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Abstract In this work, we announce a seven-term novel 3-D chaotic system with a
quartic nonlinearity and two quadratic nonlinearities. The proposed chaotic system is
highly chaotic and it has interesting qualitative properties. The phase portraits of the
novel chaotic system are illustrated and the dynamic properties of the highly chaotic
system are discussed. The novel 3-D chaotic system has three unstable equilibrium
points. We show that the equilibrium point at the origin is a saddle point, while
the other two equilibrium points are saddle foci. The novel 3-D chaotic system has
rotation symmetry about the x3 axis, which shows that every non-trivial trajectory
of the system must have a twin trajectory. The Lyapunov exponents of the novel 3-D
chaotic system are obtained as L1 = 8.6606, L2 = 0 and L3 = −26.6523, while the
Kaplan-Yorke dimension of the novel chaotic system is obtained as DK Y = 2.3249.
Since theMaximal LyapunovExponent (MLE) of the novel chaotic systemhas a large
value, viz. L1 = 8.6606, the novel chaotic system is highly chaotic. Since the sum of
the Lyapunov exponents is negative, the novel chaotic system is dissipative. Next, we
apply adaptive control method to derive new results for the global chaos control of
the novel chaotic system with unknown parameters. We also apply adaptive control
method to derive new results for the global chaos synchronization of the identical
novel chaotic systems with unknown parameters. The main adaptive control results
are established using Lyapunov stability theory. MATLAB simulations are shown to
illustrate all the main results derived in this work.
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1 Introduction

Chaotic systems are defined as nonlinear dynamical systems which are sensitive to
initial conditions, topologically mixing and with dense periodic orbits. Sensitivity to
initial conditions of chaotic systems is popularly known as the butterfly effect.

Chaotic systems are either conservative or dissipative. The conservative chaotic
systems are characterized by the property that they are volume conserving. The
dissipative chaotic systems are characterized by the property that any asymptotic
motion of the chaotic system settles onto a set of measure zero, i.e. a strange attractor.
In this research work, we shall announce and discuss a novel 3-D dissipative highly
chaotic circulant chaotic system with six sinusoidal nonlinearities.

The Lyapunov exponent of a chaotic system is a measure of the divergence of
points which are initially very close and this can be used to quantify chaotic systems.
Each nonlinear dynamical system has a spectrum of Lyapunov exponents, which are
equal in number to the dimension of the state space. The largest Lyapunov exponent
of a nonlinear dynamical system is called the maximal Lyapunov exponent (MLE).

In the last few decades, Chaos theory has become a very important and active
research field, employing many applications in different disciplines like physics,
chemistry, biology, ecology, engineering and economics, among others.

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [31], Rössler system [45], ACT system [1], Sprott systems [52], Chen system
[14], Lü system [32], Cai system [13], Tigan system [64], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou
system [128], Zhu system [129], Li system [27], Sundarapandian systems [57, 61],
Vaidyanathan systems [72, 74, 76–79, 83, 90, 100, 101, 103, 109, 111, 114, 117,
118, 120], Pehlivan system [37], Sampath system [47], Pham system [39], etc.

Chaos theory and control systems have many important applications in science
and engineering [2, 9–12, 130]. Some commonly known applications are oscillators
[23, 51], lasers [28, 125], chemical reactions [17, 38, 87, 88, 91, 93, 94, 98],
biology [15, 25, 82, 84–86, 89, 92, 96, 97], ecology [18, 54], encryption [26, 127],
cryptosystems [44, 65], mechanical systems [4–8], secure communications [16, 34,
126], robotics [33, 35, 122], cardiology [41, 124], intelligent control [3, 29], neural
networks [20, 22, 30], finance [19, 53], memristors [40, 123],etc.

The control of a chaotic system aims to stabilize or regulate the system with
the help of a feedback control. There are many methods available for controlling
a chaotic system such as active control [55, 66, 67], adaptive control [56, 68, 73,
75, 81, 99, 110, 116, 119], sliding mode control [70, 71], backstepping control [36,
113, 121], etc.

Major works on synchronization of chaotic systems deal with the complete syn-
chronization (CS) which has the design goal of using the output of the master system
to control the slave system so that the output of the slave system tracks the output of
the master system asymptotically with time.
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There aremanymethods available for chaos synchronization such as active control
[21, 48, 49, 104, 106, 112], adaptive control [46, 50, 58–60, 69, 95, 102, 105],
sliding mode control [62, 80, 108, 115], backstepping control [42, 43, 63, 107], etc.

