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Abstract We start by proving an existence and uniqueness result for a new class
of variational inequalities which arise in the study of quasistatic models of contact.
The novelty lies in the special structure of these inequalities which involve history-
dependent operators. The proof is based on arguments of monotonicity, convexity
and fixed point. Then, we consider a mathematical model which describes the fric-
tional contact between an elastic-viscoplastic body and a moving foundation. The
mechanical process is assumed to be quasistatic, and the contact is modeled with
a multivalued normal compliance condition with unilateral constraint and memory
term, associated to a sliding version of Coulomb’s law of dry friction. We prove that
the model casts in the abstract setting of variational inequalities, with a convenient
choice of spaces and operators. Further, we apply our abstract result to prove the
unique weak solvability of the contact model.

1 Introduction

Contact phenomena involving deformable bodies abound in industry and everyday
life. They lead to nonsmooth and nonlinear mathematical problems. Their analysis,
including existence and uniqueness results, was carried out in a large number of
works, see for instance [3, 4, 6, 9, 16, 17] and the references therein. The numer-
ical analysis of the problems, including error estimation for discrete schemes and
numerical simulations, can be found in [10, 11, 13, 14, 22]. The state of the art in
the field, including applications in engineering, could be found in the recent special
issue [15].

The study of both the qualitative and numerical analysis of various mathematical
models of contact is made by using various mathematical tools, including the theory
of variational inequalities. At the heart of this theory is the intrinsic inclusion of
free boundaries in an elegant mathematical formulation. Existence and uniqueness
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results in the study of variational inequalities can be found in [1, 2, 12, 16, 20], for
instance. References concerning their numerical analysis of include [5, 11, 13].

The large variety of frictional or frictionless models of quasistatic contact led to
different classes of time-dependent or evolutionary variational inequalities which, on
occasion, have been studied in an abstract framework. Examples could be found in
[7, 8, 19, 20]. Nevertheless, it was recently recognized that some models of contact
lead to weak formulations expressed in terms of variational inequalities which are
more general than those studied in the above-mentioned papers. Therefore, in order
to prove the unique solvability of these models, there is a need to extend these results
to a more general classes of inequalities.

The first aim of the present paper is to provide such extension. Thus, we provide
here an abstract existence and uniqueness result in the study of a new class of history-
dependent variational inequalities. Our second aim is to illustrate how this result is
useful in the analysis of a new model of contact with viscoplastic materials.

The rest of the paper is structured as follows. In Sect. 2,we introduce somenotation
and preliminary material. Then, we state and prove our main abstract result, Theo-
rem 2. In Sect. 3 and we describe the frictional contact problem, list the assumption
on the data, derive its variational formulation and state its unique weak solvabil-
ity, Theorem 3. The proof of Theorem 3, based on the abstract result provided by
Theorem 2, is presented in Sect. 4.

2 An Abstract Existence and Uniqueness Result

Everywhere in this paper, we use the notation N for the set of positive integers
andR+ will represent the set of nonnegative real numbers, i.e.R+ = [0,+∞). For a
normed space (X, ‖ · ‖X )we use the notationC(R+; X) for the space of continuously
functions defined onR+ with values in X . For a subset K ⊂ X we still use the symbol
C(R+; K ) for the set of continuous functions defined on R+ with values on K . The
following result, obtained in [18], will be used twice in this paper.

Theorem 1 Let (X, ‖ · ‖X ) be a real Banach space and let Λ : C(R+; X) →
C(R+; X) be a nonlinear operator. Assume that for all n ∈ N there exist two con-
stants cn ≥ 0 and dn ∈ [0, 1) such that

‖Λu(t) − Λv(t)‖X ≤ cn

t∫

0

‖u(s) − v(s)‖X ds + dn ‖u(t) − v(t)‖X

for all u, v ∈ C(R+; X) and all t ∈ [0, n]. Then the operator Λ has a unique fixed
point η∗ ∈ C(R+; X).

The proof of Theorem 1 was carried out in several steps, based on the fact that
the space C(R+; X) can be organized as a Fréchet space with a convenient distance
function.
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We assume in what follows that X is real Hilbert space and Y is a real normed
space. Let K be a subset of X , A : K ⊂ X → X andS : C(R+; X) → C(R+; Y ).
Moreover, let j : Y × X × K → R and f : R+ → X . We consider the following
assumptions.

K is a closed, convex, nonempty subset of X. (1)⎧⎪⎪⎨
⎪⎪⎩

(a) There exists L > 0 such that
‖Au1 − Au2‖X ≤ L‖u1 − u2‖Y ∀ u1, u2 ∈ K .

