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     Computer-Aided Diagnosis 
and Quantifi cation in Chest CT                      

     Jin     Mo     Goo     

    Abstract  

  With the advances of CT and computer technology, various applications 
for computer-aided diagnosis (CAD) and quantifi cation have been devel-
oped to enhance the performance of radiologists. CAD provides tools to 
detect more nodules, to determine nodule malignancy by characterizing 
and measuring nodules, and to match nodules in follow-up studies. These 
applications will play an important role in the nodule management for 
lung cancer screening with low-dose CT. Parenchymal and airway lesions 
in chronic obstructive lung disease and diffuse interstitial lung disease can 
be characterized and quantifi ed semiautomatically and this information 
can be used in phenotyping of disease, in explaining functional changes, 
and in clinical trials. However, users need to understand the limitations 
and measurement variability of these approaches.  

1        Introduction 

 CT plays a critical role in morphologic analyses 
of various pulmonary diseases which have been 
traditionally based on visual and qualitative 
assessment. With the advances of CT and digital 
technology, numerous post-processing tech-
niques are now being applied in lesion detection, 
characterization, and quantifi cation as well as 
three-dimensional visualization. These can be 
attributed to isotropic imaging of CT and easy 

access to digital images with the advent of pic-
ture archiving and communication systems 
(PACS). These valuable data provided by com-
puter applications can enhance radiologists’ per-
formance, but the current status is far from fully 
automated diagnosis by computer technology. 
Therefore, the basic concept of computer-aided 
diagnosis (CAD) is to provide a computer output 
as a “second opinion” to assist radiologists’ 
image interpretations (Doi et al.  1992 ). 

 CAD and quantifi cation have been under 
active research in many pulmonary diseases, but 
this chapter will mainly focus on the applications 
in the evaluation of lung nodule, chronic 
 obstructive lung disease (COPD), and diffuse 
interstitial lung disease (DILD).  
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2     Basic Technologic 
Architectures of CAD 

 As detailed technologic description of CAD is 
beyond the scope of this chapter, only basic 
architectures of CAD will be introduced here, 
which share some approaches in the evaluation of 
lung nodule, COPD, and DILD. 

2.1     Segmentation of the Lung 

 The fi rst step for lung CAD is the segmentation 
of the lung from other structures such as the chest 
wall and the mediastinum. If the lungs exhibit 
minimal or no pathologic conditions, this process 
is relatively easy compared to the segmentation 
of other organs such as the liver because the 
attenuation value of the lung is quite different 
from the surrounding structures. However, when 
a pathologic condition such as fi brosis or pleural 
effusion is present, the segmentation of the lung 
fails to perform effi ciently. As no single segmen-
tation method can achieve an optimal perfor-
mance for all disease conditions at the moment, 
specialized methods are applied for particular 
disease subsets. Recent methods can also permit 
segmentation of lobes to compute lobar volume 
and parenchymal abnormalities such as areas of 
low attenuation (Fig.  1 ).

2.2        Detection of the Region 
of Interests 

 After segmenting the lung, the region of interests 
(ROIs) are identifi ed, which is dependent on tar-
get of lesions: lung nodule, low attenuated pixels 
in the lung, airways, and typical patterns of inter-
stitial lung disease (ILD) such as areas of ground- 
glass opacity (GGO), reticular opacity, nodular 
opacities, honeycombing, and consolidation. 

 The initial nodule candidates can be identifi ed 
by applying a gray-level thresholding technique 
or shape fi lters to CT images. In dealing with 
DILD, the areas of specifi c patterns on CT are 
usually identifi ed by machine learning-based 
methods. In this method, the abnormalities are 
predicted on the basis of the features extracted 
from the data.  

2.3     Feature Analysis 
and Reduction 
of False-Positives 

 A number of image features on ROIs such as 
morphology (size, circularity, etc.), gray level, 
and texture are quantifi ed, and false-positive fi nd-
ings are removed by classifi ers. Linear discrimi-
nant analysis, rule-based classifi er, and artifi cial 
neural network are examples of feature-based 

  Fig. 1    Segmentation results of the lung ( left ) and each lobe of the lung ( right )       
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classifi ers. A classifi er is trained with sets of 
input features and corrects class labels.  

2.4     Quantifi cation 
and Characterization 

 After segmenting ROIs from the background, 
various features of ROIs such as volume (Fig.  2 ), 
mass, and texture can be calculated by using the 
number of voxels, attenuation of voxels, and a 
relationship with surrounding voxels.