In this research work, we announce a seven-term novel 3-D chaotic system with
a quartic nonlinearity and two quadratic nonlinearities. Section2 describes the 3-D
dynamic equations and phase portraits of the seven-term novel 3-D chaotic system.

Section3 details the qualitative analysis and properties of the novel 3-D chaotic
system. The Lyapunov exponents of the novel chaotic system are obtained as L1 =
8.6606, L2 = 0 and L3 = −26.6523, while theKaplan-Yorke dimension of the novel
chaotic system is obtained as DK Y = 2.3249. Since themaximal Lyapunov exponent
of the novel chaotic system has a large value, viz. L1 = 8.6606, the novel chaotic
system is highly chaotic.

In Sect. 4, we derive new results for the global chaos control of the novel highly
chaotic system with unknown parameters. In Sect. 5, we derive new results for the
global chaos synchronization of the identical novel highly chaotic systems with
unknown parameters. Section6 contains a summary of the main results derived in
this work.

2 A Novel 3-D Chaotic System

In this section, we describe a seven-term novel chaotic system, which is given by the
3-D dynamics ⎧

⎨

⎩

ẋ1 = a(x2 − x1) + qx3 + x2x3
ẋ2 = bx1 − x1x3
ẋ3 = −cx3 + px4

1

(1)

where x1, x2, x3 are the states and a, b, c, p, q are constant, positive parameters.
The novel 3-D system (1) is a seven-term polynomial system with a quartic non-

linearity and three quadratic nonlinearities.
The system (1) exhibits a highly chaotic attractor for the parameter values

a = 12, b = 55, c = 6, p = 25, q = 0.2 (2)

For numerical simulations, we take the initial conditions as

x1(0) = 2.6, x2(0) = 1.8, x3(0) = 2.5 (3)

Figure1 depicts the 3-D phase portrait of the novel 3-D chaotic system (1), while
Figs. 2, 3 and 4 depict the 2-D projection of the novel 3-D chaotic system (1) on the
(x1, x2), (x2, x3) and (x1, x3) planes, respectively. Figures1, 2, 3 and 4 show that the
novel 3-D chaotic system (1) exhibits a highly chaotic attractor.
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Fig. 1 3-D phase portrait of the novel 3-D chaotic system
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Fig. 2 2-D projection of the novel 3-D chaotic system on the (x1, x2) plane
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Fig. 3 2-D projection of the novel 3-D chaotic system on the (x2, x3) plane
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Fig. 4 2-D projection of the novel 3-D chaotic system on the (x1, x3) plane
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3 Analysis of the Novel 3-D Chaotic System

In this section, we give a dynamic analysis of the 3-D novel highly chaotic system (1).
We take the parameter values as in the chaotic case (2), i.e. a = 12, b = 55, c = 6,
p = 25 and q = 0.2.

3.1 Dissipativity

In vector notation, the novel chaotic system (1) can be expressed as

ẋ = f (x) =
⎡

⎣
f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

⎤

⎦ , (4)

where ⎧
⎨

⎩

f1(x1, x2, x3) = a(x2 − x1) + qx3 + x2x3
f2(x1, x2, x3) = bx1 − x1x3
f3(x1, x2, x3) = −cx3 + px4

1

(5)

Let Ω be any region in R3 with a smooth boundary and also, Ω(t) = Φt (Ω),

where Φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t).
By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 (6)

The divergence of the novel chaotic system (4) is found as

∇ · f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

= −(a + c) = −μ < 0 (7)

since μ = a + c = 18 > 0.
Inserting the value of ∇ · f from (7) into (6), we get

V̇ (t) =
∫

Ω(t)

(−μ) dx1 dx2 dx3 = −μV (t) (8)

Integrating the first order linear differential equation (8), we get

V (t) = exp(−μt)V (0) (9)
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Sinceμ > 0, it follows fromEq. (9) that V (t) → 0 exponentially as t → ∞. This
shows that the novel chaotic system (1) is dissipative.

Hence, the system limit sets are ultimately confined into a specific limit set of
zero volume, and the asymptotic motion of the novel chaotic system (1) settles onto
a strange attractor of the system.

3.2 Equilibrium Points

We take the parameter values as in the chaotic case (2), i.e. a = 12, b = 55, c = 6,
p = 25 and q = 0.2.

It is easy to see that the system (1) has three equilibrium points, viz.

