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Bivariate Left Fractional Polynomial
Monotone Approximation

George A. Anastassiou

Abstract Let f ∈ Cr,p
(
[0, 1]2

)
, r, p ∈ N , and let L∗ be a linear left fractional

mixed partial differential operator such that L∗ ( f ) ≥ 0, for all (x, y) in a critical
region of [0, 1]2 that depends on L∗. Then there exists a sequence of two-dimensional
polynomials Qm1,m2 (x, y) with L∗ (

Qm1,m2 (x, y)
) ≥ 0 there, where m1,m2 ∈ N

such that m1 > r , m2 > p, so that f is approximated left fractionally simultane-
ously and uniformly by Qm1,m2 on [0, 1]2. This restricted left fractional approxima-
tion is accomplished quantitatively by the use of a suitable integer partial derivatives
two-dimensional first modulus of continuity.

1 Introduction

The topic of monotone approximation started in [5] has become a major trend in
approximation theory. A typical problem in this subject is: given a positive integer
k, approximate a given function whose kth derivative is ≥0 by polynomials having
this property.

In [2] the authors replaced the kth derivative with a linear differential operator of
order k. We mention this motivating result.

Theorem 1 Let h, k, p be integers, 0 ≤ h ≤ k ≤ p and let f be a real function,
f (p) continuous in [−1, 1] with modulus of continuity ω

(
f (p), x

)
there. Let a j (x),

j = h, h + 1, ..., k be real functions, defined and bounded on [−1, 1] and assume
ah (x) is either ≥ some number α > 0 or ≤ some number β < 0 throughout [−1, 1].
Consider the operator

L =
k∑

j=h

a j (x)

[
d j

dx j

]

G.A. Anastassiou (B)
Department of Mathematical Sciences, University of Memphis,
Memphis, TN 38152, USA
e-mail: ganastss@memphis.edu

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and O. Duman (eds.), Intelligent Mathematics II:
Applied Mathematics and Approximation Theory, Advances in Intelligent Systems
and Computing 441, DOI 10.1007/978-3-319-30322-2_1
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2 G.A. Anastassiou

and suppose, throughout [−1, 1],

L ( f ) ≥ 0. (1)

Then, for every integer n ≥ 1, there is a real polynomial Qn (x) of degree ≤ n such
that

L (Qn) ≥ 0 throughout [−1, 1]

and

max−1≤x≤1
| f (x) − Qn (x)| ≤ Cnk−pω

(
f (p),

1

n

)
,

where C is independent of n or f .

We need

Definition 2 (see Stancu [6]) Let f ∈ C
(
[0, 1]2

)
, [0, 1]2 = [0, 1] × [0, 1], where

(x1, y1), (x2, y2) ∈ [0, 1]2 and δ1, δ2 ≥ 0. The first modulus of continuity of f is
defined as follows:

ω1 ( f, δ1, δ2) = sup
|x1−x2|≤δ1
|y1−y2|≤δ2

| f (x1, y1) − f (x2, y2)| .

Definition 3 Let f be a real-valued function defined on [0, 1]2 and let m, n be two
positive integers. Let Bm,n be the Bernstein (polynomial) operator of order (m, n)

given by

Bm,n ( f ; x, y) (2)

=
m∑

i=0

n∑

j=0

f

(
i

m
,
j

n

)
·
(
m
i

)
·
(
n
j

)
· xi · (1 − x)m−i · y j · (1 − y)n− j .

For integers r, s ≥ 0, we denote by f (r,s) the differential operator of order (r, s),
given by

f (r,s) (x, y) = ∂r+s f (x, y)

∂xr∂ys
.

We use

Theorem 4 (Badea and Badea [3]). It holds that

∥∥∥ f (k,l) − (
Bm,n f

)(k,l)
∥∥∥∞

≤ t (k, l) · ω1

(
f (k,l); 1√

m − k
,

1√
n − l

)

+max

{
k (k − 1)

m
,
l (l − 1)

n

}
· ∥
∥ f (k,l)

∥
∥∞ , (3)
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where m > k ≥ 0, n > l ≥ 0 are integers, f is a real-valued function on [0, 1]2 such
that f (k,l) is continuous, and t is a positive real-valued function onZ+ = {0, 1, 2, ...}.
Here ‖·‖∞ is the supremum norm on [0, 1]2 .

Denote Cr,p
(
[0, 1]2

) := { f : [0, 1]2 → R; f (k,l) is continuous for 0 ≤ k ≤ r ,
0 ≤ l ≤ p}.

In [1] the author proved the following main motivational result.

Theorem 5 Let h1, h2, v1, v2, r, p be integers, 0 ≤ h1 ≤ v1 ≤ r , 0 ≤ h2 ≤ v2 ≤
p and let f ∈ Cr,p

(
[0, 1]2

)
. Let αi, j (x, y), i = h1, h1 + 1, ..., v1; j = h2, h2 +

1, ..., v2 be real-valued functions, defined and bounded in [0, 1]2 and assume αh1h2
is either ≥ α > 0 or ≤ β < 0 throughout [0, 1]2. Consider the operator

L =
v1∑

i=h1

v2∑

j=h2

αi j (x, y)
∂ i+ j

∂xi∂y j
(4)

and suppose that throughout [0, 1]2,

L ( f ) ≥ 0.

Then for integers m, n with m > r , n > p, there exists a polynomial Qm,n (x, y) of
degree (m, n) such that L

(
Qm,n (x, y)

) ≥ 0 throughout [0, 1]2 and

∥∥ f (k,l) − Q(k,l)
m,n

∥∥
∞ ≤ Pm,n (L , f )

(h1 − k)! (h2 − l)! + Mk,l
m,n ( f ) , (5)

all (0, 0) ≤ (k, l) ≤ (h1, h2). Furthermore we get

∥∥ f (k,l) − Q(k,l)
m,n

∥∥
∞ ≤ Mk,l

m,n ( f ) , (6)

for all (h1 + 1, h2 + 1) ≤ (k, l) ≤ (r, p). Also (6) is truewhenever 0 ≤ k ≤ h1, h2 +
1 ≤ l ≤ p or h1 + 1 ≤ k ≤ r , 0 ≤ l ≤ h2. Here

Mk,l
m,n ≡ Mk,l

m,n ( f ) ≡ t (k, l) · ω1

(
f (k,l); 1√

m − k
,

1√
n − l

)

+max

{
k (k − 1)

m
,
l (l − 1)

n

}
· ∥∥ f (k,l)

∥∥∞ (7)

and

Pm,n ≡ Pm,n (L , f ) ≡
v1∑

i=h1

v2∑

j=h2

li j · Mi, j
m,n, (8)
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where t is a positive real-valued function on Z2+ and

li j ≡ sup
(x,y)∈[0,1]2

∣∣α−1
h1h2 (x, y) · αi j (x, y)

∣∣ < ∞. (9)

In this articlewe extendTheorem5 to the fractional level. Indeed here L is replaced
by L∗, a linear left Caputo fractional mixed partial differential operator. Now the
monotonicity property is only true on a critical region of [0, 1]2 that depends on L∗
parameters. Simultaneous fractional convergence remains true on all of [0, 1]2 .

We need

Definition 6 Let α1, α2 > 0; α = (α1, α2), f ∈ C
(
[0, 1]2

)
and let x = (x1, x2),

t = (t1, t2) ∈ [0, 1]2. We define the left mixed Riemann-Liouville fractional two
dimensional integral of order α (see also [4]):

(
I α
0+ f

)
(x) (10)

:= 1

Γ (α1) Γ (α2)

x1∫

0

x2∫

0

(x1 − t1)
α1−1 (x2 − t2)

α2−1 f (t1, t2) dt1dt2,

with x1, x2 > 0.
Notice here I α

0+ (| f |) < ∞.

Definition 7 Let α1, α2 > 0 with �α1� = m1, �α2� = m2, (�·� ceiling of the num-
ber). Let here f ∈ Cm1,m2

(
[0, 1]2

)
. We consider the left (Caputo type) fractional

partial derivative:

D(α1,α2)
∗0 f (x)

:= 1

Γ (m1 − α1) Γ (m2 − α2)
(11)

·
x1∫

0

x2∫

0

(x1 − t1)
m1−α1−1 (x2 − t2)

m2−α2−1 ∂m1+m2 f (t1, t2)

∂tm1
1 ∂tm2

2

dt1dt2,

∀ x = (x1, x2) ∈ [0, 1]2, where Γ is the gamma function

Γ (ν) =
∞∫

0

e−t tν−1dt, ν > 0. (12)

We set
D(0,0)

∗0 f (x) := f (x) , ∀ x ∈ [0, 1]2 ; (13)

D(m1,m2)
∗0 f (x) := ∂m1+m2 f (x)

∂xm1
1 ∂xm2

2

, ∀ x ∈ [0, 1]2 . (14)
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Definition 8 We also set

D(0,α2)
∗0 f (x) := 1

Γ (m2−α2)

x2∫

0

(x2 − t2)
m2−α2−1 ∂m2 f (x1,t2)

∂t
m2
2

dt2, (15)

D(α1,0)
∗0 f (x) := 1

Γ (m1−α1)

x1∫

0

(x1 − t1)
m1−α1−1 ∂m1 f (t1,x2)

∂t
m1
1

dt1, (16)

and

D(m,α2)
∗0 f (x) := 1

Γ (m2−α2)

x2∫

0

(x2 − t2)
m2−α2−1 ∂m1+m2 f (x1,t2)

∂x
m1
1 ∂t

m2
2

dt2, (17)

D(α1,m2)
∗0 f (x) := 1

Γ (m1−α1)

x1∫

0

(x1 − t1)
m1−α1−1 ∂m1+m2 f (t1,x2)

∂t
m1
1 ∂x

m2
2

dt1. (18)

2 Main Result

We present our main result

Theorem 9 Let h1, h2, v1, v2, r, p be integers, 0 ≤ h1 ≤ v1 ≤ r , 0 ≤ h2 ≤ v2 ≤
p and let f ∈ Cr,p

(
[0, 1]2

)
. Let αi j (x, y), i = h1, h1 + 1, ..., v1; j = h2, h2 +

1, ..., v2 be real valued functions, defined and bounded in [0, 1]2 and assume αh1h2
is either ≥ α > 0 or ≤ β < 0 throughout [0, 1]2. Let

0 ≤ α1h1 ≤ h1 ≤ α11 ≤ h1 + 1 < α12 ≤ h1 + 2

< α13 ≤ h1 + 3 < ... < α1v1 ≤ v1 < ... < α1r ≤ r,

with
⌈
α1h1

⌉ = h1;

0 ≤ α2h2 ≤ h2 < α21 ≤ h2 + 1 < α22 ≤ h2 + 2

< α23 ≤ h2 + 3 < ... < α2v2 ≤ v2 < ... < α2p ≤ p,

with
⌈
α2h2

⌉ = h2. Consider the left fractional differential bivariate operator

L∗ :=
v1∑

i=h1

v2∑

j=h2

αi j (x, y) D
(α1i ,α2 j)
∗0 . (19)
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Let integers m1,m2 with m1 > r , m2 > p. Set

li j := sup
(x,y)∈[0,1]2

∣∣α−1
h1h2 (x, y) · αi j (x, y)

∣∣ < ∞.

Also set (�α1i� = i ,
⌈
α2 j

⌉ = j , �·� ceiling of number)

Mi, j
m1,m2

:= Mi, j
m1,m2

( f ) := 1

Γ (i − α1i + 1) Γ
(
j − α2 j + 1

)

·
{
t (i, j) ω1

(
f (i, j); 1√

m1 − i
,

1√
m2 − j

)
(20)

+ max

{
i (i − 1)

m1
,
j ( j − 1)

m2

}
· ∥
∥ f (i, j)

∥
∥∞

}
,

i = h1, ..., v1; j = h2, ..., v2. Here t is a positive real-valued function on Z
2+, ‖·‖∞

is the supremum norm on [0, 1]2. Call

Pm1,m2 := Pm1,m2 ( f ) =
v1∑

i=h1

v2∑

j=h2

li j · Mi, j
m1,m2

. (21)

Then there exists a polynomial Qm1,m2 (x, y) of degree (m1,m2) on [0, 1]2 such that

∥∥∥D(α1k ,α2l )
∗0 ( f ) − D(α1k ,α2l )

∗0
(
Qm1,m2

)∥∥∥∞

≤ Γ (h1 − k + 1) Γ (h2 − l + 1) Pm1,m2

Γ (h1 − α1k + 1) Γ (h2 − α2l + 1) (h1 − k)! (h2 − l)! (22)

+Mk,l
m1,m2

,

for (0, 0) ≤ (k, l) ≤ (h1, h2). If (h1 + 1, h2 + 1) ≤ (k, l) ≤ (r, p), or 0 ≤ k ≤ h1,
h2 + 1 ≤ l ≤ p, or h1 + 1 ≤ k ≤ r , 0 ≤ l ≤ h2, we get

∥∥∥D(α1k ,α2l )
∗0 ( f ) − D(α1k ,α2l )

∗0
(
Qm1,m2

)∥∥∥∞
≤ Mk,l

m1,m2
. (23)

By assuming L∗ ( f (1, 1)) ≥ 0, we get L∗ (
Qm1,m2 (1, 1)

) ≥ 0. Let 1 > x, y > 0,
with α1h1 �= h1 and α2h2 �= h2, such that

x ≥ (
Γ

(
h1 − α1h1 + 1

)) 1

(h1−α1h1) , (24)

y ≥ (
Γ

(
h2 − α2h2 + 1

)) 1

(h2−α2h2) ,
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and
L∗ ( f (x, y)) ≥ 0.

Then
L∗ (

Qm1,m2 (x, y)
) ≥ 0.

To prove Theorem 9 it takes some preparation. We need

Definition 10 Let f be a real-valued function defined on [0, 1]2 and letm1,m2 ∈ N.
Let Bm1,m2 be the Bernstein (polynomial) operator of order (m1,m2) given by

Bm1,m2 ( f ; x1, x2)

:=
m1∑

i1=0

m2∑

i2=0

f

(
i1
m1

,
i2
m2

)
(25)

·
(
m1

i1

)(
m2

i2

)
xi11 (1 − x1)

m1−i1 xi22 (1 − x2)
m2−i2 .

We need the following simultaneous approximation result.

Theorem 11 (Badea and Badea [3]). It holds that

∥∥∥ f (k1,k2) − (
Bm1,m2 f

)(k1,k2)
∥∥∥∞

≤ t (k1, k2) ω1

(
f (k1,k2); 1√

m1 − k1
,

1√
m2 − k2

)
(26)

+max

{
k1 (k1 − 1)

m1
,
k2 (k2 − 1)

m2

}
· ∥∥ f (k1,k2)

∥∥∞ ,

where m1 > k1 ≥ 0, m2 > k2 ≥ 0 are integers, f is a real-valued function on [0, 1]2,
such that f (k1,k2) is continuous, and t is a positive real-valued function on Z2+. Here‖·‖∞ is the supremum norm on [0, 1]2 .

Remark 12 We assume that m1 > m1 = �α1�, m2 > m2 = �α2�, where α1, α2 > 0.
We consider also

D(α1,α2)
∗0

(
Bm1,m2 f

)
(x1, x2)

= 1

Γ (m1 − α1) Γ (m2 − α2)
(27)

·
x1∫

0

x2∫

0

(x1 − t1)
m1−α1−1 (x2 − t2)

m2−α2−1 ∂m1+m2(Bm1 ,m2 f )(t1,t2)
∂t

m1
1 ∂t

m2
2

dt1dt2,

∀ (x1, x2) ∈ [0, 1]2 .
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Proposition 13 Let α1, α2 > 0 with �α1� = m1, �α2� = m2, f ∈ Cm1,m2
(
[0, 1]2

)
,

where m1,m2 ∈ N : m1 > m1, m2 > m2. Then

∥∥∥D(α1,α2)
∗0 f − D(α1,α2)

∗0
(
Bm1,m2 f

)∥∥∥∞

≤ 1

Γ (m1 − α1 + 1) Γ (m2 − α2 + 1)

·
{
t (m1,m2) ω1

(
f (m1,m2); 1√

m1 − m1
,

1√
m2 − m2

)

+ max

{
m1 (m1 − 1)

m1
,
m2 (m2 − 1)

m2

}
· ∥
∥ f (m1,m2)

∥
∥∞

}
, (28)

Proof We observe the following

∣
∣∣D(α1,α2)

∗0 f (x1, x2) − D(α1,α2)
∗0

(
Bm1,m2 f

)
(x1, x2)

∣
∣∣

= 1

Γ (m1 − α1) Γ (m2 − α2)
(29)

·
∣∣∣
∣∣∣

x1∫

0

x2∫

0

(x1 − t1)
m1−α1−1 (x2 − t2)

m2−α2−1

·
(

∂m1+m2 f (t1, t2)

∂tm1
1 ∂tm2

2

− ∂m1+m2
(
Bm1,m2 f

)
(t1, t2)

∂tm1
1 ∂tm2

2

)

dt1dt2

∣∣∣∣
∣

≤ 1

Γ (m1 − α1) Γ (m2 − α2)
(30)

x1∫

0

x2∫

0

(x1 − t1)
m1−α1−1 (x2 − t2)

m2−α2−1

·
∣∣∣
∣∣
∂m1+m2 f (t1, t2)

∂tm1
1 ∂tm2

2

− ∂m1+m2
(
Bm1,m2 f

)
(t1, t2)

∂tm1
1 ∂tm2

2

∣∣∣
∣∣
dt1dt2

(26)≤
{
t (m1,m2) ω1

(
f (m1,m2); 1√

m1 − m1
,

1√
m2 − m2

)
(31)

+ max

{
m1 (m1 − 1)

m1
,
m2 (m2 − 1)

m2

}
· ∥
∥ f (m1,m2)

∥
∥∞

}

· 1

Γ (m1 − α1) Γ (m2 − α2)

·
x1∫

0

x2∫

0

(x1 − t1)
m1−α1−1 (x2 − t2)

m2−α2−1 dt1dt2
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= xm1−α1
1 xm2−α2

2

Γ (m1 − α1 + 1) Γ (m2 − α2 + 1)
(32)

·
{
t (m1,m2) ω1

(
f (m1,m2); 1√

m1 − m1
,

1√
m2 − m2

)

+ max

{
m1 (m1 − 1)

m1
,
m2 (m2 − 1)

m2

}∥∥ f (m1,m2)
∥∥∞

}
,

∀ (x1, x2) ∈ [0, 1]2 .

Proof (Proof of Theorem 9) Here we use a lot Proposition 13.
Case (i) Assume that throughout [0, 1]2, αh1h2 ≥ α > 0.
Call

Qm1,m2 (x, y) := Bm1,m2 ( f ; x, y) + Pm1,m2

xh1

h1!
yh2

h2! . (33)

Then by (28) we get

∥∥∥D(α1k ,α2l )
∗0

(
f + Pm1,m2

xh1
h1!

yh2
h2!

)
− D(α1k ,α2l )

∗0
(
Qm1,m2

)∥∥∥∞
≤ Mk,l

m1,m2
, (34)

all 0 ≤ k ≤ r , 0 ≤ l ≤ p. When (0, 0) ≤ (k, l) ≤ (h1, h2), inequality (34) becomes

∥∥∥D(α1k ,α2l )
∗0 ( f ) + Pm1,m2

Γ (h1−k+1)Γ (h2−l+1)xh1−α1k yh2−α2l

Γ (h1−α1k+1)Γ (h2−α2l+1)(h1−k)!(h2−l)!
−D(α1k ,α2l )

∗0
(
Qm1,m2

)∥∥∥∞
≤ Mk,l

m1,m2
.

(35)

We prove (35) as follows: In (34) we need to calculate ((0, 0) ≤ (k, l) ≤ (h1, h2))

D(α1k ,α2l )
∗0

(
xh1

h1!
yh2

h2!
)

= 1

Γ (k − α1k) Γ (l − α2l)
(36)

·
x∫

0

y∫

0

(x − t1)
k−α1k−1 (y − t2)

l−α2l−1 th1−k
1

(h1 − k)!
th2−l
2

(h2 − l)!dt1dt2

=
⎛

⎝ 1

Γ (k − α1k)

x∫

0

(x − t1)
k−α1k−1 th1−k

1

(h1 − k)!dt1
⎞

⎠ (37)

·
⎛

⎝ 1

Γ (l − α2l)

y∫

0

(y − t2)
l−α2l−1 th2−l

2

(h2 − l)!dt2
⎞

⎠
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= 1

(h1 − k)!Γ (k − α1k)

x∫

0

(x − t1)
k−α1k−1 (t1 − 0)(h1−k+1)−1 dt1

· 1

(h2 − l)!Γ (l − α2l)

y∫

0

(y − t2)
l−α2l−1 (t2 − 0)(h2−l+1)−1 dt2

= 1

(h1 − k)!Γ (k − α1k)

Γ (k − α1k) Γ (h1 − k + 1)

Γ (h1 − α1k + 1)
xh1−α1k

· 1

(h2 − l)!Γ (l − α2l)

Γ (l − α2l) Γ (h2 − l + 1)

Γ (h2 − α2l + 1)
yh2−α2l (38)

=
(

Γ (h1 − k + 1)

(h1 − k)!Γ (h1 − α1k + 1)

)
(39)

·
(

Γ (h2 − l + 1)

(h2 − l)!Γ (h2 − α2l + 1)

)
xh1−α1k yh2−α2l .

So when (0, 0) ≤ (k, l) ≤ (h1, h2) we get

D(α1k ,α2l )
∗0

(
xh1

h1!
yh2

h2!
)

(40)

= Γ (h1 − k + 1) Γ (h2 − l + 1) xh1−α1k yh2−α2l

Γ (h1 − α1k + 1) Γ (h2 − α2l + 1) (h1 − k)! (h2 − l)! .

Hence we plug in (40) into (34) to get (35). Using (35) and triangle inequality we
obtain ((0, 0) ≤ (k, l) ≤ (h1, h2)) that

∥∥∥D(α1k ,α2l )
∗0 ( f ) − D(α1k ,α2l )

∗0
(
Qm1,m2

)∥∥∥∞

≤ Γ (h1 − k + 1) Γ (h2 − l + 1) Pm1,m2

Γ (h1 − α1k + 1) Γ (h2 − α2l + 1) (h1 − k)! (h2 − l)! (41)

+Mk,l
m1,m2

,

proving (22). Next if (h1 + 1, h2 + 1) ≤ (k, l) ≤ (r, p) , or 0 ≤ k ≤ h1, h2 + 1 ≤
l ≤ p, or h1 + 1 ≤ k ≤ r , 0 ≤ l ≤ h2, we get by (34) that

∥∥∥D(α1k ,α2l )
∗0 ( f ) − D(α1k ,α2l )

∗0
(
Qm1,m2

)∥∥∥∞
≤ Mk,l

m1,m2
, (42)

proving (23).
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Furthermore, if (x, y) in critical region, see (24), we get

α−1
h1h2 (x, y) L∗ (

Qm1,m2 (x, y)
)

= α−1
h1h2 (x, y) L∗ ( f (x, y)) (43)

+Pm1,m2

xh1−α1h1 yh2−α2h2

Γ
(
h1 − α1h1 + 1

)
Γ

(
h2 − α2h2 + 1

)

+
v1∑

i=h1

v2∑

j=h2

α−1
h1h2 (x, y) αi j (x, y)

·D(α1i ,α2 j)
∗0

[
Qm1,m2 (x, y) − f (x, y) − Pm1,m2

xh1

h1!
yh2

h2!
]

(34)≥ Pm1,m2

xh1−α1h1 yh2−α2h2

Γ
(
h1 − α1h1 + 1

)
Γ

(
h2 − α2h2 + 1

)

−
v1∑

i=h1

v2∑

j=h2

li j M
i, j
m1,m2

= Pm1,m2

xh1−α1h1 yh2−α2h2

Γ
(
h1 − α1h1 + 1

)
Γ

(
h2 − α2h2 + 1

) − Pm1,m2 (44)

= Pm1,m2

[
xh1−α1h1 yh2−α2h2

Γ
(
h1 − α1h1 + 1

)
Γ

(
h2 − α2h2 + 1

) − 1

]

= Pm1,m2

[
xh1−α1h1 yh2−α2h2 −Γ (h1−α1h1+1)Γ (h2−α2h2+1)

Γ (h1−α1h1+1)Γ (h2−α2h2+1)

]
(45)

=: (∗) .

We know Γ (1) = 1, Γ (2) = 1, and Γ is convex and positive on (0,∞). Here
0 ≤ h1 − α1h1 < 1 and 0 ≤ h2 − α2h2 < 1, hence 1 ≤ h1 − α1h1 + 1 < 2, 1 ≤ h2 −
α2h2 + 1 < 2. Thus 0 < Γ

(
h1 − α1h1 + 1

)
, Γ

(
h2 − α2h2 + 1

) ≤ 1, and
1 − Γ

(
h1 − α1h1 + 1

)
Γ

(
h2 − α2h2 + 1

) ≥ 0. Clearly acting as in (43)–(45), when
L∗ ( f (1, 1)) ≥ 0, we get L∗ (

Qm1,m2 (1, 1)
) ≥ 0.

Based on the above comments about Gamma function we get (∗) ≥ 0. That is
L∗ (

Qm1,m2 (x, y)
) ≥ 0, over the critical region of (24).

Case (ii) Assume that throughout [0, 1]2, αh1h2 ≤ β < 0. Consider

Q−
m1,m2

(x, y) :≡ Bm1,m2 ( f ; x, y) − Pm1,m2

xh1

h1!
yh2

h2! .
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Then by (28) we get

∥
∥∥D(α1k ,α2l )

∗0
(
f − Pm1,m2

xh1
h1!

yh2
h2!

)
− D(α1k ,α2l )

∗0
(
Q−

m1,m2
(x, y)

)∥∥∥∞
≤ Mk,l

m1,m2
, (46)

all 0 ≤ k ≤ r , 0 ≤ l ≤ p. When (0, 0) ≤ (k, l) ≤ (h1, h2) (46) becomes

∥
∥∥D(α1k ,α2l )

∗0 ( f ) − Pm1,m2

Γ (h1−k+1)Γ (h2−l+1)xh1−α1k yh2−α2l

Γ (h1−α1k+1)Γ (h2−α2l+1)(h1−k)!(h2−l)!
−D(α1k ,α2l )

∗0
(
Q−

m1,m2

)∥∥∥∞
≤ Mk,l

m1,m2
.

(47)

Using (47) and triangle inequality we obtain for (0, 0) ≤ (k, l) ≤ (h1, h2) that

∥∥∥D(α1k ,α2l )
∗0 ( f ) − D(α1k ,α2l )

∗0
(
Q−

m1,m2

)∥∥∥∞

≤ Γ (h1 − k + 1) Γ (h2 − l + 1) Pm1,m2

Γ (h1 − α1k + 1) Γ (h2 − α2l + 1) (h1 − k)! (h2 − l)! (48)

+Mk,l
m1,m2

.

Next if (h1 + 1, h2 + 1) ≤ (k, l) ≤ (r, p) , or 0 ≤ k ≤ h1, h2 + 1 ≤ l ≤ p, or h1 +
1 ≤ k ≤ r , 0 ≤ l ≤ h2, we get by (46) that

∥
∥∥D(α1k ,α2l )

∗0 ( f ) − D(α1k ,α2l )
∗0

(
Q−

m1,m2

)∥∥∥∞
≤ Mk,l

m1,m2
. (49)

We proved again (22) and (23). Furthermore, if (x, y) in critical region, see (24), we
obtain

α−1
h1h2 (x, y) L∗ (

Q−
m1,m2

(x, y)
)

= α−1
h1h2 (x, y) L∗ ( f (x, y)) (50)

−Pm1,m2

xh1−α1h1 yh2−α2h2

Γ
(
h1 − α1h1 + 1

)
Γ

(
h2 − α2h2 + 1

)

+
v1∑

i=h1

v2∑

j=h2

α−1
h1h2 (x, y) αi j (x, y)

·D(α1i ,α2 j)
∗0

[
Q−

m1,m2
(x, y) − f (x, y) + Pm1,m2

xh1

h1!
yh2

h2!
]

(46)≤ −Pm1,m2

xh1−α1h1 yh2−α2h2

Γ
(
h1 − α1h1 + 1

)
Γ

(
h2 − α2h2 + 1

)
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+
v1∑

i=h1

v2∑

j=h2

li j M
i, j
m1,m2

(51)

= Pm1,m2

(

1 − xh1−α1h1 yh2−α2h2

Γ
(
h1 − α1h1 + 1

)
Γ

(
h2 − α2h2 + 1

)

)

, (52)

= Pm1,m2

(
Γ (h1−α1h1+1)Γ (h2−α2h2+1)−xh1−α1h1 yh2−α2h2

Γ (h1−α1h1+1)Γ (h2−α2h2+1)

)
(53)

=: (∗∗) .

We know Γ (1) = 1, Γ (2) = 1, and Γ is convex and positive on (0,∞). Here
0 ≤ h1 − α1h1 < 1 and 0 ≤ h2 − α2h2 < 1, hence 1 ≤ h1 − α1h1 + 1 < 2, 1 ≤ h2 −
α2h2 + 1 < 2. Thus 0 < Γ

(
h1 − α1h1 + 1

)
, Γ

(
h2 − α2h2 + 1

) ≤ 1, and
1 − Γ

(
h1 − α1h1 + 1

)
Γ

(
h2 − α2h2 + 1

) ≥ 0. Clearly acting as in (50)–(53), when
L∗ ( f (1, 1)) ≥ 0, we get L∗ (

Q−
m1,m2

(1, 1)
) ≥ 0.

Based on the above comments about Gamma function we get (∗∗) ≤ 0. That is
L∗ (

Q−
m1,m2

(x, y)
) ≥ 0, over the critical region of (24).
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Bivariate Right Fractional
Pseudo-Polynomial Monotone
Approximation

George A. Anastassiou

Abstract In this article we deal with the following general two-dimensional prob-
lem: Let f be a two variable continuously differentiable real valued function of a
given order, let L be a linear right fractional mixed partial differential operator and
suppose that L ( f ) ≥ 0 on a critical region. Then for sufficiently large n,m ∈ N , we
can find a sequence of pseudo-polynomials Q∗

n,m in two variables with the property
L
(
Q∗

n,m

) ≥ 0 on this critical region such that f is approximated with rates right frac-
tionally and simultaneously by Q∗

n,m in the uniform norm on the whole domain of f .
This restricted approximation is given via inequalities involving the mixed modulus
of smoothness ωs,q , s, q ∈ N, of highest order integer partial derivative of f .

1 Introduction

The topic of monotone approximation started in [10] has become a major trend in
approximation theory. A typical problem in this subject is: given a positive integer
k, approximate a given function whose kth derivative is ≥0 by polynomials having
this property.

In [3] the authors replaced the kth derivative with a linear differential operator of
order k. We mention this motivating result.

