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Abstract Chaos in nonlinear dynamics occurs widely in physics, chemistry, biol-
ogy, ecology, secure communications, cryptosystems and many scientific branches.
Synchronization of chaotic systems is an important research problem in chaos theory.
Sliding mode control is an important method used to solve various problems in con-
trol systems engineering. In robust control systems, the sliding mode control is often
adopted due to its inherent advantages of easy realization, fast response and good
transient performance as well as insensitivity to parameter uncertainties and distur-
bance. In this work, we derive a novel sliding mode control method for the complete
synchronization of identical chaotic or hyperchaotic systems. The general result is
derived using novel sliding mode control method. The general result is established
using Lyapunov stability theory. As an application of the general result, the problem
of complete synchronization of identical hyperchaotic Vaidyanathan systems (2014)
is studied and a new sliding mode controller is derived. The Lyapunov exponents of
the hyperchaotic Vaidyanathan system are obtained as L1 = 1.4252, L2 = 0.2445,
L3 = 0 and L4 = −17.6549. Since the Vaidyanathan hyperjerk system has two pos-
itive Lyapunov exponents, it is hyperchaotic. Also, the Kaplan-Yorke dimension of
the Vaidyanathan hyperjerk system is obtained as DKY = 3.0946. Numerical simu-
lations using MATLAB have been shown to depict the phase portraits of the hyper-
chaotic Vaidyanathan system and the sliding mode controller design for the anti-
synchronization of identical hyperchaotic Vaidyanathan systems.

Keywords Chaos ·Chaotic systems ·Hyperchaos ·Hyperchaotic systems · Sliding
mode control · Synchronization

S. Vaidyanathan (B)
Research and Development Centre, Vel Tech University, Avadi, Chennai 600062,
Tamil Nadu, India
e-mail: sundarvtu@gmail.com

S. Sampath
School of Electrical and Computing, Vel Tech University, Avadi, Chennai 600062,
Tamil Nadu, India
e-mail: sivaperumals@gmail.com

© Springer International Publishing Switzerland 2016
A.T. Azar and S. Vaidyanathan (eds.), Advances in Chaos Theory
and Intelligent Control, Studies in Fuzziness and Soft Computing 337,
DOI 10.1007/978-3-319-30340-6_14

327



328 S. Vaidyanathan and S. Sampath

1 Introduction

Chaos theory describes the quantitative study of unstable aperiodic dynamic behav-
iour in deterministic nonlinear dynamical systems. For the motion of a dynamical
system to be chaotic, the system variables should contain some nonlinear terms
and the system must satisfy three properties: boundedness, infinite recurrence and
sensitive dependence on initial conditions.

Chaos theory and control systems have many important applications in science
and engineering [1, 8–11, 102]. Some commonly known applications are oscillators
[23, 50], lasers [28, 96], chemical reactions [16, 35, 68, 69, 71, 73, 74, 78], biology
[13, 25, 64–67, 70, 72, 76, 77], ecology [17, 51], encryption [26, 100], cryptosys-
tems [43, 57], mechanical systems [3–7], secure communications [14, 33, 98], robot-
ics [32, 34, 90], cardiology [39, 94], intelligent control [2, 30], neural networks
[19, 22, 31], memristors [38, 91], etc.

A hyperchaotic system is defined as a chaotic system with at least two positive
Lyapunov exponents [8]. Thus, the dynamics of a hyperchaotic system can expand
in several different directions simultaneously. Thus, the hyperchaotic systems have
more complex dynamical behaviour and they have miscellaneous applications in
engineering such as secure communications [15, 27, 95], cryptosystems [18, 42,
101], fuzzy logic [49, 99], electrical circuits [93, 97], etc.

The minimum dimension of an autonomous, continuous-time, hyperchaotic sys-
tem is four. The first 4-D hyperchaotic system was found by Rössler [44]. Many
hyperchaotic systems have been reported in the chaos literature such as hyperchaotic
Lorenz system [20], hyperchaotic Lü system [12], hyperchaotic Chen system [29],
hyperchaotic Wang system [92], hyperchaotic Vaidyanathan systems [61, 63, 79,
86, 88, 89], hyperchaotic Pham system [36], etc.

