
Chapter 7
Convergence to a Continuous State Model

The aim of this chapter is to take the limit in the renormalized version of the model
of the previous chapter, i.e., let N → ∞ in the models of sections 6.5 and 6.6, respec-
tively. In section 7.1, we shall take the limit in the model for the evolution of the
population size, as a function of the two parameters x (the ancestral population size)
and t (time). Since we want to stick to our rather minimal assumptions on the func-
tion f , checking tightness requires some care. In section 7.2, we will take the limit
in the renormalized contour process of section 6.6. Here there are two difficulties.
One is the fact that since we do not want to restrict ourself to the (sub)critical case,
it is not clear whether the contour process will accumulate an arbitrary amount of
local time at level 0. In order to circumvent this difficulty, we use as in chapter 5 a
trick due to Delmas [16] which consists in considering the population process killed
at an arbitrary time a, which amounts to reflect the contour process below a. The
behavior of the contour process below a (and of its local time accumulated below
level a) is described by the solution of the corresponding equation reflected below
any a′ > a. The second difficulty comes from the fact that f ′ is not assumed to be
bounded from below. We will prove our convergence result by a combination of
Theorem 7 and Girsanov’s theorem. For that sake, we shall first consider the case
where | f ′| is bounded, and then the general case.

7.1 Convergence of ZN,x

The aim of this section is to prove the convergence in law as N → ∞ of the two-
parameter process {ZN,x

t , t ≥ 0,x ≥ 0} defined in section 6.5 towards the process
{Zx

t , t ≥ 0,x ≥ 0} solution of the SDE (4.10). We need to make precise the topology
for which this convergence will hold. We note that the process ZN,x

t (resp., Zx
t ) is a

Markov process indexed by x, with values in the space of càdlàg (resp., continuous)
functions of t D([0,∞);R+) (resp., C([0,∞);R+)). So it will be natural to consider
a topology of functions of x, with values in a space of functions of t.
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84 7 Convergence to a Continuous State Model

For each fixed x, the process t → ZN,x
t is càdlàg, constant between its jumps, with

jumps of size ±N−1, while the limit process t → Zx
t is continuous. On the other

hand, both ZN,x
t and Zx

t are discontinuous as functions of x. The mapping x → Zx· has
countably many jumps on any compact interval, but the mapping x → {Zx

t , t ≥ ε},
where ε > 0 is arbitrary, has finitely many jumps on any compact interval, and it is
constant between its jumps. This fact is well-known in the case where f is linear,
see section 4.4, and has been proved in the general case in Corollary 2. Recall that
D([0,∞);R+), equipped with the distance d0

∞ defined by (16.4) in [10], is separable
and complete, see Theorem 16.3 in [10]. We have the following statement

Theorem 13. Suppose that Assumption (H1) is satisfied. Then as N → ∞,

{ZN,x
t , t ≥ 0,x ≥ 0}⇒ {Zx

t , t ≥ 0,x ≥ 0}

in D([0,∞);D([0,∞);R+)), equipped with the Skorokhod topology of the space of
càdlàg functions of x, with values in the Polish space D([0,∞);R+) equipped with
the metric d0

∞, where {Zx
t , t ≥ 0,x ≥ 0} is the unique solution of the SDE (4.10).

7.1.1 Tightness of ZN,x

Recall (6.3) and (6.5). We first establish a few Lemmas.

Lemma 20. For all T > 0, x ≥ 0, there exists a constant C0 > 0 such that for all
N ≥ 1,

sup
0≤t≤T

E

(
ZN,x

t

)
≤C0.

Moreover, for all t ≥ 0, N ≥ 1,

E

(
−
∫ t

0
f (ZN,x

r )dr

)
≤ x.

PROOF: Let (τn,n ≥ 0) be a sequence of stopping times such that τn tends to infinity

as n goes to infinity and for any n,
(

MN,x
t∧τn

, t ≥ 0
)

is a martingale and ZN,x
t∧τn

≤ n.

Taking the expectation on both sides of equation (6.3) at time t ∧ τn, we obtain

E

(
ZN,x

t∧τn

)
=

�Nx	
N

+E

(∫ t∧τn

0
f (ZN,x

r )dr

)
. (7.1)

It follows from the Assumption (H1) on f that

E

(
ZN,x

t∧τn

)
≤ �Nx	

N
+β

∫ t

0
E(ZN,x

r∧τn
)dr
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From Gronwall’s and Fatou’s Lemmas, we deduce that there exists a constant C0 > 0
which depends only upon x and T such that

sup
N≥1

sup
0≤t≤T

E

(
ZN,x

t

)
≤C0.

