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Abstract The main aim of this paper is to apply the polynomial wavelets for the
numerical solution of nonlinear Klein-Gordon equation. Polynomial scaling and
wavelet functions are rarely used in the contexts of numerical computation. A numer-
ical technique for the solution of nonlinear Klein-Gordon equation is presented. Our
approach consists of finite difference formula combinedwith the collocationmethod,
which uses the polynomial wavelets. Using the operational matrix of derivative, we
reduce the problem to a set of algebraic equations by expanding the approximate
solution in terms of polynomial wavelets with unknown coefficients. An estima-
tion of error bound for this method is investigated. Some illustrative examples are
included to demonstrate the validity and applicability of the approach.

1 Introduction

In this work, we are dealing with the numerical solutions of the following nonlinear
partial differential equation, namely a Nonlinear Klein-Gordon equation:

utt + αuxx + βu + γ uk = f (x, t), x ∈ Ω = [−1, 1], t ∈ (0, T ], (1)

subject to the initial conditions

{
u(x, 0) = g1(x), x ∈ Ω,

ut (x, 0) = g2(x), x ∈ Ω,
(2)
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and Dirichlet boundary condition

u(x, t) = h(x, t), x ∈ ∂Ω, t ∈ (0, T ], (3)

where α, β and γ are nonzero real constants and f is a known analytic function.
Nonlinear phenomenaoccur in awide variety of scientific applications such as plasma
physics, solid state physics, fluid dynamics and chemical kinetics [1]. The nonlinear
Klein-Gordon equation is one of the important models in quantum mechanics and
mathematical physics. The equation has received considerable attention in studying
solitons and condensed matter physics, in investigating the interaction of solitons in
collisionless plasma, the recurrence of initial states, and in examining the nonlinear
wave equations [2].

There are a lot of studies on the numerical solution of initial and initial-boundary
problems of the linear or nonlinear Klein-Gordon equation. For instance, Chowd-
hury and Hashim [3] employed the homotopy-perturbation method to obtain approx-
imate solutions of the Klein-Gordon and sine-Gordon equations. Four finite differ-
ence schemes for approximating the solution of nonlinear Klein-Gordon equation
were discussed in [4]. Deeba and Khuri [5] presented a decomposition scheme for
obtaining numerical solutions of the Eq. (1). In [6], a spline collocation approach
for the numerical solution of a generalized nonlinear Klein-Gordon equation was
investigated. Dehghan and Shokri [7] proposed a numerical scheme to solve the one-
dimensional nonlinear Klein-Gordon equation with quadratic and cubic nonlinearity
using the collocation points and approximating the solution by Thin Plate Splines
radial basis functions. Authors in [8] considered a numerical method based on the
cubic B-splines collocation technique on the uniform mesh points. Lakestani and
Dehghan [9] presented two numerical techniques. The first one is Mixed Finite Dif-
ference in time and Collocation Methods using cubic B-spline functions in space
(MFDCM) and the second one is fully Collocation Method (CM) which approxi-
mates the solution in both space and time variables using cubic B-spline functions.
A fully implicit and discrete energy conserving finite difference scheme for the solu-
tion of an initial-boundary value problem of the nonlinear Klein-Gordon equation
derived by Wong et al. [10]. A three-level spline-difference scheme to solve the one
dimensional Klein-Gordon equation which is based on using the finite difference
approximation for the time derivative and the spline approximation for the second-
order spatial derivative was derived by authors in [11]. Most recently, authors in [12]
proposed a spectral method using Legendre wavelets.