(b) There exists m > 0 such that
(Au1 − Au2, u1 − u2)X ≥ m‖u1 − u2‖2X ∀ u1 , u2 ∈ K .

(2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) For all y ∈ Y and u ∈ X, j (y, u, ·) is convex and l.s.c on K .

(b) There exists α > 0 and β > 0 such that
j (y1, u1, v2) − j (y1, u1, v1) + j (y2, u2, v1) − j (y2, u2, v2)

≤ α‖y1 − y2‖Y ‖v1 − v2‖X + β ‖u1 − u2‖X ‖v1 − v2‖X

∀ y1, y2 ∈ Y, ∀ u1, u2 ∈ X, ∀ v1, v2 ∈ K .

(3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

For all n ∈ N there exists sn > 0 such that

‖S u1(t) − S u2(t)‖Y ≤ sn

t∫

0

‖u1(s) − u2(s)‖X ds

∀ u1, u2 ∈ C(R+; X), ∀ t ∈ [0, n].

(4)

f ∈ C(R+; X). (5)

Concerning these assumptions we have the following comments. First, assumption
(2) show that A is a Lipschitz continuous strongly monotone operator on K . Next,
in (3) we use the abbreviation l.s.c. for a lower semicontinuous function. Finally,
following the terminology introduced in [19] and used in various papers, condition
(4) show that the operator S is a history-dependent operator. Example of opera-
tors which satisfies this condition could be find in [19, 20]. Variational inequalities
involving history-dependent operators are also called history-dependent variational
inequalities. In their study we have the following existence and uniqueness result.

Theorem 2 Assume that (1)–(5) hold. Moreover, assume that

m > β, (6)

where m and β are the constants in (2) and (3), respectively. Then, there exists a
unique function u ∈ C(R+; K ) such that, for all t ∈ R+, the following inequality
holds:

u(t) ∈ K , (Au(t), v − u(t))X + j (S u(t), u(t), v) (7)

− j (S u(t), u(t), u(t)) ≥ ( f (t), v − u(t))X ∀ v ∈ K .
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Proof The proof of Theorem 2 is based on argument similar to those presented in
[19] and, for this reason, we skip the details. The main step in the proof are the
followings.

(i) Let η ∈ C(R+; X) be fixed and denote by yη ∈ C(R+; Y ) the function given by

yη(t) = S η(t) ∀ t ∈ R+. (8)

In the first step we use standard arguments on time-dependent elliptic variational
inequalities to prove that there exists a unique function uη ∈ C(R+; K ) such that,
for all t ∈ R+, the following inequality holds:

uη(t) ∈ K , (Auη(t), v − uη(t))X + j (yη(t), η(t), v) (9)

− j (zη(t), η(t), uη(t)) ≥ ( f (t), v − uη(t))X ∀ v ∈ K .

(ii)Next, in the second step,weconsider the operatorΛ : C(R+; X) → C(R+; K )

⊂ C(R+; X) defined by equality

Λη = uη ∀ η ∈ C(R+; X) (10)

and we prove that it has a unique fixed point η∗ ∈ C(R+; K ). Indeed, let η1, η2 ∈
C(R+; X), and let yi , be the functions defined by (8) for η = ηi , i.e. yi = yηi , for
i = 1, 2. Also, denote by ui the solution of the variational inequality (9) for η = ηi ,
i.e. ui = uηi , i = 1, 2. Let n ∈ N and t ∈ [0, n]. Then, using (9), (2) and (3) is easy
to see that

m ‖u1(t) − u2(t)‖X ≤ α ‖y1(t) − y2(t)‖Y + β ‖η1(t) − η2(t)‖X . (11)

Moreover, by the assumptions (4) on the operator S one has

‖y1(t) − y2(t)‖Y = ‖S η1(t) − S η2(t)‖Y ≤ sn

t∫

0

‖η1(s) − η2(s)‖X ds. (12)

Thus, using (10)–(12) yields

‖Λη1(t) − Λη2(t)‖X = ‖u1(t) − u2(t)‖X

≤ αsn

m

t∫

0

‖η1(s) − η2(s)‖X ds + β

m
‖η1(t) − η2(t)‖X

which, together with the smallness assumption (6) and Theorem 1, implies that the
operator Λ has a unique fixed point η∗ ∈ C(R+; X) . Moreover, since Λ has values
on C(R+; K ), we deduce that η∗ ∈ C(R+; K ).
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(iii) Let η∗ ∈ C(R+; K ) be the fixed point of the operator Λ. It follows from (8)
and (10) that

yη∗(t) = S η∗(t), uη∗(t) = η∗(t). (13)

for all t ∈ R+. Now, letting η = η∗ in the inequality (9) and using (13) we conclude
that η∗ ∈ C(R+; K ) is a solution to the variational inequality (7). This proves the
existence part in Theorem 2.

