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Abstract In this research work, we describe a ten-term novel 4-D four-wing chaotic
system with four quadratic nonlinearities. First, this work describes the qualitative
analysis of the novel 4-D four-wing chaotic system.We show that the novel four-wing
chaotic system has a unique equilibrium point at the origin, which is a saddle-point.
Thus, origin is an unstable equilibrium of the novel chaotic system.We also show that
the novel four-wing chaotic system has a rotation symmetry about the x3 axis. Thus,
it follows that every non-trivial trajectory of the novel four-wing chaotic systemmust
have a twin trajectory. The Lyapunov exponents of the novel 4-D four-wing chaotic
system are obtained as L1 = 5.6253, L2 = 0, L3 = −5.4212 and L4 = −53.0373.
Thus, the maximal Lyapunov exponent of the novel four-wing chaotic system is
obtained as L1 = 5.6253. The large value of L1 indicates that the novel four-wing
system is highly chaotic. Since the sum of the Lyapunov exponents of the novel
chaotic system is negative, it follows that the novel chaotic system is dissipative.
Also, the Kaplan-Yorke dimension of the novel four-wing chaotic system is obtained
as DK Y = 3.0038. Finally, this work describes the adaptive synchronization of
the identical novel 4-D four-wing chaotic systems with unknown parameters. The
adaptive synchronization result is proved using Lyapunov stability theory. MATLAB
simulations are depicted to illustrate all the main results for the novel 4-D four-wing
chaotic system.
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1 Introduction

Chaotic systems are defined as nonlinear dynamical systems which are sensitive to
initial conditions, topologically mixing and with dense periodic orbits. Sensitivity to
initial conditions of chaotic systems is popularly known as the butterfly effect. Small
changes in an initial state will make a very large difference in the behavior of the
system at future states.

The Lyapunov exponent is a measure of the divergence of phase points that are
initially very close and can be used to quantify chaotic systems. It is common to
refer to the largest Lyapunov exponent as the Maximal Lyapunov Exponent (MLE).
A positive maximal Lyapunov exponent and phase space compactness are usually
taken as defining conditions for a chaotic system.

Some classical paradigms of 3-D chaotic systems in chaos literature are Lorenz
system [1], Rössler system [2], ACT system [3], Sprott systems [4], Chen system [5],
Lü system [6], Liu system [7], Cai system [8], Chen-Lee system [9], Tigan system
[10], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou
system [11], Zhu system [12], Li system [13],Wei-Yang system [14], Sundarapandian
systems [15, 16], Vaidyanathan systems [17–32], Pehlivan system [33], Sampath
system [34], Pham system [35], etc.

Chaos theory and control systems have many important applications in science
and engineering [36–41]. Some commonly known applications are oscillators [42,
43], lasers [44, 45], chemical reactions [46–48, 48–50], biology [51–58], ecology
[59, 60], encryption [61, 62], cryptosystems [63, 64], mechanical systems [65–69],
secure communications [70–72], robotics [73–75], cardiology [76, 77], intelligent
control [78, 79], neural networks [80–82], finance [83, 84], memristors [85, 86], etc.

Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature.

Major works on synchronization of chaotic systems deal with the complete syn-
chronization of a pair of chaotic systems called the master and slave systems. The
design goal of the complete synchronization is to apply the output of the master
system to control the slave system so that the output of the slave system tracks the
output of the master system asymptotically with time.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [87, 88]. The active control method [89–99] is typically
used when the system parameters are available for measurement.

Adaptive control method [100–115] is typically used when some or all the sys-
tem parameters are not available for measurement and estimates for the uncertain
parameters of the systems.
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Sampled-data feedback control method [116–119] and time-delay feedback con-
trol method [120–122] are also used for synchronization of chaotic systems. Back-
stepping control method [123–130] is also used for the synchronization of chaotic
systems, which is a recursive method for stabilizing the origin of a control system in
strict-feedback form.

Another popular method for the synchronization of chaotic systems is the sliding
mode control method [131–140], which is a nonlinear control method that alters the
dynamics of a nonlinear system by application of a discontinuous control signal that
forces the system to “slide” along a cross-section of the system’s normal behavior.