From (7.1), we deduce that

−E

(∫ t∧τn

0
f (ZN,x

r )dr

)
≤ �Nx	

N
.

Since − f (ZN,x
r )≥−βZN,x

r , the second statement follows using Fatou’s Lemma and
the first statement. �

We now have the following Lemma.

Lemma 21. For all T > 0, x ≥ 0, there exists a constant C1 > 0 such that

sup
N≥1

E
(〈MN,x〉T

)≤C1.

PROOF: For any N ≥ 1 and k,k′ ∈ Z+ such that k ≤ k′, we set z = k
N and z′ = k′

N . We
deduce from (6.6) that

|| f ||N,z,z′ =
k′

∑
i=k+1

{
2

(
f (

i
N
)− f (

i−1
N

)

)+

−
(

f (
i
N
)− f (

i−1
N

)

)}
.

Hence it follows from Assumption (H1) that

|| f ||N,z,z′ ≤ 2β (z′ − z)+ f (z)− f (z′). (7.2)

We deduce from (7.2), (6.5), and Lemma 20 that

E
(〈MN,x〉T

)≤
∫ T

0

{(
σ2 +

2β
N

)
E(ZN,x

r )− 1
N
E
(

f (ZN,x
r )

)}
dr

≤
(

σ2 +
2β
N

)
C0T +

x
N
.

Hence the Lemma. �
It follows from this that MN,x is in fact a square integrable martingale. We also

have

Lemma 22. For all T > 0, x ≥ 0, there exist two constants C2,C3 > 0 such that

sup
N≥1

sup
0≤t≤T

E

[(
ZN,x

t

)2
]
≤C2,

sup
N≥1

sup
0≤t≤T

E

(
−
∫ t

0
ZN,x

r f (ZN,x
r )dr

)
≤C3.
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PROOF: We deduce from (6.3), (A.4), and the fact that 〈MN,x〉t − [MN,x]t is a local
martingale

(
ZN,x

t

)2
=

(�Nx	
N

)2

+2
∫ t

0
ZN,x

r f (ZN,x
r )dr+ 〈MN,x〉t +MN,x,(2)

t , (7.3)

where MN,x,(2) is a local martingale. Let (τn,n ≥ 1) be a sequence of stopping times

such that limn→∞ τn =+∞ a.s. and for each n ≥ 1,
(

MN,x,(2)
t∧τn

, t ≥ 0
)

is a martingale.

Taking the expectation on the both sides of (7.3) at time t∧τn and using Assumption
(H1), Lemma 21, and the Gronwall and Fatou Lemmas, we obtain that for all T > 0,
there exists a constant C2 > 0 such that

sup
N≥1

sup
0≤t≤T

E

(
ZN,x

t

)2
dr ≤C2.

We also have that

2E

(
−
∫ t∧τn

0
ZN,x

r f (ZN,x
r )dr

)
≤
(�Nx	

N

)2

+C1

From Assumption (H1), we have −ZN,x
r f (ZN,x

r ) ≥ −β (ZN,x
r )2. The second result

now follows from Fatou’s Lemma. �
We want to check tightness of the sequence

{
ZN,x, N ≥ 0

}
. Because of the

very weak assumptions upon f , we cannot use Proposition 37 below. Instead, we
now show directly how we can use Aldous’ criterion (A), see section A.7. Let
{τN , N ≥ 1} be a sequence of stopping times in [0,T ]. We deduce from Lemma 22

Proposition 21. For any T > 0 and η , ε > 0, there exists δ > 0 such that

sup
N≥1

sup
0≤θ≤δ

P

(∣∣∣∣
∫ (τN+θ)∧T

τN

f (ZN,x
r )dr

∣∣∣∣≥ η
)
≤ ε .

PROOF: Let c be a nonnegative constant. Provided 0 ≤ θ ≤ δ , we have
∣∣∣∣
∫ (τN+θ)∧T

τN

f (ZN,x
r )dr

∣∣∣∣≤ sup
0≤r≤c

| f (r)|δ +
∫ (τN+θ)∧T

τN

1{ZN,x
r >c}| f (ZN,x

r )|dr

But
∫ (τN+θ)∧T

τN

1{ZN,x
r >c}| f (ZN,x

r )|dr ≤ c−1
∫ T

0
ZN,x

r

(
f+(ZN,x

r )+ f−(ZN,x
r )

)
dr

≤ c−1
∫ T

0

(
2ZN,x

r f+(ZN,x
r )−ZN,x

r f (ZN,x
r )

