Chapter 3 Convergence to a Continuous State Branching Process

If one wants to understand the evolution of a large population (e.g., in order to study its extinction time), it may be preferable to consider the limit, as the population size tends to infinity, of the rescaled \mathbb{Z}_+ -valued branching process. The limit, which is \mathbb{R}_+ -valued, inherits a branching property, that of the so-called continuous state branching process (in short CSBP). The formal statement of the CSBP property, which is very similar to the formulation of the branching property as stated before Proposition 1 in Chapter 2, will be given at the start of Chapter 4. In the present chapter, we will show convergence results of rescaled branching processes towards the solution of a Feller SDE. Note that we consider only convergence towards CSBPs with continuous trajectories, hence towards a Feller diffusion. More general CSBPs will be alluded to below in Remark 2 of Chapter 4. For the convergence of branching processes towards those general CSBPs, we refer to Duquesne, Le Gall [17] and Grimvall [20].

3.1 Convergence of Discrete Time Branching Processes

Let $x > 0$ be a given real number. To each integer N, we associate a Bienaymé– Galton–Watson process $\{X_n^{N,x}, n \ge 0\}$ starting from $X_0^{N,x} = [Nx]$. We now define the rescaled continuous time process

$$
Z_t^{N,x} := N^{-1} X_{[Nt]}^{N,x}.
$$

We shall let the p. g. f. of the Bienaymé–Galton–Watson process depend upon N in such a way that

$$
\mathbb{E}[\xi^N] = f'_N(1) = 1 + \frac{\gamma_N}{N},
$$

Var $[\xi^N] = \sigma_N^2$,

where as $N \rightarrow \infty$,

$$
\gamma_N \to \gamma \in \mathbb{R}, \quad \sigma_N \to \sigma^{1} \tag{3.1}
$$

We assume in addition the following Lindeberg type condition

$$
\mathbb{E}\left[|\xi^N|^2;\xi^N \ge a\sqrt{N}\right] \to 0 \text{ as } N \to \infty, \text{ for all } a > 0,
$$
 (3.2)

where we have used the notation $\mathbb{E}[X;A] = \mathbb{E}[X\mathbf{1}_A].$

We denote by $\xi_j^{N,i}$ the number of offsprings of the *j*-th individual from generation *i*. $(\xi_j^{N,i})_{i \geq 0, j \geq 1}$ are i.i.d. with the above law. We have

$$
Z_t^{N,x} = Z_{\frac{[Nt]}{N}}^{N,x}
$$

=
$$
\frac{[Nx]}{N} + \frac{1}{N} \sum_{i=0}^{[Nt]-1} \sum_{j=1}^{NZ_{i\Delta t}^{N,x}} (\xi_j^{N,i} - 1).
$$

Hence adding and subtracting γ ^{*N*} in each term of the last double sum, we deduce that

$$
Z_t^{N,x} = \frac{[Nx]}{N} + \gamma_N \int_0^{\frac{[Nt]}{N}} Z_s^N ds + M_t^N,
$$
\n(3.3)

where $M_t^N = M_{\frac{[M]}{N}}^N$, with $M_{k\Delta t}^N = \tilde{M}_k^N$, and $\{\tilde{M}_k^N, k \ge 0\}$ is a discrete time martingale given by

$$
\tilde{M}_k^N = \frac{1}{N}\sum_{i=0}^{k-1}\sum_{j=1}^{NZ_{i\Lambda t}^N}\left[\xi_j^{N,i}-\left(1+\frac{\gamma_N}{N}\right)\right].
$$

It is shown in [[2](#page-1-3)0] that under conditions (3.1) and $(3.2)^2$ $(3.2)^2$ (for the definition of the space $D([0, +\infty); \mathbb{R}_+)$, see section A.7 below),

Proposition 4. $Z^{N,x} \Rightarrow Z^x$ *in* $D([0,+\infty);\mathbb{R}_+)$ *equipped with the Skohorod topology, where* $\{Z_t^x, t \geq 0\}$ *solves the SDE*

$$
dZ_t^x = \gamma Z_t^x dt + \sigma \sqrt{Z_t^x} dB_t, \ t \ge 0, \quad Z_0^x = x. \tag{3.4}
$$

The proof in [20] is based on Laplace transform calculations. We will now give a proof based on martingale arguments. We deduce easily from [\(3.3\)](#page-1-4)

Lemma 2. *For any* $N \geq 1$, $t > 0$,

$$
\mathbb{E}[Z_t^{N,x}] \leq x \exp(\gamma_N t).
$$

¹ The particular choice $\sigma = 2$ would introduce simplifications in many formulas of Chapters 5, 6, 7, and 8 below.

