
Chapter 5
Genealogies

It is not obvious how to trace genealogies for the individuals whose progeny survives
for a given duration of time, also we have seen there is only a finite number of
those, see section 4.4. Another point of view, which we now develop, is to use the
so-called contour or height process. In the case of Feller’s diffusion, the bijection
between the contour process and the branching process is given by a Ray–Knight
theorem, see section 5.4 below. Here we shall give an independent derivation of
this theorem, starting with the contour process of a binary continuous time Galton–
Watson process.

There are various forms of bijection between a contour (or height) process and
a random binary tree. This section starts with a description of such a bijection, and
a rather simple proof that a certain law on the contour paths is in bijection with
the law of a continuous time binary Galton–Watson random tree, see Ba, Pardoux,
Sow [6]. The result in the critical case was first established by Le Gall [26], and
in the subcritical case by Pitman and Winkel [39], see also Geiger and Kersting
[19], Lambert [24], where the contour processes are jump processes, while ours
are continuous. For similar results in the case where the approximating process is
in discrete time and the tree is not necessarily binary, see Duquesne and Le Gall
[17]. We consider also the supercritical case. Inspired by the work of Delmas [16],
we note that in the supercritical case, the random tree killed at time a > 0 is in
bijection with the contour process reflected below a. Moreover, one can define a
unique local time process, which describes the local times of all the reflected contour
processes, and has the same law as the supercritical Galton–Watson process. We
next renormalize our Galton–Watson tree and height process, and take the weak
limit, thus providing a new proof of Delmas’ extension [16] of the second Ray–
Knight theorem. The classical version of this theorem establishes the identity in law
between the local time of reflected Brownian motion considered at the time when the
local time at 0 reaches x, and at all levels, and a Feller critical branching diffusion.
The same result holds in the subcritical (resp. supercritical) case, Brownian motion
being replaced by Brownian motion with drift (in the supercritical case, reflection
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46 5 Genealogies

below an arbitrary level, as above, is needed). The contour process in fact describes
the genealogical tree (in the sense of Aldous [2]) of the population, whose total
mass follows a Feller SDE. Our proof by approximation makes this interpretation
completely transparent.

5.1 Preliminaries

The artificial time for the evolution of the contour process of our trees will be la-
belled s, while the real time of the evolution of the population is t. t will also label
the values taken by the contour process. See the various figures below, where s is
always the coordinate of the horizontal axis, and t the coordinate of the vertical axis.

We fix an arbitrary p > 0. Consider a continuous piecewise linear function H
from a subinterval of R+ into R+, which possesses the following properties : its
slope is either p or −p; it starts at time s = 0 from 0 with the slope p; whenever
H(s) = 0, H ′−(s) =−p, and H ′

+(s) = p; H is stopped at the time Tm of its m-th return
to 0, which is supposed to be finite. We shall denote by Hp,m the collection of all
such functions. We shall write Hp for Hp,1. We add the restriction that between
two consecutive visits to zero, any function from Hp,m has all its local minima at
distinct heights.

We denote by T the set of continuous time finite rooted binary trees which are
defined as follows. An ancestor is born at time 0. This is the root of the tree. Until
she eventually dies, she gives birth to an arbitrary number of offsprings, but only
one at a time. The same happens to each of her offsprings, and to the offsprings
of her offsprings, etc. . . until eventually the population dies out (assuming for sim-
plicity that we are in the (sub)critical case). For instance, the picture on the right of
Figure 5.1 shows a binary tree where the ancestor gives birth to two children before
dying. The first child dies childless, while the second one has one child, who dies
at the same time as herself. Note that we do not distinguish between the two trees
shown in Figure 5.1. We denote by Tm the set of forests which are the union of m
elements of T .

•M1

*

m1 *

*
⇐⇒ m2

•M2 •M3

•M4

m3

a

Fig. 5.1 Two equivalent ways of drawing a binary tree
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There is a well-known bijection between binary trees and contour processes.
Under the curve representing an element H ∈ Hp, we can draw a tree as follows.
The height hl f max of the leftmost local maximum of H is the lifetime of the ancestor
and the height hlowmin of the lowest non zero local minimum is the time of the birth
of the first offspring of the ancestor. If there is no such local minimum, the ancestor
dies before giving birth to any offspring. We draw a horizontal line at level hlowmin.
H has two excursions above hlowmin. The right one is used to represent the fate of
the first offspring and of her progeny. The left one is used to represent the fate of the
ancestor and of the rest of her progeny, excluding the first offspring and her progeny.
If there is no other local minimum of H neither at the left nor at the right of the first
explored one, it means that there is no further birth: we draw a vertical line up to the
unique local maximum, whose height is a death time. Continuing until there is no
further local minimum-maximum to explore, we define by this procedure a bijection
Φp from Hp into T (see Figure 5.2). Repeating the same construction m times, we
extend Φp as a bijection between Hp,m and Tm. Note that drawing the contour pro-
cess of a tree is obvious (since the horizontal distances between the vertical branches
are arbitrary, the choice of p is arbitrary). See the top of Figure 5.2.