3         Lung Nodule 

 With the introduction of multidetector CT 
(MDCT), radiologists need to interpret a large 
number of CT images that require additional time 
and effort. Low-dose CT has been reported as an 
effective modality for lung cancer screening but 
the interpretation of low-dose CT for screening is 
typically a repetitive and burdensome task. As 
many nodules detected on screening CT are 
false-positives for malignancy, characterization 
of nodules to determine malignancy is crucial. 
Size, shape, and volume-doubling time of nod-

ules are well-established indicators of nodule 
malignancy. However, there is considerable vari-
ability in visual assessment and manual 
 measurement in the management of nodules. 
Therefore, CAD can be used in the detection, 
measurement, and monitoring of nodules in lung 
cancer screening and has been employed in some 
clinical trials (van Klaveren et al.  2009 ). 

3.1     Detection 

3.1.1     Performance of CAD 
 Many studies have shown that CAD could 
improve radiologists’ performance in detecting 
lung nodules but reported performance of CAD 
systems is variable (Goo  2011 ). In addition to the 
CAD performance itself, the results of CAD per-
formance can be affected by the reference stan-
dard and the characteristics of evaluated datasets. 
The Lung Image Database Consortium (LIDC) 
has shown that substantial variability exists 
across experienced radiologists in the task of 
lung nodule identifi cation (Armato et al.  2004 ). 
In this study, the mean radiologist nodule detec-
tion sensitivities ranged from 51.0 to 83.2 % with 
mean false-positive rates from 0.33 to 1.39 per 
case by applying different reference standards. 
To overcome this limitation in comparing CAD 
algorithms, a comparative study where many 
CAD systems are applied to the same dataset has 
been performed (van Ginneken et al.  2010 ). 
When a database of same 50 CT scans from a 
lung cancer screening trial was tested, six algo-
rithms showed sensitivities ranging from 24.6 to 
71.2 % at a false-positive rate of 2 per case and 
sensitivities ranging from 12.7 to 57.0 % at a 
false-positive rate of 0.5 per case. Interesting 
suggestion of this study is that the combination of 
six algorithms is able to achieve a sensitivity of 
79.2 % at a false-positive rate of 2 per case and a 
sensitivity of 63.8 % at a false-positive rate of 0.5 
per case which are far superior to the sensitivity 
of each algorithm. 

 The value of CAD in improving radiologists’ 
detection performance is attributed to the fact 
that a CAD system performs nodule detection 
task differently than radiologists do. Several 
studies have shown that a CAD system was good   Fig. 2    Segmentation of GGN shows various measures of 

volume, diameter, and density       
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at detecting isolated and small nodules, while 
radiologists are good at detecting attached and 
relatively larger nodules (Lee et al.  2004 ; Marten 
et al.  2005 ). This complementary role of a human 
reader and CAD in detecting lung nodules may 
be translated into better combined performance 
of readers with CAD than that of a double read-
ing. Rubin et al. showed that the sensitivity of a 
reader with CAD at a false-positive rate of three 
can be substantially higher that with a double 
reading (Rubin et al.  2005 ). In another study, 
when the performance of CAD was compared 
with that of doubling reading with a total of 400 
low-dose CT, the sensitivity of nodule detection 
was 78.1 % for double reading and 96.7 % for 
CAD (Zhao et al.  2012 ). In this study, 21.9 % of 
151 fi ndings that needed further evaluation were 
missed by readers and detected by CAD only. 

 The early CAD programs only targeted the 
detection of solid nodules, but with the increase 
of clinical signifi cance of subsolid nodules, many 
CAD programs are now equipped with the capa-
bility to detect subsolid nodules. An initial study 
by Kim et al. which employed texture features 
and Gaussian curve fi tting features showed a sen-
sitivity of 94.3 % and a positive predictive value 
of 29.1 % at ROI-based analysis (Kim et al. 
 2005 ). In a study by Yanagawa et al., the fi gure- 
of- merit values with CAD did not show signifi -
cant differences in detecting pure ground-glass 
nodule (GGN) or part-solid nodules while they 
showed signifi cant improvement in detecting 
overall and solid nodules (Yanagawa et al.  2009 ). 
These results may be caused by poor sensitivity 
of CAD system (21 %) compared with that of 
readers (60–80 %). When a CAD system with 
better sensitivities (95 % for part-solid nodules 
and 71 % for pure GGNs) was used, readers’ sen-
sitivities were signifi cantly increased in detecting 
part-solid nodules from 81 to 97 % and in detect-
ing pure GGNs from 69 to 82 % (Godoy et al. 
 2013 ).  