)
dr

≤ c−1
∫ T

0

(
2β (ZN,x

r )2 −ZN,x
r f (ZN,x

r )
)

dr.
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From this and Lemma 22, we deduce that ∀ N ≥ 1, again with θ ≤ δ ,

sup
0≤θ≤δ

P

(∣∣∣
∫ (τN+θ)∧T

τN

f (ZN,x
r )dr

∣∣∣≥ η
)
≤ η−1

E

(∣∣∣∣
∫ (τN+θ)∧T

τN

f (ZN,x
r )dr

∣∣∣∣
)

≤ sup
0≤r≤c

| f (r)|δ
η

+
A

cη
,

with A = 2βC2T +C3. The result follows by choosing c = 2A/εη , and then δ =
εη/2sup0≤r≤c | f (z)|. �

From Proposition 21, the Lebesgue integral term in the right-hand side of (6.3)
satisfies Aldous’s condition (A). The same Proposition, Lemma 20, (6.5), and (7.2)
imply that < MN,x > satisfies the same condition, hence so does MN,x, according to
Rebolledo’s theorem, see [21]. We have proved

Proposition 22. For any fixed x ≥ 0, the sequence of processes
{

ZN,x, N ≥ 1
}

is
tight in D([0,∞);R+).

We deduce from Proposition 22 the following Corollary.

Corollary 6. For any 0 ≤ x < y the sequence of processes
{

V N,x,y, N ≥ 1
}

is tight
in D([0,∞);R+)

PROOF: For any x fixed the process ZN,x
t has jumps equal to ± 1

N which tend to
zero as N → ∞. It follows from this, Proposition 22, and Proposition 37 that any
weak limit of a converging subsequence of ZN,x is continuous. We deduce that
for any x,y ≥ 0, the sequence

{
ZN,y −ZN,x,N ≥ 1

}
is tight since

{
ZN,x,N ≥ 1

}
and

{
ZN,y,N ≥ 1

}
are tight and both have a continuous limit as N → ∞. �

7.1.2 Proof of Theorem 13

The next two Propositions will be the main steps in the proof of Theorem 13.

Proposition 23. For any n ∈ N, 0 ≤ x1 < x2 < · · ·< xn,

(
ZN,x1 ,ZN,x2 , · · · ,ZN,xn

)⇒ (Zx1 ,Zx2 , · · · ,Zxn)

as N → ∞, for the topology of locally uniform convergence in t.

PROOF: We prove the statement in the case n = 2 only. The general statement
can be proved in a very similar way. For 0 ≤ x1 < x2, we consider the process(
ZN,x1 ,V N,x1,x2

)
, using the notations from section 6.5. The argument preceding the

statement of Proposition 22 implies that the sequences of martingales MN,x1 and
MN,x1,x2 are tight. Hence(
ZN,x1 ,V N,x1,x2 ,MN,x1 ,MN,x1,x2

)
is tight. Thanks to (6.3), (6.5), (6.8), (6.9),

and (6.10), any converging subsequence of
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{
ZN,x1 ,V N,x1,x2 ,MN,x1 ,MN,x1,x2 ,N ≥ 1

}
has a weak limit

(Zx1 ,V x1,x2 ,Mx1 ,Mx1,x2) which satisfies

Zx1
t = x1 +

∫ t

0
f (Zx1

s )ds+Mx1
t

V x1,x2
t = x2 − x1 +

∫ t

0
[ f (Zx1

s +V x1,x2
s )− f (Zx1

s )]ds+Mx1,x2
t ,

where the continuous martingales Mx1 and Mx1,x2 satisfy

〈Mx〉t = σ2
∫ t

0
Zx1

s ds, 〈Mx1,x2〉t = σ2
∫ t

0
V x1,x2

s ds, 〈Mx1 ,Mx1,x2〉t = 0.

This implies that the pair (Zx1 ,V x1,x2) is a weak solution of the system of
SDEs (4.10) and (4.18), driven by the same space-time white noise. The result
follows from the uniqueness of the system, see Theorem 5. �

Proposition 24. There exists a constant C, which depends only upon θ and T , such
that for any 0 ≤ x < y < z, which are such that y− x ≤ 1, z− y ≤ 1,

E

[
sup

0≤t≤T
|ZN,y

t −ZN,x
t |2 × sup

0≤t≤T
|ZN,z

t −ZN,y
t |2

]
≤C|z− x|2.

We first prove the

Lemma 23. For any 0 ≤ x < y, we have

sup
0≤t≤T

E

(
ZN,y

t −ZN,x
t

)
= sup

0≤t≤T
E(V N,x,y

t )≤
(�Ny	

N
− �Nx	

N

)
eβT ,

PROOF: Let (τn,n ≥ 0) be a sequence of stopping times such that limn→∞ τn = +∞
and for each n ≥ 1,

(
MN,x,y

t∧τn
, t ≥ 0

)
is a martingale. Taking the expectation on both

sides of (6.8) at time t ∧ τn, we obtain that

E(V N,x,y
t∧τn

)≤
(�Ny	

N
− �Nx	

N

)
+β

∫ t

0
E(V N,x,y

r∧τn
)dr (7.4)

Using Gronwall’s and Fatou’s Lemmas, we obtain that

sup
0≤t≤T

E(V N,x,y
t )≤

(�Ny	
N

− �Nx	
N

)
eβT .