E0 =
⎡

⎣
0
0
0

⎤

⎦ , E1 =
⎡

⎣
1.9061
0.1772
55.0000

⎤

⎦ , E2 =
⎡

⎣
−1.9061
−0.5056
55.0000

⎤

⎦ (10)

The Jacobian of the system (1) at any point x ∈ R3 is calculated as

J (x) =
⎡

⎣
−a a + x3 q + x2

b − x3 0 −x1
4px3

1 0 −c

⎤

⎦ =
⎡

⎣
−12 12 + x3 0.2 + x2

55 − x3 0 −x1
100x3

1 0 −6

⎤

⎦ = (11)

The Jacobian of the system (1) at the equilibrium E0 is obtained as

J0 = J (E0) =
⎡

⎣
−12 12 0.2
55 0 0
0 0 −6

⎤

⎦ (12)

We find that the matrix J0 = J (E0) has the eigenvalues

λ1 = −6, λ2 = −32.3818, λ3 = 20.3818 (13)

This shows that the equilibrium point E0 is a saddle-point, which is unstable.
The Jacobian of the system (1) at the equilibrium E1 is obtained as

J1 = J (E1) =
⎡

⎣
−12 67 0.3772
0 0 −1.9061

692.5275 0 −6

⎤

⎦ (14)

We find that the matrix J1 = J (E1) has the eigenvalues

λ1 = −53.0246, λ2,3 = 17.5123 ± 36.8953i (15)
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This shows that the equilibrium point E1 is a saddle-focus, which is unstable.
The Jacobian of the system (1) at the equilibrium E2 is obtained as

J2 = J (E2) =
⎡

⎣
−12 67 −0.3056
0 0 1.9061

−692.5275 0 −6

⎤

⎦ (16)

We find that the matrix J2 = J (E2) has the eigenvalues

λ1 = −52.6091, λ2,3 = 17.3045 ± 37.1708i (17)

This shows that the equilibrium point E2 is a saddle-focus, which is unstable.

3.3 Symmetry

It is easy to see that the system (1) is invariant under the change of coordinates

(x1, x2, x3) �→ (−x1,−x2, x3) (18)

Thus, it follows that the 3-D novel chaotic system (1) has rotation symmetry about
the x3-axis.

As a consequence, we conclude that any non-trivial trajectory

⎡

⎣
x1(t)
x2(t)
x3(t)

⎤

⎦ of the

system (1) must have a twin trajectory

⎡

⎣
−x1(t)
−x2(t)

x3(t)

⎤

⎦ of the system (1).

3.4 Lyapunov Exponents and Kaplan-Yorke Dimension

We take the parameter values of the novel system (1) as in the chaotic case (2), i.e.

a = 12, b = 55, c = 6, p = 25, q = 0.2 (19)

We take the initial state of the novel system (1) as given in (3), i.e.

x1(0) = 2.6, x2(0) = 1.8, x3(0) = 2.5 (20)

Then the Lyapunov exponents of the system (1) are numerically obtained as

L1 = 8.6606, L2 = 0, L3 = −26.6523 (21)
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Fig. 5 Dynamics of the Lyapunov exponents of the novel chaotic system

Figure5 shows the dynamics of the Lyapunov exponents of the novel system (1).
From Fig. 5, we note that the Maximal Lyapunov Exponent (MLE) of the novel
system (1) is given by L1 = 8.6606, which is a large value. This shows that the novel
system (1) is highly chaotic.

We also note that the sum of the Lyapunov exponents in (21) is negative, i.e.

L1 + L2 + L3 = −17.9917 < 0 (22)

This shows that the novel chaotic system (1) is dissipative.
Also, the Kaplan-Yorke dimension of the novel chaotic system (1) is found as

DK Y = 2 + L1 + L2

|L3| = 2.3249, (23)

which is fractional.
Also, the relatively large value of the Kaplan-Yorke dimension of the novel 3-D

chaotic system (1), i.e. DK Y = 2.3249, indicates that the novel 3-D chaotic system
exhibits highly complex behaviour. Hence, the novel chaotic system (1) has appli-
cations in cryptosystems, secure communication devices, etc.
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4 Adaptive Control of the Novel 3-D Chaotic System

In this section, we use adaptive control method to derive an adaptive feedback control
law for globally stabilizing the novel 3-D chaotic system with unknown parameters.

Thus, we consider the novel highly chaotic system given by

⎧
⎨

⎩

ẋ1 = a(x2 − x1) + qx3 + x2x3 + u1

ẋ2 = bx1 − x1x3 + u2

ẋ3 = −cx3 + px4
1 + u3

(24)

In (24), x1, x2, x3 are the states and u1, u2, u3 are the adaptive controls to be found
using estimates for the unknown system parameters.