We now define probability measures on Hp (resp. Hp,m) and T (resp. Tm). We
describe first the (sub)critical case. Let 0 < b ≤ d be two parameters. We define
a stochastic process whose trajectories belong to Hp as follows. Let {Uk, k ≥ 1}
and {Vk, k ≥ 1} be two mutually independent sequences of i.i.d exponential ran-
dom variables with means 1/d and 1/b, respectively. Let Zk =Uk −Vk, k ≥ 1. Pb,d

is the law of the random element of Hp, which is such that the height of the first
local maximum is U1, that of the first local minimum is (Z1)

+. If (Z1)
+ = 0, the

process is stopped. Otherwise, the height of the second local maximum is Z1 +U2,
the height of the second local minimum is (Z1 +Z2)

+, etc. Because b ≤ d, EZ1 ≤ 0,
hence the process returns to zero a.s. in finite time. The random trajectory which
we have constructed is an excursion above zero (see the bottom of Figure 5.2). We
define similarly a law on Hp,m as the concatenation of m i.i.d. such excursions, and
denote it by Pb,d . This thus defined random element of Hp,m is called a contour
or height process. We associate the continuous time Galton–Watson tree (which is
a random element of T ) with the same pair of parameters (b,d) as follows. The
lifetime of each individual is exponential with expectation 1/d, and during her life-
time, independently of it, each individual gives birth to offsprings according to a
Poisson process with rate b. The behaviors of the various individuals are i.i.d. We
denote by Qb,d the law on Tm of a forest of m i.i.d. random trees whose law is as
just described.

In the supercritical case, the case where b > d, the contour process defined above
does not come back to zero a.s.. To overcome this difficulty, we use a trick which
is due to Delmas [16], and reflect the process H below an arbitrary level a > 0
(which amounts to kill the whole population at time a). The height process Ha =
{Ha

s , s ≥ 0} reflected below a is defined as above, with the addition of the rule that
whenever the process reaches the level a, it stops and starts immediately going down
with slope −p for a duration of time exponential with expectation 1/b. Again the
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U1•

(Z1)+
•

(Z1 + Z2)+

U2 + (Z1)+•

•

hlowmin

•

•
hlfmax

Fig. 5.2 Bijection between H2 and T (see above), and a trajectory of a contour process (see
below)
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process stops when first going back to zero. The reflected process Ha comes back to
zero almost surely. Indeed, let Aa

n denote the event “Ha does not reach zero during
its n first descents.” Since the levels of the local maxima are bounded by a, clearly
P(An)≤ (1−exp(−ba))n, which goes to zero as n−→∞. Hence the result. For each
a ∈ (0,+∞), and any pair (b,d) of positive numbers, denote by Pb,d,a the law of the
process Ha. Define Qb,d,a to be the law of a binary Galton–Watson tree with birth
rate b and death rate d, killed at time t = a (i. e. all individuals alive at time a− are
killed at time a). Pb,d,+∞ makes perfect sense in case b ≤ d, Qb,d,+∞ is always well
defined.

5.2 Correspondence of Laws

The aim of this section is to prove that, for any b,d > 0 and a ∈ (0,+∞) [including
possibly a = +∞ in the case b ≤ d], Pb,d,aΦ−1

p = Qb,d,a. Let us state some basic
results on homogeneous Poisson process, which will be useful in the sequel.

5.2.1 Preliminary Results

Let (Tk)k≥0 be a Poisson point process on R+ with intensity (or rate) b. This means
that T0 = 0, and (Tk+1 −Tk, k ≥ 0) are i.i.d exponential r.v.’s with mean 1/b. Let
(Nt , t ≥ 0) be the counting process associated with (Tk)k≥0, that is,

∀t ≥ 0, Nt = sup{k ≥ 0, Tk ≤ t} .

We shall also call (Nt , t ≥ 0) a Poisson process. This process has independent in-
crements, and for any 0 ≤ s < t, Nt −Ns, which is the number of points of the above
PPP in the interval (s, t], follows the Poisson law with parameter b(t − s). In par-
ticular, the intensity b is the mean number of points of the PPP in an interval of
length 1.

The first result is well-known and elementary.

Lemma 8. Let M be a nonnegative random variable independent of (Tk)k≥0, and
define

RM = sup
k≥0

{Tk;Tk ≤ M} . (5.1)

Then M − RM
(d)
= V ∧M where V and M are independent, V has an exponential

distribution with mean 1/b.
Moreover, on the event {RM > s}, the conditional law of NR−

M
− Ns given RM is

Poisson with parameter b(RM − s).