The synchronization of chaotic systems aims to synchronize the states of master
and slave systems asymptotically with time. There are many methods available for
chaos synchronization such as active control [21, 46, 47, 81, 83], adaptive con-
trol [37, 45, 48, 52–54, 60, 75, 80, 82], sliding mode control [55, 62, 85, 87],
backstepping control [40, 41, 56, 84], etc.

The design goal of complete synchronization of chaotic systems is to use the
output of the master system to control the slave system so that the states of the slave
system coincide with the states of the master system asymptotically, i.e.

lim
t→∞ ‖x(t) − y(t)‖ = 0, ∀x(0), y(0) ∈ Rn (1)

In this research work, we derive a general result for the complete synchronization
of chaotic systems using sliding mode control (SMC) theory [58, 59]. The sliding
mode control approach is recognized as an efficient tool for designing robust con-
trollers for linear or nonlinear control systemsoperating under uncertainty conditions.
A major advantage of sliding mode control is low sensitivity to parameter variations
in the plant and disturbances affecting the plant, which eliminates the necessity of
exact modeling of the plant.
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In the sliding mode control theory, the control dynamics will have two sequential
modes, viz. the reaching mode and the sliding mode. Basically, a sliding mode
controller (SMC) design consists of two parts: hyperplane design and controller
design. A hyperplane is first designed via the pole-placement approach in themodern
control theory and a controller is then designed based on the sliding condition. The
stability of the overall system is guaranteed by the sliding condition and by a stable
hyperplane.

This work is organized as follows. In Sect. 2, we discuss the problem statement for
the complete synchronization of identical chaotic or hyperchaotic systems. In Sect. 3,
we derive a general result for the complete synchronization of identical chaotic or
hyperchaotic systems using novel sliding mode control. In Sect. 4, we describe the
hyperchaotic Vaidyanathan system and its phase portraits. In Sect. 5, we describe
the qualitative properties of the hyperchaotic Vaidyanathan system. The Lyapunov
exponents of the hyper system are obtained as L1 = 1.4252, L2 = 0.2445, L3 = 0
and L4 = −17.6549, which shows that the hyperchaotic Vaidyanathan system is
hyperchaotic.

In Sect. 6, we describe the sliding mode controller design for the complete syn-
chronization of identical hyperchaotic Vaidyanathan systems using novel sliding
mode control and its numerical simulations using MATLAB. Section7 contains the
conclusions of this work.

2 Problem Statement

As the master system, we consider the chaotic or hyperchaotic system given by

ẋ = Ax + f (x) (2)

where x ∈ Rn denotes the state of the system, A ∈ Rn×n denotes the matrix of system
parameters and f (x) ∈ Rn contains the nonlinear parts of the system.

As the slave system, we consider the controlled identical system given by

ẏ = Ay + f (y) + u (3)

where y ∈ Rn denotes the state of the system and u is the control.
The complete synchronization error is defined as

e = y − x (4)

The error dynamics is easily obtained as

ė = Ae + ψ(x, y) + u, (5)
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where
ψ(x, y) = f (x) − f (y) (6)

Thus, the complete synchronization problem between the systems (2) and (3) can
be stated as follows: Find a controller u(x, y) so as to render the anti-synchronization
error e(t) to be globally asymptotically stable for all values of e(0) ∈ Rn, i.e.

lim
t→∞ ‖e(t)‖ = 0 for all e(0) ∈ Rn (7)

3 A Novel Sliding Mode Control Method for Solving
Complete Synchronization Problem

This section details the main results of this work, viz. novel sliding mode controller
design for achieving complete synchronization of chaotic or hyperchaotic systems.