(iv) The uniqueness part is a consequence of the uniqueness of the fixed point of
the operatorΛ and can be proved as follows. Denote by η∗ ∈ C(R+; K ) the solution
of the variational inequality (7) obtained above, and let η ∈ C(R+; K ) be a different
solution of this inequality, which implies that

(Aη(t), v − η(t))X + j (S η(t), η(t), v) (14)

− j (S η(t), η(t), η(t)) ≥ ( f (t), v − η(t))X ∀ v ∈ K , t ∈ R+.

Letting yη = S η ∈ C(R+; Y ), inequality (14) implies that η is solution to the vari-
ational inequality (9). On the other hand, by step (i) this inequality has a unique
solution uη and, therefore,

η = uη. (15)

This shows that Λη = η where Λ is the operator defined by (10). Therefore, by Step
(i) it follows that η = η∗, which concludes proof.

3 The Contact Model and Main Result

We turn now to an application of Theorem 2 in Contact Mechanics and, to this end,
we start by presenting some notations and preliminaries. Let Ω a regular domain of
R

d (d = 2, 3) with surface Γ that is partitioned into three disjoint measurable parts
Γ1, Γ2 and Γ3, such that meas (Γ1) > 0 and, in addition, Γ3 is plane. We use the
notation x = (xi ) for a typical point in Ω and ν = (νi ) for the outward unit normal
at Γ . In order to simplify the notation, we do not indicate explicitly the dependence
of various functions on the spatial variable x. Let Rd be d-dimensional real linear
space and the let Sd denote the space of second order symmetric tensors on R

d

or, equivalently, the space of symmetric matrices of order d. The canonical inner
products and the corresponding norms on R

d and S
d are given by

u · v = uivi , ‖v‖ = (v · v)1/2 ∀ u = (ui ), v = (vi ) ∈ R
d ,

σ · τ = σi jτi j , ‖τ‖ = (τ · τ )1/2 ∀ σ = (σi j ), τ = (τi j ) ∈ S
d ,

respectively. Here and below the indices i , j , k, l run between 1 and d and, unless
stated otherwise, the summation convention over repeated indices is used.
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We use standard notation for the Lebesgue and the Sobolev spaces associated to
Ω and Γ . Also, we introduce the spaces

V = { v = (vi ) ∈ H 1(Ω)d : v = 0 a.e. on Γ1 },
Q = { τ = (τi j ) ∈ L2(Ω)d×d : τi j = τ j i },
Q1 = { τ = (τi j ) ∈ Q : Divτ ∈ L2(Ω)d }.

Here and below Divτ = (τi j, j ) denotes the divergence of the field τ , where the index
that follows a coma indicates a partial derivative with the corresponding component
of the spatial variable x, i.e. τi j, j = ∂τi j/∂x j . The spaces Q and Q1 are real Hilbert
spaces with the canonical inner products given by

(σ , τ )Q =
∫

Ω

σ · τ dx ∀ σ , τ ∈ Q,

(σ , τ )Q1 =
∫

Ω

σ · τ dx +
∫

Ω

Divσ · Divτ dx ∀ σ , τ ∈ Q1.

In addition, since meas (Γ1) > 0, it is well known that V is a real Hilbert space with
the inner product

(u, v)V =
∫

Ω

ε(u) · ε(v) dx ∀ u, v ∈ V

where ε is the deformation operator, i.e. ε(u) = εi j (u), εi j (u) = 1
2 (ui, j + u j,i ),

ui, j = ∂ui/∂x j . The associated norms on the spaces V , Q and Q1 will be denoted
by ‖ · ‖V , ‖ · ‖Q and ‖ · ‖Q1 , respectively.

For all v ∈ V we still write v for the trace of v to Γ . We recall that, by the Sobolev
trace theorem, there exists a positive constant c0 which depends on Ω , Γ1 and Γ3

such that
‖v‖L2(Γ3)d ≤ c0 ‖v‖V ∀ v ∈ V . (16)

For v ∈ V we denote by vν and vτ the normal and tangential components of v
on Γ , in the sense of traces, given by vν = v · ν, vτ = v − vνν. Moreover, for
σ ∈ Q1 we denote by σν ∈ H− 1

2 (Γ ) its normal component, in the sense of traces.
Let R : H− 1

2 (Γ ) → L2(Γ ) be a linear continuous operator. Then, there exists a
positive constant cR > 0 which depends on R, Ω and Γ3 such that

‖Rσν‖L2(Γ3) ≤ cR ‖σ‖Q1 ∀ σ ∈ Q1. (17)