3.1.2     Reading Mode of CAD 
 According to the timing of viewing the CAD 
results, the reading mode of CAD can be divided 
into fi rst reader, concurrent reader, and second 
reader. In a fi rst-reader mode, readers review the 

CAD-detected nodules only. As the sensitivity of 
CAD is not good enough at the moment, readers 
may miss many signifi cant nodules, and therefore 
this approach is not accepted. In a concurrent- 
reader mode, readers assess CT images and iden-
tify nodules while the CAD results are being 
displayed. This approach can be time effi cient, 
but some nodules can be missed especially when 
readers are dependent on CAD results. Currently, 
second-reader mode is the accepted approach 
where readers review the CAD results after read-
ers initially read CT images without CAD results. 

 Two studies have compared concurrent-reader 
mode and second-reader mode in the usage of 
CAD. In a study by Beyer et al. ( 2007 ), the sensi-
tivity in detecting nodules above 4 mm was 68 % 
without CAD, 68 % with CAD as a concurrent 
reader, and 75 % with CAD as a second reader. In 
terms of reading time, concurrent reading (274 s) 
was signifi cantly better than reading without 
CAD (294 s) and using CAD as a second reader 
(337 s). In a study by Matsumoto et al. ( 2013 ), 
the detection performance was not signifi cantly 
different between the concurrent-reader mode 
and second-reader mode (fi gure of merit, 0.70 
and 0.72), while reading time was signifi cantly 
shorter with the concurrent-reader mode (132 s) 
than with second-reader mode (210 s).   

3.2     Nodule Volumetry 

 Doubling time has been used in predicting nod-
ule malignancy, but in dealing with subcentime-
ter nodules detected on CT scans, manual 
measurements can show considerable measure-
ment variability. After the introduction by 
Yankelevitz et al. who showed all fi ve malignant 
nodules out of 13 nodules had doubling time less 
177 days (Yankelevitz et al.  2000 ), the computer- 
aided volumetry has become an important tool in 
nodule management (Fig.  3 ).

3.2.1       Measurement Variability 
 At an early study, the measurement error of volu-
metry was reported to be as small as 3 % when 
evaluated with a phantom (Yankelevitz et al. 
 2000 ). Subsequent studies have shown that various 
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factors can affect the measurement of nodule vol-
ume: the size and characteristics of nodules, the 
scan and reconstruction factors of the CT exami-
nations, and the patient-related factors such as the 
respiratory status (Goo  2011 ; Goo et al.  2005 , 
 2006 ) (Fig.  4 ). Volume measurements of smaller 
nodules, nodules attached to surrounding struc-
tures, and those with thicker CT section thickness 
may result in larger errors. When six software 
packages were compared in the evaluation of solid 
nodule volume, adequate segmentation deter-
mined by visual assessment could be achieved in 
71–86 % of nodules, and systematic volume differ-
ences were present in 11 out of 15 comparisons 
(de Hoop et al.  2009 ). Therefore, for nodule volu-
metry, obtaining CT scans with thin volumetric 
data is essential and same software package should 
be used in the evaluation of interval change of nod-
ule volume. To exclude the erroneous segmenta-
tion of nodules, readers always need to review the 
segmentation results as well.

   As the establishment of ground truth of nodule 
volume in in vivo study is not feasible, the repro-
ducibility in measuring nodule volume is more 
important than accuracy in determining the 
growth of a nodule. To evaluate the measurement 
variability, a same-day repeat CT protocol has 
been employed. After the initial study by 
Wormanns et al. which showed that the 95 % lim-
its of agreement between the repeat CT scans 
were −20 to 22 % (Wormanns et al.  2004 ), many 
studies have shown that these limits can be up to 
26 % (Goo  2011 ). Based on this results, the 
growth of a nodule in the NELSON (Nederlands- 
Leuvens Longkanker Screenings Onderzoek) 
trial was defi ned as an increase in nodule volume 
of at least 25 % between the two scans. Therefore, 
the measurement difference up to this threshold 
can be regarded as measurement error, while the 
measurement difference greater than this thresh-
old can be true change between two CT scans.   

3.3     Quantifi cation of Subsolid 
Nodule 

 Due to the low contrast to the lung of subsolid 
nodules compared with solid nodule, segmenta-
tion of subsolid nodule is a diffi cult task. When a 
measurement error was estimated with simulated 
GGNs of various attenuation values, the average 
of the relative volume measurement error ranged 
from 51.1 to 85.2 % for 3 mm GGNs and from 
−4.1 to 7.1 % for 5 mm GGNs (Oda et al.  2010 ). 

