fig. 5.8 Prediction Error
(Theorem5.4)
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Chapter 6
Delays Effects in Dynamical Systems
and Networks: Analysis and Control
Interpretations

Wim Michiels

Abstract Time-delays are important components of many systems from engineer-
ing, economics and the life sciences, due to the fact that the transfer of material,
energy and information is mostly not instantaneous. They appear for instance as
computation and communication lags, they model transport phenomena and heredi-
tary effects and they arise as feedback delays in control loops. The aim of the chapter
is to present a guided tour on stand-alone and interconnected systems with delays,
thereby explaining some important qualitative properties. The focus rather lies on the
main ideas as technical details are avoided. Different mechanisms with which delays
can interact with the system are outlined, with the emphasis on the effects of delays
on stability. It is clarified how these mechanisms affect control design problems. Not
only limitations induced by delays in control loops are discussed, but also oppor-
tunities to use delays in the construction of controllers. Finally, extensions of these
results toward networks of interconnected dynamical systems are discussed, with the
focus on relative stability problems, in particular the synchronization problem.

6.1 Introduction

Time-delays are important components of many systems from engineering, eco-
nomics, and the life sciences, due to the fact that the transfer of material, energy
and information is mostly not instantaneous. They appear, for instance, as computa-
tion and communication lags, they model transport phenomena and heredity effects
and they arise as feedback delays in control loops. An overview of applications,
ranging from traffic flow control and lasers with phase-conjugate feedback, over
(bio)chemical reactors and cancer modeling, to control of communication networks
and control via networks is included in [12].

The presence of time-delays in dynamical systems may induce complex behav-
ior, and this behavior is not always intuitive. Even if a system’s equation is scalar,
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oscillations may occur. Time-delays in control loops are usually associated with
degradation of performance and robustness, but, at the same time, there are situa-
tions where time-delays are used as controller parameters.

The aim of this chapter is to describe some important properties of control systems
subjected to time-delays and to outline principles behind analysis and synthesis
methods. Throughout the text, the results will be illustrated by means of the scalar
system

ẋ(t) = u(t − τ), (6.1)

which, controlled with instantaneous state feedback, u(t) = −kx(t), leads to the
closed-loop system

ẋ(t) = −kx(t − τ). (6.2)

Although this didactic example is extremely simple, we shall see that its dynamics
are already very rich and shed a light on delay effects in control loops.

In some works, the analysis of (6.2) is called the hot shower problem, as it can
be interpreted as a (over)simplified model for a human adjusting the temperature in
a shower: x(t) then denotes the difference between the water temperature and the
desired temperature as felt by the person, the term −kx(t) models the reaction of the
person by further opening or closing taps, and the delay is due to the propagation
with finite speed of the water in the ducts.

The structure of the chapter is as follows. In Sect. 6.2, we outline fundamental
properties of time-delays systems. In Sect. 6.3, we discuss spectral properties of
linear time-delay systems. In Sect. 6.4, we discuss limitations induced by delays in
control loops, but also opportunities of using delays for control purposes, and, in
Sect. 6.5, we make the leap to networks of interconnected systems, focusing on the
synchronization problem. A short version of Sects. 2–4 appeared in [7].

6.2 Basic Properties of Time-Delay Systems

6.2.1 Functional Differential Equation

We focus on a model for a time-delay system described by

ẋ(t) = A0x(t) + A1x(t − τ), x(t) ∈ R
n. (6.3)

This is an example of a functional differential equation (FDE) of retarded type. The
term FDE stems from the property that the right-hand side can be interpreted as a
functional evaluated at a piece of trajectory. The term retarded expresses that the
right-hand side does not explicitly depend on ẋ.
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Fig. 6.1 Solution of (6.2)
for τ = 1, k = 1 and initial
condition φ ≡ 1
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As a first difference with an ordinary differential equation, the initial condition
of (6.3) at t = 0 is a function φ from [−τ, 0] to R

n. For all φ ∈ C ([−τ, 0],Rn),
where C ([−τ, 0], R

n) is the space of continuous functions mapping the interval
[−τ, 0] into R

n, a forward solution x(φ) exists and is uniquely defined. In Fig. 6.1,
a solution of the scalar system (6.2) is shown. The discontinuity in the derivative at
t = 0 stems from A0φ(0) + A1φ(−τ) �= limθ→0− φ̇(θ). Due to the smoothing prop-
erty of an integrator, however, at t = n ∈ N, the discontinuity will only be present
in the (n + 1)−th derivative. This illustrates a second property of functional differ-
ential equations of retarded type: solutions become smoother as time evolves. As a
third major difference with ODEs, backward continuation of solutions is not always
possible [8].

The extension of methods for time-integration (time stepping, simulation) from
ordinary to delay differential equations naturally follows from the properties of solu-
tions sketched above: the “history” of the solution should be taken into account in the
time-stepper, and special attention should be paid to so-called break points, where
the solution is non-smooth. A key reference is the book [1].

6.2.2 Reformulation in a First-Order Form

The state of system (6.3) at time t is the minimal information needed to continue the
solution,which, once again, boils down to a function segment xt(φ)where xt(φ)(θ) =
x(t + θ), θ ∈ [−τ, 0] (in Fig. 6.1 the function xt is shown in red for t = 5). This
suggests that (6.3) can be reformulated as a standard ordinary differential equation
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over the infinite-dimensional space C ([−τ, 0],Rn). This equation takes the form

d

dt
z(t) = A z(t), z(t) ∈ C ([−τ, 0],Rn) (6.4)

where operator A is given by

D(A ) =
{

φ ∈ C ([−τm, 0], R
n) : φ̇ ∈ C ([−τm, 0], R

n),

φ̇(0) = A0φ(0) + A1φ(−τ)

}
, (6.5)

A φ = dφ

dθ
.

The relation between solutions of (6.3) and (6.4) is given by z(t)(θ) = x(t + θ), θ ∈
[−τ, 0]. Note that all system information is concentrated in the non-local boundary
condition describing the domain of A . The representation (6.4) is closely related to
a description by an advection PDE with a non-local boundary condition [5].

6.2.3 Asymptotic Growth Rate of Solutions and Stability

The reformulation of (6.3) into the standard form (6.4) allows us to define stability
notions and to generalize the stability theory for ordinary differential equations in a
straightforward way, with the main change that the state space is C ([−τ, 0],Rn).
For example, the null solution of (6.3) is exponentially stable if and only if there
exist constants C > 0 and γ > 0 such that

∀φ ∈ C ([−τm, 0],Rn) ‖xt(φ)‖s ≤ Ce−γ t‖φ‖s,

where ‖ · ‖s is the supremum norm, ‖φ‖s = supθ∈[−τ, 0] ‖φ(θ)‖2. As the system is
linear, asymptotic and exponential stability are equivalent. A direct generalization
of Lyapunov’s second method yields the following theorem:

Theorem 6.1 The null solution of linear system (6.3) is asymptotically stable if
there exist a continuous functional V : C ([−τ, 0],Rn) → R (also-called Lyapunov-
Krasovskii functional) and continuous non-decreasing functions u, v,w : R+ → R

+
with

u(0) = v(0) = w(0) = 0 and u(s) > 0, v(s) > 0,w(s) > 0 for s > 0,

such that for all φ ∈ C ([−τ, 0],Rn)

u(‖φ‖s) ≤ V(φ) ≤ v(‖φ(0)‖2), V̇(φ) ≤ −w(‖φ(0)‖2),
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where

V̇(φ) = lim sup
h→0+

1

h
[V(xh(φ)) − V(φ)] .

Converse Lyapunov theorems and the construction of so-called complete-type
Lyapunov-Krasovskii functionals are discussed in [4].

Imposing a particular structure on the functional, e.g., a form depending only
a finite number of free parameters, often leads to easy-to-check stability criteria
(for instance, in the form of Linear Matrix Inequalities (LMIs)), yet as price to pay
the obtained results may be conservative in the sense that the sufficient stability
conditions might not be close to necessary conditions. As an alternative to Lyapunov
functionals, Lyapunov functions can be used as well, provided that the condition V̇ <

0 is relaxed (the so-called Lyapunov-Razhumikhin approach), see, for example, [2].
More recent contributions on stability of systems with time-varying delay origi-

nate from a similar perturbation point of view, where the system is seen as a pertur-
bation of a system with constant (possibly non-zero) delay.

6.2.4 Delay Differential Equations as Perturbation of ODEs

Many results on stability, robust stability, and control of time-delay systems are
explicitly or implicitly based on a perturbation point of view, where delay differ-
ential equations are seen as perturbations of ordinary differential equations. For
instance, in the literature a classification of stability criteria is often presented in

Delay-independent results Delay-dependent results

ẋ(t) = A0x(t)+A1x(t− τ) ẋ(t) = (A0+A1)x(t)+A1(x(t− τ)− x(t))

input-output setting:

(λI − A0)−1A1

e−λτI

(λI − (A0 + A1))
−1 A1λ

e−λτ−1
λ I

∣
∣e− jωτ

∣
∣ = 1

∣
∣
∣ e

− jωτ −1
jω

∣
∣
∣ ≤ τ

Lyapunov setting:

V = xTPx+
∫

. . . V = xTPx+
∫

. . .
erehwerehw

A0
TP+PA0 < 0 (A0+A1)TP+P(A0+A1) < 0

Fig. 6.2 The classification of stability criteria in delay-independent results and delay-dependent
results stems from two different perturbation viewpoints. Here, perturbation terms are printed in
red
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terms of delay-independent criteria (conditions holding for all values of the delays)
and delay-dependent criteria (usually holding for all delays smaller than a bound).
This classification has its origin at two different ways of seeing (6.3) as a pertur-
bation of an ODE, with as nominal system ẋ(t) = A0x(t) and ẋ(t) = (A0 + A1)x(t)
(system for zero delay), respectively. This observation is illustrated in Fig. 6.2 for
results based on input-output and Lyapunov based approaches.

6.3 The Spectrum of Linear Time-Delay Systems

6.3.1 Two Eigenvalue Problems

The substitution of an exponential solution in (6.3) leads us to the nonlinear eigen-
value problem

(
λI − A0 − A1e

−λτ
)
v = 0, λ ∈ C, v ∈ C

n, v �= 0. (6.6)

The solutions of the equation det(λI − A0 − A1e−λτ ) = 0 are called characteristic
roots. Similarly, formulation (6.4) leads to the equivalent infinite-dimensional linear
eigenvalue problem

(λI − A ) u = 0, λ ∈ C, u ∈ C ([−τ, 0],Cn), u �≡ 0. (6.7)

The combination of these two viewpoints lay at the basis of most methods for com-
puting characteristic roots, see [6]. On the one hand, discretizing (6.7), i.e., approx-
imating A with a matrix, and solving the resulting standard eigenvalue problems
allows to obtain global information, for example, estimates of all characteristic roots
in a given compact set or in a given right-half plane. On the other hand, the (finitely
many) nonlinear equations (6.6) allow to make local corrections on characteristic
root approximations up to the desired accuracy, e.g., using Newton’s method or
inverse residual iteration.

Linear time-delay systems satisfy spectrum-determined growth properties of solu-
tions. For instance, the zero solution of (6.3) is asymptotically stable if and only if
all characteristic roots are in the open left-half plane.

In Fig. 6.3 (left), the rightmost characteristic roots of (6.2) are depicted for kτ = 1.
Note that, since the characteristic equation can be written as λτ + kτe−λτ = 0, k and
τ can be combined into one parameter. In Fig. 6.3 (right), we show the real parts
of the characteristic roots as a function of kτ . The plots illustrate some important
spectral properties of retarded type FDEs. First, even though there are in general
infinitely many characteristic roots, their number in any right-half plane is always
finite. Second, the individual characteristic roots, as well as the spectral abscissa,
i.e., the supremum of the real parts of all characteristic roots, continuously depend
on parameters. Related to this, a loss or gain of stability is always associated with
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Fig. 6.3 (Left) rightmost characteristic roots of (6.2) for kτ = 1. (Right) real parts of rightmost
characteristic roots as a function of kτ

characteristic roots crossing the imaginary axis. Figure6.3 (right) also illustrates the
transition to a delay-free system as kτ → 0+.

6.3.2 Critical Delays: A Finite Dimensional Characterization

Assume that, for a given value of k, we are looking for values of the delay τc for
which (6.2) has a characteristic root jωc on the imaginary axis. From jω = −ke−jωτ

we get

ωc = k, τc =
π
2 + l2π

ωc
, l = 0, 1, . . . , 	

{
dλ

dτ

∣∣∣∣
(τc,jωc)

}−1

= 1

ω2
c

. (6.8)

Critical delay values τc are indicated with green circles on Fig. 6.3 (right). The above
formulas first illustrate an invariance property of imaginary axis roots and their
crossing direction with respect to delay shifts of 2π/ωc. Second, the number of
possible values of ωc is one and thus finite. More generally, substituting λ = jω in
(6.6) and treating τ as a free parameter leads to a two-parameter eigenvalue problem

(jωI − A0 − A1z)v = 0, (6.9)

with ω on the real axis and z := exp(−jωτ) on the unit circle. Most methods to solve
such a problem boil down to an elimination of one of the independent variables ω or
z. As an example of an elimination technique, we directly get from (6.9),
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jω ∈ σ(A0 + A1z), −jω ∈ σ(A∗
0 + A∗

1z
−1)

⇒ det
(
(A0 + A1z) ⊕ (A∗

0 + A∗
1z

−1)
) = 0

⇒ det
(
(A0z + A1z2) ⊕ (A∗

0z + A∗
1)

) = 0.

where σ(·) denotes the spectrum and ⊕ the Kronecker sum. Clearly, the resulting
quadratic eigenvalue problem in z is finite-dimensional.

6.4 Control of Time-Delay Systems

6.4.1 Limitations Induced by Delays

It is well known that delays in controls loop may lead to a significant degradation of
performance and robustness and even to instability [9, 11]. Let us return to example
(6.2). As illustrated with Fig. 6.3 and expressions (6.8), the system loses stability if
τ reaches the value π/2k, while stability cannot not be recovered for larger delays.
Themaximum achievable exponential decay rate of the solutions, which corresponds
to the minimum of the spectral abscissa, is given by −1/τ , hence, large delays can
only be tolerated at the price of a degradation of the rate of convergence. It should be
noted that the limitations inducedbydelays are evenmore stringent if the uncontrolled
systems is exponentially unstable, which is not the case for (6.2).

The analysis in the previous sections gives a hint why control is difficult in the
presence of delays: the system is inherently infinite-dimensional. As a consequence,
most control design problems which involve determining a finite number of parame-
ters can be interpreted as reduced-order control design problems or as control design
problems for under-actuated systems, which are both known to be hard problems.

6.4.2 Fixed-Order Control

Most standard control design techniques lead to controllers whose dimension is
larger or equal to the dimension of the system. For infinite-dimensional time-delay
system such controllers might have a disadvantage of being complicated and hard
to implement. To see this, for a system with delay in the state the generalization of
static state feedback, u(t) = k(x) is given by

u(t) =
∫ 0

−τ

x(t + θ)dμ(θ),

where μ is a function of bounded variation. However, in the context of large-scale
systems it is known that reduced-order controllers often perform relatively well
compared to full-order controllers, while they are much easier to implement.
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Recently newmethods for the designof controllerswith a prescribedorder (dimen-
sion) or structure have been proposed [6]. Thesemethods rely on a direct optimization
of appropriately defined cost functions (spectral abscissa, H2/H∞ criteria). While
H2 criteria can be addressed within a derivative-based optimization framework,H∞
criteria and the spectral abscissa require targeted methods for non-smooth optimiza-
tion problems. To illustrate the need for such methods consider again Fig. 6.3 (right):
minimizing the spectral abscissa for a given value of τ as a function of the controller
gain k leads to an optimum where the objective function is not differentiable, even
not locally Lipschitz, as shown by the red circle. In case of multiple controller para-
meters, the path of steepest descent in the parameter space typically has phases along
a manifold characterized by the non-differentiability of the objective function.

6.4.3 Using Delays as Controller Parameters

In contrast to the detrimental effects of delays, there are situations where delays have
a beneficial effect and are even used as controller parameters, see [12]. For instance,
delayed feedback can be used to stabilize oscillatory systems where the delay serves
to adjust the phase in the control loop. An illustration is given in Fig. 6.4, which
depicts the stability regions of oscillator

ẍ(t) = −x(t) + u(t), y(t) = x(t),

0 2 4 6 8 10 12 14 16 18 20
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0 2 22

22
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Fig. 6.4 Stability regions in the (k, τ )- parameter space of an oscillator controlled by delayed
output feedback. The numbers refers to the number of characteristic roots in the open right-half
plane
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controlled with delayed output feedback, u(t) = −ky(t − τ). Note that for τ = 0
the (second order) system is not stabilizable by static output feedback. For small k,
the sequence of stability—instability regions in the delay parameter space is related
to the feedback acting in-phase or anti-phase with respect to the oscillation of the
uncontrolled system.Note that, by taking k sufficiently small, systemswith arbitrarily
large input delay can be stabilized as well.

Delayed terms in control laws can also be used to approximate derivatives in the
control action. For example a PD controller can by approximated by a control law
of the form

u(t) = −k1y(t) − k2
y(t) − y(t − τ)

τ
,

for τ sufficiently small. This principle can be extended towards higher-order deriv-
atives (combined with a scaling property it allows, for instance, to derive stabi-
lizing control laws for integrator chains, using control laws of the form u(t) =∑

i kiy(t − τi)where the delays can be prescribed [8]). The experimental reconstruc-
tion and visualization of attractors of systems of high order via delayed time-series
of the output is grounded in a similar idea.

Control laws of the form

u(t) = F(y(t) − y(t − τ))

which depend on time-differences of state or output variables, so-called Pyragas
type feedback, have the property that the position of equilibria and the shape of
periodic orbitswith period τ are not affected (since the control lawvanisheswhenever
y(t) = y(t − τ)), in contrary to their stability properties.

Last but not least, delays can be used in control schemes to generate predictions
or to stabilize predictors, which allow to compensate delays and improve perfor-
mance [5, 15]. Let us illustrate the main idea once more with the system (6.1).

System (6.1) has a special structure, in the sense that the delay is only in the input,
and it is advantageous to exploit this structure in the context of control. Coming back
to the didactic example, the person who is taking a shower is -possibly after some
bad experiences- aware about the delay and will take into account his/her prediction
of the system’s reaction when adjusting the cold and hot water supply. Let us, to
conclude, formalize this. The uncontrolled system can be rewritten as ẋ(t) = v(t),
where v(t) = u(t − τ). We know u up to the current time t, thus we know v up to
time t + τ and, if x(t) is also known, we can predict the value of x at time t + τ :

xp(t + τ) = x(t) +
∫ t+τ

t
v(s)ds = x(t) +

∫ t

t−τ

u(s)ds,

and use the predicted state for feedback. With the control law u(t) = −kxp(t + τ)

there is only one closed-loop characteristic root at λ = −k, i.e., as long as the model
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used in the predictor is exact, the delay in the loop is compensated by the prediction.
For further reading on prediction based controllers, see, e.g., [5] and the references
therein.

6.5 From Stand-Alone Systems to Networks
of Interconnected Systems

We briefly discuss the effects of delays in networks of nonlinear coupled systems,
focusing on synchronization.

There are many examples of networks of interacting dynamical systems that
exhibit collective behavior. The most unambiguous form of collective behavior is
that of synchronization, which refers to the state in which all systems in the network
behave identically. Fireflies emit their light pulses at the same instants in time; crick-
ets chirp in unison for extended periods of time; and electrons move in synchrony in
superconducting Josephson junctions [14].

Synchronization is a form of relative stability, i.e., a stability property of the zero
solution of the error dynamics, which describe the differences between the state
variables of the systems. A special case of synchronization problems are consensus
problems, where the state variables of the different systems converge to a common
steady state value. Consensus problem are also important in the context of distributed
decision making, social networks (opinion dynamics), distributed and cooperative
control (adaptive cruise control, formation stabilization), just to mention a few [10].

Networks of identical diffusive delay-coupled systems are studied in depth in [13].
In order to highlight the effects of coupling delays, it suffices to analyze a model
problem consisting of two coupled systems,

ẋi(t) = f (xi(t)) + ui(t), i = 1, 2,

with coupling
{
u1(t) = k1(x2(t − τ) − x1(t)),
u2(t) = k2(x1(t − τ) − x2(t)).

(6.10)

The linear coupling functions (possibly with zero delay) as in (6.10) appear in a large
number of applications, such as, networks of coupled neurons, networks of biological
systems, coupled mechanical systems and electrical systems. The coupling signal
ui(t) of node i is (in general) defined as the sum of weighted differences of time-
delayed outputs of connected systems and the node’s own output at time instant t,
yi(t). In this type of coupling, the delay models the effect of finite speed of signal
transmission.

Most nonlinear oscillators encountered in applications from engineering, physics
andbiology are semi-passive,meaning that theybehave as passive systems sufficiently
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far from the origin. Semi-passivity implies boundedness of solutions of the coupled
systems under mild additional conditions, also in the presence of delay.

The presence of observable synchronized behavior requires two properties to be
satisfied: the presence of a forward invariant manifold characterized by synchronized
motion, a so-called synchronization manifold, and (2) the satisfaction of a stability
property of this manifold, in the sense that it attracts neighboring solutions. To clarify
the role of delays, let us consider the above example andmake a change of coordinate,
e(t) = x2(t) − x1(t), resulting in

⎧
⎨

⎩

ẋ1(t) = f (x1(t)) − k1(x1(t) − x1(t − τ)) + k1e(t − τ),

ė(t) = f (x1(t) + e(t)) − f (x1(t)) − k2e(t) − k1e(t − τ)

+(k1 − k2)(x1(t) − x1(t − τ)).

(6.11)

In the delay free case (6.11) becomes

{
ẋ1(t) = f (x1(t)) + k1e(t)
ė(t) = f (x1(t) + e(t)) − f (x1(t)) − (k1 + k2)e(t).

(6.12)

Comparing (6.11) and (6.12) we conclude the following:

1. In the presence of delay, the existence of a partial synchronization manifold
(i.e., e ≡ 0 being a solution of the second equation) requires k1 = k2, whereas
e ≡ 0 always solves the second equation of (6.12). This illustrates that additional
structural requirements on the couplingmay be necessary in the presence of delay.

2. Assuming k1 = k2, the dynamics on the synchronization manifold of (6.11) are
described by

ẋ1(t) = f (x1(t)) − k1(x1(t) − x1(t − τ)),

which can be interpreted as the dynamics of one system, controlled with Pyragas
type time-delayed feedback. Since the dynamics on the synchronization manifold
are affected by the coupling,we call the type of coupling (6.10) invasive for τ �= 0.
On the other hand, the dynamics on the synchronization manifold of (6.12) are
described by the dynamics of one individual system.

3. For k1 = k2, the dynamics transversal to the synchronization manifold of (6.11),
and its stability properties, are determined by the stability properties of an equilib-
rium of a delay differential equation with time-varying coefficients (considering
x1 as an exogenous signal), necessitating targeted analysis and synthesis tools.
Local stability is described by the linearization

δė(t) = ∂f

∂x
(x1(t))δe(t) − k2δe(t) − k1δe(t − τ).

In the case of more complex networks, a decoupling of the linearized error
dynamic is possible based on the eigenstructure of the graph Laplacian matrix.
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Remark 6.1 Besides (6.10) another frequently encountered coupling type is
described by

{
u1(t) = k1(x2(t − τ) − x1(t − τ)),

u2(t) = k2(x1(t − τ) − x2(t − τ)),
(6.13)

that is, both the node’s own output and the outputs of connected systems are delayed
by an amount of τ . This type of coupling models the effects of sensor/actuator delay.
Coupling (6.13) is non-invasive since it vanishes on the synchronization manifold
and, therefore, it does not affect the dynamics.

For large networks, the emerging behavior in bifurcations may be very complex,
and the error dynamics are high dimensional and hard to analyze, but simplifies
when the coupling strength is strong. For more information we refer to [13] and the
references therein.

Finally, let us take, instead of mutual coupling, a master-slave setting and make a
connection with predictive feedback in Sect. 6.4.3. Suppose we want to predict the
state of a possibly chaotic system

ẋ(t) = f (x(t)),

over a time-window of length τ . To achieve this one can build an “observer” of the
form

ż(t) = f (z(t)) + K(z(t − τ) − x(t)).

The key idea is that the second, correction termvanishes on themoment that x behaves
as a delayed version of z. The prediction error e(t) = z(t − τ) − x(t) satisfies

ė(t) = f (x(t) + e(t)) − f (x(t)) + Ke(t − τ). (6.14)

The predictor is stable and the prediction reliable when K and τ are such that the
null solution of (6.14) is asymptotically stable. Hence, eventually the synthesis of
the predictor boils down to a stabilization problem with delayed feedback, which
is prone to the fundamental limitations sketched in Sect. 6.4.1. The above idea is
elaborated in [3] and called anticipating synchronization.

6.6 Conclusions

Time-delay systems, which appear in a large number of applications, in particular
in the context of networked systems, are a class of infinite-dimensional systems,
resulting in rich dynamics and challenges from a control point of view. The different
representations and interpretations and, in particular, the combination of viewpoints
lead a wide variety of analysis and synthesis tools.
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5. Krstić, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Birkhäuser,

Boston (2009)
6. Michiels,W.:Design of fixed-order stabilizing andH2 –H∞ optimal controllers: an eigenvalue

optimization approach. Lect. Notes Control Inf. Sci. 423, 201–216 (2012)
7. Michiels, W.: Control of linear systems with delays. In: Baillieul, J., Samad, T. (eds.) The

Encyclopedia of Systems and Control. Springer, Berlin (2015)
8. Michiels, W., Niculescu, S.I.: Stability, Control and Computation for Time-Delay Systems. An

Eigenvalue Based Approach, 2nd edn. SIAM (2014)
9. Niculescu, S.I.: Delay Effects on Stability. A Robust Control Approach, Volume 269 of Lecture

Notes in Control and Information Sciences. Springer, Berlin (2001)
10. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching

topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)
11. Richard, J.-P.: Time-delay systems: an overview of recent advances and open problems. Auto-

matica 39(10), 1667–1694 (2003)
12. Sipahi, R., Niculescu, S., Abdallah, C., Michiels, W., Gu, K.: Stability and stabilization of

systems with time delay. IEEE Control Syst. Mag. 31(1), 38–65 (2011)
13. Steur, E., Oguchi, T., Nijmeijer, H.: Synchronization of Systems with Time-delayed Coupling.