In this article we study the application of polynomial scaling functions and
wavelets for computation of numerical solution of nonlinear Klein-Gordon equa-
tion. A numerical technique based on the finite difference and Collocation methods
is presented. At the first stage, our method is based on the discretization of the time
variable by means of the Crank-Nicolson method and freezing the coefficients of the
resulting ordinary differential equation at each time step. At the second stage, we use
the Wavelet-Collocation method on the yield linear ordinary differential equations
at each time step resulting from the time semidiscretization. Considering this basis
being wavelet functions, our method is essentially a spectral method.
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Polynomial scaling andwavelet functions are rarely used in the contexts of numer-
ical computation [13]. One of the advantages of using polynomial scaling function as
expansion functions is the good representation of smooth functions by finite Cheby-
shev expansion. The Crank-Nicolson method is an unconditionally stable, implicit
numerical scheme with second-order accuracy in both time and space. Our approach
consists of reducing the Klein-Gordon equation to a set of algebraic equations by
expanding the approximate solution in terms of wavelet functions with unknown
coefficients. The operational matrix of derivative is presented. This matrix together
with the Collocation method are then utilized to evaluate the unknown coefficients
of the solution at each time step. Finally, the convergence analysis of the proposed
method for the Eq. (1) is developed.

The organization of this paper is as follows. In Sect. 2, we describe the polynomial
scaling and wavelet functions on [−1, 1] and some basic properties. In Sect. 3, the
proposed method is used to approximate the solution of the problem. As a result,
a set of algebraic equations is formed and a solution of the considered problem is
introduced at each time step. In Sect. 4, the error bounds of the method based on the
Crank-Nicolson and polynomial wavelets are presented. In Sect. 5, we discuss the
accuracy and efficiency of the employedmethod by applying to several test problems.
A brief conclusion is given at the end of the paper in Sect. 6.

2 Preliminary

In this section,we shall give abrief introductionof thepolynomialwavelets on [−1, 1]
and their basic properties [14]. Also the construction of the operational matrix of the
derivative and some approximation results [15] are presented.

2.1 Polynomial Wavelets

Suppose that Tn and Un be the following Chebyshev polynomials of the first and
second kind respectively,

Tn(x) = cos(n arccos(x)) and Un−1(x) = sin(n arccos(x))

sin(arccos(x))
,

here to introduce polynomial scaling function we need ω j which is defined as:

ω j (x) = (1 − x2)U2 j −1(x) = (1 − x2)

2 j
T ′
2 j (x), j = 0, 1, 2, . . . .

The zeros ofω j (x) are xk = cos( kπ
2 j ) for k = 0, 1, . . . , 2 j and it should be pointed

out that the zeros of ω j are also zeros of ω j+1.
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Let

ε j,l =
{

1
2 for l = 0 or l = 2 j

1 for l = 1, 2, . . . , 2 j − 1

for any j ∈ N0 = N ∪ {0}, the polynomial scaling functions are defined as:

φ j,l(x) = ω j (x)

2 j (−1)l+1(x − xl)
ε j,l , l = 0, 1, . . . , 2 j . (4)

Given j ∈ N0, the space of polynomial scaling functions on [−1, 1] is defined by
Vj = span{φ j,l : l = 0, 1, . . . , 2 j }.

It is easy to see that the spaces Vj = �2 j where �n denotes the set of all polyno-
mials of degree at most n. The interpolatory property of this functions which helps
to accelerate the computations is:

φ j,l(cos(
kπ

2 j
)) = δk,l , k, l = 0, 1, . . . , 2 j . (5)

The wavelet spaces are defined by W j = span{ψ j,l : l = 0, 1, . . . , 2 j − 1}, where

ψ j,l(x) = T2 j (x)

2 j (x − cos((2l + 1)π/2 j+1))

(
2ω j (x) − ω j

(
cos

(2l + 1)π

2 j+1

))
.

The same interpolating property holds with the zeros of ω j+1 as:

ψ j,l(cos(
(2k + 1)π

2 j+1
)) = δk,l , k, l = 0, 1, . . . , 2 j − 1.

We note that dimW j = 2 j and dimVj = 2 j+1, also for all j ∈ N0 we have Vj+1 =
Vj ⊕ W j and by denoting W−1 as V0 we obtain

�2 j+1 = Vj+1 =
j⊕

k=−1

Wk . (6)

2.2 Function Approximation

For any j ∈ N0, the operator L j mapping any real-valued function f (x) on [−1, 1]
into the space Vj by the Lagrange formula

L j f (x) =
2 j∑

l=0

f (xl)φ j,l(x) = U T Φ j (x), (7)
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where U and Φ j are vectors with 2 j + 1 components as:

U = [ f (x0), f (x1), ..., f (x2 j )]T , (8)

Φ j (x) = [
φ j,0(x), φ j,1(x), ..., φ j,2 j (x)

]T
. (9)

Considering (6) it follows that

L j f (x) =
1∑

k=0

akφ0,k(x) +
j−1∑
l=0

2l−1∑
i=0

bl,iψl,i (x) = CT Ψ j−1(x), (10)

where φ0,k(x) and ψl,i (x) are scaling and wavelet functions, respectively, and C and
Ψ j−1 are vectors with 2 j + 1 components as:

C = [
a0, a1, b0,0, b1,0, b1,1, ..., b j−1,2 j−1−1

]T
, (11)

Ψ j−1(x) = [
φ0,0, φ0,1, ψ0,0, ψ1,0, ψ1,1, ..., ψ j−1,2 j−1−1

]T
. (12)

The vector C can be obtained by considering,

Ψ j−1 = GΦ j , (13)

where G is a (2 j + 1) × (2 j + 1)matrix, which can be determined as follows. Using
the two scale relations and decomposition between polynomial scaling and wavelet
functions represented in [14, pp. 100 ], we have

Φ j−1 = λ j−1Φ j , Ψ j−1 = μ j−1Φ j , (14)

whereλ j−1 is a (2 j−1 + 1) × (2 j + 1)matrix andμ j−1 is a (2 j−1) × (2 j + 1)matrix.
Following [16] and by using Eqs. (13) and (14), we obtain

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ0 × λ1 × · · · × λ j−1

μ0 × λ1 × · · · × λ j−1
...

μ j−3 × μ j−2 × λ j−1

μ j−2 × μ j−1

μ j−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

By using Eqs. (13) and (7), we get

L j f (x) = U T Φ j = U T G−1Ψ j−1,

so that we have CT = U T G−1.



204 J. Rashidinia and M. Jokar

Interpolation properties of polynomial scaling functions could help to obtaining the
coefficients very fast, because it just needs to replacing the variable of function by
the zeros of ω j (x) and no need of integration. In the rest of the paper for simplicity
and abbreviation we denote Φ j (x) and Ψ j−1(x) by Φ(x) and Ψ (x), respectively.

2.3 Operational Matrix of Derivative

Polynomial scaling functions operational matrix of derivative was derived in [15].
Here, we just list the theorem and a corollary as follows.

Theorem 1 The differentiation of vector Φ(x) in (9) can be expressed as:

Φ ′(x) = DφΦ(x), (15)

where Dφ is (2 j + 1) × (2 j + 1) and the entries of operational matrix of derivative
for polynomial scaling functions Dφ are:

dk,l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 j∑
i=0, i �=k

1
xl−xi

, if l = k,

22
j − j−1(−1)kε j,k

2 j∏
r=0, r �=l,k

(xl − xr ), if l �= k.

Proof See [15].

Corollary 2 Using matrix G the operational matrix of derivative for polynomial
wavelets can be represented as:

Dψ = G−1DφG. (16)

3 The Polynomial Wavelet Method (PWM)

In this section, we solve nonlinear partial differential equation (1) on a bounded
domain. For this end, we use finite difference method for one variable to reduce these
equations to a system of ordinary differential equations, then we solve this system
and find the solution of the given Klein-Gordon equation at the points tn = nδt for
δt = T −0

N , n = 0, 1, . . . , N .
In order to perform temporal discretization, we discretize (1) according to the

following θ -weighted type scheme

un+1 − 2un + un−1

(δt)2
+ θ

(
αun+1

xx + βun+1) + (1 − θ)
(
αun

xx + βun) + γ (un)k = f (x, tn),

(17)
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where δt is the time step size and un+1 is used to show u(x, t + δt). By choosing
θ = 1

2 (Crank-Nicolson scheme) and rearranging Eq. (17) we obtain

un+1 + β(δt)2

2
un+1 + α(δt)2

2
un+1

xx =
(
2 − β(δt)2

2

)
un − α(δt)2

2
un

xx

−γ (δt)2(un)k − un−1 + (δt)2 f (x, tn). (18)