The second one is (in the next statement, we use again the definition (5.1)) :

Lemma 9. Let (Tk)k≥0 be a Poisson point process on R+ with intensity b. M a pos-
itive random variable which is independent of (Tk)k≥0. Consider the integer-valued
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random variable K such that TK = RM and a second Poisson point process
(
T ′

k

)
k≥0

with intensity b, which is jointly independent of the first and of M. Then
(
T k

)
k≥0

defined by:

T k =

{
Tk if k < K
TK +T ′

k−K+1 if k ≥ K

is a Poisson point process on R+ with intensity b, which is independent of RM.

PROOF: Let (Nt , t ≥ 0),
(
Nt , t ≥ 0

)
and (N′

t , t ≥ 0)) be the counting processes asso-
ciated to (Tk)k≥0,

(
T k

)
k≥0 and

(
T ′

k

)
k≥0, respectively. It suffices to prove that for any

n ≥ 1, 0 < t1 < · · ·< tn and k1 < k2 < · · ·< kn ∈ N
∗,

ξM = P

(
Nt1 = k1, . . . ,Ntn = kn|RM

)
= e−btn

n

∏
i=1

(b(ti − ti−1))
ki−ki−1

(ki − ki−1)!
.

Since there is no harm in adding t ′i s, we only need to do that computation on the
event that there exists 2 ≤ i ≤ n such that ti−1 < RM < ti, in which case a standard
argument yields easily the claimed result, thanks to Lemma 8. Indeed we have that

ξM = P

(
Nt1 =k1, · · · ,Nti−1 =ki−1,NR−

M
+N′

ti−RM
=ki, · · · ,NR−

M
+N′

tn−RM
=kn

)

= P

(

Nt1 =k1, · · · ,Nti−1−Nti−2 =ki−1 − ki−2,NR−
M
−Nti−1+N′

ti−RM
=ki − ki−1,

N′
ti+1−RM

−N′
ti−RM

=ki+1 − ki, · · · ,N′
tn−RM

−N′
tn−1−RM

=kn − kn−1

)

= e−btn
n

∏
i=1

(b(ti − ti−1))
ki−ki−1

(ki − ki−1)!
.

�

5.2.2 Basic Theorem

We are now in a position to prove the next theorem, which says that the tree asso-
ciated to the contour process Ha defined in section 5.1 is a continuous time binary
Galton–Watson tree with death rate d and birth rate b, killed at time a, and vice
versa.



5.2 Correspondence of Laws 51

Theorem 6. For any b,d > 0 and a ∈ (0,+∞) [ including possibly a = +∞ in the
case b ≤ d ] ,

Qb,d,a = Pb,d,aΦ−1
p .

PROOF: The individuals making up the population represented by the tree whose law
is Qb,d,a, will be numbered: � = 1,2, . . .. 1 is the ancestor of the whole family. The
subsequent individuals will be identified below. We will show that this tree is exp-
lored by a process whose law is precisely Pb,d,a. We introduce a family (T �

k ,k ≥ 0,
� ≥ 1) of mutually independent Poisson point processes with intensity b. For any
�≥ 1, the process T �

k describes the times of birth of the offsprings of the individual �.
We define U� to be the lifetime of individual �.

• Step 1: We start from Ha
0 = 0 at the initial time s = 0 and climb up with slope

p to the level M1 = U1 ∧ a, where U1 follows an exponential law with mean
1/d. Ha

s goes down from M1 with slope −p until we find the most recent point
of the Poisson process (T 1

k ) which gives the times of birth of the offsprings of
individual 1. So from Lemma 8, Ha

s has descended by V1 ∧M1, where V1 follows
an exponential law with mean 1/b, and is independent of M1. We hence reach
the level m1 = M1 −V1 ∧M1.
If m1 = 0, we stop, else we turn to

• Step 2: We give the label 2 to this last offspring of the individual 1, born at the
time m1. Let us define (T̄ 2

k ) by:

T̄ 2
k =

{
T 1

k if k < K1

T 1
K1

+T 2
k−K1+1 otherwise

where K1 is such that T 1
K1

= m1.
Thanks to Lemma 9, (T̄ 2

k ) is a Poisson process with intensity b on R+, which is
independent of m1 and in fact also of (U1,V1).
Starting from m1, the contour process climbs up to level M2 = (m1 +U2)∧ a,
where U2 is an exponential r.v. with mean 1/d, independent of (U1,V1). Starting
from level M2, we go down a height M2∧V2 where V2 follows an exponential law
with mean 1/b and is independent of (U2,U1,V1), to find the most recent point of
the Poisson process (T̄ 2

k ). At this moment we are at the level m2 = M2 −V2∧M2.
If m2 = 0 we stop. Otherwise we give the label 3 to the individual born at time
m2, and repeat step 2 until we reach 0. See Figure 5.1.