World Scientific, Singapore (2016) (In press)
14. Strogatz, S.H.: Sync: The Emerging Science of Spontaneous Order. 1st edn. Hyperion, New

York (2003)
15. Zhong, Q.-C.: Robust Control of Time-Delay Systems. Springer, London (2006)



Chapter 7
Emergence of Oscillations in Networks
of Time-Delay Coupled Inert Systems

Erik Steur and Alexander Pogromsky

Abstract We discuss the emergence of oscillations in networks of single-input–
single-output systems that interact via linear time-delay coupling functions.Although
the systems itself are inert, that is, their solutions converge to a globally stable
equilibrium, in the presence of coupling, the network of systems exhibits ongoing
oscillatory activity. We address the problem of emergence of oscillations by deriving
conditions for; 1. solutions of the time-delay coupled systems to be bounded, 2. the
network equilibrium to be unique, and 3. the network equilibrium to be unstable.
If these conditions are all satisfied, the time-delay coupled inert systems have a
nontrivial oscillatory solution. In addition, we show that a necessary condition for
the emergence of oscillations in such networks is that the considered systems are at
least of second order.

7.1 Introduction

This chapter is concerned with networks of identical single-input-single-output
systems that interact via linear time-delay coupling functions. A little bit more pre-
cise, the coupling for a system in a network is defined to be the weighted difference
of the time-delayed output of its neighbors and its own, non-delayed output. The
delay models in this case the time it takes a signal to propagate from its source to its
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destination, and therefore it is reasonable to assume that the systems have immediate
access to their own outputs. We consider the case that the systems are inert, that is,
in absence of coupling each system has a globally asymptotically stable equilibrium.
We address the problem that, nevertheless, oscillations emerge in network of the
time-delay coupled systems.

The problem of emergence of oscillations in coupled inert systems goes back
to the early fifties of the previous century, starting with Alan Turing’s work on
morphogenesis [25]. About twenty years later, Steven Smale, being inspired by the
work of Turing, proposed a fourth-ordermodel of chemical kinetics that, even though
the model is inert or “dead”, two identical copies of them in diffusive interaction
become “alive”, in the sense that they start to oscillate for an infinite amount of time
[18]. According to Smale there is a paradoxical aspect to the model:

One has two dead (mathematically dead) cells interacting by a diffusion process, which has
a tendency in itself to equalize the concentrations. Yet in interaction, a state continues to
pulse indefinitely.

Because of the importance of the class of equations coupled via diffusion in many
fields of science, Smale posed the sharp problem to “axiomatize” the necessary
conditions for diffusion-driven oscillations. A partial solution to his problem was
proposed in [23],1 where the dynamics of two Lur’e systems in diffusive interaction
was studied using frequency methods. In that paper, it was shown that diffusion-
driven oscillations are possible with third-order systems. It was proved in [14] that
diffusion-driven oscillations cannot emerge from a unique equilibrium in case the
systems are of order lower than three. In that samepaper, constructive conditionswere
presented for the emergence of diffusion-driven oscillations. It is worth mentioning
that oscillationsmay emerge in networks of diffusively coupled systems of order two;
In that case the oscillations are born after a secondary bifurcation of equilibria [1].

The above-mentioned studies all considered diffusive coupling, which is (typi-
cally) symmetric and delay-free. We introduce a time-delay in the coupling terms.
Such time-delay coupling functions appear, among others, in network of neurons [6],
electrical circuits [16], and networked control systems [17].

We present conditions for emergence of oscillations in networks of time-delay
coupled inert systems. In particular, we present conditions for the solutions of the
time-delay coupled systems to be bounded, we discuss when the network equilib-
rium is unique, and we derive a condition (at the level of the dynamics of the systems
that comprise the network) for the network equilibrium to be unstable. If all these
conditions are satisfied the coupled system is oscillatory. Our results imply immedi-
ately that only if the dimension of the systems is at least two, then in time-delayed
interaction onemay have oscillatory activity in the network. The results we present in
this chapter extend our previous results reported in [22] in the sense that we remove
the restriction to undirected networks.

We remark that we will only consider the case that the coupled systems can
not only be oscillatory for zero time-delay. The reason for this is that the results

1A minor flaw in that paper was corrected in [24].
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of [14, 15], which consider the delay-free case, remain true for sufficiently small
time-delays. A proof of this claim follows almost immediately from Rouché’s theo-
rem, cf. [5].

7.2 Preliminaries

Let R and C denote the real numbers and complex numbers, respectively. R+ is the
set of positive real numbers and R+ = R+ ∪ {0} is the set of the nonnegative real
numbers. For a number x = a + bi ∈ C with a, b ∈ R and i being the imaginary
unit, i2 = −1, we denote �(x) = a and �(x) = b. Let C+ := {x ∈ C | �(x) ∈ R+}
and C+ := {x ∈ C | �(x) ∈ R+}. Given positive integers p, q, and r , for X ⊂ R

p

and Y ⊂ R
q we denote by C r (X ,Y ) the space of continuous functions from X

into Y that are at least r -times continuously differentiable. If r = 0 we simply write
C (X ,Y ) instead of C 0(X ,Y ). We denote C := C ([−τ, 0],RNn) and we let this
space be equipped with the norm

‖φ‖ = sup
−τ≤θ≤0

|φ(θ)| , φ ∈ C .

Here |·| is the Euclidean norm in RNn , |x | = √
x
x , where 
 denotes transposition.

For a positive integer k we let Ik denote the k × k identity matrix and 1k denotes the
column vector of length k with all entries equal to 1.

Let ξ ∈ C ([0,∞),R) be bounded on the whole interval of definition. Such a
function is oscillatory (in the sense of Yakubovich) if limt→∞ ξ(t) does not exist. In
that spirit we say that a system is oscillatory if it admits the following properties: 1.
the solutions of the system are uniformly (ultimately) bounded (such that solutions are
defined on [0,∞)) and, 2. the system has a finite number of hyperbolically unstable
equilibria.2 In other words, if the initial data are not an equilibrium solution or do
not belong to a stable manifold of an equilibrium, then at least one state variable of
an oscillatory system is an oscillatory function of time.

7.3 Problem Setting

Weconsider networks consisting of N single-input-single-output systems of the form

{
ẋ j (t) = f (x j (t)) + Bu j (t)
y j (t) = Cx j (t)

(7.1)

2An equilibrium solution of a delay differential equation is called hyperbolic if the roots of its
associated characteristic equation have nonzero real part, cf. [9].
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with j = 1, . . . , N , states x j (t) ∈ R
n , inputs u j (t) ∈ R, outputs y j (t) ∈ R, f :

R
n → R

n is a sufficiently smooth function and matrices B,C of appropriate dimen-
sion with CB a positive constant. We shall assume that:

C1. the system (7.1)with u j ≡ 0 has a unique equilibrium x0, i.e., f (x0) = 0,which
is globally asymptotically stable and locally exponentially stable.

Note that local exponential stability of the equilibrium is equivalent to all eigenvalues
of the matrix

J0 = J (x0),

with J (x) = ∂ f
∂x j (x) being the Jacobian matrix of f at x , having strictly negative real

part, i.e., J0 is Hurwitz.
Systems (7.1) interact via linear time-delay coupling functions of the form

u j (t) = σ
∑

�

a j�[y�(t − τ) − y j (t)] (7.2)

where positive constant σ is the coupling strength, positive constant τ is the (prop-
agation) delay, and nonnegative constants a j� are the interconnection weights. In
particular, a jl is positive if and only if there is a connection from system � to system
j . Define the N × N matrix A = (

a j�
)
. Matrix A is the (weighted) adjacency matrix

of the graph that specifies the interaction structure. Note that we allow the graph to
be directed. We shall assume that the matrix A is irreducible and has zero diagonal
entries. This is equivalent to saying that the graph is simple, i.e., there is at most one
edge from node j to node � and self-connections are absent, and strongly connected,
i.e., every pair of systems can be joined by a sequence of directed edges. In addition,
we assume that

C2. each row-sum of A equals 1.

The latter assumption is not strictly necessary but it simplifies notation significantly.
Moreover, this assumption ensures that the synchronous (oscillatory) state exists,
cf. [12, 19]. We remark that C2 implies, by the Gershgorin Disc Theorem, that all
eigenvalues of A are located in the closed unit disc in C.

7.4 Conditions for Oscillation

Given that C1 and C2 hold true we establish conditions for

1. the solutions of the coupled system (7.1), (7.2) to be uniformly bounded and
uniformly ultimately bounded;

2. the network equilibrium
X0 = 1N ⊗ x0

to be the unique, but unstable equilibrium.
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Clearly, if both points hold true, the coupled system is oscillatory. Uniqueness of the
network equilibrium is not necessary for the existence of oscillations. However, the
stability properties of additional equilibria are difficult to assess as the locations of
these additional equilibriumsolutions dependonσ . In addition, it isworthmentioning
that for a unique equilibrium the state of the coupled system can be oscillatory only
if one of its outputs is an oscillatory function of time. Indeed, in case none of the
outputs is an oscillatory function the value of each coupling function is (or converges
to) zero such that, by C1, the system is not oscillatory.

7.4.1 Bounded Solutions

Consider a single system (7.1) and let u j (·) be a piece-wise continuous input function
being defined on [0, T ), T ∈ R+, and taking values in a compact set U ⊂ R. Let
x j (·) = x j (·; x j

0 , u
j [0, T )) be the solution of system (7.1) corresponding to input

u j (·) being defined on [0, T ] and coinciding with x j
0 at t = 0. Then we define a

(strictly) C r -semipassive system as follows.

Definition 7.1 Suppose that there is a function S ∈ C r (Rn,R+), called the storage
function, such that

S(x j (t)) − S(x j (0)) ≤
∫ t

0

[
(y ju j )(s) − H(x j (s))

]
ds (7.3)

with H ∈ C (Rn,R) and t ∈ (0, T ]. If there is a constant R > 0 and a nonnegative
nondecreasing function h : R+ → R+ such that

H(s) ≥ h(|s|) (7.4)

for all |s| ≥ R, then system (7.1) is called C r -semipassive. If (7.4) holds for all
|s| ≥ R with a function h that is strictly increasing and such that h(s) → ∞ as
s → ∞, then system (7.1) is called strictly C r -semipassive.

Remark 7.1 In case the storage function S is continuously differentiable, i.e., r ≥ 1,
then (7.3) can be replaced by the differential inequality

Ṡ(7.1)(x
j (t)) ≤ (y ju j )(t) − H(x j (t)),

where the subscript (7.1) means that the derivative of S is taken along solutions of
(7.1) for given input u j (·).
Lemma 7.1 (Boundedness) Let w0,w1 : [0, ∞) → [0, ∞) be strictly increasing
functions that satisfy w0(0) = w1(0) = 0 and w0(s),w1(s)→∞ as s→∞. Suppose
that each system (7.1) is strictlyC 1-semipassive with storage function S that satisfies

w0(
∣∣x j (t)

∣∣) ≤ S(x j (t)) ≤ w1(
∣∣x j (t)

∣∣).
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Then for each fixed σ and fixed τ the solutions of the coupled systems (7.1), (7.2)
are uniformly bounded and uniformly ultimately bounded.

Proof (Sketch, a full proof is found in [20]) Let φ ∈ C ,

φ(θ) =
⎛

⎜⎝
φ1(θ)

...

φN (θ)

⎞

⎟⎠ , φ1(θ), . . . , φN (θ) ∈ R
n, θ ∈ [−τ, 0],

and consider the functional

V (φ) = ν1S(φ1(0)) + ν2S(φ2(0)) + · · · + νN S(φN (0))

+ σ

2

∑

j

ν j a j�

∫ 0

−τ

(
φ�


(s)C
Cφ�(s)
)
ds.

Here νi are positive constants such that

(
ν1 ν2 · · · νN

)
(IN − A) = ν
(IN − A) = 0.

The existence of the positive vector ν ∈ R
N is implied by the Perron–Frobenius

theorem for irreducible matrices, cf. [10]. Note that the matrix IN − A is irreducible
as A is assumed to be irreducible. Then, invoking the strict semipassivity property
and after some simple algebraic manipulations, we find that

V̇ (φ) ≤ −ν1H(φ1(0)) − ν2H(φ2(0)) − · · · − νN H(φN (0)) ≤ −W (|φ(0)|) + M

for some strictly increasing function W : R+ → R+ and positive constant M . An
application of Theorem4.2.10 of [3] completes the proof. �

7.4.2 Uniqueness and Instability of the Network Equilibrium

We shall start with establishing conditions for instability of the network equilibrium.
Using C2 we can write the coupled system dynamics as

ẋ(t) = F(x(t)) + σ [(A ⊗ BC)x(t − τ) − (IN ⊗ BC)x(t)] (7.5)

where

x(t) =

⎛

⎜⎜⎜⎝

x1(t)
x2(t)

...

xN (t)

⎞

⎟⎟⎟⎠ , F(x(t)) =

⎛

⎜⎜⎜⎝

f (x1(t))
f (x2(t))

...

f (xN (t))

⎞

⎟⎟⎟⎠ ,
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and ⊗ denotes the Kronecker (tensor) product. A linearization of (7.5) around the
network equilibrium X0 yields the dynamics

˙̃x(t) = [IN ⊗ (J0 − σ BC)] x̃(t) + (σ A ⊗ BC)x̃(t − τ). (7.6)

It is well known that the zero solution of the linear system (7.6) is unstable for some
σ > 0 and τ > 0 if (and only if) its associated characteristic equation

Δ(λ; σ, τ) = 0 (7.7)

with

Δ(λ; σ, τ) := det (λINn − IN ⊗ (J0 − σ BC) − (σ A ⊗ BC) exp(−λτ))

has a root in C+ for that σ and τ , cf. [9, 11]. However, computing the roots of the
characteristic equation (7.7) for a large number of points in the (σ, τ )-parameter
space may be cumbersome. As a solution, we will present (sufficient) conditions for
instability of the network equilibrium at the level of the dynamics of the system (7.1).
For that purpose we denote

H (s) = C(s In − J0)
−1B = p(s)

q(s)

the linear transfer function from u j to y j of the system (7.1) at its equilibrium. Here
p(s) is a polynomial of degree n − 1 and q(s) is a polynomial of degree n.3 It is
assumed that p and q are co-prime.

Lemma 7.2 (Instability) Suppose that C2 holds true. Let

η = inf
ω>0

� (H (iω)) .

If η < 0, then for each σ ≥ −1
2η there exists a τ > 0 such that the characteristic

equation (7.7) has a root in C+.

The proof of the lemma is provided in the Appendix.
It is important to note that the condition for instability in Lemma 7.2 is delay-

dependent. As we have remarked already in the introduction, we focus in this chapter
only on delay-dependent conditions for oscillations.

We continue with conditions for uniqueness of the network equilibrium.

Lemma 7.3 (Uniqueness of the network equilibrium) Let C1 hold true and denote
the eigenvalues of A by λ̄ j , j = 1, . . . , N. Let λ∗ be the smallest real-valued eigen-
value of A. Choose σ̄ ∈ (0,∞] as the largest number for which the matrix

3As CB > 0 the system (7.1) has relative degree one.
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J (ξ) − σ(1 − λ∗)BC

is nonsingular for all ξ ∈ R
n and all σ ∈ [0, σ̄ ). Then the network equilibrium solu-

tion X0 = 1N ⊗ x0 is the unique equilibrium solution of (7.5) for σ ∈ [0, σ̄ ).

The proof of the lemma is provided in the Appendix.

7.4.3 Oscillations in Networks of Inert Systems

Lemmata7.1, 7.2, and7.3 provide conditions for the coupled systems tohavebounded
solutions, the network equilibrium to be unique, and the existence of a time-delay
τ > 0 for which this equilibrium is unstable. The following theorem summarizes
these results.

Theorem 7.1 (Conditions for oscillation) Consider the coupled system (7.1), (7.2)
and suppose that C1 and C2 hold true. Suppose in addition that

• the systems (7.1) are strictly C 1-semipassive with a storage function that satisfies
the conditions of Lemma 7.1;

• the matrix
J (ξ) − σ(1 − λ∗)BC

is nonsingular for all ξ ∈ R
n and all σ ∈ [0, σ̄ ), where λ∗ is the smallest real-

valued eigenvalue of A;
• η = infω>0 � (H (iω)) < 0 and

−1

2η
< σ̄ .

Then for each σ ∈
[

−1
2η , σ̄

)
there exists a τ > 0 for which the coupled system is

oscillatory.

Using the second and third condition of the theorem (see also Lemmas7.2 and
7.3) one easily determines a (range of) coupling strength(s) for which there exist

τ such that oscillations emerge. In particular, for any σ ∈
[

−1
2η , σ̄

)
one can use

bifurcation software such as DDE-Biftool [7] for finding the values of τ for which
the characteristic equation (7.7) has a root inC+. A viable strategy for computing the

bifurcation diagram in the (σ, τ )-parameter space is to startwith someσH ∈
[

−1
2η , σ̄

)

and τ = 0. Then increase τ until at τ = τH aHopf bifurcation is detected. (We remark
that the bifurcation that causes instability of the network equilibrium is necessarily a
Hopf bifurcationbecause otherwise the conditionofLemma7.3wouldbeviolated.)A
curve ofHopf bifurcation points can then be computed using a continuation algorithm
starting from (σH , τH ). See, for instance, [12] for an example.
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Theorem7.1 also provides almost immediately a necessary condition on the
dimension n of the systems (7.1) for oscillations to emerge.

Corollary 7.1 If C1 and C2 hold true, then a necessary condition for a network of
inert systems (7.1) that interact via coupling functions (7.2) to be oscillatory is that
n ≥ 2.

Proof Anexamplewithn = 2 is provided in the next section and examples of systems
of order larger than two can be easily constructed.We complete the proof by showing
that the equilibriumof a network of coupled inert systemswith n = 1 is always stable.
Let U be a nonsingular matrix such that

U−1AU = Λ̄

with Λ̄ the Jordan normal form of A. Denote by λ̄ j , j = 1, . . . , N the eigenvalues
of A. After pre-multiplication of (7.7) by det(U−1 ⊗ In) and post-multiplication of
(7.7) by det(U ⊗ In) it is straightforward to see that the characteristic equation (7.7)
can have a root λ ∈ C+ only if there is a j ∈ {1, 2, . . . , N } such that

λ − J0 + σ [1 − λ̄ j exp(−λτ)] = 0 (7.8)

for some τ > 0. (See also the proof of Lemma 7.2 in the Appendix.) However, as J0
is a negative constant by C1 and |λ̄ j | ≤ 1 for all j by C2 there exists no λ ∈ C+ that
solves (7.8). �

7.5 Example

We shall illustrate our results in networks of inert FitzHugh–Nagumo (FHN) model
neurons [8]. The dynamics of thismodel neuron are given by the following equations:

{
ẋ j
1 (t) = 0.08(x j

2 (t) − 0.8x j
1 (t))

ẋ j
2 (t) = x j

2 (t) − 1
3 (x

j
2 (t))

3 − x j
1 (t) − 0.559 + u j (t)

with output y j (t) = x j
2 (t). One can easily verify that the isolated FHNmodel neuron

has a locally exponentially stable equilibriumat x0 = (−1.225 −0.980
)

.Moreover,

it is shown in [21] that the FHN model neuron is strictly C∞-semipassive with a
quadratic storage function. Hence, we conclude that the solutions of any network of
FHN model neurons are uniformly (ultimately) bounded for any nonnegative σ and
τ . To check whether we can have oscillations in a network of FHN model neurons,
we determine the transfer function H (s):

H (s) = (
0 1

) (
s I −

(−0.064 0.08
−1 1 − (−0.980)2

))−1 (
0
1

)
.
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Fig. 7.1 a The cube network
with uniform bidirectional
interactions, and b the ring
network with uniform
unidirectional interactions

(a) (b)

Wefind thatη = infω>0 �(H (iω)) = −0.205,which is attained atω = ω∗ = 0.417.
Thus for coupling strengths

σ > σ = 0.5

0.205
,

there exist τ > 0 for which the zero solution of the linearized system is unstable,
hence the network equilibrium is unstable. In addition, because

det(J (ξ) − σ(1 − λ̄ j )BC) = (ξ2)
2 + 1

4 + σ(1 − λ̄ j )

is positive for any ξ = (
ξ1 ξ2

)
 ∈ R
2, any σ ≥ 0 and any real-valued λ̄ j ∈ [−1, 1],

we conclude that the network equilibrium X0 = 1k ⊗ x0 is unique. Thus if σ > σ

there exist values of τ for which the coupled FHN model neurons are oscillatory.
We have performed a numerical analyses with a cube network and a ring network,

which are shown in Fig. 7.1a and b, respectively. The example with the cube network
has been taken from [22]. For both networks, we have determined the regions of
instability in the (σ, τ )-parameter space with 0 ≤ σ ≤ 8 and 0 ≤ τ ≤ 20. These
regions, which are computed with DDE-Biftool [7] using the strategy explained in
the previous section, are shown in Fig. 7.2a for the cube network and Fig. 7.2b for
the ring network. In these plots the areas shown in gray correspond to the regions
of hyperbolic instability of the network equilibrium. The thick black curves are the
stability crossing curves; At a stability crossing curve the characteristic equation
(7.7) has a purely imaginary root.

In addition, we present the results of a number of numerical simulations, which are
performed with Matlab using the DDE23 solver. For each simulation we have used
constant initial data on the interval [−τ, 0]. This initial data is chosen to be a normally
distributed perturbation of the network equilibrium, with mean and variance of the
perturbation being set to 0 and 0.05, respectively.

Figure7.3 show the results of numerical simulation for the cube network with
σ = 3 and either τ = 8 or τ = 15. The left plots show the birth of oscillatory activ-
ity from the network equilibrium. The eight smaller plots show 100 time units of
steady state oscillatory activity. In case of σ = 3 and τ = 8 we observe an oscillation
where neurons 1, 3, 6 and 8 oscillate synchronously, neurons 2, 4, 5 and 7 oscillate
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Fig. 7.2 The regions of stability (white) and instability (grey) of the network equilibrium in the
(σ, τ )-parameter space for a the cube network, and b the ring network
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Fig. 7.3 Results of numerical simulation with the cube network for a σ = 3 and τ = 8, and b
σ = 3 and τ = 15
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Fig. 7.4 Results of numerical simulation with the ring network for a σ = 5 and τ = 2, b σ = 5
and τ = 7, and c: σ = 5 and τ = 12

synchronously, but the oscillations of the two synchronized clusters alternate. An
increase of the time-delay to τ = 15 results in completely synchronous oscillatory
activity. For more details about the (prediction of) resulting oscillatory activity in
this network we refer to [22].
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Figure7.4 show the results of numerical simulation for the ring network with σ =
5 and either τ = 2, τ = 7 or τ = 12. Again the left plots show the onset of oscillation
and the other plots show 100 time units of steady state oscillatory activity. In all
cases, we observe oscillatory activity in the form of persistent propagating waves.
In case of σ = 5 and τ = 2 stable rotating wave oscillations have emerged. Indeed,
the steady state oscillations are periodic and there is a constant time-shift between
the oscillations of any two adjacent neurons. For time-delay τ = 12 we observe the
emergence of stable standing wave steady state activity, which is characterized by the
synchronous activity of neurons 1, 3 and 5 that alternates with synchronous activity
of neurons 2, 4 and 6. A somewhat intermediate oscillatory behavior is found for
τ = 7. In this case, neurons 1 and 4 oscillate synchronously, neurons 2 and 5 are
synchronized, and the steady state oscillations of neurons 3 and 6 are completely
identical. However, the oscillations of neurons 1, 2 and 3, hence those of neurons 4,
5 and 6, take the form of a rotating wave. The emerged oscillatory activity in the ring
network can be analyzed and predicted using the theory presented in [12].

7.6 Conclusions

We have considered the problem of emergence of oscillatory activity in networks of
identical inert systems that interact via linear time-delay coupling.We have presented
conditions for

• the solutions of the coupled systems to be uniformly (ultimately) bounded;
• the network equilibrium, which is exponentially stable in absence of coupling, to
become unstable in the presence of coupling;

• the network equilibrium to be unique.

If all three points are satisfied the network of time-delay coupled system will be
oscillatory. Our conditions for the first two points above to hold true are expressed at
the level of the systems. In particular, a strict semipassivity property of the systems
ensures that the whole network has bounded solutions, and conditions for instability
of the network equilibrium can be verified by evaluating the transfer function (from
u j to y j ) of the uncoupled system in equilibrium. As a corollary to these results, we
have shown that a network of inert systems (7.1) with time-delay coupling (7.2) can
be oscillatory only if the systems are at least of second order.

We have illustrated our results with two networks, a cube and a ring, with FHN
model neurons as systems. For both networks we have determined the values of the
coupling strength σ and time-delay τ for which oscillations emerge. Trajectories
of the coupled systems are obtained for several values of the coupling strength and
time-delay by numerical integration of the governing equations. It is shown that
interesting patterns of oscillatory activity may emerge from a network equilibrium.

Afterword

This book chapter is written for the occasion of the 60th birthday of Henk Nijmeijer.
Both authors have sharedmany ideas, thoughts andpaperswithHenkon the collective
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behavior of coupled dynamical systems.We are certain to continue working together
with Henk on this fascinating topic for many more years.

Appendix

Proof of Lemma7.2

As mentioned in [4], the characteristic equation Δ(λ; σ, τ) can have a root in C+
(for some τ > 0) only if (at least) one of the following conditions is violated:

• IN ⊗ (J0 − σ BC) is a stable matrix;
• IN ⊗ (J0 − σ BC) + σ A ⊗ BC is a stable matrix;
• the spectral radius ρ4 of the frequency dependent matrix

[IN ⊗ (J0 − σ BC)]−1 [σ A ⊗ BC]

is strictly smaller than one for all frequencies:

ρ
(
[IN ⊗ (J0 − σ BC)]−1 [σ A ⊗ BC]

)
< 1 ∀ω > 0.

As already remarked in the introduction, we restrict ourselves to the case where the
network equilibrium is stable in case of zero time-delay. This implies that the first two
conditions are satisfied such that instability of the network equilibrium in presence
of time-delay requires the third condition to be violated. We show that the condition
of Lemma 7.2 implies this to be the case.

Using some elementary properties of the Kronecker product, cf. [2], we obtain
that

ρ ([iωInm − IN ⊗ (J0 − σ BC)]−1 [σ(A ⊗ BC)]) = ρ
(
σ A ⊗ [iωIn − J0 + σ BC)]−1BC

)
.

Condition C2 implies that A has an eigenvalue equal to 1 (with right eigenvector
in span {1N }). Then employing the fact that the eigenvalues of σ A ⊗ [iωIn − J0 +
σ BC)]−1BC are the product of all eigenvalues of σ A and all eigenvalues of [iωIn −
J0 + σ BC)]−1BC , cf. [2], we find that

ρ
(
σ [iωIn − J0 + σ BC)]−1BC

)
> 1

⇒ ρ ([iωInm − IN ⊗ (J0 − σ BC)]−1 [σ(A ⊗ BC)]) > 1.

4The spectral radius of a square (complex) matrix is the largest eigenvalue in absolute value of that
matrix.
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Fig. 7.5 If the Nyquist plot
of L (iω) = σH (iω))
intersects with{
s ∈ C | �(s) < − 1

2

}
, then

|L (iω∗)| > |1 + L (iω∗)|,
where
ω∗ = argminω>0� (L (iω))

�

�

L(iω)

−1 − 1
2

|1 + L(iω∗)| |L(iω∗)|

Some straightforward manipulations (that involve some theory about the inverse
of the sum of two matrices, cf. [13]) show that

ρ̄(ω; σ) := ρ
(
σ [iωIn − J0 + σ BC)]−1BC

)

= |σ p(iω)|
|q(iω) + σ p(iω)| =

∣∣∣∣
σH (iω)

1 + σH (iω)

∣∣∣∣ .