We consider the adaptive feedback control law

⎧
⎨

⎩

u1 = −â(t)(x2 − x1) − q̂(t)x3 − x2x3 − k1x1
u2 = −b̂(t)x1 + x1x3 − k2x2
u3 = ĉ(t)x3 − p̂(t)x4

1 − k3x3

(25)

where k1, k2, k3 are positive gain constants.
Substituting (25) into (24), we get the closed-loop plant dynamics as

⎧
⎪⎨

⎪⎩

ẋ1 = [
a − â(t)

]
(x2 − x1) + [

q − q̂(t)
]

x3 − k1x1

ẋ2 =
[
b − b̂(t)

]
x1 − k2x2

ẋ3 = − [
c − ĉ(t)

]
x3 + [

p − p̂(t)
]

x4
1 − k3x3

(26)

The parameter estimation errors are defined as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ep(t) = p − p̂(t)
eq(t) = q − q̂(t)

(27)

Using (27), we can simplify the plant dynamics (26) as

⎧
⎨

⎩

ẋ1 = ea(x2 − x1) + eq x3 − k1x1
ẋ2 = ebx1 − k2x2
ẋ3 = −ecx3 + epx4

1 − k3x3
(28)
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Differentiating (27) with respect to t , we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)
ėp(t) = − ˙̂p(t)
ėq(t) = − ˙̂q(t)

(29)

We consider the quadratic candidate Lyapunov function defined by

V (x, ea, eb, ec, ep, eq) = 1

2

(
x2
1 + x2

2 + x2
3

) + 1

2

(
e2a + e2b + e2c + e2p + e2q

)
(30)

Differentiating V along the trajectories of (28) and (29), we obtain

V̇ = −k1x2
1 − k2x2

2 − k3x2
3 + ea

[
x1(x2 − x1) − ˙̂a

]
+ eb

[
x1x2 − ˙̂b

]

+ec

[
−x2

3 − ˙̂c
]

+ ep

[
x4
1 x3 − ˙̂p

]
+ eq

[
x1x3 − ˙̂q

] (31)

In view of (31), we take the parameter update law as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂a(t) = x1(x2 − x1)˙̂b(t) = x1x2˙̂c(t) = −x2
3˙̂p(t) = x4

1 x3˙̂q(t) = x1x3

(32)

Next, we state and prove the main result of this section.

Theorem 1 The novel 3-D highly chaotic system (24) with unknown system parame-
ters is globally and exponentially stabilized for all initial conditions by the adaptive
control law (25) and the parameter update law (32), where k1, k2, k3 are positive
gain constants.

Proof We prove this result by applying Lyapunov stability theory [24].
We consider the quadratic Lyapunov function defined by (30), which is clearly a

positive definite function on R8.
By substituting the parameter update law (32) into (31), we obtain the time-

derivative of V as
V̇ = −k1x2

1 − k2x2
2 − k3x2

3 (33)

From (33), it is clear that V̇ is a negative semi-definite function on R8.
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Thus, we can conclude that the state vector x(t) and the parameter estimation
error are globally bounded i.e.

[
x1(t) x2(t) x3(t) ea(t) eb(t) ec(t) ep(t) eq(t)

]T ∈ L∞.

We define k = min{k1, k2, k3}.
Then it follows from (33) that

V̇ ≤ −k‖x(t)‖2 (34)

Thus, we have
k‖x(t)‖2 ≤ −V̇ (35)

Integrating the inequality (35) from 0 to t , we get

k

t∫

0

‖x(τ )‖2 dτ ≤ V (0) − V (t) (36)

From (36), it follows that x ∈ L2.
Using (28), we can conclude that ẋ ∈ L∞.
UsingBarbalat’s lemma [24], we conclude that x(t) → 0 exponentially as t → ∞

for all initial conditions x(0) ∈ R3.
Hence, the novel highly chaotic system (24) with unknown system parameters is

globally and exponentially stabilized for all initial conditions by the adaptive control
law (25) and the parameter update law (32).

This completes the proof. �

For the numerical simulations, the classical fourth-order Runge-Kutta method
with step size h = 10−8 is used to solve the systems (24) and (32), when the adaptive
control law (25) is applied.