² In fact the result is proved in [20] under the slightly weaker assumption $\mathbb{E} \left[|\xi^N|^2; \xi^N \ge aN \right] \to 0$ as $N \rightarrow \infty$, for all $a > 0$.

PROOF: Taking the expectation in (3.3) , we obtain the inequality

$$
\mathbb{E}[Z_t^{N,x}] \leq x + \gamma_N \int_0^t \mathbb{E}[Z_s^{N,x}]ds,
$$

from which the result follows, thanks to Gronwall's Lemma. \Box

Note that M_t^N is not a continuous time martingale, but $M_{k\Delta t}^N = \tilde{M}_k^N$ is a discrete time martingale. Let

$$
[\tilde{M}^{N}]_{k} = \sum_{j=0}^{k-1} (\tilde{M}_{j+1}^{N} - \tilde{M}_{j}^{N})^{2}.
$$

It is easily shown that $\{(\tilde{M}_k^N)^2 - [\tilde{M}^N]_k, k \ge 1\}$ is a martingale. Moreover, from the fact that with $\mathscr{G}_i^N = \sigma\{Z_{j\Delta t}^{N,x}, j \leq i\},$

$$
\mathbb{E}\left[(\tilde{M}_{j+1}^N - \tilde{M}_j^N)^2 | \mathscr{G}_i^N \right] = \sigma_N^2 Z_{j\Delta t}^{N,x} \Delta t,
$$

we deduce that

$$
(\tilde{M}_k^N)^2 - \langle \tilde{M}^N \rangle_k \text{ is a martingale},\tag{3.5}
$$

where

$$
\langle \tilde{M}^N \rangle_k = \sigma_N^2 \int_0^{k\Delta t} Z_s^N ds,
$$

We can now prove the

Lemma 3. *For any* $T > 0$ *,*

$$
\sup_{N\geq 1}\mathbb{E}\left(\sup_{0\leq t\leq T}Z_t^{N,x}\right)<\infty.
$$

PROOF: In view of (3.3) and Lemma [2,](#page-1-5) it suffices to estimate

$$
\begin{aligned} \left[\mathbb{E}\left(\sup_{0\leq k\leq NT}|\tilde{M}_{k}^{N}|\right)\right]^{2} &\leq \mathbb{E}\left(\sup_{0\leq k\leq NT}|\tilde{M}_{k}^{N}|^{2}\right) \\ &\leq 4\mathbb{E}\left(|\tilde{M}_{[NT]}^{N}|^{2}\right) \\ &=4\mathbb{E}\langle\tilde{M}^{N}\rangle_{[NT]} \\ &\leq 4\sigma_{N}^{2}\int_{0}^{T}\mathbb{E}(Z_{s}^{N,x})ds \\ &\leq 4\pi\sigma_{N}^{2}\frac{\exp[\gamma_{N}T]-1}{\gamma_{N}}, \end{aligned}
$$

where we have used Doob's inequality on the second line, (3.5) on the third, and with the understanding that the last ratio equals *T* if $\gamma_N = 0$.

Remark 1. It is not very hard to show that

$$
\mathbb{E}\left[(Z_t^{N,x})^2\right] \le \left(x^2 + x\sigma_N^2 \frac{e^{2Nt} - 1}{\gamma_N}\right) e^{2N(2 + \frac{\gamma_N}{N})t}
$$

$$
\mathbb{E}\left[\sup_{0 \le s \le t} (Z_s^{N,x})^2\right] \le C(t)(x + x^2).
$$

However, we do not need those estimates, and we leave their proof to the reader.