It follows from Fig. 7.5 that if the Nyquist plot ofL (iω) = σH (iω) intersects with{
s ∈ C | �(s) < 1

2

}
, then there exists ω∗ = argminω>0� (L (iω)) > 0 such that

|L (iω∗)| > |1 + L (iω∗)| ⇒ ρ̄(ω∗; σ) > 1.

In otherwords, ifη = infω>0 � (H (iω)) = � (H (iω∗)) < 0, then for eachσ ≥ −1
2η ,

ρ̄(ω∗; σ) > 1 ⇒ ρ
([iω∗ Inm − IN ⊗ (J0 − σ BC)

]−1 [σ(A ⊗ BC)]) > 1.

Fix σ ∗ ≥ −1
2η . We now show that ρ̄(ω∗; σ ∗) > 1 implies (7.7) to have a root in

C+. Define
β(λ; σ ∗, τ ) = 1 − α(λ; σ ∗) exp(−λτ)

with

α(λ; σ ∗) = σ ∗H (λ)

1 + σ ∗H (λ)
.

Note that ρ̄(ω; σ ∗) = |α(iω; σ ∗)|. Consider the function κ : R+ → R, κ(ω) = 1 −
|α(iω; σ ∗)|2 = 1 − ρ̄2(ω; σ ∗). Note that limω→∞ κ(ω) = 1 as limω→∞ ρ̄(ω; σ ∗) =
0. Because ρ̄(ω∗; σ ∗) > 1 there exist a ω0 > 0 such that ρ̄(ω0; σ ∗) = 1. Let us
choose, without loss of generality, this ω0 such that for any small number δ > 0
we have ρ̄(ω0 − δ; σ ∗) > 1 and ρ̄(ω0 + δ; σ ∗) < 1, i.e., κ ′ = dκ

dω > 0 at ω = ω0. In
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addition, there is a τ0 > 0 for which β(iω0; σ ∗, τ0) = 0. Following [11], pp. 95, if
we differentiate β(λ; σ, τ) = 0 at λ = iω0 with respect to τ , we find

�
(
dλ

dτ

)−1

= 1

2ω0
κ ′(ω0) < 0.

This implies the existence of some τ ∗ < τ0 for which β(λ; σ ∗, τ ∗) has a root in C+.
Let U be a nonsingular matrix such that

U−1AU = Λ̄

with Λ̄ the Jordan normal form of A and let λ̄ j , j = 1, 2, . . . , N , be the eigenvalues
of A. After pre-multiplication of (7.7) by det(U−1 ⊗ In) and post-multiplication of
(7.7) by det(U ⊗ In), we conclude that the roots of (7.7) (of course, for σ = σ ∗) are
identical to the roots of

N∏

j=1

Δ j (λ; σ ∗, τ )

with
Δ j (λ; σ ∗, τ ) = det

(
λIn − (J0 − σ ∗BC) − σ ∗λ̄ j BC exp(−λτ)

)
.

By C2 there is always an eigenvalue of A equal to 1. Without loss of generality, we
let λ̄1 = 1 such that

Δ1(λ; σ ∗, τ ) = det
(
λIn − (J0 − σ ∗BC) − σ ∗BC exp(−λτ)

)
.

It is straightforward to verify that Δ1(λ; σ ∗, τ ) and β(λ; σ ∗, τ ) have the same roots.
Thus Δ1(λ; σ ∗, τ ) has a root in C+ for some τ ∗ < τ0, which implies that (7.7) has
a root in C+ for σ = σ ∗ and τ = τ ∗. �

Proof of Lemma7.3

Theproof follows fromarguments givenfirst in [15]. Firstwe show that the conditions
of the lemma imply that the Jacobian matrix of

F(x) − σ [(IN − A) ⊗ BC)]x (7.9)

is nonsingular at all x ∈ R
Nn . Let again U be a nonsingular matrix such that

U−1AU = Λ̄
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with Λ̄ the Jordan normal form of A. Then the Jacobianmatrix of (7.9) is nonsingular
if and only if ⎛

⎜⎝
J (x̃1)

. . .

J (x̃ N )

⎞

⎟⎠ − σ(IN − Λ̄) ⊗ BC

is nonsingular for all x̃ j ∈ R
n , j = 1, . . . , N . Due to the triangular structure of Λ̄

the above matrix is singular if and only if (at least) one of the matrices

J (ξ) − σ(1 − λ̄ j )BC, j = 1, . . . , N , ξ ∈ R
n

is singular. By construction the matrix BC has one positive diagonal entry and all
other entries equal zero. Thus J (ξ) − σ(1 − λ j )BC can only be singular if λ̄ j is real
valued. It follows that the conditions of the lemma imply that the Jacobian matrix is
nonsingular for all σ ∈ [0, σ̄ ).

Now we consider an auxiliary coupled system (7.5) with σ replaced by εσ with
parameter ε ∈ [0, 1]. By the conditions of the lemma the Jacobian matrix of this
auxiliary coupled system is, like the original coupled system, nonsingular at each
point in R

Nn . Now suppose that for this auxiliary coupled system there is some
ε = ε∗ ∈ (0, 1) for which there exists an equilibrium X∗

0 other than the network
equilibrium X0. Then, due to the implicit function theorem, this additional equilib-
rium point is determined by an equation of the form X∗

0 = F (ε∗). Decreasing ε

from ε∗ to zero implies the existence of an equilibrium other than X0 for ε = 0. This
contradicts C1, which states that the isolated system has a globally asymptotically
stable (hence unique) equilibrium. �
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Chapter 8
Leader–Follower Synchronisation for a Class
of Underactuated Systems

Dennis J.W. Belleter and Kristin Y. Pettersen

Abstract In this work, leader–follower synchronisation is considered for underac-
tuated followers in an inhomogeneousmulti-agent system. The goal is to synchronise
the motion of a leader and an underactuated follower. Measurements of the leader’s
position, velocity, acceleration and jerk are available,while the dynamics of the leader
is unknown. The leader velocities are used as input for a constant bearing guidance
algorithm to assure that the follower synchronises its motion to the leader. It is also
shown that the proposed leader–follower scheme can be applied to multi-agent sys-
tems that are subjected to unknown environmental disturbances. Furthermore, the
trajectory of the leader does not need to be known. The closed-loop dynamics are
analysed and it is shown that under certain conditions all solutions remain bounded
and the synchronisation error kinematics are shown to be integral input-to-state stable
with respect to changes in the unactuated sway velocity. For straight-linemotions, i.e.
where the desired yaw rate and sway velocity go to zero, synchronisation is achieved.
Simulation results are presented to validate the proposed control strategy.

8.1 Introduction

This work considers leader–follower synchronisation for inhomogeneous multi-
agent systems with underactuated agents. In particular, we consider synchroni-
sation of underactuated marine vessels on straight-line trajectories and curved
paths. Leader–follower synchronisation has several applications concerning both
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autonomous and non-autonomous vehicles. Leader–follower synchronisation has,
for instance, been applied to underway replenishment operations, robot manipulator
master–slave synchronisation and formation control tasks.

In the marine systems literature, leader–follower synchronisation has played an
important part in research on underway replenishment of ships, see for instance [15,
19, 24]. For these operations, the supply ship is usually responsible for synchro-
nising its motion with the ship it is supplying. In [19] the case of a fully actuated
follower that synchronises its output with a leader with unknown dynamics is inves-
tigated. An observer–controller scheme is utilised to achieve synchronisation where
the observers are used to estimate the unknown velocities of the leader and follower.
The observer–controller scheme utilised in [19] is based on theory for master–slave
synchronisation of robotic manipulators investigated in [21]. In [24] the focus is on
interaction forces between two vessels during underway replenishment operations.
For control purposes, the constant bearing guidance algorithm from [6] is used to
synchronise the ships along a straight-line path. The vessels are underactuated, but no
analysis of the underactuated internal dynamics is given. In [15] underway replen-
ishment between fully actuated vessels is investigated and adaptive backstepping
controllers are designed to reject exogenous disturbances.

Leader–follower synchronisation is also widely applied for other coordinated
control applications. Applications include master–slave synchronisation of robot
manipulators in [21], leader–follower synchronisation for control of mobile robots in
[2, 10, 11, 23] and for formation control of marine vessels in [7]. For these applica-
tions, the models are either fully actuated or formulated only at the kinematic level.
However, most commercial systems are underactuated or become underactuated at
higher speed, e.g. vessels with a tunnel thruster to apply a sideways force are fully
actuated for low speeds but the tunnel thruster becomes inefficient at cruising speed,
see [9] and the references therein. Also cars and most mobile robots are underactu-
ated (nonholonomic) systems. Furthermore, many marine vehicles and autonomous
aerial vehicles are second-order holonomic systems with internal dynamics that are
not asymptotically stable, i.e. are non-minimum phase systems. A formation control
strategy that can be applied to underactuated multi-agent systems is considered in
[16] where hybrid control techniques are used. The approach is based on consensus
rather than leader–follower synchronisation and does not take into account distur-
bance rejection. In [22] formation control of underactuated vessels under the influ-
ence of constant disturbances is considered using neural network adaptive dynamic
surface control to track pre-defined paths.

In [4] formation control of underactuated systems is considered, and straight-line
path following in formation is achieved for underactuated marine vessels under the
influence of constant ocean currents. Straight-line target tracking for underactuated
unmanned surface vessels is investigated in [8]. In [8] constant bearing guidance is
used to track a target moving in a straight line, experimental results are presented
but closed-loop stability is not proven.

The case considered in this work is leader–follower synchronisation for an under-
actuated follower in an inhomogeneous multi-agent system. The multi-agent system
can thus consist of a leader with arbitrary dynamics as long as it moves in the same
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space as the follower(s). The follower can be any type of vehicle described by the
nonlinear manoeuvring model that is introduced in the next section. For formation
control purposes, each follower can again be the leader of other followers, or all fol-
lowers can have the same leader. Examples of possible configurations are autonomous
surface vessels (ASV) following an autonomous underwater vehicle (AUV) as com-
munication nodes during AUV search and survey operations, or a fleet of ASVs
manoeuvring by following a leader. Since we consider an underactuated system, we
need to take into account the full dynamic model in the control design and analysis.
In particular, since the system is underactuated it is not possible to consider a purely
kinematic model since then the internal sway dynamics cannot be analysed. More-
over, for the case considered here it is not possible to perform feedback linearisation
of the full dynamics. The leader dynamics and the leader trajectories are assumed to
be unknown. The leader is free to move as it wants independently of the follower,
but the follower has access to measurements of the leader’s position and velocity in
the inertial frame for use in the guidance law. If the follower uses controllers with
acceleration feedforward, the leader’s acceleration and jerk also need to bemeasured.
This includes cases where there is communication between the leader and follower,
but also when the follower reads AIS measurements of the leader [18].

It should be noted that the leader–follower synchronisation scheme in this work
has its dual problem in trajectory tracking. Hence, the input signal of the leader could
easily be replaced by a virtual leader. This is true for most, if not all, leader–follower
type synchronisation schemes since the leader can always be represented as a virtual
vehicle with known trajectory and properties. However, when performing trajectory
tracking in most cases it is preferable to use information about the dynamics of the
vehicle since then perfect tracking can be achieved for all types of motions.When the
leader dynamics and desired trajectory are not known a priori, the followers’ internal
dynamics might be perturbed by the chosen leader motion. Moreover, when the
strategy is applied in a chained form, i.e. followers become leaders to other vehicles,
the duality is lost. The stability properties derived in this work will still hold with
respect to each leader. However, string stability is not considered in this work and
should be investigated to analyse the error propagation along the chain of vehicles.

Preliminary results for this problem have been presented in [5], where the fol-
lowers’ yaw rate was used as a parameter to limit the motion of the follower to
reduce the synchronisation error. However, in this work, the effect of the internal
dynamics was not considered in the analysis of the guidance. In this chapter, we
generalise the results of [5] by analysing the complete closed-loop system including
the fully actuated closed-loop dynamics, the underactuated sway dynamics in addi-
tion to the synchronisation error kinematics. We discuss the conditions to achieve
synchronisation and the physical meaning of these conditions. In particular, we show
that the synchronisation error kinematics become integral input-to-state stable (iISS)
with respect to changes in the velocity when coupled with the underactuated dynam-
ics, i.e. perfect synchronisation is not possible on trajectories that excite the under-
actuated dynamics. Moreover, we also prove that the constant bearing guidance
gives uniformly semiglobally exponentially stable (USGES) synchronisation error
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kinematics, rather than simply uniformly globally asymptotically stable (UGAS) and
uniformly locally exponentially stable (ULES) as proved in previous work.

The work is organised as follows. In Sect. 8.2, the dynamic model for the fol-
lower and the constant bearing guidance algorithm are introduced. The closed-loop
behaviour is investigated in Sect. 8.3. Section8.4 presents simulations considering
different scenarios. Finally, Sect. 8.5 gives the conclusions of the work.

8.2 The Follower

This section presents the model for the follower and the guidance law for the fol-
lower that is used to synchronise its motion to that of the leader. The leader–follower
synchronisation scheme is developed for a class of systems described by a 3-DOF
manoeuvring model. This class of systems includes underactuated autonomous sur-
face vessels (ASV) and autonomous underwater vehicles (AUV) moving in the hor-
izontal plane. However, it should be noted that the leader–follower scheme and
analysis can be extended to different classes of systems with similar properties such
as unmanned aerial vehicles by considering the appropriate dynamic model, con-
trol/guidance scheme and appropriate disturbances.

8.2.1 The Vessel Model

We consider an ASV or AUV moving in the horizontal plane. The motion of the
vessel is described by the position and orientation of the vessel w.r.t. the earth-fixed
reference frame, i.e. η � [x, y, ψ]T . For marine craft, the earth-fixed north-east-
down (NED) frame is usually used as an inertial frame [12]. The vector of linear
and angular velocities is given in the body-fixed reference frame by ν � [u, v, r ]T ,
containing the surge velocityu, swayvelocity v andyaw rate r . The vessel is disturbed
by an ocean current expressed in the inertial frame n, i.e. the earth-fixed frame. The
current is denoted by Vc and satisfies the following assumption.

Assumption 8.1 The ocean current is assumed to be constant and irrotational w.r.t.
n, i.e. Vc � [Vx , Vy, 0]T . Furthermore, it is bounded by Vmax > 0 such that ‖Vc‖ =√
V 2
x + V 2

y ≤ Vmax.

The ocean current velocity is expressed in the body-fixed frame b and is denoted
by νc � [uc, vc, 0]T . It can be obtained by νc = R(ψ)TV c where R(ψ) is the rotation
matrix from the body to inertial frame defined as

R(ψ) �

⎡

⎣
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤

⎦ . (8.1)
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The vessel model is expressed in terms of the relative velocity defined as νr � ν −
νc = [ur , vr , r ]T expressed in b. Since the ocean current is constant and irrotational,
the vessel can be described by the 3-DOF manoeuvring model [12]

η̇ = R(ψ)νr + V c, (8.2a)

M ν̇r + C(νr )νr + Dνr = B f . (8.2b)

The vector f � [Tu, Tr ]T is the control input vector, containing the surge thrust Tu
and the rudder angle Tr . ThematrixM = MT > 0 is the system inertiamatrix includ-
ing added mass, C is the Coriolis and centripetal matrix, D > 0 is the hydrodynamic
damping matrix and B is the actuator configuration matrix.

Remark 8.1 By expressing the model in relative velocities, the environmental dis-
turbances can be incorporated in the model more easily and controlled more straight-
forwardly.

Assumption 8.2 We assume port–starboard symmetry.

Remark 8.2 Assumption 8.2 is to the authors’ best knowledge satisfied for all com-
mercially available surface and underwater vessels.

The matrices M, D and B are constant and are defined as

M �

⎡

⎣
m11 0 0
0 m22 m23

0 m23 m33

⎤

⎦ , D �

⎡

⎣
d11 0 0
0 d22 d23
0 d32 d33

⎤

⎦ , B �

⎡

⎣
b11 0
0 b22
0 b32

⎤

⎦ .

The non-constant matrix C(νr ) can be derived from M (see [12]).

Assumption 8.3 It is assumed that the position of the body-fixed frame is chosen
such that M−1B f = [τu, 0, τr ]T .
Remark 8.3 This is possible as long as the centre of mass is located along the cen-
treline of the vessel. Coordinate transformations for this translation can be found in
[14].

The model can be written in component form as

ẋ = ur cos(ψ) − vr sin(ψ) + Vx , (8.3a)

ẏ = ur sin(ψ) + vr cos(ψ) + Vy, (8.3b)

ψ̇ = r, (8.3c)

u̇r = Fur (vr , r) + τu, (8.3d)

v̇r = X (ur )r + Y (ur )vr , (8.3e)

ṙ = Fr (ur , vr , r) + τr , (8.3f)
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which is clearly underactuated in sway. Therefore, tracking has to be achieved by a
suitable velocity and heading assignment that takes into account the underactuation.
For this purpose, constant bearing guidance is used. The definitions of Fur , X (ur ),
Y (ur ) and Fr are given by

Fur � 1

m11
(m22vr + m23r)r − d11

m11
ur , (8.4)

X (ur ) � m2
23 − m11m33

m22m33 − m2
23

ur + d33m23 − d23m33

m22m33 − m2
23

, (8.5)

Y (ur ) � (m22 − m11)m23

m22m33 − m2
23

ur − d22m33 − d32m23

m22m33 − m2
23

, (8.6)

Fr (ur , vr , r) � m23d22 − m22(d32 + (m22 − m11)ur )

m22m33 − m2
23

vr

+ m23(d23 + m11ur ) − m22(d33 + m23ur )

m22m33 − m2
23

r . (8.7)

Note that X (ur ) and Y (ur ) are bounded for bounded arguments and Y (ur ) satisfies
the following assumption.

Assumption 8.4 It is assumed that Y (ur ) satisfies

Y (ur ) ≤ −Ymin < 0, ∀ur ∈ [−Vmax,Umax].

with Umax the maximal surge speed of the follower.

Remark 8.4 This assumption is satisfied for commercial vessels by design, since
Y (ur ) ≥ 0would imply an undamped or nominally unstable vessel in sway direction.

8.2.2 Constant Bearing Guidance

This subsection briefly describes constant bearing guidance (CB) as presented in
[6, 12]. CB guidance assigns a desired velocity based on two different components
expressed in the earth-fixed frame. The first component is the velocity of the leader
vn
l = [ẋl , ẏl ]T which needs to be matched. The second component is the follower–

leader approach velocity vn
a which is proportional, but upper-bounded by amaximum,

to the relative position in the earth-fixed frame between the follower and the leader
p̃n = [x̃ n, ỹn]T and is aligned along the line-of-sight (LOS) vector. The superscript
n denotes that the variable is expressed in the earth-fixed frame. An illustration of the
constant bearing guidance can be seen in Fig. 8.1. The desired velocity assignment
for constant bearing guidance is given by
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Fig. 8.1 Constant bearing
guidance velocity
assignments and position
error

vn
d = vn

l + vn
a, (8.8)

vn
a = −κ

p̃n

‖ p̃n‖ , (8.9)

with vn
l the leader velocity, v

n
a the approach velocity and

p̃n � pn − pnl , (8.10)

is the LOS vector between the follower and the leader, where ‖ p̃n‖ ≥ 0 is the Euclid-
ean length of this vector and

κ = Umax
a

‖ p̃n‖√
( p̃n)T p̃n + Δ2

p̃

, (8.11)

with Umax
a the maximum approach speed and Δ p̃ a tuning parameter to affect the

transient leader–follower rendezvous behaviour, which results in the synchronisation
error kinematics

˙̃pn = vn
d − vn

l = −Umax
a

p̃n√
( p̃n)T p̃n + Δ2

p̃

. (8.12)

From (8.9) and (8.11) it can be seen that as p̃n → 0 the approach speed goes
to zero and the velocity of the follower approaches the leader velocity. Conversely,
when p̃n → ∞ the approach velocity approachesUmax

a and the guidance commands
the maximum allowed velocity to close the gap.

Assumption 8.5 To assure that the problem is feasible, we assume that the sum of
the magnitude of the leader velocity, the maximum approach speed and the ocean
current is smaller than the maximum feasible surge velocity of the followerUfeas, i.e.

‖vn
l ‖ +Umax

a + ‖V c‖ ≤ Ufeas (8.13)
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for all t > 0. Moreover, the desired speed is required to be positive, and we therefore
need to assume that

‖vn
l ‖ −Umax

a − ‖V c‖ > 0 (8.14)

for all t > 0.

Remark 8.5 Note that in order to converge to a point that is at a desired off-set
w.r.t the leader pr , the position of the leader should be included in (8.10) as pnl �
pnl,true + R(ψl) pr where R(ψl) is a rotation matrix describing the orientation of the
leader. For curved paths, the velocity vn

l should then also be calculated in the off-set
point to track the curvature with minimal error which requires the leader’s yaw rate.

As shown in [12] the stability and convergence of the CB guidance scheme,
i.e. (8.8)–(8.9) and (8.11), can be investigated using the positive definite, radially
unbounded Lyapunov function candidate (LFC)

V = 1

2
( p̃n)T p̃n. (8.15)

Time differentiation of (8.15) along the trajectories of p̃n gives

V̇ = ( p̃n)T (vn
d − vn

l ) = −κ
( p̃n)T p̃n

‖ p̃n‖ (8.16a)

= −Ua,max
( p̃n)T p̃n√

( p̃n)T p̃n + Δ2
p̃

< 0, ∀ p̃n 	= 0 (8.16b)

with vn
d − vn

l = vn
a by definition. Hence, the origin p̃n = 0 is uniformly globally

asymptotically stable (UGAS), which is the result given in [12].
Note however that by defining

φ∗(t, p̃n) � Umax
a√

( p̃n)T p̃n + Δ2
p̃

(8.17)

which for each r > 0 and | p̃n(t)| ≤ r gives

φ∗(t, p̃n) ≤ Umax
a√

r2 + Δ2
p̃

� c∗(r) (8.18)

which substituted in (8.16) gives

V̇ ≤ −2c∗(r)V (t, p̃n) (8.19)
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for all | p̃n(t0)| ≤ r and any r > 0. The solutions of a linear system of the form
ẋ = −2c∗(r)x are given by

x(t) = e−2c∗(r)(t−t0)x(t0) (8.20)

so by the comparison lemma [17, Lemma 3.4] we have

V (t, p̃n) ≤ e−2c∗(r)(t−t0)V (t0, p̃
n
(t0)) (8.21)

and consequently

‖ p̃n(t)‖ ≤ ‖ p̃n(t0)‖e−c∗(r)(t−t0) (8.22)

for all t > t0, | p̃n(t0)| ≤ r , and any r > 0. Therefore, we can conclude that (8.12)
is a uniformly semi-globally exponentially stable (USGES) system according to
[20, Definition 2.7], a result which has not previously been shown in [12] nor [5].

Theorem 8.1 Using the constant bearing guidance scheme, i.e. (8.8)–(8.9) and
(8.11), the origin of the synchronisation error kinematics (8.12) is uniformly semi-
globally exponentially stable (USGES).

The desired heading ψd and its derivative, the desired yaw rate rd , are calculated
by extracting heading information from the inner and outer products of the desired
velocity vn

d and the actual velocity vn [8]. This assures that vn is aligned with vn
d .

Moreover, since it provides us with the course, and equivalently heading, information
it allows for compensation of the environmental disturbance. More details about
constant bearing guidance can be found in [12] and the references therein.

8.2.3 The Controller

The control goals are

lim
t→∞ p̃n = 0, (8.23)

lim
t→∞ ṽn � vn − vn

d = 0, (8.24)

which correspond to synchronisation with the leader, i.e. that the follower vessel
follows the leader, with a constant desired relative position and the same inertial
frame velocity. Note that the body frame velocity may be different due to differences
in actuation topology etc. In this section, we present feedback linearising controllers
using the desired velocity and heading angle from Sect. 8.2.2, in order to achieve
these control goals. In the following section, it will be shown that the feasibility of
these goals depends on the type of motion the leader executes.
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Since the follower is underactuated, we cannot directly control the velocity in the
earth-fixed coordinates, but rather the forward velocity and yaw rate in body-fixed
coordinates. Therefore, we transform the velocity error in the earth-fixed frame to
an error in the body-fixed frame using the coordinate transformation

⎡

⎣
ψ̃

ũr
ṽr

⎤

⎦ =
⎡

⎣
1 0 0
0 cos(ψ̃ + ψd) sin(ψ̃ + ψd)

0 − sin(ψ̃ + ψd) cos(ψ̃ + ψd)

⎤

⎦
[
ψ̃

ṽn

]
. (8.25)

It is straightforward to show that the Jacobian of this transformation is given by

∂T

∂(ψ̃, ṽn
)

=
⎡

⎣
1 0 0

−ṽn
x s(·) + ṽn

yc(·) c(·) s(·)
−ṽn

x c(·) − ṽn
ys(·) −s(·) c(·)

⎤

⎦ (8.26)

with s(·) = sin(ψ̃ + ψd) and c(·) = cos(ψ̃ + ψd). The Jacobian (8.26) can easily be
verified to be non-singular. Consequently, T is a global diffeomorphism. A physical
interpretation of this is that when ψ̃ is driven to zero, i.e. vn is aligned with vn

d by
the CB guidance algorithm, the relative surge velocity error can be used to control
vn to vn

d . Note that perturbation of the underactuated sway motion will disturb this
balance which will be shown in the analysis of the next section.

Remark 8.6 For the underactuated model considered here only ũr = ur − ud can be
used for control purposes, while for the fully actuated case ṽr = vr − vd could be
used to control the sway velocity and the perturbation problem does not exist. For
the underactuated case, the heading controller needs to assure that vn is aligned with
vn
d and the control action can be prescribed solely by the surge actuator, something

which prevents the magnitude from being matched on curved trajectories and in the
presence of accelerations.

Remark 8.7 Note that the coupling between the heading and velocity control is what
allows for disturbance rejection. Since if a larger (or smaller) velocity is needed to
compensate for the effect of the current, the heading controller will assure that the
vessel is rotated such that vn and vn

d are aligned and hence the vessel keeps the correct
course.