 In addition to increased size of volume, sub-
solid nodules may show other growth patterns. 
They can show increase in attenuation, newly 
appeared or increased solid component, or 
decrease in overall size with increased solid com-
ponent. To refl ect these growth patterns, a mea-
sure of mass has been devised which can be 
calculated by multiplying nodule volume with 
nodule attenuation (Fig.  5 ). In a study by de Hoop 
et al., mass showed less variability and less mean 
time, required in determining growth than diam-
eter or volume, which indicates that mass mea-
surements can enable the detection of growth of 
subsolid nodules earlier than volume or diameter 
measurements (de Hoop et al.  2010 ). When the 

  Fig. 3    Segmentation result of pleural-attached nodule 
showing volume of a nodule       
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interscan variability of volume and mass mea-
surement of GGN was assessed with a same-day 
repeat CT study, they were reported to be up to 
19 % (Kim et al.  2013 ).

   In the staging of lung adenocarcinoma, it has 
been suggested that the size T factor should be 
adjusted only to the invasive component pathologi-
cally in invasive tumors with lepidic areas. In a 
CT-pathology correlation study, the size of the solid 
component in subsolid nodules on CT has a signifi -
cant correlation with the invasive component of 
lung adenocarcinoma on pathology (Lee et al. 
 2014 ). In an attempt to segment the solid compo-
nent in subsolid nodules, a threshold of −300 HU 
demonstrated a good sensitivity (90 %) and speci-
fi city (88 %) (Scholten et al.  2015 ) (Fig.  6 ).

3.4        Nodule Characterization 

 The likelihood of nodule malignancy has been 
determined by experienced radiologists’ visual 

assessment mainly based on morphology and 
internal composition of a nodule. Various nodule 
features can be quantitated according to the shape 
of the nodule such as sphericity and the internal 
confi guration of the nodule such as mean attenu-
ation or homogeneity. CAD output generated 
with this process may be used in determining 
nodule malignancy. In a study by Awai et al., the 
use of CAD output generated from 56 morpho-
logic features and two clinical datasets improved 
the diagnostic performance of residents for the 
assessment of nodule malignancy while it did not 
improve that of radiologists (Awai et al.  2006 ). 
Texture analysis, which uses attenuation values 
of each voxel and their distribution within target 
lesions, can also provide a quantitative imaging 
analysis tool (Fig.  7 ). This approach has been 
applied to categorize lung adenocarcinoma mani-
fested as subsolid nodules. In a study by Chae 
et al., higher kurtosis and smaller mass are sig-
nifi cant predictors of preinvasive lesions from 
invasive adenocarcinomas (Chae et al.  2014 ). 

  Fig. 4    CT scans of 1 mm section thickness ( left ) and 3 mm section thickness ( right ) obtained from the same raw CT 
data result in 26 % difference in nodule volume measurements       
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Similar attempt to differentiate invasive adeno-
carcinoma from preinvasive or minimally inva-
sive adenocarcinoma showed that the 75th 
percentile CT attenuation value and entropy are 
predictors for invasive adenocarcinoma (Son 
et al.  2014 ).

3.5        Nodule Matching 
in Follow-Up CT 

 Evaluating changes of nodules between a former 
CT scan and a current follow-up CT scan is a rou-
tine clinical task, which is typically performed by 

  Fig. 5    Serial CT scans of a subsolid nodule show increase in diameter, volume, and mass of subsolid nodule       
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manual matching of two CT scans requiring large 
efforts and time. Registration techniques can be 
applied to improve work effi ciency in this task. 
When two serial CT scans with a 5-mm section 
thickness in patients with metastatic lung nodules 
were evaluated, the overall matching rate was 
67 % (Lee et al.  2007 ). Higher matching rate 

(82 %) could be achieved on CT scans with a rela-
tively unchanged lung confi guration than on CT 
scans with substantial interval changes (29 %). As 
the change of lung confi guration is small in lung 
screening settings, the matching rates on screen-
ing CT were reported to be 91–93 % (Beigelman-
Aubry et al.  2007 ; Tao et al.  2009 ).  