Next, we recall that if σ is a regular function, then its normal and tangential com-
ponents of the stress field σ on the boundary are defined by σν = (σν) · ν, σ τ =
σν − σνν and the following Green’s formula holds:



Variational Analysis of a Quasistatic Contact Problem 251

∫

Ω

σ · ε(v) dx +
∫

Ω

Divσ · v dx =
∫

Γ

σν · v da ∀ v ∈ V . (18)

With these notation, we formulate the following problem.
Problem P . Find a displacement field u = (ui ) : Ω × R+ → R

d and a stress
field σ = (σi j ) : Ω × R+ → S

d such that

σ̇ (t) = E ε(u̇(t)) + G (σ (t), ε(u(t)) in Ω, (19)

Divσ (t) + f0 = 0 in Ω, (20)

u(t) = 0 on Γ1, (21)

σ (t)ν = f2(t) on Γ2, (22)

−σ τ (t) = μ|Rσν(t)| n∗ on Γ3, (23)

for all t ∈ R+, there exists ξ : Γ3 × R+ → R which satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uν(t) ≤ g, σν(t) + p(uν(t)) + ξ(t) ≤ 0,
(uν(t) − g)

(
σν(t) + p(uν(t)) + ξ(t)

) = 0,

0 ≤ ξ(t) ≤ F
( t∫

0

u+
ν (s) ds

)
,

ξ(t) = 0 if uν(t) < 0,

ξ(t) = F
( t∫

0

u+
ν (s) ds

)
if uν(t) > 0

on Γ3, (24)

for all t ∈ R+ and, moreover,

u(0) = u0, σ (0) = σ 0 in Ω. (25)

Problem P represents a mathematical model which describes the quasistatic
process of contact between a viscoplastic body and a moving foundation. Here Ω

represents the reference configuration of a the body and the dot above denotes the
derivative with respect the time variable, i.e. ḟ = ∂ f

∂t . Equation (19) represents the
viscoplastic constitutive law. Details and various mechanical interpretation concern-
ing such kind of laws can be found in [9, 20], for instance. Equation (20) represents
the equation of equilibrium in which f0 denotes the density of body forces, assumed
to be time-independent. We use this equation since the process is quasistatic and,
therefore, the inertial term in the equation of motion is neglected. Conditions (21)
and (22) are the displacement and the traction boundary condition, respectively. They
describe the fact that the body is fixed on Γ1 and prescribed traction of density f2 act
on Γ2, during the contact process.
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Conditions (23) and (24) represent a sliding version of Coulomb’s law of dry
friction and a normal compliance contact condition with unilateral constraint and
memory term, respectively. Their are obtained from arguments presented in our
recent paper [21] and, for this reason, we do not describe them with details. We just
mention that μ denotes the coefficient of friction, n∗ denotes a given unitary vector
in the plane on Γ3 and v∗ < 0 is given. In addition, p and F are given function
which describe the deformability and the memory effects of the foundation, g > 0
is a given depth and r+ represent the positive part of r , i.e. r+ = max {r, 0}. Finally,
conditions (25) represent the initial conditions for the displacement and the stress
field, respectively.

In the study of Problem P we assume that the elasticity operator E and the
nonlinear constitutive function G satisfy the following conditions.

⎧⎪⎪⎨
⎪⎪⎩

(a) E = (Ei jkl) : Ω × S
d → S

d .

(b) Ei jkl = Ekli j = E j ikl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.

(c) There exists mE > 0 such that
E τ · τ ≥ mE ‖τ‖2 for all τ ∈ S

d , a.e. in Ω.

(26)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) G : Ω × S
d × S

d → S
d .

(b) There exists LG > 0 such that
‖G (x, σ 1, ε1) − G (x, σ 2, ε2)‖ ≤ LG (‖σ 1 − σ 2‖ + ‖ε1 − ε2‖)

for all σ 1, σ 2, ε1, ε2 ∈ S
d , a.e. x ∈ Ω.

(c) The mapping x �→ G (x, σ , ε is measurable on Ω,

for all σ , ε ∈ S
d .

(d) The mapping x �→ G (x, 0, 0) belongs to Q.

(27)

The densities of body forces and surface traction are such that

f0 ∈ L2(Ω)d , f2 ∈ C(R+; L2(Γ2)
d). (28)

The normal compliance function p and the surface yield function F satisfy

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a) p : Γ3 × R → R+.

(b) There exists L p > 0 such that
|p(x, r1) − p(x, r2)| ≤ L p |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) (p(x, r1) − p(x, r2))(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(d) The mapping x �→ p(x, r) is measurable on Γ3, for any r ∈ R.

(e) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(29)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) F : Γ3 × R → R+.