Theorem 1 Let h, k, p be integers, 0 ≤ h ≤ k ≤ p and let f be a real function,
f (p) continuous in [−1, 1] with modulus of continuity ω1

(
f (p), x

)
there. Let a j (x),

j = h, h + 1, ..., k be real functions, defined and bounded on [−1, 1] and assume
ah (x) is either ≥ some number α > 0 or ≤ some number β < 0 throughout [−1, 1].
Consider the operator

L =
k∑

j=h

a j (x)

[
d j

dx j

]
(1)
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16 G.A. Anastassiou

and suppose, throughout [−1, 1],

L ( f ) ≥ 0. (2)

Then, for every integer n ≥ 1, there is a real polynomial Qn (x) of degree ≤ n such
that

L (Qn) ≥ 0 throughout [−1, 1] (3)

and

max−1≤x≤1
| f (x) − Qn (x)| ≤ Cnk−pω1

(
f (p),

1

n

)
, (4)

where C is independent of n or f .

Next let n,m ∈ Z+, Pθ denote the space of algebraic polynomials of degree ≤ θ .
Consider the tensor product spaces Pn ⊗ C ([−1, 1]) , C ([−1, 1]) ⊗ Pm and their
sum Pn ⊗ C ([−1, 1]) + C ([−1, 1]) ⊗ Pm , that is

Pn ⊗ C ([−1, 1]) + C ([−1, 1]) ⊗ Pm (5)

=
⎧
⎨

⎩

n∑

i=0

xi Ai (y) +
m∑

j=0

Bj (x) y
j ; Ai , Bj ∈ C ([−1, 1]) , x, y ∈ [−1, 1]

⎫
⎬

⎭
.

This is the space of pseudo-polynomials of degree ≤ (n,m), first introduced by A.
Marchaud in 1924–1927 (see [7, 8]). Here f (k,l) denotes ∂k+l f

∂xk∂yl , the (k, l)-partial
derivative of f .

In this section we consider the spaceCr,p
(
[−1, 1]2

) = { f : [−1, 1]2 → R; f (k,l)

is continuous for 0 ≤ k ≤ r , 0 ≤ l ≤ p}. Let f ∈ C
(
[−1, 1]2

)
; for δ1, δ2 ≥ 0, define

the mixed modulus of smoothness of order (s, q), s, q ∈ N (see [9], pp. 516–517)
by

ωs,q ( f ; δ1, δ2) ≡ sup
{∣∣

xΔ
s
h1 ◦y Δ

q
h2
f (x, y)

∣∣ : (x, y) , (6)

(x + sh1, y + qh2) ∈ [−1, 1]2 , |hi | ≤ δi , i = 1, 2
}
.

Here

xΔ
s
h1 ◦y Δ

q
h2
f (x, y)

≡
s∑

σ=0

q∑

μ=0

(−1)s+q−σ−μ

(
s
σ

)(
q
μ

)
f (x + σh1, y + μh2) (7)

is a mixed difference of order (s, q) .
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We mention

Theorem 2 (see Gonska [4]) Let r, p ∈ Z+, s, q ∈ N, and f ∈ Cr,p
(
[−1, 1]2

)
. Let

n,m ∈ N with n ≥ max {4 (r + 1) , r + s} and m ≥ max {4 (p + 1) , p + q} . Then
there exists a linear operator Qn,m fromCr,p

(
[−1, 1]2

)
into the space of pseudopoly-

nomials (Pn ⊗ C ([−1, 1]) + C ([−1, 1]) ⊗ Pm) such that

∣∣∣
(
f − Qn,m ( f )

)(k,l)
(x, y)

∣∣∣ (8)

≤ Mr,s · Mp,q (Δn (x))r−k · (Δm (y))p−l · ωs,q
(
f (r,p);Δn (x) ,Δm (y)

)
,

for all (0, 0) ≤ (k, l) ≤ (r, p) , x, y ∈ [−1, 1], where

Δθ (z) =
√
1 − z2

θ
+ 1

θ2
, θ = n,m; z = x, y ∈ [−1, 1] .

The constants Mr,s , Mp,q , are independent of f , (x, y) and (n,m); they depend only
on (r, s), (p, q), respectively.

See also [5], saying that Q(r,p)
n,m ( f ) is continuous on [−1, 1]2 .

The need following result which is an easy consequence of the last theorem (see
[9, p. 517]).

Corollary 3 Let r, p ∈ Z+, s, q ∈ N, and f ∈ Cr,p
(
[−1, 1]2

)
. Let n,m ∈ N with

n ≥ max {4 (r + 1) , r + s} and m ≥ max {4 (p + 1) , p + q} . Then there exists a
pseudopolynomial

Qn,m ≡ Qn,m ( f ) ∈ (Pn ⊗ C ([−1, 1]) + C ([−1, 1]) ⊗ Pm)

such that
∥∥ f (k,l) − Q(k,l)

n,m

∥∥
∞ ≤

·
C

nr−km p−l
· ωs,q

(
f (r,p); 1

n
,
1

m

)
, (9)

for all (0, 0) ≤ (k, l) ≤ (r, p). Here the constant
·
C depends only on r, p, s, q.

Corollary 3 was used in the proof of the main motivational result that follows.

Theorem 4 (see [1]) Let h1, h2, v1, v2, r, p be integers, 0 ≤ h1 ≤ v1 ≤ r , 0 ≤
h2 ≤ v2 ≤ p and let f ∈ Cr,p

(
[−1, 1]2

)
, with f (r,p) having a mixed modulus of

smoothness ωs,q
(
f (r,p); x, y) there, s, q ∈ N. Let αi, j (x, y), i = h1, h1 + 1, ..., v1;

j = h2, h2 + 1, ..., v2 be real-valued functions, defined and bounded in [−1, 1]2 and
suppose αh1h2 is either ≥ α > 0 or ≤ β < 0 throughout [−1, 1]2. Take the operator

L =
v1∑

i=h1

v2∑

j=h2

αi j (x, y)
∂ i+ j

∂xi∂y j
(10)
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and assume, throughout [−1, 1]2 that

L ( f ) ≥ 0. (11)

Then for any integers n,m with n ≥ max {4 (r + 1) , r + s}, m ≥ max{4 (p + 1) ,

p + q}, there exists a pseudopolynomial

Qn,m ∈ (Pn ⊗ C ([−1, 1]) + C ([−1, 1]) ⊗ Pm)

such that L
(
Qm,n

) ≥ 0 throughout [−1, 1]2 and

∥∥ f (k,l) − Q(k,l)
n,m

∥∥
∞ ≤ C

nr−v1mp−v2
· ωs,q

(
f (r,p); 1

n
,
1

m

)
, (12)

for all (0, 0) ≤ (k, l) ≤ (h1, h2). Moreover we get

∥∥ f (k,l) − Q(k,l)
n,m

∥∥
∞ ≤ C

nr−km p−l
· ωs,q

(
f (r,p); 1

n
,
1

m

)
, (13)

for all (h1 + 1, h2 + 1) ≤ (k, l) ≤ (r, p). Also (13) is valid whenever 0 ≤ k ≤ h1,
h2 + 1 ≤ l ≤ p or h1 + 1 ≤ k ≤ r , 0 ≤ l ≤ h2. Here C is a constant independent
of f and n,m. It depends only on r, p, s, q, L .

We are also motivated by [2].
We need

Definition 5 (see [6]) Let [−1, 1]2 ; α1, α2 > 0; α = (α1, α2), f ∈ C
(
[−1, 1]2

)
,

x = (x1, x2), t = (t1, t2) ∈ [−1, 1]2. We define the right mixed Riemann-Liouville
fractional two dimensional integral of order α

(
I α
1− f

)
(x) (14)

:= 1

Γ (α1) Γ (α2)

1∫

x1

1∫

x2

(t1 − x1)
α1−1 (t2 − x2)

α2−1 f (t1, t2) dt1dt2,

with x1, x2 < 1. Notice here that I α
1− (| f |) < ∞.

Definition 6 Let α1, α2 > 0 with �α1 = m1, �α2 = m2, (�· ceiling of the num-
ber). Let here f ∈ Cm1,m2

(
[−1, 1]2

)
. We consider the right Caputo type fractional

partial derivative:

D(α1,α2)
1− f (x)

:= (−1)m1+m2

Γ (m1 − α1) Γ (m2 − α2)
(15)
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·
1∫

x1

1∫

x2

(t1 − x1)
m1−α1−1 (t2 − x2)

m2−α2−1 ∂m1+m2 f (t1, t2)

∂tm1
1 ∂tm2

2

dt1dt2,

∀ x = (x1, x2) ∈ [−1, 1]2, where Γ is the gamma function

Γ (ν) =
∞∫

0

e−t tν−1dt, ν > 0. (16)

We set
D(0,0)

1− f (x) := f (x) , ∀ x ∈ [−1, 1]2 ; (17)

D(m1,m2)
1− f (x) := (−1)m1+m2

∂m1+m2 f (x)

∂xm1
1 ∂xm2

2

, ∀ x ∈ [−1, 1]2 . (18)

Definition 7 We also set

D(0,α2)
1− f (x) := (−1)m2

Γ (m2−α2)

1∫

x2

(t2 − x2)
m2−α2−1 ∂m2 f (x1,t2)

∂t
m2
2

dt2, (19)

D(α1,0)
1− f (x) := (−1)m1

Γ (m1−α1)

1∫

x1

(t1 − x1)
m1−α1−1 ∂m1 f (t1,x2)

∂t
m1
1

dt1, (20)

and

D(m1 ,α2)
1− f (x) := (−1)m2

Γ (m2−α2)

1∫

x2

(t2 − x2)
m2−α2−1 ∂m1+m2 f (x1,t2)

∂x
m1
1 ∂t

m2
2

dt2, (21)

D(α1,m2)
1− f (x) := (−1)m1

Γ (m1−α1)

1∫

x1

(t1 − x1)
m1−α1−1 ∂m1+m2 f (t1,x2)

∂t
m1
1 ∂x

m2
2

dt1. (22)

In this article we extend Theorem 4 to the fractional level. Indeed here L is
replaced by L , a linear right Caputo fractional mixed partial differential operator.
Now the monotonicity property holds true only on the critical square of [−1, 0]2.
Simultaneously fractional convergence remains true on all of [−1, 1]2 .
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2 Main Result

We present

Theorem 8 Let h1, h2, v1, v2, r, p be integers, 0 ≤ h1 ≤ v1 ≤ r , 0 ≤ h2 ≤ v2 ≤ p
and let f ∈ Cr,p

(
[−1, 1]2

)
, with f (r,p) having a mixed modulus of smoothness

ωs,q
(
f (r,p); x, y) there, s, q ∈ N. Letαi j (x, y), i = h1, h1 + 1, ..., v1; j = h2, h2 +

1, ..., v2 be real valued functions, defined and bounded in [−1, 1]2 and suppose
αh1h2 is either≥ α > 0 or≤ β < 0 throughout [−1, 0]2. Assume that h1 + h2 = 2γ ,
γ ∈ Z+.Here n,m ∈ N : n ≥ max {4 (r + 1) , r + s}, m ≥ max {4 (p + 1, p + q)}.
Set

li j := sup
(x,y)∈[−1,1]2

∣∣α−1
h1h2 (x, y) αi j (x, y)

∣∣ < ∞, (23)

for all h1 ≤ i ≤ v1, h2 ≤ j ≤ v2. Let α1i , α2 j > 0, α1i , α2 j /∈ N, with �α1i = i ,⌈
α2 j
⌉ = j , i = 0, 1, ..., r; j = 0, 1, ..., p, (�· ceiling of the number), α10 = 0,

α20 = 0.
Consider the right fractional bivariate differential operator

L :=
v1∑

i=h1

v2∑

j=h2

αi j (x, y) D
(α1i ,α2 j)
1− . (24)

Assume L f (x, y) ≥ 0, on [−1, 0]2 . Then there exists

Q∗
n,m ≡ Q∗

n,m ( f ) ∈ (Pn ⊗ C ([−1, 1]) + C ([−1, 1]) ⊗ Pm)

such that LQ∗
n,m (x, y) ≥ 0, on [−1, 0]2 . Furthermore it holds:

1.

∥∥∥D(α1i ,α2 j)
1− ( f ) − D(α1i ,α2 j)

1− Q∗
n,m

∥∥∥∞,[−1,1]2

≤
·
C2(i+ j)−(α1i+α2 j)

Γ (i − α1i + 1) Γ
(
j − α2 j + 1

)
nr−im p− j

· ωs,q

(
f (r,p); 1

n
,
1

m

)
,(25)

where
·
C is a constant that depends only on r, p, s, q; (h1 + 1, h2 + 1) ≤ (i, j) ≤

(r, p) , or 0 ≤ i ≤ h1, h2 + 1 ≤ j ≤ p, or h1 + 1 ≤ i ≤ r , 0 ≤ j ≤ h2,
2.

∥∥∥D(α1i ,α2 j)
1− ( f ) − D(α1i ,α2 j)

1− Q∗
n,m

∥∥∥∞,[−1,1]2

≤ ci j
nr−v1mp−v2

· ωs,q

(
f (r,p); 1

n
,
1

m

)
, (26)
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for (1, 1) ≤ (i, j) ≤ (h1, h2), where ci j = ·
CAi j , with

Ai j

:=
⎧
⎨

⎩

⎡

⎣
v1∑

τ=h1

v2∑

μ=h2

lτμ2(τ+μ)−(α1τ +α2μ)

Γ (τ − a1τ + 1) Γ
(
μ − α2μ + 1

)

⎤

⎦ (27)

·
(
h1−i∑

k=0

2h1−α1i−k

k!Γ (h1 − α1i − k + 1)

)

·
(
h2− j∑

λ=0

2h2−α2 j−λ

λ!Γ (h2 − α2 j − λ + 1
)

)

+ 2(i+ j)−(α1i+α2 j)

Γ (i − α1i + 1) Γ
(
j − α2 j + 1

)

}

,

3.
∥∥ f − Q∗

n,m

∥∥
∞,[−1,1]2

≤ c00
nr−v1mp−v2

· ωs,q

(
f (r,p); 1

n
,
1

m

)
, (28)

where c00 := ·
CA00, with

A00 := 1

h1!h2!

⎛

⎝
v1∑

τ=h1

v2∑

μ=h2

lτμ

2(τ+μ)−(α1τ +α2μ)

Γ (τ − a1τ + 1) Γ
(
μ − α2μ + 1

)

⎞

⎠+ 1,

4.

∥∥∥D(0,α2 j)
1− ( f ) − D(0,α2 j)

1− Q∗
n,m

∥∥∥∞,[−1,1]2

≤ c0 j
nr−v1mp−v2

· ωs,q

(
f (r,p); 1

n
,
1

m

)
, (29)

where c0 j = ·
CA0 j , j = 1, ..., h2, with

A0 j

:=
⎡

⎣ 1

h1!

⎛

⎝
v1∑

τ=h1

v2∑

μ=h2

lτμ

2(τ+μ)−(α1τ +α2μ)

Γ (τ − a1τ + 1) Γ
(
μ − α2μ + 1

)

⎞

⎠ (30)

·
(
h2− j∑

λ=0

2h2−α2 j−λ

λ!Γ (h2 − α2 j − λ + 1
)

)

+ 2 j−α2 j

Γ
(
j − α2 j + 1

)

]

,
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5.
∥∥∥D(α1i ,0)

1− ( f ) − D(α1i ,0)
1− Q∗

n,m

∥∥∥∞,[−1,1]2

≤ ci0
nr−v1mp−v2

· ωs,q

(
f (r,p); 1

n
,
1

m

)
, (31)

where ci0 = ·
CAi0, i = i, ..., h1, with

Ai0

:=
⎡

⎣ 1

h2!

⎛

⎝
v1∑

τ=h1

v2∑

μ=h2

lτμ

2(τ+μ)−(α1τ +α2μ)

Γ (τ − a1τ + 1) Γ
(
μ − α2μ + 1

)

⎞

⎠ (32)

·
(
h1−i∑

k=0

2h1−α1i−k

k!Γ (h1 − α1i − k + 1)

)

+ 2i−α1i

Γ (i − α1i + 1)

]

.

Proof By Corollary 3 there exists

Qn,m ≡ Qn,m ( f ) ∈ (Pn ⊗ C ([−1, 1]) + C ([−1, 1]) ⊗ Pm)

such that
∥∥ f (i, j) − Q(i, j)

n,m

∥∥
∞ ≤

·
C

nr−im p− j
· ωs,q

(
f (r,p); 1

n
,
1

m

)
, (33)

for all (0, 0) ≤ (i, j) ≤ (r, p), while Qn,m ∈ Cr,p ([−1, 1])2. Here
·
C depends only

on r, p, s, q, where n ≥ max {4 (r + 1) , r + s} and m ≥ max {4 (p + 1) , p + q},
with r, p ∈ Z+, s, q ∈ N, f ∈ Cr,p

(
[−1, 1]2

)
. Indeed by [5] we have that Q(r,p)

n,m is
continuous on [−1, 1]2 . We observe the following (i = 1, ..., r; j = 1, ..., p)

∣
∣∣D(α1i ,α2 j)

1− f (x1, x2) − D(α1i ,α2 j)
1− Qn,m (x1, x2)

∣
∣∣

= 1

Γ (i − α1i ) Γ
(
j − α2 j

)

∣∣∣∣∣
∣

1∫

x1

1∫

x2

(t1 − x1)
i−α1i−1 (t2 − x2)

j−α2 j−1 (34)

·
(

∂ i+ j f (t1, t2)

∂t i1∂t
j
2

− ∂ i+ j Qn,m (t1, t2)

∂t i1∂t
j
2

)

dt1dt2

∣∣
∣∣∣

≤ 1

Γ (i − α1i ) Γ
(
j − α2 j

)

1∫

x1

1∫

x2

(t1 − x1)
i−α1i−1 (t2 − x2)

j−α2 j−1 (35)
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·
∣∣
∣∣∣
∂ i+ j f (t1, t2)

∂t i1∂t
j
2

− ∂ i+ j Qn,m (t1, t2)

∂t i1∂t
j
2

∣∣
∣∣∣
dt1dt2

(9)≤ 1

Γ (i − α1i ) Γ
(
j − α2 j

) (36)

·
⎛

⎝
1∫

x1

1∫

x2

(t1 − x1)
i−α1i−1 (t2 − x2)

j−α2 j−1

⎞

⎠

·
·
C

nr−im p− j
· ωs,q

(
f (r,p); 1

n
,
1

m

)

= 1

Γ (i − α1i ) Γ
(
j − α2 j

)
(1 − x1)

i−α1i

i − α1i

(1 − x2)
j−α2 j

j − α2 j

·
C

nr−im p− j
(37)

· ωs,q

(
f (r,p); 1

n
,
1

m

)

= (1 − x1)
i−α1i

Γ (i − α1i + 1)

(1 − x2)
j−α2 j

Γ
(
j − α2 j + 1

)

·
C

nr−im p− j
ωs,q

(
f (r,p); 1

n
,
1

m

)
.

That is there exists Qn,m :

∣∣
∣D(α1i ,α2 j)

1− f (x1, x2) − D(α1i ,α2 j)
1− Qn,m (x1, x2)

∣∣
∣ (38)

≤ (1 − x1)
i−α1i (1 − x2)

j−α2 j

Γ (i − α1i + 1) Γ
(
j − α2 j + 1

)

·
C

nr−im p− j
· ωs,q

(
f (r,p); 1

n
,
1

m

)
,

i = 1, ..., r, j = 1, ..., p, ∀ (x1, x2) ∈ [−1, 1]2 .

We proved there exists Qn,m such that

∥∥∥D(α1i ,α2 j)
1− ( f ) − D(α1i ,α2 j)

1− Q∗
n,m

∥∥∥∞
(39)

≤ 2(i+ j)−(α1i+α2 j)
·
C

Γ (i − α1i + 1) Γ
(
j − α2 j + 1

)
nr−im p− j

ωs,q

(
f (r,p); 1

n
,
1

m

)
,

i = 0, 1, ..., r, j = 0, 1, ..., p. Define

ρn,m ≡ ·
Cωs,q

(
f (r,p); 1

n
,
1

m

)
(40)
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·
⎡

⎣
v1∑

i=h1

v2∑

j=h2

(

li j
2(i+ j)−(α1i+α2 j)

Γ (i − a1i + 1) Γ
(
j − α2 j + 1

)ni−rm j−p

)⎤

⎦ .

I. Suppose, throughout [−1, 0]2 , αh1h2 (x, y) ≥ α > 0. Let Q∗
n,m (x, y), (x, y) ∈

[−1, 1]2, as in (39), so that

∥∥∥∥D
(α1i ,α2 j)
1−

(
f (x, y) + ρn,m

xh1

h1!
yh2

h2!
)

− D(α1i ,α2 j)
1− Q∗

n,m (x, y)

∥∥∥∥∞

≤ 2(i+ j)−(α1i+α2 j)
·
C

Γ (i − α1i + 1) Γ
(
j − α2 j + 1

)
nr−im p− j

ωs,q

(
f (r,p); 1

n
,
1

m

)
(41)

= : Ti j ,

i = 0, 1, ..., r; j = 0, 1, ..., p.
If (h1 + 1, h2 + 1) ≤ (i, j) ≤ (r, p), or 0 < i ≤ h1, h2 + 1 ≤ j ≤ p, or h1 +

1 ≤ i ≤ r , 0 < j ≤ h2 we get from the last

∥
∥∥D(α1i ,α2 j)

1− ( f ) − D(α1i ,α2 j)
1− Q∗

n,m

∥
∥∥∞

(42)

≤ 2(i+ j)−(α1i+α2 j)
·
C

Γ (i − α1i + 1) Γ
(
j − α2 j + 1

)
nr−im p− j

ωs,q

(
f (r,p); 1

n
,
1

m

)
,

proving (25).
If (0, 0) < (i, j) ≤ (h1, h2), we get

∥∥∥∥D
(α1i ,α2 j)
1− f (x, y) + ρn,mD

α1i
1−

(
xh1

h1!
)
D

α2 j

1−

(
yh2

h2!
)

−D(α1i ,α2 j)
1− Q∗

n,m (x, y)
∥∥∥∞

≤ Ti j .
(43)

That is for i = 1, ..., h1; j = 1, ..., h2, we obtain

∥∥
∥∥∥
D(α1i ,α2 j)

1− f (x, y) + ρn,m

(

(−1)h1
h1−i∑

k=0

(−1)k (1 − x)h1−α1i−k

k!Γ (h1 − α1i − k + 1)

)

·
(

(−1)h2
h2− j∑

λ=0

(−1)λ (1 − y)h2−α2 j−λ

λ!Γ (h2 − α2 j − λ + 1
)

)

− D(α1i ,α2 j)
1− Q∗

n,m (x, y)

∥∥∥∥∥
∞

≤ Ti j . (44)
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Hence for (1, 1) ≤ (i, j) ≤ (h1, h2), we have

∥∥
∥D(α1i ,α2 j)

1− f − D(α1i ,α2 j)
1− Q∗

n,m

∥∥
∥∞

≤ ρn,m

(
h1−i∑

k=0

2h1−α1i−k

k!Γ (h1 − α1i − k + 1)

)

(45)

·
(
h2− j∑

λ=0

2h2−α2 j−λ

λ!Γ (h2 − α2 j − λ + 1
)

)

+ Ti j

= ·
Cωs,q

(
f (r,p); 1

n
,
1

m

)
(46)

·
⎡

⎣
v1∑

i=h1

v2∑

j=h2

li j
2(i+ j)−(α1i+α2 j)

Γ
(
i − α1i + 1

)
Γ
(
j − α2 j + 1

)
1

nr−i

1

mp− j

⎤

⎦

(
h1−i∑

k=0

2h1−α1i−k

k!Γ (h1 − α1i − k + 1)

)(
h2− j∑

λ=0

2h2−α2 j−λ

λ!Γ (h2 − α2 j − λ + 1
)

)

+ 2(i+ j)−(α1i+α2 j)
·
Cωs,q

(
f (r,p); 1

n ,
1
m

)

Γ (i − α1i + 1) Γ
(
j − α2 j + 1

)
nr−im p− j

≤ ·
Cωs,q

(
f (r,p); 1

n
,
1

m

)
1

nr−v1mp−v2
Ai j , (47)

where

Ai j

:=
⎧
⎨

⎩

⎡

⎣
v1∑

i=h1

v2∑

j=h2

li j
2(i+ j)−(α1i+α2 j)

Γ
(
i − α1i + 1

)
Γ
(
j − α2 j + 1

)

⎤

⎦ (48)

·
(
h1−i∑

k=0

2h1−α1i−k

k!Γ (h1 − α1i − k + 1)

)(
h2− j∑

λ=0

2h2−α2 j−λ

λ!Γ (h2 − α2 j − λ + 1
)

)

+ 2(i+ j)−(α1i+α2 j)

Γ (i − α1i + 1) Γ
(
j − α2 j + 1

)

}

.

(Set ci j := ·
CAi j )

We proved, for (1, 1) ≤ (i, j) ≤ (h1, h2), that

∥∥∥D(α1i ,α2 j)
1− f − D(α1i ,α2 j)

1− Q∗
n,m

∥∥∥∞
≤ ci j

nr−v1mp−v2
ωs,q

(
f (r,p); 1

n
,
1

m

)
. (49)
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So that (26) is established.
When i = j = 0 from (41) we obtain

∥∥∥
∥ f (x, y) + ρn,m

xh1

h1!
yh2

h2! − Q∗
n,m (x, y)

∥∥∥
∥∞

≤
·
C

nrm p
ωs,q

(
f (r,p); 1

n
,
1

m

)
. (50)

Hence

∥∥ f − Q∗
n,m

∥∥
∞ ≤ ρn,m

h1!h2! +
·
C

nrm p
ωs,q

(
f (r,p); 1

n
,
1

m

)
(51)

=
·
C

h1!h2!ωs,q

(
f (r,p); 1

n
,
1

m

)
(52)

·
⎡

⎣
v1∑

i=h1

v2∑

j=h2

li j
2(i+ j)−(α1i+α2 j)

Γ
(
i − α1i + 1

)
Γ
(
j − α2 j + 1

)
1

nr−i

1

mp− j

⎤

⎦

+
·
C

nrm p
ωs,q

(
f (r,p); 1

n
,
1

m

)

≤
·
Cωs,q

(
f (r,p); 1

n ,
1
m

)

nr−v1mp−v2
A00, (53)

where

A00 :=
⎡

⎣ 1

h1!h2!
v1∑

i=h1

v2∑

j=h2

li j2
(i+ j)−(α1i+α2 j)

Γ
(
i − α1i + 1

)
Γ
(
j − α2 j + 1

) + 1

⎤

⎦ . (54)

(Set c00 = ·
CA00).

Then
∥∥ f − Q∗

n,m

∥∥
∞ ≤ c00

nr−v1mp−v2
ωs,q

(
f (r,p); 1

n
,
1

m

)
. (55)

So that (28) is established.
Next case of i = 0, j = 1, ..., h2, from (41) we get
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∥∥
∥∥∥
D(0,α2 j)

1− f (x, y) + ρn,m
xh1
h1!

(

(−1)h2
h2− j∑

λ=0

(−1)λ (1 − y)h2−α2 j−λ

λ!Γ (h2 − α2 j − λ + 1
)

)

−D(0,α2 j)
1− Q∗

n,m (x, y)
∥∥∥∞

≤ T0 j .

(56)

Then
∥∥
∥D(0,α2 j)

1− f − D(0,α2 j)
1− Q∗

n,m

∥∥
∥∞

≤ ρn,m

h1!

(
h2− j∑

λ=0

2h2−α2 j−λ

λ!Γ (h2 − α2 j − λ + 1
)

)

+ T0 j (57)

=
·
C

h1!ωs,q

(
f (r,p); 1

n
,
1

m

)
(58)

·
⎡

⎣
v1∑

i=h1

v2∑

j=h2

li j
2(i+ j)−(α1i+α2 j)

Γ
(
i − α1i + 1

)
Γ
(
j − α2 j + 1

)
1

nr−i

1

mp− j

⎤

⎦

·
(
h2− j∑

λ=0

2h2−α2 j−λ

λ!Γ (h2 − α2 j − λ + 1
)

)

+ 2 j−α2 j
·
C

Γ
(
j − α2 j + 1

)
nrm p− j

ωs,q

(
f (r,p); 1

n
,
1

m

)

≤
·
Cωs,q

(
f (r,p); 1

n ,
1
m

)

nr−v1mp−v2
A0 j , (59)

where

A0 j

:=
⎡

⎣ 1

h1!

⎛

⎝
v1∑

i=h1

v2∑

j=h2

li j
2(i+ j)−(α1i+α2 j)

Γ
(
i − α1i + 1

)
Γ
(
j − α2 j + 1

)

⎞

⎠ (60)

·
(
h2− j∑

λ=0

2h2−α2 j−λ

λ!Γ (h2 − α2 j − λ + 1
)

)

+ 2 j−α2 j

Γ
(
j − α2 j + 1

)

]

.

(Set c0 j := ·
CA0 j )

We proved that (case of i = 0, j = 1, ..., h2)

∥∥
∥D(0,α2 j)

1− f − D(0,α2 j)
1− Q∗

n,m

∥∥
∥∞

≤ c0 j
nr−v1mp−v2

ωs,q

(
f (r,p); 1

n
,
1

m

)
. (61)
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establishing (29).
Similarly we get for i = 1, ..., h1, j = 0, that

∥∥∥D(α1i ,0)
1− f − D(α1i ,0)

1− Q∗
n,m

∥∥∥∞
≤ ci0

nr−v1mp−v2
ωs,q

(
f (r,p); 1

n
,
1

m

)
, (62)

where ci0 := ·
CAi0, with

Ai0

:=
⎡

⎣ 1

h2!