First, we start the design by setting the control as

u(t) = −ψ(x, y) + Bv(t) (8)

In Eq. (8), B ∈ Rn is chosen such that (A, B) is completely controllable.
By substituting (8) into (5), we get the closed-loop error dynamics

ė = Ae + Bv (9)

The system (9) is a linear time-invariant control system with single input v.
Next, we start the sliding controller design by defining the sliding variable as

s(e) = Ce = c1e1 + c2e2 + · · · + cnen, (10)

where C ∈ R1×n is a constant vector to be determined.
The sliding manifold S is defined as the hyperplane

S = {e ∈ Rn : s(e) = Ce = 0} (11)

We shall assume that a sliding motion occurs on the hyperplane S.
In sliding mode, the following equations must be satisfied:

s = 0 (12a)

ṡ = CAe + CBv = 0 (12b)

We assume that
CB �= 0 (13)
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The sliding motion is influenced by equivalent control derived from (12b) as

veq(t) = −(CB)−1 CAe(t) (14)

By substituting (14) into (9), we obtain the equivalent error dynamics in the sliding
phase as follows:

ė = Ae − (CB)−1CAe = Ee, (15)

where
E = [

I − B(CB)−1C
]

A (16)

We note that E is independent of the control and has at most (n − 1) non-zero
eigenvalues, depending on the chosen switching surface, while the associated eigen-
vectors belong to ker(C).

Since (A, B) is controllable, we can use sliding control theory [58, 59] to choose
B and C so that E has any desired (n − 1) stable eigenvalues.

This shows that the dynamics (15) is globally asympotically stable.
Finally, for the sliding controller design, we apply a novel sliding control law, viz.

ṡ = −ks − qs2 sgn(s) (17)

In (17), sgn(·) denotes the sign function and the SMC constants k > 0, q > 0 are
found in such a way that the sliding condition is satisfied and that the sliding motion
will occur.

By combining Eqs. (12b), (14) and (17), we finally obtain the sliding mode con-
troller v(t) as

v(t) = −(CB)−1
[
C(kI + A)e + qs2 sgn(s)

]
(18)

Next, we establish the main result of this section.

Theorem 1 The sliding mode controller defined by (8) achieves complete synchro-
nization between the identical chaotic systems (2) and (3) for all initial conditions
x(0), y(0) in Rn, where v is defined by the novel sliding mode control law (18),
B ∈ Rn×1 is such that (A, B) is controllable, C ∈ R1×n is such that CB �= 0 and the
matrix E defined by (16) has (n − 1) stable eigenvalues.

Proof Upon substitution of the control laws (8) and (18) into the error dynamics (5),
we obtain the closed-loop error dynamics as

ė = Ae − B(CB)−1
[
C(kI + A)e + qs2 sgn(s)

]
(19)

We shall show that the error dynamics (19) is globally asymptotically stable by
considering the quadratic Lyapunov function

V (e) = 1

2
s2(e) (20)
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The sliding mode motion is characterized by the equations

s(e) = 0 and ṡ(e) = 0 (21)

By the choice of E, the dynamics in the sliding mode given by Eq. (15) is globally
asymptotically stable.

When s(e) �= 0, V (e) > 0.
Also, when s(e) �= 0, differentiating V along the error dynamics (19) or the equiv-

alent dynamics (17), we get

V̇ (e) = sṡ = −ks2 − qs3 sgn(s) < 0 (22)

Hence, by Lyapunov stability theory [24], the error dynamics (19) is globally
asymptotically stable for all e(0) ∈ Rn.

This completes the proof. �

4 Hyperchaotic Vaidyanathan System

The hyperchaotic Vaidyanathan system [63] is described by the 4-D dynamics

ẋ1 = a(x2 − x1) + x3 + x4
ẋ2 = cx1 − x1x3 + x4
ẋ3 = −bx3 + x1x2
ẋ4 = −d(x1 + x2)

(23)

where x1, x2, x3, x4 are the states and a, b, c, d are constant, positive, parameters.
In [63], it was shown that the system (23) is hyperchaotic when the parameters

take the values
a = 12, b = 4, c = 100, d = 5 (24)

For numerical simulations, we take the initial values of the hyperchaotic
Vaidyanathan system (23) as

x1(0) = 1.5, x2(0) = 0.6, x3(0) = 1.8, x4(0) = 2.5 (25)

Figures1, 2, 3 and 4 show the 3-D projections of the hyperchaotic Vaidyanathan
system (23) on (x1, x2, x3), (x1, x2, x4), (x1, x3, x4) and (x2, x3, x4) spaces, respec-
tively.