  Fig. 6    Axial ( upper ) and coronal ( lower ) CT scans of a part-solid nodule ( left ) and its segmentation results ( right ) sepa-
rating GGO component from solid component       
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3.6     Role of CAD in Nodule 
Management 

 Nodule management in a screening setting usu-
ally starts with the assessment to determine the 
presence or absence of a nodule, the size of nod-
ule, and the attenuation of a nodule whether it is 
solid, part solid, or pure GGN. Although this 
looks like a simple approach, considerable vari-
ability has been reported among readers. In a 
study by Jeon et al., the agreement for the positiv-
ity of the screening results and follow-up recom-
mendations could be improved from moderate 
(multirater kappa value, 0.53–0.54) at initial 
reading to good (multirater kappa value, 0.66–
0.67) after reviewing CAD results (Jeon et al. 
 2012 ). CAD can be helpful in the classifi cation of 
lung nodules according to the nodule attenuation. 
Pairwise agreements for the differentiation 
between solid nodule, part-solid nodule, and pure 
GGN were similar between CAD and each of the 
reader (kappa value, 0.54–0.72) and between 
readers (kappa value, 0.56–0.81) (Jacobs et al. 
 2015 ). The nodule volumetry can also play an 
important role in lung cancer screening. In the 

NELSON trial, the nodule volumetry and 
 estimated volume-doubling time proved to be an 
effective tool to limit the number of follow-up 
CT examinations and the overuse of invasive pro-
cedures (van Klaveren et al.  2009 ) (Fig.  8 ).

4         Chronic Obstructive Lung 
Diseases 

 COPD is currently the third most common cause 
of death in the United States, and mortality from 
COPD has increased progressively over the last 
10 years. As COPD is defi ned as a disease char-
acterized by persistent airfl ow limitation caused 
by the combination of parenchymal destruction 
(emphysema) and remodeling of the small air-
ways, its diagnosis is made with spirometry. 
Although pulmonary function tests (PFTs) are 
reproducible tests and a mainstay in the evalua-
tion of COPD, they represent global measure-
ments of lung function of airways that contribute 
unequally to airfl ow. With similar levels of func-
tional impairment, the morphologic manifesta-
tions of COPD vary widely. CT can help 

  Fig. 7    Texture analysis of subsolid nodule. After segmenting a nodule, various texture features can be calculated as 
shown in the  right side  table (Courtesy of Park CM, Seoul National University Hospital, Seoul, Korea)       
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understanding the heterogeneity of COPD by 
subphenotyping it into emphysema, large airway 
abnormality, and small airway obstruction. 

 Conventional CT analyses of COPD consist 
of visual assessment to determine the presence, 
characteristics, and extent of emphysema, air-
way wall thickening, and air trapping. With the 
vigorous investigations using quantitative CT, 
chest CT has become an established modality 
in quantifying emphysema and measuring vari-
ous airway dimensions and degree of air 
trapping. 

4.1     Quantifi cation of Emphysema 

 Emphysema, which is an abnormal permanent 
enlargement of airspaces distal to the terminal 
bronchioles accompanied by destruction of 
 alveolar walls, results in replacing the normal 
lung parenchyma with air-containing spaces. 

Therefore, areas of emphysema appear as hypoat-
tenuated areas on CT. 

 Densitometric analysis for the quantifi cation 
of emphysema was fi rst introduced by Müller 
et al. ( 1988 ), which is based on a frequency dis-
tribution curve of voxels in the lung parenchyma 
according to CT attenuation coeffi cients (Yoon 
et al.  2013 ) (Fig.  9 ). Through a series of correla-
tion studies between CT measurements and his-
tology, threshold values representing areas of 
emphysema have been suggested. Although CT 
thresholds set at −960 HU or 970 HU showed the 
highest correlation with histologic emphysema 
(Madani et al.  2006 ), the threshold of −950 HU is 
more commonly used in the interests of balanc-
ing sensitivity and specifi city (Heussel et al. 
 2009 ; Coxson et al.  2013 ; Regan et al.  2010 ) 
(Fig.  10 ). This measure is usually expressed as 
emphysema index, percentage of low attenuation 
area (%LAA), or relative area (RA) of the lung. 
The size and number of LAA clusters can be 

  Fig. 8    CT scans obtained at an interval of 238 days shows a growth of a nodule with volume-doubling time of 401 
days. This nodule turned out to be lung adenocarcinoma       
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Frequency
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Histogram of pixels Cumulative histogram

  Fig. 9    After segmenting the lung, all the pixels can be 
plotted according to the attenuation of the pixels resulting 
in a histogram of pixels. This can be converted to a cumu-

lative histogram, which can be used to calculate %LAA 
for a specifi c threshold or a percentile density correspond-
ing to a specifi c percentile of the lung       

  Fig. 10    Lobe-based analysis of LAA showing color overlay with red color using a threshold of −950HU. The table 
shows the volume of LAA (emphysema volume) and the proportion of LAA to the lung volume (emphysema ratio)       
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 calculated by grouping adjacent low-attenuation 
voxels together (Fig.  11 ). With progression of 
disease, the LAA clusters decrease in number but 
increase in size, which can be expressed as a frac-
tal dimension, defi ned as the slope of the cumula-
tive frequency-size distribution of the %LAA 
(Mishima et al.  1999 ). Another approach to 
emphysema quantifi cation is the percentile den-
sity method to determine the CT attenuation at a 
given percentile along the histogram, and the 
15th percentile (PD15) is a frequently used point 
(Fig.  9 ). A higher PD15 value indicates less 
emphysema (Heussel et al.  2009 ; Coxson et al. 
 2013 ). The percentile density method approach is 
reported to be more robust for longitudinal evalu-
ation of emphysema and less sensitive to changes 
in lung volume (Dirksen  2008 ).