⎛

⎝
v1∑

i=h1

v2∑

j=h2

li j
2(i+ j)−(α1i+α2 j)

Γ
(
i − α1i + 1

)
Γ
(
j − α2 j + 1

)

⎞

⎠ (63)

·
(
h1−i∑

k=0

2h1−α1i−k

k!Γ (h1 − α1i − k + 1)

)

+ 2i−α1i

Γ (i − α1i + 1)

]

,

deriving (31). So if (x, y) ∈ [−1, 0]2, then

α−1
h1h2 (x, y) L

(
Q∗

n,m (x, y)
)

(64)

=α−1
h1h2 (x, y) L ( f (x, y)) + ρn,m

(1 − x)h1−α1i

Γ (h1 − α1i + 1)

(1 − y)h2−α2 j

Γ
(
h2 − α2 j + 1

) (65)

+
v1∑

i=h1

v2∑

j=h2

α−1
h1h2 (x, y) αi j (x, y)

·
[
D(α1i ,α2 j)

1− Q∗
n,m (x, y) − D(α1i ,α2 j)

1− f (x, y) − ρn,mD
(α1i ,α2 j)
1−

(
xh1

h1!
yh2

h2!
)]

(41)≥ ρn,m
(1 − x)h1−α1i

Γ (h1 − α1i + 1)

(1 − y)h2−α2 j

Γ
(
h2 − α2 j + 1

) (66)

−
⎡

⎣
v1∑

i=h1

v2∑

j=h2

li j
2(i+ j)−(α1i+α2 j)

Γ (i−α1i+1)Γ ( j−α2 j+1)

·
C

nr−im p− j
ωs,q

(
f (r,p); 1

n
,
1

m

)⎤

⎦
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= ρn,m

[
(1 − x)h1−α1i

Γ (h1 − α1i + 1)

(1 − y)h2−α2 j

Γ
(
h2 − α2 j + 1

) − 1

]

(67)

≥ ρn,m

[
1

Γ (h1 − α1i + 1) Γ
(
h2 − α2 j + 1

) − 1

]

= ρn,m

[
1 − Γ (h1 − α1i + 1) Γ

(
h2 − α2 j + 1

)

Γ (h1 − α1i + 1) Γ
(
h2 − α2 j + 1

)

]

≥ 0. (68)

Explanation: we have that Γ (1) = 1, Γ (2) = 1, and Γ is convex on (0,∞)

and positive there, here 0 ≤ h1 − α1h1 , h2 − α2h2 < 1 and 1 ≤ h1 − α1h1 + 1, h2 −
α2h2 + 1 < 2. Thus 0 < Γ

(
h1 − α1h1 + 1

)
, Γ
(
h2 − α2h2 + 1

) ≤ 1, and

0 ≤ Γ
(
h1 − α1h1 + 1

)
Γ
(
h2 − α2h2 + 1

) ≤ 1. (69)

And
1 − Γ

(
h1 − α1h1 + 1

)
Γ
(
h2 − α2h2 + 1

) ≥ 0. (70)

Therefore it holds

L
(
Q∗

n,m (x, y)
) ≥ 0, ∀ (x, y) ∈ [−1, 0]2 . (71)

II. Suppose, throughout [−1, 0]2 , αh1h2 (x, y) ≤ β < 0. Let Q∗∗
n,m (x, y), (x, y) ∈

[−1, 1]2, as in (39), so that

∥∥∥∥D
(α1i ,α2 j)
1−

(
f (x, y) − ρn,m

xh1

h1!
yh2

h2!
)

− D(α1i ,α2 j)
1− Q∗∗

n,m (x, y)

∥∥∥∥∞

≤ 2(i+ j)−(α1i+α2 j)
·
C

Γ (i − α1i + 1) Γ
(
j − α2 j + 1

)
nr−im p− j

ωs,q

(
f (r,p); 1

n
,
1

m

)
, (72)

i = 0, 1, ..., r, j = 0, 1, ..., p.
As earlier we produce the same convergence inequalities (25), (26), (28), (29),

and (31). So for (x, y) ∈ [−1, 0]2 we get
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α−1
h1h2 (x, y) L

(
Q∗∗

n,m (x, y)
)

= α−1
h1h2 (x, y) L ( f (x, y)) − ρn,m

(1 − x)h1−α1i

Γ (h1 − α1i + 1)

(1 − y)h2−α2 j

Γ
(
h2 − α2 j + 1

) (73)

+
v1∑

i=h1

v2∑

j=h2

α−1
h1h2 (x, y) αi j (x, y)

·
[
D(α1i ,α2 j)

1− Q∗∗
n,m (x, y) − D(α1i ,α2 j)

1− f (x, y) + ρn,mD
(α1i ,α2 j)
1−

(
xh1

h1!
yh2

h2!
)]

(71)≤ −ρn,m
(1 − x)h1−α1i

Γ (h1 − α1i + 1)

(1 − y)h2−α2 j

Γ
(
h2 − α2 j + 1

) (74)

+
⎡

⎣
v1∑

i=h1

v2∑

j=h2

li j
2(i+ j)−(α1i+α2 j )

Γ (i − α1i + 1) Γ
(
j − α2 j + 1

)

·
C

nr−im p− j
ωs,q

(
f (r,p); 1

n
,
1

m

)
⎤

⎦

= ρn,m

[

1 − (1 − x)h1−α1i

Γ (h1 − α1i + 1)

(1 − y)h2−α2 j

Γ
(
h2 − α2 j + 1

)

]

= ρn,m

[
Γ (h1 − α1i + 1) Γ

(
h2 − α2 j + 1

)− (1 − x)h1−α1i (1 − y)h2−α2 j

Γ (h1 − α1i + 1) Γ
(
h2 − α2 j + 1

)

]

≤ ρn,m

[
1 − (1 − x)h1−α1i (1 − y)h2−α2 j

Γ (h1 − α1i + 1) Γ
(
h2 − α2 j + 1

)

]

≤ 0. (75)

Explanation: for x, y ∈ [−1, 0] we get that 1 − x, 1 − y ≥ 1 , and 0 ≤ h1 − α1h1 ,

h2 − α2h2 < 1. Hence (1 − x)h1−α1h1 , (1 − y)h2−α2h2 ≥ 1, and then

(1 − x)h1−α1h1 (1 − y)h2−α2h2 ≥ 1,

so that
1 − (1 − x)h1−α1h1 (1 − y)h2−α2h2 ≤ 0. (76)

Hence again
L
(
Q∗∗

n,m (x, y)
) ≥ 0, for (x, y) ∈ [−1, 0]2 . (77)
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Nonlinear Approximation: q-Bernstein
Operators of Max-Product Kind

Oktay Duman

Abstract In this paper, we construct a certain family of nonlinear operators in order
to approximate a function by these nonlinear operators. For construction, we use the
linear q-Bernstein polynomials and also the max-product algebra.

1 Introduction

The main motivation for this study is the papers by Bede et al. [4, 5]. We construct
a certain family of max-product type approximating operators based on q-integers
having the property of pseudo-linearity which is a weaker notion than the classical
linearity.

We first recall some basic concepts from approximating operators. The classical
Bernstein polynomial and its q-generalization are given respectively by

Bn( f ; x) =
n∑

k=0

(
n

k

)
f

(
k

n

)
xk(1 − x)n−k (1)

and

Bn( f ; x; q) =
n∑

k=0

[
n
k

]

q

f

( [k]q
[n]q

)
xk

n−k−1∏

s=0

(1 − qsx), (2)

where n ∈ N, f ∈ C[0, 1], x ∈ [0, 1], q ∈ (0, 1] (see [16, 17]). Recall that, a q-
integer is given by

[n]q := 1 − qn

1 − q
if q �= 1, and [n]q = n if q = 1;
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and the q-factorial is defined by

[n]q ! := [n]q ...[2]q [1]q with [0]q ! := 1;

and also the q-binomial coefficient is defined by

[
n
k

]

q

:= [n]q !
[k]q ![n − k]q ! .

It is well-known that the polynomials in (1) and (2) are positive and linear, and so their
approximation properties can easily be obtain from the classical Korovkin theorem
(see [15]). However, in recent years, a nonlinear modification of the classical Bern-
stein polynomial has been introduced by Bede and Gal [5] (see, also, [4]). Although,
of course, the Korovkin theorem fails for this nonlinear operator, they showed in [5]
that the new operator has a similar approximation behavior to the classical Bern-
stein polynomial. Later, they applied this idea for other well-known approximating
operators, such as, Favard-Szá sz-Mirakjan operator, Meyer-König and Zeller oper-
ator, Baskakov operator, Bleimann-Butzer-Hahn operator, and etc. (see [1, 3, 7, 8]).
These studies provide an important improvement on the approximation theory due
to nonlinearity of operators. However, so far, there is no such an improvement on the
q-Bernstein polynomial given by (2). The aim of the present paper is to fill in this
gap in the literature.

This paper is organized as follows. In the second section, we construct a nonlinear
q-Bernstein operator of max-product kind, and in the third section, we obtain an error
estimation for these operators. In the last section, we give an statistical approximation
theorem and discuss some concluding remarks.

2 Construction of the Operators

In this section, we construct a nonlinear approximation operator by modifying the
q-Bernstein polynomial given by (2). For the construction, we mainly use the idea
by Bede et al. in [4, 5].

We consider the operations “∨” (maximum) and “·” (product) over the interval
[0,+∞). Then, ([0,+∞),∨, ·) has a semiring structure and is called “max-product
algebra” (see, for instance, [5, 6]). Now let

C+[0, 1] := { f : [0, 1] → [0,+∞) : f is continuous on [0, 1]}.

Considering the identity

n∑

k=0

(
n

k

)
xk(1 − x)n−k = 1,
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the classical Bernstein polynomial can be written in the form that

Bn( f ; x) =
∑n

k=0

(n
k

)
f
(
k
n

)
xk(1 − x)

∑n
k=0

(n
k

)
xk(1 − x)n−k

.

In this case, replacing the sum operator
∑

by the maximum operator ∨, Bede and
Gal [5] (see, also, [4]) introduce the following nonlinear approximation operators

B(M)
n ( f ; x) =

∨n
k=0

(n
k

)
f
(
k
n

)
xk(1 − x)n−k

∨n
k=0

(n
k

)
xk(1 − x)n−k

( f ∈ C+[0, 1], n ∈ N). (3)

Now, by a similar idea, we define our operators as follows:

B(M)
n ( f ; x; q) =

∨n
k=0 pn,k(x; q) f

( [k]q
[n]q

)

∨n
k=0 pn,k(x; q)

, (4)

where n ∈ N, f ∈ C+[0, 1], x ∈ [0, 1], q ∈ (0, 1), and pn,k(x; q) is given by

pn,k(x; q) =
[
n
k

]

q

xk
n−k∏

s=1

(1 − qsx). (5)

Here, we assume that the empty product is one. Notice that, in (5), we prefer∏n−k
s=1 (1 − qsx) rather than

∏n−k−1
s=0 (1 − qsx) due to some technical complexity

which comes from the q-calculus. Actually, Lemma 5 and its proof explain why we
need such a preference.Observe thatwhenq → 1−, then our operators B(M)

n ( f ; x; q)

reduce to the operators B(M)
n ( f ; x) given by (3).

It is easy to check that
∨n

k=0 pn,k(x; q) > 0 for all x ∈ [0, 1] and q ∈ (0, 1); and
hence, B(M)

n ( f ; x; q) is well-defined. Also, we see that, for any f ∈ C+[0, 1],

B(M)
n ( f ; 0; q) = f (0).

Also, if f ∈ C+[0, 1] and nondecreasing on [0, 1], then we have

B(M)
n ( f ; 1; q) = f (1).

Indeed, we will see in Lemma 5 (the case of j = n) that

n∨

k=0

pn,k(1; q) = pn,n(1; q) = 1,
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which implies

B(M)
n ( f ; 1; q) =

n∨

k=0

pn,k(1; q) f

( [k]q
[n]q

)
.

Since f is nondecreasing on [0, 1], we observe that

pn,k(1; q) f

( [k]q
[n]q

)
≤ pn,n(1; q) f

( [n]q
[n]q

)
= f (1),

which gives B(M)
n ( f ; 1; q) = f (1).But this property is not true for all f ∈ C+[0, 1].

For example, consider the function f (x) = 1 − x on [0, 1]. Then, for any q ∈ (0, 1),
we observe that

B(M)
n ( f ; 1; q) > pn,0(1; q) f (0) =

n∏

s=1

(1 − qs) > 0 = f (1).

If f ∈ C+[0, 1], then it is not hard to see that B(M)
n ( f ; ·; q) ∈ C+[0, 1] for any

n ∈ N and q ∈ (0, 1); and hence B(M)
n ( f ; x; q) is a positive operator. However, we

will see that it is not linear over C+[0, 1].
Now let f, g ∈ C+[0, 1]. Then, by the definition, we see that

f ≤ g ⇒ B(M)
n ( f ; x; q) ≤ B(M)

n (g; x; q). (6)

So, B(M)
n ( f ; x; q) is increasing with respect to f ∈ C+[0, 1]. Also, for any f, g ∈

C+[0, 1], we have

B(M)
n ( f + g; x; q) ≤ B(M)

n ( f ; x; q) + B(M)
n (g; x; q). (7)

We can find functions f and g such that the above inequality is strict. For example,
define f (t) = 1 − t and g(t) = t for all t ∈ [0, 1]. Then, the above facts yield that

B(M)
n ( f + g; 1; q) = B(M)

n (e0; 1; q) = 1(e0(t) := 1),

B(M)
n ( f ; 1; q) > f (1) = 0,

B(M)
n (g; 1; q) = g(1) = 1,

and hence

B(M)
n ( f + g; 1; q) < B(M)

n ( f ; 1; q) + B(M)
n (g; 1; q)

for such f and g. This clearly shows that our operators B(M)
n ( f ; x; q) is not linear

over C+[0, 1].
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As usual, let ω ( f, δ) , δ > 0, denote the modulus of continuity of f ∈ C+[0, 1],
defined by

ω ( f, δ) = max|x−y|≤δ
| f (x) − f (y)| .

Now, using (6), (7), and the fact that B(M)
n (e0; 1; q) = 1, and also applying Corollary

3 in [5] (see alsoCorollary 2.3 in [4]),we immediately obtain the following estimation
for the operators B(M)

n ( f ; x; q).

Corollary 1 For all f ∈ C+[0, 1], n ∈ N, x ∈ [0, 1] and q ∈ (0, 1), we have

∣
∣B(M)

n ( f ; x; q) − f (x)
∣
∣ ≤ 2ω ( f, δn(x; q)) , (8)

where

δn(x; q) := B(M)
n (ϕx ; x; q) with ϕx (t) = |t − x | . (9)

In the next section, after the estimation of B(M)
n (ϕx ; x; q) is computed, we will

give the arranged version of Corollary 1.

3 An Error Estimation

Firstly, we estimate B(M)
n (ϕx ; x; q) with ϕx (t) = |t − x |. To see this we need some

notations and lemmas. In this section, we will mainly use the similar way to [4];
however, we have to adapt all items to the q-calculus. We should note that when
computing all estimations, it is enough to consider x ∈ (0, 1] since B(M)

n ( f ; 0; q) −
f (0) = 0 for any f ∈ C+[0, 1].
For k, j ∈ {0, 1, ..., n} and x ∈

[ [ j]q
[n + 1]q ,

[ j + 1]q
[n + 1]q

]
, we define

Mk,n, j (x; q) =
pn,k(x; q)

∣
∣∣∣
[k]q
[n]q − x

∣
∣∣∣

pn, j (x; q)
(10)

and

mk,n, j (x; q) = pn,k(x; q)

pn, j (x; q)
. (11)

In this case, (10) and (11) imply respectively that

k ≥ j + 1 ⇒ Mk,n, j (x; q) =
pn,k(x; q)

( [k]q
[n]q − x

)

pn, j (x; q)
(12)
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and

k ≤ j − 1 ⇒ Mk,n, j (x; q) =
pn,k(x; q)

(
x − [k]q

[n]q
)

pn, j (x; q)
, (13)

where we use the following fact

[ j − 1]q
[n]q <

[ j]q
[n + 1]q .

Now, for k, j ∈ {0, 1, ..., n} with k ≥ j + 2 and x ∈
[ [ j]q
[n + 1]q ,

[ j + 1]q
[n + 1]q

]
, we

define

Mk,n, j (x; q) =
pn,k(x; q)

( [k]q
[n + 1]q − x

)

pn, j (x; q)
(14)

and also; for k, j ∈ {0, 1, ..., n} with k ≤ j − 2 and x ∈
[ [ j]q
[n + 1]q ,

[ j + 1]q
[n + 1]q

]
, we

consider

Mk,n, j (x; q) =
pn,k(x; q)

(
x − [k]q

[n + 1]q
)

pn, j (x; q)
. (15)

Then, we first get the next lemma.

Lemma 2 Let q ∈ (0, 1), j ∈ {0, 1, ..., n} and x ∈
[ [ j]q
[n + 1]q ,

[ j + 1]q
[n + 1]q

]
. Then,

we obtain the following inequalities:
(i) for all k ∈ {0, 1, ..., n} with k ≥ j + 2,

Mk,n, j (x; q) ≤ Mk,n, j (x; q) ≤
(
1 + 2

qn+1

)
Mk,n, j (x; q).

(i i) for all k ∈ {0, 1, ..., n} with k ≤ j − 2,

Mk,n, j (x; q) ≤ Mk,n, j (x; q) ≤
(
1 + 2

qn

)
Mk,n, j (x; q).

Proof (i) The inequality Mk,n, j (x; q) ≤ Mk,n, j (x; q) follows from (12) and (14),
immediately. Also, using the fact that [n + 1]q = [n]q + qn , we have
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Mk,n, j (x; q)

Mk,n, j (x; q)
=

[k]q
[n]q − x

[k]q
[n + 1]q − x

≤
[k]q
[n]q − [ j]q

[n + 1]q
[k]q

[n + 1]q − [ j + 1]q
[n + 1]q

= [k]q [n + 1]q − [n]q [ j]q
[n]q

([k]q − [ j + 1]q
) = [k]q [n]q − [n]q [ j]q + qn[k]q

[n]q
([k]q − [ j + 1]q

)

≤ [k]q [n]q − [n]q [ j]q + qn[n]q
[n]q

([k]q − [ j + 1]q
) = [k]q − [ j]q + qn

[k]q − [ j + 1]q
= [k]q − [ j]q + qn

[k]q − [ j]q − q j
= 1 + qn + q j

[k]q − [ j]q − q j

≤ 1 + 2

[k]q − [ j]q − q j
.

Now using the facts that k ≥ j + 2 and j ≤ n we get

[k]q − [ j]q − q j ≥ [ j + 2]q − [ j]q − q j

= q j+1

≥ qn+1.

Hence, we obtain that

Mk,n, j (x; q)

Mk,n, j (x; q)
≤ 1 + 2

qn+1
,

which proves (i).
(i i) From (13) and (15), we easily get Mk,n, j (x; q) ≤ Mk,n, j (x; q). Also, using

again the fact that [n + 1]q = [n]q + qn , we observe that

Mk,n, j (x; q)

Mk,n, j (x; q)
=

x − [k]q
[n + 1]q

x − [k]q
[n]q

≤
[ j + 1]q
[n + 1]q − [k]q

[n + 1]q
[ j]q

[n + 1]q − [k]q
[n]q

= [n]q
([ j + 1]q − [k]q

)

[n]q [ j]q − [k]q [n + 1]q = [n]q
([ j + 1]q − [k]q

)

[n]q [ j]q − [k]q [n]q − qn[k]q
≤ [n]q

([ j + 1]q − [k]q
)

[n]q [ j]q − [k]q [n]q − qn[n]q = [ j + 1]q − [k]q
[ j]q − [k]q − qn

= [ j]q − [k]q + q j

[ j]q − [k]q − qn
= 1 + qn + q j

[ j]q − [k]q − qn

≤ 1 + 2

[ j]q − [k]q − qn
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Since k ≤ j − 2 and j ≤ n, we may write that

[ j]q − [k]q − qn ≥ [ j]q − [ j − 2]q − qn

= q j−2 + q j−1 − qn

≥ qn

Therefore, we get

Mk,n, j (x; q)

Mk,n, j (x; q)
≤ 1 + 2

qn
,

which completes the proof.

Lemma 3 Let q ∈ (0, 1). Then, for all k, j ∈ {0, 1, ..., n} and

x ∈
[ [ j]q
[n + 1]q ,

[ j + 1]q
[n + 1]q

]
,

we get

mk,n, j (x; q) ≤ 1.

Proof We consider two possible cases: (a) k ≥ j and (b) k < j.

Case (a): Let k ≥ j. Since h(x) = 1 − qn−k x

x
is nonincreasing on the interval

[ [ j]q
[n + 1]q ,

[ j + 1]q
[n + 1]q

]
, it follows from (11) that

mk,n, j (x; q)

mk+1,n, j (x; q)
= [k + 1]q

[n − k]q · 1 − qn−k x

x

≥ [k + 1]q
[n − k]q ·

1 − qn−k [ j + 1]q
[n + 1]q

[ j + 1]q
[n + 1]q

= [k + 1]q
[n − k]q · [n + 1]q − qn−k[ j + 1]q

[ j + 1]q
≥ [k + 1]q

[ j + 1]q · [n + 1]q − qn−k[k + 1]q
[n − k]q

Since [k + 1]q ≥ [ j + 1]q , we get
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mk,n, j (x; q)

mk+1,n, j (x; q)
≥ [n + 1]q − qn−k[k + 1]q

[n − k]q
= 1 − qn+1 − qn−k(1 − qk+1)

1 − qn−k

= 1.

Then, we conclude that

1 = m j,n, j (x; q) ≥ m j+1,n, j (x; q) ≥ m j+2,n, j (x; q) ≥ ... ≥ mn,n, j (x; q),

which completes the proof of case (a).

Case (b): Let k < j. Since h(x) = x

1 − qn−k+1x
is nondecreasing on the interval

[ [ j]q
[n + 1]q ,

[ j + 1]q
[n + 1]q

]
,

we have

mk,n, j (x; q)

mk−1,n, j (x; q)
= [n − k + 1]q

[k]q .
x

1 − qn−k+1x

≥ [n − k + 1]q
[k]q

[ j]q
[n + 1]q

1 − qn−k+1
[ j]q

[n + 1]q
= [n − k + 1]q

[k]q
[ j]q

[n + 1]q − qn−k+1[ j]q
≥ [ j]q

[k]q .
[n − k + 1]q

[n + 1]q − qn−k+1[k]q
Since [k]q < [ j]q , we may write that

mk,n, j (x; q)

mk−1,n, j (x; q)
≥ [n − k + 1]q

[n + 1]q − qn−k+1[k]q
= 1 − qn−k+1

1 − qn+1 − qn−k+1(1 − qk)

= 1.

Then we easily get

1 = m j,n, j (x; q) ≥ m j−1,n, j (x; q) ≥ m j−2,n, j (x; q) ≥ ... ≥ m0,n, j (x; q).

Therefore, the proof is completed.
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Lemma 4 Let q ∈ (0, 1), j ∈ {0, 1, ..., n} and x ∈
[ [ j]q
[n + 1]q ,

[ j + 1]q
[n + 1]q

]
. Then, we

have:
(i) If k ∈ { j + 2, j + 3, ..., n − 1} and [k + 1]q − √

qk[k + 1]q ≥ [ j + 1]q , then

Mk,n, j (x; q) ≥ Mk+1,n, j (x; q).

(i i) If k ∈ {1, 2, ..., j − 2} and [k]q + √
qk−1[k]q ≤ [ j]q , then

Mk,n, j (x; q) ≥ Mk−1,n, j (x; q).

Proof (i)Let k ∈ { j + 2, j + 3, ..., n − 1} and [k + 1]q − √
qk[k + 1]q ≥ [ j + 1]q .

First we may write that

Mk,n, j (x; q)

Mk+1,n, j (x; q)
= [k + 1]q

[n − k]q · (1 − qn−k x)

x
·

[k]q
[n + 1]q − x

[k + 1]q
[n + 1]q − x

= [k + 1]q
[n − k]q · (1 − qn−k x)

x

([k]q − [n + 1]q x
)

([k + 1]q − [n + 1]q x
) .

Since g1(x) = (1 − qn−k x)

x

([k]q − [n + 1]q x
)

([k + 1]q − [n + 1]q x
) is nonincreasing on the interval

[ [ j]q
[n + 1]q ,

[ j + 1]q
[n + 1]q

]
, we get

Mk,n, j (x; q)

Mk+1,n, j (x; q)
≥ [k + 1]q

[n − k]q ·
1 − qn−k [ j + 1]q

[n + 1]q
[ j + 1]q
[n + 1]q

· [k]q − [ j + 1]q
[k + 1]q − [ j + 1]q

= [n + 1]q − qn−k[ j + 1]q
[n − k]q · [k + 1]q

[ j + 1]q · [k]q − [ j + 1]q
[k + 1]q − [ j + 1]q

≥ [n + 1]q − qn−k[k + 1]q
[n − k]q · [k + 1]q

[ j + 1]q · [k]q − [ j + 1]q
[k + 1]q − [ j + 1]q

= [k + 1]q
[ j + 1]q · [k]q − [ j + 1]q

[k + 1]q − [ j + 1]q .

The hypothesis

[k + 1]q −
√
qk[k + 1]q ≥ [ j + 1]q
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is equivalent to

[k + 1]q −
√

[k + 1]2q − [k]q [k + 1]q ≥ [ j + 1]q ,

which implies that

[k + 1]q
([k]q − [ j + 1]q

) ≥ [ j + 1]q
([k + 1]q − [ j + 1]q

)
.

Hence we obtain that

Mk,n, j (x; q)

Mk+1,n, j (x; q)
≥ 1,

which proves (i).
(i i)Now let k ∈ {1, 2, ..., j − 2} and [k]q + √

qk−1[k]q ≤ [ j]q . Then,we observe
that

Mk,n, j (x; q)

Mk−1,n, j (x; q)
= [n − k + 1]q

[k]q · x

(1 − qn−k+1x)
·
x − [k]q

[n + 1]q
x − [k − 1]q

[n + 1]q
= [n − k + 1]q

[k]q · x

1 − qn−k+1x
· [n + 1]q x − [k]q
[n + 1]q x − [k − 1]q .

Since g2(x) = x

1 − qn−k+1x

[n + 1]q x − [k]q
[n + 1]q x − [k − 1]q is nondecreasing on the interval

[ [ j]q
[n + 1]q ,

[ j + 1]q
[n + 1]q

]
, we get

Mk,n, j (x; q)

Mk−1,n, j (x; q)
≥ [n − k + 1]q

[k]q ·
[ j]q

[n + 1]q
1 − qn−k+1

[ j]q
[n + 1]q

· [ j]q − [k]q
[ j]q − [k − 1]q

= [n − k + 1]q
[n + 1]q − qn−k+1[ j]q · [ j]q

[k]q · [ j]q − [k]q
[ j]q − [k − 1]q

≥ [n − k + 1]q
[n + 1]q − qn−k+1[k]q · [ j]q

[k]q · [ j]q − [k]q
[ j] − [k − 1]q

= [ j]q
[k]q · [ j]q − [k]q

[ j]q − [k − 1]q .

The hypothesis [k]q + √
qk−1[k]q ≤ [ j]q is equivalent to
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[k]q +
√

[k]2q − [k]q [k − 1]q ≤ [ j]q ,

which implies that

[ j]q
([ j]q − [k]q

) ≥ [k]q
([ j]q − [k − 1]q

)
.

Then, we obtain that

Mk,n, j (x; q)

Mk−1,n, j (x; q)
≥ 1,

which completes the proof of (i i).

Lemma 5 Let q ∈ (0, 1), j ∈ {0, 1, ..., n} and x ∈
[ [ j]q
[n + 1]q ,

[ j + 1]q
[n + 1]q

]
. Then,

we have

n∨

k=0

pn,k(x; q) = pn, j (x; q).

Proof Firstly, we claim that, for 0 ≤ k < k + 1 ≤ n,

0 ≤ pn,k+1(x; q) ≤ pn,k(x; q) ⇔ x ∈
[
0,

[k + 1]q
[n + 1]q

]
. (16)

Indeed, by definition, we have

0 ≤ pn,k+1(x; q) ≤ pn,k(x; q)

⇔ 0 ≤
[

n
k + 1

]

q

xk+1
n−k−1∏

s=1

(1 − qsx) ≤
[
n
k

]

q

xk
n−k∏

s=1

(1 − qsx)

⇔ 0 ≤
([

n
k + 1

]

q

+ qn−k
q

[
n
k

]

q

)

x ≤
[
n
k

]

q

.

Since
[

n
k + 1

]

q

+ qn−k
q

[
n
k

]
=

[
n + 1
k + 1

]

q

, (17)

we get

0 ≤ pn,k+1(x; q) ≤ pn,k(x; q) ⇔ 0 ≤ x ≤ [k + 1]q
[n + 1]q ,
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which corrects the claim (16). Hence, if we take k = 0, 1, 2, ..., n − 1, thenwe obtain
that

pn,1(x; q) ≤ pn,0(x; q) ⇔ 0 ≤ x ≤ 1

[n + 1]q ,

pn,2(x; q) ≤ pn,1(x; q) ⇔ 0 ≤ x ≤ [2]q
[n + 1]q ,

...

pn,k+1(x; q) ≤ pn,k(x; q) ⇔ 0 ≤ x ≤ [k + 1]q
[n + 1]q ,

...

pn,n−1(x; q) ≤ pn,n−2(x; q) ⇔ 0 ≤ x ≤ [n − 1]q
[n + 1]q ,

pn,n(x; q) ≤ pn,n−1(x; q) ⇔ 0 ≤ x ≤ [n]q
[n + 1]q .

Using the above facts, we may write that

0 ≤ x ≤ 1

[n + 1]q ⇒ pn,k(x; q) ≤ pn,0(x; q)

(for all k = 0, 1, ..., n),

1

[n + 1]q ≤ x ≤ [2]
[n + 1]q ⇒ pn,k(x; q) ≤ pn,1(x; q)

(for all k = 0, 1, ..., n),

...

[n − 1]q
[n + 1]q ≤ x ≤ [n]q

[n + 1]q ⇒ pn,k(x; q) ≤ pn,n−1(x; q)

(for all k = 0, 1, ..., n),

[n]q
[n + 1]q ≤ x ≤ 1 ⇒ pn,k(x; q) ≤ pn,n(x; q)

(for all k = 0, 1, ..., n).

As a result, we get, for all x ∈
[ [ j]q
[n + 1]q ,

[ j + 1]q
[n + 1]q

]
( j = 0, 1, 2, ..., n), that

pn,k(x; q) ≤ pn, j (x; q) for all k = 0, 1, ..., n,
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which gives

n∨

k=0

pn,k(x; q) = pn, j (x; q).

The proof is completed.

Note that to obtain the equality (17) we need the preference
∏n−k

s=1 (1 − qsx) rather
than

∏n−k−1
s=0 (1 − qsx) in the definition of our operator.

Now, the next result gives an estimation for B(M)
n (ϕx ; x; q) with ϕx (t) = |t − x | .

Corollary 6 Let q ∈ (0, 1). Then, for all x ∈ [0, 1] and n ∈ N, we have

B(M)
n (ϕx ; x; q) ≤ 1 + 2

qn+1

√[n]q
. (18)

Proof By definition, we get

B(M)
n (ϕx ; x; q) =

∨n
k=0 pn,k(x; q)

∣∣∣
∣
[k]q
[n]q − x

∣∣∣
∣

∨n
k=0 pn,k(x; q)

.

Firstly assume that x ∈
[ [ j]q
[n + 1]q ,

[ j + 1]q
[n + 1]q

]
for a fixed j ∈ {0, 1, ..., n}. Then we

have

B(M)
n (ϕx ; x; q) =

n∨

k=0

Mk,n, j (x; q), x ∈
[ [ j]q
[n + 1]q ,

[ j + 1]q
[n + 1]q

]
, (19)

where Mk,n, j (x; q) is the same as in (10). We first claim that, for k = 0, 1, 2, ..., n
and j = 0,

Mk,n,0(x; q) ≤ 1

[n]q forx ∈
[
0,

1

[n + 1]q
]

. (20)

Indeed, if j = k = 0, then x ∈
[
0,

1

[n + 1]q
]

, and so

M0,n,0(x; q) = x ≤ 1

[n + 1]q ≤ 1

[n]q .