The 3-D projection of the hyperchaotic Vaidyanathan system (23) on (x1, x2, x3)
space has the shape of a two-scroll attractor or butterfly attractor. Thus, we may also
call the hyperchaotic Vaidyanathan system (23) as hyperchaotic butterfly attractor.
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Fig. 1 3-D projection of the hyperchaotic Vaidyanathan system on the (x1, x2, x3) space
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Fig. 2 3-D projection of the hyperchaotic Vaidyanathan system on the (x1, x2, x4) space
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Fig. 3 3-D projection of the hyperchaotic Vaidyanathan system on the (x1, x3, x4) space
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Fig. 4 3-D projection of the hyperchaotic Vaidyanathan system on the (x2, x3, x4) space
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5 Qualitative Properties of the Hyperchaotic Vaidyanathan
System

5.1 Dissipativity

In vector notation, the hyperchaotic Vaidyanathan system (23) can be expressed as

ẋ = f (x) =

⎡

⎢⎢
⎣

f1(x1, x2, x3, x4)
f2(x1, x2, x3, x4)
f3(x1, x2, x3, x4)
f4(x1, x2, x3, x4)

⎤

⎥⎥
⎦ , (26)

where ⎧
⎪⎪⎨

⎪⎪⎩

f1(x1, x2, x3, x4) = a(x2 − x1) + x3 + x4
f2(x1, x2, x3, x4) = cx1 − x1x3 + x4
f3(x1, x2, x3, x4) = −bx3 + x1x2
f4(x1, x2, x3, x4) = −d(x1 + x2)

(27)

We take the parameter values as in the hyperchaotic case (24).
Let Ω be any region in R4 with a smooth boundary and also, Ω(t) = Φt(Ω),

where Φt is the flow of f . Furthermore, let V (t) denote the hypervolume of Ω(t).
By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 dx4 (28)

The divergence of the hyperchaotic Vaidyanathan system (26) is found as:

∇ · f = ∂f1
∂x1

+ ∂f2
∂x2

+ ∂f3
∂x3

+ ∂f4
∂x4

= −(a + b) = −μ < 0 (29)

where μ = a + b = 12 + 4 = 16 > 0.
Inserting the value of ∇ · f from (29) into (28), we get

V̇ (t) =
∫

Ω(t)

(−μ) dx1 dx2 dx3 dx4 = −μV (t) (30)

Integrating the first order linear differential equation (30), we get

V (t) = exp(−μt)V (0) (31)

Since μ > 0, it follows from Eq. (31) that V (t) → 0 exponentially as t → ∞.
This shows that the hyperchaotic Vaidyanathan system (23) is dissipative. Hence, the
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system limit sets are ultimately confined into a specific limit set of zero volume, and
the asymptotic motion of the hyperchaotic Vaidyanathan system (23) settles onto a
strange attractor of the system.

5.2 Equilibrium Points

The equilibrium points of the hyperchaotic Vaidyanathan system (23) are obtained
by solving the equations

f1(x1, x2, x3, x4) = a(x2 − x1) + x3 + x4 = 0
f2(x1, x2, x3, x4) = cx1 − x1x3 + x4 = 0
f3(x1, x2, x3, x4) = −bx3 + x1x2 = 0
f1(x1, x2, x3, x4) = −d(x1 + x2) = 0

⎫
⎪⎪⎬

⎪⎪⎭
(32)

We take the parameter values as in the hyperchaotic case (24), viz. a = 12, b = 4,
c = 100 and d = 5.