�
PROOF OF PROPOSITION 24 From equation (6.8), using a stopping time argument as
above, Lemma 23, and Fatou’s Lemma, where we take advantage of the inequality
f (ZN,x

r )− f (ZN,x
r +V N,x,y

r )≥−βV N,x,y
r , we deduce that
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E

(∫ t

0

[
f (ZN,x

r )− f (ZN,x
r +V N,x,y

r )
]

dr

)
≤ �Ny	

N
− �Nx	

N
. (7.5)

We now deduce from (6.9), Lemma 23, and inequalities (7.5) and (7.2) that for each
t > 0, there exists a constant C(t)> 0 such that

E
(〈MN,x,y〉t

)≤C(t)

(�Ny	
N

− �Nx	
N

)
. (7.6)

This implies that MN,x,y is in fact a square integrable martingale. For any 0 ≤ x <
y < z, we have ZN,z

t −ZN,y
t = V N,y,z

t and ZN,y
t −ZN,x

t = V N,x,y
t for any t ≥ 0. On the

other hand we deduce from (6.8) and Assumption (H1) that

sup
0≤t≤T

(V N,x,y
t )2 ≤ 3

(�Ny	
N

− �Nx	
N

)2

+3β 2T
∫ T

0
sup

0≤s≤r
(V N,x,y

s )2dr

+3 sup
0≤t≤T

(
MN,x,y

t

)2

and

sup
0≤t≤T

(V N,y,z
t )2 ≤ 3

(�Nz	
N

− �Ny	
N

)2

+3β 2T
∫ t

0
sup

0≤s≤r
(V N,y,z

s )2dr

+3 sup
0≤t≤T

(
MN,y,z

t

)2
.

Now let G x,y := σ
(

ZN,x
t ,ZN,y

t , t ≥ 0
)

be the filtration generated by ZN,x and ZN,y. It

is clear that for any t, V N,x,y
t is measurable with respect to G x,y. We then have

E

[
sup

0≤t≤T
|V N,x,y

t |2 × sup
0≤t≤T

|V N,y,z
t |2

]
= E

[
sup

0≤t≤T
|V N,x,y

t |2E
(

sup
0≤t≤T

|V N,y,z
t |2|G x,y

)]
.

Conditionally upon ZN,x and ZN,y = u(.), V N,y,z solves the following SDE

V N,y,z
t =

�Nz	−�Ny	
N

+
∫ t

0

[
f (V N,y,z

r +u(r))− f (u(r))
]

dr+MN,y,z
t ,

where MN,y,z is a martingale conditionally upon G x,y, hence the arguments used in
Lemma 23 lead to

sup
0≤t≤T

E

(
V N,y,z

t |G x,y
)
≤
(�Nz	

N
− �Ny	

N

)
eβT ,

and those used to prove (7.5) yield

E

(∫ t

0
f (ZN,y

r )− f (ZN,y
r +V N,y,z

r )dr|G x,y
)
≤ �Nz	

N
− �Ny	

N
.
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From this we deduce (see the proof of (7.6)) that

E
(〈MN,y,z〉t |G x,y)≤C(t)

(�Nz	
N

− �Ny	
N

)
.

From Doob’s inequality we have

E

(
sup

0≤t≤T
|MN,y,z

t |2|G x,y
)
≤ 4E

(〈MN,y,z〉T |G x,y)

≤C(T )

(�Nz	
N

− �Ny	
N

)
.

Since 0 < z− y < 1, we deduce that

E

(
sup

0≤t≤T
|V N,y,z

t |2|G x,y
)
≤ 3(1+C(T ))

(�Nz	
N

− �Ny	
N

)

+3β 2T
∫ T

0
E

(
sup

0≤s≤r
(V N,y,z

s )2|G x,y
)

dr,

From this and Gronwall’s Lemma we deduce that there exists a constant K1 > 0
such that

E

(
sup

0≤t≤T
|V N,y,z

t |2|G x,y
)
≤ K1

(�Nz	
N

− �Ny	
N

)
. (7.7)

Similarly we have

E

[
sup

0≤t≤T

(
V N,x,y

s

)2
]
≤ K1

(�Ny	
N

− �Nx	
N

)
.