Using Eq. (7), the approximate solution for un(x) via scaling functions is represented
by formula

L j u
n(x) = UT

n Φ(x), (19)

where vectors Un and Φ(x) are defined as (8) and (9) respectively.
For the derivatives of un(x) by using (15) we can write the following relations,

L j u
n
x (x) = UT

n Φ ′(x) = UT
n DφΦ(x), (20)

L j u
n
xx (x) = UT

n Φ ′′(x) = UT
n D2

φΦ(x). (21)

Replacing Eqs. (19) and (21) in Eq. (18) we obtain

UT
n+1Φ(x) + β(δt)2

2
UT

n+1Φ(x) + α(δt)2

2
UT

n+1D2
φΦ(x)

=
(
2 − β(δt)2

2

)
UT

n Φ(x) − α(δt)2

2
UT

n D2
φΦ(x) − γ (δt)2(UT

n Φ(x))k (22)

−UT
n−1Φ(x) + (δt)2 f (x, tn).

SubstitutingEq. (13) intoEq. (22),we change current base to the polynomialwavelets
bases

Un+1

[
I + β(δt)2

2
I + α(δt)2

2
D2

φ

]
G−1Ψ (x)

=
(
2 − β(δt)2

2

)
UT

n G−1Ψ (x) − α(δt)2

2
UT

n D2
φG−1Ψ (x) (23)

−γ (δt)2(UT
n G−1Ψ (x))k − UT

n−1G−1Ψ (x) + (δt)2 f (x, tn).

By collocating Eq. (23) in the points xk = cos( kπ
2 j ), k = 0, 1, . . . , 2 j , we get,

Un+1

[
I + β(δt)2

2
I + α(δt)2

2
D2

φ

]
G−1Ψ (xk)

=
(
2 − β(δt)2

2

)
UT

n G−1Ψ (xk) − α(δt)2

2
UT

n D2
φG−1Ψ (xk) (24)

−γ (δt)2(UT
n G−1Ψ (xk))

k − UT
n−1G−1Ψ (xk) + (δt)2 f (xk, tn),
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which represents a system of (2 j + 1) × (2 j + 1) equations.
Using Eq. (19) in (3) we have

UT
n+1G−1Ψ (−1) = h(−1, tn+1), (25)

UT
n+1G−1Ψ (1) = h(1, tn+1). (26)

Because the rank of matrix Dφ is 2 j and the rank of D2
φ is 2 j − 1 we replace Eqs.

(25)–(26) instead of first and last equations of the system (24), so we finally obtain
a following matrix form of equations,

AnUn+1 = Bn, n = 1, 2, . . . (27)

where An is a matrix with dimension (2 j + 1) × (2 j + 1) as,

An =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ψ T (−1)(G−1)T

Ψ T (x1)(G−1)T
[

I + β(δt)2

2 I + α(δt)2

2 D2
φ

]T

...

Ψ T (x2 j −1)(G−1)T
[

I + β(δt)2

2 I + α(δt)2

2 D2
φ

]T

Ψ T (1)(G−1)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

Bn =

⎡
⎢⎢⎢⎢⎢⎣

h(−1, tn+1)

Γ1
...

Γ2 j −1

h(1, tn+1)

⎤
⎥⎥⎥⎥⎥⎦

with

Γi =
(
2 − β(δt)2

2

)
UT

n G−1Ψ (xi ) − α(δt)2

2
UT

n D2
φG−1Ψ (xi ) − γ (δt)2(UT

n G−1Ψ (xi ))
k

−UT
n−1G−1Ψ (xi ) + (δt)2 f (xi , tn), i = 1, . . . , 2 j − 1.

Using the first initial condition of Eq. (2), we have

UT
0 G−1Ψ (x) = g1(x), (28)



Numerical Solution of Nonlinear Klein-Gordon Equation … 207

By using the second initial condition of Eq. (2), one can get

u1(x) − u−1(x)

2(δt)2
= g2(x), x ∈ Ω. (29)

Equation (29) can be rewritten as

UT
−1G−1Ψ (x) = UT

1 G−1Ψ (x) − 2(δt)2g2(x). (30)

Equation (27) using Eqs. (28) and (30) as the starting points, gives the system of
equations with 2 j + 1 unknowns and equations, which can be solved to find Un+1

in any step n = 1, 2, . . .. So the unknown functions u(x, tn) in any time t = tn, n =
0, 1, 2, . . . can be found.