Since either we have a reflection at level a or b ≤ d, zero is reached a.s. after a
finite number of iterations. It is clear that the random variables Mi and mi determine
fully the law Qb,d,a of the binary tree killed at time t = a and they both have the
same joint distribution as the levels of the successive local maxima and minima of
the process Ha under Pb,d,a. �
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5.2.3 A Discrete Ray–Knight Theorem

For any a,b,d > 0, we consider the contour process {Ha
s , s ≥ 0} defined in sec-

tion 5.1 which is reflected in the interval [0,a] and stopped at the first moment it
reaches zero for the m-th time. To this process we can associate a forest of m binary
trees with birth rate b and death rate d, killed at time t = a, which all start with a
single individual at the initial time t = 0. Consider the continuous time branching
process

(
Xa,m

t , t ≥ 0
)

describing the number of offsprings alive at time t of the m
ancestors born at time 0, whose progeny is killed at time t = a. Every individual in
this population, independently of the others, lives for an exponential time with pa-
rameter d and gives birth to offsprings according to a Poisson process of intensity b.
We now choose the slopes of the piecewise linear process Ha to be ±2 (i.e., p = 2).
We define the local time accumulated by Ha at level t up to time s:

La
s (t) = lim

ε↓0

1
ε

∫ s

0
1{t≤Ha

r <t+ε}dr. (5.2)

La
s (t) equals the number of pairs of branches of Ha which cross level t between

times 0 and s. Note that a local minimum at level t counts for two crossings, while a
local maximum at level t counts for none. We have the following “occupation times
formula,” whose proof is an easy exercise. For any integrable function g,

∫ s

0
g(Ha

r )dr =
∫ a

0
g(r)La

s (r)dr. (5.3)

Let
τa

m = inf{s > 0 : La
s (0)≥ m} . (5.4)

La
τm
(t) counts the number of descendants of m ancestors at time 0, which are alive

at time t. Then we have

Lemma 10. For all b,d > 0 and a∈ (0,+∞) [ including possibly a=+∞ in the case
b ≤ d ]. {

La
τa

m
(t), t ≥ 0,m ≥ 1

}
≡ {

Xa,m
t , t ≥ 0,m ≥ 1

}
a.s.

We now want to establish a similar statement without the arbitrary parameter a.
There remains a difficulty only in the supercritical case, in which case we cannot
choose a =+∞ in the above construction. For any 0 < a < b, we define the function
Π a,b which maps continuous trajectories with values in [0,b] into trajectories with
values in [0,a] as follows. If u ∈C(R+, [0,b]),

ρu(s) =
∫ s

0
1{u(r)≤a}dr; Π a,b(u)(s) = u(ρ−1

u (s)). (5.5)

Lemma 11.
Π a,b(Hb)

(d)
= Ha
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PROOF: It is in fact sufficient to show that the conditional law of the level of the first
local minimum of Hb after crossing the level a downwards, given the past of Hb, is
the same as the conditional law of the level of the first local minimum of Ha after
a reflection at level a, given the past of Ha. This identity follows readily from the
“lack of memory” of the exponential law. �

This last Lemma says that reflecting under a, or chopping out the pieces of tra-
jectory above level a, yields the same result (at least in law).

We now consider the case p = 2. To each b,d > 0, m ≥ 1, we associate the
process {Xm

t , t ≥ 0} which describes the evolution of the number of descendants of
m ancestors, with birth rate b and death rate d. For each a > 0 [ including possibly
a = +∞ in the case b ≤ d ], we let (Ha

s , s ≥ 0) denote the contour process of the
genealogical tree of this population killed at time a, La denotes its local time and τa

m
is defined by (5.4). It follows readily from Lemma 11 that for any 0 < a < b,

(
Lb

τb
m
(t),0 ≤ t < a,m ≥ 1

)
(d)
=

(
La

τa
m
(t),0 ≤ t < a,m ≥ 1

)
. (5.6)

The compatibility relation (5.6) implies the existence of a projective limit
{Lm(t), t ≥ 0,m ≥ 1} with values in R+, which is such that for each a > 0,

{Lm(t),0 ≤ t < a,m ≥ 1} (d)
= {La

τa
m
(t),0 ≤ t < a,m ≥ 1}. (5.7)

We have the following “discrete Ray–Knight Theorem.”

Proposition 17.

{Lm(t), t ≥ 0,m ≥ 1} (d)
= {Xm

t , t ≥ 0,m ≥ 1} .

PROOF: It suffices to show that for any a ≥ 0,

{Lm(t),0 ≤ t < a,m ≥ 1} (d)
= {Xm

t ,0 ≤ t < a,m ≥ 1}.