Since 0 ≤ y− x < z− x and 0 ≤ z− y < z− x, we deduce that

E

[
sup

0≤t≤T
|V N,x,y

t |2 × sup
0≤t≤T

|V N,y,z
t |2

]
≤ K2

1

(�Nz	
N

− �Nx	
N

)2

,

hence the result.

PROOF OF THEOREM 13 We now show that for any T > 0,

{ZN,x
t , 0 ≤ t ≤ T, x ≥ 0}⇒ {Zx

t , 0 ≤ t ≤ T, x ≥ 0}

in D([0,∞);D([0,T ],R+)). From Theorems 13.1 and 16.8 in [10], since from Propo-
sition 23, for all n ≥ 1, 0 < x1 < · · ·< xn,

(ZN,x1· , . . . ,ZN,xn· )⇒ (Zx1· , . . . ,Zxn· )

in D([0,T ];Rn), it suffices to show that for all x̄ > 0, ε , η > 0, there exists N0 ≥ 1
and δ > 0 such that for all N ≥ N0,
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P(wx̄,δ (Z
N)≥ ε)≤ η , (7.8)

where for a function (x, t)→ z(x, t)

wx̄,δ (z) = sup
0≤x1≤x≤x2≤x̄,x2−x1≤δ

inf{‖z(x, ·)− z(x1, ·)‖,‖z(x2, ·)− z(x, ·)‖} ,

with the notation ‖z(x, ·)‖= sup0≤t≤T |z(x, t)|. But from the proof of Theorem 13.5
in [10], (7.8) for ZN follows from Proposition 24. �

7.2 Convergence of the Contour Process HN

In this section, we assume that f ∈C1. In this case, Assumption (H1) is equivalent to

Assumption (H1’) There exists a constant β > 0 such that for all x ≥ 0,
f ′(x)≤ β ,

which we assume to be in force in this section.

7.2.1 The Case Where f’ Is Bounded

We assume in this subsection that | f ′(x)| ≤ C for all x ≥ 0 and some C > 0. This
constitutes the first step of the proof of convergence of HN .

As explained at the end of section 6.6, in this case we can use Girsanov’s theorem
to bring us back to the situation studied in section 5.3.

Recalling equations (6.13) and (6.15), we note that

Ha,N
s =M 1,a,N

s −M 2,a,N
s +2−1[La,N

s (0)−La,N
s (a−)]+ εN , where

εN = (4N)−1(1−V a,N
s )−2−1La,N

0+ (0).

Moreover, from (6.12), (6.14), and (6.15),

[M 1,a,N ]s =
4

N2σ4 Q1,a,N
s , [M 2,a,N ]s =

4
N2σ4 Q2,a,N

s

〈M 1,a,N〉s =
4

σ2

∫ s

0
1V N

r =−1dr, 〈M 2,a,N〉s =
4

σ2

∫ s

0
1V N

r =1dr,

[Y a,N ]s =
4

N2σ4

∫ s

0
|Y a,N

r− |2
[∣∣∣∣( f ′N)

+

(
σ2

4
La,N

r− (Ha,N
r )

)∣∣∣∣
2

dQ1,a,N
r

+

∣∣∣∣( f ′N)
−
(

σ2

4
La,N

r− (Ha,N
r )

)∣∣∣∣
2

dQ2,a,N
r

]
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〈Y a,N〉s =
4

σ2

∫ s

0
|Y a,N

r |2
[∣∣∣∣( f ′N)

+

(
σ2

4
La,N

r (Ha,N
r )

)∣∣∣∣
2

1
V a,N

r =−1

+

∣∣∣∣( f ′N)
−
(

σ2

4
La,N

r (Ha,N
r )

)∣∣∣∣
2

1
V a,N

r =1

]
dr

[Y a,N ,M 1,a,N ]s =
4

N2σ4

∫ s

0
Y a,N

r− ( f ′N)
+

(
σ2

4
La,N

r− (Ha,N
r )

)
dQ1,a,N

r

[Y a,N ,M 2,a,N ]s =
4

N2σ4

∫ s

0
Y a,N

r− ( f ′N)
−
(

σ2

4
La,N

r− (Ha,N
r )

)
dQ2,a,N

r

〈Y a,N ,M 1,a,N〉s =
4

σ2

∫ s

0
Y a,N

r ( f ′N)
+

(
σ2

4
La,N

r (Ha,N
r )

)
1

V a,N
r =−1

dr

〈Y a,N ,M 2,a,N〉s =
4

σ2

∫ s

0
Y a,N

r ( f ′N)
−
(

σ2

4
La,N

r (Ha,N
r )

)
1

V a,N
r =1

dr,

while
[M 1,a,N ,M 2,a,N ]s = 〈M 1,a,N ,M 1,a,N〉s = 0.