4 Error Bounds

Here we give the error analysis of the method presented in the previous section for
the Nonlinear Klein-Gordon equation. Suppose that BV be the set of real valued
functions P : R −→ R with bounded variation on [−1, 1]. The value V (P(x))

is defined as total variation of P(x) on [−1 1]. Let for the given weight function
w(x) = 1√

1−x2 , and for 2 ≤ p < ∞, we define

‖P‖p :=
⎛
⎝

1∫
−1

|P(x)|pw(x)dx

⎞
⎠

1
p

.

Here we need to recall two corollaries from [17].

Corollary 3 Let p ≥ 2, P (s) ∈ BV and 0 ≤ s ≤ 2 j then,

‖ P − L jP ‖p≤ ξ2− j (s+1/p)V (P (s)). (31)

Corollary 4 Let p ≥ 2, 0 ≤ l ≤ s and P (s) ∈ BV , then for the interpolatory poly-
nomial based on the zeros of the Jacobi polynomial we have,

‖ (P − L jP)(l) ‖p≤ ξ2− j (s+1/p−max{l,2l−1/p})V (P (s)). (32)

In the above corollaries ξ is constant depends on s.
We consider Eq. (18) as an operator equation in the form

H un+1 =
(

(1 + β(δt)2

2
)I + α(δt)2

2
D

)
un+1 = F, (33)
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where I is an identity operator and

D = d2

dx2
,

F =
(
2 − β(δt)2

2

)
un − α(δt)2

2
un

xx − γ (δt)2(un)k − un−1 + (δt)2 f (x, tn).

For the operator equation (33) the approximate equation is

L j (H ) un+1
j = L j

(
(1 + β(δt)2

2
)I + α(δt)2

2
D

)
un+1

j = Fj . (34)

System (34) may be solved numerically to yield an approximate solution equation
(1) at each level of time given by the expression un+1

j = UT
n+1Φ(x). Next Lemma

will give the approximation results of the differential operator, and then the total
error bound for ||En+1

j ||p = ||un+1 − un+1
j ||p will be presented.

Lemma 5 If
(
un+1

)(s) ∈ BV , s ≥ 0 then for the operator D we have

‖Dun+1 − L jDun+1‖p ≤ C12
− j (s+2/p−4)‖V

(
(un+1)(s)

) ‖p. (35)

Proof Using (32) by considering l = 2 we have

‖Dun+1 − L jDun+1‖p ≤ ‖un+1
xx − L j u

n+1
xx ‖p

≤ ‖(un+1 − L j u
n+1)xx‖p

≤ C12
− j (s+2/p−4)V

(
(un+1)(s)

)
.

Theorem 6 If un+1 and un+1
j be the exact and approximate solution of (1) at each

level of time n + 1 respectively, also assume that the operatorH = (1 + β(δt)2

2 )I +
α(δt)2

2 D has bounded inverse and
(
un+1

)(s)
, F (s) ∈ BV , s ≥ 0, then

||En+1
j ||p ≤ Cζ‖(L jH )−1‖p2

− j (s+2/p−4),

where
ζ = max

{
V
(
(un+1)(s)

)
, V

(
F (s)

)}
,

so for s ≥ 4 we ensure the convergence when j goes to the infinity.

Proof Subtracting Eq. (34) form (1) yields

−L jH (un+1 − un+1
j ) = (H − L jH )un+1 − (F − Fj ),



Numerical Solution of Nonlinear Klein-Gordon Equation … 209

provided that H −1 exists and bounded, we obtain the error bound

‖En+1
j ‖p = ‖(L jH )−1‖p‖(H − L jH )un+1 − (F − Fj )‖p, (36)

where ‖(L jH )−1‖p = ‖
(
(1 + β(δt)2

2 )I + α(δt)2

2 D2
φ

)−1 ‖p.