This result follows from (5.7) and Lemma 10. �

5.2.4 Renormalization

Let x > 0 be arbitrary, and N ≥ 1 be an integer which will eventually go to infinity.
Let (XN,x

t )t≥0 denote the branching process which describes the number of descen-
dants at time t of [Nx] ancestors, in the population with birth rate bN = σ2N/2+α
and death rate dN = σ2N/2+β , where α,β ≥ 0. We set for t ≥ 0

ZN,x
t = N−1XN,x

t .
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In particular we have that ZN,x
0 = [Nx]

N → x when N →+∞. Let Ha,N be the contour

process associated to {XN,x
t , 0 ≤ t < a} defined in the same way as previously, but

with slopes ±2N, and b and d are replaced by bN and dN . We define also La,N
s (t),

the local time accumulated by Ha,N at level t up to time s, as

La,N
s (t) =

4
σ2 lim

ε↓0

1
ε

∫ s

0
1{t≤Ha,N

r <t+ε}dr (5.8)

σ2

4 La,N
s (t) equals 1/N times the number of pairs of t-crossings of Ha,N between

times 0 and s. Let

τa,N
x = inf

{
s > 0 : La,N

s (0)≥ 4
σ2

[Nx]
N

}
. (5.9)

We define for all N ≥ 1 the projective limit {L N
x (t), t ≥ 0,x > 0}, which is such that

for each a > 0,

{L N
x (t),0 ≤ t < a,x > 0} (d)

= {La,N

τa,N
x

(t),0 ≤ t < a,x > 0}.

Proposition 17 translates as (note that the factor N−1 in the definition of ZN,x
t

matches the slopes ±2N of Ha,N , which introduces a factor N−1 in the local times
defined by (5.8))

Lemma 12. We have the identity in law

{L N
x (t), t ≥ 0,x > 0} (d)

=

{
4

σ2 ZN,x
t , t ≥ 0,x > 0

}
.

We will need to write precisely the evolution of {Ha,N , s ≥ 0}, the contour
process of the forest of trees representing the population {XN,x

t , 0 ≤ t < a}.

Let {V a,N
s , s ≥ 0} be the {−1,1}-valued process which is such that s-a.e. dHa,N

s
ds =

2NV a,N
s . The R+×{−1,1}-valued process {(Ha,N

s ,V a,N
s ), s ≥ 0} is a Markov pro-

cess, which solves the following SDE :

dHa,N
s

ds
= 2NV a,N

s , Ha,N
0 = 0,V a,N

0 = 1,

dV a,N
s = 21{V a,N

s− =−1}dP+
s −21{V a,N

s− =1}dP−
s +

σ2

2
NdLa,N

s (0)− σ2

2
NdLa,N

s (a−),

(5.10)

where {P+
s , s ≥ 0} and {P−

s , s ≥ 0} are two mutually independent Poisson pro-
cesses, with intensities (given by 2N × the rate of birth (resp. death))

σ2N2 +2αN and σ2N2 +2βN,
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La,N
s (0) and La,N

s (a−) denote, respectively, the number of visits to 0 and a by the
process Ha,N up to time s, multiplied by 4/Nσ2 (see (5.8)). These two terms in the
expression of V a,N stand for the reflection of Ha,N above 0 and below a. Note that
our definition of La,N makes the mapping t −→ La,N

s (t) right-continuous for each
s > 0. Hence La,N

s (t) = 0 for t ≥ a, while La,N
s (a−) = limn→∞ La,N

s (a− 1
n ) > 0 if

Ha,N has reached the level a by time s.

5.3 Weak Convergence

5.3.1 Tightness of Ha,N

We deduce from (5.10) that

Ha,N
s = 2N

∫ s

0
1{V a,N

r =1}dr−2N
∫ s

0
1{V a,N

r =−1}dr,

V a,N
s

σ2N
=

1
σ2N

−
(

2N +
4β
σ2

)∫ s

0
1{V a,N

r =1}dr+

(
2N +

4α
σ2

)∫ s

0
1{V a,N

r =−1}dr

− 2
σ2N

∫ s

0
1{V a,N

r− =1}dM−
r +

2
σ2N

∫ s

0
1{V a,N

r− =−1}dM+
r

+
1
2
[La,N

s (0)−La,N
0+ (0)]− 1

2
La,N

s (a−),

where
M+

s = P+
s − (σ2N2 +2αN)s, M−

s = P−
s − (σ2N2 +2βN)s

are two martingales. Consequently

Ha,N
s +

V a,N
s

σ2N
=

1
σ2N

+
4

σ2

∫ s

0

(
α1{V a,N

r =−1} −β1{V a,N
r =1}

)
dr+Ma,N

s

+
1
2
[La,N

s (0)−La,N
0+ (0)]− 1

2
La,N

s (a−),
(5.11)

where Ma,N
s is a martingale such that

[Ma,N ]s =
4

σ4N2

(∫ s

0
1{V a,N

r− =1}dP−
r +

∫ s

0
1{V a,N

r− =−1}dP+
r

)
,

〈Ma,N〉s =
4

σ2 s+
8

σ4N

∫ s

0

(
α1{V a,N

r =−1}+β1{V a,N
r =1}

)
dr.