Recall Corollary 3 and Lemma 15. Since f ′ is bounded, the same is
true for ( f ′)N(x) = N[ f (x + 1/N) − f (x)], uniformly with respect to N. It
is not difficult to deduce from the above formulae and Proposition 37 that
{(Ha,N ,M 1,a,N ,M 2,a,N ,Y a,N), N ≥ 1} is a tight sequence in C([0,∞)) ×
D([0,+∞))3. Hence at least along a subsequence (but we do not distinguish be-
tween the notation for the subsequence and for the sequence),

(Ha,N ,M 1,a,N ,M 2,a,N ,Y a,N)⇒ (Ha,M 1,M 2,Y a)

as N → ∞ in C([0,∞))×D([0,+∞))3, the limit being continuous (since the jumps
of M 1,a,N , M 2,a,N , and Y a,N tend to zero). Moreover

〈Y a,N〉s ⇒ 2
σ2

∫ s

0
|Y a

r |2 ×
∣∣∣∣ f ′

(
σ2

4
Lr(Hr)

)∣∣∣∣
2

dr

〈M 1,a,N〉s ⇒ 2
σ2 s,

〈M 2,a,N〉s ⇒ 2
σ2 s,

〈Y a,N ,M 1,a,N〉s ⇒ 2
σ2

∫ s

0
Y a

r f ′+
(

σ2

4
Lr(Hr)

)
dr,

〈Y a,N ,M 2,a,N〉s ⇒ 2
σ2

∫ s

0
Y a

r f ′−
(

σ2

4
Lr(Hr)

)
dr.



7.2 Convergence of the Contour Process HN 93

It follows from the above that Corollary 3 can be enriched as follows

Proposition 25. For each a > 0, as N → ∞,

(
Ha,N ,M1,a,N ,M2,a,N ,La,N

� (0),La,N
� (a−),Y a,N

·
)
=⇒

(
Ha,

√
2

σ
B1,

√
2

σ
B2,La

� (0),L
a
� (a

−),Y a
·

)
,

where B1 and B2 are two mutually independent standard Brownian motions, La
� (0)

( resp., La
� (a

−) ) denotes the local time of the continuous semimartingale Ha at level
0 ( resp., at level a− ). Moreover

Ha
s =

√
2

σ
(B1

s −B2
s )+

1
2
[La

s (0)−La
s (a

−)], and

Y a
s = 1+

√
2

σ

∫ s

0
Y a

r

[
f ′+

(
σ2

4
Lr(Hr)

)
dB1

r + f ′−
(

σ2

4
Lr(Hr)

)
dB2

r

]
.

We clearly have

Y a
s = exp

(√
2

σ

∫ s

0

[
f ′+

(
σ2

4
Lr(Hr)

)
dB1

r + f ′−
(

σ2

4
Lr(Hr)

)
dB2

r

]

− 1
σ2

∫ s

0

∣∣∣∣ f ′
(

σ2

4
Lr(Hr)

)∣∣∣∣
2

dr

)
. (7.9)

Since f ′ is bounded, it is plain that E(Y a
s ) = 1 for all s > 0. Let now P̃

a denote the
probability measure such that

dP̃a

dP

∣∣∣
G a

s

= Y a
s , (7.10)

where G a
s := σ{Ha

r , 0 ≤ r ≤ s}. It follows from Girsanov’s theorem (see Propo-
sition 35 below) that there exist two mutually independent standard P̃

a-Brownian
motions B̃1 and B̃2 such that

B1
s =

√
2

σ

∫ s

0
f ′+

(
σ2

4
Lr(Hr)

)
dr+ B̃1

s ,

B2
s =

√
2

σ

∫ s

0
f ′−

(
σ2

4
Lr(Hr)

)
dr+ B̃2

s .

Consequently
√

2
σ

(B1
s −B2

s ) =
2
σ

Bs +
2

σ2

∫ s

0
f ′
(

σ2

4
Lr(Hr)

)
dr,

where Bs = (
√

2)−1(B̃1
s − B̃2

s ) is a standard Brownian motion under P̃
a. Conse-

quently Ha is a weak solution of the SDE



94 7 Convergence to a Continuous State Model

Ha
s =

2
σ2

∫ s

0
f ′
(

σ2

4
Lr(Hr)

)
dr+

2
σ

Bs +
1
2
[La

s (0)−La
s (a

−)], (7.11)

where La
s (t) denotes the local time accumulated at level t up to time s by the pro-

cess Ha.
We note that under P̃

a,N , Y a,N solves (6.13), and under P̃
a, Y a solves the

SDE (7.11).
Let us establish a general Lemma

Lemma 24. Let (ξN ,ηN), (ξ ,η) be random pairs defined on a probability space
(Ω ,F ,P), with ηN, η nonnegative scalar random variables, and ξN, ξ taking val-
ues in some complete separable metric space X . Assume that E[ηN ] = E[η ] = 1.
Write (ξ̃N , η̃N) for the random pair (ξN ,ηN) defined under the probability measure
P̃