Furthermore, by using Lemma 5 and relation (31), we have

‖(H − L jH )un+1‖p ≤ |1 + β(δt)2

2
|‖(I − L jI )un+1‖p (37)

+|α(δt)2

2
|‖(D − L jD)un+1‖p (38)

≤ C1|α(δt)2

2
|2− j (s+2/p−4)V

(
(un+1)(s)

)
(39)

+C2|1 + β(δt)2

2
|2− j (s+1/p)V

(
(un+1)(s)

)
, (40)

and
‖F − Fj‖p ≤ C32

− j (s+1/p)V
(
F (s)

)
, (41)

Substituting Eqs. (40)–(41) in (36), we have

‖un+1 − un+1
j ‖p ≤ ‖(L jH )−1‖p

[
C1|α(δt)2

2
|2− j (s+2/p−4)V

(
(un+1)(s)

)

+C2|1 + β(δt)2

2
|2− j (s+1/p)V

(
(un+1)(s)

)
+ C32

− j (s+1/p)V
(

F (s)
)]

.

By choosing C = max
{

C1| α(δt)2

2 |, C2|1 + β(δt)2

2 |, C3

}
finally we can obtain

‖un+1 − un+1
j ‖p ≤ Cζ‖(L jH )−1‖p2

− j (s+2/p−4).

Remark 7 We know that the order of accuracy for the Crank-Nicolson method is
O(δt2). Therefore total error bound can be represented as

‖u − un+1
j ‖p ≤ Cζ‖(L jH )−1‖p2

− j (s+2/p−4) + O(δt2).

5 Numerical Examples

In this section, we give some computational results of numerical experiments with
method based on applying the technique discussed in Sect. 3 to find numerical solu-
tion of nonlinearKlein-Gordon equation and compare our resultswith exact solutions
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and those already available in literature [7, 12]. In order to test the accuracy of the
presented method we use the error norms L2, L∞ and Root-Mean-Square (RMS)
through the examples. The numerical computations have been done by the software
Matlab.

Example 8 As the first test problem, we consider the nonlinear Klein-Gordon equa-
tion (1) with quadratic nonlinearity as

∂2u

∂t2
(x, t) + α

∂2u

∂x2
(x, t) + βu(x, t) + γ u2(x, t) = −x cos(t) + x2 cos2(t).

The provided parameters are α = −1, β = 0 and γ = 1 in the interval [−1, 1] and
the initial conditions are given by

{
u(x, 0) = x, x ∈ [−1, 1],
ut (x, 0) = 0, x ∈ [−1, 1],

with the Dirichlet boundary condition

u(x, t) = h(x, t).

The analytical solution is given in [7] as u(x, t) = x cos(t).The prescribedDirich-
let boundary function h(x, t) can be extracted from the exact solution. The L2, L∞
and RMS errors by applying method discussed in Sect. 3 for j = 3, in different times
and δt = 0.0001 are presented in Table1 and compared with the RBFs method pro-
posed in [7]. As it can be shown from Table1, our method (PWM) is more accurate
than RBFs method while PWM uses much less number of grid points (9 grid points)
in comparison with RBFs which uses 100 grid points. Figure1, shows the graph
of errors in the computed solution and approximate solution for δt = 0.0001 and
j = 3. The graph of errors in the computed solution for different values of time and
δt = 0.0001, j = 3 are plotted in Fig. 2.

Table 1 L2, L∞ and RMS errors for j = 3 and δt = 0.0001 compared with [7], Example 1

t L∞−error L2−error RMS−error

PWM (9) RBFs (100) PWM (9) RBFs (100) PWM (9) RBFs (100)

1.0 4.12 × 10−9 1.25 × 10−5 1.27 × 10−8 6.54 × 10−5 4.23 × 10−9 6.50 × 10−6

3.0 7.81 × 10−9 1.55 × 10−5 2.50 × 10−8 1.17 × 10−4 8.34 × 10−9 1.16 × 10−5

5.0 2.91 × 10−9 3.37 × 10−5 6.55 × 10−9 2.20 × 10−4 2.18 × 10−9 2.19 × 10−5

7.0 7.47 × 10−9 3.77 × 10−5 2.25 × 10−8 2.58 × 10−4 7.53 × 10−9 2.57 × 10−5

10 2.28 × 10−9 1.30 × 10−5 4.99 × 10−9 7.98 × 10−5 1.66 × 10−9 7.94 × 10−6
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Fig. 1 Plot of errors (left) and approximate solution (right) with δt = 0.0001, j = 3, example 1