We can now proceed to the

PROOF OF PROPOSITION [4](#page-1-6) Since M_t^N is not really a martingale, the arguments of Propositions 37 and 38 need to be slightly adapted. We omit the details of those adaptations. It follows from (3.3) , (3.5) , Lemma [3,](#page-2-1) Proposition 37 (see also Remark 14) and [\(3.1\)](#page-1-1) that $\{Z_t^{N,x}, t \ge 0\}_{N \ge 1}$ is tight in $D([0, \infty); \mathbb{R}_+)$. In order to show that

$$
Z_t^x = x + \gamma \int_0^t Z_s^x ds + M_t,
$$

where *M* is a continuous martingale such that

$$
\langle M \rangle_t = \sigma^2 \int_0^t Z_s^x ds,
$$

see Proposition 38, it remains to prove that the last condition of Proposition 37 holds, namely that

Lemma 4. *For any* $T > 0$ *, as* $N \rightarrow \infty$ *,*

$$
\sup_{0\leq t\leq T}|Z_t^{N,x}-Z_{t^-}^{N,x}|\to 0 \text{ in probability.}
$$

If we admit for a moment this Lemma, it follows from the martingale representation Theorem 19 that there exists a standard Brownian motion ${B_t, t \ge 0}$ such that

$$
Z_t^x = x + \gamma \int_0^t Z_s^x ds + \sigma \int_0^t \sqrt{Z_s^x} dB_s, t \ge 0.
$$

It follows from Corollary 1 below that this SDE has a unique solution, hence the limiting law of $\{Z_t^x, t \geq 0\}$ is uniquely characterized, and the whole sequence $\{Z^{N,x}\}$ converges to Z^x as $N \to \infty$.

PROOF OF LEMMA [4](#page-3-0) For any $\varepsilon' < \varepsilon$, provided *N* is large enough,

$$
\mathbb{P}\left(\sup_{0\leq t\leq T}|Z^{N,x}_t-Z^{N,x}_{t^-}|>\varepsilon\right)\leq \mathbb{P}\left(\sup_{i\leq NT}|\tilde{M}^N_i-\tilde{M}^N_{i-1}|>\varepsilon'\right)
$$

Now define

$$
\tilde{M}_k^{N,K} = \frac{1}{N} \sum_{i=0}^{k-1} \sum_{j=1}^{N Z_{i\Delta t}^{N,K}} \left[\xi_j^{N,i} - \left(1 + \frac{\gamma_N}{N} \right) \right],
$$

where $Z_{i\Delta t}^{N,K} = Z_{i\Delta t}^{N} \wedge K$. It follows from Lemma [3](#page-2-1) that for all $T > 0$,

$$
\lim_{K \to \infty} \mathbb{P}(\tilde{M}_k^{N,K} = \tilde{M}_k^N \text{ for all } k \le NT, \text{ all } N \ge 1) = 1.
$$

It thus suffices to show that for each fixed $K > 0$, $\varepsilon > 0$,

$$
\mathbb{P}\left(\sup_{i\varepsilon\right)\to 0,
$$

as $N \rightarrow \infty$. But

$$
|\tilde{M}^{N,K}_{i+1}-\tilde{M}^{N,K}_i|\leq \sqrt{\frac{K}{N}}|U^N_i|, \ \ \text{where} \ U^N_i=\frac{1}{\sqrt{N Z^{N,K}_{i\Delta t}}}\sum_{j=1}^{N Z^{N,K}_{i\Delta t}}\tilde{\xi}^{N,i}_j,
$$

with $\bar{\xi}_j^{N,i} = \xi_j^{N,i} - (1 + \gamma_N/N)$. We have with $\varepsilon_K = \varepsilon / \sqrt{K}$,

$$
\mathbb{P}\left(\sup_{i\le NT}|\tilde{M}_{i}^{N,K}-\tilde{M}_{i-1}^{N,K}|>\varepsilon\right)\le\mathbb{P}\left(\bigcup_{i\varepsilon_{K}\sqrt{N}\right\}\right)
$$

$$
=1-\mathbb{P}\left(\bigcap_{i
$$

It is plain that

$$
\mathbb{P}\left(|U_i^N| \leq \varepsilon_K \sqrt{N} \middle| \mathcal{G}_i^N\right) = 1 - \mathbb{P}\left(|U_i^N| > \varepsilon_K \sqrt{N} \middle| \mathcal{G}_i^N\right) \\
\geq 1 - \frac{C_{N,K}}{\varepsilon_K^2 N},
$$

where

$$
C_{N,K} = \sup_{0 < z \leq K} \mathbb{E}\left(\frac{1}{[Nz]}\left|\sum_{j=1}^{[Nz]} \bar{\xi}_j^{N,i}\right|^2; \frac{1}{\sqrt{[Nz]}}\left|\sum_{j=1}^{[Nz]} \bar{\xi}_j^{N,i}\right| > \varepsilon_K \sqrt{N}\right).
$$