Solving the system (32), we see that the system (23) has a unique equilibrium
point at the origin, i.e.

E0 =

⎡

⎢⎢
⎣

0
0
0
0

⎤

⎥⎥
⎦ (33)

To test the stability type of the equilibrium point E0, we calculate the Jacobian of
the system (23) at E0 as

J0 = J(E0) =

⎡

⎢⎢
⎣

−a a 1 1
c 0 0 1
0 0 −b 0

−d −d 0 0

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−12 12 1 1
100 0 0 1
0 0 −4 0

−5 −5 0 0

⎤

⎥⎥
⎦ (34)

The matrix J0 has the eigenvalues

λ1 = −41.2284, λ2 = −4, λ3 = 0.5239 and λ4 = 28.7045 (35)

This shows that the equilibrium point E0 is a saddle point, which is unstable.

5.3 Lyapunov Exponents and Kaplan-Yorke Dimension

We take the parameter values of the 4-D system (23) as

a = 12, b = 4, c = 100, d = 5 (36)
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We take the initial values of the 4-D system (23) as

x1(0) = 1.5, x2(0) = 0.6, x3(0) = 1.8, x4(0) = 2.5 (37)

Then the Lyapunov exponents of the 4-D system (23) are numerically obtained
using MATLAB as

L1 = 1.4252, L2 = 0.2445, L3 = 0, L4 = −17.6549 (38)

Equation (38) shows that the 4-D system (23) is hyperchaotic, since it has two
positive Lyapunov exponents.

The dynamics of the Lyapunov exponents is depicted in Fig. 5. From Fig. 5, we
see that the maximal Lyapunov exponent of the hyperchaotic Vaidyanathan system
is given by L1 = 1.4252. Since the sum of the Lyapunov exponents is negative, the
system (23) is a dissipative hyperchaotic system.

Also, the Kaplan-Yorke dimension of the hyperchaotic Vaidyanathan system (23)
is obtained as

DKY = 3 + L1 + L2 + L3

|L4| = 3.0946, (39)

which is fractional.
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6 Sliding Mode Controller Design for the Complete
Synchronization of Hyperchaotic Vaidyanathan Systems

In this section, we describe the sliding mode controller design for the complete
synchronization of identical hyperchaotic Vaidyanathan systems [63] by applying
the novel method described by Theorem 1 in Sect. 3.

As themaster system,we consider the hyperchaoticVaidyanathan systemgiven by

ẋ1 = a(x2 − x1) + x3 + x4
ẋ2 = cx1 − x1x3 + x4
ẋ3 = −bx3 + x1x2
ẋ4 = −d(x1 + x2)

(40)

where x1, x2, x3, x4 are the state variables and a, b, c, d are positive parameters.
As the slave system,we consider the controlled hyperchaoticVaidyanathan system

given by
ẏ1 = a(y2 − y1) + y3 + y4 + u1
ẏ2 = cy1 − y1y3 + y4 + u2
ẏ3 = −by3 + y1y2 + u3
ẏ4 = −d(y1 + y2) + u4

(41)

where y1, y2, y3, y4 are the state variables and u1, u2, u3, u4 are the controls.
The complete synchronization error between (40) and (41) is defined as

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3
e4 = y4 − x4

(42)

Then the error dynamics is obtained as

ė1 = a(e2 − e1) + e3 + e4 + u1
ė2 = ce1 + e4 − y1y3 + x1x3 + u2
ė3 = −be3 + y1y2 − x1x2 + u3
ė4 = −d(e1 + e2) + u4

(43)

In matrix form, we can write the error dynamics (43) as

ė = Ae + ψ(x, y) + u (44)
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The matrices in (44) are given by

A =

⎡

⎢⎢
⎣

−a a 1 1
c 0 0 1
0 0 −b 0

−d −d 0 0

⎤

⎥⎥
⎦ and ψ(x, y) =

⎡

⎢⎢
⎣

0
−y1y3 + x1x3
y1y2 − x1x2

0

⎤

⎥⎥
⎦ (45)

We follow the procedure given in Sect. 3 for the construction of the novel slid-
ing controller to achieve complete synchronization of the identical hyperchaotic
Vaidyanathan systems (40) and (41).