Fig. 2 Errors graph for
Example 1, with j = 3,
δt = 0.0001 and different
times

Example 9 This illustrated example presents the nonlinear Klein-Gordon equation
(1) and cubic nonlinearity as

∂2u

∂t2
(x, t) + α

∂2u

∂x2
(x, t) + βu(x, t) + γ u3(x, t)

= (x2 − 2) cosh(x + t) − 4x sinh(x + t) + x6 cosh3(x + t).

The provided parameters are α = −1, β = 1 and γ = 1 in the interval [−1, 1] with
the initial conditions are given by

{
u(x, 0) = x2 cosh(x + t), x ∈ [−1, 1],
ut (x, 0) = x2 sinh(x + t), x ∈ [−1, 1],



212 J. Rashidinia and M. Jokar

Table 2 L2, L∞ and RMS errors for j = 3 and δt = 0.0001 compared with [12], Example 2

t L∞−error L2−error RMS−error

PWM (9) LWSCM
(24)

PWM (9) LWSCM
(24)

PWM (9) LWSCM
(24)

1.0 6.38 × 10−5 9.45 × 10−5 1.47 × 10−4 1.79 × 10−4 4.90 × 10−5 3.66 × 10−5

2.0 1.19 × 10−4 9.79 × 10−4 3.55 × 10−4 2.06 × 10−3 1.18 × 10−4 4.22 × 10−4

3.0 1.52 × 10−4 3.97 × 10−3 3.91 × 10−4 7.91 × 10−3 1.30 × 10−4 1.61 × 10−3

4.0 2.20 × 10−4 1.29 × 10−2 4.34 × 10−4 2.44 × 10−2 1.44 × 10−4 4.98 × 10−3

5.0 3.40 × 10−4 3.72 × 10−2 4.49 × 10−4 6.99 × 10−2 2.16 × 10−4 1.42 × 10−2

Fig. 3 Errors graph for
Example 2, with j = 3,
δt = 0.0001 and different
times

with the Dirichlet boundary condition

u(x, t) = h(x, t).

The analytical solution is given in [7, 12] as u(x, t) = x2 cosh(x + t). We extract
the boundary function h(x, t) from the exact solution. The L2, L∞ andRMSerrors by
applyingmethod discussed in Sect. 3 for j = 3, in different times and δt = 0.0001 are
presented in Table2 and compared with the Legendre wavelets spectral collocation
method (LWSCM) [12]. As it can be seen from Table 2, our method is accurate
than LWSCM while PWM uses 9 number of Polynomial wavelet basis functions in
comparison with LWSCMwhich uses 24 number of Legendre wavelet basis. On the
other hand, the accuracy of our results remains consistent when the time increases,
which is the advantage of using PWM, but in the case of LWSCM the accuracy
decreases fastly. Figure 3, shows the graph of errors in the computed solution for
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Fig. 4 Plot of errors (left) and approximate solution (right) with δt = 0.0001, j = 3, example 2

different values of time and δt = 0.0001, j = 3. The graph of errors in the computed
solution and approximate solution for δt = 0.0001 and j = 3 are plotted in Fig. 4.

6 Conclusion

A numerical method was employed successfully for the Nonlinear Klein-Gordon
equation. This approach is based on the Crank-Nicolson method for temporal dis-
cretization and the Wavelet-Collocation method in the spatial direction. After tem-
poral discretization, the operational matrix of derivative along with a collocation
method, is used to reduce the considered problem to the corresponding systems of
algebraic equations at each time steps. One of the advantages of using polynomial
wavelets is that the effort required to implement the method is very low, while the
accuracy is high. The convergence analysis is developed. The method is computa-
tionally attractive and applications are demonstrated through illustrative examples.
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