The parameter values of the novel 3-D chaotic system (24) are taken as in the
chaotic case (2), i.e.

a = 12, b = 55, c = 6, p = 25, q = 0.2 (37)

We take the positive gain constants as ki = 8 for i = 1, 2, 3.
Furthermore, as initial conditions of the novel highly chaotic system (24), we take

x1(0) = 7.4, x2(0) = −10.5, x3(0) = 12.1 (38)

Also, as initial conditions of the parameter estimates, we take

â(0) = 3.2, b̂(0) = 12.3, ĉ(0) = 13.4, p̂(0) = 17.8, q̂(0) = 16.7 (39)
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Fig. 6 Time-history of the controlled states x1, x2, x3

In Fig. 6, the exponential convergence of the controlled states of the novel 3-D
chaotic system (24) is depicted. From Fig. 6, we see that the controlled states x1(t),
x2(t), x3(t) converge to zero in just two seconds.

This shows the efficiency of the adaptive controller designed in this section for
the novel 3-D chaotic system (24).

5 Adaptive Synchronization of the Identical Novel 3-D
Chaotic Systems

In this section, we apply adaptive control method to derive an adaptive feedback
control law for globally synchronizing identical novel 3-D chaotic systems with
unknown parameters. The main result is established using Lyapunov stability theory.

As the master system, we consider the novel 3-D chaotic system given by

⎧
⎨

⎩

ẋ1 = a(x2 − x1) + qx3 + x2x3
ẋ2 = bx1 − x1x3
ẋ3 = −cx3 + px4

1

(40)

In (40), x1, x2, x3 are the states and a, b, c, p, q are unknown system parameters.
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As the slave system, we consider the novel 3-D chaotic system given by

⎧
⎨

⎩

ẏ1 = a(y2 − y1) + qy3 + y2y3 + u1

ẏ2 = by1 − y1y3 + u2

ẏ3 = −cy3 + py41 + u3

(41)

In (41), y1, y2, y3 are the states and u1, u2, u3 are the adaptive controls to be
determined using estimates of the unknown system parameters.

The synchronization error between the novel chaotic systems is defined by

⎧
⎨

⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3

(42)

Then the error dynamics is obtained as

⎧
⎨

⎩

ė1 = a(e2 − e1) + qe3 + y2y3 − x2x3 + u1

ė2 = be1 − y1y3 + x1x3 + u2

ė3 = −ce3 + p(y41 − x4
1) + u3

(43)

We consider the adaptive feedback control law

⎧
⎨

⎩

u1 = −â(t)(e2 − e1) − q̂(t)e3 − y2y3 + x2x3 − k1e1
u2 = −b̂(t)e1 + y1y3 − x1x3 − k2e2
u3 = ĉ(t)e3 − p̂(t)(y41 − x4

1) − k3e3

(44)

where k1, k2, k3 are positive gain constants.
Substituting (44) into (43), we get the closed-loop error dynamics as

⎧
⎪⎨

⎪⎩

ė1 = [
a − â(t)

]
(e2 − e1) + [

q − q̂(t)
]

e3 − k1e1

ė2 =
[
b − b̂(t)

]
e1 − k2e2

ė3 = − [
c − ĉ(t)

]
e3 + [

p − p̂(t)
]
(y41 − x4

1) − k3e3

(45)

The parameter estimation errors are defined as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ep(t) = p − p̂(t)
eq(t) = q − q̂(t)

(46)
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In view of (46), we can simplify the error dynamics (45) as

⎧
⎨

⎩

ė1 = ea(e2 − e1) + eqe3 − k1e1
ė2 = ebe1 − k2e2
ė3 = −ece3 + ep(y41 − x4

1) − k3e3
(47)

Differentiating (46) with respect to t , we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)
ėp(t) = − ˙̂p(t)
ėq(t) = − ˙̂q(t)

(48)

We consider the quadratic candidate Lyapunov function defined by

V (e, ea, eb, ec, ep, eq) = 1

2

(
e21 + e22 + e23

) + 1

2

(
e2a + e2b + e2c + e2p + e2q

)
(49)

Differentiating V along the trajectories of (47) and (48), we obtain

V̇ = −k1e21 − k2e22 − k3e23 + ea

[
e1(e2 − e1) − ˙̂a

]
+ eb

[
e1e2 − ˙̂b

]

+ec

[
−e23 − ˙̂c

]
+ ep

[
e3(y41 − x4

1) − ˙̂p
]

+ eq

[
e1e3 − ˙̂q

] (50)

In view of (50), we take the parameter update law as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂a(t) = e1(e2 − e1)˙̂b(t) = e1e2˙̂c(t) = −e23˙̂p(t) = e3(y41 − x4
1)˙̂q(t) = e1e3

(51)

Next, we state and prove the main result of this section.