Conditioning first upon $\mathcal{G}_{[NT]}^N$, then upon $\mathcal{G}_{[NT]-1}^N$, etc., and using repeatedly the last computations, we deduce that, provided $2\varepsilon_K^2 C_{N,K} \leq N$,

$$
\mathbb{P}\left(\sup_{i\varepsilon\right)\leq 1-\left(1-\frac{C_{N,K}}{\varepsilon_N^2N}\right)^{[NT]}
$$

$$
\leq 1-\exp(-(2\log 2)\varepsilon_K^{-2}C_{N,K}T).
$$

It remains to show that for each $K > 0$, $C_{N,K} \to 0$, as $N \to \infty$. This follows readily from the fact that our assumption (3.2) allows us to deduce from Lindeberg's theorem that if $X_N := \frac{1}{\sqrt{N}} \sum_{j=1}^N \tilde{\xi}_j^{N,i}, X_N \Rightarrow X$ as $N \to \infty$, where *X* is a centered normal

r.v. with variance 2. But we also have that $\mathbb{E}[X_N^2] \to \mathbb{E}[X^2]$, hence the collection of r.v.'s $\{X_N^2, N \ge 1\}$ is uniformly integrable, from which we deduce that $C_{N,K} \to 0$, as $N \to \infty$.

3.2 The Individuals with an Infinite Line of Descent

Consider again the collection indexed by *N* of BGW processes $\{X_n^{N,x}\}\$ introduced at the beginning of the previous section, but this time with $\gamma_N = \gamma > 0$, $\sigma_N = \sigma$, for all *N* \geq 1. For each *t* \geq 0, let *Y_t*^{*N*} denote the individuals in the population *X*_{*[Nt]*} with an infinite line of descent. Let us describe the law of Y_0^N . Each of the $[Nx]$ individuals living at time $t = 0$ has the probability $1 - q_N$ of having an infinite line of descent, if q_N is the probability of extinction for a population with a unique ancestor at the generation 0. It then follows from the branching property that the law of Y_0^N is the binomial law $B([Nx], 1-q_N)$. It remains to evaluate q_N , the unique solution in the interval $(0,1)$ of the equation $f_N(x) = x$. Note that

$$
f''_N(1) = \mathbb{E}[\xi_N(\xi_N-1)] = \sigma^2 + \frac{\gamma}{N} + \left(\frac{\gamma}{N}\right)^2.
$$

We deduce from a Taylor expansion of f near $x = 1$ that

$$
1 - q_N = \frac{2\gamma}{\sigma^2 N} + \circ \left(\frac{1}{N}\right).
$$

Consequently

Proposition 5. In the above model, the number Y_0^N of individuals at time 0 with an *infinite line of descent converges in law, as* $N \rightarrow \infty$ *, towards* $Poi(2x\gamma/\sigma^2)$ *.*

3.3 Convergence of Continuous Time Branching Processes

Consider a continuous time \mathbb{Z}_+ -valued branching process $X_t^{N,x}$, with initial condition $X_0^{N,x} = [Nx]$ and reproduction measure μ_N such that $\mu_N(\mathbb{N}) = N$,

$$
N^{-1} \sum_{k \geq 0} k \mu_N(k) = 1 + \frac{\gamma_N}{N}, \quad \text{Var}(N^{-1} \mu_N) = \sigma_N^2,
$$

with $\gamma_N \to \gamma$ and $\sigma_N \to \sigma$, as $N \to \infty$. We define $Z_t^{N,x} = N^{-1} X_t^{N,x}$.