First, we set u as
u(t) = −ψ(x, y) + Bv(t) (46)

where B is selected such that (A, B) is completely controllable.
A simple choice of B is

B =

⎡

⎢⎢
⎣

1
1
1
1

⎤

⎥⎥
⎦ (47)

It can be easily checked that (A, B) is completely controllable.
The hyperchaotic Vaidyanathan system (40) displays a strange attractor when the

parameter values are selected as

a = 12, b = 4, c = 100, d = 5 (48)

Next, we take the sliding variable as

s(e) = Ce = [
10 8 −1 −2

]
e = 10e1 + 8e2 − e3 − 2e4 (49)

Next, we take the sliding mode gains as

k = 6, q = 0.2 (50)

From Eq. (18) in Sect. 3, we obtain the novel sliding control v as

v(t) = −50e1 − 11.8667e2 − 0.5333e3 − 0.4e4 − 0.0133s2 sgn(s) (51)

As an application of Theorem 1 to the identical hyperchaotic Vaidyanathan sys-
tems, we obtain the following main result of this section.

Theorem 2 The identical hyperchaotic Vaidyanathan systems (40) and (41) are
globally and asymptotically synchronized for all initial conditions x(0), y(0) ∈ R4

with the sliding controller u defined by (46), where ψ(x, y) is defined by (45), B is
defined by (47) and v is defined by (51). �
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For numerical simulations, we use MATLAB for solving the systems of differ-
ential equations using the classical fourth-order Runge-Kutta method with step size
h = 10−8.

The parameter values of the hyperchaotic Vaidyanathan systems are taken as in
the hyperchaotic case, viz. a = 12, b = 4, c = 100 and d = 5.

The sliding mode gains are taken as k = 6 and q = 0.2.
As an initial condition for the master system (40), we take

x1(0) = 4.9, x2(0) = −2.5, x3(0) = 6.9, x4(0) = 12.4 (52)

As an initial condition for the slave system (41), we take

y1(0) = 8.1, y2(0) = 5.3, y3(0) = 1.3, y4(0) = −5.1 (53)

Figures6, 7, 8 and 9 show the complete synchronization of the states of the
identical hyperchaotic Vaidyanathan systems (40) and (41).

From Fig. 6, it is clear that the states x1 and y1 are synchronized in 1 s.
From Fig. 7, it is clear that the states x2 and y2 are synchronized in 2 s.
From Fig. 8, it is clear that the states x3 and y3 are synchronized in 1 s.
From Fig. 9, it is clear that the states x4 and y4 are synchronized in 2 s.
Figure10 shows the time-history of the complete synchronization errors

e1, e2, e3, e4.
From Fig. 10, it is clear that all the synchronization errors converge to zero in 2 s.
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Fig. 6 Complete synchronization of the states x1 and y1
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7 Conclusions

Chaos and hyperchaos have important applications in science and engineering.
Hyperchaotic systems have more complex behaviour than chaotic systems and they
have miscellaneous applications in areas like secure communications, cryptosys-
tems, etc. In robust control systems, the sliding mode control is commonly used
due to its inherent advantages of easy realization, fast response and good transient
performance as well as insensitivity to parameter uncertainties and disturbance. In
this work, we derived a novel sliding mode control method for the complete syn-
chronization of identical chaotic or hyperchaotic systems. We proved the main result
using Lyapunov stability theory. As an application of the general result, the prob-
lem of complete synchronization of identical hyperchaotic Vaidyanathan systems
(2014) was studied and a new sliding mode controller has been derived. Numerical
simulations using MATLAB were shown to depict the phase portraits of the hyper-
chaotic Vaidyanathan system and the slidingmode controller design for the complete
synchronization of identical hyperchaotic Vaidyanathan systems.
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