
Chapter 3
Convergence to a Continuous State
Branching Process

If one wants to understand the evolution of a large population (e.g., in order to study
its extinction time), it may be preferable to consider the limit, as the population
size tends to infinity, of the rescaled Z+-valued branching process. The limit, which
is R+-valued, inherits a branching property, that of the so-called continuous state
branching process (in short CSBP). The formal statement of the CSBP property,
which is very similar to the formulation of the branching property as stated before
Proposition 1 in Chapter 2, will be given at the start of Chapter 4. In the present
chapter, we will show convergence results of rescaled branching processes towards
the solution of a Feller SDE. Note that we consider only convergence towards
CSBPs with continuous trajectories, hence towards a Feller diffusion. More gen-
eral CSBPs will be alluded to below in Remark 2 of Chapter 4. For the convergence
of branching processes towards those general CSBPs, we refer to Duquesne, Le Gall
[17] and Grimvall [20].

3.1 Convergence of Discrete Time Branching Processes

Let x > 0 be a given real number. To each integer N, we associate a Bienaymé–
Galton–Watson process {XN,x

n , n ≥ 0} starting from XN,x
0 = [Nx]. We now define

the rescaled continuous time process

ZN,x
t := N−1XN,x

[Nt].

We shall let the p. g. f. of the Bienaymé–Galton–Watson process depend upon N in
such a way that

E[ξ N ] = f ′N(1) = 1+
γN

N
,

Var[ξ N ] = σ2
N ,
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14 3 Convergence to a Continuous State Branching Process

where as N → ∞,
γN → γ ∈ R, σN → σ .1 (3.1)

We assume in addition the following Lindeberg type condition

E

[
|ξ N |2;ξ N ≥ a

√
N
]
→ 0 as N → ∞, for all a > 0, (3.2)

where we have used the notation E[X ;A] = E[X1A].
We denote by ξ N,i

j the number of offsprings of the j-th individual from genera-

tion i. (ξ N,i
j )i≥0, j≥1 are i.i.d. with the above law. We have

ZN,x
t = ZN,x

[Nt]
N

=
[Nx]

N
+

1
N

[Nt]−1

∑
i=0

NZN,x
iΔ t

∑
j=1

(ξ N,i
j −1).

Hence adding and subtracting γN/N in each term of the last double sum, we
deduce that

ZN,x
t =

[Nx]
N

+ γN

∫ [Nt]
N

0
ZN

s ds+MN
t , (3.3)

where MN
t = MN

[Nt]
N

, with MN
kΔ t = M̃N

k , and {M̃N
k , k ≥ 0} is a discrete time martingale

given by

M̃N
k =

1
N

k−1

∑
i=0

NZN
iΔ t

∑
j=1

[
ξ N,i

j −
(

1+
γN

N

)]
.

It is shown in [20] that under conditions (3.1) and (3.2)2 (for the definition of the
space D([0,+∞);R+), see section A.7 below),

Proposition 4. ZN,x ⇒ Zx in D([0,+∞);R+) equipped with the Skohorod topology,
where {Zx

t , t ≥ 0} solves the SDE

dZx
t = γZx

t dt +σ
√

Zx
t dBt , t ≥ 0, Zx

0 = x. (3.4)

The proof in [20] is based on Laplace transform calculations. We will now give
a proof based on martingale arguments. We deduce easily from (3.3)

Lemma 2. For any N ≥ 1, t > 0,

E[ZN,x
t ]≤ xexp(γNt).

1 The particular choice σ = 2 would introduce simplifications in many formulas of Chapters 5, 6,
7, and 8 below.
2 In fact the result is proved in [20] under the slightly weaker assumption E

[|ξ N |2;ξ N ≥ aN
]→ 0

as N → ∞, for all a > 0.
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PROOF: Taking the expectation in (3.3), we obtain the inequality

E[ZN,x
t ]≤ x+ γN

∫ t

0
E[ZN,x

s ]ds,

from which the result follows, thanks to Gronwall’s Lemma. �
Note that MN

t is not a continuous time martingale, but MN
kΔ t = M̃N

k is a discrete
time martingale. Let

[M̃N ]k =
k−1

∑
j=0

(M̃N
j+1 − M̃N

j )
2.

It is easily shown that {(M̃N
k )

2 − [M̃N ]k, k ≥ 1} is a martingale. Moreover, from the
fact that with G N

i = σ{ZN,x
jΔ t , j ≤ i},

E
[
(M̃N

j+1 − M̃N
j )

2|G N
i

]
= σ2

NZN,x
jΔ t Δ t,

we deduce that
(M̃N

k )
2 −〈M̃N〉k is a martingale, (3.5)

where

〈M̃N〉k = σ2
N

∫ kΔ t

0
ZN

s ds,

We can now prove the

Lemma 3. For any T > 0,

sup
N≥1

E

(
sup

0≤t≤T
ZN,x

t

)
< ∞.