 ${P(t), t \geq 0}$ being a standard Poisson process, let

$$
Q_t^N = P\left(N^2 \int_0^t Z_s^{N,x} ds\right).
$$

It is fair to decide that Q_t^N is the number of birth events which have happened between time 0 and time *t*, since $N^2 Z_t^{N,x} = N X_t^{N,x}$ is the rate at which birth events occur. Now

$$
Z_t^{N,x} = \frac{[Nx]}{N} + N^{-1} \sum_{n=1}^{Q_t^N} (\xi_n^N - 1),
$$

where ξ_n^N denotes the number of offsprings at the *n*-th birth event. Those constitute an i.i.d. sequence with the common law $N^{-1}\mu_N$, which is globally independent of the Poisson process $P(t)$. We have

$$
Z_t^{N,x} = \frac{[Nx]}{N} + \frac{\gamma_N}{N^2} Q_t^N + N^{-1} \sum_{n=1}^{Q_t^N} (\xi_n^N - \mathbb{E}\xi_n^N)
$$

\n
$$
= \frac{[Nx]}{N} + \gamma_N \int_0^t Z_s^{N,x} ds + \gamma_N \left[N^{-2} Q_t^N - \int_0^t Z_s^{N,x} ds \right]
$$

\n
$$
+ N^{-1} \sum_{n=1}^{Q_t^N} (\xi_n^N - \mathbb{E}\xi_n^N)
$$

\n
$$
= \frac{[Nx]}{N} + \gamma_N \int_0^t Z_s^{N,x} ds + \varepsilon_N(t) + M_t^N,
$$
 (3.6)

where $\varepsilon_N(t) \to 0$ and M_t^N are martingales, and their quadratic variations satisfy

$$
[M^N]_t = N^{-2} \sum_{n=1}^{Q_t^N} (\xi_n^N - \mathbb{E}\xi_n^N)^2,
$$

$$
\langle M^N \rangle_t = \sigma_N^2 \int_0^t Z_s^{N,x} ds,
$$
\n(3.7)

hence

$$
\mathbb{E}\langle M^N \rangle_t = \sigma_N^2 \int_0^t \mathbb{E}[Z_s^{N,x}]ds,
$$
\n(3.8)

while

$$
\mathbb{E}\langle \varepsilon_N \rangle_t = N^{-2} \gamma_N^2 \int_0^t \mathbb{E}[Z_s^{N,x}] ds. \tag{3.9}
$$

From [\(3.6\)](#page-6-0),

$$
\mathbb{E}[Z_t^{N,x}] \leq xe^{\gamma_N t}.
$$

And from this, (3.6) , (3.8) , and (3.9) , we deduce that for all $T > 0$,

$$
\sup_{N\geq 1}\mathbb{E}\left(\sup_{0\leq t\leq T}Z^{N,x}_t\right)<\infty.
$$

It is plain that $\varepsilon_N(t) \to 0$ in probability locally uniformly in *t*. It follows from these last statements, (3.6) and (3.7) , Propositions 37 and 38 that the sequence $\{Z_t^{N,x}, t \geq 0\}$ is tight in $D([0, +\infty))$, and moreover that any limit of a converging subsequence is a solution of the SDE (3.4) . In other words we have the

Proposition 6. $Z^{N,x} \Rightarrow Z^x$ *as* $N \rightarrow \infty$ *for the topology of locally uniform convergence, where Z^x is the unique solution of the following Feller SDE*

$$
Z_t^x = x + \gamma \int_0^t Z_r^x dr + \sigma \int_0^t \sqrt{Z_r^x} dB_r, t \ge 0.
$$

3.4 Convergence of Continuous Time Binary Branching Processes

We now restrict ourselves to continuous time binary branching processes. We refer to subsection 2.2.2, and consider for each $N \geq 1$ a continuous time \mathbb{Z}_+ -valued Markov birth and death process $X_t^{N,x}$ with birth rate $b_N = \sigma^2 N/2 + \alpha$ and death rate $d_N = \sigma^2 N/2 + \beta$, where $\alpha, \beta \ge 0$, and initial condition $X_0^{N,x} = [Nx]$. We define $Z_t^{N,x} = N^{-1}X_t^{N,x}$. It is not hard to see that there exist two mutually

independent standard (i.e., rate 1) Poisson processes $P_b(t)$ and $P_d(t)$, such that

$$
Z_t^{N,x} = \frac{[Nx]}{N} + N^{-1}P_b\left(\left(\frac{\sigma^2}{2}N + \alpha\right)\int_0^t NZ_s^{N,x}ds\right) - N^{-1}P_d\left(\left(\frac{\sigma^2}{2}N + \beta\right)\int_0^t NZ_s^{N,x}ds\right).
$$