Also, if j = 0 and k ∈ {1, 2, ..., n}, then we obtain, for x ∈
[
0,

1

[n + 1]q
]

, that
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Mk,n,0(x; q) =
pn,k(x; q)

( [k]q
[n]q − x

)

pn,0(x; q)

≤
[
n
k

]

q

[k]q
[n]q · xk

(1 − qn−k+1x)...(1 − qnx)

≤
[
n
k

]

q

[k]q
[n]q ·

1

[n + 1]kq(
1 − qn−k+1

[n + 1]q
)

...

(
1 − qn

[n + 1]q
)

=
[
n
k

]

q

[k]q
[n]q · 1

([n + 1]q − qn−k+1
)
...

([n + 1]q − qn
)

= [n]q !
[k]q ![n − k]q !

[k]q
[n]q · 1

([n + 1]q − qn−k+1
)
...

([n + 1]q − qn
)

= [n − k + 1]q
[n + 1]q − qn−k+1

...
[n]q

[n + 1]q − qn
· 1

[k − 1]q !
1

[n]q .

Here, for each m = 1, 2, ..., k, we observe that

[n − k + m]q
[n + 1]q − qn−k+m

≤ 1.

Hence the above inequality gives that

Mk,n,0(x; q) ≤ 1

[k − 1]q !
1

[n]q ≤ 1

[n]q ,

which corrects (20). Now we claim that the inequality

Mk,n, j (x; q) ≤ 1 + 2
qn+1

√
[n + 1]q

(21)

holds for x ∈
[ [ j]q
[n + 1]q ,

[ j + 1]q
[n + 1]q

]
( j = 1, ..., n; k = 0, 1, 2, ..., n). To see this

we consider the following five possible cases:

(a) k ∈ { j − 1, j, j + 1},
(b) k ≥ j + 2 and [k + 1]q − √

qk[k + 1]q < [ j + 1]q ,
(c) k ≥ j + 2 and [k + 1]q − √

qk[k + 1]q ≥ [ j + 1],
(d) k ≤ j − 2 and [k]q + √

qk−1[k]q ≥ [ j]q ,
(e) k ≤ j − 2 and [k]q + √

qk−1[k]q < [ j]q .
Case (a): If k = j − 1, then it follows from Lemma 3 that
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Mj−1,n, j (x; q) = m j−1,n, j (x; q)

(
x − [ j − 1]q

[n]q
)

≤ [ j + 1]q
[n + 1]q − [ j − 1]q

[n]q ≤ [ j + 1]q
[n + 1]q − [ j − 1]q

[n + 1]q
= q j−1(1 + q)

[n + 1]q ≤ 2

[n + 1]q .

If k = j, then, by Lemma 3, we obtain that

Mj,n, j (x; q) =
∣∣∣∣
[ j]q
[n]q − x

∣∣∣∣ ≤ 1

[n + 1]q
If k = j + 1, then using again Lemma 3, we have

Mj+1,n, j (x; q) = m j+1,n, j (x; q)

( [ j + 1]q
[n]q − x

)

≤ [ j + 1]q
[n]q − [ j]q

[n + 1]q ≤ [n + 1]q [ j + 1]q − [n]q [ j]q
[n]q [n + 1]q

= ([n]q + qn)([ j]q + q j ) − [n]q [ j]q
[n]q [n + 1]q

= qn[ j]q + q j [n]q + qn+ j

[n]q [n + 1]q
≤ qn[n]q + q j [n]q + qn+ j [n]q

[n]q [n + 1]q = qn + q j + qn+ j

[n + 1]q
≤ 3

[n + 1]q .

Case (b): Let k ≥ j + 2 and [k + 1]q − √
qk[k + 1]q < [ j + 1]q . Then, we obtain

from Lemma 3 that

Mk,n, j (x; q) = mk,n, j (x; q)

( [k]q
[n + 1]q − x

)
≤ [k]q

[n + 1]q − [ j]q
[n + 1]q .

By hypothesis, since

q[ j]q > q[k]q −
√
qk[k + 1]q ,
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we get

Mk,n, j (x; q) ≤ [k]q
[n + 1]q − [k]q − 1

q

√
qk[k + 1]q

[n + 1]q
=

√
qk−2[k + 1]q
[n + 1]q ≤

√
qk−2[n + 1]q
[n + 1]q .

Since k − 2 ≥ 0, we conclude that

Mk,n, j (x; q) ≤ 1
√[n + 1]q

Also using Lemma 2 (i), we obtain that

Mk,n, j (x; q) ≤ 1 + 2
qn+1

√[n + 1]q
.

Case (c): Let k ≥ j + 2 and [k + 1]q − √
qk[k + 1]q ≥ [ j + 1]q . In this case, we

first show that the function h(k) = [k + 1]q − √
qk[k + 1]q is increasingwith respect

to k. Indeed, we may write that

h(k + 1) − h(k) = [k + 2]q − [k + 1]q +
√
qk[k + 1]q −

√
qk+1[k + 2]q

≥ [k + 2]q − [k + 1]q +
√
qk[k + 1]q −

√
qk[k + 2]q

= qk+1 − qk/2
(√[k + 2]q − √[k + 1]q

)

= qk+1 − qk/2qk+1

√[k + 2]q + √[k + 1]q

= qk+1

(

1 − qk/2

√[k + 2]q + √[k + 1]q

)

≥ qk+1

(

1 − 1√[k + 2]q + √[k + 1]q

)

> 0.

Hence, there exists k̄ ∈ {0, 1, 2, ..., n}, of maximum value, such that

[k̄ + 1]q −
√
qk̄[k̄ + 1]q < [ j + 1]q .
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Let k̃ = k̄ + 1. Then, for all k ≥ k̃, we get

[k + 1]q −
√
qk[k + 1]q ≥ [ j + 1]q .

It is easy to check that k̃ ≥ j + 2. Indeed, observe that h( j + 1) < [ j + 1]q , but
h

(
k̃
)

≥ [ j + 1]q . Since h is increasing, k̃ > j + 1 and so k̃ ≥ j + 2. Also, we get

Mk̃,n, j (x; q) = mk̃,n, j (x; q)

(
[k̃]q

[n + 1]q − x

)

≤ [k̄ + 1]q
[n + 1]q − x

≤ [k̄ + 1]q
[n + 1]q − [ j]q

[n + 1]q .

Since

[ j]q > [k̄ + 1]q − q j −
√
qk̄[k̄ + 1]q ,

we see that

Mk̃,n, j (x; q) ≤ [k̄ + 1]q
[n + 1]q −

[k̄ + 1]q − q j −
√
qk̄[k̄ + 1]q

[n + 1]q

=
q j +

√
qk̄[k̄ + 1]q

[n + 1]q
≤ 1 + √[n + 1]q

[n + 1]q
≤ 2

√[n + 1]q
.

By Lemma 4 (i), we can write that

Mk̃,n, j (x; q) ≥ Mk̃+1,n, j (x; q) ≥ ... ≥ Mn,n, j (x; q).

Hence, we see that, for all k ∈ {k̃, k̃ + 1, k̃ + 2, ..., n}

Mk,n, j (x; q) ≤ 2
√[n + 1]q

.

Thus, for the same k’s, it follows from Lemma 2 (i) that
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Mk,n, j (x; q) ≤
2

(
1 + 2

qn+1

)

√[n + 1]q

Case (d): Let k ≤ j − 2 and [k]q + √
qk−1[k]q ≥ [ j]q . Then, we get

Mk,n, j (x; q) = mk,n, j (x; q)

(
x − [k]q

[n + 1]q
)

≤ [ j + 1]q
[n + 1]q − [k]q

[n + 1]q
= [ j] + q j

[n + 1]q − [k]q
[n + 1]q .

By hypothesis, we have

Mk,n, j (x; q) ≤ [k]q + q j + √
qk−1[k]q

[n + 1]q − [k]q
[n + 1]q

= q j + √
qk−1[k]q

[n + 1]q ≤ 1 + √[n + 1]q
[n + 1]q

≤ 2
√[n + 1]q

.

Also using Lemma 2 (i i), we conclude that

Mk,n, j (x; q) ≤ 2
√[n + 1]q

.

Case (e): k ≤ j − 2 and [k]q + √
qk−1[k]q < [ j]q . Now define the function u as

follows:

u(t) = 1 − qt

1 − q
+

√

qt−1

(
1 − qt

1 − q

)
, t ≥ 0.

Let

Aq := ln
((
1 − √

q
)
/2

)

ln q
.

Then we observe the following facts:

(i) u(k) = [k]q + √
qk−1[k]q for each k ∈ {0, 1, 2, ..., n},

(i i) u is increasing on [0, Aq),

(i i i) u is decreasing on (Aq ,+∞),

(iv) u′(Aq) = 0,
(v) u = 1

1−q is a horizontal asymptote of the graph of u = u(t),

(vi) u(Aq) > 1
1−q .
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Let k̄ ∈ {0, 1, 2, ..., n} be the minimum value such that [k̄]q +
√
qk̄−1[k̄]q ≥ [ j]q .

It follows from the above facts that k̄ ∈ (0, Aq). Let k̃ = k̄ − 1. Then, Since u is
increasing on [0, Aq), wemaywrite that [k̄ − 1]q + √

qk−2[k − 1]q < [ j]q . It is easy
to check that k̃ ≤ j − 2. Indeed, observe that u( j − 1) > [ j]q , but u

(
k̃
)

< [ j]q .
Since u is increasing, k̃ < j − 1 and so k̃ ≤ j − 2. Also, we get

Mk̄−1,n, j (x; q) = mk̄−1,n, j (x; q)

(
x − [k̄ − 1]q

[n + 1]q
)

≤ x − [k̄ − 1]q
[n + 1]q

≤ [ j + 1]q
[n + 1]q − [k̄ − 1]q

[n + 1]q = [ j]q + q j

[n + 1]q − [k̄ − 1]q
[n + 1]q .

Since

[ j]q ≤ [k̄]q +
√
qk̄−1[k̄]q ,

we see that

Mk̃−1,n, j (x; q) ≤
[k̄]q + q j +

√
qk̄−1[k̄]q

[n + 1] − [k̄ − 1]q
[n + 1]q

=
q j + qk̄−1 +

√
qk̄−1[k̄]q

[n + 1]q ≤ 2 + √[n + 1]q
[n + 1]q

≤ 3
√[n + 1]q

.

By Lemma 4 (i), we can write that

Mk̃−1,n, j (x; q) ≥ Mk̃−2,n, j (x; q) ≥ ... ≥ M0,n, j (x; q).

Hence, we see that, for all k ∈ {0, 1, ..., k̃ − 1, k̃}

Mk,n, j (x; q) ≤ 3
√[n + 1]q

,

which implies, for the same k’s, that

Mk,n, j (x; q) ≤ 3
√[n + 1]q

due to Lemma 2 (i i). As a result, if we combine all results obtained above with (19)
we conclude, for all k, j ∈ {0, 1, 2, ..., n}, n ∈ N and x ∈ [0, 1], that
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B(M)
n (ϕx ; x; q) ≤

2
(
1 + 2

qn+1

)

√
[n + 1]q

.

So the proof is completed.

Now we are ready to give an error estimation for the q-Bernstein operators of
max-product kind.

Theorem 7 If f ∈ C+[0, 1], x ∈ [0, 1] and n ∈ N, then we get

∣∣B(M)
n ( f ; x; q) − f (x)

∣∣ ≤ 4

(
1 + 2

qn+1

)
ω

(

f ; 1
√[n]q

)

.

Proof It is clear from Corollaries 1 and 6.

We should note that if we take q → 1−, then Theorem 7 reduces to Theorem 4.1
introduced by [4]. Furthermore, for the classical q-Bernstein polynomials given by
(2), we know from [17] that

Bn(e0; x; q) = 1, Bn(e1; x; q) = x, Bn(e2; x; q) = x2 + x(1 − x)

[n]q ,

where e0(y) := 1, e1(y) = y and e2(y) = y2 on [0, 1]. Hence, by positivity and
linearity of Bn( f ; x; q) ( f ∈ C[0, 1]),wemaywrite that (see, for instance, Theorem
2.3 in [9])

|Bn( f ; x; q) − f (x)| ≤ 2ω

(

f ;
√
x(1 − x)

[n]q

)

≤ ω

(

f ; 1
√[n]q

)

.

4 Approximation Results

In this section, we obtain an approximation theorem for the operators B(M)
n ( f ; x; q)

defined by (4). But, to get such an approximationwe have to replace a fixed q ∈ (0, 1)
considered in the previous sections with an appropriate sequence (qn) whose terms
are in the interval (0, 1). Because, otherwise, [n]q goes to 1

1−q as n → ∞ for a fixed
q. Actually, this idea was first used by Phillips [17] for the q-Bernstein polynomials
given by (2).

Assume now that (qn) is a real sequence satisfying the following conditions:

0 < qn < 1 for every n ∈ N, (22)

stA − lim
n

qn = 1, (23)
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and

stA − lim qn
n = 1. (24)

Note that the notations in (23) and (24) denote the A -statistical limit of (qn), where
A = [a jn] ( j, n ∈ N) is an infinite nonnegative regular summability matrix, i.e.,
a jn ≥ 0 for every j, n ∈ N and lim j

∑∞
n=1 a jnxn = L whenever limn xn = L pro-

vided that the series
∑∞

n=1 a jnxn is convergent for each j ∈ N (see, e.g. [14]). Recall
that, for a given sequence (xn), we say that (xn) is A -statistically convergent to a
number L if, for every ε > 0, lim j

∑
n:|xn−L|≥ε a jn = 0 (see [12]). We should remark

that this method of convergence generalizes both the classical convergence and the
concept of statistical convergence which was first introduced by Fast [11]. Its usage
in the classical approximation theory may be found in [2, 10, 13]. It is easy to find
a sequence (qn) satisfying (22)–(24); for example, define qn = 1

2 if n = m2, m ∈ N,
and qn = e1/n (1 − 1/n) otherwise; and also consider the Cesá ro matrix C1 = [c jn]
defined to be c jn = 1/j if 1 ≤ n ≤ j, and c jn = 0 otherwise.

We get the following statistical approximation theorem.

Theorem 8 Let A = [a jn] be a nonnegative regular summability matrix, and let
(qn) be a sequence satisfying (22)–(24). Then, for every f ∈ C+[0, 1], we have

stA − lim
n

{
sup

x∈[0,1]

∣
∣BM

n ( f ; x; qn) − f (x)
∣
∣
}

= 0.

Proof Let f ∈ C+[0, 1]. Replacing q with (qn), and taking supremum over x ∈
[0, 1], and also using the monotonicity of the modulus of continuity, we obtain from
Theorem 7 that

En := sup
x∈[0,1]

|Bn( f ; x; qn) − f (x)| ≤ 4

(
1 + 2

qn+1
n

)
ω

(

f ; 1
√[n]qn

)

(25)

holds for every n ∈ N. Then, it is enough to prove

stA − lim
n

En = 0.

The hypotheses (22)−(24) imply that

stA − lim
n

1
√[n]qn

= 0 and stA − lim
n

1

qn+1
n

= 1.

Also, by the right continuity of ω ( f ; ·) at zero, we may write that

stA − lim
n

ω

(

f ; 1
√[n]qn

)

= 0. (26)
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Hence, the proof follows from (22)–(26) immediately.

We should note that the A-statistical approximation result in Theorem 8 includes
the classical approximation by choosing A = I, the identity matrix. Hence, the next
result is an immediate consequence of Theorem 8.

Corollary 9 Assume that (qn) is a sequence for which (22), limn qn = 1 and
limn qn

n = 1 hold. Then, for every f ∈ C+[0, 1], we have

lim
n

{
sup

x∈[0,1]
|Bn( f ; x; qn) − f (x)|

}
= 0.

However, defining qn = 1
2 if n = m2, m ∈ N, and qn = e1/n

(
1 − 1

n

)
otherwise;

and also considering the Cesáro matrix C1 = [c jn] as stated before, we see that
Theorem 8 works for the max-product operators constructed with this sequence (qn)
while Corollary 9 fails.
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A Two Dimensional Inverse Scattering
Problem for Shape and Conductive
Function for a Dielectic Cylinder

Ahmet Altundag

Abstract The inverse problem under consideration is to simultaneously reconstruct
the conductive function and shape of a coated homogeneous dielectric infinite cylin-
der from the far-field pattern for scattering of a time-harmonic E-polarized electro-
magnetic plane wave. We propose an inverse algorithm that combine the approaches
suggested by Ivanyshyn et al. [1–3], and extend the approaches from the case of
impenetrable scatterer to the case of penetrable scatterer. It is based on a system
of non-linear boundary integral equation associated with a single-layer potential
approach to solve the forward scattering problem. We present the mathematical
foundations of the method and exhibit its feasibility by numerical examples.

1 Introduction

The problem is to determine simultaneously both the shape of the obstacle and the
impedance function defined on the coated boundary from scattering of time-harmonic
E-polarized electromagnetic plane waves. In the current paper we deal with dielectric
scatterers covered by a thin boundary layer described by a impedance boundary
condition and confine ourselves to the case of infinitely long coated homogeneous
dielectric cylinders. This restriction provides us to reduce the problem into two
dimension.

Let the simply connected bounded domain D ⊂ R
2 withC2 boundaryΓ represent

the cross section of an infinitely long coated homogeneous dielectric cylinder having
constant wave number kd with Im{kd}, Re{kd} � 0 and denote the exterior wave
number of background by k0 ∈ R. Denote by ν the outward unit normal vector to
Γ . Then, given an incident plane wave vi = eik0x .d with incident direction given
by the unit vector d, the direct scattering problem for E-polarized electromagnetic
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waves by a coated homogeneous dielectric is modelled by the following conductive-
transmission boundary value problem for the Helmholtz equation: Find solutions
v ∈ H 1

loc(R
2\D̄) and v ∈ H 1(D) to the Helmholtz equations

Δv + k20v = 0 in R2\D̄, Δw + k2dw = 0 in D (1)

with the conductive-transmission boundary conditions

v = w,
∂v

∂ν
= ∂w

∂ν
+ iηw on Γ (2)

for some continuous function defined in one continuously differentiable real valued
function spaceη ∈ C1(Γ )withη ≤ 0 andwhere the total field is givenbyv = vi + vs

with the scattered wave vs fulfilling the Sommerfeld radiation condition

lim
r→∞ r1/2

(
∂vs

∂r
− ik0v

s

)
= 0, r = |x |, (3)

uniformly with respect to all directions. The latter is equivalent to an asymptotic
behavior of the form

vs(x) = eik0|x |√|x |
{
v∞

(
x

|x |
)

+ O

(
1

|x |
)}

, |x | → ∞, (4)

uniformly in all directions, with the far field pattern v∞ defined on the unit circle
Ω in R

2 (see [4]). In the above, v and w represent the electric field that is parallel
to the cylinder axis, (1) corresponds to the time-harmonic Maxwell equations and
the impedance-transmission conditions (2) model the continuity of the tangential
components of the electric and magnetic field across the interface Γ .

The inverse obstacle problem we are interested in is, given the far field pattern
v∞ for one incident plane wave with incident direction d ∈ Ω to determine simul-
taneously both the boundary Γ of the scattering dielectric D and the impedance
function η. More generally, we also consider the simultaneous reconstruction of Γ

and η from the far field patterns for a small finite number of incident plane waves
with different incident directions. This inverse problem is non-linear and ill-posed,
since the solution of the scattering problem (1)–(3) is non-linear with respect to the
boundary and impedance function, and since the mapping from the boundary and
impedance function into the far field pattern is extremely smoothing.

For a stable solution of the inverse problem we propose an algorithm that com-
bines the approaches suggested and investigated by Kress and Rundell [2, 3] and
by Ivanyshyn and Kress [1], and extend the approaches to the case of an infinitely
long coated homogeneous dielectric cylinder with arbitrarily shaped cross section
embedded in a homogeneous background. Representing the solution w and vs to the
forward scattering problem in terms of single-layer potentials in D and inR2\D̄ with
densities ξd and ξ0, respectively, the impedance-transmission boundary condition (2)
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provides a system of two boundary integral equations on Γ for the corresponding
densities, that in the sequel wewill denote as field equations. For the inverse problem,
the required coincidence of the far field of the single-layer potential representing vs

and the given far field v∞ provides a further equation that we denote as data equation.
The system of the field and data equations can be viewed as three equations for four
unknowns, i.e., the two densities, boundary of the scatterer Γ , and the conductive
function η. They are linear with respect to the densities and non-linear with respect
to the impedance function and the boundary.

In the spirit of [1–3], given approximations Γapprox , ηapprox , ξdapprox , and ξ0approx
for the boundary Γ , the impedance function η, the densities ξd and ξ0 we linearise
simultaneously both the field and the data equation with respect to all unknowns,
i.e., the boundary curve, the impedance function, and the two densities. The linear
equations are then solved to update the boundary curve, the impedance function, and
the two densities. Because of the ill-posedness the solution of the update equations
require stabilization, for example, by Tikhonov regularization. This procedure is then
iterated until some suitable stopping criterion is satisfied.

At this point we note that uniqueness results for this inverse impedance—
transmission problem are only available for the case of infinitely many incident
waves (see [5]). A general uniqueness result based on the far field pattern for one or
finitely many incident waves is still lacking.

To some extend, the inverse problem consists in solving a certain Cauchy problem,
i.e., extending a solution to the Helmholtz equation from knowing their Cauchy data
on some boundary curve. With this respect we also mention the related work of
Ben Hassen et al. [6], Cakoni and Colton [7], Cakoni et al. [8], Eckel and Kress
[9], Fang and Zeng [10], Ivanyshyn and Kress [11], Jakubik and Potthast [12]. For
the simultaneous reconstruction of the shape and the impedance function for an
impenetrable scatterers in a homogeneous background we refer to Kress and Rundell
[2], Liu et al. [13, 14]. For the shape or the impedance reconstruction for penetrable
scatterers, i.e., for dielectric obstacles we refer to Altundag and Kress [15, 16],
Altundag [17–20], Akduman et al. [21], and Yaman [22].

The plan of the paper is as follows: In Sect. 2, as ingredient of our inverse algo-
rithm we demonstrate the solution of the forward scattering problem via a single-
layer approach followed by a corresponding numerical solution method in Sect. 3. In
Sect. 4, we describe our inverse algorithm via simultaneous linearisation of the field
and data equation in detail. In Sect. 5, we illustrate the feasibility of the method by
some numerical examples.

2 The Direct Problem

The forward scattering problem (1)–(3) has at most one solution (see Gerlach and
Kress [5]). Existence can be proven via boundary integral equations by a combined
single- and double-layer approach (see Gerlach and Kress [5]).
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Here, as one of the ingredients of our inverse algorithm,we follow [15] and suggest
a single-layer approach. For this we denote by

Φk(x, y) := i

4
H (1)

0 (k|x − y|), x �= y,

the fundamental solution to the Helmholtz equation with wave number k in R
2 in

terms of the Hankel function H (1)
0 of order zero and of the first kind. Adopting the

notation of [4], in a Sobolev space setting, for k = kd and k = k0, we introduce the
single-layer potential operators

Sk : H−1/2(Γ ) → H 1/2(Γ )

by

(Skξ)(x) := 2
∫

Γ

Φk(x, y)ξ(y) ds(y), x ∈ Γ, (5)

and the normal derivative operators

K ′
k : H−1/2(Γ ) → H−1/2(Γ )

by

(K ′
kξ)(x) := 2

∫

Γ

∂Φk(x, y)

∂ν(x)
ξ(y) ds(y), x ∈ Γ. (6)

For the Sobolev spaces and the mapping properties of these operators we refer to
[23, 24].

Then, from the jump relations it can be seen that the single-layer potentials

w(x) = ∫

Γ

Φkd (x, y)ξd(y) ds(y), x ∈ D,

vs(x) = ∫

Γ

Φk0(x, y)ξ0(y) ds(y), x ∈ R
2\D̄,

(7)

solve the scattering problem (1)–(3) provided the densities ξd and ξ0 fulfil the system
of integral equations

Skd ξd − Sk0ξ0 = 2vi |Γ ,

ξd + ξ0 + iηSkd ξd + K ′
kd

ξd − K ′
k0

ξ0 = 2
∂vi

∂ν

∣∣
∣∣
Γ

.

(8)
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Provided k0 is not a Dirichlet eigenvalue of the negative Laplacian for D, (7) has
at most one solution. For the existence analysis and uniqueness of a solution, we
refer to [19].

3 Numerical Solution

For the numerical solution of (8) and the presentation of our inverse algorithm we
assume that the boundary curveΓ is given by a regular 2π -periodic parameterization

Γ = {ζ(s) : 0 ≤ s ≤ 2π}. (9)

Then, via χ = ξ ◦ ζ . emphasizing the dependence of the operators on the boundary
curve, we introduce the parameterized single-layer operator

S̃k : H−1/2[0, 2π ] × C2[0, 2π ] → H 1/2[0, 2π ]

by

S̃k(χ, ζ )(s) := i

2

2π∫

0

H (1)
0 (k|ζ(s) − ζ(τ )|) |ζ ′(τ )| χ(τ) dτ

and the parameterized normal derivative operators

K̃ ′
k : H−1/2[0, 2π ] × C2[0, 2π ] → H−1/2[0, 2π ]

by

K̃ ′
k(χ, ζ )(s) := ik

2

2π∫

0

[ζ ′(s)]⊥ · [ζ(τ ) − ζ(s)]
|ζ ′(s)| |ζ(s) − ζ(τ )|

×H (1)
1 (k|ζ(s) − ζ(τ )|) |ζ ′(τ )| χ(τ) dτ

for s ∈ [0, 2π ]. Here we made use of H (1)′
0 = −H (1)

1 with the Hankel function H (1)
1

of order zero and of the first kind. Furthermore, we write ζ⊥ = (ζ2,−ζ1) for a
vector ζ = (ζ1, ζ2), that is, ζ⊥ is obtained by rotating ζ clockwise by 90◦. Then the
parameterized form of (8) is given by

S̃kd (χd , ζ ) − S̃k0(χ0, ζ ) = 2 vi ◦ ζ,

χd + χ0 + (η ◦ ζ )S̃kd (χd , ζ )

+K̃ ′
kd

(χd , ζ ) − K̃ ′
k0

(χ0, ζ ) = 2

|ζ ′| [ζ ′]⊥ · grad vi ◦ ζ.

(10)
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The kernels

A(s, τ ) := i

2
H (1)

0 (k|ζ(t) − ζ(τ )|) |ζ ′(τ )|

and

B(s, τ ) := ik

2

[ζ ′(s)]⊥ · [ζ(τ ) − ζ(s)]
|ζ ′(s)| |ζ(s) − ζ(τ )| H (1)

1 (k|ζ(s) − ζ(τ )|) |ζ ′(τ )|

of the operators S̃k and K̃ ′
k can be written in the form

A(s, τ ) = A1(s, τ ) ln
(
4 sin2 s−τ

2

) + A2(s, τ ),

B(s, τ ) = B1(s, τ ) ln
(
4 sin2 s−τ

2

) + B2(s, τ ),

(11)

where

A1(s, τ ) := − 1

2π
J0(k|ζ(s) − ζ(τ )|)|ζ ′(τ )|,

A2(s, τ ) := A(s, τ ) − A1(s, τ ) ln

(
4 sin2

s − τ

2

)
,

B1(s, τ ) := − k

2π

[ζ ′(s)]⊥ · [ζ(τ ) − ζ(s)]
|ζ ′(s)| |ζ(s) − ζ(τ )| J1(k|ζ(s) − ζ(τ )|) |ζ ′(τ )|,

B2(s, τ ) := B(s, τ ) − B1(s, τ ) ln

(
4 sin2

s − τ

2

)
.

J0 and J1 denote theBessel functions of order zero andone respectively.The functions
A1, A2, B1, and B2 turn out to be analytic with diagonal terms

A2(s, s) =
[
i

2
− C

π
− 1

π
ln

(
k

2
|ζ ′(s)|

)]
|ζ ′(s)|

in terms of Euler’s constant C and

B2(s, s) = − 1

2π

[ζ ′(s)]⊥ · ζ ′′(s)
|ζ ′(s)|2 .

For integral equations with kernels of the form (11) a combined collocation and
quadrature methods based on trigonometric interpolation as described in Sect. 3.5
of [4] or in [25] is at our disposal. We refrain from repeating the details. For a related
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error analysis we refer to [23] and note that we have exponential convergence for
smooth, i.e., analytic boundary curves Γ .

For a numerical example, we consider the scattering of a planewave by a dielectric
cylinder with a non-convex apple-shaped cross section with boundary Γ described
by the parametric representation

ζ(s) =
{
0.5 + 0.4 cos s + 0.1 sin 2s

1 + 0.7 cos s
(cos s, sin s) : s ∈ [0, 2π ]

}
(12)

The following impedance functions are chosen in our experiments.

•
η1 = −1 − 0.5 sin(s) (13)

•
η2 = −2 − cos(2s) − 0.5 sin(s) (14)

From the asymptotics for the Hankel functions, it can be deduced that the far field
pattern of the single-layer potential vs with density ξ0 is given by

v∞(x̂) = γ

∫

Γ

e−ik0 x̂ ·yξ0(y) ds(y), x̂ ∈ Ω, (15)

where

γ = ei
π
4√

8πk0
.

The latter expression can be evaluated by the composite trapezoidal rule after solving
the system of integral equations (8) for ξ0, i.e., after solving (10) for χ0. Table1 gives
some approximate values for the far field pattern v∞(d) and v∞(−d) in the forward
directiond and the backwarddirection−d. Thedirectiond of the incidentwave isd =
(1, 0) and thewave numbers are k0 = 1 and kd = 4 + 1i , and the conductive function
η2 in (14) is chosen. Note that the exponential convergence is clearly exhibited.

Table 1 Numerical results for direct scattering problem

n Re u∞(d) Im u∞(d) Re u∞(−d) Im u∞(−d)

8 −0.9246701916 0.1927903437 −0.9330234793 0.2054859030

16 −0.9246830723 0.1927431421 −0.9330023078 0.2053750332

32 −0.9246871867 0.1927361525 −0.9330054172 0.2053781827

64 −0.9246871412 0.1927360822 −0.9330054392 0.2053782645
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4 The Inverse Problem

We now proceed describing an iterative algorithm for approximately solving the
inverse scattering problem by combining the method proposed by Ivanyshyn,
Kress and Rundell [1–3] and by extending from the case of impenetrable obsta-
cles to the case of penetrable scatterers. After introducing the far field operator
S∞ : H−1/2(Γ ) → L2(Ω) by

(S∞ϕ)(x̂) := γ

∫

Γ

e−ik0 x̂ ·yξ(y) ds(y), x̂ ∈ Ω, (16)

from (7) and (15) we observe that the far field pattern for the solution to the scattering
problem (1)–(3) is given by

v∞ = S∞ξ0 (17)

in terms of the solution to (8). Thus as theoretical basis of our inverse algorithm we
can state the following theorem.