(b) There exists L F > 0 such that
|F(x, r1) − F(x, r2)| ≤ L F |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) The mapping x �→ F(x, r) is measurable on Γ3, for any r ∈ R.

(d) F(x, 0) = 0 a.e. x ∈ Γ3.

(30)
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Also, the the coefficient of friction verifies

μ ∈ L∞(Γ3), μ(t, x) ≥ 0 a.e. x ∈ Γ3, (31)

and the initial data are such that

u0 ∈ V, σ 0 ∈ Q. (32)

In what follows we consider the set of admissible displacements fields and the set
of admissible stress fields defined by

U = { v ∈ V : vν ≤ g on Γ3 }, (33)

Σ = { τ ∈ Q : Divτ + f0 = 0 in Ω }. (34)

respectively. Note that assumptions g > 0 and f0 ∈ L2(Ω)d imply that U and Σ are
closed, convex nonempty subsets of the spaces V and Q, respectively.

Assume inwhat follows that (u, σ ) are sufficiently regular functions which satisfy
(19)–(24) and let v ∈ U and t > 0 be given. First, we use the equilibrium equation
(20) and the contact condition (23) to see that

u(t) ∈ U, σ (t) ∈ Σ. (35)

Then, we use Green’s formula (18), the equilibrium equation (20) and the friction
law (23) to obtain that

∫

Ω

σ (t) · (ε(v) − ε(u(t))) dx (36)

=
∫

Ω

f0 · (v − u(t)) dx +
∫

Γ2

f2(t) · (v − u(t)) da

+
∫

Γ3

σν(t)(vν − uν(t)) da −
∫

Γ3

μ|Rσν(t)| n∗ · (vτ − uτ (t)) da.

We now use the contact conditions (24) and the definition (33) of the set U to see
that

σν(t)(vν − uν(t)) ≥ −(p(uν(t)) + ξ(t))(vν − uν(t)) on Γ3. (37)

Next, we use (24), again, and the hypothesis (30)(a) on function F to deduce that

F

⎛
⎝

t∫

0

u+
ν (s)ds

⎞
⎠ (v+

ν − u+
ν (t)) ≥ ξ(t)(vν − uν(t)) on Γ3. (38)
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We now add the inequalities (37) and (38) and integrate the result on Γ3 to find that

∫

Γ3

σν(t)(vν − uν(t)) da ≥ −
∫

Γ3

p(uν(t))(vν − uν(t)) da (39)

−
∫

Γ3

F

⎛
⎝

t∫

0

u+
ν (s)ds

⎞
⎠ (v+

ν − u+
ν (t)) da.

Finally, we combine (36) and (39) to deduce that

∫

Ω

σ (t) · (ε(v) − ε(u(t))) dx +
∫

Γ3

p(uν(t))(vν − uν(t)) da (40)

+
∫

Γ3

F

⎛
⎝

t∫

0

u+
ν (s)ds

⎞
⎠ (v+

ν − u+
ν (t)) da +

∫

Γ3

μ|Rσ ν(t)|n∗ · (vτ − uτ (t)) da

≥
∫

Ω

f0 · (v − u(t)) dx +
∫

Γ2

f2(t).(v − u(t)) da.

We now integrate the the constitutive law (19) with the initial conditions (25),
then we gather the resulting equation with the regularity (35) and inequality (40) to
obtain the following variational formulation of Problem P .

ProblemPV .Find a displacement field u : R+ → U and a stress field σ : R+ →
Σ such that

σ (t) = E ε(u(t)) +
t∫

0

G (σ (s), ε(u(s)) ds + σ 0 − E ε(u0), (41)

∫

Ω

σ (t) · (ε(v) − ε(u(t))) dx +
∫

Γ3

p(uν(t))(vν − uν(t)) da (42)

+
∫

Γ3

F

⎛
⎝

t∫

0

u+
ν (s)ds

⎞
⎠ (v+

ν − u+
ν (t)) da +

∫

Γ3

μ|Rσ ν(t)|n∗ · (vτ − uτ (t)) da

≥
∫

Ω

f0 · (v − u(t)) dx +
∫

Γ2

f2(t).(v − u(t)) da

for all t ∈ R+.
Our main existence and uniqueness result in the study of the ProblemP , that we

state here and prove in the next section is the following.
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Theorem 3 Assume that (26)–(32) hold. Then there exists a positive constant μ0

which depends only on Ω , Γ1, Γ3, R and E such that Problem PV has a unique
solution, if

‖μ‖L∞(Γ3) < μ0. (43)

Moreover, the solution satisfies u ∈ C(R+; U ), σ ∈ C(R+;Σ).

Note that Theorem 3 provides the unique weak solvability of Problem P , under
the smallness assumption (43) on the coefficient of friction.