     There are many factors that can affect the 
quantifi cation of emphysema: lung volume, CT 
parameters, and status of smoking. When CT 
scans obtained at 100, 90, 80, 70, and 50 % of 
vital capacity were evaluated, the %LAA at vital 
capacity lower than 100 % decreased signifi -
cantly from that at 100 % vital capacity even 
though the difference was as small as 2–3 % 
between 100 % vital capacity and 90 % vital 
capacity (Madani et al.  2010 ). Therefore, in CT 
scanning for emphysema quantifi cation, careful 

coaching of respiratory maneuver to patients is 
essential. Correction for lung volume can also be 
employed to reduce the variability in longitudinal 
studies (Stoel et al.  2008 ; Park et al.  2012 ). As for 
CT parameters, section thickness, tube currents, 
and reconstruction algorithms can affect the 
quantifi cation. The %LAA can decrease with 
increasing slice thickness and increasing tube 
current (Madani et al.  2007 ). Because the edge- 
enhancing reconstruction algorithms result in 
increased %LAA due to increased noise 
(Boedeker et al.  2004 ), a standard or smooth 
reconstruction algorithm is recommended in the 
emphysema quantifi cation. By applying iterative 
reconstruction algorithms, the %LAA decreases 
compared with CT using fi ltered back projection 
(Choo et al.  2014 ). Therefore, standardization of 
CT parameters and maintaining the same tech-
nique are crucial in longitudinal studies. The 
relationship between the smoking status and 
%LAA is somewhat paradoxical: lower %LAA 
in current smokers than in former smokers and 
increased %LAA after smoking cessation 
(Grydeland et al.  2009 ; Ashraf et al.  2011 ). The 
potential explanation for these phenomena is that 
the increase of infl ammatory cells in the lung can 
be caused by smoking and results in increased 
lung attenuation. 

  Fig. 11    Coronal CT ( left ) showing extensive emphysema and 3-D representation ( right ) for an index of the size of the 
low-attenuation clusters (Courtesy of Jin GY, Chonbuk National University Hospital, Jeonju, Korea)       
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 The clinical value of CT quantifi cation of 
emphysema is that it has close relationship with 
PFT (Kinsella et al.  1990 ; Park et al.  1999 ). 
Although CT scan in the evaluation of emphy-
sema is usually obtained at inspiration, the 
%LAA at expiration better refl ects PFT than that 
at inspiration (Kauczor et al.  2002 ). In addition to 
the cross-sectional study, CT is now being used 
for longitudinal studies (Coxson et al.  2013 ; 
Regan et al.  2010 ). In one cohort study which 
evaluated a longitudinal change over 3 years in 
1928 patients with COPD, the annual decline of 
PD15 was more rapid in women than men and in 
current smokers than in former smokers, while 
baseline age, smoking history, airfl ow limitation, 
and exacerbation history had no effect (Coxson 
et al.  2013 ).  

4.2     Measurement of Large 
Airways 

 Airway wall remodeling occurs in patients with 
COPD, and airfl ow obstruction can be caused 
by airway wall thickening. These changes on 

large airways can be seen on CT scan but visual 
assessment of airway wall thickening is quite 
subjective. With the increase use of thin-section 
volumetric chest CT, obtaining various metrics 
of airway dimensions has become more feasi-
ble. Airway luminal area, wall thickness or area, 
and wall area percent can be calculated to the 
level of 5th or 6th branches of airways. To pro-
duce these measures, after segmenting the air-
ways, a short- axis image is reconstructed in a 
plane perpendicular to the long axis of the 
selected airways (Fig.  12 ). Pi10 is devised to 
report the summary measures of airways, which 
is the square root of the wall area of a hypotheti-
cal bronchus of internal perimeter 10 mm. This 
is calculated from the linear regression by plot-
ting the square root of the airway wall area 
against the internal perimeter of all measured 
airways (Fig.  13 ).