In this research work, we describe a ten-term novel 4-D four-wing chaotic system
with four quadratic nonlinearities. Section2 describes the 4-D dynamical model
and phase portraits of the novel four-wing chaotic system. Section3 describes the
dynamic analysis of the novel four-wing chaotic system.We shall show that the novel
four-wing chaotic system has a unique equilibrium at the origin, which is a saddle-
point. Thus, the origin is an unstable equilibrium of the novel four-wing chaotic
system.

The Lyapunov exponents of the novel 4-D four-wing chaotic system are obtained
as L1 = 5.6253, L2 = 0, L3 = −5.4212 and L4 = −53.0373. Thus, the maximal
Lyapunov exponent of the novel four-wing chaotic system is obtained as L1 =
5.6253. The large value of L1 indicates that the novel four-wing system is highly
chaotic. Since the sum of the Lyapunov exponents of the novel chaotic system is
negative, it follows that the novel chaotic system is dissipative. Also, the Kaplan-
Yorke dimension of the novel four-wing chaotic system is obtained as DK Y = 3.0038.

Section4 describes the adaptive synchronization of the identical novel chaotic
systems with unknown parameters. The adaptive feedback control and synchroniza-
tion results are proved using Lyapunov stability theory [141]. MATLAB simulations
are depicted to illustrate all the main results for the 4-D novel four-wing chaotic
system. Finally, Sect. 5 gives a summary of the main results derived in this work.

2 A Novel 4-D Four-Wing Chaotic System

In this work, we announce a novel 4-D four-wing chaotic system described by

ẋ1 = −ax1 + x2x3 + px4
ẋ2 = ax2 − x1x3 − px4
ẋ3 = −bx3 + x1x2
ẋ4 = −cx4 + x1x3

(1)

In (1), x1, x2, x3, x4 are the states and a, b, c, p are constant, positive parameters.
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The 4-D system (1) is chaotic when the parameter values are taken as

a = 17, b = 50, c = 5, p = 2 (2)

For numerical simulations, we take the initial state of the chaotic system (1) as

x1(0) = 1.5, x2(0) = 1.8, x3(0) = 1.2, x4(0) = 1.4 (3)

The novel 4-D chaotic system (1) exhibits a strange, four-wing chaotic attractor.
Figure1 describes the 3-D projection of the four-wing chaotic attractor of the novel
4-D chaotic system (1) on (x1, x2, x3) space. Figure2 describes the 3-D projection
of the four-wing chaotic attractor of the novel 4-D chaotic system (1) on (x1, x2, x4)
space.

Figure3 describes the 3-Dprojection of the four-wing chaotic attractor of the novel
4-D chaotic system (1) on (x1, x3, x4) space. Figure2 describes the 3-D projection
of the four-wing chaotic attractor of the novel 4-D chaotic system (1) on (x2, x3, x4)
space.
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Fig. 1 3-D projection of the novel four-wing chaotic system on (x1, x2, x3) space
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Fig. 2 3-D projection of the novel four-wing chaotic system on (x1, x2, x4) space
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Fig. 3 3-D projection of the novel four-wing chaotic system on (x1, x3, x4) space
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3 Analysis of the Novel 4-D Four-Wing Chaotic System

This section gives the qualitative properties of the novel 4-D four-wing chaotic system
(1) proposed in this research work.

3.1 Dissipativity

We write the system (1) in vector notation as

ẋ = f (x) =

⎡
⎢⎢⎣

f1(x)

f2(x)

f3(x)

f4(x)

⎤
⎥⎥⎦ , (4)

where
f1(x) = −ax1 + x2x3 + px4
f2(x) = ax2 − x1x3 − px4
f3(x) = −bx3 + x1x2
f4(x) = −cx4 + x1x3

(5)

We take the parameter values as in the chaotic case, viz.

a = 17, b = 50, c = 5, p = 2 (6)

The divergence of the vector field f on IR4 is obtained as

div f = ∂ f1(x)

∂x1
+ ∂ f2(x)

∂x2
+ ∂ f3(x)

∂x3
+ ∂ f4(x)

∂x4
= −(b + c) = −μ (7)

where
μ = b + c = 55 > 0 (8)

Let Ω be any region in IR4 with a smooth boundary. Let Ω(t) = Φt (Ω), where
Φt is the flow of the vector field f .