PROOF: In view of (3.3) and Lemma 2, it suffices to estimate

[
E

(
sup

0≤k≤NT
|M̃N

k |
)]2

≤ E

(
sup

0≤k≤NT
|M̃N

k |2
)

≤ 4E
(
|M̃N

[NT ]|2
)

= 4E〈M̃N〉[NT ]

≤ 4σ2
N

∫ T

0
E(ZN,x

s )ds

≤ 4xσ2
N

exp[γNT ]−1
γN

,

where we have used Doob’s inequality on the second line, (3.5) on the third, and
with the understanding that the last ratio equals T if γN = 0. �
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Remark 1. It is not very hard to show that

E

[
(ZN,x

t )2
]
≤
(

x2 + xσ2
N

eγNt −1
γN

)
eγN (2+

γN
N )t

E

[
sup

0≤s≤t
(ZN,x

s )2
]
≤C(t)(x+ x2).

However, we do not need those estimates, and we leave their proof to the reader.

We can now proceed to the

PROOF OF PROPOSITION 4 Since MN
t is not really a martingale, the arguments

of Propositions 37 and 38 need to be slightly adapted. We omit the details of
those adaptations. It follows from (3.3), (3.5), Lemma 3, Proposition 37 (see also
Remark 14) and (3.1) that {ZN,x

t , t ≥ 0}N≥1 is tight in D([0,∞);R+). In order to
show that

Zx
t = x+ γ

∫ t

0
Zx

s ds+Mt ,

where M is a continuous martingale such that

〈M〉t = σ2
∫ t

0
Zx

s ds,

see Proposition 38, it remains to prove that the last condition of Proposition 37
holds, namely that

Lemma 4. For any T > 0, as N → ∞,

sup
0≤t≤T

|ZN,x
t −ZN,x

t− | → 0 in probability.

If we admit for a moment this Lemma, it follows from the martingale representation
Theorem 19 that there exists a standard Brownian motion {Bt , t ≥ 0} such that

Zx
t = x+ γ

∫ t

0
Zx

s ds+σ
∫ t

0

√
Zx

s dBs, t ≥ 0.

It follows from Corollary 1 below that this SDE has a unique solution, hence the
limiting law of {Zx

t , t ≥ 0} is uniquely characterized, and the whole sequence {ZN,x}
converges to Zx as N → ∞. �
PROOF OF LEMMA 4 For any ε ′ < ε , provided N is large enough,

P

(
sup

0≤t≤T
|ZN,x

t −ZN,x
t− |> ε

)
≤ P

(
sup

i≤NT
|M̃N

i − M̃N
i−1|> ε ′

)

Now define

M̃N,K
k =

1
N

k−1

∑
i=0

NZN,K
iΔ t

∑
j=1

[
ξ N,i

j −
(

1+
γN

N

)]
,
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where ZN,K
iΔ t = ZN

iΔ t ∧K. It follows from Lemma 3 that for all T > 0,

lim
K→∞

P(M̃N,K
k = M̃N

k for all k ≤ NT, all N ≥ 1) = 1.

It thus suffices to show that for each fixed K > 0, ε > 0,

P

(
sup

i<NT

∣∣M̃N,K
i+1 − M̃N,K

i

∣∣> ε
)
→ 0,

as N → ∞. But

|M̃N,K
i+1 − M̃N,K

i | ≤
√

K
N
|UN

i |, where UN
i =

1√
NZN,K

iΔ t

NZN,K
iΔ t

∑
j=1

ξ̄ N,i
j ,

with ξ̄ N,i
j = ξ N,i

j − (1+ γN/N). We have with εK = ε/
√

K,

P

(
sup

i≤NT
|M̃N,K

i − M̃N,K
i−1 |> ε

)
≤ P

(
⋃

i<NT

{
|UN

i |> εK

√
N
})

= 1−P

(
⋂

i<NT

{
|UN

i | ≤ εK

√
N
})

It is plain that

P

(
|UN

i | ≤ εK

√
N
∣∣∣ G N

i

)
= 1−P

(
|UN

i |> εK

√
N
∣∣∣ G N

i

)

≥ 1− CN,K

ε2
KN

,

where

CN,K = sup
0<z≤K

E

⎛
⎝ 1
[Nz]

∣∣∣∣∣
[Nz]

∑
j=1

ξ̄ N,i
j

∣∣∣∣∣
2

;
1√
[Nz]

∣∣∣∣∣
[Nz]

∑
j=1

ξ̄ N,i
j

∣∣∣∣∣> εK

√
N

⎞
⎠ .