4 Proof of Theorem 3

The proof of the theorem will be carried out in several steps. To present it we assume
inwhat follows that (26)–(32) hold.We start with the following existence and unique-
ness result.

Lemma 4 For each function u ∈ C(R+; V ) there exists a unique function Θu ∈
C(R+; Q) such that

Θu(t) =
t∫

0

G (Θu(s) + E ε(u(s)), ε(u(s))) ds + σ 0 − E ε(u0) ∀ t ∈ R+. (44)

Moreover, the operator Θ : C(R+; V ) → C(R+; Q) is history-dependent, i.e. for
all n ∈ N there exists θn > 0 such that

‖Θu1(t) − Θu2(t)‖Q ≤ θn

t∫

0

‖u1(s) − u2(s)‖V ds (45)

∀ u1, u2 ∈ C(R+; V ), ∀ t ∈ [0, n].

Proof Let u ∈ C(R+; V ) and consider the operator Λ : C(R+; Q) → C(R+; Q)

defined by

Λτ (t) =
t∫

0

G (τ (s) + E ε(u(s)), ε(u(s)))ds + σ 0 − E ε(u0) (46)

∀ τ ∈ C(R+; Q), t ∈ R+.

The operator Λ depends on u but, for the sake of simplicity, we do not indicate
it explicitly. Let τ 1, τ 2 ∈ C(R+; Q) and let t ∈ R+. Then, using (46) and (27) we
have
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‖Λτ 1(t) − Λτ 2(t)‖Q ≤ LG

t∫

0

‖τ 1(s) − τ 2(s)‖Q ds.

This inequality combined with Theorem 1 shows that the operatorΛ has a unique
fixed point in C(R+; Q). We denote by Θu the fixed point of Λ and we combine
(46) with the equality Λ(Θu) = Θu to see that (44) holds.

To proceed, let n ∈ N, t ∈ [0, n] and let u1, u2 ∈ C(R+; V ). Then, using (44) and
taking into account (27), (26) we write

‖Θu1(t) − Θu2(t)‖Q

= L0

( t∫

0

‖Θu1(s) − Θu2(s)‖Q ds +
t∫

0

‖u1(s) − u2(s)‖V ds
)
,

where L0 is a positive constant which depends on G and E . Using now a Gronwall
argument we deduce that

‖Θu1(t) − Θu2(t)‖Q ≤ L0 eL0n

t∫

0

‖u1(s) − u2(s)‖V ds.

This inequality shows that (45) holds with θn = L0 eL0n .

Next, we consider the operators A : V → V and R : V × Q → L2(Γ3) defined
by

(Au, v)V = (E ε(u), ε(v))Q +
∫

Γ3

p(uν)vν da ∀ u , v ∈ V, (47)

R(u, z) = |R(
PΣ(E ε(u) + z)

)
ν
| ∀ u ∈ V, z ∈ Q, (48)

where PΣ : Q → Σ represents the projection operator. Note that, since Σ ⊂ Q1,
the operator R is well defined. Denote Y = Q × L2(Γ3) × Q where, here and
below, X1 × . . . × Xm represents the product of the Hilbert spaces X1, . . . , Xm

(m = 2, 3), endowed with its canonical inner product. Besides the operator Θ :
C(R+; V ) → C(R+; Q) defined in Lemma 4, letΦ : C(R+; V ) → C(R+; L2(Γ3))

and S : C(R+; V ) → C(R+; Y ) be the operators given by

(Φv)(t) = F

⎛
⎝

t∫

0

v+
ν (s)ds

⎞
⎠ , (49)

S v(t) = (Θv(t),Φv(t),Θv(t)) (50)
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for all v ∈ C(R+; V ), t ∈ R+. Finally, let j : Y × V × V → R and f : R+ → V
denote the functions defined by

j (w, u, v) = (x, ε(v))Q + (y, v+
ν )L2(Γ3) + (μR(u, z)n∗, vτ )L2(Γ3)d (51)

∀ w = (x, y, z) ∈ Y, u, v ∈ V,

(f(t), v)V =
∫

Ω

f0 · v dx +
∫

Γ2

f2(t) · v da ∀ v ∈ V, t ∈ R+. (52)

We have the following equivalence result.

Lemma 5 Assume that u ∈ C(R+; U ) and σ ∈ C(R+;Σ). Then, the couple (u, σ )

is a solution of Problem PV if and only if

σ (t) = E ε(u(t)) + Θu(t), (53)

(Au(t), v − u(t))V + j (S u(t), u(t), v) (54)

− j (S u(t), u(t), u(t)) ≥ (f(t), v − u(t))V ∀ v ∈ U

for all t ∈ R+.