We will use the following feedback linearising P controller for the surge velocity:

τu = − Fur (vr , r) + u̇d − kur (ur − ud), (8.27)

with kur > 0 a constant controller gain.
Using (8.27), we can control ur towards ud provided that we have the acceleration

of the leader available to calculate u̇d , but we cannot directly control vr . Along the
lines of [8], we aim to control vr indirectly by using a proper yaw rate controller.
Following [8], we have for χ̃ = χ − χd :
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sin(χ̃) = vn
d × vn

‖vn
d‖‖vn‖ = ẏvn

d,x − ẋvn
d,y√(

(vn
d,x )

2 + (vn
d,y)

2
)

(ẋ2 + ẏ2)

(8.28a)

cos(χ̃) = (vn
d)

T vn

‖vn
d‖‖vn‖ = ẋvn

d,x + ẏvn
d,y√(

(vn
d,x )

2 + (vn
d,y)

2
)

(ẋ2 + ẏ2)

(8.28b)

tan(χ̃) = vn
d × vn

(vn
d)

T vn
= ẏvn

d,x − ẋvn
d,y

ẋvn
d,x + ẏvn

d,y

⇒ χ̃ = −atan2(ẏvn
d,x − ẋvn

d,y, ẋv
n
d,x + ẏvn

d,y) (8.28c)

where χ̃ � ψ − ψd + β − βd � ψ̃ + β̃ with β̃ the difference in side-slip angle
between different orientations. We can thus define

ψd − β̃ = ψ − atan2(ẏvn
d,x − ẋvn

d,y, ẋv
n
d,x + ẏvn

d,y) (8.29)

Note that from (8.28) we also have

˙̃χ = ẋ ÿ − ẏ ẍ

ẋ2 + ẏ2
+ vn

d,y v̇
n
d,x − vn

d,x v̇
n
d,y

(vn
d,x )

2 + (vn
d,y)

2
(8.30)

so we can write

rd − ˙̃
β = r − ẋ ÿ − ẏ ẍ

ẋ2 + ẏ2
− vn

d,y v̇
n
d,x − vn

d,x v̇
n
d,y

(vn
d,x )

2 + (vn
d,y)

2
(8.31a)

� r − R1(ur , vr , ẋ, ẏ, v
n
d)r − R2(v

n
d , v̇

n
d) − R3(ur , vr , ẋ, ẏ, v

n
d , v̇

n
d)

(8.31b)

where

R1(·) �
u2r + v2r + V 2

x + X (ur )(ur + vbc,u) − vrv
b
c,v + urvbc,u − vnd,x (Vx − vr sin(ψ))

u2r + v2r + 2(urvbc,x + vrv
b
c,y) + V 2

x + V 2
y

+
−(vnd,y(vr − vbc,v) − vnd,xv

b
c,u) cos(ψ) + cos2(ψ)(V 2

y − V 2
x )

u2r + v2r + 2(urvbc,x + vrv
b
c,y) + V 2

x + V 2
y

≤ Cmax
R1

R2(·) �
vnd,y v̇

n
d,x − vnd,x v̇

n
d,y

(vnd,x )
2 + (vnd,y)

2

R3(·) �
Y (ur )vr (ur + vbc,u) + kur (ur − ud )(vr − vbc,v)

u2r + v2r + 2(urvbc,x + vrv
b
c,y) + V 2

x + V 2
y

+
v̇nd,x (v

b
c,u − vr ) cos(ψ) + v̇nd,y(Vx − vr sin(ψ) − vbc,u cos(ψ))

u2r + v2r + 2(urvbc,x + vrv
b
c,y) + V 2

x + V 2
y

≤ CR3

and vb
c,u � Vx cos(ψ) + Vy sin(ψ) and vb

c,v � −Vx sin(ψ) + Vy cos(ψ) are the com-
ponents of the current expressed in the body frame axis.
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Note that R1 can be bounded by the constant Cmax
R1

since R1 has the same growth
rate in vr and ur for the denominator and numerator while the ocean current compo-
nents are bounded (in body frame) and constant (in inertial frame). The term R3 can
be bounded by the constant CR3 since the denominator and numerator grow at the
same rate with respect to vr and ur and the current is bounded. Note that the denom-
inator of R1, R2 and R3 are larger than zero for non-zero ‖vn‖ and ‖vn

d‖ which is
verified by Assumption 8.5. Boundedness of R2 will be considered later since its
numerator grows linearly with vr and its denominator does not grow with vr .

Since the inertial frame velocities, i.e. ẋ and ẏ, are measured Vx and Vy can
be substituted in expression (8.31) using the model equations (8.3a) and (8.3b),
respectively, for implementation purposes. Alternatively, a kinematic ocean current
observer as in [1] can be used to estimate ẋ , ẏ, Vx and Vy based on measurements of
the positions and relative velocities. Hence, all the variables in (8.31) are known and
can thus be substituted in the yaw rate controller. A further derivative of (8.31) can

be taken to obtain ψ̈d − ¨̃
β as an acceleration feedforward. Note that this will also

require knowledge of the jerk of the leader motion since it contains Ṙ2(v
n
d , v̇

n
d) and

Ṙ3(ur , vr , ẋ, ẏ, vn
d , v̇

n
d).

To control the yaw rate, we use the following controller:

τr = −Fr (ur , vr , r) + 1

R1(ur , vr , ẋ, ẏ, vnd)

(
− Ṙ1(ur , vr , ẋ, ẏ, v

n
d)r − Ṙ2(v

n
d , v̇

n
d)

− Ṙ3(ur , vr , ẋ, ẏ, v
n
d , v̇

n
d) − kψ(ψ − ψd + β̃) − kr (ψ̇ − ψ̇d + ˙̃

β)
)

(8.32a)

= −Fr (ur , vr , r) + 1

R1(ur , vr , ẋ, ẏ, vnd)

(
− Ṙ1(ur , vr , ẋ, ẏ, v

n
d)r − Ṙ2(v

n
d , v̇

n
d)

− Ṙ3(ur , vr , ẋ, ẏ, v
n
d , v̇

n
d) − kψχ̃ − kr ˙̃χ

)
(8.32b)

with kψ > 0 and kr > 0 constant controller gains. This control action is well defined
if R1(ur , vr , ẋ, ẏ, vn

d) satisfies certain conditions, which is something discussed in
the following when considering the boundedness of r . We introduce the vector ξ �
[ũr , χ̃ , ˙̃χ ]T , with the tracking errors ũr � ur − ud , χ̃ � ψ̃ + β̃ and ˙̃χ � ˙̃

ψ − ˙̃
β.

The dynamics of ξ can be found by applying the controllers (8.27) and (8.32) to the
dynamical system (8.3) resulting in:

ξ̇ =
⎡

⎣
−kur 0 0
0 0 1
0 −kψ −kr

⎤

⎦ ξ � Σξ . (8.33)

The system (8.33) is linear and time invariant and kur , kψ and kr are strictly positive.
Consequently, Σ is Hurwitz and the origin of (8.33) is uniformly globally exponen-
tially stable (UGES) and hence the controllers guarantee exponential tracking of the
desired surge velocity and course.
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Note that through the assignment of (8.32) we use the heading controller to per-
form course control, i.e. we force the direction of vn

d and vn to be equal. To investigate
how the course controller affects r , we start by rewriting (8.31) to obtain

r = 1

R1(ur , vr , ẋ, ẏ, vn
d)

( ˙̃χ − R2(v
n
d , v̇

n
d) − R3(ur , vr , ẋ, ẏ, v

n
d , v̇

n
d)

)
(8.34)

This function is well defined if the numerator of R1 given in (8.31) is larger than
zero. This condition is satisfied if ud is sufficiently large at all time and if ur starts
sufficiently close to ud The term ˙̃χ/R1 will be bounded since ˙̃χ is bounded and R1

is bounded by constant CR1 as shown earlier. The same holds for the term R3/R1.
The term R2/R1 however grows linearly in vr since v̇n

d,x and v̇n
d,y depend linearly on

vr since the derivative of the approach speed vn
a depends on ẋ and ẏ. When (8.34) is

substituted in (8.3e), the linear growth will assure that there is no finite escape time
for vr but some conditions have to be satisfied to show boundedness. Summarising
the above, we have that the course controller results in a well-defined yaw rate if the
following condition is satisfied.

Condition 8.1 If the numerator of R1 is strictly larger than zero, then the yaw rate
equation (8.34) is well defined and bounded. In particular, besides being upper-
bounded there also exists a lower bound for R1 such that 0 < Cmin

R1
≤ R1(ur , vr , ẋ, ẏ).

Remark 8.8 Condition 8.1 is satisfied for a sufficiently large desired surge velocity
ud if ur starts in a neighbourhood of ud . Further analysis has to be performed to find
the precise physical meaning of the bound, but it appears to be that inertial frame
velocity vector has to have a positive magnitude for all time. This can be satisfied by
keeping the surge velocity ur sufficiently large to be able to dominate the effects of
the ocean current and the sway velocity vr . In particular, if the inertial frame velocity
vector would have a zero crossing, the rotation would change instantaneously and
when the magnitude of the inertial frame velocity vector is zero then the desired
rotation is undefined.

Remark 8.9 Note that Condition 8.1 is a condition that plays a role in the initial
behaviour when the difference between the initial orientation of the follower and
the leader is large, e.g. if they point in opposite directions. In this case, ud obtained
from (8.25) needs to be saturated to a lower bound such that it stays positive and
well defined. As soon as the follower is oriented in the same direction as the leader,
Condition 8.1 is easily satisfied for physically sensible motions of the leader and ud
can simply be obtained from (8.25).

The term R2 canbe interpreted as dependent on the desired curvature of themotion.
In particular, it can be rewritten as R2 = ‖vn

d‖κ where κ denotes the curvature of the
desired trajectory. This term grows linearly with the inertial frame velocities of the
follower since it depends on v̇n

a
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R2(v
n
d , v̇

n
d) = vn

d,y v̇
n
d,x − vn

d,x v̇
n
d,y

(vn
d,x )

2 + (vn
d,y)

2
= vn

d,y v̇
n
l,x − vn

d,x v̇
n
l,y

(vn
d,x )

2 + (vn
d,y)

2
+ vn

d,y v̇
n
a,x − vn

d,x v̇
n
a,y

(vn
d,x )

2 + (vn
d,y)

2

(8.35)

which using the transformation (8.25) can be bounded by

R2 ≤ Umax
a

(vnd,x )
2 + (vnd,y)

2

⎛

⎝ vnd,y + vnd,x√
x̃2 + ỹ2 + Δ2

p̃

+ vnd,y(x̃
2 + x̃ ỹ) + vnd,x (ỹ

2 + x̃ ỹ)

(x̃2 + ỹ2 + Δ2
p̃)

3/2

⎞

⎠ ṽr + CR2

� R′
2ṽr + CR2 (8.36)

where CR2 is some constant which magnitude will depend on the leader’s velocity
and acceleration. Note that the term R′

2 is uniformly bounded for desired velocities
greater than zero and that it decreases as the positional error grows. Moreover, it
contains two parameters that can be tuned, i.e. the maximum approach speedUa,max

and the interaction tuning parameterΔ p̃. Hence, these tuning parameters can be used
to influence the interaction behaviour between r and vr .

8.3 Closed-Loop Analysis

In this section, the closed-loop system, i.e. the fully actuated closed-loop dynamics,
the underactuated swaydynamics and the synchronisation error kinematics, are inves-
tigated. In particular, the closed-loop path-following error kinematics and dynamics
for (8.2) with the proposed leader–follower synchronisation scheme is given by

˙̃pn = − Umax
a p̃n√

( p̃n)T p̃n + Δ2
p̃

+
[
ũr cos(χ̃ − β̃ + ψd) − ṽr sin(χ̃ − β̃ + ψd)

ũr sin(χ̃ − β̃ + ψd) + ṽr cos(χ̃ − β̃ + ψd)

]

(8.37a)

˙̃vr = Y (ur )ṽr + X (ur )r − v̇d − Y (ur )vd (8.37b)

ξ̇ = Σξ (8.37c)

where vd and v̇d can be verified to be given by

vd = (Vx − vn
d,x ) sin(ψ) − (Vy − vn

d,y) cos(ψ) (8.38)

v̇d = −v̇n
d,x sin(ψ) + (Vx − vn

d,x )r cos(ψ) + v̇n
d,y cos(ψ) + (Vy − vn

d,y)r sin(ψ)

= −(v̇n
d,x + v̇n

a,x + (Vy − vn
d,y)r) sin(ψ) + (v̇n

l,y + v̇n
a,y + (Vx − vn

d,x )r) cos(ψ)

(8.39)

with vd bounded for a bounded leader velocity. The equation for v̇d depends on v̇n
a,x ,

v̇n
a,y and r which will depend on ṽr . However, as in (8.36), we can derive a bound
for v̇d



8 Leader–Follower Synchronisation for a Class of Underactuated Systems 171

v̇d ≤
⎛

⎝‖V c − vn
d‖2R′

2

Cmin
R1

+ Umax
a√

x̃2 + ỹ2 + Δ2
p̃

(
1 + (x̃ + ỹ)2

x̃2 + ỹ2 + Δ2
p̃

)⎞

⎠ ṽr + C2

(8.40a)

≤ C3ṽr + C2 (8.40b)

where C2 is a constant which will depend on the leader’s maximum velocity and
acceleration and on themagnitude of the ocean current. Themagnitude of the constant
C3 can again be adjusted by tuning Umax

a and Δ p̃.
Please note that the terms perturbing the CB path following error system in (8.37a)

compared to (8.12) arise since we here do not only consider the kinematic model,
but instead take into account the (underactuated) dynamics given in (8.37b)–(8.37c).
We thus take into account that the desired inertial frame velocity may not be matched
since part of the error in the inertial frame velocity error is transferred to the sway
direction as seen in (8.25). Note that this coupling between the underactuated dynam-
ics and the synchronisation error kinematics was not taken into account in [5].

In order to not violate Condition 8.1, we analyse the system (8.40) under the
following assumption.

Assumption 8.6 The desired relative surge velocity is saturated to a sufficiently
large lower bound ud,min such that Condition 8.1 is not violated. It is assumed that
there exists such a lower bound that satisfiesud,min < ‖vn

d‖, i.e. that the leader velocity
can be matched without violating Condition 8.1.

Since ur = ud is a stable equilibrium point the surge velocity dynamics, for any
δ > 0 there exists a positively invariant neighbourhood of the equilibrium point such
that all solutions originating in this neighbourhood satisfy |ur − ud | < δ. Therefore,
in the remainder, we only consider solutions starting in the neighbourhood of ur = ud
such that Condition 8.1 is not violated and there are no finite escape times.

Since substituting (8.34) in (8.37b) shows that there is no finite escape time for vr
and the tracking dynamics (8.37c) are UGES, it suffices to investigate local bound-
edness of vr near the set where ur − ud ≤ δ such that r is well defined. Therefore,
we consider the system

˙̃vr = Y (ur )ṽr + X (ur )r − v̇d − Y (ur )vd (8.41)

We substitute (8.34) and we obtain

˙̃vr = Y (ur )ṽr + X (ur )

R1(ur , vr , ẋ, ẏ, vn
d)

( ˙̃χ − R2(v
n
d , v̇

n
d) − R3(ur , vr , ẋ, ẏ, v

n
d , v̇

n
d)

)

− v̇d − Y (ur )vd (8.42)
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Using the following Lyapunov function, we show boundedness for all solutions
starting in the neighbourhood of ur = ud by considering the Lyapunov function

V (ṽr ) = 1

2
ṽ2
r (8.43)

The derivative of (8.43) along the solutions of (8.41) is given by

V̇ (ṽr ) = Y (ur )ṽ
2
r +

X (ur )
( ˙̃χ − R2(v

n
d , v̇

n
d) − R3(ur , vr , ẋ, ẏ, vn

d , v̇
n
d)

)

R1(ur , vr , ẋ, ẏ, vn
d)

ṽr

+ (v̇d − Y (ur )vd) ṽr (8.44a)

≤ −
(

|Ymin| − |Xmax|R′
2

Cmin
R1

− C3

)
ṽ2
r +

|Xmax|
(
| ˙̃χ | + CR2 + CR3

)

Cmin
R1

ṽr

+ (C2 + |Ymax|vd)ṽr (8.44b)

where Ymin, Ymax and Xmax are the minimum and maximum values over the interval
of velocities considered and will exist for sufficiently small δ. From which we can
conclude boundedness if

|Ymin|
|Xmax| >

|R′
2|

Cmin
R1

+ C3

|Xmax| (8.45)

which is a bound that depends on the leader motion, the environmental disturbance
and parameters Umax

a and Δ p̃. From (8.36) and (8.40), we can see that the term
R′
2 can be tuned using the parameters Umax

a and Δ p̃. In particular, if we increase
Δ p̃, i.e. choose a smoother leader–follower rendezvous behaviour, then the terms
R′
2 and C3 will be reduced. Hence, condition (8.45) can be guaranteed to hold by

appropriate tuning of the constant bearing guidance algorithm and all solutions of
(8.37b) originating in a neighbourhood of ur = ud are uniformly bounded.

Remark 8.10 Note that increasingΔ p̃ has an effect on the dissipating term in (8.37a).
In particular, it lowers the ‘gain’ of the synchronisation around the origin, i.e. the
turning manoeuvre required will be less severe which has a positive effect on (8.45),
but the synchronisation error increases since the follower takes a smoother trajectory.

We can now investigate the interconnection between (8.37a) and (8.37b). In par-
ticular, we show that the synchronisation error kinematics are integral input-to-state
stable with respect to the output of (8.37b) and (8.37c). If we lump the perturbations
into a new input ν(t) � [ν1(t), ν2(t)]T , we can rewrite (8.37a) as

˙̃pn = − Umax
a√

( p̃n)T p̃n + Δ2
p̃

p̃n + ν(t) (8.46)
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If we consider the Lyapunov function

V ( p̃n) = ( p̃n)T p̃n√
( p̃n)T p̃n + Δ2

(8.47)

we obtain

V̇ ( p̃n) = 2( p̃n)T ˙̃pn√
( p̃n)T p̃n + Δ2

p̃

−
(
( p̃n)T ˙̃pn

) (
( p̃n)T p̃n

)

2
(
( p̃n)T p̃n + Δ2

p̃

)3/2 (8.48a)

≤ −2Umax
a ( p̃n)T p̃n

( p̃n)T p̃n + Δ2
p̃

− Umax
a

(
( p̃n)T p̃n

)
(
( p̃n)T p̃n + Δ2

p̃

)2 + 3

2
‖ν(t)‖ (8.48b)

≤ −2Umax
a ( p̃n)T p̃n

( p̃n)T p̃n + Δ2
p̃

− Umax
a

(
( p̃n)T p̃n

)
(
( p̃n)T p̃n + Δ2

p̃

)2 + 3
√
2

2
‖[ũr , ṽr ]T ‖ (8.48c)

The first two terms are clearly negative definite and the third term is a class K
function of the input. Consequently, (8.47) is an iISS Lyapunov function for (8.37a)
[3] and the system (8.37) is iISS with respect to ũr and ṽr . The results of this section
can be summarised in the following theorem.

Theorem 8.2 Consider the system (8.37). Under Assumptions 8.1–8.6 all the solu-
tions of (8.37) starting in a neighbourhood of ur = ud are bounded if theCBguidance
algorithm is tuned such that it holds that

|Ymin|
|Xmax| >

|R′
2|

Cmin
R1

+ C3

|Xmax| (8.49)

for the given leader motion. Moreover, the synchronisation error kinematics (8.37a)
are integral input-to-state stable with respect to the output of (8.37b)–(8.37c).

Corollary 8.1 If the leader trajectory is a straight-line with constant velocity then,
under the conditions of Theorem 8.2, the synchronisation error converges to zero.

Proof In this case, the course of the leader and its inertial frame velocity are constant.
Therefore, as the follower synchronises with the leader its course will converge to the
leader’s course. Since ṽr is not directly controllable, the only stable configuration the
follower can be regulated to, to keep a constant course, will be when r → 0 and vr →
0. Consequently, both ṽr and ũr go to zero and we arrive at the unperturbed version
of (8.37a), i.e. (8.12), which has a USGES equilibrium according to Theorem 8.1.
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8.4 Simulations

In this section, two scenarios are used as case studies to validate the control strategy

1. the leader moves along a straight-line path that is at an angle with respect to the
earth-fixed frame.

2. the leader moves along a sinusoidal path.

In both cases, the follower ship is affected by a constant ocean current. The leader
is represented by a point moving in the horizontal plane that is to be followed. This
allows for a very straightforward implementation of the desired path and illustrates
that the leader dynamics are not needed for the control strategy. Some parameters for
the simulations are given in Table8.1. This includes the parameters for the controllers
and guidance law, and the magnitude of the ocean current. The follower vessel in the
simulation is described by the ship model from [13].

Table 8.1 Simulation parameters

Variable Value Unit Variable Value Unit

Ua,max 2 m/s kψ 0.04 –

Δ p̃ 500 m kr 0.9 –

Vx −1.1028 m/s kur 0.1 –

Vy 0.8854 m/s
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Fig. 8.2 Motion in the horizontal plane
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8.4.1 Straight-Line Path Following

The motion of the leader and the follower in the horizontal plane can be seen in
Fig. 8.2. From Fig. 8.2 it can be seen that the follower converges to the trajectory of
the leader and compensates for the current by side-slipping to maintain the desired
path. The side-slipping is a desired result of the control strategy and is necessary to
remain on the straight-line path in the presence of ocean currents. In particular, since
the vessel is underactuated in sway, a side-slip angle w.r.t. the path is necessary to
compensate for the force pushing the vessel in the transverse direction of the path.
Since the desired heading angle is calculated from the inner and outer products of
the desired and actual velocity, the desired angle is the angle for which the velocity
error is zero, which is the necessary side-slip angle.

The synchronisation error in x and y can be seen in Fig. 8.3. Figure8.3 clearly
shows that x̃ n and ỹn converge to zero. Hence, target tracking or leader–follower
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Fig. 8.3 x (top) and y (bottom) synchronisation error
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synchronisation with zero synchronisation error is attained for straight-line motions
with rd → 0 which is in-line with our analysis of Sect. 8.3.

8.4.2 Sinusoidal Path Following

In the second case study, the leader generates a sinusoidal reference for the follower
which demands a constantly changing desired yaw rate. Hence, the synchronisation
error kinematics are perturbed.

The trajectory of the leader and the follower for tracking of a sinusoidal path
can be seen in Fig. 8.4. From Fig. 8.4 it can be seen that the follower gets close to
the trajectory of the leader and compensates for the current to maintain the desired
path. Figure8.5 shows the position synchronisation error in the x and y direction.
From Fig. 8.5 it can be seen that the synchronisation error in x decreases below
an amplitude of about 1.5m, while the error in y direction, which is the direction
transversal to the propagation of the sinusoid and most prone to drift, decreases to
below 2.5m. Note that the error plots are asymmetric due to the vessel changing its
direction with respect to the current which causes different behaviour.

The behaviour in the test-case is in-linewith the analysis of Sect. 8.3 sincewe have
convergence from large initial errors, the follower converges towards the trajectory
of the leader. When the follower is close to the leader, the follower exhibits integral
input-to-state stable behaviour and stays in a neighbourhood of the leader dependent
on the size of the desired yaw rate to track this motion.
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8.5 Conclusions

This chapter has presented and analysed a control scheme for leader–follower syn-
chronisation for inhomogeneous multi-agent systems consisting of an underactuated
follower and a leader vessel with unknown dynamics. The developed leader–follower
scheme can be applied tomulti-agent systemswith underactuated follower agents that
are subjected to environmental disturbances. The dynamics of the leader is unknown,
and the leader may be fully actuated or underactuated. Position and velocity mea-
surements of the leader are available to the follower for use in the guidance law. If the
follower uses controllers with acceleration feedforward, acceleration and jerk mea-
surements of the leader also need to be available to the follower. The leader is free to
move as it wants independently of the follower(s), and can for instance be manually
controlled. The follower thus has no information about the futuremotion of the leader.
The follower uses a constant bearing guidance algorithm to track the leader. The con-
stant bearing guidance algorithm is shown to provide USGES synchronisation error
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kinematics. The constant bearing guidance algorithm is then coupled to controllers
designed for the underactuated follower vehicle. This results in a closed-loop sys-
tem consisting of the fully actuated controlled dynamics, underactuated dynamics
and synchronisation error kinematics. The solutions of the underactuated and the
fully actuated dynamics, have been shown to be bounded under certain conditions.
Furthermore, the synchronisation error kinematics has been shown to be integral
input-to-state stable with respect to changes in the unactuated sway velocity. More-
over, it has been shown that synchronisation can be achieved when the leader moves
along a straight-line since in this case the perturbation of the underactuated dynamics
to the synchronisation error kinematics vanishes. The validity of the control scheme
has been shown in a case study.
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Chapter 9
Position Control via Force Feedback
in the Port-Hamiltonian Framework

Mauricio Muñoz-Arias, Jacquelien M.A. Scherpen and Daniel A. Dirksz

Abstract In this chapter, position control strategies via force feedback are presented
for standard mechanical systems in the port-Hamiltonian framework. The presented
control strategies require a set of coordinate transformations, since force feedback in
the port-Hamiltonian framework is not straightforward. With the coordinate trans-
formations force feedback can be realized while preserving the port-Hamiltonian
structure. The port-Hamiltonian formalism offers a modeling framework with a clear
physical structure and other properties that can often be exploited for control design
purposes, which is why we believe it is important to preserve the structure. The pro-
posed control strategies offer an alternative solution to position control with more
tuning freedom and exploit knowledge of the system dynamics.

9.1 Introduction

We are honored to write this chapter at the occasion of the 60th birthday of Henk
Nijmeijer. I (the second author) know Henk as an influential and stimulating teacher
during my study Applied Mathematics at the University of Twente more than 25
years ago. When I performed my traineeship and master thesis project under his
supervision, he raised my interest in doing a Ph.D. in the field of systems and con-
trol. The corresponding research environment in Twente was open, international and
inspiring, and Henk contributed significantly to that, being one of the leaders in the
field of nonlinear control systems. In recent years, we started to collaborate and
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publish together. I wish for new collaborations and exchange of ideas in the future.
Congratulations Henk!

The current technological advances continuously increase the demand for robots
and intelligent systems that are fast, accurate, and able to perform tasks under different
circumstances. Sensing andusing forcemeasurements are examples of how reliability
and performance of such robotic systems can be improved for almost all tasks in
which a manipulator comes in contact with external objects [3, 10, 24]. Position
control with force feedback for robotic systems has been thoroughly discussed in [3,
10, 18, 19, 25] and the references therein for the Euler–Langrange (EL) framework.
In the EL framework, control design is based on selecting a suitable storage function
that ensures position control. However, the desired storage function under the EL
framework does not qualify as an energy function in any physically meaningful sense
as stated in [3, 19].

In this chapter, we present position control strategies via force feedback for stan-
dardmechanical systems in the PH framework. The port-Hamiltonian (PH)modeling
frameworkof [13, 26] has received a considerable amount of interest in the last decade
due to its insightful physical structure. Moreover, it is well known that a larger class
of (nonlinear) physical systems can be described in the PH framework. The pop-
ularity of PH systems can be largely accredited to its application for analysis and
control design of physical systems, as shown in [6–8, 20, 21, 26] and many others.
Control laws in the PH framework are derived with a clear physical interpretation via
direct shaping of the closed-loop energy, interconnection, and dissipation structure,
see [6, 26]. In this chapter, we apply the PH modeling framework, since it allows
extensions on the system coordinates, which facilitates the incorporation of force
feedback in the input of the systems. Lastly, the presented control strategy preserves
the PH structure, thus granting the aforementioned advantages to the closed-loop
system.