Conditioning first upon G N
[NT ], then upon G N

[NT ]−1, etc., and using repeatedly the last

computations, we deduce that, provided 2ε2
KCN,K ≤ N,

P

(
sup

i<NT
|M̃N,K

i+1 − M̃N,K
i |> ε

)
≤ 1−

(
1− CN,K

ε2
KN

)[NT ]

≤ 1− exp(−(2log2)ε−2
K CN,KT ).

It remains to show that for each K > 0, CN,K → 0, as N → ∞. This follows readily
from the fact that our assumption (3.2) allows us to deduce from Lindeberg’s theo-
rem that if XN := 1√

N ∑N
j=1 ξ̄ N,i

j , XN ⇒ X as N → ∞, where X is a centered normal



18 3 Convergence to a Continuous State Branching Process

r.v. with variance 2. But we also have that E[X2
N ]→ E[X2], hence the collection of

r.v.’s {X2
N , N ≥ 1} is uniformly integrable, from which we deduce that CN,K → 0,

as N → ∞. �

3.2 The Individuals with an Infinite Line of Descent

Consider again the collection indexed by N of BGW processes {XN,x
n } introduced at

the beginning of the previous section, but this time with γN = γ > 0, σN = σ , for all
N ≥ 1. For each t ≥ 0, let Y N

t denote the individuals in the population XN,x
[Nt] with an

infinite line of descent. Let us describe the law of Y N
0 . Each of the [Nx] individuals

living at time t = 0 has the probability 1− qN of having an infinite line of descent,
if qN is the probability of extinction for a population with a unique ancestor at the
generation 0. It then follows from the branching property that the law of Y N

0 is
the binomial law B([Nx],1− qN). It remains to evaluate qN , the unique solution in
the interval (0,1) of the equation fN(x) = x. Note that

f ′′N(1) = E[ξN(ξN −1)] = σ2 +
γ
N
+
( γ

N

)2
.

We deduce from a Taylor expansion of f near x = 1 that

1−qN =
2γ

σ2N
+◦

(
1
N

)
.

Consequently

Proposition 5. In the above model, the number Y N
0 of individuals at time 0 with an

infinite line of descent converges in law, as N → ∞, towards Poi(2xγ/σ2).

3.3 Convergence of Continuous Time Branching Processes

Consider a continuous time Z+-valued branching process XN,x
t , with initial condi-

tion XN,x
0 = [Nx] and reproduction measure μN such that μN(N) = N,

N−1 ∑
k≥0

kμN(k) = 1+
γN

N
, Var(N−1μN) = σ2

N ,

with γN → γ and σN → σ , as N → ∞. We define ZN,x
t = N−1XN,x

t .
{P(t), t ≥ 0} being a standard Poisson process, let

QN
t = P

(
N2

∫ t

0
ZN,x

s ds

)
.
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It is fair to decide that QN
t is the number of birth events which have happened

between time 0 and time t, since N2ZN,x
t = NXN,x

t is the rate at which birth events
occur. Now

ZN,x
t =

[Nx]
N

+N−1
QN

t

∑
n=1

(ξ N
n −1),

where ξ N
n denotes the number of offsprings at the n-th birth event. Those constitute

an i.i.d. sequence with the common law N−1μN , which is globally independent of
the Poisson process P(t). We have

ZN,x
t =

[Nx]
N

+
γN

N2 QN
t +N−1

QN
t

∑
n=1

(ξ N
n −Eξ N

n )

=
[Nx]

N
+ γN

∫ t

0
ZN,x

s ds+ γN

[
N−2QN

t −
∫ t

0
ZN,x

s ds

]

+N−1
QN

t

∑
n=1

(ξ N
n −Eξ N

n )

=
[Nx]

N
+ γN

∫ t

0
ZN,x

s ds+ εN(t)+MN
t , (3.6)

where εN(t)→ 0 and MN
t are martingales, and their quadratic variations satisfy

[MN ]t = N−2
QN

t

∑
n=1

(ξ N
n −Eξ N

n )2,

〈MN〉t = σ2
N

∫ t

0
ZN,x

s ds, (3.7)

hence

E〈MN〉t = σ2
N

∫ t

0
E[ZN,x

s ]ds, (3.8)

while

E〈εN〉t = N−2γ2
N

∫ t

0
E[ZN,x

s ]ds. (3.9)

From (3.6),
E[ZN,x

t ]≤ xeγNt .

And from this, (3.6), (3.8), and (3.9), we deduce that for all T > 0,

sup
N≥1

E

(
sup

0≤t≤T
ZN,x

t

)
< ∞.