Let V (t) denote the hypervolume of Ω(t).
By Liouville’s theorem, it follows that

dV (t)

dt
=

∫

Ω(t)

(div f )dx1 dx2 dx3 dx4 (9)

Substituting the value of div f in (9) leads to
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dV (t)

dt
= −μ

∫

Ω(t)

dx1 dx2 dx3 dx4 = −μV (t) (10)

Integrating the linear differential equation (10), V (t) is obtained as

V (t) = V (0) exp(−μt), where μ = 55 > 0. (11)

From Eq. (11), it follows that the hypervolume V (t) shrinks to zero exponentially
as t → ∞.

Thus, the novel chaotic system (1) is dissipative. Hence, any asymptotic motion
of the system (1) settles onto a set of measure zero, i.e. a strange attractor.

3.2 Rotation Symmetry

It is easy to see that the novel 4-D chaotic system (1) is invariant under the change
of coordinates

(x1, x2, x3, x4) �→ (−x1,−x2, x3,−x4) (12)

Since the transformation (12) persists for all values of the system parameters, it
follows that the novel 4-D chaotic system (1) has rotation symmetry about the x3-axis
and that any non-trivial trajectory must have a twin trajectory.

3.3 Equilibria

The equilibrium points of the novel chaotic system (1) are obtained by solving the
nonlinear equations

f1(x) = −ax1 + x2x3 + px4 = 0
f2(x) = ax2 − x1x3 − px4 = 0
f3(x) = −bx3 + x1x2 = 0
f4(x) = −cx4 + x1x3 = 0

(13)

We take the parameter values as in the chaotic case, viz.

a = 17, b = 50, c = 5, p = 2 (14)

Solving the nonlinear system of Eq. (13) with the parameter values (14), we obtain
a unique equilibrium point at the origin, i.e.
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Fig. 4 3-D projection of the novel four-wing chaotic system on (x2, x3, x4) space

E0 =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ (15)

The Jacobian matrix of the novel chaotic system (1) at E0 is obtained as

J0 = J (E0) =

⎡
⎢⎢⎣

−17 0 0 2
0 17 0 −2
0 0 −50 0
0 0 0 −5

⎤
⎥⎥⎦ (16)

The matrix J0 has the eigenvalues

λ1 = −50, λ2 = −17, λ3 = −5, λ4 = 17 (17)

This shows that the equilibrium point E0 is a saddle-point, which is unstable
(Fig. 4).

3.4 Lyapunov Exponents and Kaplan-Yorke Dimension

We take the initial values of the novel four-wing system (1) as in (3), viz.
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x1(0) = 1.5, x2(0) = 1.8, x3(0) = 1.2, x4(0) = 1.4 (18)

We also take the parameter values of the novel four-wing system (1) as in the
chaotic case (2), viz.

a = 17, b = 50, c = 5, p = 2 (19)

Then the Lyapunov exponents of the novel four-wing system (1) are numerically
obtained as

L1 = 5.6253, L2 = 0, L3 = −5.4212, L4 = −53.0373 (20)

Since L1 + L2 + L3 + L4 = −52.8332 < 0, the system (1) is dissipative.
Also, the Kaplan-Yorke dimension of the system (1) is obtained as

DK Y = 3 + L1 + L2 + L3

|L4| = 3.0038 (21)

Figure5 depicts the dynamics of the Lyapunov exponents of the novel 4-D four-
wing chaotic system (1).

From Fig. 5, it is seen that the Maximal Lyapunov Exponent (MLE) of the novel
4-D four-wing chaotic system (1) is L1 = 5.5623, which is a large value. Thus, the
novel 4-D four-wing chaotic system (1) exhibits strong chaotic properties.
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4 Adaptive Synchronization of the Identical Novel
Four-Wing Chaotic Systems

This section derives new results for the adaptive synchronization of the identical
novel four-wing chaotic systems with unknown parameters.