Theorem 1 For a given incident field vi and a given far field pattern v∞, assume
that the boundary Γ , the impedance function η, and the densities ξd and ξ0 satisfy
the system of three integral equations

Skd ξd − Sk0ξ0 = 2vi ,

ξd + ξ0 + iηSkd ξd + K ′
kd

ξd − K ′
k0

ξ0 = 2
∂vi

∂ν
,

S∞ξ0 = v∞.

(18)

Then Γ and η solve the inverse scattering problem.

The ill-posedness of the inverse problem is reflected through the ill-posedness of
the third integral equation, the far field equation that we denote as data equation.
Note that (18) is linear with respect to the densities and nonlinear with respect to the
boundary Γ and the impedance function η. This opens up a variety of approaches to
solve (18) by linearization and iteration. In the current paper, we are going to proceed
as follows: Given approximations Γapprox and ηapprox for the boundary Γ and the
impedance function η, and approximations ξdapprox and ξ0approx for the densities ξd and
ξ0 we linearise simultaneously both the field and the data equations with respect
to the boundary curve, the impedance function and the two densities. The linear
equations are then solved to update the boundary curve, the conductive function and
the two densities. Because of the ill-posedness the solution of the update equations
require stabilization. For this, we use Tikhonov regularization. This procedure is then
iterated until some suitable stopping criterion is achieved.
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To describe this in more detail, we also require the parameterized version

S̃∞ : H−1/2[0, 2π ] × C2[0, 2π ] → L2(Ω)

of the far field operator as given by

S̃∞(χ, ζ )(x̂) := γ

2π∫

0

e−ik0 x̂ ·ζ(τ )|ζ ′(τ )|χ(τ) dτ, x̂ ∈ Ω. (19)

Then the parameterized form of (18) is given by

S̃kd (χd , ζ ) − S̃k0(χ0, ζ ) = 2 vi ◦ ζ,

χd + χ0 + i(η ◦ ζ )S̃kd (χd , ζ )

+K̃ ′
kd

(χd , ζ ) − K̃ ′
k0

(χ0, ζ ) = 2

|ζ ′| [ζ ′]⊥ · grad vi ◦ ζ,

S̃∞(χ0, z) = v∞.

(20)

For a fixed χ the Fréchet derivative of the operator S̃k and K̃ ′
k with respect to the

boundary ζ in the direction h are given by

∂ S̃k(χ, ζ ; h)(s)= −ik

2

2π∫

0

(ζ(s) − ζ(τ )) · (h(s) − h(τ ))

|ζ(s) − ζ(τ )|
×|ζ ′(τ )| H (1)

1 (k|ζ(s) − ζ(τ )|)χ(τ)dτ

+ i

2

2π∫

0

ζ ′(τ ) · h′(τ )

|ζ ′(τ )| H (1)
0 (k|ζ(t) − ζ(τ )|)χ(τ)dτ,

and

∂ K̃ ′
k(χ, ζ ;h)(s)

= − ik

2|ζ ′(s)|
2π∫

0

[ζ ′⊥·(h(s) −h(τ ))+[h′⊥·(ζ(s)−ζ(τ ))

|ζ(s)−ζ(τ )| (21)

×|ζ ′(τ )|H (1)
1 (k|ζ(s)−ζ(τ )|)χ(τ)dτ

+ ik

|ζ ′(s)|
2π∫

0

[ζ ′⊥·(ζ(s)−ζ(τ ))(h(s)−h(τ ))·(ζ(s)−ζ(τ ))

|ζ(s)−ζ(τ )|3

×|ζ ′(τ )|H (1)
1 (k|ζ(s)−ζ(τ )|)χ(τ)dτ
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− ik2

2|ζ ′(s)|
2π∫

0

[ζ ′⊥·(ζ(s)−ζ(τ ))(h(s)−h(τ ))·(ζ(s)−ζ(τ ))

|ζ(s)−ζ(τ )|2

×|ζ ′(τ )|H (1)
0 (k|ζ(s)−ζ(τ )|)χ(τ)dτ

+ ik

2

h′(s) ·ζ ′(s)
|ζ ′2

2π∫

0

[ζ ′⊥·(ζ(s)−ζ(τ ))

|ζ(s) − ζ(τ )|
×|ζ ′(τ )|H (1)

1 (k|ζ(s)−ζ(τ )|)χ(τ)dτ

− ik

2|ζ ′(s)|
2π∫

0

[ζ ′⊥·(ζ(s)−ζ(τ ))h′(τ )·ζ ′(τ )

|ζ(s)−ζ(τ )||ζ ′(τ )|
×H (1)

1 (k|ζ(s)−ζ(τ )|)χ(τ)dτ.

Then the linearisation (20) with respect to all variables ζ , η, χd and χ0 in the
direction h, θ , μd and μ0, respectively, reads

S̃kd (χd , ζ ) + S̃kd (μd , ζ ) + ∂ S̃kd (χd , ζ ; h) − S̃k0(χ0, ζ ) − S̃k0(μ0, ζ )

−∂ S̃k0(χ0, ζ ; h) = 2vi ◦ ζ + 2gradvi ◦ ζ · h,

χd + μd + χ0 + μ0 + i(θ ◦ ζ )S̃kd (χd , ζ ) + i(η ◦ ζ )S̃kd (χd , ζ )

+K̃ ′
kd

(χd , ζ ) + K̃ ′
kd

(μd , ζ ) + ∂ K̃ ′
d(χd , ζ ; h)

−K̃ ′
k0

(χ0, ζ ) − K̃ ′
k0

(μ0, ζ ) − ∂ K̃ ′
k0

(χ0, ζ ; h)

= 2

|ζ ′| [ζ
′⊥ · gradvi ◦ ζ + 2σ(ζ ) · h,

S̃∞(χ0, ζ ) + S̃∞(μ0, ζ ) + ∂ S̃∞(χ0, ζ ; h) = v∞.

(22)

Here the term σ(ζ ) · h is the form (see [26])

σ(ζ ) · h = −∂vi

∂τ

ν · h′

|ζ ′| + (
∂2vi

∂ν∂τ
− H

∂vi

∂τ
)τ · h + ∂2vi

∂ν2
ν · h (23)

and τ and H stand for the tangential vector and the mean curvature respectively.
They are given by

τ = ζ ′

|ζ ′| , and H = −ζ ′′ · ν

|ζ ′2
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and the matrix form of (22) can be written as

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

{
∂ S̃kd (χd , ζ ; .) − ∂ S̃k0(χ0, ζ ; .)

−2gradvi ◦ ζ ; Zeros} S̃kd (., ζ ) −S̃kd (., ζ )

{
∂ K̃ ′

kd
(χd , ζ ; .) − ∂ K̃ ′

k0
(χ0, ζ ; .)

−ξ(ζ ); iS̃kdχd
} I + K̃ ′

kd
(., ζ ) I − K̃ ′

kd
(., ζ )

∂ S̃∞(χ0, ζ ; .); Zeros 0 S̃∞(., ζ )

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

⎡

⎢
⎢⎢⎢
⎣

[h; θ ]

μd

μ0

⎤

⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

2vi ◦ ζ − S̃kd (χd , ζ ) + S̃k0(χ0, ζ )

{
2

|ζ ′| [ζ
′⊥ · gradvi ◦ ζ − χd − K̃′

kd(χd, ζ ) − χ0

+ K̃′
k0(χ0, ζ ) − i(η ◦ ζ )̃Skd(χd, ζ )

}

v∞ − S̃∞(χ0, ζ )

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

(24)

Now we can describe the method in a short form as follows:
Each iteration step of the proposed inverse algorithm consists of one part.

• Given an approximation ζ for the boundary, η for the conductive function, and χd ,
χ0 for the densities, we solve the linearized sistem of integral equation (24), for h,
θ , μd , and μ0 to obtain updates ζ + h, η + θ , χd + μd , and χ0 + μ0. We continue
this procedure until some stopping criteria is achieved. The stopping criterion for
the iterative scheme is given by the relative error

‖ v∞;N − v∞ ‖
‖ v∞ ‖ ≤ ε(δ),

where v∞;N is the computed far field pattern after N iteration steps.

As a theoretical basis for the application of Tikhonov regularization from [27] we
cite that, after the restriction to star-like boundaries, the operator ∂ S̃∞ is injective
provided k20 is not a Neumann eigenvalue for the negative Laplacian in D.

5 Numerical Examples

To avoid an inverse crime, in our numerical examples the synthetic far field data
were obtained by a numerical solution of the boundary integral equations based on
a combined single- and double-layer approach (see [28, 29]) using the numerical
schemes as described in [4, 23, 30]. In each iteration step of the inverse algorithm
for the solution of the matrix equation (24) we used the numerical method described
in Sect. 3 using 64 quadrature points. The linearizedmatrix equation (24)were solved
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Table 2 Boundary curves

Types Representations

Apple-shaped ζ(s) = { 0.5+0.4 cos s+0.1 sin 2s
1+0.7 cos s (cos s, sin s) : s ∈ [0, 2π ]}

Kite-shaped ζ(s) = {(cos s + 1.3 cos2 s − 1.3, 1.5 sin s) : s ∈ [0, 2π ]}
Peanut-shaped ζ(s) = {√cos2 s + 0.25 sin s (cos s, sin s) : s ∈ [0, 2π ]}
Rounded triangle ζ(s) = {(2 + 0.3 cos 3s)(cos s, sin s) : s ∈ [0, 2π ]}

by Tikhonov regularization with an H 2 penalty term, i.e., p = 2. The regularized
equation is solved by Nyström’s method with the composite trapezoidal rule again
using 64 quadrature points.

In all our four examplesweused an incidentwavewith the direction d = (1, 0) and
J = 5 as degree for the approximating trigonometric polynomials for the boundary
curve, P = 3 as degree for the approximating trigonometric polynomials for the
conductive function, α = 10−6 as regularization parameter for the data equation,
and the wave numbers k0 = 1 and kd = 5 + 1i.

For simplicity, for the stopping rule we chose ε(δ) the same for all noise levels
since this already gave satisfactory reconstructions.

In according with the general convergence results on regularized Gauss–Newton
method (see [31]) for the regularization parameters we used decreasing sequences

λ1,n = τ−n
1 λ1

λ2,n = τ−n
2 λ2

with λ1, λ2 positive and τ1, τ2 > 1 chosen by trial and error. The iteration num-
bers and the regularization parameters λ1 and λ2 for the Tikhonov regularization of
boundary ζ and conductive function η, respectively, were chosen by trial and error
and their values are indicated in the following description of the individual examples.

In order to obtain noisy data, random errors are added point-wise to v∞,

ṽ∞ = v∞ + δρ
||v∞||
|ρ|

with the random variable ρ ∈ C and {Reρ,Imρ} ∈ (0, 1). For all examples, 2% noise
level, i.e., δ = 0.02 is added into the far-field pattern.

In the first example Fig. 1 illustrates reconstructions after 10 iterations with the
regularization parameters λ1 = 0.7, τ1 = 1.1 and λ2 = 1.2, τ2 = 1.15.

In the second example Fig. 2 shows reconstructions after 15 iterations with the
regularization parameter chosen as in the first example.

In the third example the reconstructions in Fig. 3 were obtained after 13 iterations
with the regularization parameter chosen as in the first example.

In the fourth example the reconstructions in Fig. 4 were obtained after 15
iterations with the regularization parameters chosen as λ1 = 1.3, τ1 = 1.1 and
λ2 = 0.8, τ2 = 1.5.
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Fig. 1 Reconstruction of the peanut-shaped contour in Table2 (left), conductive function η1 in (13)
(middle), and η2 in (14) (right)

Fig. 2 Reconstruction of the rounded-shaped contour in Table2 (left), conductive function η1 in
(13) (middle), and η2 in (14) (right)

Fig. 3 Reconstruction of the apple-shaped contour in Table2 (left), conductive function η1 in (13)
(middle), and η2 in (14) (right)

Fig. 4 Reconstruction of the kite-shaped contour in Table2 (left), conductive function η1 in (13)
(middle), and η2 in (14) (right)
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Our examples clearly indicate the feasibility of the proposed algorithm with a
reasonable stability against noise. An appropriate initial guess was important to
ensure numerical convergence of the iterations. Further research will be directed
towards applying the algorithm to real data, to extend the numerics to the three
dimensional case.

Acknowledgments The author would like to thank Professor Rainer Kress for the helpful discus-
sions and suggestions on the topic of this paper.
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Spinning Particle in Interaction with a Time
Dependent Magnetic Field: A Path Integral
Approach

Hilal Benkhelil and Mekki Aouachria

Abstract Weconsider a spin 1/2 particle interactingwith a timedependentmagnetic
field using path integral formalism.The propagator is first of allwritten in the standard
form by replacing the spin by two fermionic oscillators via the Schwinger’s model;
then it is determined exactly thanks to a simple transformations and the probability
transition is then deduced.

1 Introduction

The applications of path-integral formalism have widely increased since a large class
of potentials had been resolved [10]. However it is known that the most relativistic
interactions are thosewhere the spin, which is a very useful and very important notion
in physics, is taken into account. In the framework of non-relativistic theory the phe-
nomena of spin is automatically introduced by the Pauli equation which contains the
Schrödinger Hamiltonian and a spin-field interaction. This motivates the research
into the solvable Pauli equations which is inevitably useful in applied physics. For
instance a well-known example of its direct application is the time-dependent field
acting on an atom with two levels whose time-evolution is controlled by the Pauli-
type equation. The solution for this equation has made clear the associated transition
amplitudes [19]. This and similar [20, 21] types of interaction aside, there are little
analytical and exact computations which treat the time-dependent spin-field inter-
action. Furthermore, if one replaces the time dependence of the exterior field by
a space-time dependence or by only space dependence this becomes even more
restrictive [5, 8, 9, 11, 15, 18].

Moreover, the problembecomes nearly unsolvable ifwe try to build these solutions
by the path integral formalism because the spin is a discrete quantity. The difficulty
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here is associated to the fact that the path integral lacks some classical ideas such as
trajectories and up to now one does not know how to deal with this kind of technique
in this important case. Thus some effort has beenmade to find a partial solution using
the Schwinger’s model of spin and some explicit computations are then carried out
[1–4, 6, 7, 12–14, 17].

In this paper we are devoted to this type of interaction; by considering a problem
treats according to usual quantummechanics [21]. It acts of a spin 1/2which interacts
with a time dependent magnetic field.

B(t) =
⎛

⎜
⎝

B
2 sin

(
ωt

1+ω2t2
)

− B
cosh( ω0

2 )t
− B0

1−ω2t2

(1+ω2t2)
2

B
2 cos

(
ωt

1+ω2t2
)

⎞

⎟
⎠ .

Its dynamics is described by the Hamiltonian

H = −g

2
σB,

where g is the gyromagnetic ratio. Then the Hamiltonian become

H = − B

4
sin

(
ωt

1 + ω2t2

)
σx (1)

+
(

ω0

2 cosh(ω0
2 )t

+ ω

2
1−ω2t2

(1+ω2t2)
2

)
σy

−ω0

4
cos

(
ωt

1 + ω2t2

)
σz,

where we have put B = ω0
g and B0 = ω

g . The Pauli matrices are the following:

σz =
(
1 0
0 −1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
.

Considering this problem by the path integral approach, our motivation is the fol-
lowing. We show that for interaction with the coupling of spin-field type, the propa-
gator is first, by construction, written in the standard form

∑
path exp (i S (path) /�),

where S is the action that describes the system, where the discrete variable relative
to spin being inserted as the (continuous) path using fermionic coherent states. The
knowledge of the propagator is essential to the determination of physical quantities
such as the transition probability which is the aim of this paper.

The paper is organized as follows. In Sect. 2, we give some notation and the
necessary spin coherent state path integral for spin 1

2 system for our further com-
putations. In Sect. 3, after setting up a path integral formalism for the propagator,
we perform the direct calculations. The integration over the spin variables is easy to
carry out thanks to simple transformations. The explicit result of the propagator is
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directly computed and the transition probability is then deduced. Finally, in Sect. 4,
we present our conclusions.

2 Coherent States Formalism

Now, let us focus on some definitions, properties and notations needed for the further
developments. As we are interested by the spin field interaction, we shall replace
the Pauli matrices σi by a pair of fermionic operators (u, d) known as Schwinger
fermionic model of spin following the recipe:

σ −→ (
u†, d†

)
σ

(
u
d

)
,

where the pair (u, d) describes a two-dimensional fermionic oscillators.
Incidentally, the spin eigenstates |↑〉 and |↓〉 are generated from the fermionic

vacuum state |0, 0〉 by the action of the fermionic oscillators u+ and d+ following
the relations

u+ |0, 0〉 = |↑〉 and d+ |0, 0〉 = |↓〉 ,

where the action of u and d on this vacuum state is given by the vanishing results

u |0, 0〉 = 0 and d |0, 0〉 = 0.

The pair of the fermionic oscillators (u, d) and its adjoint
(
u+, d+) satisfy the usual

fermionic algebra defined by the following anticommutator relations:

[
u, u+]

+ = 1,
[
d, d+]

+ = 1,

where all other anticommutators vanish.
The notation [A, B]+ stands for

[A, B]+ = AB + BA.

Let us now introduce coherent states relative to this fermionic oscillators algebra.
These states are generally defined as eigenvectors of the fermionic oscillators u and d:

u |α, β〉 = α |α, β〉 , d |α, β〉 = β |α, β〉 ,

where (α, β) is a pair of Grasmmann variables which are anticommuting with fermi-
onic oscillators and with themselves, namely

{
[α, u]+ = [

α, u+]
+ = [α, d]+ = [

α, d+]
+ = 0

[β, u]+ = [
β, u+]

+ = [β, d]+ = [
β, d+]

+ = 0
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and are commuting with vacuum states |0, 0〉 , 〈0, 0| :
{

α |0, 0〉 = |0, 0〉 α, 〈0, 0| α = α 〈0, 0|
β |0, 0〉 = |0, 0〉 β, 〈0, 0| β = β 〈0, 0| .

The above definitions are equivalent to the fact that these states are generated from
the vacuum state according to the following relation

|α, β〉 = exp
(−αu+ − βd+) |0, 0〉

The main properties of these states are:

• the completeness relation

∫
dᾱdαdβ̄dβe−ᾱα−β̄β |α, β〉 〈α, β| = 1,

• non-orthogonality
〈α, β | α′, β ′〉 = eᾱα′+β̄β ′

.

3 Path Integral Formulation

At this stage we shall provide a path integral expression for the propagator for the
Hamiltonian given by the expression (1). This can be readily done by exploiting
the above model of the spin by which this Hamiltonian converts to the following
fermionic form

H = −ω0

4
sin

(
ωt

1 + ω2t2

)
(u†d + d†u)

+
(

ω0

2 cosh(ω0
2 )t

+ ω

2
1−ω2t2n

(1+ω2t2n )
2

)
(−iu†d + id†u)

−ω0

4
cos

(
ωt

1 + ω2t2

)
(u†u − d†d).

Moreover, it is convenient to choose the quantum state as |α, β〉 where (α, β)

describes the spin variables. According to the habitual construction procedure of
the path integral, we define the propagator as the matrix element of the evolution
operator between the initial state |αi , βi 〉 and final state

∣∣α f , β f
〉

K(α f , β f ;αi , βi ; T ) = 〈α f , β f | U (T ) | αi , βi 〉, (2)
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where

U (T ) = TD exp

⎛

⎝− i

�

T∫

0

H(t)dt

⎞

⎠ ,

where TD is the Dyson chronological operator.
To move to path integral representation, we first subdivide the time interval [0, T ]

into N + 1 intervals of length ε, intermediatemoments, by using theTrotter’s formula
and we then introduce the projectors according to these intermediate instants N ,
which are regularly distributes between 0 and T in (2), we obtain the discretized path
integral form of the propagator

K(α f , β f , αi , βi T ) = lim
N→∞

N∏

n=1

∫
dᾱndαndβ̄ndβn

×e−ᾱnαn−β̄nβn exp
N+1∑

n=1

[
ᾱnαn−1 + β̄nβn−1

iε
ω0

4
cos

(
ωtn

1+ω2t2n

) (
ᾱnαn−1 − β̄nβn−1

)

+iε
ω0

4
sin

(
ωtn

1+ω2t2n

) (
ᾱnβn−1 + β̄nαn−1

)

−iε

(
ω0

2 cosh(ω0
2 )tn

+ ω

2
1−ω2t2n

(1+ω2t2n )
2

)

× (−i ᾱnβn−1 + i β̄nαn−1
)]

. (3)

The formal continuous expression for the transition amplitude (3) is found by taking
the limit N → ∞.

K(α f , β f ;αi , βi ; T ) =
∫

D ᾱDαD β̄Dβe
1
2

(
ᾱ f α f +β̄ f β f +ᾱi αi+β̄i βi

)

× exp

∞∫

0

dt

[
−1

2

(
ᾱα̇ + β̄β̇ − .

ᾱα −
.

β̄β

)

+i
ω0

4

(
ᾱβ + β̄α

)
sin

(
ωt

1 + ω2t2

)

+i
ω0

4

(
ᾱα − β̄β

)
cos

(
ωt

1 + ω2t2

)

i

(
ω0

2 cosh(ω0
2 )t

+ ω

2

1 − ω2t2
(
1 + ω2t2

)2

)

× (−i ᾱβ + i β̄α
)]

,
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with (α0, β0) = (αi , βi ) and
(
ᾱN+1, β̄N+1

) = (
ᾱ f , β̄ f

)
. This last expression repre-

sents the path integral of the propagator which has been the purpose subject of
previous papers, and has the advantage that it permits us to perform explicitly some
concrete calculations.

4 Calculation of the Propagator

To begin, we first introduce new Grassmann variables via an unitary transformation

in spin coherent space which eliminates the angle
ωt

1 + ω2t2
present in the expression

of the magnetic field:
⎧
⎨

⎩

(αn, βn) 	→ (ηn, ξn)(
αn

βn

)
= e

− i
2

ωtn
1+ω2t2n

σy

(
ηn
ξn

)
.

Then, it is easy to show that the measure and the infinitesimal action become
respectively

N∏

n=1

(
dᾱndαndβ̄ndβne

−ᾱnαn−β̄nβn

)
=

N∏

n=1

(
dη̄ndηnd ξ̄ndξne

−η̄nηnd−ξ̄nξn

)

ᾱnαn−1 + β̄nβn−1 = η̄nηn−1 + ξ̄nξn−1

+i
ω

2
ε

1−ω2t2n

(1+ω2t2n )
2

(−i η̄nξn−1 + i ξ̄nηn−1
)+ O(ε2)

iε
[
sin ωtn

1+ω2t2n

(
ᾱnβn−1 + β̄nαn−1

)

+ cos ωtn
1+ω2t2n

(
ᾱnαn−1 − β̄nβn−1

)]

= iε
(
η̄nηn−1 − ξ̄nξn−1

)
.

The propagator in function of the new Grassmann variables η and ξ, becomes

K( f, i; T ) = lim
N→∞

N∏

n=1

dη̄ndηnd ξ̄ndξne
−η̄nηn−ξ̄nξn

N+1∏

n=1

exp

[

η̄nηn−1 + ξ̄nξn−1

+i ε
ω0

4

(
η̄nηn−1 − ξ̄nξn−1

)

−iε
ω0

2 cosh ω0tn
2

(−i η̄nξn−1 + i ξ̄nηn−1
)
]

.
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Now using the following transformation:

ε = −cosh ω0tn
2

ω0
τ with τ = sn − sn−1,

where

sn = 2 arcsin
1

cosh ω0tn
2

,

Zn =
(

ηn
ξn

)
and Z̄n = (

η̄n, ξ̄n
)
.

The propagator becomes

K( f, i; T ) = lim
N→∞

N∏

n=1

∫
d Z̄ndZne

−Z̄n Zn

N+1∏

n=1

exp
[
Z̄n Zn−1 + iτ Z̄nQ(n)Zn−1

]
, (4)

where

Q(n) =
(− 1

4 sin sn
2

− i
2

i
2

1
4 sin sn

2

)

.

Then we introduce new Grassmann variablesΨ via an unitary transformation in spin
coherent state space defined by

Zn = U (n)Ψn Z̄n = ΨnU
†(n)

with

U (n) = e− i
2 ln tan

sn
4 σz ,

which modify the expression (4) to the following form

K(α f , β f ;αi , βi ; T ) = lim
N→∞

N∏

n=1

∫
dΨndΨne

−ΨnΨn

×
N+1∏

n=1

exp
[
Ψ nΨn−1 + iτΨnQ1(n)Ψn−1

]
,
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where

Q1(n) =
(

0 − i
2e

+ i
2 ln tan

sn
4 σz

i
2e

− i
2 ln tan

sn
4 σz 0

)

.

The next step consists of taking the diagonal form for the action in order to be able
to integrate. Thus, we set a unit transformation over the Grassmann variables

⎧
⎨

⎩

Ψ −→ Φ

Ψ = U1(s)Φ =
(
A(s) −B∗(s)
B(s) A∗(s)

)
Φ

(5)

{
U1(s)U

†
1 (s) = U †

1 (s)U1(s) = 1
detU1(s) = 1

and the initial conditions A(t = 0) = 1, B(t = 0) = 0. By means of a simple calcu-
lation including the following development

U1(sn−1) = U1(sn) − τ
dU1(n)

dtn
+ O(τ 2)

U †
1 (sn)U1(sn−1) = I−τU †

1 (sn)
dU1

dt
(sn),

we obtain

K(α f , β f ;αi , βi ; T ) = lim
N→∞

N∏

n=1

∫
dΦndΦne

−ΦnΦn

×
N+1∏

n=1

exp
[
ΦnΦn−1 + iτΦnQ2(n)Φn−1

]
,

where

Q2(n) = iU †
1 (sn)

dU1

ds
(sn) +U †

1 (sn)Q1(n)U1(sn).

Now, we determine the unit transformation by fixing the diagonal form for the action,
which leads us to the following condition

Q2(n) = 0. (6)

To be able to integrate, we have to write the expression in an appropriate form

K(α f , β f ;αi , βi ; T ) =
∫

dξ †dξ exp
[−ξ †ξ + V†ξ + ξ †W

]
,
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where

V† = (
0, ..., ΦN+1

)
, ξ =

⎛

⎜
⎝

Φ1
...

Φ1

⎞

⎟
⎠ , W =

⎛

⎜
⎝

Φ0
...

0

⎞

⎟
⎠ .

Now, we absorb the linear terms in ξ and ξ
†
thanks to the shift

ξ → ξ + W,

ξ † → ξ † + V†,

and we integrate over the Grassmann variables. Our propagator relative to the spin
1/2 subject to time dependent magnetic field is finally written as follows:

K(α f , β f ;αi , βi ; T ) = eΦ f Φi .

In terms of the old variables (α, β) it becomes

K(α f , β f , αi , βi ; T ) = exp
(
ᾱ f , β̄ f

)
R(t)

(
αi

βi

)
, (7)

where

R(t) = e− i
2

ωt
1+ω2t2 σy

× e− i
2 ln tan

s(t)
4 σz

(
A(s(t)) B(s(t))

−B∗(s(t)) A∗(s(t))

)
.

5 The Transition Probability

Let us now turn to the calculation of this propagator (7), between the spin states. We
just evaluate the matrix K (↑,↑; T ) only, and all the other matrices can be deduced
following the same method. In fact, the propagator on the spin eigenstates is given
by

K (↑,↑; T ) = 〈↑ |U (T ) |↑〉

With the help of the completeness relations, this amplitude becomes

K (↑,↑; T ) = ∫
dα f dα f dβ f dβ f dαi dαi dβ i dβi

×e−α f α f −β f β f e−αiαi−β iβi

×〈↑| α f , β f 〉〈αi , βi |↑〉K(α f , β f , αi , βi ; T ).

Then
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K (↑,↑; T ) = ∫
dᾱ f dα f dβ̄ f dβ f dᾱi dαi dβ̄i dβi

e−ᾱiαi−β̄iβi e−ᾱ f α f −β̄ f β f
〈↑| α f , β f

〉 〈αi , βi | ↑〉
exp

{(
ᾱ f , β̄ f

) ( R11(t) R12 (t)
R21 (t) R22 (t)

)(
αi

βi

)}
.

(8)

Thanks to the features [16]

〈↑| α f , β f 〉 = α f , 〈αi , βi |↑〉 = ᾱi and α f ᾱi = e−ᾱiα f − 1,

(8) takes the following form:

K (↑,↑; T ) =
∫

dν†dν.
[
exp ν†M ′ν − exp ν†Mν

]
,

where the matrices M and M ′are, respectively

M =

⎛

⎜⎜
⎝

−1 0 0 0
R11 −1 R11 0
0 0 −1 0
R21 0 R22 −1

⎞

⎟⎟
⎠

and

M′ =

⎛

⎜⎜
⎝

−1 −1 0 0
R11 −1 R11 0
0 0 −1 0
R21 0 R22 −1

⎞

⎟⎟
⎠

and Rnm are the elements of the matrix R and

ν =

⎛

⎜⎜
⎝

αi

α f

βi

β f

⎞

⎟⎟
⎠ , ν† = (

αi α f β i β f

)
,

are the vectors gathering the old Grassmann variables.
The integration over the Grassmann variables is thus simple:

K (↓,↑; T ) = detM′ − detM.

As detM′= 1 + R11 and detM = 1, the propagator following the states of the up–up
spin is finally

K (↑,↑; T ) = R11 (t) .
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Normally, if we repeat the calculations by considering all the initial and final states
of the spin, the propagator will take the following matrix form:

K (m f ,mi ; T ) =
(
R11(t) R12 (t)
R21 (t) R22 (t)

)
.

Hence the probability transition from down to up spin states is given by:

P↓↑ = |R21(t)|2

P↓↑ =
∣∣∣∣

[
A(t)e− i

2 ln tan
s(t)
4 sin

1

2

(
ωt

1+ω2t2
)

−B∗(t)e
i
2 ln tan

s(t)
4 cos

1

2

(
ωt

1+ω2t2
)]
∣∣
∣∣

2

.

Note that the matrix U1(s) introduced in (5) has been fixed by the condition (6), so
it has to satisfy the following auxiliary equation

i
dU1

ds
+ Q1(s)U1(s) = 0,

i.e., a system of two coupled equations

{
d A
ds = − 1

2 B
∗ei ln tan

s(t)
4

dB∗
ds = 1

2 Ae
−i ln tan s(t)

4
with

{
A(π) = 1
B(π) = 0

and whose solution determines the elements A and B of the matrix U1. Let us
uncouple this system

d2B∗

ds2
+ i

2 sin s
2

dB∗

ds
+ 1

4
B∗ = 0.

The solution of this equation is

B∗(s) = i

2

(
i + cos

s

2

)
h(s).

Then

A(s) = 2ei ln tan
s(t)
4

[
− i

4
h (s) sin

s

2
+ i

2

(
i + cos

s

2

) dh(s)

ds

]
,



84 H. Benkhelil and M. Aouachria

where

h (s) =
s∫

π

e−i ln tan τ
4

(i + cos τ
2 )

2
dτ.