    Nakano et al. showed that the airway wall area 
measured at the apical bronchus has an inverse 
relationship with FEV 1  (Nakano et al.  2000 ), and 
subsequent studies on the measurement of air-
ways reported similar results (Berger et al.  2005 ; 
Hasegawa et al.  2006 ). The correlation between 

  Fig. 12    Curved planar reformation of the bronchial path-
way to the right lower lobe ( upper left and bottom ) and 
orthogonal cross section of the subsubsegmental bronchus 

in the right lower lobe ( upper right ) show various metrics 
of airway dimensions       
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the airway wall area and airfl ow limitation tended 
to be stronger at more distal generations of the 
bronchi (Hasegawa et al.  2006 ), and airway wall 
thickness was larger in smokers with COPD than 
in smokers or nonsmokers without COPD (Berger 
et al.  2005 ). Although the direct measurement of 

small airways is not feasible or shows large 
errors, as there is a signifi cant association 
between the dimensions of the small and large 
airways, the measurement of the large airways on 
CT may be used in estimating the changes in the 
small airways (Nakano et al.  2005 ).  
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  Fig. 13    Three-dimensional display of the airway with various metrics of airways. A graph at the  bottom  shows how 
Pi10 was plotted (Courtesy of Jin GY, Chonbuk National University Hospital, Jeonju, Korea)       
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4.3     Assessment of Small Airway 
Disease 

 Small airways are airways with a diameter of 
2 mm or less and the main sites of airfl ow obstruc-
tion in COPD. If we consider measurement 
errors, direct measurement of the wall or lumen 
of these airways is beyond the range of spatial 
resolution of current chest CT. Therefore, visual 
assessment of small airways on CT is based on 
the indirect fi ndings of air trapping on expiratory 
CT scan obtained at functional residual capacity 
or at residual volume. On the other hand, a quan-
titative analysis of air trapping is challenging, 
and attenuation-based techniques similar to the 
quantifi cation of emphysema have been proposed 
by applying a threshold of −856 or 850 HU at 
expiratory CT (Regan et al.  2010 ). The %LAA at 
expiration shows high correlations with the 
FEV 1 /FVC and with the predicted FEV 1 . By 
combining information of %LAA at inspiration 
and expiration, COPD subjects may be catego-
rized into predominant emphysema, mixed 
emphysema and air trapping, and predominant 
air trapping. Other quantitative approaches for air 
trapping include the lung volume or attenuation 
ratio of inspiratory to expiratory CT and the rela-
tive volume change of voxels between inspiratory 
to expiratory CT with attenuation values between 

−860 HU and −950 HU. The drawback of an 
attenuation-based technique is that emphysema 
as well as small airway disease contributes to 
%LAA of specifi c thresholds. To overcome this 
limitation, Galbán et al. proposed a parametric 
response map which is generated with a voxel- 
by- voxel co-registration of inspiratory and expi-
ratory CT scans (Galban et al.  2012 ). Deformable 
registration is used to spatially align the expira-
tory scan to the inspiratory scan (Fig.  14 ) and 
then classifi cation of voxels in the map into areas 
of normal parenchyma, small airway disease, and 
emphysema. This map provides information on 
the local distribution and extent of COPD pheno-
types of small airway disease and emphysema as 
well as global measures.

5         Diffuse Interstitial Lung 
Diseases 

 Impairment of pulmonary function expressed as 
reduced DLCO and FVC levels is consistently 
associated with increased mortality in patients 
with DILD. Although changes in FVC are the 
most widely used endpoint in drug trials, 
because of its poor sensitivity to change, it is 
hard to  interpret marginal changes of 5–10 % in 
an individual (Hansell et al.  2015 ). Meanwhile, 

a b

c d

  Fig. 14    CT scans obtained at inspiration ( a ) and at expi-
ration ( b ) are used to generate deformed expiration CT 
images ( c ) with registration techniques. By subtraction of 

inspiratory CT and deformed expiratory CT, an air- 
trapping subtraction map ( d ) can be generated (Courtesy 
of Seo JB, Asan Medical Center, Seoul, Korea)       

 

Computer-Aided Diagnosis and Quantifi cation in Chest CT



446

thin-section CT has been an essential compo-
nent in making a diagnosis of DILD, but opti-
mal use of CT in monitoring diffuse lung disease 
was not established. With the recent approval of 
new drugs by the US Food and Drug 
Administration for the treatment of idiopathic 
pulmonary fi brosis (IPF), the quantifi cation of 
the extent of DILD on CT has become a more 
important issue (Hansell et al.  2015 ). In the clin-
ical trials, CT may provide an effective endpoint 
in addition to PFTs and other biomarkers. 
Methods to assess disease extent on CT are 
being investigated from simple visual estimates 
to sophisticated software quantifi cation. In the 
past, high-resolution CT scan was obtained with 
a limited number of thin sections at specifi c 
intervals with skipped volume. This approach 
was employed initially due to limited CT per-
formance, but this technique can be used to 
reduce radiation exposure to patients. As this 
non-contiguous imaging is problematic in moni-
toring disease extent in serial CT scans, contig-
uous volumetric acquisition of CT is now 
recommended. 