Define the two martingales $M_b(t) = P_b(t) - t$ and $M_d(t) = P_d(t) - t$. We have

$$
Z_t^{N,x} = \frac{[Nx]}{N} + (\alpha - \beta) \int_0^t Z_s^{N,x} ds + M^N(t), \text{ where}
$$

$$
M^N(t) = N^{-1} \left[M_b \left(\left(\frac{\sigma^2}{2} N + \alpha \right) \int_0^t N Z_s^{N,x} ds \right) - M_d \left(\left(\frac{\sigma^2}{2} N + \beta \right) \int_0^t N Z_s^{N,x} ds \right) \right].
$$

Consequently its quadratic variation is given as

$$
[M^N]_t = N^{-2} \left[P_b \left(\left(\frac{\sigma^2}{2} N + \alpha \right) \int_0^t N Z_s^{N,x} ds \right) + P_d \left(\left(\frac{\sigma^2}{2} N + \beta \right) \int_0^t N Z_s^{N,x} ds \right) \right],
$$

$$
\langle M^N \rangle_t = \left(\sigma^2 + \frac{\alpha + \beta}{N} \right) \int_0^t Z_s^{N,x} ds.
$$

It is plain that $\mathbb{E}(Z_t^{N,x}) \leq x \exp((\alpha - \beta)t)$, and moreover that for any $T > 0$, $\sup_{N\geq 1} \mathbb{E}\left(\sup_{0\leq t\leq T} Z_t^{N,x}\right) < \infty$. We deduce from the above arguments

Proposition 7. $Z^{N,x} \Rightarrow Z^x$ *as* $N \rightarrow \infty$ *for the topology of locally uniform convergence, where Z^x is the unique solution of the following Feller SDE*

$$
Z_t^x = x + \gamma \int_0^t Z_r^x dr + \sigma \int_0^t \sqrt{Z_r^x} dB_r, t \ge 0,
$$

where $\gamma = \alpha - \beta$ *.*

3.5 Convergence to an ODE

It can be noted that the conditions for convergence towards a Feller diffusion are rather rigid. In the last case which we considered, we need order (*N*) intensities for both Poisson processes, with a difference in the intensities which is allowed to be of order 1 only. Consider again the case of a continuous time binary branching process as in the previous section, but this time we assume that the birth rate is constant equal to α , and the death rate is constant equal to β . Assume again that $X_0^{N,x} = [Nx]$, and define as above $Z_t^{N,x} = N^{-1}X_t^{N,x}$. Then

$$
Z_t^{N,x} = \frac{[Nx]}{N} + N^{-1}P_b\left(\alpha N \int_0^t Z_s^{N,x} ds\right) - N^{-1}P_d\left(\beta N \int_0^t Z_s^{N,x} ds\right).
$$

With again $M_b(t) = P_b(t) - t$ and $M_d(t) = P_d(t) - t$,

$$
Z_t^{N,x} = \frac{[Nx]}{N} + (\alpha - \beta) \int_0^t Z_s^{N,x} ds + M^N(t), \quad \text{where}
$$

$$
M^N(t) = N^{-1} \left[M_b \left(\alpha N \int_0^t Z_s^{N,x} ds \right) - M_d \left(\beta N \int_0^t Z_s^{N,x} ds \right) \right].
$$

Now

$$
[M^N]_t = N^{-2} \left[P_b \left(\alpha N \int_0^t Z_s^{N,x} ds \right) + P_d \left(\beta N \int_0^t Z_s^{N,x} ds \right) \right],
$$

$$
\langle M^N \rangle_t = \frac{\alpha + \beta}{N} \int_0^t Z_s^{N,x} ds.
$$

We again have that $\mathbb{E}(Z_t^{N,x}) \leq x \exp((\alpha - \beta)t)$, and moreover that for any $T > 0$, $\sup_{N\geq 1}\mathbb{E}\left(\sup_{0\leq t\leq T}Z^{N,x}_t\right)<\infty$. For any $t>0$, $\mathbb{E}[(M_t^N)^2]\to 0$ as $N\to\infty$. Hence we have the following law of large numbers:

Proposition 8. *As* $N \to \infty$, $Z_t^{N,x}$ *converges in probability, locally uniformly in t, towards the solution of the ODE*

$$
\frac{dZ_t^x}{dt} = (\alpha - \beta)Z_t^x, \quad Z_0^x = x.
$$