It is plain that εN(t) → 0 in probability locally uniformly in t. It follows from
these last statements, (3.6) and (3.7), Propositions 37 and 38 that the sequence
{ZN,x

t , t ≥ 0} is tight in D([0,+∞)), and moreover that any limit of a converging
subsequence is a solution of the SDE (3.4). In other words we have the
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Proposition 6. ZN,x ⇒ Zx as N → ∞ for the topology of locally uniform conver-
gence, where Zx is the unique solution of the following Feller SDE

Zx
t = x+ γ

∫ t

0
Zx

r dr+σ
∫ t

0

√
Zx

r dBr, t ≥ 0.

3.4 Convergence of Continuous Time Binary
Branching Processes

We now restrict ourselves to continuous time binary branching processes.
We refer to subsection 2.2.2, and consider for each N ≥ 1 a continuous time
Z+-valued Markov birth and death process XN,x

t with birth rate bN = σ2N/2+α
and death rate dN = σ2N/2+β , where α,β ≥ 0, and initial condition XN,x

0 = [Nx].
We define ZN,x

t = N−1XN,x
t . It is not hard to see that there exist two mutually

independent standard (i.e., rate 1) Poisson processes Pb(t) and Pd(t), such that

ZN,x
t =

[Nx]
N

+N−1Pb

((
σ2

2
N +α

)∫ t

0
NZN,x

s ds

)

−N−1Pd

((
σ2

2
N +β

)∫ t

0
NZN,x

s ds

)
.

Define the two martingales Mb(t) = Pb(t)− t and Md(t) = Pd(t)− t. We have

ZN,x
t =

[Nx]
N

+(α −β )
∫ t

0
ZN,x

s ds+MN(t), where

MN(t) = N−1
[

Mb

((
σ2

2
N +α

)∫ t

0
NZN,x

s ds

)
−Md

((
σ2

2
N +β

)∫ t

0
NZN,x

s ds

)]
.

Consequently its quadratic variation is given as

[MN ]t = N−2
[

Pb

((
σ2

2
N +α

)∫ t

0
NZN,x

s ds

)
+Pd

((
σ2

2
N +β

)∫ t

0
NZN,x

s ds

)]
,

〈MN〉t =

(
σ2 +

α +β
N

)∫ t

0
ZN,x

s ds.

It is plain that E(ZN,x
t ) ≤ xexp((α − β )t), and moreover that for any T > 0,

supN≥1E

(
sup0≤t≤T ZN,x

t

)
< ∞. We deduce from the above arguments

Proposition 7. ZN,x ⇒ Zx as N → ∞ for the topology of locally uniform conver-
gence, where Zx is the unique solution of the following Feller SDE

Zx
t = x+ γ

∫ t

0
Zx

r dr+σ
∫ t

0

√
Zx

r dBr, t ≥ 0,

where γ = α −β .
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3.5 Convergence to an ODE

It can be noted that the conditions for convergence towards a Feller diffusion are
rather rigid. In the last case which we considered, we need order (N) intensities for
both Poisson processes, with a difference in the intensities which is allowed to be of
order 1 only. Consider again the case of a continuous time binary branching process
as in the previous section, but this time we assume that the birth rate is constant
equal to α , and the death rate is constant equal to β . Assume again that XN,x

0 = [Nx],
and define as above ZN,x

t = N−1XN,x
t . Then

ZN,x
t =

[Nx]
N

+N−1Pb

(
αN

∫ t

0
ZN,x

s ds

)
−N−1Pd

(
βN

∫ t

0
ZN,x

s ds

)
.

With again Mb(t) = Pb(t)− t and Md(t) = Pd(t)− t,

ZN,x
t =

[Nx]
N

+(α −β )
∫ t

0
ZN,x

s ds+MN(t), where

MN(t) = N−1
[

Mb

(
αN

∫ t

0
ZN,x

s ds

)
−Md

(
βN

∫ t

0
ZN,x

s ds

)]
.

Now

[MN ]t = N−2
[

Pb

(
αN

∫ t

0
ZN,x

s ds

)
+Pd

(
βN

∫ t

0
ZN,x

s ds

)]
,

〈MN〉t =
α +β

N

∫ t

0
ZN,x

s ds.

We again have that E(ZN,x
t ) ≤ xexp((α − β )t), and moreover that for any T > 0,

supN≥1E

(
sup0≤t≤T ZN,x

t

)
< ∞. For any t > 0, E[(MN

t )
2]→ 0 as N → ∞. Hence we

have the following law of large numbers:

Proposition 8. As N → ∞, ZN,x
t converges in probability, locally uniformly in t,

towards the solution of the ODE

dZx
t

dt
= (α −β )Zx

t , Zx
0 = x.
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