A straightforward calculation leads to the well known like Rabi formula.

P↓↑ = 1 + cos2 s
2

4

∣∣
∣∣

[
h(s) sin

1

2

(
ωt

1+ω2t2
)+

2

[
dh(s)

ds
− sin s

2

2(i + cos s
2 )
h (s)

]
cos

1

2

(
ωt

1+ω2t2
)]
∣∣
∣∣

2

.

This result coincides with that in [7] and [21].

6 Conclusion

By using the formalism of the path integral and the fermionic coherent states
approach, we have been able to calculate the explicit expression of the propagator
relative to spin 1/2 interacting with time dependent magnetic field. To treat the spin
dynamics, we have used the Schwinger’s recipe which replaces the Pauli matrices by
a pair of fermionic oscillators. The introduction of a particular rotations in coherent
state space has eliminated the rotation angle of the magnetic field and has then sim-
plified somewhat the Hamiltonian of the considered system. As a consequence, we
have been able to integrate over the spin variables described by fermionic oscillators.
The exactness of the result is displayed in the evaluation of the transition probability
formula.
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New Complexity Analysis of the Path
Following Method for Linear
Complementarity Problem

El Amir Djeffal, Lakhdar Djeffal and Farouk Benoumelaz

Abstract In this paper, we present an interior point algorithm for solving an opti-
mization problem using the central path method. By an equivalent reformulation of
the central path, we obtain a new search direction which targets at a small neighbor-
hood of the central path. For a full-Newton step interior-point algorithm based on
this search direction, the complexity bound of the algorithm is the best known for
linear complementarity problem. For its numerical tests some strategies are used and
indicate that the algorithm is efficient.

1 Introduction

Let us consider the linear complementarity problem (LCP): find vectors x and y in
real space Rn that satisfy the following conditions

x ≥ 0, y = Mx + q ≥ 0 and xt y = 0, (1)

where q is a given vector inRn andM is a givenRn×n real matrix. The linear comple-
mentarity problems have important applications in mathematical programming and
various areas of engineering [1, 2]. Primal-dual path-following are themost attractive
methods among interior point methods to solve a large wide of optimization prob-
lems because of their polynomial complexity and their simulation efficiency [3–8].
In this paper we deal with the complexity analysis and the numerical implementation
of a primal-dual interior point algorithm based on new kernel function. These algo-
rithms are based on the strategy of the central path and on a method for finding a new
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search directions. This technique was used first by Darvay for linear optimization,
we reconsider this technique to the monotone linear complementarity problem case
where we show also that this short-step algorithm deserves the best current polyno-
mial complexity namely, which is analogous to linear optimization problem. Finally,
the algorithm is applied on some monotone linear complementarity problems.

The paper is organized as follows. In the next section, the statement of the problem
is presented. In Sect. 3, we deal with the new search directions and the description of
the algorithm. In Sect. 4, we state its polynomial complexity. In Sect. 5, we present
a numerical implementation. In Sect. 6, a conclusion and remarks are given.

The following notations are used throughout the paper. Rn denotes the space
of real n-dimensional vectors and R

n+ the nonnegative orthant of Rn . Let u, v ∈
R

n, utv =
n∑

i=1
uivi is their inner product, ‖u‖ = √

utu is the Euclidean norm and

‖u‖∞ = max
1≤i≤n

|ui | is the maximum norm, e =′ 1, 1, . . . , 1)t is the vector of ones

in R
n . Given vectors x and y in R

n xy = (x1y1, . . . , xn yn) denotes the Hadamard
coordinate-wise product of the two vectors x and y.

2 Presentation of the Problem

The feasible set and the strictly feasible set and the solution set of (1) are denoted,
respectively by

S = {
(x, y) ∈ R

2n : y = Mx + q, x ≥ 0, y ≥ 0
}
,

Sstr = {(x, y) ∈ S : x > 0, y > 0} ,

Ω = {
(x, y) ∈ S : x > 0, y > 0 and xt y = 0

}
.

In this paper, we assume that the following assumptions hold

1. The strictly feasible set Sstr is not empty
2. The matrix M is a positive semidefinite matrix

These assumptions imply that Sstr is the relative interior of S andΩ is a non empty
polyhedral convex and bounded set. In addition (1), is equivalent to the following
convex quadratic problem, see, e.g., [6].

min
{
xt y : y = Mx + q, x ≥ 0, y ≥ 0

}
. (2)

Hence, finding the solution of (1) is equivalent to find the minimizer of (2) with its
objective value is zero.

In order to introduce an interior point method to solve (2), we associate with it
the following barrier minimization problem
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min

{

fμ(x, y) = xt y − μ

n∑

i=1

ln(xi yi ) : y = Mx + q, x > 0, y > 0

}

(3)

where μ > 0 is a positive real number and it is called the barrier parameter.
Theproblem (2) is a convexoptimizationproblemand then its first order optimality

conditions are: ⎧
⎨

⎩

Mx + q = y
xy = μe
x > 0, y > 0.

(4)

If the Assumptions (1) and (2) hold then for a fixed μ > 0, the problem (3) and the
system (4) have a unique solution [5, 6] denoted as (x(μ), y(μ)), with x(μ) > 0 and
y(μ) > 0. We call (x(μ), y(μ)), with μ > 0, the μ-centers of (3) or (4). The set of
the μ-centers defines the so-called the central path of (1).

In the next section, we introduce a method for tracing the central path based a
new class of search directions.

3 New Class of Search Directions

Now, following [9] the basic idea behind this approach is to replace the non linear
equation:

xy

μ
= e

in (4) by an equivalent equation

ψ
( xy

μ

)
= ψ(e),

where ψ , is a real valued function on [0,∞) and differentiable on [0,∞) such that
ψ(t) andψ ′(t) > 0, for all t > 0. Then the system (4) can bewritten as the following
equivalent form: ⎧

⎪⎨

⎪⎩

Mx + q = y

ψ
(
xy
μ

)
= ψ(e)

x > 0, y > 0.

(5)

Suppose that we have (x, y) ∈ Sstr . Applying Newton’s method for the system (5),
we obtain a new class of search directions:

{
M	x = y
y
μ
ψ ′

(
xy
μ

)
	x + x

μ
ψ ′

(
xy
μ

)
	y = ψ(e) − ψ

(
xy
μ

)
.

(6)
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Now, the following notations are useful for studying the complexity of the proposed
algorithm.

The vectors

v =
√
xy

μ
and d =

√
xy−1

μ
,

and observe that these notations lead to

d−1x = dy = v. (7)

Denote by
dx = d−1	x, dy = d	y,

and hence, we have
μv(dx + dy) = y	x + x	y (8)

and

dxdy = 	x	y

μ
.

So using (7) and (8), the system (6) becomes

{
Mdx = dy
dx + dy = pv,

where M = DMD with D = diag(d) and

pv = ψ(e) − ψ(v2)

vψ ′(v2)
.

As in [10], we shall consider the following function

ψ(t) = (m + 1)t2 − (m + 2)t + 1

tm
for all t > 0, where m > 4,

and

ψ ′(t) = 2(m + 1)t − (m + 2) − m
1

tm+1
for all t > 0.

Hence, the Newton directions in (6) is

⎧
⎨

⎩

M	x = 	y

y
μ
	x + x

μ
	y = −(m + 1)v2 + (m + 2)v − 1

vm

2(m + 1)v − (m + 2) − m 1
vm+1

.
(9)
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3.1 The Generic Interior-Point Algorithm for (LC P)

In this paper, we replace ψ(t) with a new kernel function ψ(t) which is defined in
the previous section and assume that τ ≥ 1.

The new interior-point algorithm works as follows. Assume that we are given a
strictly feasible point (x, y)which is in a τ -neighborhood of the givenμ-center. Then
we decrease μ to μ+ = (1 − θ)μ, for some fixed θ ∈ (0, 1) and then we solve the
Newton system (6) to obtain the unique search direction. The positivity condition of
a new iterate is ensured with the right choice of the step size α which is defined by
some line search rule. This procedure is repeated until we find a new iterate (x+, y+)

that is in a τ -neighborhood of the μ+-center. Then μ is again reduced by the factor
1 − θ and we solve the Newton system targeting at the new μ+-center, and so on.
This process is repeated until μ is small enough, i.e., nμ ≤ ε.

The parameters τ, θ and the step size α should be chosen in such a way that
the algorithm is optimized in the sense that the number of iterations required by the
algorithm is as small as possible. The choice of the so-called barrier update parameter
θ plays an important role both in theory and practice of I PMs.

The algorithm for our I PM for the (LCP) is given as follows:

I PM for the (LCP)

Begin algorithm
Input:
an accuracy parameter ε > 0,
an update parameter θ , 0 < θ < 1,
a threshold parameter τ, 0 < τ < 1,

a strictly feasible point (x0, y0) and μ0 = (x0)t y0)
n such that δ(x0y0, μ0) ≤ τ.

begin
x := x0, y := y0, μ := μ0,

While (nμ) ≥ ε do
begin
μ = (1 − θ)μ

While (δ(x0y0, μ0) > τ) do
begin

Solve system (3.2) to obtain (	x,	y),
Determine a step size α

x := x + α	x
y := y + α	y

End While
End While

End algorithm.

In the next section,we give the properties of the kernel functionwhich are essential
to our complexity analysis.
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Lemma 1 For ψ(t), we have the following:

(i) ψ(t) is exponentially convex for all t > 0,
(ii) ψ ′′(t) is monotonically decreasing for all t > 0,
(iii) tψ ′′(t) − ψ ′(t) > 0 for all t > 0.

Proof For (i), by Lemma 2.1.2 in [11], it suffices to show that the function ψ(t)
satisfies tψ ′′(t) + ψ

′
(t) ≥ 0, for all t > 0. We have

tψ ′′(t) + ψ ′(t) = t
(
2(m + 1) − m(−m − 1)t−m−2

)

+ (
2(m + 1)t − (m + 2) − mt−m−1

)

= 4(m + 1)t + m2t−m−1 − (m + 2).

Let
g(t) = 4(m + 1)t + m2t−m−1 − (m + 2).

Then
g′(t) = 4(m + 1) − m2(m + 1)t−m−2

g
′′
(t) = m2(m + 1)(m + 2)t−m−3 > 0 for all t > 0.

Let g′(t) = 0, we get t = (m
2

4 )
1

m+2 . Since g(t) is strictly convex and has a global

minimum, g((m
2

4 )
1

m+2 ) > 0. And by Lemma 2.1.2 in [12], we have the result.

For (i i), we have ψ
′′′
(t) > 0, so we have the result.

For (i i i), we have

tψ ′′(t) − ψ ′(t) = m(m + 2)t−m−1 + (m + 2) > 0 for all t > 0.

Lemma 2 For ψ(t), we have the following.

(m + 1)(t − 1)2 ≤ ψ(t) ≤ 1

4(m + 1)
ψ ′(t)2, for all t > 0, (10)

ψ(t) ≤ (m + 1)(m + 2)

2
(t − 1)2, for all t ≥ 1. (11)

Proof For (10), we have

ψ(t) =
t∫

1

ξ∫

1

ψ
′′
(ζ )dζdξ ≥ 2(m + 1)

t∫

1

ξ∫

1

dζdξ = (m + 1)(t − 1)2,
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also,

ψ(t) =
t∫

1

ξ∫

1

ψ
′′
(ζ )dζdξ

≤ 1

2(m + 1)

t∫

1

ξ∫

1

ψ
′′
(ξ)ψ ′′(ζ )dζdξ = 1

2(m + 1)

t∫

1

ψ ′′(ξ)ψ ′(ξ) dξ

= 1

2(m + 1)

t∫

1

ψ ′(ξ) d(ψ ′(ξ)) = 1

4(m + 1)
ψ ′(t)2.

For (11), using Taylor’s Theorem, we have

ψ(t) = ψ(1) + ψ ′(1)(t − 1) + 1

2
ψ

′′
(1)(t − 1)2 + 1

6
ψ

′′′
(ξ)(ξ − 1)3

= 1

2
ψ ′′(1)(t − 1)2 + 1

6
ψ

′′′
(ξ)(ξ − 1)3

≤ 1

2
ψ ′′(1)(t − 1)2

= (m + 1)(m + 2)

2
(t − 1)2.

This completes the proof.

Now, we define γ : (0,∞) → (1,∞) be the inverse function of ψ(t) for all t ≥ 1
and ρ : (0,∞) → (0, 1) be the inverse function of − 1

2ψ
′(t) for all t ∈ (0, 1). then

we have the following Lemma.

Lemma 3 For ψ(t), we have the following

√
s

m + 1
+ 1 ≤ γ (s) ≤ 1 +

√
s

m + 1
, s ≥ 0, (12)

and

ρ(s) ≥
(

m

2s + m

) 1
m+1

, s ≥ 0. (13)

Proof For (12), let s = ψ(t), t ≥ 1, i.e., γ (s) = t, t ≥ 1, then we have

(m + 1)t2 = s + (m + 2)t − t−m .

Because (m + 2)t − t−m is monotone increasing with respect to t ≥ 1, we have

(m + 1)t2 ≥ s + m + 1,
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which implies that

t = γ (s) ≥
√

s

m + 1
+ 1.

We have
s = ψ(t) ≥ (m + 1)(t − 1)2,

so

t = γ (s) ≤ 1 +
√

s

m + 1
.

For (13), let z = − 1
2ψ

′(t) for all t ∈ (0, 1). By the definition of ρ, we have ρ(z) = t
and 2z = −ψ ′(t). Then

mt−m−1 = 2z + 2(m + 1)t − (m + 2).

Because 2(m + 1)t − (m + 2) is monotone increasing with respect to t ∈ (0, 1), we
have

mt−m−1 ≤ 2z + m,

which implies that

ρ(z) = t ≥
(

m

2z + m

) 1
m+1

.

This completes the proof.

Lemma 4 Let γ : (0,∞) → (1,∞), be the inverse function of ψ(t) for all t ≥ 1.
Then we have

δ(βv) ≤ nψ

(
βγ

(
δ(v)

n

))
, β ≥ 1. (14)

Proof Using Theorem 3.2 in [10], we get the result. This completes the proof.

Lemma 5 Let 0 ≤ θ ≤ 1, v+ = 1√
1−θ

v. If δ(v) ≤ τ , then we have

δ(v+) ≤ (m + 1)(m + 2)

2(1 − θ)

(√
nθ +

√
τ

m + 1

)2

. (15)

Proof Since 1√
1−θ

≥ 1 and γ
(

δ(v)

n

)
≥ 1, we have

γ
(

δ(v)

n

)

√
1−θ

≥ 1. Using Lemma4 with

β = √
1 − θ, (12), (13) and δ(v) ≤ τ , we have
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δ(v+) ≤ nψ

(
1√
1 − θ

γ

(
δ(v)

n

))

≤ n
(m + 1)(m + 2)

2

(
1√
1 − θ

γ

(
δ(v)

n

)
− 1

)2

= n
(m + 1)(m + 2)

2(1 − θ)

(
γ

(
δ(v)

n

)
− √

1 − θ

)2

≤ n
(m + 1)(m + 2)

2(1 − θ)

(

1 +
√

δ(v)

(m + 1)n
− √

1 − θ

)2

≤ n
(m + 1)(m + 2)

2(1 − θ)

(
θ +

√
τ

(m + 1)n

)2

≤ n
(m + 1)(m + 2)

2(1 − θ)

(√
nθ +

√
τ

(m + 1)n

)2

.

This completes the proof.

Denote

Ψ0 = L(n, θ, τ ) = n
(m + 1)(m + 2)

2(1 − θ)

(√
nθ +

√
τ

(m + 1)n

)2

, (16)

then Ψ0 is an upper bound for Ψ (V ) during the process of the algorithm.

4 Analysis of Algorithm

The aim of this paper is to define a new kernel function and to obtain new complexity
results for an (LCP) problem using the proximity function defined by the kernel
function and following the approach of Bai et al. [10].

In the following,we compute a proper step sizeα and the decrease of the proximity
function during an inner iteration and give the complexity results of the algorithm.
For fixed μ > 0.

4.1 Determining a Default Step Size

Taking a step size α, we have new iterates

x+ = x + α	x, y+ = y + α	y
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Let

x+ = x

(
e + α

	x

x

)
= x

(
I + α

dx
v

)
= x

v
(v + αdx ) ,

y+ = y

(
e + α

	y

y

)
= y

(
e + α

dy
v

)
= y

v

(
v + αdy

)
.

So, we have

v+ =
(
(v + αdx )

1
2
(
v + αdy

)
(v + αdx )

1
2

) 1
2
.

Since the proximity after one step is defined by

δ(v+) = δ

((
(v + αdx )

1
2
(
v + αdy

)
(v + αdx )

1
2

) 1
2

)
.

By (i) in Lemma2, we have

δ(v+) = δ
((

(v + αdx ) (v + αdy)
) 1

2

)
,

≤ 1

2

(
δ (v + αdx ) + δ(v + αdy)

)
.

Define, for α > 0,
f (α) = δ(V+) − δ(V ).

Therefore, we have f (α) ≤ f1(α), where

f1(α) = 1

2
(δ (v + αdx ) + δ(v + αd)) − δ(v). (17)

Obviously,
f (0) = f1(0) = 0.

Throughout the paper, we assume that τ ≥ 1. Using Lemma5 and the assumption
that δ(v) ≥ τ , we have δ(v) ≥ √

(m + 1).
By the definition of ρ, the largest step size of the worse case is given as follows:

α∗ = ρ(δ) − ρ(2δ)

2δ
. (18)

Lemma 6 Let the definition of ρ and α∗ be as defined in (18), then we have

α∗ ≥ 1

(m + 1)(m + 2)
m+2
m+1

.
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Proof Using Lemma 4.4 in [10], the definition of ψ
′′
(t), we have

α∗ ≥ 1

ψ ′′(ρ(2δ))
= 1

2(m + 1) + m(m+1)
ρ(2δ)m+2

≥ 1

2(m + 1) + m(m + 1)( 4δ+m
m )

m+2
m+1

≥ 1

2(m + 1)δ + 3m(m + 2)δ
m+2
m+1

≥ 1

3(m + 1)(m + 2)δ
m+2
m+1

.

This completes the proof.

For using α as the default step size in the algorithm, define the α as follows

α = 1

3(m + 1)(m + 2)δ
m+2
m+1

. (19)

4.2 Decrease of the Proximity Function During an Inner
Iteration

Now,we show that our proximity function δwith our default step sizeα is decreasing.
It can be easily established by using the following result:

Lemma 7 (see [7]) Let h(t) be a twice differentiable convex function with h(0) =
0, h′(0) < 0 and let h(t) attain its (global) minimum at t > 0. If h

′′
(t) is increasing

for t ∈ [0, t∗] , then

h(t) = th′(0)
2

.

Let the univariate function h be such that

h(0) = f1(0) = 0, h′(0) = f ′
1(0) = −2δ2, h

′′
(α) = 2δ2ψ

′′
(v − 2αδ).

Since f2(α) holds the condition of the above lemma,

f (α) ≤ f1(α) ≤ f2(α) ≤ f
′
2(0)

2
α, for all 0 ≤ α ≤ α∗.

We can obtain the upper bound for the decreasing value of the proximity in the inner
iteration by the above lemma.
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Theorem 8 Let α be a step size as defined in (19) and δ = δ(v) ≥ τ = 1. Then we
have

f (α) ≤ − (m + 1)
−m−2
2(m+1)

3(m + 2)
Ψ (V )

m
2(m+1) .

Proof For all α ≤ α∗, we have

f (α) ≤ −αδ2 = − 1

3(m + 1)(m + 2)δ
m+2
m+1

δ2

= − 1

3(m + 1)(m + 2)
δ

m
m+1

≤ − 1

3(m + 1)(m + 2)

(√
(m + 1)δ(v)

) m
m+1

≤ − (m + 1)
m

2(m+1)

3(m + 1)(m + 2)
δ(v)

m
2(m+1)

≤ (m + 1)
−m−2
2(m+1)

3(m + 2)
δ(v)

m
2(m+1) .

This completes the proof.

4.3 Iteration Bound

We need to count how many inner iterations are required to return to the situ-
ation where δ(v) ≤ τ after a μ-update. We denote the value of δ(v) after μ-
update as δ0 the subsequent values in the same outer iteration are denoted as
δk, k = 1, . . . If K denotes the total number of inner iterations in the outer iter-
ation, then we have

δ0 ≤ L = O(n, θ, τ ), δK−1 > τ, 0 ≤ δK ≤ τ.

and according to (14),

δk+1 ≤ δk − (m + 1)
−m−2
2(m+1)

3(m + 2)
δ

m
2(m+1)

k .

At this stage we invoke the following lemma from Lemma 14 in [7]

Lemma 9 (see [7]) Let t0, t1, . . . , tk be a sequence of positive numbers such that

tk+1 ≤ tk − βt1−ν
k , k = 0, 1, . . . , K − 1,
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where β > 0, 0 < ν ≤ 1; then
K ≤ tν0

βν
.

Letting

tk = δk, β = (m + 1)
−m−2
2(m+1)

3(m + 2)
and ν = m + 2

2(m + 1)
,

we can get the following lemma

Lemma 10 Let K be the total number of inner iterations in the outer iteration. Then
we have

K ≤ 6(m + 1)
3m+4
2(m+1) δ

m+2
2(m+1)

0 .

Proof Using Lemma9, we have

K ≤ δν
0

βν
= 6(m + 1)

3m+4
2(m+1) δ

m+2
2(m+1)

0 .

This completes the proof.

Now we estimate the total number of iterations of our algorithm.

Theorem 11 If τ ≥ 1, the total number of iterations is not more than

6(m + 1)
3m+4
2(m+1) δ

m+2
2(m+1)

0

1

θ
log

nμ0

ε
.

Proof In the algorithm,nμ ≤ ε, μk = (1 − θ)kμ0 andμ0 = (x0)t y0)
n .Bysimple com-

putation, we have

K ≤ 1

θ
log

nμ0

ε
.

Therefore, the number of outer iterations is bounded above by 1
θ
log nμ0

ε
.Multiplying

the number of outer iterations by the number of inner iterations,weget an upper bound
for the total number of iterations, namely,

6(m + 1)
3m+4
2(m+1) δ

m+2
2(m+1)

0

1

θ
log

nμ0

ε
.

This completes the proof.
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5 Numerical Tests

In this section,wedealwith the numerical implementation of this algorithmapplied to
some problems of monotone LCPs. Here we used Itermeans the iterations number
produced by the algorithm. The implementation is manipulated in DEV C++. Our
tolerance is ε = 10−6. For the update parameter we have vary 0 < θ < 1. Finally we
note that the linear system of Newton in (6) is solved thanks to Gauss.

Example 12

M =

⎛

⎜
⎜⎜⎜
⎝

0 0 2 1 0
0 0 1 2 1

−2 −1 0 0 0
−1 −2 0 0 0
0 −1 0 0 0

⎞

⎟
⎟⎟⎟
⎠

, q = (−4 −5 8 7 3
)
,

The numerical results are presented in the following table.

Function Large update Short update θ Iter
t2−1
2 − log t O(n log n

ε
) O(

√
n log n

ε
) 0.15 84

0.30 75
0.60 35
0.95 24

t2−1
2 + t1−q

q(q−1) − q−1
q (t − 1)

(q>1)

, O
(
qn

q+1
2q log n

ε

)
O(q

√
n log n

ε
) 0.15 83

0.30 77
0.60 64
0.95 28

t2−1
2 + (e−1)2

e(et−1) − e−1
e O(n

3
4 log n

ε
) O(

√
n log n

ε
) 0.15 79

0.30 67
0.60 56
0.95 34

1
2 (t − 1

t )
2 O(n

2
3 log n

ε
) O(

√
n log n

ε
) 0.15 82

0.30 76
0.60 45
0.95 19

t p+1−1
p+1 + t1−q−1

q−1
p∈[0,1],q>1

O
(
qn

p+q
q(1+p) log n

ε

)
O(q2

√
n log n

ε
) 0.15 78

0.30 75
0.60 58
0.95 27

(m + 1)t2−(m + 2)t+ 1
tm ,

t>0,m>4
O

(
m

3m+1
2m n

m+1
2m log n

ε

)
O

(
m

3m+1
2m

√
n log n

ε

)
0.15 83

0.30 63
0.60 24
0.95 12
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Example 13

M =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0 0 0 0 0 3 0.8 0.32 1.128 0.0512
0 0 0 0 0 0 1 0.8 0.32 0.128
0 0 0 0 0 0 0 1 0.8 0.32
0 0 0 0 0 0 0 0 1 0.8
0 0 0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0 0 0
−0.8 −1 0 0 0 0 0 0 0 0
−0.32 −0.8 −1 0 0 0 0 0 0 0
−1.128 −0.32 −0.8 −1 0 0 0 0 0 0
−0.0512 −1.128 −0.32 −0.8 −1 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

and
q = (−0.0256 −0.064 −0.16 5.59 −1 1 1 1 1 1

)
.

The numerical results are presented in the following table.

Function Large update Short update θ Iter
t2−1
2 − log t O(n log n

ε
) O(

√
n log n

ε
) 0.15 83

0.30 77
0.60 45
0.95 14

t2−1
2 + t1−q

q(q−1) − q−1
q (t − 1)

q>1

O
(
qn

q+1
2q log n

ε

)
O(q

√
n log n

ε
) 0.15 85

0.30 78
0.60 61
0.95 23

t2−1
2 + (e−1)2

e(et−1) − e−1
e O(n

3
4 log n

ε
) O(

√
n log n

ε
) 0.15 79

0.30 61
0.60 33
0.95 14

1
2 (t − 1

t )
2 O(n

2
3 log n

ε
) O(

√
n log n

ε
) 0.15 80

0.30 78
0.60 41
0.95 17

t p+1−1
p+1 + t1−q−1

q−1
p∈[0,1],q>1

O
(
qn

p+q
q(1+p) log n

ε

)
O(q2

√
n log n

ε
) 0.15 76

0.30 75
0.60 57
0.95 17

(m + 1)t2−(m + 2)t+ 1
tm

t>0,m>4
O

(
m

3m+1
2m

n
m+1
2m log n

ε

)
O

(
m

3m+1
2m √

n log n
ε

)
0.15 81

0.30 43
0.60 14
0.95 5
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Example 14 Let M ∈ �n×n and q ∈ �n defined by:

M =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 2 2 . . . 2
0 1 2 . . . 2
0 0 . . . . .
. . . . . . .
. . . . . . .
. . . . . . 2
0 0 0 . . 0 1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

, q = (−1 . . . −1
)
.

Case 1: n = 10. The numerical results are presented in the following table

Function Large update Short update θ Iter
t2−1
2 − log t O(n log n

ε
) O(

√
n log n

ε
) 0.15 81

0.30 72
0.60 44
0.95 11

t2−1
2 + t1−q

q(q−1) − q−1
q (t − 1)

q>1

O
(
qn

q+1
2q log n

ε

)
O(q

√
n log n

ε
) 0.15 80

0.30 71
0.60 61
0.95 21

t2−1
2 + (e−1)2

e(et−1) − e−1
e O(n

3
4 log n

ε
) O(

√
n log n

ε
) 0.15 70

0.30 51
0.60 32
0.95 12

1
2 (t − 1

t )
2 O(n

2
3 log n

ε
) O(

√
n log n

ε
) 0.15 81

0.30 79
0.60 40
0.95 13

t p+1−1
p+1 + t1−q−1

q−1
p∈[0,1],q>1

O
(
qn

p+q
q(1+p) log n

ε

)
O(q2

√
n log n

ε
) 0.15 73

0.30 74
0.60 45
0.95 27

(m + 1)t2−(m + 2)t+ 1
tm

t>0,m>4
O

(
m

3m+1
2m

n
m+1
2m log n

ε

)
O

(
m

3m+1
2m

√
n log n

ε

)
0.15 63

0.30 23
0.60 11
0.95 4
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Case 2: n = 15.
The numerical results are presented in the following table.

Function Large update Short update θ Iter
t2−1
2 − log t O(n log n

ε
) O(

√
n log n

ε
) 0.15 60

0.30 52
0.60 24
0.95 13

t2−1
2 + t1−q

q(q−1) − q−1
q (t − 1)

q>1

O
(
qn

q+1
2q log n

ε

)
O(q

√
n log n

ε
) 0.15 74

0.30 51
0.60 44
0.95 16

t2−1
2 + (e−1)2

e(et−1) − e−1
e O(n

3
4 log n

ε
) O(

√
n log n

ε
) 0.15 63

0.30 51
0.60 32
0.95 13

1
2 (t − 1

t )
2 O(n

2
3 log n

ε
) O(

√
n log n

ε
) 0.15 81

0.30 79
0.60 40
0.95 13

t p+1−1
p+1 + t1−q−1

q−1
p∈[0,1],q>1

O
(
qn

p+q
q(1+p) log n

ε

)
O(q2

√
n log n

ε
) 0.15 73

0.30 74
0.60 45
0.95 27

(m + 1)t2−(m + 2)t+ 1
tm

t>0,m>4
O

(
m

3m+1
2m n

m+1
2m log n

ε

)
O

(
m

3m+1
2m

√
n log n

ε

)
0.15 45

0.30 34
0.60 9
0.95 6

6 Concluding Remarks

We propose a new barrier function and primal–dual interior point algorithms for
(LCP) problems and analyze the iteration complexity of the algorithm based on the
kernel function. We have

O

(
m

3m+1
2m n

m+1
2m log

(x0)t y0)

ε

)
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for large-update methods and

O

(
m

3m+1
2m

√
n log

(x0)t y0)

ε

)

for small-update methods which are the best known iteration bounds for such meth-
ods. Future research might focus on the extension to symmetric cone optimization.
Finally, the numerical tests some strategies are used and indicate that our kernel
function used in the algorithm is efficient.
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Branch and Bound Method to Resolve
the Non-convex Quadratic Problems

R. Benacer and Boutheina Gasmi

Abstract In this paper, we present a new rectangle Branch and Bound approach for
solving non convex quadratic programming problems in which we construct a new
lower approximate convex quadratic function of the objective quadratic function
over an n-rectangle Sk = [

ak, bk
]
or Sk = [

Lk,Uk
]
. This quadratic function (the

approximate one) is given to determine a lower bound of the global optimal value of
the original problem (NQP) over each rectangle. In the other side, we apply a simple
two-partition technique on rectangle, as well as, the tactics on reducing and deleting
subrectangles are used to accelerate the convergence of the proposed algorithm. This
proposed algorithm is proved to be convergent and shown to be effective with some
examples.