Theorem 2 The novel 3-D chaotic systems (40) and (41) with unknown system
parameters are globally and exponentially synchronized for all initial conditions by
the adaptive control law (44) and the parameter update law (51), where k1, k2, k3
are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [24].
We consider the quadratic Lyapunov function defined by (49), which is clearly a

positive definite function on R8.
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By substituting the parameter update law (51) into (50), we obtain

V̇ = −k1e21 − k2e22 − k3e23 (52)

From (52), it is clear that V̇ is a negative semi-definite function on R8.
Thus, we can conclude that the error vector e(t) and the parameter estimation

error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) ea(t) eb(t) ec(t) ep(t) eq(t)

]T ∈ L∞. (53)

We define k = min{k1, k2, k3}.
Then it follows from (52) that

V̇ ≤ −k‖e(t)‖2 (54)

Thus, we have
k‖e(t)‖2 ≤ −V̇ (55)

Integrating the inequality (55) from 0 to t , we get

k

t∫

0

‖e(τ )‖2 dτ ≤ V (0) − V (t) (56)

From (56), it follows that e ∈ L2.
Using (47), we can conclude that ė ∈ L∞.
UsingBarbalat’s lemma [24], we conclude that e(t) → 0 exponentially as t → ∞

for all initial conditions e(0) ∈ R3.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge-Kutta method
with step size h = 10−8 is used to solve the systems (40), (41) and (51), when the
adaptive control law (44) is applied.

The parameter values of the novel chaotic systems are taken as in the chaotic case
(2), i.e. a = 12, b = 55, c = 6, p = 25 and q = 0.2.

We take the positive gain constants as ki = 8 for i = 1, 2, 3.
Furthermore, as initial conditions of the master system (40), we take

x1(0) = 12.5, x2(0) = 20.7, x3(0) = −5.3 (57)

As initial conditions of the slave system (41), we take

y1(0) = 6.8, y2(0) = 4.5, y3(0) = 11.4 (58)
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Also, as initial conditions of the parameter estimates, we take

â(0) = 3.1, b̂(0) = 4.3, ĉ(0) = 10.2, p̂(0) = 5.9, q̂(0) = 7.5 (59)

Figures7, 8 and 9 describe the complete synchronization of the novel 3-D chaotic
systems (40) and (41), while Fig. 10 describes the time-history of the complete syn-
chronization errors e1, e2, e3.

From Fig. 7, we see that the states x1 and y1 are synchronized in just two seconds.
From Fig. 8, we see that the states x2 and y2 are synchronized in just two seconds.
From Fig. 9, we see that the states x3 and y3 are synchronized in just two seconds.
From Fig. 10, we see that the errors e1, e2, e3 converge to zero in just two seconds.
This shows the efficiency of the adaptive controller developed in this section for the
synchronization of identical 3-D chaotic systems.
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Fig. 10 Time-history of the synchronization errors e1, e2, e3

6 Conclusions

In this work, we announced a seven-term novel 3-D chaotic system with a quartic
nonlinearity and two quadratic nonlinearities. The dynamic properties of the novel
3-D chaotic system were discussed and phase portraits of the novel chaotic system
were depicted. The novel 3-D chaotic system has three unstable equilibrium points.
We showed that the equilibrium point at the origin is a saddle point, while the other
two equilibrium points are saddle foci. The novel 3-D chaotic system has rotation
symmetry about the x3 axis, which shows that every non-trivial trajectory of the
systemmust have a twin trajectory. The Lyapunov exponents of the novel 3-D chaotic
system have been obtained as L1 = 8.6606, L2 = 0 and L3 = −26.6523, while the
Kaplan-Yorke dimension of the novel chaotic system has been obtained as DK Y =
2.3249. Since the Maximal Lyapunov Exponent (MLE) of the novel chaotic system
has a large value, viz. L1 = 8.6606, it follows that the novel chaotic system is highly
chaotic. Since the sum of the Lyapunov exponents is negative, the novel chaotic
system is dissipative. Next, we derived new results for the global chaos control of the
novel chaotic systemwith unknown parameters via adaptive control method.We also
derived new results for the global chaos synchronization of the identical novel chaotic
systems with unknown parameters via adaptive control method. The main adaptive
control results were proved using Lyapunov stability theory. MATLAB simulations
have been shown to illustrate all the main results developed in this work.
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