The results presented in this chapter are based on [15], and extend the results
presented in [16] and [17]. In [16] a class of standard mechanical systems in the
PH framework with force feedback and zero external forces has been introduced,
for mechanical systems with a constant mass-inertia matrix. However, applying the
results from [16] to systems with a nonconstant mass-inertia matrix is not trivial.
In [17] preliminary results are presented for the more general class of mechanical
systems with a nonconstant mass-inertia matrix. In this chapter, we combine these
previous results into a PH framework for position control with force feedback for
standard mechanical systems.

The main contribution of this chapter is the introduction of an alternative posi-
tion control strategy for mechanical systems that includes force feedback, in the PH
framework. We present a control approach based on the modeled internal forces of
a standard mechanical system; for this approach the system is extended with the
internal forces into a PH system, which is then asymptotically stabilized. Further-
more, we analyze the disturbance attenuation properties to external forces, i.e., when
the external forces are constant we show that the system has a constant steady-
state error, and we apply an integral type control to compensate for position errors
caused by these constant forces. We reformulate the stability analysis and analyze



9 Position Control via Force Feedback … 183

the robustness against external forces of the control strategy. The resulting controller
has nicely tunable properties and interpretations, outperforming most of the existing
force feedback control strategies. In addition, we develop a strategy assuming that
we have force sensors that give measurements of the (real) total forces in the system,
i.e., the internal plus external forces. Those measurements can be used to realize
rejection of the external forces in the system.

The chapter is organized as follows. In Sect. 9.2.1, we provide a general back-
ground in the PH framework [6]. In Sect. 9.2.2, we apply the results of [27] to equiva-
lently describe the original PH system in a PH formwhich has a constant mass-inertia
matrix in the Hamiltonian via a change of coordinates. This coordinate transforma-
tion simplifies the extension of the results in [16] to systems with a nonconstant
mass-inertia matrix. A PH model of a robot manipulator of two-DOF is introduced
in order to show a mass-inertia decomposition case. Furthermore, in Sect. 9.2.3 we
briefly recall the Hamilton–Jacobi inequality related to L2 analysis. In Sect. 9.2.4,
we recap the constructive procedure of [14] to modify the Hamiltonian function of
a forced PH system in order to generate Lyapunov functions for nonzero equilibria,
i.e., a system in the presence of nonzero constant external forces. In Sect. 9.3, we
realize a dynamic extension in order to include the modeled internal forces, while
preserving the PH structure. In Sect. 9.4, we present the position control which uses
feedback of the modeled forces. We also look at the disturbance attenuation proper-
ties when there are external forces, and we apply a type of integral control when the
external forces are constant. For constant forces the system converges to a constant
position different than the desired one, justifying the application of integral control.
In Sect. 9.5, we assume that we have measurements of the total forces in the system,
and use these measurements for control. Consequently, we show that we can realize
rejection of the total forces in the system while preserving the PH structure. Finally,
simulations are given in Sect. 9.6 to motivate our results for position control, and
concluding remarks are provided in Sect. 9.7.

9.2 Preliminaries

This section provides the background for the main contributions presented in this
chapter. We deal here with the analysis of physical systems described in the PH
framework, canonical transformations, and stability analysis in the presence of a
disturbance, and a constant force in the input of system.

9.2.1 Port-Hamiltonian Systems

We briefly recap the definition, properties and advantages of modeling and control
with the PH formalism.
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The PH framework is based on the description of systems in terms of energy
variables, their interconnection structure, and power ports. PH systems include a large
family of physical nonlinear systems. The transfer of energy between the physical
system and the environment is given through energy elements, dissipation elements,
and power preserving ports [6, 13], based on the study of Dirac structures.

A class of PH system, introduced in [13], is described by

Σ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = [J (x) − R (x)]
∂ H (x)

∂x
+ g (x) w

y = g (x)�
∂ H (x)

∂x

(9.1)

with x ∈ R
N the states of the system, the skew-symmetric interconnection matrix

J (x) ∈ R
N ×N , the positive-semidefinite dampingmatrix R (x) ∈ R

N ×N , and the
Hamiltonian H (x) ∈ R. Thematrix g (x) ∈ R

N ×M weights the action of the control
inputs w ∈ R

M on the system, and w, y ∈ R
M with M ≤ N , form a power port

pair. We now restrict the description to a class of standard mechanical systems.
Consider a class of standard mechanical systems of n-DOF as in (9.1), e.g., an

n-DOF rigid robot manipulator. Consider furthermore the addition of an external
force vector. The resulting system is then given by

[
q̇
ṗ

]
=
[

0n×n In×n

−In×n −D (q, p)

]
⎡

⎢⎣

∂ H (q, p)

∂q
∂ H (q, p)

∂p

⎤

⎥⎦+
[
0n×n

G (q)

]
u +
[
0n×n

B (q)

]
fe (9.2)

y = G (q)�
∂ H (q, p)

∂p
, (9.3)

with the vector of generalized configuration coordinates q ∈ R
n , the vector of gen-

eralized momenta p ∈ R
n , the identity matrix In×n , the damping matrix D (q, p) ∈

R
n×n , D (q, p) = D (q, p)� ≥ 0, y ∈ R

n the output vector, u ∈ R
n the input vector,

fe ∈ R
n the vector of external forces,N = 2n, matrix B (q) ∈ R

n×n , and the input
matrix G (q) ∈ R

n×n everywhere invertible, i.e., the PH system is fully actuated. The
Hamiltonian of the system is equal to the sum of kinetic and potential energy,

H (q, p) = 1

2
p�M−1 (q) p + V (q) , (9.4)

where M (q) = M� (q) > 0 is the n × n inertia (generalizedmass) matrix and V (q)

is the potential energy.
We consider the PH system (9.2) as a class of standard mechanical systems with

external forces.
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Remark 9.1 The robot dynamics is given in joint space in (9.2), and here the external
forces fe ∈ R

n are introduced. The geometric Jacobian maps the external forces in
the work space, Fe, to the (generalized) external forces in the joint space, fe, [25].
In this chapter the following holds,

fe = J (q)� Fe, Fe ∈ R
N , (9.5)

and the geometric Jacobian is given by

J (q) =
[
Jv (q)

Jω (q)

]
∈ R

6×n, (9.6)

where Jv (q) ∈ R
3×n , and Jω (q) ∈ R

3×n are the linear, and angular geometric
Jacobians, respectively, and N = {3, 6}. If the Jacobian is full rank, we can always
find fe ∈ R

n that corresponds to Fe. Then, it is not a limitation to suppose B (q) = In .
This separation between joint and work spaces is important here, because we control
the robot by acting on the generalized coordinates q, i.e., in the joint space, but we
grasp objects with the end-effector in the work space.

Example 9.1 Consider the systemgiven by the two-DOFshoulder of thePERA, [23].
A picture of the PERA is shown in Fig. 9.1. A Denavit–Hartenberg representation of
the PERA, see [25], is given in Fig. 9.2. The shoulder consists of a link actuated by
two motors. The model of the shoulder consists of a mass ms , a link length ls , and a
linear damping ds > 0. The states of the system are x = (q, p)�, where (q, p) ∈ R

2

are the generalized coordinates q1, and q2, and p1, p2 are the generalized momenta
of the system. The system is described in the PH form by

Fig. 9.1 PERA at the University of Groningen
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Fig. 9.2 Denavit–Hartenberg representation of the PERA [12]

[
q̇
ṗ

]
=
[

02×2 I2×2

−I2×2 D (q, p)

]⎡

⎣
∂V (q)

∂q
M (q)−1 p

⎤

⎦+
[
0
G

]
us +
[
0
B

]
fe (9.7)

ys = G�M (q)−1 p (9.8)

with an input matrix G = I2×2 (fully actuated), a vector of external forces fe ∈ R
2,

an input–output port pair (us, ys), Hamiltonian of the form

H (q, p) = 1

2
p�M (q)−1 p + V (q) (9.9)

with V (q) the potential energy, and a mass-inertia matrix M (q) ∈ R
2×2, s.t.,

M (q) = diag (a, b) where

a = msl
2
s cos (q2)

2 + I1 + I2 (9.10)

b = msl
2
s + I2 (9.11)

and with I1, and I2 the inertias of the joints. Furthermore, the gravity vector is

∂V (q)

∂q
=
[

gmsls cos (q2) sin (q1)

gmsls sin (q2) cos (q1)

]
(9.12)
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with g the gravitational acceleration. The shoulder is experiencing Coulomb fric-
tion that we have determined, and validated experimentally, [2, 12]. The dissipation
matrix has the form

D (q, p) = D (q̇) = diag
(
ds1 (q̇1) , ds2 (q̇2)

)
, (9.13)

where q̇ = M−1 (q) p, and with

dsi =
(

Fci + (Fsi − Fci

)
e|q̇i |q̇−1

si

) (
α fi + q̇2

i

)−0.5 + Fvi q̇i , (9.14)

where Fci , Fsi , and Fvi are the Coulomb, static, and viscous friction coefficients,
respectively, and the Coulomb friction force is approximated as in [9] with posi-
tive (small) constants αi , q̇si is the constant due to the Stribeck velocity [1], and
i = 1, 2. �

9.2.2 Canonical Transformations of Port-Hamiltonian
Systems

We recap here the results of [7, 8] in terms of generalized coordinate transformations
for PH systems, and we apply the results of [27] to equivalently describe the original
PH system in a PH formwhich has a constant mass-inertia matrix in the Hamiltonian.

A generalized canonical transformation of [7] is applied in (9.1) via a set of
transformations

x̄ = Φ (x) (9.15)

H̄ (x̄) = H (x) + U (x) (9.16)

ȳ = y + α (x) (9.17)

ū = u + β (x) (9.18)

that changes the coordinates x into x̄ , the Hamiltonian H into H̄ , the output y into
ȳ, and the input u into ū. It is said to be a generalized canonical transformation for
PH systems if it transforms a PH system (9.1) into another one.

The class of generalized canonical transformations are characterized by the fol-
lowing theorems.

Theorem 9.1 ([8]) Consider the PH system (9.1). For any smooth scalar func-
tion U (x) ∈ R, and any smooth vector function β (x) ∈ R

M , there exists a pair of
smooth functions Φ (x) ∈ R

N and α (x) ∈ R
M such that the set of equations (9.15)–

(9.18) yields a generalized canonical transformation. The function Φ (x) yields a
generalized canonical transformation with U (x) and β (x) if and only if the partial
differential equation (PDE)
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∂Φ

∂ (x, t)

⎛

⎝ (J − R)
∂U

∂x

�
+ (K − S)

∂ (H + U )

∂x

�
+ gβ

−1

⎞

⎠ = 0 (9.19)

holds with a skew-symmetric matrix K (x), and a symmetric matrix S (x) satisfying
R (x) + S (x) ≥ 0. We have left out the arguments of Φ (x), H (x), J (x), R (x),
S (x), K (x), U (x), g (x), and β (x), for notational simplicity. Furthermore, the
change of output α (x), and the matrices J̄ (x̄), R̄ (x̄), and ḡ (x̄), are given by

α (x) = g (x)�
∂U (x)

∂x
(9.20)

J̄ (x̄) = ∂Φ (x)

∂x
(J (x) + K (x))

∂Φ (x)

∂x

�
(9.21)

ḡ (x̄) = ∂Φ (x)

∂x
g (x) (9.22)

R̄ (x̄) = ∂Φ

∂x
(R (x) + S (x))

∂Φ (x)

∂x

�
. (9.23)

Theorem 9.2 ([8]) Consider the PH system described by (9.1) and transform
it by the generalized canonical transformation with U (x) and β (x) such that
H (x) + U (x) ≥ 0. Then, the new input-output mapping ū → ȳ is passive with stor-
age function H̄ (x̄) if and only if

∂ (H + U )

∂ (x)

�
⎛

⎝ (J − R)
∂U

∂x

�
− S

∂ (H + U )

∂x

�
+ gβ

−1

⎞

⎠ ≥ 0. (9.24)

Suppose that (9.19) holds, that H (x) + U (x) is positive-definite and that the system
is zero-state detectable. Then, the feedback u = −β (x) − C (x) (y + α (x)) with
C (x) ≥ ε I > 0 renders the system asymptotically stable. Suppose moreover that
H + U is decrescent and that the transformed system is periodic, then, the feedback
renders the system uniformly asymptotically stable.

Consider a class of standard mechanical systems (9.2) in the PH framework with
a nonconstant mass-inertia matrix M (q). The aim of this section is to transform the
original system (9.2) into a PH formulation with a constant mass-inertia matrix via a
generalized canonical transformation [7]. The presented change of variables to deal
with a nonconstant mass- inertia matrix has first been proposed in [27].

Consider the system (9.1) with nonconstant M (q), and a coordinate transforma-
tion as

x̄ = Φ (x) = Φ (q, p) �
(

q̄
p̄

)
=
(

q − qd

T (q)−1 p

)
=
(

q − qd

T (q)� q̇

)
(9.25)
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with a constant desired position qd ∈ R
n , andwhere T (q) is a lower triangularmatrix

such that
T (q) = T

(
Φ−1 (q, p)

) = T̄ (q̄) (9.26)

and

M (q) = T (q) T (q)� = T̄ (q̄) T̄ (q̄)� . (9.27)

Consider now the Hamiltonian H (q, p) as in (9.4), and using (9.25), we realize
H̄ (x̄) = H

(
Φ−1 (x̄)

)
and V̄ (q̄) = V

(
Φ−1 (q̄)

)
as

H̄ (x̄) = 1

2
p̄� p̄ + V̄ (q̄) . (9.28)

The new form of the interconnection and damping matrices of the PH system are
realized via the coordinate transformation (9.25), the mass-inertia matrix decompo-
sition (9.27), and the new Hamiltonian (9.28), [26]. The resulting PH system is then
given by

[ ˙̄q
˙̄p
]

=
[

0n×n T̄ (q̄)−�

−T̄ (q̄)−1 J̄2 (q̄, p̄) − D̄ (q̄, p̄)

]
⎡

⎢⎢⎣

∂ H̄ (q̄, p̄)

∂ q̄
∂ H̄ (q̄, p̄)

∂ p̄

⎤

⎥⎥⎦

+
[
0n×n

Ḡ (q̄)

]
v +
[
0n×n

B̄ (q̄)

]
fe (9.29)

ȳ = Ḡ (q̄)�
∂ H̄ (q̄, p̄)

∂ p̄
(9.30)

with a new input u = v ∈ R
n , and where the skew-symmetric matrix J̄2 (q̄, p̄) takes

the form

J̄2 (q̄, p̄) = ∂
(
T̄ (q̄)−1 p̄

)

∂ q̄
T̄ (q̄)−� − T̄ (q̄)−1 ∂

(
T̄ (q̄)−1 p̄

)

∂ q̄

�
(9.31)

with

(q, p) = Φ−1 (q̄, p̄) (9.32)

together with the matrix D̄ (q̄, p̄), and the input matrices Ḡ (q̄), and B̄ (q̄), are
described by
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D̄ (q̄, p̄) = T̄ (q̄)−1 D
(
Φ−1 (q̄, p̄)

)
T̄ (q̄)−� , (9.33)

Ḡ (q̄) = T̄ (q̄)−1 G (q̄) , (9.34)

B̄ (q̄) = T̄ (q̄)−1 B (q̄) , (9.35)

respectively. Via the transformation (9.25), we then obtain a class of mechanical
systems with a constant (identity) mass-inertia matrix in the Hamiltonian function
as in (9.28), which equivalently describes the original system (9.2) with nonconstant
mass-inertia matrix.

Example 9.2 Consider the robotmanipulator of Example 9.1. Given themass-inertia
matrix M (q) = diag (a, b) with a, and b as in (9.10) and (9.11), respectively, we
compute a T (q) as in (9.27), s.t.,

T (q) =
[√

a 0
0

√
b

]
=
[√

msl2s cos (q2)
2 + I1 + I2 0

0
√

msl2s + I2

]
(9.36)

with I1, and I2 the inertias of the joints, and ms , ls as the mass and the length of
the shoulder of the robot, respectively. Based on T (q), we can compute the matrices
J̄2 (q̄, p̄), D̄ (q̄, p̄), Ḡ (q̄), and B̄ (q̄), as in (9.31), (9.33)–(9.35).

The coordinate transformation of this section is used in the rest of this chapter in
order to deal with nonconstant mass-inertia matrices.

9.2.3 Hamilton–Jacobi Inequality

In order to show the usefulness of some results on position controlwith force feedback
presented later, we apply the Hamilton–Jacobi inequality useful forL2 gain analysis
of nonlinear systems [26]. Toward this end we analyze theL2-gain of a closed-loop
system w.r.t. an L2 disturbance δ.

Consider the time-invariant nonlinear system

˙̂x = F
(
x̂
)+ G̃
(
x̂
)
δ

ŷ = h
(
x̂
) (9.37)

with states x̂ , input disturbance δ, output ŷ and continuously differentiable vec-
tor functions F

(
x̂
)
, G̃
(
x̂
)
and h
(
x̂
)
. Let γ be a positive constant, then the L2-

gain bound is found if for a γ there exists a continuously differentiable, positive-
semidefinite function W

(
x̂
)
that satisfies the Hamilton–Jacobi inequality (HJI)
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(
∂W
(
x̂
)

∂ x̂

)�
F
(
x̂
)+ 1

2

1

γ 2

(
∂W
(
x̂
)

∂ x̂

)�
G̃
(
x̂
)

G̃
(
x̂
)� ∂W

(
x̂
)

∂ x̂
+ 1

2
h
(
x̂
)� h
(
x̂
) ≤ 0

(9.38)
for x̂ ∈ R

N . The system (9.37) is then finite-gainL2 stable and its gain is less than
or equal to γ .

9.2.4 Stability Analysis for Constant External Forces

Consider a class of PH systems as described by (9.1). We now briefly recall the
procedure of [14], i.e., we analyze the stability of the system (9.1) for a constant, and
nonzero, input w = ū ∈ R

M , leading to a forced equilibrium x̆ ∈ R
N . The forced

equilibria x̆ are solutions of

[
J (x̆) − R (x̆)

] ∂ H

∂x
(x̆) + g (x̆) ū = 0 (9.39)

and if [J (x) − R (x)] is invertible for every x ∈ R
N , the unique solution of (9.39)

is
∂ H

∂x
(x) = K (x) ū where

K (x) = − [J (x) − R (x)]−1 g (x) . (9.40)

Based on (9.40), we define the matrices

Js (x) � K � (x) J (x)K (x) (9.41)

and

Rs (x) � K � (x) R (x)K (x) (9.42)

which we use below to find the embedded Hamiltonian system. Clearly, Js (x) and
Rs (x) satisfy Js (x) = −J�

s (x), and Rs (x) = R�
s (x) ≥ 0, respectively. Let us now

consider the following PH system

[
ẋ
ζ̇

]
= [Ja (x) − Ra (x)]

⎡

⎢⎣

∂ Ha (x)

∂x
∂ Ha (x)

∂ζ

⎤

⎥⎦ (9.43)

on the augmented state space (x, ζ ) ∈ R
N × R

M , endowedwith the structurematri-
ces
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Ja (x) =
[

J (x) J (x)K (x)

− (J (x)K (x))� Js (x)

]
(9.44)

Ra (x) =
[

R (x) R (x)K (x)

(R (x)K (x))� Rs (x)

]
(9.45)

with K (x), Js (x), and Rs (x) as in (9.40)–(9.42), respectively, and with an aug-
mented Hamiltonian

Ha (x, ζ ) � H (x) + Hs (ζ ) , Hs (ζ ) � −ū�ζ. (9.46)

Theorem 9.3 ([14]) Consider, a class of PH systems (9.1) with a constant input
w = ū, and the matrix [J (x) − R (x)] invertible for every x ∈ R

N . Define K (x)

by (9.40), and assume the functions Ki j to satisfy

∂Ki j

∂xk
= ∂Kk j

∂xi
, i, k ∈ n̄ � {1, . . . ,N } , j ∈ m̄ � {1, . . . ,M } . (9.47)

Also, assume that there exist locally smooth functionsC j : RN → R, called Casimirs
[14], satisfying

Ki j (x) = ∂C j

∂xi
(x) , j ∈ m̄, i ∈ n̄ (9.48)

and ζ j = C j (x) + c j , where c1, . . . , cM depend on the initial conditions of ζ (t) in
(9.43). Then, the dynamics of (9.1) with input u = ū is asymptotically stable at the
equilibrium point x̆ fulfilling (9.39), and it can be alternatively represented by

ẋ = [J (x) − R (x)]
∂ Hr

∂x
(x) (9.49)

where

Hr (x) � H (x) −
M∑

j=1

ū jζ j (9.50)

and Hr qualifies as a Lyapunov function for the forced dynamics (9.49).

Remark 9.2 The L2-gain analysis of Sect. 9.2.3 gives a bound on the relation
between an input δ and a output ŷ as in (9.37) of a proposed closed-loop system
for aL2-input disturbance δ. TheL2-gain analysis differs from Theorem 9.3 in the
sense that the L2-gain analysis is related to the output ŷ while the analysis in this
section is for the case where the system is asymptotically stable, i.e., the system
(9.29) has a new equilibrium point caused by a constant fe.
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9.3 Force Feedback via Dynamic Extension

In this section, a force feedback strategy is introduced for a mechanical system
in the PH framework. The force feedback is included to bring robustness and better
tunable properties in the position control strategy. In comparison with force feedback
in the EL framework [3, 24], the force feedback in the PH framework has nicely
interpretable control strategies, as well as cleaner tuning opportunities that grant a
better performance. The force feedback is achieved via a dynamic extension and
a change of variables that introduces a new state for the PH system (9.29). The
dynamics of the new state is realized such that it depends on the internal forces of
the mechanical system. The internal forces are given by a set of kinetic, potential,
and energy dissipating elements. The dynamic extension is realized such that the
extended system also has a PH structure. The present work is inspired by the results
of [4, 5, 22], which treat position feedback.

Denote the internal forces on the system (9.2) by fin (q, p), i.e.,

fin (q, p) = −∂ H (q, p)

∂q
− D (q, p)

∂ H (q, p)

∂p
(9.51)

with H (q, p) as in (9.4). Define a new state z ∈ R
n with dynamics depending on

the internal forces fin (q, p), such that,

ż = Y �T (q)−1 fin (q, p) (9.52)

with Y a constant matrix, to be defined later on. Consider now the coordinate trans-
formation

p̂ = p̄ − Az (9.53)

with p̄ defined in (9.25), and with A a constant matrix that we use later to tune our
controller. Furthermore, we can define for system (9.29) the control input

v = Ḡ (q̄)−1 Aż + v̄ (9.54)

where v̄ is a new input, which realizes an extended PH system with states p̂ and z,
i.e.,

⎡

⎣
˙̄q
˙̂p
ż

⎤

⎦ =
⎡

⎣
0n×n T̄ −� T̄ −�Y
−T̄ −1 J̄2 − D̄

(
J̄2 − D̄

)
Y

−Y �T̄ −1 −Y � ( J̄�
2 + D̄
) −Y � ( J̄�

2 + D̄
)

Y

⎤

⎦

︸ ︷︷ ︸
Ĵ(q̄, p̂,z)−R̂(q̄, p̂,z)

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂ Ĥ
(
q̄, p̂, z
)

∂ q̄
∂ Ĥ
(
q̄, p̂, z
)

∂ p̂
∂ Ĥ
(
q̄, p̂, z
)

∂z

⎤

⎥⎥⎥⎥⎥⎥⎥⎦
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+
⎡

⎣
0n×n

Ḡ (q̄)

0n×n

⎤

⎦ v̄ +
⎡

⎣
0n×n

B̄ (q̄)

0n×n

⎤

⎦ fe (9.55)

ŷ = Ḡ (q̄)�
∂ Ĥ
(
q̄, p̂, z
)

∂ p̂
(9.56)

with Hamiltonian

Ĥ
(
q̄, p̂, z
) = 1

2
p̂� p̂ + 1

2
z�K −1

z z + V̄ (q̄) (9.57)

where Kz > 0, and Y = AKz . In (9.55) the arguments of T (q̄), J̄2(q̄, p̂), and
D̄(q̄, p̂), are left out for notational simplicity.

Remark 9.3 Although in (9.55) the ż dynamics are described in terms of J̄2(q̄, p̂),
D̄(q̄, p̂), and Ĥ(q̄, p̂, z), they are still the same as described by (9.52) with (9.51),
in the new coordinates (9.25).

It can be verified that system (9.55) is PH, since

Ĵ
(
q̄, p̂
) =
⎡

⎣
0n×n T̄ (q̄)−� T̄ (q̄)−� Y

−T̄ (q̄)−1 J̄2
(
q̄, p̂
)

J̄2
(
q̄, p̂
)

Y

−Y �T̄ (q̄)−1 −Y � J̄2
(
q̄, p̂
)� −Y � J̄2

(
q̄, p̂
)�

Y

⎤

⎦ (9.58)

is skew-symmetric, while

R̂
(
q̄, p̂
) =
⎡

⎣
0n×n 0n×n 0n×n

0n×n D̄
(
q̄, p̂
)

D̄
(
q̄, p̂
)

Y
0n×n Y � D̄

(
q̄, p̂
)

Y � D̄
(
q̄, p̂
)

Y

⎤

⎦ (9.59)

can be shown to be positive-semidefinite via the Schur complement. Notice that by
extending the dynamics of (9.29) with the internal forces ż in the input (9.54), we
include force feedback and preserve the PH structure.

Remark 9.4 In [16] we present results for the case when the mass-inertia matrix is
constant. The case for a constant M does not require the coordinate transformation
(9.25), and system (9.55) is then described by T = I , J̄2 = 0, D̄ = D, Ḡ = G,
B̄ = B, Y = M−1AKz and Hamiltonian

Ĥc = 1

2
p̂�M−1 p̂ + 1

2
z�Kzz + V̄ (q̄) (9.60)

instead of (9.57).

In this section, we have realized an extended mechanical system that includes
force feedback and preserves the PH structure. In the next section, we deal in more
detail with position control and stability analysis.
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9.4 Position Control with Modeled Internal Forces

In this section, a position control strategy with force feedback is introduced. We feed
back themodeled internal forces, and the resulting system preserves the PH structure.
The control laws here presented are better tunable and more insightful solutions in
comparison with the solutions given in the EL framework [3, 19].

9.4.1 Position Control with Zero External Forces

In this section, energy-shaping [11, 19, 26] and damping injection are combined
with force feedback (of modeled forces) to realize position control.

Theorem 9.4 Consider system (9.55) and assume fe = 0. Then, the control input

v = Ḡ(q̄)−1

(
∂ V̄ (q̄)

∂q̄
− K p (q̄ − qd)

)
− C ŷ (9.61)

with K p > 0, C > 0, and qd being the desired constant position, asymptotically
stabilizes the extended system (9.55) at (q̄, p̂, z) = (qd , 0, 0).