N which has density ηN with respect to P, and (ξ̃ , η̃) for the random pair (ξ ,η)
defined under the probability measure P̃ which has the density η with respect to P. If
(ξN ,ηN) converges in distribution to (ξ ,η), then (ξ̃N , η̃N) converges in distribution
to (ξ̃ , η̃).
PROOF: Due to the equality E[ηN ] = E[η ] = 1 and Scheffé’s theorem (see Theo-
rem 16.12 in [9]), the sequence ηN is uniformly integrable. Hence for all bounded
continuous F : X ×R+ → R,

E[F(ξ̃N , η̃N)] = E[F(ξN ,ηN)ηN ]→ E[F(ξ ,η)η ] = E[F(ξ̃ , η̃)].

�
It follows readily from Proposition 25 and Lemma 24

Proposition 26. For any a > 0, as N → ∞, Ha,N, solution of (6.13) where the inten-
sity of PN is σ2N2, converges in law towards the solution Ha of the SDE (7.11).

We now define for each a,x > 0 the stopping time

τa
x = inf

{
s > 0, La

s (0)>
4

σ2 x

}
.

Combining the above arguments with those of Proposition 18, we deduce that

Lemma 25. For any k ≥ 1, 0 < x1 < x2 < · · ·< xk, a > 0, as N → ∞,

(Ha,N ,τa,N
x1

,τa,N
x2

, . . . ,τa,N
xk

,Y a,N)⇒ (Ha,τa
x1
,τa

x2
, . . . ,τa

xk
,Y a)

weakly in C(R+;R+)×R
k
+×C(R+;R+).

We can now prove an extension of the Ray–Knight theorem

Proposition 27. Assume that f ′ is bounded. Then for any a > 0, the process

{
σ2

4
La

τa
x
(t), 0 ≤ t < a, x > 0

}

is a weak solution of equation (4.10) on the time interval [0,a).



7.2 Convergence of the Contour Process HN 95

PROOF: Fix an arbitrary integer k ≥ 1 and let 0 < x1 < x2 < · · ·< xk, g1,g2, . . . ,gk ∈
C([0,a];R). It follows from Corollary 5 that we have the identity in law

(∫ a

0
g1(t)Z

N,x1
t dt, . . . ,

∫ a

0
gk(t)Z

N,xk
t dt

)

(d)
=

(
σ2

4

∫ a

0
g1(t)L

a,N

τa,N
x1

(t)dt, . . . ,
σ2

4

∫ a

0
gk(t)L

a,N

τa,N
xk

(t)dt

)

=

(∫ τa,N
x1

0
g1(H

a,N
r )dr, . . . ,

∫ τa,N
xk

0
gk(H

a,N
r )dr

)
,

where the second equality follows from the “occupation times formula” for zigzag
curves, see (5.15). It follows from Proposition 23 that the term on the left converges
in law as N → ∞ towards

(∫ a

0
g1(t)Z

x1
t dt, . . . ,

∫ a

0
gk(t)Z

xk
t dt

)
,

while Lemma 25 implies that the last term on the right converges to

(∫ τa
x1

0
g1(H

a
r )dr, . . . ,

∫ τa
xk

0
gk(H

a
r )dr

)

=

(
σ2

4

∫ a

0
g1(t)L

a
τa

x1
(t)dt, . . . ,

σ2

4

∫ a

0
gk(t)L

a
τa

xk
(t)dt

)
,

where the last identity follows from the occupation times formula (see Propo-
sition 34 below). Consequently for any k ≥ 1, 0 < x1 < · · · < xk, g1, . . . ,gk ∈
C([0,a];R),

(∫ a

0
g1(t)Z

x1
t dt, . . . ,

∫ a

0
gk(t)Z

xk
t dt

)
(d)
=

(
σ2

4

∫ a

0
g1(t)L

a
τa

x1
(t)dt, . . . ,

σ2

4

∫ a

0
gk(t)L

a
τa

xk
(t)dt

)
,

which implies the result, since Z is the unique solution of (4.10). �

7.2.2 The General Case ( f ∈C1 and f ′ ≤ β )

Y a is still defined by (7.9). However, it is not clear a priori that E[Y a
s ] = 1 for all

s > 0 and we need to justify the fact that we can apply Girsanov’s theorem.
For each x > 0, a > 0, and n ≥ 1, let

T a
n = inf{s > 0, sup

0≤t<a
La

s (t)> n}.