The master system is given by the novel four-wing chaotic system

ẋ1 = −ax1 + x2x3 + px4
ẋ2 = ax2 − x1x3 − px4
ẋ3 = −bx3 + x1x2
ẋ4 = −cx4 + x1x3

(22)

where x1, x2, x3, x4 are state variables and a, b, c, p are constant, unknown, para-
meters of the system.

The slave system is given by the controlled novel chaotic system

ẏ1 = −ay1 + y2y3 + py4 + u1

ẏ2 = ay2 − y1y3 − py4 + u2

ẏ3 = −by3 + y1y2 + u3

ẏ4 = −cy4 + y1y3 + u4

(23)

where y1, y2, y3, y4 are state variables and u1, u2, u3, u4 are adaptive controls to be
designed.

The synchronization error is defined as

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3
e4 = y4 − x4

(24)

A simple calculation yields the error dynamics

ė1 = −ae1 + pe4 + y2y3 − x2x3 + u1

ė2 = ae2 − pe4 − y1y3 + x1x3 + u2

ė3 = −be3 + y1y2 − x1x2 + u3

ė4 = −ce4 + y1y3 − x1x3 + u4

(25)

We consider the adaptive control law given by

u1 = â(t)e1 − p̂(t)e4 − y2y3 + x2x3 − k1e1
u2 = −â(t)e2 + p̂(t)e4 + y1y3 − x1x3 − k2e2
u3 = b̂(t)e3 − y1y2 + x1x2 − k3e3
u4 = ĉ(t)e4 − y1y3 + x1x3 − k4e4

(26)
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where â(t), b̂(t), ĉ(t), p̂(t) are estimates for the unknown parameters a, b, c, p,
respectively, and k1, k2, k3, k4 are positive gain constants.

The closed-loop control system is obtained by substituting (26) into (25) as

ė1 = −[a − â(t)]e1 + [p − p̂(t)]e4 − k1e1
ė2 = [a − â(t)]e2 − [p − p̂(t)]e4 − k2e2
ė3 = −[b − b̂(t)]e3 − k3e3
ė4 = −[c − ĉ(t)]e4 − k4e4

(27)

To simplify (27), we define the parameter estimation error as

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ep(t) = p − p̂(t)

(28)

Using (28), the closed-loop system (27) can be simplified as

ė1 = −eae1 + epe4 − k1e1
ė2 = eae2 − epe4 − k2e2
ė3 = −ebe3 − k3e3
ė4 = −ece4 − k4e4

(29)

Differentiating the parameter estimation error (28) with respect to t , we get

ėa = −˙̂a
ėb = − ˙̂b
ėc = −˙̂c
ėp = − ˙̂p

(30)

Next, we find an update law for parameter estimates using Lyapunov stability
theory.

Consider the quadratic Lyapunov function defined by

V (e1, e2, e3, e4, ea, eb, ec, ep) = 1

2

4∑
i=1

e2i + 1

2

(
e2a + e2b + e2c + e2p

)
(31)

Differentiating V along the trajectories of (29) and (30), we get

V̇ = −k1e21 − k2e22 − k3e23 − k4e24 + ea

[
e22 − e21 − ˙̂a

]

+ eb

[
−e23 − ˙̂b

]
+ ec

[
−e24 − ˙̂c

]
+ ep

[
(e1 − e2)e4 − ˙̂p

] (32)
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In view of Eq. (32), an update law for the parameter estimates is taken as

˙̂a = e22 − e21˙̂b = −e23˙̂c = −e24˙̂p = (e1 − e2)e4

(33)

Theorem 1 The identical novel 4-D four-wing chaotic systems (22) and (23) with
unknown system parameters are globally and exponentially synchronized for all
initial conditions x(0), y(0) ∈ IR4 by the adaptive control law (26) and the parameter
update law (33), where ki , (i = 1, 2, 3, 4) are positive constants.