Proof This is awell-known result, see [26], butwe repeat the proof here for notational
reasons and for ease of reading. The control input (9.61) applied to system (9.55)
with fe = 0 realizes the closed-loop system described by

⎡

⎣
˙̄q
˙̂p
ż

⎤

⎦ =
⎡

⎣
0n×n T̄ −� T̄ −�Y
−T̄ −1 J̄2 − D̄ − ḠCḠ� (

J̄2 − D̄
)

Y
−Y �T̄ −1 −Y � ( J̄�

2 + D̄
) −Y � ( J̄�

2 + D̄
)

Y

⎤

⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂ Ĥd

∂ q̄
∂ Ĥd

∂ p̂
∂ Ĥd

∂z

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
F(x̂)

(9.62)

ŷ = Ḡ� ∂ Ĥd

∂ p̂
(9.63)

with Hamiltonian

Ĥd = 1

2
p̂� p̂ + 1

2
(q̄ − qd)

�K p(q̄ − qd) + 1

2
z�K −1

z z, (9.64)

where the arguments of Ĥd(q̄, p̂, z), T (q̄), J̄2(q̄, p̂), D̄(q̄, p̂), Ḡ(q̄), and B̄(q̄) are
left out for simplicity. Take (9.64) as candidate Lyapunov function, which then gives
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˙̂Hd = −

⎡

⎢⎢⎣

∂ Ĥd

∂ p̂
∂ Ĥd

∂z

⎤

⎥⎥⎦

�
[

D̄ + ḠCḠ� −D̄Y
−Y � D̄ Y � D̄Y

]

︸ ︷︷ ︸
K

⎡

⎢⎢⎣

∂ Ĥd

∂ p̂
∂ Ĥd

∂z

⎤

⎥⎥⎦ . (9.65)

Since Ḡ(q̄) is full rank and C > 0, via the Schur complement it can be shown
that matrix K in (9.65) is positive definite. Subsequently, via LaSalle’s invariance
principlewe can prove that that the closed-loop system (9.62) is asymptotically stable
in q̄ = qd . �	

Substituting v in (9.54) by (9.61) then gives the total control input u for the original
system (9.2), which in terms of the original coordinates (q, p) becomes

u = G(q)−1T (q)

(
Aż + ∂V (q)

∂q
− K p(q − qd )

)
− CG(q)�

(
M(q)−1 p − T (q)−� Az

)

(9.66)
with ż as in (9.51). The above results correspond to the case when the external forces
on the system are zero, i.e., fe = 0. In the next subsection we look more in detail at
the case when fe 
= 0.

9.4.2 Disturbance Attenuation Properties

We now show the advantages of the proposed extended system with force feedback
for disturbance attenuation to unknown external forces. The closed-loop PH system
(9.62) with force feedback is asymptotically stable in the desired position qd when it
has zero forces exerted from the environment, i.e., fe = 0. To look at the effect of fe

being different from zero, we analyze theL2-gain w.r.t. anL2 disturbance fe, [26].
It follows that

Theorem 9.5 Consider a closed-loop system (9.62), an L2 disturbance fe, and
a constant matrix C with λc ∈ R

n being its set of eigenvalues. We then obtain a
disturbance attenuation of fe when the following conditions hold:

Γ1 (q, p) = −D (q, p) + G (q)�
(

−C + 1

2
In×n

)
G (q) + 1

2

1

γ 2
B (q) B (q)�

1

2
≤ 0

(9.67)

Γ2 (q) = AT (q)−� G (q)�
(

−C + 1

2
In×n

)
G (q)� T (q)−1 A

+ 1

2

1

γ 2
AT (q)−1 B (q) B (q)� T (q)−� A ≤ 0 (9.68)

Γ3 (q) = 1

2

1

γ 2
AT (q)−1 B (q) B (q)� ≥ 0 (9.69)
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λc ≥ 1

2
(9.70)

with γ being a positive constant.

Proof Consider the closed-loop system (9.62), but with fe 
= 0, i.e.,

⎡

⎣
˙̄q
˙̂p
ż

⎤

⎦ =
⎡

⎣
0n×n T̄ −� T̄ −�Y
−T̄ −1 J̄2 − D̄ − ḠCḠ� (

J̄2 − D̄
)

Y
−Y �T̄ −1 −Y � ( J̄�

2 + D̄
) −Y � ( J̄�

2 + D̄
)

Y

⎤

⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂ Ĥd

∂ q̄
∂ Ĥd

∂ p̂
∂ Ĥd

∂z

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+
⎡

⎣
0
B̄
0

⎤

⎦ fe

(9.71)

ŷ = Ḡ� ∂ Ĥd

∂ p̂
, (9.72)

where the arguments of Ĥd(q̄, p̂, z), T (q̄), J̄2(q̄, p̂), D̄(q̄, p̂), Ḡ(q̄), and B̄(q̄) are
left out for notational simplicity. We analyze the HJI (9.38) first for system (9.71)
withW

(
x̂
) = Ĥd

(
x̂
)
to determine if this could be a solution. Given δ = fe weobtain

−
(

∂ Ĥd

∂ x̂

)�
R̃

∂ Ĥd

∂ x̂
+ 1

2

1

γ 2

(
∂ Ĥd

∂ p̂

)�
B̄ B̄� ∂ Ĥd

∂ p̂
+ 1

2
ŷ� ŷ ≤ 0 (9.73)

with x̂ = (q̄, p̂, z), and

R̃
(
x̂
) =
⎡

⎣
0n×n 0n×n 0n×n

0n×n D̄
(
q̄, p̂
)+ Ḡ (q̄) CḠ (q̄)� D̄

(
q̄, p̂
)

Y
0n×n Y � D̄

(
q̄, p̂
)

Y � D̄
(
q̄, p̂
)

Y

⎤

⎦ . (9.74)

We compute the left-hand side term of the Hamilton–Jacobi inequality (9.38) based
on the function W

(
x̂
) = Ĥd

(
x̂
)
with Ĥd

(
x̂
)
as in (9.64), and on the functionF

(
x̂
)

of the closed-loop (9.62). Consequently, we obtain

∂W

∂ x̂

�
F =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂ Ĥd

∂q̄
∂ Ĥd

∂ p̂
∂ Ĥd

∂z

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡

⎣
0 T̄ −� T̄ −�Y

−T̄ −1 J̄2 − D̄ − ḠCḠ� (
J̄2 − D̄

)
Y

−Y �T̄ −1 −Y � ( J̄�
2 + D̄
) −Y � ( J̄�

2 + D̄
)

Y

⎤

⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂ Ĥd

∂ q̄
∂ Ĥd

∂ p̂
∂ Ĥd

∂z

⎤

⎥⎥⎥⎥⎥⎥⎥⎦
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= −
(

∂ Ĥd

∂ p̂
+ Y

∂ Ĥd

∂z

)�
D̄

(
∂ Ĥd

∂ p̂
+ Y

∂ Ĥd

∂z

)
− ∂ Ĥd

∂ p̂

�
ḠCḠ� ∂ Ĥd

∂ p̂
,

(9.75)

where we have left out the arguments of W
(
x̂
)
, F
(
x̂
)
, Ḡ (q̄), T̄ (q̄), Ĥd

(
q̄, p̂, z
)
,

and D̄
(
q̄, p̂
)
, for notational simplicity. From ŷ as in (9.63), p̂ as in (9.53), D̄

(
q̄, p̂
)

as in (9.33), x̂ = (q̄, p̂, z
)
, and Y = AKz , we rewrite (9.75) as

∂W
(
x̂
)

∂ x̂

�
F
(
x̂
) = − ( p̂ + Y K −1

z z
)�

D̄
(
q̄, p̂
) (

p̂ + Y K −1
z z
)− ŷ�C ŷ

= −∂ H (q, p)

∂p

�
D (q, p)

∂ H (q, p)

∂p
− ŷ�C ŷ. (9.76)

Based on a input matrix G̃ (q̄) defined as

G̃
(
x̂
) =
⎡

⎣
0n×n

B̄ (q̄)

0n×n

⎤

⎦ (9.77)

with B̄ (q̄) as in (9.35), we compute the second term of the left-hand side of the
Hamilton–Jacobi inequality (9.38) as

Z̃
(
x̂
) = 1

2

1

γ 2

(
∂W
(
x̂
)

∂ x̂

)�
G̃
(
x̂
)

G̃� (x̂
) ∂W
(
x̂
)

∂ x̂

= 1

2

1

γ 2
p̂� B̄ (q̄) B̄ (q̄)� p̂ (9.78)

and we now substitute p̂ as in (9.53) in (9.78). Hence, we obtain

Z̃
(
x̂
) = 1

2

1

γ 2
( p̄ − Az)� B̄ (q̄) B̄ (q̄)� ( p̄ − Az)

= 1

2

1

γ 2

(
Υ (q, p)� Υ (q, p) − Υ (q, p)� Z − Z�Υ (q, p) + Z� Z

)
(9.79)

where

Z
(
x̂
) = B (q)� T (q)−� Az (9.80)

Υ (q, p) = B (q)�
∂ H (q, p)

∂p
. (9.81)

Finally, based on the output ŷ = h
(
x̂
)
, and the results (9.76), and (9.79), the

Hamilton–Jacobi inequality (9.38) is rewritten as
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− ∂ H (q, p)

∂p

�
D (q, p)

∂ H (q, p)

∂p
− ŷ�C ŷ + Z̃ + 1

2
ŷ� ŷ ≤ 0 (9.82)

with Z̃
(
x̂
)
as in (9.79). We now rewrite ŷ as

ŷ = Ḡ (q̄)�
∂ Ĥ
(
x̂
)

∂ p̂
= Ḡ (q̄)� p̂ = G (q)�

∂ H (q, p)

∂p
− G (q)� T (q)−1 Aẑ

(9.83)
and we replace (9.83) in (9.82). Lastly, we have that

⎡

⎣
∂ H (q, p)

∂p
z

⎤

⎦
� [

Γ1 (q, p) −Γ3 (q)�
−Γ3 (q) Γ2 (q)

]

︸ ︷︷ ︸
PH Ji

⎡

⎣
∂ H (q, p)

∂p
z

⎤

⎦ ≤ 0 (9.84)

The inequality (9.84) is satisfied when matrix PH Ji ≤ 0, which is the case if matrix
C of the control law (9.61) is designed such that the inequalities (9.67)–(9.70) hold,
with λc ∈ R

n being the set of eigenvalues of C . �	
Remark 9.5 TheHamilton–Jacobi inequality (9.84) based on the closed-loop system
(9.71) holds when the set of eigenvalues of the matrix C are chosen such that the
conditions forΓ1 (q, p),Γ2 (q),Γ3 (q), and λc are satisfied. It follows that increasing
the eigenvalues of C allows for a smaller γ , and thus, a smaller L2-gain bound.
Increasing the eigenvalues of C corresponds to increasing the damping injection.

In the next subsectionwe look at the special casewhen fe is unknown, but constant.

9.4.3 Stability Analysis for Constant External Forces

Here, we propose an equivalent description of the system (9.62), with a different
Hamiltonian functionwhich can be used as a Lyapunov function for constant nonzero
external forces, i.e., fe ∈ R

n/ {0}. We embed the extended system into a larger PH
system for which a series of Casimir functions are constructed. The analysis is based
on the results of [14].

We proceed to apply the results in Sect. 9.2.4 to the closed-loop system (9.62) with
constant nonzero external forces as input, i.e., ū = fe. We compute matrix K

(
x̂
)

as in (9.40), and obtain

K
(
x̂
) = −

⎡

⎢⎢⎢⎣

T̄
(− J̄2 + D̄

)
T̄ � 0n×n T̄ Y −�

0n×n

(
ḠCḠ�)−1 −

(
ḠCḠ�)−1

Y −�

−Y −1T̄ � −Y −1
(

ḠCḠ�)−1
Y −1
(

ḠCḠ�)−1
Y −�

⎤

⎥⎥⎥⎦

⎡

⎣
0n×n
B̄ (q̄)

0n×n

⎤

⎦ .

(9.85)
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Here, we left out the arguments of T̄ (q̄), Ḡ (q̄), J̄2
(
q̄, p̂
)
, and D̄

(
q̄, p̂
)
for notational

simplicity. If Ĝ (q̄) = (Ḡ (q̄) CḠ (q̄)�
)−1

, then (9.85) leads to

K
(
x̂
) =
⎡

⎣
0n×n

−Ĝ (q̄) B̄ (q̄)

Y −1Ĝ (q̄) B̄ (q̄)

⎤

⎦ . (9.86)

Following, the results of Theorem 9.3, we assume that the local smooth functions
C j (x), j ∈ n, satisfy the integrability condition (9.47). It follows that the dynamics
of (9.71) can be alternatively represented by (9.49) where Hr

(
x̂
)
is

Hr
(
x̂
) = Ĥd

(
x̂
)−

n∑

j=1

fe jC j (x)

= Ĥd
(
x̂
)+ f �

e Ĝ (q̄) p̂ − f �
e Y −1Ĝ (q̄) z + f �

e c, (9.87)

where x̂ = (q̄, p̂, z
)
, and Ĥd

(
x̂
)
as in (9.64). If we choose, the constant c =

−K f fe ∈ R
n , with K f > 0. Then, we can rewrite (9.87) as

Hr
(
x̂
) = 1

2

⎡

⎢⎢⎣

q̄ − qd

p̂
z
fe

⎤

⎥⎥⎦

�⎡

⎢⎢⎣

K p 0n×n 0n×n 0n×n

0n×n In×n 0n×n B̄�Ĝ�

0n×n 0n×n K −1
z −B̄�Ĝ�Y −�

0n×n Ĝ B̄ −Y −1Ĝ B̄ K f

⎤

⎥⎥⎦

︸ ︷︷ ︸
P̂(q̄)

⎡

⎢⎢⎣

q̄ − qd

p̂
z
fe

⎤

⎥⎥⎦ > 0

(9.88)
where we have left out the arguments of Ḡ (q̄) and B̄ (q̄) for notational simplicity.
Since Ḡ (q̄) and B̄ (q̄) are full rank, and C > 0, via the Schur complement it can be
shown that matrix P̂ (q̄) in (9.88) is positive definite, and then the inequality (9.88)
holds. Furthermore, via Theorem 9.3, we have that

Ḣr
(
x̂
) = −∂ Hr

(
x̂
)

∂ x̂

�
R̃
(
x̂
) ∂ Hr
(
x̂
)

∂ x̂
≤ 0 (9.89)

and thus Hr
(
x̂
)
qualifies as a Lyapunov function for the forced dynamics (9.49).

Then, Ḣr
(
x̂
) ≤ 0, and given that

∂ Ĥd
(
x̂
)

∂ p̂
= p̂, and

∂ Ĥd
(
x̂
)

∂z
= K −1

z z, we know

that p̂, z → 0 as t → ∞. Given the dynamics of system (9.49), ˙̂p = ż = 0, it can
be verified that the largest invariant set for Ḣr

(
x̂
) = 0 equals

(
q̄ − qd − K −1

p B̄ (q̄)

fe, p̂, z
) = (0, 0, 0). LaSalle’s invariance then implies that the system is asymptot-

ically stable in
q̄ = qd + K −1

p B̄ (q̄) fe. (9.90)
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Remark 9.6 The L2-gain analysis of Sect. 9.4.2 gives a bound on the relation
between input δ = fe and the output ŷ of the closed-loop system (9.71) for an L2-
input disturbance δ. The L2-gain analysis differs from the results of Sect. 9.4.3 in
the sense that the L2-gain analysis evaluates a bound on the output ŷ in relation
to the size of the input δ, while the analysis in Sect. 9.4.3 is for the case where the
system is asymptotically stable, i.e., ŷ → 0, with a new equilibrium point caused by
a constant fe, i.e., q̄ , which is different from the desired equilibrium point qd . Notice
that the L2-gain bound is related to the amount of damping injected, while the new
equilibrium point (steady-state position) is related to the stiffness parameter K p.

9.4.4 Integral Position Control

The analysis in the previous section shows that, under the assumption that fe is con-
stant, we can expect a constant steady-state error in the position of system (9.71).
Furthermore, the analysis also justifies the application of integral control, since inte-
gral control compensates for constant steady-state errors. The main contribution of
this section is to realize a type of integral position control for a class of standard
mechanical systems with dissipation in the PH framework. For the extended system
(9.55), with fe constant, we propose a coordinate transformation to include the posi-
tion error in the new output. By having the position error in the passive output, we
can interconnect the closed-loop with an integrator in a passivity-preserving way,
i.e., preserving the PH structure. The results of this section are inspired by the works
of [4, 5, 22].

Theorem 9.6 Consider system (9.55) and assume fe 
= 0 and constant. Define the
integrator state ξ with dynamics

ξ̇ = −B̄(q̄)�( p̂ + Ki (q̄ − qd)) (9.91)

qd the desired constant position and Ki > 0 is a constant matrix. Then, the control
input

v = Ḡ(q̄)−1
(

∂ V̄ (q̄)

∂q̄
− K p (q̄ − qd ) − Ki ˙̄q − B̄(q̄)ξ

)
− CḠ(q̄)�

(
p̂ + Ki (q̄ − qd )

)

(9.92)
with K p > 0, and C > 0, asymptotically stabilizes the extended system (9.55) at
(q̄, p̂, z) = (qd , 0, 0), i.e., zero steady-state error.

Proof We use the results of [5]. Consider first the coordinate transformation

p̃ = p̂ + Ki (q̄ − qd) (9.93)
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with a constant matrix Ki > 0, which then implies that

˙̃p = ˙̂p + Ki ˙̄q (9.94)

since qd is constant. The control input (9.92) with integrator dynamics (9.91) then
realizes the closed-loop system

⎡

⎢⎢⎣

˙̄q
˙̃p
ż
ξ̇

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎣

−Ki K −1
p T̄ −� T̄ −�Y 0

−T̄ −1 J̄2 − D̄ − ḠCḠ� (
J̄2 − D̄

)
Y B̄

−Y �T̄ −1 −Y � ( J̄�
2 + D̄
) −Y � ( J̄�

2 + D̄
)

Y 0

0 −B̄� 0 0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ Ĥi

∂ q̄
∂ Ĥi

∂ p̃
∂ Ĥi

∂z
∂ Ĥi

∂ξ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.95)

ỹ = Ḡ� ∂ Ĥi

∂ p̃
(9.96)

with Hamiltonian

Ĥi = 1

2
p̃� p̃ + 1

2
(q̄ − qd)

�K p(q̄ − qd) + 1

2
z�K −1

z z + 1

2
( fe − ξ)�( fe − ξ),

(9.97)
where the arguments of Ĥi (q̄, p̃, z, ξ), T (q̄), J̄2(q̄, p̃), D̄(q̄, p̃), Ḡ(q̄), and B̄(q̄) are
left out for notational simplicity. Furthermore, notice that

ỹ = Ḡ(q̄)� p̃ = Ḡ(q̄)�
(

p̂ + Ki (q̄ − qd)
)
. (9.98)

Take (9.97) as candidate Lyapunov function, which then gives

˙̂Hi = −

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂ Ĥi

∂q̄

∂ Ĥi

∂ p̃

∂ Ĥi

∂z

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡

⎣
Ki K −1

p 0 0
0 D̄ (q̄, p̃) + Ḡ (q̄) CḠ (q̄)� −D̄ (q̄, p̃) Y
0 −Y � D̄ (q̄, p̃)� Y � D̄ (q̄, p̃)� Y

⎤

⎦

︸ ︷︷ ︸
U (q̄, p̃)

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂ Ĥi

∂q̄

∂ Ĥi

∂ p̃

∂ Ĥi

∂z

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (9.99)

Since Ḡ (q̄) is full rank, D̄ (q̄, p̃) ≥ 0, Ki > 0, K p > 0, C > 0, Kz > 0, Y = AKz

and A being a constant matrix, via the Schur complement it can be shown that matrix

U (q̄, p̃) ≥ 0, and thus ˙̂Hi ≤ 0 holds. Define the set
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O =
{
(q̄, p̃, z, ξ) | ˙̂Hi (q̄, p̃, z, ξ) = 0

}
. (9.100)

Given that ˙̂Hi (qd , 0, 0, ξ) = 0, ∀ξ , we have that ξ is free. Assume ξ − fe = c1 
= 0
constant with c1 ∈ R

n , thus ξ̇ = 0. Then, the dynamics ˙̃p is

˙̃p = B̄ (qd) (c1 + fe) 
= 0. (9.101)

Since (9.101) is constant, then p̃ will change over time, and hence, we have a con-
tradiction. Thus, the largest invariant set in O is M = {qd , 0, 0, fe}. Via LaSalle’s
invariance principle we conclude that the system (9.95) is asymptotically stable at
(q̄, p̃, z, ξ) = (qd , 0, 0, fe), which means that the constant disturbance is compen-
sated by ξ , i.e., ξ → fe. �	

Substituting v in (9.54) by (9.92) then gives the total control input u for the original
system (9.2), which in terms of the original coordinates q, p becomes

u = G(q)−1T (q)

(
Aż + ∂V (q)

∂q
− K p(q − qd) − Ki q̇

)
− G(q)−1B(q)ξ

− CG(q)�
(

M(q)−1 p − T (q)−� Az − T (q)−�Ki (q − qd)
)

(9.102)

with ż as in (9.52).
Here, we have applied an integral type control law as in (9.92) to compensate

for position errors caused by constant forces. We observe in Theorem 9.6 how our
integral control strategy follows naturally from the PH structure.

9.5 Position Control with Measured Forces

In the previous section, we have presented a position control strategy that exploits
feedback of the modeled internal forces. In other words, the forces used for feedback
are based on the dynamical model and the measured positions and velocities. In
this section, we assume we have force sensors, which provide the (real) total forces
working on the system. Then, we feed back the readings of the force sensors in the
input of the system (9.29). Notice that the measured total forces f in the system can
be described by

f (q, p) = fin (q, p) + B(q) fe (9.103)

with fin (q, p) as in (9.51). In the previous section, we used (9.51) to model and
compute the internal forces for feedback control. We can still use (9.51) to describe
the internal forces, while adding the external forces to model the total forces in the
system. Let f̄ (q̄, p̄) be the total forces multiplied by the matrix T (q) in (9.25), i.e.,

f̄
(
Φ−1 (q̄, p̄)

) = f̄ (q, p) = T (q)−1 f (q, p) (9.104)
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and consider now system (9.29). Notice that in terms of the coordinates q̄, p̄ that
f̄ (q̄, p̄) is then described by

f̄ (q̄, p̄) = −T̄ (q̄)−1 ∂ H̄ (q̄, p̄)

∂q̄
+ ( J̄2 (q̄, p̄) − D̄ (q̄, p̄)

) ∂ H̄ (q̄, p̄)

∂ p̄
+ B̄ (q̄) fe.

(9.105)
Define for system (9.29) the input

v = −Ḡ(q̄)−1 f̄ (q̄, p̄) + v̄ (9.106)

with v̄ being a new input vector, which then changes (9.29) into the PH system

[ ˙̄q
˙̄p
]

=
[

0 T̄ (q̄)−�

−T̄ (q̄)−1 0

]
⎡

⎢⎢⎣

∂ H̄τ (q̄, p̄)

∂q̄
∂ H̄τ (q̄, p̄)

∂ p̄

⎤

⎥⎥⎦+
[

0
Ḡ (q̄)

]
v̄ (9.107)

ȳ = Ḡ (q̄)�
∂ H̄τ (q̄, p̄)

∂ p̄
(9.108)

with Hamiltonian

H̄τ (q̄, p̄) = 1

2
p̄� p̄. (9.109)

We then obtain (9.29), with all forces canceled. We can thus control the system
without the problems described in Sect. 9.4.2. Notice that we need to describe (9.2)
in the equivalent form (9.29) in order to realize force rejection and preserve the PH
structure. In the original coordinates (q, p) the control input (9.106) is given by

u = −G(q)−1 f (q, p) + v̄ (9.110)

with f (q, p) as in (9.103). Notice that the advantage here is that we can apply control
methodswithout having toworry about the external forces (disturbances) and internal
forces (potential forces and friction). However, (9.110) implies that there is no tuning
possible in the application of force feedback. In Sect. 9.4.2 the disturbances are not
rejected, however, we have the possibility to tune the force feedback with the matrix
A.

In the next section we illustrate, via simulation of the system (9.7), the results of
Sects. 9.4 and 9.5 for obtaining asymptotic stability in a desired position.

9.6 Simulation Results: Two-DOF Shoulder System

Consider the system of Examples9.1 and 9.2. We have determined the parame-
ters of the two-DOF shoulder system of Fig. 9.1 as Ii = {0.013, 1.692}, Fci =
{0.005, 0.025}, Fsi = {1.905, 2.257}, Fvi = {4.119, 4.973}, and q̇si ={0.167, 0.170}.
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Fig. 9.3 Position control via force feedback (blue line) with fe = col (0, 0)� at t ≤ 5s. Integral
control (blue line) with fe = col (3,−3)� at t ≥ 10s. Total force rejection (red line) at t ≥ 0. Initial
conditions (q (0) , p (0))� = (0, 0, 0, 0)�. Solid line q1. Dashed line q2

We have a link length of lc = 0.249m, m = 3.9 kg; matrices A = diag (0.5, 0.7),
Kz = diag (2, 2), K p = diag (15, 15), and C = diag (10, 10); an initial position
q(0) = (0, 0), and desired position qd = (1, 0.5) rad. We obtain the desired posi-
tion qd = (1, 0.5)� from an initial position q (0) = (0, 0)� at t = t1 ≥ 3s with the
control law (9.61). Then, we apply a constant nonzero force, i.e., fe = (3,−3)�, at
t2 =≥ 5s, to the closed-loop system (9.62). Results are shown in Fig. 9.3. The new
position is q = K −1

p fe + qd = (1.2, 0.3)� (blue line) which corresponds to a differ-
ent equilibrium point as in (9.90). The results presented here validate the fact that the
PH system (9.62) remains stable with a constant nonzero input ū = fe. Furthermore,
we want to recover the desired position by applying the integral control law (9.102)
to the PH system (9.62) at t3 ≥ 10s, with a matrix Ki = diag (1, 0.5). We observe
how the system is stabilized again at the desired position qd at t ≥ 11s without a
steady-state error.

Finally, we apply a constant nonzero force, i.e., fe = (3,−3)�, to the two-DOF
inputs of the to the system (9.7), and apply (9.110) at t = t2 ≥ 5s, which includes
the measured forces of the sensors. Then, the equilibrium is achieved immediately,
independent of fe as seen in Fig. 9.3.