Lemma 13. For any a > 0, the sequence {Ha,N
s , s ≥ 0}N≥1 is tight in C([0,∞)).



56 5 Genealogies

PROOF: Let us rewrite (5.11) in the form

Ha,N
s = Ka,N

s +
1
2
[La,N

s (0)−La,N
0+ (0)]− 1

2
La,N

s (a−).

It follows readily from Proposition 37 below that Ka,N is tight in D([0,∞)), and all
its jumps converge to 0 as N → ∞. It then follows from Theorem 13.2 and (12.9)
in [10] that for any T > 0, all ε ,η > 0, there exist N0 and δ > 0 such that for all
N ≥ N0,

P

(

sup
0≤r,s≤T, |s−r|≤δ

|Ka,N
s −Ka,N

r ]> ε

)

≤ η .

Since LN(0) (resp. LN(a−)) increases only when HN
s = 0 (resp. when HN

s = a), it is
not hard to conclude that, provided ε < a, the above implies that for all N ≥ N0,

P

(

sup
0≤r,s≤T, |s−r|≤δ

|Ha,N
s −Ha,N

r ]> ε

)

≤ η .

In view of (12.7) in [10], this implies that Ha,N is tight in D([0,∞)). �

5.3.2 Weak Convergence of Ha,N

Let us state our convergence result.

Theorem 7. For any a > 0 [ including possibly a =+∞ in the case α ≤ β ], Ha,N ⇒
Ha in C([0,∞)) as N → ∞, where {Ha

s , s ≥ 0} is the process

2(α −β )
σ2 s+

2
σ

Bs

reflected in [0,a]. In other words, Ha is the unique weak solution of the reflected
SDE1

Ha
s =

2(α −β )
σ2 s+

2
σ

Bs +
1
2

La
s (0)−

1
2

La
s (a

−), (5.12)

where La
s (t) denotes the local time accumulated by (Ha

r , r ≥ 0) up to time s at level t.

We first prove

Lemma 14. For any sequence
(
UN ,N ≥ 1

)⊂C([0,+∞)) which is such that UN ⇒
U as N → ∞, for all s > 0,

∫ s

0
1{V a,N

r =1}U
N
r dr ⇒ 1

2

∫ s

0
Urdr,

∫ s

0
1{V a,N

r =−1}U
N
r dr ⇒ 1

2

∫ s

0
Urdr.

1 The fact that Brownian motion with drift reflected in the interval [0,a] takes this form is explained
at the end of section A.4 below.
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PROOF: It is an easy exercise to check that the mapping

Φ : C([0,+∞))×C↑([0,+∞))→C([0,+∞))

defined by

Φ(x,y)(t) =
∫ t

0
x(s)dy(s),

where C↑([0,+∞)) denotes the set of increasing continuous functions from [0,∞)
into R, and the three spaces are equipped with the topology of locally uniform con-
vergence, is continuous. Consequently it suffices to prove that locally uniformly in
s > 0, ∫ s

0
1{V a,N

r =1}dr → s
2

in probability, as N → ∞. In fact since both the sequence of processes and the limit
are continuous and monotone, it follows from an argument “à la Dini” that it suffices
to prove

Lemma 15. For any s > 0,
∫ s

0
1{V a,N

r =1}dr → s
2
,
∫ s

0
1{V a,N

r =−1}dr → s
2

in probability, as N → ∞.

PROOF: We have (the second line follows from (5.10))
∫ s

0
1{V a,N

r =1}dr+
∫ s

0
1{V a,N

r =−1}dr = s,
∫ s

0
1{V a,N

r =1}dr−
∫ s

0
1{V a,N

r =−1}dr = (2N)−1Ha,N
s .

It follows readily from Lemma 13 that (2N)−1Ha,N
s → 0 in probability, as n → ∞.

We conclude by adding and subtracting the two above identities. �
PROOF OF THEOREM 7 Let us prove that

(
Ha,N ,MN,a,La,N

� (0),La,N
� (a−)

)
=⇒

(
Ha,

2
σ

B,La
� (0),L

a
� (a

−)
)
.

Concerning tightness, we only need to take care of the third and fourth terms in
the quadruple. We notice that Lemma 13 implies that (La,N(0)− LN(a−))N≥1 is
tight in D([0,∞)). Since LN(0) (resp. LN(a−)) increases only when HN

s = 0 (resp.
when HN

s = a), it is not hard to deduce that both (La,N(0))N≥1 and (LN(a−))N≥1

are tight in D([0,∞)). Alternatively tightness of LN(0) can be deduced from the
identity (5.13) below, and that of LN(a−) from a similar formula.