It is plain that the process f ′(La
r (H

a
r )) is bounded on the random interval [0,T a

n ],
hence E[Y a

s∧T a
n
] = 1 for all s > 0, and from Proposition 35 below that we can define
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P̃
a on ∪nFT a

n
, which is a probability on each FT a

n
, by

dP̃a

dP

∣∣∣
FT a

n

= Y a
T a

n
. (7.12)

We now establish

Lemma 26. For any x> 0, a> 0, P(T a
n < τa

x )→ 0, and P̃
a(T a

n < τa
x )→ 0, as n→∞.

PROOF: It follows from Theorem 8 that

P(T a
n < τa

x ) = P( sup
0≤t<a

Xx
t > n),

where Xx
t is critical Feller diffusion, solution of the SDE

Xx
t = x+2

∫ t

0

√
Xx

r dBr.

But from Doob’s inequality and Gronwall’s Lemma,

E

[
sup

0≤r≤t
(Xx

r )
2
]
≤ 2x2 +4E

(
sup

0≤r≤t

∣∣∣∣
∫ r

0

√
Xx

s dBs

∣∣∣∣
2
)

≤ 2x2 +16E(
∫ t

0
Xx

r dr)

≤ 2x2 +16tx.

Hence

P(T a
n < τa

x )≤
E

[(
sup0≤t≤a Xx

t

)2
]

n2

≤ 2x2 +16ax
n2 ,

which tends to 0 as n → ∞.
Now let fn ∈ C1

b(R) be such that fn(z) = f (z), for any 0 ≤ z ≤ n. Applying
Proposition 27 with fn, and noting that on the random interval [0,T a

n ], f ′n(La
s (H

a
s )) =

f ′(La
s (H

a
s )), we have that

P̃
a(T a

n < τa
x ) = P( sup

0≤t<a
Zx

t > n),
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where Zx
t solves the SDE

Zx
t = x+

∫ t

0
f (Zx

r )dr+2
∫ t

0

√
Zx

r dBr.

Now since f (z)≤ β z, Zx
t ≤ Y x

t , solution of the SDE

Y x
t = x+

∫ t

0
βY x

r dr+2
∫ t

0

√
Y x

r dBr.

A slight extension of the above argument shows that for some constant C(x,β ,a),

P̃
a(T a

n < τa
x )≤

C(x,β ,a)
n2 .

�
We can now prove

Proposition 28. P̃a being defined by (7.12), we have that P̃a << P on F a
τa

x
for any

x > 0, and moreover

dP̃a

dP
|F a

τa
x
= Y a

τa
x
.

PROOF: For any A ∈F a
τa

x
, A∩{τa

x ≤ T a
n } ∈F a

T a
n ∧τa

x
⊂F a

T a
n

,

P̃
a(A∩{τa

x ≤ T a
n }) =

∫

A∩{τa
x ≤T a

n }
Y a

T a
n ∧τa

x
dP

=
∫

A∩{τa
x ≤T a

n }
Y a

τa
x
dP.

Taking the limit as n → ∞ in this identity with the help of Lemma 26 and the mono-
tone convergence theorem, we deduce that

P̃
a(A) =

∫

A
Y a

τa
x
dP.

�
We can now extend Proposition 27 to our standard assumptions.

Proposition 29. Assume that f satisfies Assumption (H1’). Then for any a > 0, the
process {

σ2

4
La

τa
x
(t), 0 ≤ t < a, x > 0

}

is a weak solution of equation (4.10) on the time interval [0,a).
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PROOF: Consider a sequence { fn, n ≥ 1} ⊂ C1
b(R+), as introduced in the proof of

Lemma 26. Let Zn,x, Hn,a, and Ln,a denote the corresponding population process,
contour process, and its local time. From Proposition 27 follows the identity in law

{
σ2

4
Ln,a

τa
x
(t), 0 ≤ t < a, x > 0

}
(d)
= {Zn,x

t , 0 ≤ t < a, x > 0}.

For each x> 0, both {Ln,a
τa

x
(t), 0≤ t < a, 0< x′ ≤ x} and {Zn,x

t , 0≤ t < a, 0< x′ ≤ x}
converge a.s. towards {La

τa
x
(t), 0≤ t < a, 0< x′ ≤ x} and {Zx

t , 0≤ t < a, 0< x′ ≤ x}
(which are associated with the original function f ), in the sense that the set where
the sequence equals its limit increases a.s. to Ω as n → ∞, as a consequence of
Lemma 26. The result follows, since x > 0 is arbitrary. �
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