9.7 Concluding Remarks

We have provided a method for position control via force feedback in the PH setting.
The method relies on a structure preserving extension of the system. Disturbance
attenuation is studied, and robustness is obtained by extending the system once more
in a structure preserving way with integral type dynamics. Finally, we present a
method when forces are reconstructed and fed back directly from the sensor infor-
mation.
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The robotic armexample shows that performance of themethod is very good. Tests
with the robotic arm are under way, and show promising results, also in comparison
with other control methods.
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Chapter 10
Endogenous Configuration Space Approach:
An Intersection of Robotics and Control
Theory

Krzysztof Tchoń

Abstract The endogenous configuration space approach is a control theory-oriented
methodology of robotics research, dedicated to mobile manipulators. A cornerstone
of the approach is a parameterized control system with output whose input–output
map constitutes the mobile manipulator’s kinematics. An endogenous configuration
consists of the control function and of the vector of output function parameters rep-
resenting the joint positions of the on-board manipulator. The mobile manipulator’s
Jacobian is defined as the input–output map of the linear approximation to the control
system. Regular and singular endogenous configurations are introduced. The regu-
lar endogenous configuration corresponds to the local output controllability of the
control system, while the singular configuration coincides with a singular optimal
control-parameter pair of the control system. The inverse kinematics problem is for-
mulated as a control problem in a driftless control system. A collection of Jacobian
kinematics inverses is presented, leading to Jacobian motion planning algorithms.
Performance measures of the mobile manipulator are introduced.

10.1 Introduction

It is my great honour and pleasure to make a contribution to this Festschrift in honour
of the sixtieth birthday of Professor Henk Nijmeijer. I met the Jubilarian in 1983,
during a control conference at the Warwick University, admiring his expertise in
geometric control and enjoying his sense of humour. Our collaboration intensified
over the decade after that conference. Among its fruits, there was a conference on
geometric theory of control systems organized inPoland in 1984,withHenk’s plenary
talk [17], exchange of students and visitors, and joint research [25]. I owe to Henk
my determination in applyingmathematical control theory in robotics. The following
text summarizes some results of such an approach to mobile manipulators.

K. Tchoń (B)
Chair of Cybernetics and Robotics, Electronics Faculty, Wrocław University
of Technology, Wrocław, Poland
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Fig. 10.1 Mobile manipulator, rolling ball, and robotic arm

A mobile manipulator is a robotic device composed of a mobile platform and
a fixed base on-board manipulator. It is well known that a synergy of mobility and
manipulation capabilities makes these devices of paramount usability in personal and
service robotics. By their very nature, the mobile manipulators open new and chal-
lenging problems in the area of mathematical modelling, motion planning, control,
and performance evaluation. For an exhaustive review of literature on this subject the
reader is advised to consult the monograph [16] and the references included in [26,
28]. In this work, we present a control theoretic approach that provides a uniform the-
ory of manipulation robots, mobile platforms and mobile manipulators. Established
in [30], this approach has been then developed under the name of the endogenous
configuration space approach [23, 24, 26–28, 32, 37].

In what follows, we shall concentrate on the kinematics of a mobile manipulator
that consists of a nonholonomic mobile platform and a holonomic on-board manip-
ulator. As an example of such a robot, Fig. 10.1 shows a 4-wheel mobile platform
carrying a 3 degrees of freedommanipulator whose consecutive joints are rotational,
prismatic and rotational. We let q = (x, y, ϕ, ψ) ∈ R4 describe the position, orien-
tation and the heading angle of the platform, while x = (x1, x2, x3) ∈ R3 denotes
joint positions of the on-board manipulator. Cartesian positions of the end effector
are denoted as y = (y1, y2, y3) and belong to the operational space R3. The platform
length equals l, the lengths of the manipulator arms are l2 and l3. The assumption
that no side-slip of the rear and front wheels is permitted imposes on the platform
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motion the nonholonomic Pfaffian constraints
[

sin ϕ − cosϕ 0 0
cosϕ sinψ sin ϕ sinψ −l cosψ 0

]
q̇ = 0

that lead to a representation of the kinematics of this mobile manipulator in the form
of a driftless control system

ẋ = lu1 cosϕ cosψ, ẏ = lu1 sin ϕ cosψ, ϕ̇ = u1 sinψ, ψ̇ = u2,

equipped with the output function

y = (x + (l2 + l3 cos x3) cos(ϕ + x1), y + (l2 + l3 cos x3) sin(ϕ + x1), x2 + l3 sin x3) .

The inputs driving this system consist of the longitudinal velocity and the heading
angular velocity of the platform as well as of the joint positions of the on-board
manipulator. The output function determines the end effector position of the on-
board manipulator resulting from the configuration of its joints and the motion of the
platform. The approach presented here specifies in a natural way to nonholonomic
mobile platforms (the on-board manipulator is absent) and to holonomic manip-
ulation robots (the platform is absent), like these shown in the bottom part of in
Fig. 10.1.

A typical robotic problem addressed in the control system representation of a
mobile manipulator is the motion planning problem consisting in defining the con-
trols that make the output function to reach, at a given time instant, a desired value
(e.g. place the end effector of the on-board manipulator at a prescribed location
or move the ball to a prescribed position and orientation). An essential ingredient
of the motion planning is the inversion of the kinematics. The inverse kinemat-
ics algorithms achieving this objective are often based on a concept of the mobile
manipulator’s Jacobian that describes an infinitesimal transformation of the controls
into the motions in the operational space. The performance and efficiency of the
Jacobian motion planning algorithms strongly depend on the regularity of controls.
The quality of performance deteriorates in a vicinity of singular controls.

In this work, we focus on the control theoretic foundations of the endogenous
configuration space approach. Conceptually, the endogenous configuration space
approach is an extension to mobile manipulators of the homotopy continuation-type
ideas introduced into the path planning problem of nonholonomic mobile robots by
Sussmann [22] and developed further in [3, 7–9, 11, 21]. We begin with a parame-
trized control system with outputs whose input–output map constitutes the mobile
manipulator’s kinematics. Then, the endogenous configuration space is defined as a
Hilbert space containing the control functions and the parameters of the control sys-
tem. The input–output map of the linear approximation to the control system serves
as the mobile manipulator’s Jacobian. The endogenous configurations at which the
Jacobian is a surjective map are referred to as regular; they correspond to the local
output controllability of the control system. The singular configurations can be inter-
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preted as singular optimal control-parameter pairs of the control system. We address
the inverse kinematics problem for mobile manipulators, and derive a collection of
Jacobian inverses of the kinematics. These inverses can be exploited in Jacobian
motion planning algorithms, either directly or after a modification respecting con-
straints imposed on system’s states or controls [15].

The continuation method is adopted as a guideline in this, leading to the Ważew-
ski–Davidenko equation [10, 35]. The concept of the dynamic inverse [13] is con-
nectedwith theWażewski inequality [36], and a condition for the existence of a global
inverse is provided. The dynamic Jacobian inverses constitute Jacobian motion plan-
ning algorithms. The Gram matrix of the linear approximation to the control system
is used as the mobile manipulator’s dexterity matrix. The eigenvalues of this matrix,
on the one hand, enter into the norms of the inverse Jacobian operators, on the other,
they constitute kinematic dexterity measures of mobile manipulators. In the con-
trol theoretic setting, the norm of the Jacobian and of the Jacobian pseudo-inverse
operators are determined by the vector of switching functions associated with the
parametric time optimal control problem.

The composition of this chapter is the following. In Sect. 10.2 we introduce the
basic concepts including the kinematics, the endogenous configuration space, the
Jacobian operator, regular and singular configurations and the adjoint Jacobian.
Section10.3 addresses the inverse kinematics problem, and defines several inverse
Jacobian operators. In Sect. 10.4 kinematic performance issues for mobile manipu-
lators are discussed. Section10.5 contains conclusions.

10.2 Basic Concepts

As has been mentioned, mobile manipulators consist of a nonholonomic mobile
platform and a holonomic on-board manipulator. It will be assumed that the motion
of the mobile platform is characterized by n generalized coordinates q ∈ Rn , and
subject to l ≤ n independent phase constraints in the Pfaffian form

A(q)q̇ = 0,

where A(q) is a matrix of rank l with continuously differentiable entries. The phase
constraints define a non-integrable distribution Ker A(q) in Rn that contains admis-
sible velocities of the platform at every q. Consequently, the platform kinematics
may be represented as a driftless control system with m = n − l inputs. Suppose
that the platform has been equipped with an on-board manipulator with p degrees
of freedom, whose joint position is denoted by x ∈ Rp, and the end effector posi-
tion and orientation by y ∈ Rr . With these notations, the kinematics of the mobile
manipulator can be represented as a driftless control system with outputs

q̇ = G(q)u =
m∑

i=1

gi (q)ui , y = k(q, x) = (k1(q, x), . . . , kr (q, x)). (10.1)
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10.2.1 Kinematics

The controls (u(·), x) driving the system (10.1) are interpreted as instantaneous
platform speeds u(t) ∈ Rm , and joint positions x ∈ Rp of the on-board manip-
ulator. Wherever convenient, we shall use the notation (u(·), x)(t) = (u(t), x).
The platform’s control functions will be assumed Lebesgue square integrable on
a time interval [0, T ], the joint positions are constant vectors. The control space
X = L2

m[0, T ] × Rp equipped with the inner product

〈(u1(·), x1), (u2(·), x2)〉RW =
∫ T

0
uT
1 (t)R(t)u2(t)dt + xT1 Wx2, (10.2)

where R(t) = RT (t) > 0 andW = WT > 0 are symmetric, positive definite weight
matrices, forms a Hilbert space called the endogenous configuration space of the
mobile manipulator [26]. The adjective “endogenous” comes from the Greek word
ενδoν = εν δoμoς which means at home, inside, so the endogenous configura-
tion means something of internal origin. Indeed, the endogenous configurations of
a mobile manipulator do not manifest themselves directly, but rather through the
behaviour of the mobile platform and of the end effector. Notice that on a similar
etymological basis in control theory the term “endogenous feedback” introduced by
M. Fliess and collaborators is used [12]. The inner product (10.2) induces in X a
norm denoted as || · ||RW . The output map of (10.1) takes its values in the opera-
tional space of the mobile manipulator, identified with Rr . It will be assumed that
the operational space has been endowed with the inner product

〈y1, y2〉Q = yT1 Qy2, (10.3)

where Q denotes a symmetric, positive definite, constant matrix QT = Q, Q > 0.
The norm induced by (10.3) will be denoted by || · ||Q , while || · || will always stand
for the standard Euclidean norm.

Given an initial platform posture q0 ∈ Rn , and an endogenous configuration
(u(·), x) ∈ X , we compute a trajectory q(t) = ϕq0,t (u(·)) of the platform, and
an operational space trajectory y(t) = k(q(t), x). It will be assumed that these
trajectories are defined for every t ∈ [0, T ]. The input–output map

Kq0,T : X −→ Rr ,

of the control system (10.1), defined as

Kq0,T (u(·), x) = y(T ) = k(ϕq0,T (u(·)), x), (10.4)

will be identified with the kinematics of the mobile manipulator. With k(q, x) suf-
ficiently smooth, the continuous differentiability of the map (10.4) follows from [6,
Theorem 1.1] and [20, Proposition 2.9.3].
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10.2.2 Jacobian

The differential kinematics constitute the mobile manipulator’s Jacobian

Jq0,T (u(·), x) : X −→ Rr ,

obtained by the differentiation

Jq0,T (u(·), x)(v(·),w) = d

dα

∣∣∣∣
α=0

Kq0,T (u(·) + αv(·), x + αw)

= C(T, x)
∫ T

0
Φ(T, s)B(s)v(s)ds + D(T, x)w. (10.5)

Observe that, formally, (v(·),w) and Jq0,T (u(·), x)(v(·),w) belong to suitable tan-
gent spaces, however, these spaces can be identified with X and Rr . The matrices
determining the Jacobian result from the linear approximation of the kinematics rep-
resentation (10.1) along the pair (input, trajectory) (u(t), x, q(t) = ϕq0,t (u(·))), so
that

A(t) = ∂(G(q(t))u(t))
∂q , B(t) = G(q(t)), C(t, x) = ∂k(q(t),x)

∂q , D(t, x) = ∂k(q(t),x)
∂x ,

(10.6)
and Φ(t, s) denotes the transition matrix satisfying the evolution equation

∂

∂t
Φ(t, s) = A(t)Φ(t, s), Φ(s, s) = In.

Having a finite-dimensional range space, for every fixed endogenous configuration
(u(·), x) ∈ X , the Jacobian is a compact linear operator [14]. The linear, time
dependent control system

ξ̇ = A(t)ξ + B(t)v, η = C(t, x)ξ + D(t, x)w (10.7)

determined by the data (10.6) may be referred to as the variational system associated
with (10.1). It is easily seen that the Jacobian (10.5) corresponds to the input–output
map of the variational system initialized at ξ0 = 0.

10.2.3 Regular and Singular Configurations

An endogenous configuration (u(·), x) ∈ X of themobilemanipulatorwill be called
regular, if the Jacobian map is surjective, otherwise the configuration is singular.
The surjectivity of the Jacobian is equivalent to the output controllability of the
variational system (10.7), and implies that the original system (10.1) is locally output
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controllable. A necessary and sufficient condition for the regularity of a configuration
is that the Gram matrix

Dq0,T (u(·), x) = D(T, x)W−1DT (T, x)

+ C(T, x)
∫ T

0
Φ(T, s)B(s)R−1(s)BT (s)ΦT (T, s)ds CT (T, x)

(10.8)

of the variational system has rank r . In the language of robotics the matrix (10.8) is
named the dexterity matrix of the mobile manipulator [32]. Ultimately, the dexterity
matrix characterizes the transmission of infinitesimal motions from the endogenous
configuration space to the operational space of the mobile manipulator.

The following observations will provide a link between the concept of singular
endogenous configuration and the singular optimal control. Consider in the system
(10.1) a parametric optimal control problem, see [34, Sect. 7.5], with the manipulator
joint positions x ∈ Rp playing the role of a parameter vector, consisting in determin-
ing a control-parameter pair (u(t), x) that steers the output y(t) at the time instant
T to a desired point yd ∈ Rr , and simultaneously minimizes the objective function

∫ T

0
L (q(t), x, u(t))dt.

In order to include the parameter vector into the problem formulation, we need to
complete the Eq. (10.1) with a trivial state equation ẋ = 0, obtaining the system

q̇ = G(q)u =
m∑

i=1

gi (q)ui , ẋ = 0, y = k(q, x) = (k1(q, x), . . . , kr (q, x)). (10.9)

The Hamiltonian corresponding to this problem is

H (q, x, u, p0, p1, p2) = pT1 q̇+ pT2 ẋ− p0L (q, x, u) = pT1 G(q)u− p0L (q, x, u),

(10.10)
where p0 ∈ R, p1 ∈ Rn, p2 ∈ Rp denote adjoint variables. The terminal manifold

MT = {(q, x) ∈ Rn+p|yd − k(q, x) = 0}.

We have the following control theoretic characterization of singular endogenous
configurations

Theorem 10.1 The set of singular endogenous configurations coincides with the set
of singular optimal control-parameter pairs of the system (10.9) with Hamiltonian
(10.10).

Proof First, suppose that (u(t), q(t), x) is a singular extremal of the parametric opti-
mal control problem. Thismeans that along this extremal p0 = 0, pT1 (t)G(q(t)) = 0,
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and that the adjoint vector p(t) = (p1(t), p2(t)) �= 0 satisfies the Hamiltonian equa-
tions

ṗT1 = −∂H

∂q
= −pT1 (t)

∂ (G(q(t))u(t))

∂q
, ṗT2 = −∂H

∂x
= 0. (10.11)

The transversality conditions at T take the form

(
pT1 (T ), pT2 (T )

) = ρT
[

∂k(q(T ),x)
∂q ,

∂k(q(T ),x)
∂x

]

for a non-zero vector ρ ∈ Rr . Using (10.11), we deduce that p2(t) = const and,
since there are no a priori initial or terminal conditions for x , we get p2 = 0. Taking
into account (10.6), the transversality conditions imply that

ρTC(T, x) = pT1 (T ) and ρT D(T, x) = 0. (10.12)

Furthermore, the singularity condition and the first equation in (10.11) yield

pT1 (t)G(q(t)) = pT1 (t)B(t) = 0 and ṗT1 = −pT1 (t)A(t). (10.13)

To proceed further, let us define a matrix

M (t) =
∫ t

0
Φ(t, s)B(s)R−1(s)BT (s)ΦT (t, s)ds, (10.14)

such that the dexterity matrix

Dq0,T (u(·), x) = D(T, x)W−1DT (T, x) + C(T, x)M (T )CT (T, x).

It is easily seen that the matrix (10.14) satisfies a Lyapunov matrix differential equa-
tion

dM

d t
= B(t)R−1(t)BT (t) + A(t)M (t) + M (t)AT (t), (10.15)

with initial conditionM (0) = 0. After the multiplication from the left of this equa-
tion by pT1 (t) and suitable substitutions from (10.13), we obtain

pT1 (t)
dM

d t
= − ṗT1 (t)M (t) + pT1 (t)M (t)AT (t),

so consequently,
d

d t
(pT1 M )(t) = (pT1 M )(t)AT (t). (10.16)

Now, since (pT1 M )(0) = 0, from the existence and uniqueness of the solution of
(10.16) we deduce that pT1 (t)M (t) = pT1 (T )M (T ) = 0. Together with (10.12) and
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(10.14) this results in ρTDq0,T (u(·), x)ρ = pT1 (T )M (T )p1(T ) = 0. In conclusion,
we get a rank deficiency of the dexterity matrix, what means that the endogenous
configuration (u(·), x) is singular. This shows that every singular optimal pair control-
parameter is a singular endogenous configuration.

Conversely, now let (u(·), x) be a singular endogenous configuration, and let the
triple (u(t), x, q(t)) denote the corresponding control-parameter-trajectory of the
control system (10.9). From the singularity of the configuration, it follows that there
exists a non-zero vector ρ ∈ Rr such that ρTDq0,T (u(·), x)ρ = 0, i.e.

ρT D(T, x)W−1DT (T, x)ρ + ρTC(T, x)M (T )CT (T, x)ρ = 0.

Since both above components are ≥ 0, we get

ρT D(T, x) = 0 and
∫ T

0
||R−1/2(s)BT (s)ΦT (T, s)CT (T, x)ρ||2ds = 0,

R−1/2(t) denoting the square root of R−1(t). The latter equality implies that for t ≤ T

ρTC(T, x)Φ(T, t)B(t) = 0. (10.17)

Now, by the definition of the Hamiltonian (10.10), we have at p0 = 0

ṗT1 (t) = −∂H

∂q
= −pT1 (t)A(t),

so
pT1 (t) = pT1 (T )Φ(T, t), (10.18)

for pT1 (T ) = ρTC(T, x). Finally, using (10.17) we conclude that pT1 (t)B(t) =
pT1 (t)G(q(t)) = 0, i.e. (u(t), x) is a singular optimal control-parameter pair for the
system (10.9). �

The observation that singular endogenous configurations of the mobile manipula-
tors coincide with singular optimal control-parameter pairs sometimes facilitates the
computation of the singular endogenous configurations for mobile manipulators or
mobile robots. In [9] an example of the kinematic car has been studied in this way.
Furthermore, in the specific case when the system (10.1) is analytic, and so are the
control functions u(t) driving this system, the computation of singular endogenous
configurations can be based on the necessary and sufficient rank condition for con-
trollability of the variational system (10.7), see [20, Proposition 3.5.15] or [19]. An
extension of this condition to the case of the output controllability results in the
following.
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Proposition 10.1 In the analytic case the endogenous configuration (u(·), x) is sin-
gular, if and only if the infinite matrix

Tq0,T (u(·), x) = [
D(T, x),C(T, x)[B0(T ), . . . , Bk(T ), . . .]]

has rank < r , where for k = 0, 1, . . .

B0(t) = B(t), Bk+1(t) = Ḃk(t) − A(t)Bk(t).

This Proposition generalizes to mobile manipulators the condition used in [18] for
the singularity assessment of the mobile platform kinematics.

10.2.4 Adjoint Jacobian

As has already been mentioned, the mobile manipulator’s Jacobian

Jq0,T (u(·), x) : X −→ Rr

is a linear transformation of the endogenous configuration space into the operational
space. Its dual operator,

J ∗
q0,T (u(·), x) : Rr∗ −→ X ∗,

acting between respective dual spaces is called the adjoint Jacobian of the mobile
manipulator [26]. The canonical pairings between X ∗ and X as well as between
Rr∗ and Rr are defined by the respective inner products (10.2) and (10.3).

Choosing a dual vector η∗ ∈ Rr∗, and an endogenous configuration (v(·),w) ∈
X , we define the adjoint Jacobian in the following way

(
J∗
q0,T

(u(·), x)η∗)
(v(·),w) = η∗ Jq0,T (u(·), x)(v(·),w) = 〈η, Jq0,T (u(·), x)(v(·),w)〉Q

= ηT QC(T, x)
∫ T

0
Φ(T, t)B(t)v(t)dt + ηT QD(T, x)w

= 〈(R−1(·)BT(·)ΦT(T, ·)CT (T, x)Qη,W−1DT (T, x)Qη), (v(·),w)〉RW .

It is straightforward to see that the last identity allows to define a function

(
J ∗
q0,T (u(·), x)η∗)(t) = [

R−1(t)BT (t)ΦT (T, t)CT (T, x), W−1DT (T, x)
]
Qη.

(10.19)
Being adjoint to the compact operator, the adjoint Jacobian is also compact for every
fixed endogenous configuration. The operator norm of the adjoint Jacobian can be
computed as
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||J ∗
q0,T (u(·), x)|| = sup

η �=0

||J ∗
q0,T

(u(·), x)η∗||RW
||η||Q .

We have the following proposition:

Proposition 10.2 The norm of the adjoint Jacobian

||J ∗
q0,T (u(·), x)|| = λ̄

1/2
Q1/2Dq0 ,T (u(·),x)Q1/2 = λ̄

1/2
Dq0 ,T (u(·),x)Q, (10.20)

where λ̄M denotes the maximal eigenvalue of a symmetric, positive matrix M.

Proof Substituting the identity (10.19) into the definition of the RW-norm, and using
the formula (10.8) for the dexterity matrix, we obtain

||J ∗
q0,T (u(·), x)η∗||2RW = ηT QTDq0,T (u(·), x)Qη.

An application of the Rayleigh–Ritz inequality yields

||J ∗
q0,T (u(·), x)|| = λ̄

1/2
Q1/2Dq0 ,T (u(·),x)Q1/2 . (10.21)

Furthermore, since the matrix Q is positive definite, there exists a positive definite
square root Q1/2, so we have

Dq0,T (u(·), x)Q = Q−1/2(Q1/2Dq0,T (u(·), x)Q1/2)Q1/2.

Now, the second identity of (10.20) follows from the matrix similarity. �

10.2.5 Jacobian Norm

Taking into account Proposition 10.2, from the identity of the operator norms of the
Jacobian and of the adjoint Jacobian [14], we deduce a straightforward

Corollary 10.1 The norm of the Jacobian is given by

||Jq0,T (u(·), x)|| = λ̄
1/2
Q1/2Dq0 ,T (u(·),x)Q1/2 = λ̄

1/2
Dq0 ,T (u(·),x)Q . (10.22)

Notice that a computation of themaximal eigenvalue of a symmetricmatrixmeans
solving the following optimization problem [5, Corollary III.1.2]

λ̄Q1/2Dq0 ,T (u(·),x)Q1/2 = max||w||=1
wT Q1/2Dq0,T (u(·), x)Q1/2w, (10.23)

where || · || denotes the standard Euclidean norm in Rr . It is instructive to see this
problem in the context of the parametric time optimal control version of the problem
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studied in the previous subsection, compare [9]. The following statement can be
made:

Proposition 10.3 The computation of the norm of the Jacobian involves the vector
φx,w,T,Q(·) of switching functions associated with time optimal control in (10.9), i.e.

λ̄Q1/2Dq0 ,T (u(·),x)Q1/2 = max||w||=1
||(φx,w,T,Q(·), DT (T, x)Q1/2w)||2RW , (10.24)

where φx,w,T,Q(·) will be specified in the course of the proof.

Proof We shall use the Hamiltonian (10.10) with L (q, x, u) = 1 and p0 = 1. Let
(u(t), q(t), x) be an extremal of the problem. Along this extremal we get

H (q(t), x, u(t), p1(t), p2) = pT1 (t)B(t)u(t) − 1 and ṗT1 = −pT1 (t)A(t).

The components of the vector

pT1 (t)B(t) = (pT1 (t)B1(t), . . . , p
T
1 (t)Bm(t)),

where Bi (t) stands for the i th column of the matrix B(t), are called switching func-
tions. By (10.18) it follows that pT1 (t) = pT1 (T )Φ(T, t). We choose a vectorw ∈ Rr ,
and let p1(T ) = CT (T, x)Q1/2w. Then, the following identity holds

wT Q1/2Dq0,T (u(·), x)Q1/2w = wT Q1/2D(T, x)W−1DT (T, x)Q1/2w

+
∫ T

0
pT1 (t)B(t)R−1(t)BT (t)p1(t)dt.

Denote by

φx,w,T,Q(t) = (
pT1 (t)B(t)

)T
(10.25)

the vector of switching functions satisfying p1(T ) = CT (T, x)Q1/2w. A substitution
of this vector into the above identity results in

wT Q1/2Dq0,T (u(·), x)Q1/2w = ||(φx,w,T,Q(·), DT (T, x)Q1/2w)||2RW . (10.26)

A comparison with (10.25) concludes the proof. �

10.3 Inverse Kinematics

One of the fundamental problems of robotics is the inverse kinematics problem.
Its formulation in the context of mobile manipulators is the following: given the
kinematics (10.4) and a desired point yd in the operational space, find an endogenous
configuration (ud(·), xd) such that Kq0,T (ud(·), xd) = yd . Equivalently, this means
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that the control ud(t) and the joint position xd will drive the output of the control
system (10.1) initialized at q0 to y(T ) = yd . The inverse kinematics problem is
usually solved numerically by means of a Jacobian inverse kinematics algorithm.