Proof The result is proved using Lyapunov stability theory [141].
We consider the quadratic Lyapunov function V defined by (31), which is positive

definite on IR8.
Substitution of the parameter update law (33) into (32) yields

V̇ = −k1e21 − k2e22 − k3e23 − k4e24, (34)

which is a negative semi-definite function on IR8.
Therefore, it can be concluded that the synchronization error vector e(t) and the

parameter estimation error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) e4(t) ea(t) eb(t) ec(t) ep(t)

]T ∈ L∞. (35)

Define
k = min {k1, k2, k3, k4} (36)

Then it follows from (34) that

V̇ ≤ −k‖e‖2 or k‖e‖2 ≤ −V̇ (37)

Integrating the inequality (37) from 0 to t , we get

k

t∫

0

‖e(τ )‖2 dτ ≤ −
t∫

0

V̇ (τ ) dτ = V (0) − V (t) (38)

From (38), it follows that e(t) ∈ L2.
Using (29), it can be deduced that ė(t) ∈ L∞.
Thus, usingBarbalat’s lemma [141], we can conclude that e(t) → 0 exponentially

as t → ∞ for all initial conditions e(0) ∈ IR4.
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Hence, we have proved that the identical novel 4-D four-wing chaotic systems
(22) and (23) with unknown system parameters are globally and exponentially syn-
chronized for all initial conditions x(0), y(0) ∈ IR4 by the adaptive control law (26)
and the parameter update law (33).

This completes the proof. �

For numerical simulations, the parameter values of the novel systems (22) and
(23) are taken as in the chaotic case, viz.

a = 17, b = 50, c = 5, p = 2 (39)

The gain constants are taken as

k1 = 5, k2 = 5, k3 = 5, k4 = 5 (40)

The initial values of the parameter estimates are taken as

â(0) = 5.3, b̂(0) = 14.9, ĉ(0) = 20.1, p̂(0) = 17.8 (41)

The initial values of the master system (22) are taken as

x1(0) = 12.4, x2(0) = −21.3, x3(0) = 6.1, x4(0) = −7.3 (42)

The initial values of the slave system (23) are taken as

y1(0) = 1.5, y2(0) = 12.8, y3(0) = 23.9, y4(0) = −18.5 (43)

Figures6, 7, 8 and 9 show the complete synchronization of the identical chaotic
systems (22) and (23).

Figure6 shows that the states x1(t) and y1(t) are synchronized in two seconds
(MATLAB).

Figure7 shows that the states x2(t) and y2(t) are synchronized in two seconds
(MATLAB).

Figure8 shows that the states x3(t) and y3(t) are synchronized in two seconds
(MATLAB).

Figure9 shows that the states x4(t) and y4(t) are synchronized in two seconds
(MATLAB).

Figure10 shows the time-history of the synchronization errors e1(t), e2(t), e3(t),
e4(t). From Fig. 10, it is seen that the errors e1(t), e2(t), e3(t) and e4(t) are stabilized
in two seconds (MATLAB).
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Fig. 6 Synchronization of the states x1 and y1
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5 Conclusions

In this research work, we announced a ten-term novel 4-D four-wing chaotic system
with four quadratic nonlinearities. We described the qualitative analysis of the novel
4-D four-wing chaotic system. We showed that the novel four-wing chaotic system
has a unique equilibrium point at the origin, which is a saddle-point. Thus, origin is an
unstable equilibrium of the novel chaotic system.We also showed that the novel four-
wing chaotic system has a rotation symmetry about the x3 axis. Thus, it follows that
every non-trivial trajectory of the novel four-wing chaotic system must have a twin
trajectory. TheLyapunov exponents of the novel 4-D four-wing systemwere obtained
as L1 = 5.6253, L2 = 0, L3 = −5.4212 and L4 = −53.0373. Thus, the maximal
Lyapunov exponent of the novel four-wing chaotic system is seen as L1 = 5.6253.
The large value of L1 indicates that the novel four-wing system is highly chaotic.
Since the sum of the Lyapunov exponents of the novel chaotic system is negative, the
novel chaotic system is dissipative. Also, the Kaplan-Yorke dimension of the novel
four-wing chaotic system was obtained as DK Y = 3.0038. Finally, we derived new
results for the adaptive synchronization of the identical novel 4-D four-wing chaotic
systems with unknown parameters. The adaptive synchronization result was proved
using Lyapunov stability theory. MATLAB simulations were shown to illustrate all
the main results for the novel 4-D four-wing chaotic system.
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