1 Introduction

We consider the non-convex quadratic programming problems below:

{
min f (x) = 1

2 x
T Qx + dT x

x ∈ S ∩ (X f )
(1)

where

S0 = {
x ∈ R

n : L0
i ≤ xi ≤ U 0

i : i = 1, n
}
,

(
D f

) = {
x ∈ R

n : Ax ≤ b; x ≥ 0
}
,

Q : is a real (n × n) non-positive symmetric matrix,

A : is a real (n × n) symmetric matrix,

R. Benacer · B. Gasmi (B)
University of Hadj Lakhder Batna, Batna, Algeria
e-mail: gasmi.boutheina@gmail.com

R. Benacer
e-mail: r.benacer@hotmail.fr

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and O. Duman (eds.), Intelligent Mathematics II:
Applied Mathematics and Approximation Theory, Advances in Intelligent Systems
and Computing 441, DOI 10.1007/978-3-319-30322-2_7

105



106 R. Benacer and B. Gasmi

dT = (d1, d2, . . . , dn) ∈ R
n,

bT = (b1, b2, . . . , bm) ∈ R
m .

In our life, every things, every problems are created as a mathematical problems
[1]. We can also take the quotes of Galilee: “The word is created at mathematical
problems”; especially “quadratic problems” that have worthy of study. Because they
frequently appear in many applied field of science and technology as well as the
convergent ofmanyother nonlinear problems into this formof problems; for example:
bilinear programming, quadratic 0–1 programming, modularization of product, and
etc., which can be interpreted as quadratic problems.

In this paper, we present a new rectangle Branch and Bound approach for solv-
ing non-convex quadratic programming problems, where we proposed a new lower
approximate convex quadratic functions of the objective quadratic function f over
an n-rectangle. This lower approximate is given to determine a lower bound of the
global optimal value of the original problem (1) over each rectangle.

To accelerate the convergence of the proposed algorithm we used a simple two-
partition technique on rectangle and the tactics on reducing and deleting subrectan-
gles from [2].

The paper is organized as follows:
In Sect. 1, we give a simple introduction of our studies in whichwe give and define

the standard form of our problem. In Sect. 2, a new equivalent form of the objective
function is proposed as an lower approximate linear functions of the quadratic form
over ann-rectangle [3].Wecan also propose as anupper approximate linear functions,
but we must respect the procedure of calculate the lower and the upper bound of the
original principal rectangle S0 which is noted by Sk = [

Lk,Uk
] ⊆ R

n in the k-step
[4]. In Sect. 3,we define a new lower approximate quadratic functions of the quadratic
no convex function over an n-rectangle with respect to a rectangle to calculate a lower
bound on the global optimal value of the original no convex problem (1).We also give
a new simple rectangle partitioning method and describe rectangle reducing tactics
from [2]. In Sect. 4, we give a new Branch and Reduce Algorithm in order to solving
the original non-convex problem (1) [5]. In Sect. 5, we study the convergence of the
proposed algorithm andwe give a simple comparison between the linear approximate
and the quadratic one. Finally, a conclusion of the paper is given to show and explain
the effective of the proposed algorithm.

2 Equivalent Forms of f

In this section, we construct and define the equivalent form of the non-convex
quadratic function which proposed as a lower approximate linear functions over
an n-rectangle Sk = [

Lk,Uk
]
. This work is proposed to determine the lower bound

of the global optimal value of the original problem (1).
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Let λmin and λmax be the minimum eigenvalue and the maximum eigenvalue of
the matrix Q respectively, and we show the number θ that θ ≥ |λmin|.

The equivalent linear form of the objective function f is given by:

f (x) = (
x − LK

)T
(Q + θ I )

(
x − LK

) + dT x − θ

n∑

i=1

x2i

+ 2
(
LK

)T
(Q + θ I ) x − (

LK
)T

(Q + θ I ) LK

by the use of the lower bound Lk , and is given by:

f (x) = (
x −UK

)T
(Q + θ I )

(
x −UK

) + dT x − θ

n∑

i=1

x2i

+ 2
(
UK

)T
(Q + θ I ) x − (

UK
)T

(Q + θ I )UK

by the use of the upper bound Uk of the rectangle Sk .
On the other hand, the convex envelope of the function h(x) = (−x2j ) over the

interval Skj =
[
Lk

j ,U
k
j

]
is given by the function

h(x) = − (
Uk

j + Lk
j

)
xi + Lk

jU
k
j ,

which is a linear function, then we get the best linear lower bound of h(x) =∑n
j=1(−x2j ) given by:

ϕSk (x) = − (
Uk + Lk

)T
x + (

Lk
)T

Uk

by definition, the initial rectangle S0 is given by:

S0 = {
x ∈ R

n : L0
i ≤ xi ≤ U 0

i : i = 1, n
}
.

We subdivide this rectangle into two sub-rectangles defined by:

S+1 = {
x ∈ R

n : L0
s ≤ xs ≤ h0s : L0

j ≤ x j ≤ U 0
j : j = 1, n : j �= s

}

S+2 = {
x ∈ R

n : h0s ≤ xs ≤ U 0
s : L0

j ≤ x j ≤ U 0
j : j = 1, n : j �= s

}
,

where we calculate the point hs by a normal rectangular subdivision (ω-subdivision).
The lower approximate linear function of f over the rectangle SK :
Gao et al. [2] determine the best lower approximate linear function of the objec-

tive non-convex function f over the rectangle SK , which is given by the following
theorem:
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Theorem 1 Consider the function f : C ⊆ R
n −→ R and the rectangle S0 ⊆ R

n,
where C ⊆ S0 ⊆ R

n. Then, the lower approximate linear function of f is given by:

LSK (x) = (aSK )T x + bSK

USK (x) = (aSK )T x + bSK ,

where

aSK = d + 2(Q + θ I )LK − θ
(
LK +UK

)
,

bSK = − (
LK

)T
(Q + θ I )LK + θ

(
LK

)T (
UK

)
,

aSK = d + 2(Q + θ I )UK − θ
(
LK +UK

)
,

bSK = − (
UK

)T
(Q + θ I )UK + θ

(
LK

)T (
UK

)
.

The new lower approximate quadratic convex function of f over the rectan-
gle SK :

By using the president lower approximate linear function of f over the rectangle
SK , we can define the new lower approximate quadratic convex function of f over
the same rectangle by:

Lquad(x) = LSK (x) − 1

2
K

(
UK − x

) (
x − LK

)

and

Uquad(x) = USK (x) − 1

2
K

(
UK − x

) (
x − LK

)
,

where

• K is a positive real number given by the spectral radius of the matrix (Q + θ I ),
• θ ≥ |λmin|,
• LSK (x) the best lower approximate linear function of f over the rectangle SK .

The new lower approximate linear function of f over the rectangle SK :
By using the president new lower approximate quadratic function of f over the

rectangle SK , we can define the new lower approximate linear function of f over the
same rectangle by:

L̃quad(x) = LSK (x) − 1

2
Kh2

and

Ũquad(x) = USK (x) − 1

2
Kh2

with h = ∥∥UK − LK
∥∥.

The relation between the convex quadratic approximation and the linear one
We have the following theorem.
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Theorem 2 The following inequalities are satisfied:

L̃quad(x) = LSK (x) − 1

8
Kh2 ≤ Lquad(x) ≤ f (x)

Ũquad(x) = USK (x) − 1

8
Kh2 ≤ Uquad(x) ≤ f (x)

for all x ∈ (D f ) ∩ SK and h = ∥
∥UK − LK

∥
∥.

Approximation error
We can estimate the approximation error by the distance between the non-convex

objective function f and here lower approximation functions.

(1) The linear approximation error is presented by the distance between the function
f and here new lower approximate linear function L̃quad over the rectangle SK .
Then we have the following proposition.

Proposition 3 Let the function f : C ⊆ R
n −→ R, where C ⊆ S0 ⊆ R

n and θ ≥
|λmin| for this the matrix (Q + θ I ), be semi-positive. Then we have

max
x∈SK ∩(D f )

{∣∣ f (x) − L̃quad(x)
∣∣} ≤

(
ρ (Q + θ I ) + θ + 1

8
Kh2

) ∥∥UK − LK
∥∥2

max
x∈SK∩(D f )

{∣∣ f (x) − Ũquad(x)
∣∣} ≤

(
ρ (Q + θ I ) + θ + 1

8
Kh2

) ∥∥UK − LK
∥∥2

.

(2) The quadratic approximation error is presented by the distance between the
function f and here lower approximate quadratic function L̃quad over the rec-
tangle SK . Then we have the following proposition.

Proposition 4 Let the function f : C ⊆ R
n −→ R, where C ⊆ S0 ⊆ R

n and θ ≥
|λmin| for this the matrix (Q + θ I ), be semi-positive. Then we have

max
x∈SK∩(D f )

{∣∣ f (x) − Lquad(x)
∣∣} ≤

(
ρ (Q + θ I ) + θ + 1

2
K

)∥∥UK − LK
∥∥2

max
x∈SK∩(D f )

{∣∣ f (x) −Uquad(x)
∣∣} ≤

(
ρ (Q + θ I ) + θ + 1

2
K

)∥∥UK − LK
∥∥2

.

Proof By the definition of the function Lquad(x) as well as the meaning of ϕSk (x),
we have

f (x) − Lquad(x) = f (x) − LSK (x) + 1

2
K

(
UK − x

) (
x − LK

)

= (
x − LK

)T
(Q + θ I )

(
x − LK

)

+
(
1

2
K + θ

)
(
UK − x

) (
x − LK

)
.
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Then, we get

∥∥ f (x) − Lquad(x)
∥∥∞ = max

{
f (x) − Lquad(x) : x ∈ SK ∩ (

D f
)}

≤
∥∥∥
(
x − LK

)T
(Q + θ I )

(
x − LK

)∥∥∥∞

+
∥∥∥∥

(
1

2
K + θ

) (
UK − x

) (
x − LK

)
∥∥∥∥∞

≤
(

ρ (Q + θ I ) + θ + 1

2
K

)∥∥UK − LK
∥∥2

.

Using the same thing for the lower bound Uquad(x) with the equivalent linear form
of the objective function f , we obtain that

∥∥ f (x) −Uquad(x)
∥∥∞ ≤

(
ρ (Q + θ I ) + θ + 1

2
K

)∥∥UK − LK
∥∥2

.

The quadratic approximate problem (QAP)
Construction of the interpolate problem (I P):
It is clear that

f (x) ≥ max
{
Lquad(x),Uquad(x) : ∀x ∈ (X f ) ∩ SK

} = γ (x).

This function presents the best quadratic lower bound of f . Similarly, we construct
the interpolation problem as follows:

{
αh = max x̂
x̂ ∈ {

Lquad(x),Uquad(x)
} : ∀x ∈ (X f ) ∩ SK (2)

and the convex quadratic problem is defined by

{
min αh

∀x ∈ (X f ) ∩ SK .
(3)

Suppose that f ∗ = f (x∗) is the global optimal value of the original problem (1)
and x̃ be the optimal solution of (3).

Question 1 What is the relation between f (̃x), f (x∗) and Lquad (̃x) the optimal
value of (3)?

Proposition 5 Let f : C ⊆ R
n −→ R and S0 ⊆ R

n, where C ⊆ S0 ⊆ R
n. Then we

have

0 ≤ f (̃x) − f (x∗) ≤
(

ρ(Q + θ I ) + θ + 1

2
K

)∥∥UK − LK
∥∥2

and
Lquad (̃x) ≤ f ∗ ≤ f (̃x).
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Proof From Proposition 4, we have:

f (x) − Lquad(x) ≤
(

ρ (Q + θ I ) + θ + 1

2
K

)∥∥UK − LK
∥∥2 : x ∈ SK ∩ (

D f
)

and, for x = x̃ ,

f (̃x) − Lquad (̃x) ≤
(

ρ (Q + θ I ) + θ + 1

2
K

)∥∥UK − LK
∥∥2

.

Thus

f (̃x) − f ∗ + f ∗ − Lquad (̃x) ≤
(

ρ (Q + θ I ) + θ + 1

2
K

)∥∥UK − LK
∥∥2

and

f (̃x) − f ∗ ≤
(

ρ (Q + θ I ) + θ + 1

2
K

)∥
∥UK − LK

∥
∥2 + (

Lquad (̃x) − f ∗) ,

as well as Lquad (̃x) − f ∗ ≤ 0. We obtain that:

0 ≤ f (̃x) − f ∗ ≤
(

ρ (Q + θ I ) + θ + 1

2
K

)∥∥UK − LK
∥∥2

.

On the other hand, we have

{
Lquad (̃x) − f ∗ ≤ 0
f (̃x) − f ∗ ≥ 0

=⇒ (
Lquad (̃x) ≤ f ∗ ≤ f (̃x)

)
.

Then, the proof is completed.

Question 2 Is the solution x̃ presented the best lower bound of the global optimal
solution of (1)?

Let the estimate function be noted by

E(x) = f (x) − Lquad(x)

for all x ∈ SK ∩ (
D f

)
, and verified the inequality:

E (̃x) ≥ f (̃x) − f ∗.

Lemma 6 If E (̃x) is a small value, then f (̃x) is an acceptable approximative value
for the global optimum f ∗ = f (x∗) over SK . Similarly, we find that the point x̃ is
the global approximative solution of the global solution x∗ over the rectangle SK .
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Remarks

1. In this method, the range of the non-convex function f over the new rectangle
(sub-rectangle) SK is small than the range over the initial rectangle S◦. Immedi-
ately, we obtain that the value E (̃x) will be very small.

2. From Remark (1), we find that the point x̃ is a global approximative solution for
the global optimal solution x∗ over the rectangle SK .

3 The Reduction Technique (Eliminate Technique)

We get to describe the rectangle partition as follows:

step (0) Let SK = {
xk ∈ R

n : LK
i ≤ xki ≤ UK

i : i = 1, n
}
with xk ∈ SK ;

step (1) we find a partition information point:

hs = max
{
(xi − LK

i )
(
UK

i − xi
) : i = 1, n

} ;

step (2) if hs �= 0, then we divide the rectangle SK into two subrectangle on edge[
LK
s ,UK

s

]
by the point hs , else, we divide the rectangle SK into two subrectangle

on the longest edge
[
LK
s ,UK

s

]
by the midpoint LK+UK

2 which is yet noted as hs;
step (3) the rest rectangle is yet noted as SK .
Now, we describe the rectangle reducing tactics from [2] to accelerate the conver-
gence of the proposed global optimization Algorithm (ARSR).

Remarks

1. All linear constraints of the problem (1) are expressed by
∑n

j=1 ai j x j ≤ bi : i =
1, n.

2. The rectangle SK be also recorded as constrain to be added to the problem (1).
3. Theminimum and themaximum of each functionψ(xi ) = ais xs for i = 1, n over

the interval
[
LK
s ,UK

s

]
are obtained at the extreme points of the same interval.

Linearity Based Range Reduction Algorithm
We describe this algorithm to reduce and delete the rectangle SK .
program (LBRRA)
Let I

′
k := {1, 2, 3, . . . , n} the set of the index, Pk := P ,

for 1 ≤ i ≤ n do

compute rUi :=
n∑

j=1
max

{
ai j Lk

j , ai jU
k
j

}

compute r Li :=
n∑

j=1
min

{
ai j Lk

j , ai jU
k
j

}

if r Li > bi then
stop. The problem (1) is infeasible over SK (there are no solution of (1) over SK ,

because SK is deleted from the subrectangle set produced through partitioning of the
rectangle S◦)
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else
if rUi < bi then
the constraint is redundant.
I

′
k := I

′
k − {i}

Pk := Pk − {
x ∈ R

n : (ai )T x ≤ bi
}

else
for 1 ≤ j ≤ n do
if ai j > 0 then

Uk
j := min

{
Uk

j ,
bi−r Li+min

{
ai j Lk

j ,ai jU
k
j

}

ai j

}

else

Lk
j := max

{
Lk

j ,
bi−rUi+max

{
ai j Lk

j ,ai jU
k
j

}

ai j

}

end if
enddo
end if
end if

enddo
end program

4 Algorithm (ARSR): Branch and Bound

Algorithm (ARSR): Branch and Bound
program (ARSR) initialization: determine the initial rectangle S0 where (χ f )

⊂ S0 and suppose that

QLBPS0 := S0 ∩ (χ f )

iteration k:
if QLBPS0 �= φ then
solve the quadratic problem (2) when k = 0
Let x0 be an optimal solution of (2) and α(S0) be the optimal value accompanied

to x0

H := {S0} (the set of the subrectangle of the initial rectangle S0)
α0 := min{α(S0)}, β0 := f (x0) (the upper bound of f (x∗))
k := 0
while Stop=false do
if αk = βk then
Stop=true (xk is a global optimal solution of the problem (1))
else



114 R. Benacer and B. Gasmi

we subdivide the rectangle Sk into two sub-rectangle {Skj : j = 1, 2}
by the proposed algorithm.
for j = 1, 2 do
applied the Linearity Based Range Reduction Algorithm over the two sub-

rectangle {Skj }
the obtained set is yet noted as le rectangle Skj
if Skj �= φ then
(QLBP)Skj := {x ∈ R

n : x ∈ Skj ∩ (χ f )},
solve the quadratic problem (QLBP) when Sk := Skj
let xk j be the optimal solution and α(Skj ) be the optimal value
H := H ∪ {Skj }
βk+1 := min{ f (xk), f (xk j )}
xk := argmin βk+1

end if
end for
H := H − {Sk}
αk+1 := minS∈H {α(S)};choose an rectangle Sk+1 ∈ H
such that αk+1 = α(Sk+1)

k ← k + 1;
end if

end do
end if
end program

5 The Convergence of the Algorithm (ARSR)

In this section, we study the convergence of the proposed Algorithm (ARSR) and we
give a simple comparison between the linear approximation and the quadratic one.
On the other hand, we give some example to explain the proposed Algorithm.

The convergence of the proposed algorithm:
Theproposed algorithm inSect. 4 is different from theone in [2] in lower-bounding

(quadratic approximation), and added to the rectangle-reducing strategy. We will
prove that the proposed algorithm is convergent.

Theorem 7 If the proposed algorithm terminates in finite steps, then a global opti-
mal solution of the problem (1) is obtained when the algorithm terminates.

Proof Assume that when the algorithm terminates, the result is coming to xk . Then,
immediately, we have ax = Bk when terminating at the k-step, and so xk is a global
optimal solution of the problem (1).
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Theorem 8 If the algorithm generates an infinite sequence
{
xk

}
k∈N∗ , then every

accumulation point x∗ of this sequence is a global optimal solution of the problem
(1) (i.e., the global optimal solution is not unique).

Proof Let x∗ be an accumulation point of the sequence
{
xk

}
k∈N∗ and

{
xkp

}
k∈N∗,p∈N∗

be a subsequence of the sequence
{
xk

}
k∈N∗ converging to x∗. Obviously, in the

proposed algorithm, the lower sequence {ak}k∈N∗ is monotone increasing and the
upper sequence {Bk}k∈N∗ is monotone decreasing, and we have

αk = lquad
(
xk

)
, Bk = f

(
xk

)
.

Then, we can write that

αk = lquad
(
xk

) ≤ min
x∈Sk

f (x) ≤ Bk = f
(
xk

)
.

So, both {xk}k∈N∗ and {Bk}k∈N∗ are convergent, and

lim
k→∞ Bk = lim

q→∞ Bkq = lim
k→∞ f

(
xk

) = lim
q→∞ f

(
xkq

) = f
(
x∗) .

Without loss of generality, we assume that xkq is the solution of the problem (QLBP)

on Skq , which satisfies Skq+1 ⊂ Skq , q ≥ 1. By the properties of the proposed rectangle
partition, which is exhaust, i.e. limq→∞ Skq = x∗, and from Theorem 7 again, we
know that

0 ≤ Bkq − αkq = f
(
xkq

) − lquad
(
xkq

) ≤
(

ρ (Q + θ I ) + θ + 1

2
K

)∥∥UK
q − LK

q

∥∥2
.

Then
lim
q→0

(
f
(
xkq

) − lquad
(
xkq

)) = lim
q→0

(
Bkq − αkq

) = 0.

Thus, we have

lim
q→0

(
Bkq − αkq

) = lim
q→0

(
αkq − Bkq − (

Bkq − αkq

)) = 0,

and so
lim
k→0

αk = lim
q→0

αkq = lim
q→0

(
Bkq − (

Bkq − αkq

)) = lim
q→0

Bkq .

Then we have:
lim
k→0

αk = lim
q→0

Bkq = lim
q→∞ f

(
xkq

) = f
(
x∗) .

Therefore, the point x∗ is an global optimal solution of the problem (1).
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Fig. 1 Graphs

Example 9 Let the non-convex quadratic function be defined by

f (x) = (x1 + 1)2 + (x2 + 1)2 − 5

2
(x1 + x2) − 3

(
x21 + x22

) − 2.

In Fig. 1, we see the graphs of the non-convex quadratic function f , the linear
approximate function and the convex quadratic lower bound function over the rec-
tangle [−1, 0] ⊆ R

n . It is clear that the convex quadratic approximate function is
between the objective function and the linear approximate one of the same function
over he rectangle S0 = [−1, 0] ⊆ R

n .

6 Conclusion

In this paper, we present a new rectangle Branch and Bound approach for solv-
ing non-convex quadratic programming problems, where we proposed a new lower
approximate convex quadratic functions of the objective quadratic function f over
an n-rectangle. This lower approximate is given to determine a lower bound of the
global optimal value of the original problem (1) over each rectangle. To accelerate
the convergence of the proposed algorithm we used a simple two-partition technique
on rectangle and the tactics on reducing and deleting subrectangles from [2].

References

1. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Kluwer Academic
Publishers, Dordrecht (1995)

2. Gao, Y., Xue, H., Shen, P.: A new rectangle branch and bound reduce approach for solving non
convex quadratic programming problems. Appl. Math. Comput. 168, 1409–1418 (2005)



Branch and Bound Method to Resolve the Non-convex Quadratic Problems 117

3. Honggang, X., Chengxian, X.: A branch and bound algorithm for solving a class of DC-
programming. Appl. Math. Comput. 165, 291–302 (2005)

4. Pardalos, P.M.: Global optimization algorithms for linearly constrained indefinite quadratic
problems. Comput. Math. Appl. Lic. 21(6–7), 87–97 (1991)

5. Jiao, H.: A branch and bound algorithm for globally solving a class of non convex programming
problems. Nonlinear Anal. 70, 1113–1123 (2009)



Rogue Wave Solutions for the Myrzakulov-I
Equation

Gulgassyl Nugmanova

Abstract In this paper, we consider the (2+1)-dimensional generalization of
the Landau–Lifshitz equation, so-called the Myrzakulov-I (M-I) equation, which
describes a two-dimensional dynamics of magnetization in ferromagnetics. The Dar-
boux transformation (DT) for the M-I equation is constructed. Using the DT the
solution of the type of destructive waves for the M-I equation is found.

1 Introduction

Among the nonlinear evolution equations, integrable ones are of special interest,
since only in this case it is possible to carry out detailed and in-depth theoretical
study, using the methods of the theory of solitons. Spin systems are convenient
model systems for the study of nonlinear phenomena in magnetics. The (2+1)-
dimensional Myrzakulov-I (M-I) equation, which is considered in this paper, has
a rich internal structure. Various algebraic and geometric properties of the M-I equa-
tion with the scalar potential, and its integrable reductions were studied based on
the theory of solitons and differential geometry in the papers [1–5]. In the recent
literature the problem of describing the phenomenon of destructive waves is widely
discussed. For example, in [6] the solution for the type of destructive waves with
dimensional Heisenberg ferromagnet was found. These waves are not only applied,
but also of theoretical interest. The problem of finding solutions of the type destruc-
tive waves of the M-I equation is the main objective of this work. To construct the
solution of this type, we will focus on the method of Darboux transformation (DT).

The paper is organized as follows. In Sect. 2, the M-I equation, and its Lax
representation are introduced. In Sect. 3, we derived the DT of the M-I equation.
Using the DT, some exact soliton solutions are derived. Section 4 is devoted to
conclusion.
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2 The M-I Equation

Let us consider the M-I equation. It looks like [1]

i St + 1

2
[S, Sxy] + iuSx = 0, (1)

ux − i

4
tr(S[Sx , Sy]) = 0, (2)

where

S =
(
S3 S−
S+ −S3

)
.

The M-I equation is integrable by the IST. Its Lax representation reads as [5]

Φx = UΦ, (3)

Φt = 2λΦy + VΦ, (4)

where

Φ =
(

ψ1

ψ2

)
,

U = −iλS,

V = λ

2
([S, Sy] + 2iuS).

3 Darboux Transformation for the M-I Equation

To construct the DT for the M-I equation (1)–(2), we associate desired solution of
its corresponding linear system (3)–(4) Φ ′ with the known solution Φ at the form

Φ ′ = LΦ,

where we assume that
L = λN − K .

Here

N =
(
n11 n12
n21 n22

)
.

The matrix function Φ ′ satisfies the same Lax representation as (3)–(4), so that
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Φ ′
x = U ′Φ ′,

Φ ′
t = 2λΦ ′

y + V ′Φ ′.

The matrix function L obeys the following equations

Lx + LU = U ′L , (5)

Lt + LV = 2λLy + V ′L . (6)

From the first equation of this system we obtain

N : λx = 0

λ0 : Kx = 0 (7)

λ1 : Nx = i S′K − i K S,

λ2 : 0 = −i S′N + i N S. (8)

Hence we have the following DT for the matrix S:

S′ = NSN−1.

The second equation of the system (5)–(6) gives us

N : λt = 2λλy,

λ0 : Kt = 0, (9)

λ1 : Nt = −2Ky − 1

2
([S′, S′

y] + 2iU ′S′) + 1

2
([S, Sy] + 2iU S),

λ2 : Ny = −1

4
([S′, S′

y] + 2iU ′S′)N + 1

4
N ([S, Sy] + 2iU S).

From (7) and (9) we can see that K is constant. So that we can put

K =
(
1 0
0 1

)
.

Then from (8) we get the form of the DT for S as

S′ = S − i Nx ,

After some cumbersome calculations we get that

NyN
−1 = iuN SN−1 − NSN−1NySN

−1 − iu′NSN−1.

This equation can be simplified as
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i(u′ − u)NSN−1 = −(NSN−1NySN
−1 + NyN

−1).

Hence we get the DT for the potential u:

u′ = u + i tr(SN−1Ny).

Thus, in general we have constructed the DT for the M-I with the following form:

S′ = NSN−1,

u′ = u + i tr(SN−1Ny).

It is not difficult to verify that the matrix N has the form

N =
(

n11 n12
−n∗

12 n
∗
11

)
,

so that we have

N−1 = 1

n

(
n∗
11 −n12

n∗
12 n11

)
,

Here
n = det N = |n11|2 + |n12|2.

Finally we have the DT in terms of the elements of N as:

S′ = 1

n

⎛

⎜
⎜
⎝

S3(|n11|2 − |n12|2)
+S−n11n∗

12 + S+n∗
11n12

S−n211 − S+n212−2S3n11n12
S+n∗2

11 − S−n∗2
12−2S3n∗

11n
∗
12

S3(|n12|2 − |n11|2)
−S−n11n∗

12 − S+n∗
11n12

⎞

⎟
⎟
⎠ , (10)

u′ = u + i

n
[(n11yn∗

11 + n∗
12yn12 − n12yn

∗
12 − n∗

11yn11)S3

+(n11yn
∗
12 − n∗

12yn11)S
− + (n12yn

∗
11 − n∗

11yn12)S
+].

At last, we give the other form of the DT of S as:

S′ = S − i Nx = S − i

(
n11x n12x

−n∗
12x n∗

11x

)
.

To construct exact solutions of theM-I equation,wemust find the explicit expressions
of ni j . To do that, we assume that [5]

N = HΛ−1H−1,
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where

H =
(

ψ1(λ1; t, x, y) ψ1(λ2; t, x, y)
ψ2(λ1; t, x, y) ψ2(λ2; t, x, y)

)
.

Here

Λ =
(

λ1 0
0 λ2

)

and det H �= 0, where λ1 and λ2 are complex constants. It is easy to show that H
satisfies the following equations

Hx = −i SHΛ,

Ht = 2HyΛ + 1

2
([S, Sy] + 2iuS)HΛ.

From these equations it follows that N obeys the equations

Nx = i N SN−1 − i S,

Ny = [HyH
−1, N ],

Nt = 1

2
(([S, Sy] + 2iuS) − 2Z ′ − ([S, Sy] + 2iuS)).

In order to satisfy the constraint of S, the S and the matrix solution of the Lax
equations obey the condition

Φ† = Φ−1, S† = S,

which follows from the equations

Φ†
x = iλΦ†S†, (Φ−1)x = iλΦ−1S−1,

where † denote the Hermitian conjugate. After some calculations we come to the
formulas

λ2 = λ∗
1, H =

(
ψ1(λ1; t, x, y) −ψ∗

2 (λ1; t, x, y)
ψ2(λ1; t, x, y) ψ∗

1 (λ1; t, x, y)
)

,

H−1 = 1

Δ

(
ψ∗

1 (λ1; t, x, y) ψ∗
2 (λ1; t, x, y)

−ψ2(λ1; t, x, y) ψ1(λ1; t, x, y)
)

,

where
Δ = |ψ1|2 + |ψ2|2.

So, for the matrix N we have
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N = 1

Δ

(
λ−1
1 |ψ1|2 + λ−1

2 |ψ2|2 (λ−1
1 − λ−1

2 )ψ1ψ
∗
2

(λ−1
1 − λ−1

2 )ψ∗
1ψ2 λ−1

1 |ψ2|2 + λ−1
2 |ψ1|2)

)
.

4 Rogue Wave Solution

The solution of the linear system corresponding to the M-I equation will be sought
in the form

Ψ1 = [i(2x − y − 1) − 2t]e−0,5i t ,

Ψ2 = [2x − y + 1 + 2i t]e0,5i t

Then, from the Eq. (10), we obtain the solution of the M-I in the following form

S3 = − 2(2x − y)

(2x − y)2 + 4t2 + 1
,

S+ = [(2x − y)2i − 4t2 − 1]i − 4t (2x − y)

2[(2x − y)2 + 4t2 + 1] .

These solutions are behave as destructive waves within a certain range (see Figs. 1
and 2); accordingly, they are called rogue waves.

Fig. 1 Rogue wave solution
when t = 0.5
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Fig. 2 Rogue wave solution
when t = 5

5 Conclusion

One of the interesting areas of research in the theory of solitons is the development of
methods for constructing exact solutions of nonlinear differential equations in partial
derivatives. In this paper, themethod of DT is extended to the (2+1)-dimensional spin
systems for the M-I equation. By building the DT for the M-I equation, we found its
rogue waves type solutions.
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Fuzzy Bilevel Programming with Credibility
Measure

Hande Günay Akdemir

Abstract This paper considers a hierarchical decision making problem in which
the wholesaler is considered as the leader and decides the price, while the retailer is
the decision maker of the second level and decides the ordering quantity from the
wholesaler. Both decision makers try to maximize their profit in case of the fuzzy
demand of the product depends on the price. To deal with uncertainty, credibility
measure theory is applied. Examples are given to illustrate the proposed model.