Then
(
Ha,N ,MN,a,La,N

� (0), La,N
� (a−)

)
N≥1 is tight in C([0,∞))× [D([0,∞))]3.

Moreover any weak limit of MN,a along a converging subsequence equals 2B/σ ,
since < MN,a >s→ 4s/σ2 and the jumps of MN,a are equal in amplitude to 2

σ2N
.
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Let f ∈ C2(R) such that f ′(0) = 1 and f ′(a) = 0, and define f N(h,v) = f (h)+
v

σ2N
f ′(h). We deduce from (5.10)

La,N
s (0) = 2 f (Ha,N

s )+
2V a,N

s

σ2N
f ′(Ha,N

s )−2 f (0)− 2
σ2N

f ′(0)− 4
σ2

∫ s

0
f ′′(Ha,N

r )dr

− 8
σ2

∫ s

0
f ′(Ha,N

r )(α1{V N
r =−1} −β1{V N

r =1})dr−2M f ,N
s −2M̃ f ,N

s ,

(5.13)

where M f ,N and M̃ f ,N are martingales such that

〈M f ,N〉s =
4

σ2

∫ s

0
[ f ′(Ha,N

r )]2dr, 〈M̃ f ,N〉s ≤ c( f )
N

s.

It follows by taking the limit in (5.13) (and in a similar formula for La,N
s (a−))

that we have a limit of the form (Ha,2B/σ ,La(0),La(a−)) along a converging sub-
sequence of the sequence

(
Ha,N ,MN,a,La,N(0),La,N(a−)

)
.

For any 0 < ε < a, let fε ∈ C2(R) be such that f ′ε(0) = 1, f ′ε(x) = 0 for all ε ≤
x ≤ a, f ′(x) ≥ 0 and f ′′(x) ≤ 0 for all x ≥ 0. Taking the limit along the converging
subsequence in (5.13) with f N

ε (h,v) = fε(h)+ v
σ2N

f ′ε(h), we deduce that

La
s (0) = 2 fε(H

a
s )−2 fε(0)− 4

σ2

∫ s

0
f ′′ε (H

a
r )dr− 4

σ2 (α −β )
∫ s

0
f ′ε(H

a
r )dr−2M fε

s ,

〈M fε 〉s =
4

σ2

∫ s

0
[ f ′ε(H

a
r )]

2dr.

It then follows that
∫ s

0 1{Ha
r ≥ε}dLa

r (0) = 0. This being true for all 0 < ε < a,
we have that La

s (0) =
∫ s

0 1{Ha
r =0}dLa

r (0). We prove similarly that La
s (a

−) =∫ s
0 1{Ha

r =a}dLa
r (a

−). Moreover it is plain that both La
s (0) and La

s (a
−) are contin-

uous and increasing. Now (5.12) follows by taking the limit in (5.11). It is plain that
Ha, being a limit (along a subsequence) of Ha,N , takes values in [0,a]. The fact that
La(0) (resp. La(a−)) is continuous and increasing, and increases only on the set of
time when Ha

s = 0 (resp. Ha
s = a) proves that σ

2 Ha is a Brownian motion with drift
(α −β )s/σ , reflected in [0,a], which characterizes its law. We can refer, e.g., to the
formulation of reflected SDEs in [30]. Hence the whole sequence converges, and
the Theorem is proved. �

We have proved in particular

Corollary 3. For each a > 0 (including a =+∞ in the case α ≤ β ),

(
Ha,N ,MN,a,La,N(0),La,N(a−)

)⇒
(

Ha,
2
σ

B,La(0),La(a−)
)

as N → ∞, where B is a standard Brownian motion, La(0) (resp. La(a−)) is the local
time of Ha at level 0 (resp. at level a), and
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Ha
s =

2
σ2 (α −β )s+

2
σ

Bs +
1
2

[
La

s (0)−La
s (a

−)
]
,

i.e., Ha equals 2/σ multiplied by Brownian motion with drift (α −β )s/σ , reflected
in the interval [0,a].

5.4 A Ray–Knight Theorem

In this section we give a new proof of Delmas’ generalization of the second Ray–
Knight Theorem, see [16]. In case α ≤ β , we can choose a =+∞, let L·(0) denote
the local time of H at level 0, and define

τx = inf

{
s > 0, Ls(0)>

4
σ2 x

}
.