10.3.1 Dynamic Inverses

The Jacobian algorithms canbe conveniently derived using a reasoning that originates
in the continuation method [2, 22]. Given the inverse kinematics problem, we begin
with any initial endogenous configuration (u0(·), x0) ∈ X . If the initial choice does
not solve the problem, i.e. Kq0,T (u0(·)) �= yd , we choose in X a differentiable
curve (uθ (·), x(θ)), defined for θ ∈ R and passing at θ = 0 through the initial
configuration, and compute along this curve the operational space error

e(θ) = Kq0,T (uθ (·), x(θ)) − yd . (10.27)

Next, we request that the error dynamics obey a differential equation

d e(θ)

dθ
= −γ S(θ)e(θ), (10.28)

for a certain r ×r matrix S(θ)whose properties will be specified later, and a positive
number γ . After differentiating the formula (10.27) with respect to θ , we arrive at
the Ważewski–Davidenko equation [10, 35]

Jq0,T (uθ (·), x(θ))
d

dθ
(uθ (·), x(θ)) = −γ S(θ)e(θ), (10.29)

containing the Jacobian (10.5). Now, let us choose an operator

J #
q0,T (u(·), x) : Rr → X

and define the dynamic system

d

dθ
(uθ (·), x(θ)) = −γ J #

q0,T (uθ (·), x(θ))e(θ), (10.30)

initialized at (u0(·), x0). The choice of J #
q0,T

(u(·), x) should guarantee at least a
local existence of solutions of this system. Now, a substitution of (10.30) into the
Ważewski–Davidenko equation results in the error Eq. (10.28) with

S(θ) = Jq0,T (uθ (·), x(θ))J #
q0,T (uθ (·), x(θ)). (10.31)
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wherever a trajectory (uθ (t), x(θ)) of (10.30) exists, the solution of the error equation
(10.28) satisfies the Ważewski inequality [36]

||e(0)||Q exp

(∫ θ

0
λM(θ)ds

)
≤ ||e(θ)||Q ≤ ||e(0)||Q exp

(∫ θ

0
λM(θ)ds

)
, (10.32)

with λM and λM denoting, respectively, the minimum and the maximum eigenvalue
of the matrix

M(θ) = −1

2
γ

(
Q−1/2(QS(θ) + ST (θ)Q)Q−1/2

)
. (10.33)

The matrix S(θ) should make all eigenvalues of M(θ) to be ≤ 0. Moreover, if
(uθ (t), x(θ)) is defined for every θ ≥ 0 and the integral limθ→+∞

∫ θ

0 λM(θ)ds =
−∞, then the error e(θ) vanishes asymptotically. When these conditions are sat-
isfied, the operator J #

q0,T
(u(·), x) will be called a dynamic inverse of the mobile

manipulator’s Jacobian. The term “dynamic inverse” has been borrowed from [13]
to denote an inversion operation performed by a dynamic system. After plugging
the dynamic inverse into the dynamic system (10.30), we transform this system
into an inverse kinematics algorithm producing in the limit a solution to the inverse
kinematics problem, so that

lim
θ→+∞

(
uθ (·), x(θ)

) = (
ud(·), xd

)
.

By design, the dynamic inverse transforms an initial endogenous configuration
(u0(·), x0) ∈ X into a solution (ud(·), xd)of the inverse kinematics problem, exploit-
ing, as a vehicle, the dynamics (10.30). In general, the dynamic inversemaybedefined
only locally. This being so, a challenging task in designing the inverse kinematics
algorithms consists in guaranteeing the completeness of (10.30), i.e. the existence
of its solutions for every initial configuration (u0(·), x) and every θ ∈ R (obviously,
θ ≥ 0 suffices). In this context the following result can be proved.

Theorem 10.2 Let J #
q0,T

(u(·), x) be a local dynamic inverse of the Jacobian. Sup-
pose additionally that

||J #
q0,T (u(·), x)|| ≤ a||(u(·), x)||RW + b, (10.34)

where ||·|| stands for the operator norm, and a, b ≥ 0 are certain numbers dependent
on q0 and T . Then, J #

q0,T
(u(·), x) is a global dynamic inverse.

Proof Let (uθ (·), x(θ)) denote a solution of (10.30) defined for 0 ≤ θ < α. Since
along this solution λM(θ) ≤ 0, theWażewski inequality (10.32) results in ||e(θ)||Q ≤
||e(0)||Q , so the error is bounded for every θ < α. Now, using (10.30) and invoking
(10.34) we deduce
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||(uθ (·), x(θ))||RW ≤ ||(u0(·), x0)||RW + ||e(0)||Q
∫ θ

0
||J #q0,T (uσ (·), x(σ ))||dσ

≤ ||(u0(·), x0)||RW + a||e(0)||Q
∫ θ

0
||(uσ (·), x(σ ))||RW dσ + b||e(0)||Qθ.

Let a > 0. Then, an application of the Gronwall theorem [33, Theorem 1.3] yields
for 0 ≤ θ < α

||(uθ (·), x(θ))||RW ≤
(
b

a
+ ||(u0(·), x0)||RW

)
exp(aθ ||e(0)||Q) − b

a
. (10.35)

Using (10.34) and (10.35), we show the boundedness of the derivative,

|| d
dθ

(
uθ (·), x(θ)

)||RW ≤ γ ||J #
q0,T (u(θ ·), x(θ))||||e(θ)||Q

≤ γ (b + a||(u0(·), x0)||RW ) exp(aθ ||e(0)||Q)||e(0)||Q
≤ γ (b + a||(u0(·), x0)||RW ) exp(aα||e(0)||Q)||e(0)||Q = A.

To proceed, choose a sequence θn → α, and let θm be another sequence such that
θn < θm . As in [1, Proposition 4.1.22], we compute

||(uθm(·), x(θm))−(uθn(·), x(θn))||RW ≤
∫ θm

θn

|| d

dσ

(
uσ (·), x(σ )

)||RWdσ ≤ A|θm−θn|,

and conclude that the sequence (uθn (·), x(θn)) is Cauchy, so it converges when θn →
α. This means that the solution (uθ (·), x(θ)) of (10.30) can be extended to θ = α, so
it exists for every θ . If a = 0, we get the same conclusion for A = γ b||e(0)||Q . �

With reference to the condition (10.34), in the following subsections we compute
the norms of several most often encountered dynamic inverses. We shall start from
the Jacobian pseudo-inverse.

10.3.2 Jacobian Pseudo-inverse

For a fixed configuration (u(·), x) and a given vector η ∈ Rr , let us consider a
Jacobian equation

Jq0,T (u(·), x)(v(·),w) = η. (10.36)

By definition, at a regular (u(·), x) the Eq. (10.36) is solvablewith respect to (v(·),w),
for any η. Typically, a solution of this equation is found by the least squares method
that is tantamount to minimizing the squared norm

min
(v(·),w)

||(v(·),w)||2RW
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under the equality constraint (10.36). A standard application of the optimization
techniques results in the following formula

(
v(t),w

) =
(
J#Pq0,T

(u(·), x)η
)
(t)

= [
R−1(t)BT (t)ΦT (T, t)CT (T, x), W−1DT (T, x)

]
D−1
q0,T

(u(·), x)η, (10.37)

see [26], dependent on the inverse dexterity matrix (10.8). The operator

J #P
q0,T (u(·), x) : Rr −→ X (10.38)

defined by (10.37) is called the Jacobian pseudo-inverse (theMoore–Penrose inverse
of the Jacobian). By the smoothness of the Jacobian, outside singular configurations,
we have the local existence of solutions of the dynamic system (10.30) containing
the operator (10.38). Also, it is easily checked that along the solution (uθ (·), x(θ))

S(θ) = Jq0,T (uθ (·), x(θ))J #P
q0,T (uθ (·), x(θ)) = Ir ,

and M(θ) = −γ Ir . Summarizing these observations we have

Corollary 10.2 Suppose that (uθ (t), x(θ)) exists for every θ ≥ 0 and stays away
of singular configurations. Then, the Jacobian pseudo-inverse is a local dynamic
inverse of the Jacobian. Its error (10.28) vanishes exponentially with decay rate γ .

The inverse kinematics algorithm (10.30) that involves the operator (10.38)will be
referred to as the Jacobian pseudo-inverse kinematics algorithm. The completeness
of this algorithm for mobile manipulators has not been established, however specific
results are known for mobile platforms like the unicycle and the kinematic car [9],
[8], as well as for the rolling ball [7].

Our next result refers to the norm of the Jacobian pseudo-inverse.

Proposition 10.4 The operator norm of the Jacobian pseudo-inverse

||J #P
q0,T (u(·), x)|| = λ

−1/2
Q1/2Dq0 ,T (u(·),x)Q1/2 = λ

−1/2
Dq0 ,T (u(·),x)Q, (10.39)

where λM denotes the minimal eigenvalue of a symmetric, positive matrix M.

Proof The equality of eigenvalues on the right hand side results from similarity of the
corresponding matrices, therefore it suffices to prove the first equality. By definition

||J #P
q0,T (u(·), x)|| = sup

η �=0

||J #P
q0,T

(u(·), x)η||RW
||η||Q .

After a substitution from the formula (10.37), we obtain

||J #P
q0,T (u(·), x)η||2RW = ηTD−1

q0,T
(u(·), x)η,
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so, in consequence,

||J #P
q0,T (u(·), x)|| = λ

1/2
(Q1/2Dq0 ,T (u(·),x)Q1/2)−1 = λ

−1/2
Q1/2Dq0 ,T (u(·),x)Q1/2 .

�
It follows that the norm explodes at the singular endogenous configurations. The
result (10.39) generalizes the norm estimate for mobile platforms exploited in [9].
We shall conclude this subsection with the following consequence of [5, Corollary
III.1.2] and Proposition 10.5.

Corollary 10.3 The computation of the minimal eigenvalue is equivalent to solving
the minimization problem

λQ1/2Dq0 ,T (u(·),x)Q1/2 = min||w||=1
wT Q1/2Dq0,T (u(·), x)Q1/2w

= min||w||=1
||(φx,w,T,Q(·), DT (T, x)Q1/2w)||2RW , (10.40)

involving the vector of switching functions (10.25).

10.3.3 Singularity Robust Jacobian Inverse

From the previous subsection, we deduce that the performance of the Jacobian
pseudo-inverse algorithm deteriorates in a vicinity of singular configurations of the
mobile manipulator. In order to prevent this deterioration, a modification of the for-
mula (10.37) can bemade, leading to the concept of a singularity robust inverse of the
Jacobian [26]. This type of inverse results from the following optimization problem

min
(v(·),w)

(
κ||(v(·),w)||2RW + ||Jq0,T (u(·), x)(v(·),w) − η||2Q

)
,

κ > 0 being a regularizing parameter, whose solution provides the singularity robust
dynamic Jacobian inverse

J #SRI
q0,T (u(·), x) : Rr −→ X ,

defined as
(
J#SRIq0,T

(u(·), x)η
)

(t)

= [
R−1(t)BT (t)ΦT (T, t)CT (T, x), W−1DT (T, x)

]
Q

(
κ Ir + Dq0,T (u(·), x)Q)−1

η.

(10.41)

The operator (10.41) is well defined both at regular and at singular configurations,
and ensures the local existence of solutions of (10.30). Let (uθ (t), x(θ)) denote such
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a solution. Then, the matrix S(θ) appearing in the error equation (10.28) is equal to

S(θ) = Jq0,T (uθ (·), x(θ))J #SRI
q0,T (uθ (·), x(θ))

= Dq0,T (uθ (·), x(θ))Q(κ Ir + Dq0,T (uθ (·), x(θ))Q)−1. (10.42)

In this context we have the following results, for proofs consult [29].

Proposition 10.5 The operator norm of the singularity robust Jacobian inverse

||J #SRI
q0,T (u(·), x)|| = λ

1/2
(κ Ir+Dq0 ,T (u(·),x)Q)−2Dq0 ,T (u(·),x)Q (10.43)

is upper bounded by a constant

||J #SRI
q0,T (u(·), x)|| ≤ 1

2
κ−1/2. (10.44)

Combined with Theorem10.2, Proposition10.5 implies the following

Theorem 10.3 The singularity robust dynamic Jacobian inverse is global. The sin-
gularity robust Jacobian inverse kinematics algorithm converges provided that the
following integral diverges,

lim
θ→+∞

∫ θ

0

λDq0 ,T (uα(·),x(α))Qdα

κ + λDq0 ,T (uα(·),x(α))Q

= +∞. (10.45)

10.3.4 Adjugate Dexterity Matrix Jacobian Inverse

A dynamic inverse Jacobian operator, alternative to the singularity robust inverse,
that also remainswell defined at singular configurations, comes from a generalization
of the Newton method [4, Sect. 2.7.3]. The introduction of this operator proceeds in
the following way. Given a desired operational space point yd ∈ Rr , we compute the
map K̃q0,T (u(·), x) = Kq0,T (u(·), x) − yd , and define a ray

ρ = {αη| α ∈ R}

passing through a point η ∈ Rr . Then, we assume that the kinematics (10.4) of the
mobile manipulator are transverse to the ray, what means that if K̃q0,T (u(·), x) ∈ ρ

then
dim

(
{D K̃q0,T (u(·), x))X , ρ} = {Jq0,T (u(·), x)X , ρ}

)
= r,

or, equivalently,
rank

[
Dq0,T (u(·), x), η] = r. (10.46)
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The transversality condition means that the columns of the dexterity matrix together
with the ray span the operational space, so the transversality takes place not only at
regular configurations (rankDq0,T (u(·), x) = r ), but also at those singular configu-
rations, where the rank of Dq0,T (u(·), x) drops by 1. In the transverse situation the
inverse image Mρ = K̃−1

q0,T
(ρ) of the ray becomes a codimension r − 1 Hilbert sub-

manifold of the endogenous configuration space, [1]. Suppose that (u(·), x) ∈ Mρ ,
and let (v(·),w) be tangent to Mρ at this point. Then, the image of (v(·),w) by the
Jacobian lies in the tangent space to the ray (identified with the ray), i.e.

Jq0,T (u(·), x)(v(·),w) = αη, (10.47)

for a certain α = α(u(·), x) ∈ R. The Eq. (10.47) is a sort of Jacobian equation
whose least squares solution is equal to

v(t) = −R−1(t)BT (t)ΦT (T, t)CT (T, x)λ, w = −W−1DT (T, x)λ, (10.48)

with λ ∈ Rr denoting a vector of Lagrange multipliers. A substitution of (10.48) into
(10.47) results in

Dq0,T (u(·), x)λ = αη. (10.49)

Observe that the existence of a solution (λ, α) of (10.49) is guaranteed by the
transversality condition (10.12). A multiplication of (10.49) by the adjugate dex-
terity matrix adDq0,T (u(·), x) (by definition, for an n × n matrix M , we have
adM M = MadM = In det M) yields

λ = adDq0,T (u(·), x)η, α = detDq0,T (u(·), x). (10.50)

Finally, the solution (10.48) gives rise to the adjugate dexterity matrix Jacobian
inverse operator

J #ADM
q0,T (u(·), x) : Rr → X

such that

(
J #ADM
q0,T (u(·), x)η)

(t)

= [
R−1(t)BT (t)ΦT (T, t)CT (T, x), W−1DT (T, x)

]
adDq0,T (u(·), x)η.

(10.51)

Strictly speaking, this inverse operator is defined locally, in the domain

U(u(·),x) ={η ∈ Rr |rank[Dq0,T (u(·), x), η] = r},

since U(u(·),x) = Rr only at a regular configuration (u(·), x). Plugged into (10.30),
the inverse (10.51) produces a local solution (uθ (t), x(θ)), along which the matrix
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S(θ) = Jq0,T (uθ (·), x(θ))J #ADM
q0,T (uθ (·), x(θ)) = detDq0,T (uθ (·), x(θ))Ir ,

therefore M(θ) = −γ S(θ). We have come to the following

Corollary 10.4 Suppose that (uθ (t), x(θ)) exists for every θ ≥ 0. Then, the operator
(10.51) becomes a local dynamic inverse of the Jacobian provided that

lim
θ→+∞

∫ θ

0
detDq0,T (uα(·), x(α))dα = +∞. (10.52)

Finally, let us compute the norm of the adjugate dexterity matrix inverse. Since for
a symmetric matrix M there holds (adM)T = adM , we get

Proposition 10.6 The norm of the adjugate dexterity matrix dynamic Jacobian
inverse

||J #ADM
q0,T (u(·), x)|| =

√
detDq0,T (u(·), x))λ1/2

Q−1/2adDq0 ,T (u(·),x)Q−1/2

=
√
detDq0,T (u(·), x))λ1/2

adDq0 ,T (u(·),x)Q−1 . (10.53)

As a consequence of this result, the adjugate dexterity matrix inverse kinematics
algorithm has equilibrium points at singular configurations, what means that the
algorithm is unable to leave a singularity.On the other hand, if a singular configuration
is the solution of the inverse kinematics problem, we may expect that the algorithm
will find such a solution. This type of behaviour has been confirmed by computer
simulations presented in [26].

10.3.5 Adjoint Jacobian Inverse

In order to define this inverse, we shall exploit as a dynamic Jacobian inverse in
(10.30) the adjoint Jacobian operator (10.19). Let us denote by (uθ (t), x(θ)) a local
solution of (10.30). Along this solution the matrix

S(θ) = Jq0,T (uθ (·), x(θ))J ∗
q0,T (uθ (·), x(θ)) = Dq0,T (uθ (·), x(θ))Q.

After invoking (10.33) and the inequality (10.32), we obtain the following

Corollary 10.5 Suppose that (uθ (t), x(θ)) exists for every θ ≥ 0. Then, the adjoint
Jacobian operator defines a local dynamic inverse of the Jacobian on condition that

lim
θ→+∞

∫ θ

0
λDq0 ,T (uα(·),x(α))Qdα = +∞. (10.54)
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Obviously, the above condition will be fulfilled, if all eigenvalues of the dexterity
matrix are uniformly bounded away from zero. The norm of the adjoint Jacobian
operator has been provided by (10.21). Similarly to the adjugate dexterity matrix
algorithm, the adjoint Jacobian inverse kinematics algorithm has also equilibrium
points at singular endogenous configurations.

10.3.6 Extended Jacobian Inverse

Aconcept of the extended Jacobian inverse formobilemanipulators canbe introduced
in several steps [24, 27, 28]. The first step consists in extending the original mobile
manipulator kinematics (10.4) to a map of the endogenous configuration space into
itself. To this aim we need to decompose the endogenous configuration space into a
pair of linear subspaces

X ∼= Rr ⊕ X /Rr , (10.55)

of which the former corresponds to the operational space, and the latter forms the
remaining quotient space. Next, we introduce an augmenting kinematics map

Hq0,T : X −→ X /Rr (10.56)

that takes values in the quotient space. The original kinematics together with the
augmenting map (10.56) define the extended kinematics

Lq0,T = (Kq0,T , Hq0,T ) : X → X

of the mobile manipulator. The derivative of the extended kinematics

D Lq0,T (u(·), x) = (Jq0,T , D Hq0,T )(u(·), x)) = J̄q0,T (u(·), x) (10.57)

is called the extended Jacobian. It would be desirable that J̄q0,T (u(·), x) be a linear
isomorphism of the endogenous configuration space. However, usually this map not
only suffers from the singularities of the original kinematics, but also exhibits some
extra singularities, called algorithmic, that result from the extension procedure.

Given the extended kinematics, in the region of regular endogenous configura-
tions, the extended Jacobian inverse operator

J #E
q0,T (u(·), x) : Rr −→ X

is defined as
J #E
q0,T (u(·), x)η = J̄−1

q0,T
(u(·), x)(η, 0(·)), (10.58)

where η ∈ Rr , and 0(·) ∈ X /Rr denotes the zero element of the quotient space. By
definition, the operator (10.58) has two important properties: the identity property
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Jq0,T (u(·), x)J #E
q0,T (u(·), x) = Ir , (10.59)

and the annihilation property

D Hq0,T (u(·), x)J #E
q0,T (u(·), x) = 0(·). (10.60)

The former property means that the extended Jacobian inverse is a right inverse of
the Jacobian, while the latter implies that the augmenting kinematics map remains
constant on the trajectories produced by the extended Jacobian inverse kinematics
algorithm. Equivalently, the distribution associated with the algorithm is involutive,
ensuring its repeatability, see [23] for details.

Having plugged the inverse (10.58) into (10.30), we get a trajectory (uθ (·), x(θ)).
The following result is a direct consequence of the identity (10.59).

Corollary 10.6 Suppose that the trajectory (uθ (t), x(θ)) exists for every θ ≥ 0,
and stays away of singular configurations of the extended Jacobian (10.57). Then,
the operator J #E

q0,T
(u(·), x) is a local dynamic inverse of the Jacobian. The error

(10.28) decreases to 0 exponentially, with the rate γ . The extended Jacobian inverse
kinematics algorithm is repeatable.

10.3.7 Lagrangian Jacobian Inverse

This is an extension of the Jacobian pseudo-inverse, introduced recently in [31]. The
Jacobian equation (10.36) is regarded as an equality constraint for the minimization
of the Lagrange-type objective function

min
(v(·),w)

∫ T

0

(
ξ T (t)P(t)ξ(t) + vT (t)Rv(t)

)
dt + wTWw,

addressed in the variational system (10.7), where P(t) = PT (t) ≥ 0, and the
remainingweightmatrices come from the norm ||·||RW .Using the variational calculus
the following solution can be derived

(v(t),w) = (
J # L
q0,T (u(·), x)η)

(t)

=
[
−R−1(t)BT (t)ψ22(t)K (0),W−1DT (T, x)D−1

q0,T
(u(·), x)

× (η + C(T, x)ψ32(T )K (0))
]
, (10.61)

where

K (0) = −
(
ψ22(T ) + CT (T, x)D−1

q0,T
(u(·), x)C(T, x)ψ32(T )

)−1
CT (T, x)D−1

q0,T
(u(·), x)η,
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and the matrix functions ψ22(t), ψ32(t) satisfy the matrix differential equation

Ψ̇ (t) =
⎡

⎣
ψ̇11(t) ψ̇12(t) ψ̇13(t)
ψ̇21(t) ψ̇22(t) ψ̇23(t)
ψ̇31(t) ψ̇32(t) ψ̇33(t)

⎤

⎦ =
⎡

⎣
A(t) −B(t)R−1(t)BT (t) 0

−P(t) −AT (t) 0
H(t)P(t) 0 A(t)

⎤

⎦ Ψ (t),

with initial condition ψi j (0) = δi j In , δi j denoting the Kronecker’s delta. The matrix
H(t) is a solution of the Lyapunov equation

Ḣ(t) = B(t)R−1(t)BT (t) + A(t)H(t) + H(t)AT (t),

with zero initial condition, so that the dexterity matrix (10.8)

Dq0,T (u(·), x) = D(T, x)W−1DT (T, x) + C(T, x)H(T )CT (T, x).

It is easily checked that P(t) = 0 impliesψ32(t) = 0 andψ22(t)ψ
−1
22 (T ) = ΦT (T, t),

therefore the Lagrangian Jacobian inverse simplifies to the Jacobian pseudo-inverse.
Plugged into a motion planning algorithm the Lagrangian Jacobian inverse allows to
shape trajectories of the system (10.1), e.g. by repelling them from obstacles.

10.4 Performance

Kinematic performance of the mobile manipulator depends on the properties of the
Jacobian operator. An assessment of the local performance can be made in terms
of certain numerical indices associated with an endogenous configuration, called
local performance measures. Given an endogenous configuration (u(·), x), these
performance measures are related to the directions of motion in the operational
space corresponding to the unit sphere

Sq0,T (u(·), x)) = {(v(·),w) ∈ X |||(v(·),w)||RW = 1}

that describes possible variations of this configuration. Using the decomposition

X = Ker Jq0,T (u(·), x) ⊕ Im J #P
q0,T (u(·), x)

of the endogenous configuration space, we obtain

Jq0,T (u(·), x)Sq0,T = {η ∈ Rr | ηTD−1
q0,T

(u(·), x)η = 1}
= {η ∈ Rr | (Q1/2η)T

(
Q1/2Dq0,T (u(·), x)Q1/2

)−1
Q1/2η = 1}

= Eq0,T (u(·), x). (10.62)
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The object appearing on the right hand side of (10.62) is called the dexterity ellipsoid
of the mobile manipulator at the configuration (u(·), x). It is easily seen that the

dexterity ellipsoid is inscribed into the sphere in Rr of radius λ
1/2
Q1/2Dq0 ,T (u(·),x)Q1/2 =

λ
1/2
Dq0 ,T (u(·),x)Q (equal to ||Jq0,T (u(·), x)||), and circumscribed on the sphere of radius

λ
1/2
Q1/2Dq0 ,T (u(·),x)Q1/2 = λ

1/2
Dq0 ,T (u(·),x)Q . Various functions of eigenvalues of the matrix

Pq0,T (u(·), x) = Dq0,T (u(·), x)Q may be used as local performance measures of
the mobile manipulator [32]. Since, as we have shown, the performance of Jacobian
algorithms deteriorates at singular configurations, the performance measures should
be non-negative functions of eigenvalues of Pq0,T (u(·), x), vanishing at singular
configurations. The best known example is the determinant,

dq0,T (u(·), x) =
√
detPq0,T (u(·), x) = √

det Q
√
detDq0,T (u(·), x),

called the dexterity of (u(·), x). The dexterity establishes a volume measure of the
dexterity ellipsoid. By definition, the dexterity vanishes at singular configurations.
Another local performance measure is defined as the condition number of the matrix
Pq0,T (u(·), x)

condPq0,T (u(·), x) = ||Jq0,T (u(·), x)||||J#Pq0,T
(u(·), x)|| = λ

1/2
Dq0,T (u(·),x)Qλ

−1/2
Dq0,T (u(·),x)Q

that characterizes anisotropy of the configuration (u(·), x). When the condition num-
ber equals 1, the dexterity ellipsoid becomes a sphere, and the configuration is called
isotropic. At singular configurations the condition number grows up to infinity.

The local performance measures averaged over a prescribed (finite-dimensional)
region of the endogenous configuration space provide global performance measures
characterizing the mobile manipulator as a whole. The optimization of local perfor-
mance measures leads to obtaining motion patterns of mobile manipulators. On the
other hand, global performancemeasures provide objectives for the optimal design of
the mobile manipulator’s kinematics. A review of performance measures for mobile
manipulators, including local and global, kinematic and dynamic measures can be
found in [32, 37].

A specific performance feature of the mobile manipulator driven by an inverse
kinematics algorithm is the repeatability [23]. To explain this concept, suppose that
the inverse kinematics algorithm solves a sequence of inverse kinematics problems,
with the same initial state of the platform q0 and the control horizon T , defined by
a number of successive desired points yd1, . . . , ydk in the operational space. It is
assumed that in order to solve a given problem the algorithm starts from the solution
of the preceding problem in the sequence. The algorithm, which for every repetition
of a given problem in the sequence yields the same solution in the endogenous con-
figuration space is called repeatable. Consider a dynamic inverse Jacobian operator
J #
q0,T

= J #
q0,T

(u(·), x) appearing in (10.30). Geometrically, this operator generates
over the endogenous configuration space an r -dimensional distribution
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D#
q0,T = spanC∞(X ){J #

q0,T e1, . . . , J
#
q0,T er },

ei denoting the i th unit vector in Rr . It has been proved that the inverse kinematics
algorithm determined by J #

q0,T
(u(·), x) is repeatable whenever the distribution D#

q0,T
is integrable. All solutions of the sequence of the inverse kinematics problems lie
then on an integral manifold of this distribution, and there is only one endogenous
configuration on this manifold corresponding to a prescribed point in the operational
space.

10.5 Conclusion

We have presented an overview of the endogenous configuration space approach that
provides a uniform conceptual basis for the theory of mobile manipulators, nonholo-
nomic mobile platforms and holonomic manipulation robots. The presentation has
been focused on control theoretic aspects of this approach. Specific results highlight
the connection between singular endogenous configurations and the parametric opti-
mal control, introduce a number of Jacobian inverses, provide explicit expressions
for norms of inverse Jacobian operators, offer conditions for the existence of local
and global dynamic inverses and establish foundations for performance measures of
mobile manipulators.
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