 CT fi ndings related with fi brotic interstitial 
lung diseases are ground-glass opacity, reticular 
opacity, traction bronchiectasis, and honeycomb-
ing. The extent of fi brosis on CT in patients with 
IPF was reported to be an important predictor of 
mortality (Lynch et al.  2005 ). Semiquantitative 

visual estimation of disease extent has been per-
formed typically on several sections of thin- 
section CT. However, even among thoracic 
radiologists, there is considerable variability in 
defi ning the presence or absence of these fi ndings 
(Watadani et al.  2013 ). Interobserver variability 
is inevitable in this visual assessment but can be 
reduced by reader training with standard image 
references. 

5.1     Semiautomated Analysis 

 A texture-based adaptive multiple feature 
method was developed to evaluate the lung 
parenchyma on thin-section CT and showed 
overall accuracy of 81 % in differentiating four 
groups of normal subjects and those with emphy-
sema, IPF, or sarcoidosis (Uppaluri et al.  1999 ). 
In a study which evaluated the feasibility of 
automated quantifi cation of regional disease pat-
terns on CT, after training the CAD system by 
the use of typical ROIs representing patterns of 
normal, GGO, reticular opacity, honeycombing, 
emphysema, and consolidation, the overall accu-
racy of the system in classifying each disease 
pattern was 89 % (Park et al.  2009 ) (Fig.  15 ). 
When similar approach was employed in evalu-
ating short-term changes in patients with IPF, 
interval changes in volume of reticular opacity, 

  Fig. 15    Transverse CT scan ( left ) and texture-based 
quantifi cation map ( right ) in a patient with IPF show the 
areas of different regional patterns expressed as different 
color overlay on the map: normal ( green ); ground-glass 

opacity ( yellow ); reticular opacity ( cyan ); consolidation 
( pink ); honeycombing ( violet ) (Courtesy of Seo JB, Asan 
Medical Center, Seoul, Korea)       
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total volume of interstitial abnormalities, and % 
total interstitial abnormalities were predictive of 
survival after a median follow-up of 2.4 years 
(Maldonado et al.  2014 ). This CAD output may 
be used to generate a composite score which 
incorporates elements from clinical, radiologi-
cal, and physiological assessments to predict 
patients’ outcome more effectively than using a 
single test.

6         Perspective 

 With the continuous improvement of computer 
technology, image analyses in future radiology 
will be more quantitative and more objective 
using extracted features from images. Although 
many studies have shown advantages of CAD 
systems in improving radiologists’ performance, 
the CAD is not widely used as a component of 
routine clinical practice. While undoubtedly mul-
tifactorial, in addition to much room for improve-
ment of CAD performance, a major contributing 
reason is workfl ow issue which can be enhanced 
by seamless incorporation of a CAD system into 
a PACS environment. Protocol-based sending of 
CT images to CAD server, preprocessing and 
generation of CAD results before clinical read-
ing, and robust, easy-to-use manual modifi cation 
tools for CAD results are a few examples to 
enhance workfl ow in the use of CAD. We may 
use CAD programs consisting of several CAD 
algorithms targeting different disease entities. 
For example, a CAD program for low-dose CT 
scan used in lung cancer screening can be 
equipped with modules for a lung nodule, COPD, 
and calcium scoring. By combining the CAD 
results with the clinical data, prediction models 
and decision-assistant tools will be available. 

 To compare CAD results in longitudinal 
examinations, at the moment it is essential to 
obtain CT images with the same CT scanner and 
the same scanning protocol and to analyze with 
the same version of a CAD program. However, 
this can be performed only in an ideal research 
setting and it cannot be applied in daily clinical 
practice. There can be several measures to reduce 
measurement variability obtained at non-ideal 

situations. The use of standardized protocols 
helps to allow multicenter studies. The vendor 
should discuss with researchers how the CT out-
puts across CT vendors can be minimized. 
Compensation or prediction methods for mea-
surement variability according to various factors 
may help in comparing quantitative measures 
obtained in different settings.     
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