Proof Let (u, σ ) ∈ C(R+; U × Σ), be a solution of Problem PV and let t ∈ R+.
By (41) we have

σ (t) − E ε(u(t)) =
t∫

0

G (σ (s) − E ε(u(s)) + E ε(u(s)), ε(u(s))) ds + σ 0 − E ε(u0),

and, using the definition (44) of the operator Θ , we obtain (53). Moreover, we
substitute (41) in (42), then we use (49) and equality PΣσ (t) = σ (t). As a result, we
deduce that

∫

Ω

E ε(u(t)) · (ε(v) − ε(u(t))) dx +
∫

Ω

Θu(t) · (ε(v) − ε(u(t))) dx (55)

+
∫

Γ3

p(uν(t))(vν − uν(t)) da +
∫

Γ3

Φu(t) (v+
ν − u+

ν (t)) da

+
∫

Γ3

μ|R(
PΣ(E ε(u(t)) + Θu(t))

)
ν
| n∗ · (vτ − uτ (t)) da

≥
∫

Ω

f0 · (v − u(t)) dx +
∫

Γ2

f2(t) · (v − u(t)) da ∀ v ∈ U.
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Using now the definitions (47), (48) and (52) yields

(Au(t), v − u(t))V + (Θu(t) · (ε(v) − ε(u(t)))Q

+(Φu(t)) (v+
ν − u+

ν (t)))L2(Γ3) + (μR(u(t),Θ(u(t))n∗, vτ − uτ (t))L2(Γ3)d

≥ (f(t), v − u(t))V ∀ v ∈ U.

This inequality combinedwith the definitions (50) and (51) shows that the variational
inequality (54) holds.

Conversely, assume that (u, σ ) ∈ C(R+; U × Σ) is a couple of functions which
satisfies (53) and (54) and let t ∈ R+. Then, using the definitions (47), (48), (50)–
(52) it follows that (55) holds. Moreover, recall that the regularity σ ∈ C(R+;Σ)

implies that PΣσ (t) = σ (t) and, in addition, (53) yields σ (t) = E ε(u(t)) + Θu(t).
Substituting these equalities in (55) and using (49) we see that (42) holds. Finally,
to conclude, we note that (41) is a direct consequence of (53) and the definition of
the operator Θ in Lemma 5.

The interest in Lemma 5 arrises in the fact that it decouples the unknowns u and
σ in the system (41)–(42). The next step is to provide the unique solvability of the
variational inequality (54) in which the unknown is the displacement field. To this
end we need the following intermediate result on the operator R.

Lemma 6 There exists LR > 0 which depends only on Ω , Γ3 and R, such that

‖R(u1, z1) − R(u2, z2)‖L2(Γ3) ≤ LR

(‖u1 − u2‖V + ‖z1 − z2‖Q
)

(56)

∀ u1, u2 ∈ V, z1, z2 ∈ Q.

Proof Let u1, u2 ∈ V, z1, z2 ∈ Q. Then, by the definition (48) of the operator R
combined with inequality (17) we have

‖R(u1, z1) − R(u2, z2)‖L2(Γ3) (57)

≤ cR‖PΣ(E ε(u1) + z1) − PΣ(E ε(u2) + z2)‖Q1 .

On the other hand, the definition of the set Σ and the nonexpansivity of the operator
PΣ yields

‖PΣ(E ε(u1) + z1) − PΣ(E ε(u2) + z2)‖Q1 (58)

≤ ‖E ε(u1) − E ε(u2) + z1 − z2‖Q

We now combine inequalities (57) and (58) to see that

‖R(u1, z1) − R(u2, z2)‖L2(Γ3) ≤ cR
(‖E ε(u1) − E ε(u2) + z1 − z2‖Q

)
(59)

Lemma 6 is now a consequence of inequality (59) and assumption (26).
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We proceed with the following existence and uniqueness result.

Lemma 7 The variational inequality (54) has a unique solution with regularity
u ∈ C(R+, U ).

Proof It is straightforward to see that inequality (54) represents a variational inequal-
ity of the form (7) in which X = V , K = U and Y = Q × L2(Γ3) × Q. Therefore,
in order to prove its unique solvability, we check in what follows the assumptions of
Theorem 2.

First, we note that assumption (1) is obviously satisfied.Next, we use the definition
(47), assumptions (26), (29)(b) and inequality (16) to obtain that

‖Au − Av‖V ≤ (LE + c20L p)‖u − v‖V ∀ u, v ∈ V, (60)

where LE is a positive constant which depends on the elasticity operator E . On the
other hand, from (26)(c) and (29)(c) the we deduce that

(Au − Av, u − v)V ≥ mE ‖u − v‖2V . (61)

We conclude from above that the operator A satisfies condition (2) with L = LE +
c20L p and m = mE .