In the supercritical case, of course the construction is more complex. It follows from
Lemma 11 and Corollary 3 (see also Lemma 2.1 in [16]) that for any 0 < a < b,

Π a,b(Hb)
(d)
= Ha, (5.14)

where Ha [resp. Hb] is 2/σ multiplied by Brownian motion, with drift (α −β )s/σ ,
reflected in the interval [0,a] [resp. [0,b]], see Theorem 7. Now define for each
a,x > 0,

τa
x = inf

{
s > 0, La

s (0)>
4

σ2 x

}
.

It follows from (5.14) that, as in the discrete case, ∀ 0 < a < b,

{Lb
τb

x
(t), 0 ≤ t < a,x > 0} (d)

= {La
τa

x
(t), 0 ≤ t < a,x > 0}.

Consequently we can define the projective limit, which is a process {Lx(t), t ≥
0,x > 0} such that for each a > 0,

{Lx(t), 0 ≤ t < a,x > 0} (d)
= {La

τa
x
(t), 0 ≤ t < a,x > 0}.

We have the (see also Theorem 3.1 in Delmas [16] )

Theorem 8 (Generalized Ray–Knight theorem).

{Lx(t), t ≥ 0,x > 0} (d)
=

{
4

σ2 Zx
t , t ≥ 0,x > 0

}
,

where Zx is the Feller branching diffusion process, solution of the SDE

Zx
t = x+(α −β )

∫ t

0
Zx

r dr+σ
∫ t

0

√
Zx

r dBr, t ≥ 0.
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PROOF: Since both sides have stationary independent increments in x, it suffices to
show that for any x > 0,

{Lx(t), t ≥ 0} (d)
=

{
4

σ2 Zx
t , t ≥ 0

}
.

Fix an arbitrary a > 0. By applying the elementary “occupation times formula”
to Ha,N (which differs from (5.3) since (5.8) differs from (5.2)), and Lemma 12,
we have for any g ∈C(R+) with support in [0,a],

4
σ2

∫ τa,N
x

0
g(Ha,N

r )dr =
∫ ∞

0
g(t)La,N

τa,N
x

(t)dt

(d)
=

4
σ2

∫ ∞

0
g(t)ZN,x

t dt (5.15)

We deduce clearly from Proposition 7 that
∫ ∞

0
g(t)ZN,x

t dt =⇒
∫ ∞

0
g(t)Zx

t dt. (5.16)

Let us admit for a moment that as N → ∞
∫ τa,N

x

0
g(Ha,N

r )dr =⇒
∫ τa

x

0
g(Ha

r )dr, (5.17)

where τa
x = inf{s > 0, La

s (0)> x}.
From the occupation times formula for the continuous semimartingale

(Ha
s ,s ≥ 0) (see Proposition 34 below), we have that

4
σ2

∫ τa
x

0
g(Ha

r )dr =
∫ ∞

0
g(t)La

τa
x
(t)dt. (5.18)

We deduce from (5.15), (5.16), (5.17), and (5.18) that for any g ∈ C(R+) with
compact support in [0,a],

4
σ2

∫ ∞

0
g(t)Zx

t dt
(d)
=

∫ ∞

0
g(t)Lx(t)dt.

Since both processes (Zx
t , t ≥ 0) and (Lx(t), t ≥ 0) are a.s. continuous, the theo-

rem is proved. �

It remains to prove (5.17), which clearly is a consequence of (recall the defini-
tion (5.9) of τa,N

x )

Proposition 18.
(Ha,N ,τa,N

x ) =⇒ (Ha,τa
x ).
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PROOF: For the sake of simplifying the notations, we suppress the superscript a. Let
us define the function φ from R+×C↑([0,+∞)) into R+ by

φ(x,y) = inf{s > 0 : y(s)> x}.

For any fixed x, the function φ(x, .) is continuous in the neighborhood of a function
y which is strictly increasing at the time when it first reaches the value x. Define

τ ′Nx := φ
(

x,
σ2

4
LN
. (0)

)
.

We note that for any x > 0, s �−→ Ls(0) is a.s. strictly increasing at time τx, which is
a stopping time. This follows from the strong Markov property, the fact that Hτx = 0,
and Lε(0) > 0, for all ε > 0. Consequently τx is a.s. a continuous function of the
trajectory L.(0), and from Corollary 3

(HN ,τ ′Nx ) =⇒ (H,τx).

It remains to prove that τ ′Nx − τN
x −→ 0 in probability. For any y < x, for N large

enough
0 ≤ τ ′Nx − τN

x ≤ τ ′Nx − τ ′Ny .

Clearly τ ′Nx − τ ′Ny =⇒ τx − τy, hence for any ε > 0,

0 ≤ limsup
N

P
(
τ ′Nx − τN

x ≥ ε
)≤ limsup

N
P
(
τ ′Nx − τ ′Ny ≥ ε

)≤ P
(
τx − τy ≥ ε

)
.

The result follows, since τy ↑ τx a.s. as y ↑ x, y < x. �
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