Let w = (x, y, z) ∈ Y and u ∈ V be fixed. Then, using the properties of the traces
it is easy to see that the function v �→ j (w, u, v) is convex and continuous and, there-
fore, it satisfies condition (3)(a). We now consider the elements w1 = (x1, y1, z1),
w2 = (x2, y2, z2) ∈ Y , u1, u2, v1, v2 ∈ V . Then, using inequality (56), assumption
(31) and inequality (16) we find that

j (w1, u1, v2) − j (w1, u1, v1) + j (w2, u2, v1) − j (w2, u2, v2)

≤ ‖x1 − x2‖Q‖v1 − v2‖V + c0‖y1 − y2‖L2(Γ3)‖v1 − v2‖V

+c0LR‖μ‖L∞(Γ3)

(‖u1 − u2‖V + ‖z1 − z2‖Q
) ‖v1 − v2‖V

≤ α ‖w1 − w2‖Z‖v1 − v2‖V + β ‖u1 − u2‖V ‖v1 − v2‖V

whereα = 2max {1, c0, c0LR‖μ‖L∞(Γ3) } andβ = c0LR‖μ‖L∞(Γ3). It follows from
here that j satisfies condition (3)(b). Let

μ0 = mE

c0LR
, (62)

which, clearly, depends only on Ω,Γ1, Γ3, R and E . Then, it is easy to see that if
the smallness assumption ‖μ‖L∞(Γ3) < μ0 is satisfied we have β < m and, therefore,
condition (6) holds.
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Next, let u, v ∈ C(R+; V ), n ∈ N and let t ∈ [0, n]. Then, using (49) and taking
into account (30)(b) and (16) we obtain that

‖Φu(t) − Φv(t)‖L2(Γ3) =
∥∥∥∥∥∥F

⎛
⎝

t∫

0

u+
ν (s)ds

⎞
⎠ − F

⎛
⎝

t∫

0

v+
ν (s)ds

⎞
⎠

∥∥∥∥∥∥
L2(Γ3)

≤ L F

∥∥∥∥∥∥
t∫

0

(u+
ν (s) − v+

ν (s))ds

∥∥∥∥∥∥
L2(Γ3)

≤ c0L F

t∫

0

‖u(s) − v(s)‖V ds.

Therefore, using this the definition (50) of the operator S and (45) we have

‖S u(t) − S v(t)‖Q×L2(Γ3)×Q ≤ (2 θn + c0L F )

t∫

0

‖u(s) − v(s)‖V ds.

It follows from here that the operator S satisfies condition (4). Finally, we note
that assumption (28) on the body forces and traction and definition (52) imply that
f ∈ C(R+; V ).

We conclude from above that all the assumptions of Theorem 2 are satisfied.
Therefore, we deduce that inequality (54) has a unique solution u ∈ C(R+; U )which
concludes the proof.

We now have all the ingredients to provide the proof of Theorem 3.

Proof (Proof of Theorem 3) Let u ∈ C(R+; U ) be the unique solution of inequality
(54) obtained in Lemma 7 and let σ the function defined by (53). Then, using assump-
tion (26) it follows that σ ∈ C(R+; Q). Let t ∈ R+ be given. Arguments similar to
those used in the proof of Lemma 7 show that

∫

Ω

σ (t) · (ε(v) − ε(u(t))) dx +
∫

Γ3

p(uν(t))(vν − uν(t)) da

+
∫

Γ3

F

⎛
⎝

t∫

0

u+
ν (s)ds

⎞
⎠ (v+

ν − u+
ν (t)) da

+
∫

Γ3

μ|R(PΣ(σ ν(t))| n∗ · (vτ − uτ (t)) da

≥
∫

Ω

f0 · (v − u(t)) dx +
∫

Γ2

f2(t) · (v − u(t)) da ∀ v ∈ U.



Variational Analysis of a Quasistatic Contact Problem 261

Let ϕ ∈ C∞
0 (Ω)d . We test in this inequality with v = u(t) ± ϕ to deduce that

∫

Ω

σ (t) · ε(ϕ) dx =
∫

Ω

f0 · ϕ dx

which implies that Divσ (t) + f0 = 0 in Ω . It follows from here that σ (t) ∈ Σ and,
moreover, σ ∈ C(R+;Σ).

We conclude from above that (u, σ ) represents a couple of functions which sat-
isfies (53)–(54) and, in addition, it has the regularity (u, σ ) ∈ C(R+; U × Σ). The
existence part in Theorem 3 is now a direct consequence of Lemma 5. The unique-
ness part follows from the uniqueness of the solution of the variational inequality
(54), guaranteed by Lemma 7.
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