1 Introduction

Supply chain is a system consists of suppliers, manufacturers, distributors, retailers,
transporters who act in a coordinated manner to accomplish product development,
marketing, distribution and warehousing tasks in order to provide a competitive
advantage. In most real world situations, the possible values of model parameters are
only determined ambiguously by using linguistic terms, i.e. cannot be described pre-
cisely by the experts. Besides, probability distributions of model parameters cannot
be known due to lack of historical data. Supply chain management related problems
can also include imprecise parameters due to possible failures in production line,
fluctuations in unit costs, prices and demands. The impact of vagueness can be cap-
tured by using fuzzy set theory. In fuzzy context, the degree of membership expresses
how much a particular element belongs to a fuzzy set.

Bilevel programming (BP) is a nested hierarchical system where two decision
makers act in a cooperative/noncooperative and sequential manner to optimize their
possibly conflicting individual objective functions. It is closely related to game theory
and economic equilibrium problems. Each unit optimizes its own objective function,
but is affected by the action or reaction of the other unit. BP has been applied
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in fields which involve hierarchical relationship between two classes of decision
makers, for example in pricing and fare optimization problems in airline industry or
in other transportation networks, management of multi-divisional firms, economic
planning, optimal design, engineering, chemistry, environmental sciences, etc. For
a detailed literature review on BP and its generalization: mathematical programs
with equilibrium constraints, reader may refer to [4]. For example, a government
in a distribution network, or a service provider in a communication market or a
manufacturer in a supply chain acts as a dominant player andmakes his decision first.
As followers, users of those networks, or competitors or retailers use that decision
as an input to form their strategy.

Cao and Chen [2] discussed a capacitated plant selection problem in decentralized
manufacturing environment. Ji and Shao [7] formulated a BP model with more than
one retailer for the newsboy problem with fuzzy demands and quantity discounts.
Zhu et al. [17] considered fuzzy bilevel expected value model for a supply chain
composed of a supplier producing a single period product in the upper level and
multiple retailers in the lower level. In [9], a bilevel multi-objective supply chain
model, where market demand, production capacity, and supplies are fuzzy numbers,
is considered. Yao et al. [16] developed a possibilistic bilevel multi-objective stone
resource assignment model between a government and a plant. Hashim et al. [6]
presented a fuzzybilevel decisionmakingproblemwith the lower level corresponding
to a plant planning problem, while the upper level to a distribution network problem.
In [14], the authors investigated a supply chain optimization problem in a bi-level
structure in which customer demand and supply chain costs were considered to be
fuzzy.

In this paper, a hierarchical supply chain consisting of one wholesaler and one
retailer is studied and fuzzy customer demand is supposed to be price sensitive. Three
types of membership functions are considered for fuzzy demand, namely triangular,
trapezoidal, and “close to” type. This paper is organized as follows. Section2 gives
brief information on credibility theory. In Sect. 3,BPmodels and a solution technique,
namely branch and bound algorithm are given. Illustrative examples for three types of
fuzzy numbers are considered in Sect. 4. Finally, it is concluded with some remarks
in the last section.

2 Fuzzy Set Theory and Credibility Measures

In this section, some knowledge of credibility theory is introduced. A fuzzy event
must hold if its credibility is 1, and fail if its credibility is 0 [7]. In literature, pos-
sibility measures are often used for optimistic decisions, necessity measures are for
pessimistic decisions [8]. So, credibility measures are suitable for risk-neutral fuzzy
decision problems.
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Definition 1 Let Θ be a nonempty set, and 2Θ be the power set of Θ . Each element
of 2Θ is called an event. Let ξ be a fuzzy variable with the membership function μ,
and t be a real number. The possibility, necessity and credibility of the fuzzy event,
characterized by {ξ ≥ t}, can be given respectively as

Pos{ξ ≥ t} = sup
u≥t

μ(u),

Nec{ξ ≥ t} = 1 − sup
u<t

μ(u),

Cr{ξ ≥ t} = 1

2
[Pos{ξ ≥ t} + Nec{ξ ≥ t}].

The set function Cr is normalized, monotonic, and self-dual fuzzy measure [12].
For axiomatic definition of credibility and further details, reader can refer to [13].

Example 2 A triangular fuzzy variable ξ can be determined by a triplet (a, b, c)with
a < b < c, whose membership function is

μ(t) = Pos{ξ = t} =
⎧
⎨

⎩

t−a
b−a , if a < t ≤ b
c−t
c−b , if b < t ≤ c
0, otherwise.

It is easy to obtain that

Cr{ξ ≥ t} =

⎧
⎪⎪⎨

⎪⎪⎩

1,
2b−a−t
2(b−a)

,
c−t

2(c−b) ,

0,

if t ≤ a
if a < t ≤ b
if b < t ≤ c
if t > c

.

Example 3 Credibility measure of the trapezoidal fuzzy variable ξ which is deter-
mined by a quadruplet (a, b, c, d) with a < b < c < d, is:

Cr{ξ ≥ t} =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if t ≤ a
2b−a−t
2(b−a)

, if a < t ≤ b
1
2 , if b < t ≤ c
d−t

2(d−c) , if c < t ≤ d
0, if t > d,

.

where membership function is

μ(t) = Pos{ξ = t} =

⎧
⎪⎪⎨

⎪⎪⎩

t−a
b−a , if a < t ≤ b
1, if b < t ≤ c
d−t
d−c , if c < t ≤ d
0, otherwise.
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Example 4 For a fixed real number m, the membership function of the linguistic
fuzzy set of real numbers “close tom”or “aboutm” canbedefined asμ(t) = 1

1+(t−m)2
.

So,

Cr{ξ ≥ t} =
{
1 − 1

2(1+(t−m)2)
,

1
2(1+(t−m)2)

,

if t ≤ m
if t > m

. (1)

3 Branch and Bound Algorithm for Bilevel Programming

The first level decision maker (the leader) controls over the vector x and the second
level decisionmaker (the follower) controls over the vector y. The follower’s problem
(the lower level/inner problem) is a constraint of the leader’s problem (the upper
level/outer problem).

The general formulation of a BP problem is:

min
x

F(x, y)

G(x, y) ≤ 0
H(x, y) = 0
where y solves⎧

⎪⎨

⎪⎩

min
y

f (x, y)

g(x, y) ≤ 0
h(x, y) = 0

(2)

where x ∈ R
m is a vector for upper-level variables, y ∈ R

n is a vector for lower-level
variables, F : Rm × R

n → R is upper-level objective function, f : Rm × R
n → R is

lower-level objective function, the vector-valued functions G : Rm × R
n → R

r and
H : Rm × R

n → R
ŕ give upper-level constraints, and the vector-valued functions

g : Rm × R
n → R

s and h : Rm × R
n → R

ś give lower-level constraints.
Rather than working with hierarchical form (2), we convert the model into a stan-

dard mathematical program by replacing the second level problem with its Karush-
Kuhn-Tucker (KKT) optimality conditions. This operation reduces the original
problem to a single level program involving nonlinear complementary constraints [3].
Equivalent problem is a nonlinear programming problem whose constraints include
the first order necessary optimality conditions of the second level problem. The
equivalent single level program of the BP problem follows as:
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min
x,y,u,v

F(x, y)

G(x, y) ≤ 0
H(x, y) = 0
g(x, y) ≤ 0
h(x, y) = 0
∇y f (x, y) + uT∇yg(x, y) + vT∇yh(x, y) = 0
ui gi (x, y) = 0, i = 1, . . . , s
ui ≥ 0, i = 1, . . . , s

(3)

where u and v are the vectors of KKT multipliers and Lagrange multipliers,
respectively.

In branch and bound algorithm [1], the complementary constraints ui gi (x, y) = 0
are suppressed and removed to construct the relaxed program. Supposing that the
solution of the relaxed program does not satisfy some complementary constraints,
branching is performed by separating two subproblems one with ui = 0 as an addi-
tional constraint, and the other with the constraint gi (x, y) = 0, selecting i for
which |ui gi (x, y)| is the largest. Branching is repeated until an infeasible solution
is obtained or all complementary constraints are satisfied. In doing so, we examine
all of the complementary slackness conditions one by one within a tolerance value.
(|ui gi (x, y)| < 10−6) Resulting feasible solutions are labeled as candidate solutions.

4 Illustrative Examples

The goal of this study is to apply fuzzy BP notion to the two-echelon supply chain,
consisting of a manufacturer as the leader and a retailer as the follower. It is assumed
that the decision makers know the distribution of the uncertain and price-sensitive
customer demand. This problem is adapted from [10]. The authors considered sto-
chastic versions of this lunch vendor problem. In this paper, we consider fuzzy bilevel
chance constrained programming model for supply chain management problem.

• The retailer buy the product from the company at the unitwholesale price x ∈ [a, b]
which is determined by the company, where a and b are positive constants.

• Then, for a given wholesale price x of the leader, the retailer responses to the
decision of the wholesaler company by the amount y of product that he purchases
from the company and it is no less than c.

• The retailer sells the product at the unit retail price 2x to the market.
• The decisions are taken before demand realization. The demand ξ is supposed to
be a fuzzy variable, and varies according to the price.

• The retailer can sell the amount t = min{y, ξ} of product, so t ≤ y and t ≤ ξ .
The objectives of the company and the retailer are to maximize profits xy and
(2xt − xy), respectively.
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• If there are any unsold product, the retailer cannot return them to the company,
he/she will dispose them with no cost.

We can formulate the problem as the following fuzzy BP problem with fuzzy
chance constraint [5, 15]:

max
x

(xy)

a ≤ x ≤ b
where y solves
⎧
⎪⎪⎨

⎪⎪⎩

max
y

(2xt − xy)

y ≥ c
t ≤ y
Cr{ξ ≥ t} ≥ α

(4)

where α ∈ (0, 1) is pre-determined satisfactory level for credibility to ensure that the
constraint should hold at some confidence level [11].

Example 5 Parameters are taken as a = 10, b = 20, c = 100, and demand is a price
dependent triangular fuzzy number ξ = (300 − 12x, 350 − 10x, 400 − 4x), α =
0.70. Then, the credibility measure of demand can be calculated as:

Cr{ξ ≥ t} =

⎧
⎪⎪⎨

⎪⎪⎩

1, if t ≤ 300 − 12x
400−8x−t
100+4x , if 300 − 12x < t ≤ 350 − 10x

400−4x−t
100+12x , if 350 − 10x < t ≤ 400 − 4x
0, if t > 400 − 4x

(5)

One way to represent the piecewise credibility function is to see it as a separable
function. So,

Cr{ξ ≥ t} = λ0 + λ1 + 0.5λ2 + 0λ3 + 0λ4

is the linear approximation denoting 0, (300 − 12x), (350 − 10x), (400 − 4x), and
400 are grid points, where

λ0 + λ1 + λ2 + λ3 + λ4 = 1, λ0, λ1, λ2, λ3, λ4 ≥ 0,

and

t = 0λ0 + (300 − 12x) λ1 + (350 − 10x) λ2 + (400 − 4x) λ3 + 400λ4.

The initial two-level programming problem (4) is transformed into an equivalent
crisp two-level programming problem:
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max
x

(xy)

10 ≤ x ≤ 20
where y, t, λ0, λ1, λ2, λ3, λ4 solves⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
y,t,λ0,...,λ4

(xy − 2xt)

100 − y ≤ 0
t − y ≤ 0
−λ0,−λ1,−λ2,−λ3,−λ4,−t ≤ 0
0.70 − λ0 − λ1 − 0.5λ2 ≤ 0
t − (300 − 12x) λ1 − (350 − 10x) λ2

− (400 − 4x) λ3 − 400λ4 = 0
λ0 + λ1 + λ2 + λ3 + λ4 − 1 = 0

(6)

Then, by using (3), the equivalent single level programming model of (6) can be
given as:

max
x,y,t,λ,u,v

(xy)

x ≥ 10, x ≤ 20,
100 − y ≤ 0, t − y ≤ 0,
−λ0,−λ1,−λ2,−λ3,−λ4,−t ≤ 0,
0.70 − λ0 − λ1 − 0.5λ2 ≤ 0,
t − (300 − 12x) λ1 − (350 − 10x) λ2

− (400 − 4x) λ3 − 400λ4 = 0,
λ0 + λ1 + λ2 + λ3 + λ4 − 1 = 0,
x − u1 − u2 = 0,−2x + u2 − u8 + v1 = 0,
−u3 − u9 + v2 = 0,−u4 − u9 − v1(300 − 12x) + v2 = 0,
−u5 − 0.5u9 − v1(350 − 10x) + v2 = 0,
−u6 − v1(400 − 4x) + v2 = 0,−u7 − 400v1 + v2 = 0,
u1(100 − y) = u2(t − y) = 0,
u3λ0 = u4λ1 = u5λ2 = u6λ3 = u7λ4 = 0,
u8t = u9(0.70 − λ0 − λ1 − 0.5λ2) = 0,
u1, . . . , u9 ≥ 0, v1, v2 urs.

(7)

Based on the branch and bound algorithm, Fig. 1 demonstrates the solution process
for the model (7).

Example 6 Parameters in Example6 are the same as those in Example5 except the
credibility function of the demand. a = 10, b = 20, c = 100, demand is a price
dependent trapezoidal fuzzy number

ξ = (300 − 12x, 300, 400 − 4x, 400), α = 0.70.

So,

Cr{ξ ≥ t} = λ0 + λ1 + 0.5λ2 + 0.5λ3 + 0λ4 + 0λ5
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Fig. 1 Branching and
backtracking for Example5

where

λ0 + λ1 + λ2 + λ3 + λ4 + λ5 = 1, λ0, λ1, λ2, λ3, λ4, λ5 ≥ 0,

t = 0λ0 + (300 − 12x) λ1 + 300λ2 + (400 − 4x) λ3 + 400λ4 + 1000λ5.

The equivalent single level program for Example6 can be given as follows:

max
x,y,t,λ,u,v

(xy)

x ≥ 10, x ≤ 20,
100 − y ≤ 0, t − y ≤ 0,
−λ0,−λ1,−λ2,−λ3,−λ4,−λ5,−t ≤ 0,
0.70 − λ0 − λ1 − 0.5λ2 − 0.5λ3 ≤ 0,
t − (300 − 12x) λ1 − 300λ2 − (400 − 4x) λ3

−400λ4 − 1000λ5 = 0,
λ0 + λ1 + λ2 + λ3 + λ4 + λ5 − 1 = 0,
x − u1 − u2 = 0,−2x + u2 − u9 + v1 = 0,
−u3 − u10 + v2 = 0,−u4 − v1(300 − 12x) + v2 = 0,
−u5 − 300v1 + v2 = 0,−u6 − v1(400 − 4x) + v2 = 0,
−u7 − 400v1 + v2 = 0,−u8 − 1000v1 + v2 = 0,
u1(100 − y) = u2(t − y) = 0,
u3λ0 = u4λ1 = u5λ2 = u6λ3 = u7λ4 = u8λ5 = 0,
u9t = u10(0.70 − λ0 − λ1 − 0.5λ2) = 0,
u1, . . . , u10 ≥ 0, v1, v2 urs.

(8)

Branching and backtracking procedure for the model (8) is shown in Fig. 2.

Example 7 Parameters inExample 7 are the sameas those inExamples5 and6 except
the credibility function of the demand. For Example 7, a = 10, b = 20, c = 100,
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Fig. 2 Branching and backtracking for Example 6

demand is a price dependent fuzzy number “close to (350 − 8x)”, α = 0.70. Then,
the credibility measure of demand can be calculated as:

Cr{ξ ≥ t} =
{
1 − 1

2(1+(t−350+8x)2)
, if t ≤ 350 − 8x

1
2(1+(t−350+8x)2)

, otherwise.

For Example 7, the equivalent single level program is given as:

max
x,y,t,λ,u,v

(xy)

x ≥ 10, x ≤ 20, 100 − y ≤ 0, t − y ≤ 0,−λ1,−λ2,−λ3,−t ≤ 0,

0.70 − λ1

(
1 − 1

2(1+(8x−160)2)

)
− 0.5λ2

−λ3

(
1

2(1+(8x−80)2)

)
≤ 0,

t − 190λ1 − (350 − 8x)λ2 − 270λ3 = 0,
λ1 + λ2 + λ3 − 1 = 0,
x − u1 − u2 = 0,−2x + u2 − u6 + v1 = 0,

−u3 − u7
(
1 − 1

2(1+(8x−160)2)

)
− 190v1 + v2 = 0,

−u4 − 0.5u7 − v1(350 − 8x) + v2 = 0,

−u5 − u7
(

1
2(1+(8x−80)2)

)
− 270v1 + v2 = 0,

u1(100 − y) = u2(t − y) = 0,
u3λ1 = u4λ2 = u5λ3 = u6t = 0,

u7(0.70 − λ1

(
1 − 1

2(1+(8x−160)2)

)
− 0.5λ2

−λ3

(
1

2(1+(8x−80)2)

)
= 0,

u1, . . . , u7 ≥ 0, v1, v2 urs.

The resulting optimal values of decision variables are summarized in Table1.
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Table 1 Optimal Solutions

x y t

Example5 19.643 165.000 165.000

Example6 20.000 300.000 300.000

Example7 19.580 211.630 211.630

λ0 λ1 λ2 λ3 λ4 λ5

Example5 0.00 0.70 0.00 0.00 0.30 –

Example6 0.70 0.00 0.00 0.00 0.00 0.30

Example7 – 0.73 0.00 0.27 – –

u1 u2 u3 u4 u5

Example5 0.000 19.643 1262.755 0.000 1543.367

Example6 0.000 20.000 0.000 18800.000 14000.000

Example7 0.000 19.580 0.000 684.250 0.000

u6 u7 u8 u9 u10

Example5 1543.367 0.000 0.000 6594.388 –

Example6 13600.000 12000.000 0.000 0.000 20000.000

Example7 0.000 1632.859 – – –

v1 v2 Objective

Example5 19.643 7857.143 3241.071

Example6 20.000 20000.000 6000.000

Example7 19.580 5285.657 4143.656

5 Concluding Remarks

In this study, a two-echelon hierarchical supply chain is considered that consists
of a manufacturer and a retailer when the retailer faces fuzzy and price-dependent
customer demand. As the price of product influence customers to some extend, so it
is vital factor for both decision makers. The models for different membership func-
tions of demand such as triangular, trapezoidal, and “close to” types are analyzed
separately. Different fuzzification techniques lead to different optimal solutions. For
fuzzification process, it is advisable for the user to perform experimental and sensi-
tivity analysis on selected fuzzy sets to determine the impact of varying membership
values. Only demand uncertainty is considered by using credibility theory. The main
advantage of using credibility measures is that they can easily be represented as
separable functions in the models.
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A New Approach of a Possibility Function
Based Neural Network

George A. Anastassiou and Iuliana F. Iatan

Abstract The paper presents a new type of fuzzy neural network, entitled Possibil-
ity Function based Neural Network (PFBNN). Its advantages consist in that it not
only can perform as a standard neural network, but can also accept a group of pos-
sibility functions as input. The PFBNN discussed in this paper has novel structures,
consisting in two stages: the first stage of the network is a fuzzy based and it has
two parts: a Parameter Computing Network (PCN), followed by a Converting Layer
(CL); the second stage of the network is a standard backpropagation based neural
network (BPNN). The PCN in a possibility function based network can also be used
to predict functions. The CL is used to convert the possibility function to a value.
This layer is necessary for data classification. The network can still function as a
classifier using only the PCN and the CL or only the CL. Using only the PCN one
can perform a transformation from one group of possibility functions to another.

1 Introduction

Scientists have proved a considerable interest in the study of the Artificial Neural
Networks (ANNs) [2] and especially the Fuzzy Neural Networks (FNNs) [13] during
the last decade. Their interest in the FNN applications was generated [3] by the
following two events:

1. first, the success of Japanese fuzzy logic technology applications in the consumer
products;

2. second, in some ANN applications sufficient data for training are not available.
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In such situations, the fuzzy logic systems [5, 9, 13] are often workable.
Today, a lot of neural approaches [4, 6] are established [8] as fixed parts ofmachine

learning, and a rigorous theoretical investigation for these approaches is available.
Many researchers of this academicworld agree on the fact that the statistical notion

is often the right language to formalize the learning algorithms and to investigate their
mathematical properties. Nevertheless, according to the widespread models, tasks,
and application areas of the neural approaches [10, 12, 14, 15] , the mathematical
tools ranging from approximation theory [16], complexity theory, geometry, statis-
tical physics, statistics, linear and nonlinear optimization, control theory and many
more fields can be found in the literature dedicated of the ANNs.

Correspondingly, the role of Mathematics in the ANN literature is [7, 8] diverse:

(A) development and presentation of algorithms: Most neural algorithms are
designed in mathematical terms and some learning schemes are even mainly
motivated by abstract mathematical considerations such as support vector
machines;

(B) foundation of tools: A fixed canon of mathematical questions has been iden-
tified for most network models and application areas which is to be answered
in order to establish the models as well founded and reliable tools in the lit-
erature. Interestingly, many mathematical questions are thereby not yet solved
satisfactorily also for old network models and constitute still open topics of
ongoing research such as the loading problem of feed-forward networks or the
convergence problem of the self-organizing map in its original formulation;

(C) application of tools: Mathematical formalization establishes standards for the
assessment of the performance of methods and application in real-life scenarios
(although these standards are not always followed and real life would sometimes
be better characterized by slightly different descriptions than the mathematics).

We will in the following consider mathematical questions which are to be
answered to justify standard models [8] as reliable machine learning tools. Thereby,
we will focus on classical models used for machine learning: feed-forward networks.
Depending on the output function of such type networks, feed-forward networks can
be used for classification of patterns if the output set is finite and discrete, or approx-
imation of functions if the output set is contained in a real-vector space.

Probabilistic neural network [11] is a kind of feed-forward neural network
involved from the radial basis function networks. Its theoretical basis is the Bayesian
minimum risk criteria. In pattern classification, its advantage is to substitute nonlinear
learning algorithm with linear learning algorithm.

In recent years, the probabilistic neural networks are used [1, 11] in the field of
face recognition for its structure, good approximation, fast training speed and good
real-time performance.

The remainder of the paper is organized as follows. In Sect. 2 we analyze the
architecture of the PFBNN. We follow with the training algorithm of the PBFNN in
Sect. 3. We conclude in Sect. 4.
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2 Architecture of the PFBNN

From the Fig. 1 which shows the block diagram of the proposed fuzzy neural network
we can notice that there are two stages:

(1) the first stage of the network is a fuzzy based and it has two parts: a Parameter
Computing Network (PCN), followed by a Converting Layer (CL);

(2) the second stage of the network is a standard back-propagation based neural
network (BPNN).

This PBFNN can be segmented and still perform useful functions. The network
can still function as a classifier using only the PCN and the CL or only the CL.
Using only the PCN one can perform a transformation from one group of possibility
functions to another.

There are three types of weight variables used between connecting nodes of the
three networks in Fig. 1:

a. the first type called a λ-weight is used for connection weights between nodes in
the PCN;

b. the second type called a r -weight is used for connection weights between the
output of the PCN and the CL;

c. the third type called a w-weight is used for connection weights between the
neurons in a standard BPNN.

As thew-weights are adjusted according to standard back-propagation algorithms,
we shall discuss only the setting and adjustment of the λ- and r -weights.

The PCN accepts as input, a vector representing a group of possibility functions
and generates a group of possibility functions as output.

In the PCNN, the weights associated of the neurons corresponding to the λ layers
are

{λ(k)
i j }i=1,Lk−1, j=1,Lk

Fig. 1 The framework of a possibility based fuzzy neural network
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where:

• k (k = 1, t) represents the order of the PCN layer,
• i is the index of the neuron from the (k − 1) layer,
• j means the index of the neuron from the k layer,
• Lk is the number of the neurons of the kth layer, L0 = n,

with

λ
(k)
i j : [0, 1] → [−1, 1]

and they are always positive or always negative.
Each λ

(k)
i j is represented as a binary tuple (ρ

(k)
i j , ω

(k)
i j ), where:

• ρ
(k)
i j is a transformation function from [0, 1] to [0, 1];

• ω
(k)
i j is a constant real number in [−1, 1].
One can use a fuzzy normal distribution function

f (x) = e− (x−μ)2

2σ2 (1)

for each element x of the crisp input vector X to obtain the fuzzified input data of
the PCN.

We shall compute the outputs of the neurons from the kth layer of PCN using the
relation:

y(k)
j (u) =

Lk−1∑

i=1

ω
(k)
i j y

(k−1)
i

(
ρ

(k)
i j (u)

−1
)

, u ∈ [0, 1] (2)

or shortly

y(k)
j =

Lk−1∑

i=1

ω
(k)
i j

(
y(k−1)
i ◦ ρ

(k)
i j

−1
)

, (∀) j = 1, Lk, (3)

where:

• Y (k) = (y(k)
1 , . . . , y(k)

Lk
) is the output vector of the kth layer of PCN,

• Y (k−1) = (y(k−1)
1 , . . . , y(k)

Lk−1) constitutes the input vector of the kth layer (namely
the output vector of the (k − 1)th layer),

• “◦” means the composite of two functions,

• ρ
(k)
i j

−1
is the inverse function of ρ

(k)
i j .

The CL accepts as input a possibility function (that represents a possibility vector)
generated by the PCN and transforming it into a real number vector.
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Each weight of this layer is a function

ri j : [0, 1] → [−1, 1], i = 1, Lt , j = 1, M,

where Lt is the number of the neurons from the layer t of PCN and M is the number
of the output neurons of CL.

Similar to λ in the PCN, ri j is always positive or always negative. The r -weights of
the CL can be also represented as a binary tuple ri j = (γi j , τi j ), i = 1, Lt , j = 1, M
where

γi j : [0, 1] → [0, 1]

is a possibility function, which is different from ρ (the transformation function in
the PCN) and τi j is a constant real number in [−1, 1].

The output Z = (z1, . . . , zM) of the CL is a vector having real numbers as com-
ponents, see the following formula:

z j =
Lt∑

i=1

τi j

(
max
u∈[0,1]

(
min(y(t)

i (u), τi j (u))
))

, j = 1, M (4)

Y (t) = (y(t)
1 , . . . , y(t)

Lt
) being the fuzzy input vector of CL, which constitutes the

output vector of PCN.
We shall use y(t)

i (u) · τi j (u) instead of min(y(t)
i (u), τi j (u)) in order to compute

easier the outputs of the CL using (4).

3 Training Algorithm of the PBFNN

We shall build the training algorithm of the PBFNN in the hypothesis that the PCN
has three layers (namely t = 3):

1. the input layer which contains a number of L0 = n neurons
2. a hidden layer having L1 neurons
3. an output layer with L2 neurons.

Step 1. Initialize the weights of the PCN and CL in the following way:

(a) choose a linear function as the initial weight function for each ρ:

λ
(k)
i j (ui ) = v j , i = 1, Lt , j = 1, M (5)

and design a genetic algorithm to search for optimal ω’s;
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(b) let each weight function γ as a possibility function:

γi j (u) = e− (u−u0)2

2σ2 , u0 ∈ [0, 1], i = 1, Lt , j = 1, M (6)

assigning usually σ = 1 and design a genetic algorithm to search for optimal
τ ’s.

Let Y (0) = (y(0)
1 , . . . , y(0)

L0
) be the input fuzzy vector of the PCN corresponding to

the training vector by the index p.
Step 2. Compute the fuzzy output vector Y (1) = (y(1)

1 , . . . , y(1)
L1

) of the hidden
layer of PCN using the relation:

y(1)
j =

L0∑

i=1

ω
(1)
i j

(
y(0)
i ◦ ρ

(1)
i j

−1
)

, j = 1, L1 (7)

Step 3. Compute the fuzzy output vector Y (2) = (y(2)
1 , . . . , y(1)

L2
) of the output layer

of PCN using the relation:

y(2)
k =

L1∑

j=1

ω
(2)
jk

(
y(1)
j ◦ ρ

(2)
jk

−1
)

, k = 1, L2. (8)

Step 4.Apply to the input of theCL the fuzzy vectorY (2) = (y(2)
1 , . . . , y(1)

L2
), which

one obtains at the output of the PCN.
Step 5. Determine the output vector Z = (z1, . . . , zM) of the CL, having each

component a real number:

z j =
L2∑

i=1

τi j

(
max
u∈[0,1]

(
y(2)
i (u), τi j (u)

))
, j = 1, M, (9)

where M is the number of the output neurons of the CL.
Step 6. Adjust the weights of the output layer of the PCN:

⎧
⎨

⎩

ρ
(2)
jk (u j ) ← ρ

(2)
jk (u j ) + μρ · ∂E

∂ρ
(2)
jk (u j )

,

ω
(2)
jk (u j ) ← ω

(2)
jk (u j ) + μω · ∂E

∂ω
(2)
jk (u j )

,
(10)

j = 1, L1, k = 1, L2, μρ, μω being two constants with the meaning of learning
rates, and

E = 1

|ST |
|ST |∑

p=1

Ep (11)
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defines the performance of the system, where:

• |ST | represents the number of the vectors from the training lot,
• Ep is the output error of the PCN for the pth training sample, defined by:

Ep =
L2∑

k=1

⎛

⎝
1∫

0

Ep(vk)dvk

⎞

⎠ (12)

and

Ep(vk) = 1

2

(
Tk(vk) − y(2)

k (vk)
)2

, (13)

Tk = (T1, . . . , TL2) being the ideal output vector (the target vector) of the input vector
by the index p applied to the PCN.

We shall have

∂E

∂ρ
(2)
jk (u j )

=
L2∑

k=1

⎛

⎝
1∫

0

∂Ep(vk)

∂ρ
(2)
jk (u j )

dvk

⎞

⎠

=
1∫

0

∂Ep(vk)

∂ρ
(2)
jk (u j )

dvk

=
1∫

0

(
Tk(vk) − y(2)

k (vk)
)

· ∂y(2)
k (vk)

∂ρ
(2)
jk (u j )

dvk (14)

and

∂y(2)
k (vk)

∂ρ
(2)
jk (u j )

= ω
(2)
jk · ∂y(1)

j

∂ρ
(2)
jk

−1
(vk)

· ∂ρ
(2)
jk

−1
(vk)

∂ρ
(2)
jk (u j )

. (15)

Substituting (14) and (15) into (10) it will results:

ρ
(2)
jk (u j ) ← ρ

(2)
jk (u j ) − μρω

(2)
jk

1∫

0

(
Tk(vk) − y(2)

k (vk)
)

· ∂y(1)
j

∂ρ
(2)
jk

−1
(vk)

· ∂ρ
(2)
jk

−1
(vk)

∂ρ
(2)
jk (u j )

dvk ,

(16)
where i = 1, L1, k = 1, L2.

Similarly,

∂E

∂ω
(2)
jk

=
L2∑

k=1

⎛

⎝
1∫

0

∂Ep(vk)

∂ω
(2)
jk (u j )

)dvk

⎞

⎠ =
1∫

0

∂Ep(vk)

∂ω
(2)
jk

dvk (17)
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namely

∂E

∂ω
(2)
jk

= −
1∫

0

(
Tk(vk) − y(2)

k (vk)
)

· ∂y(2)
k (vk)

∂ω
(2)
jk

dvk, (18)

where

∂y(2)
k (vk)

∂ω
(2)
jk

= y(1)
j

(
ρ

(2)
jk

−1
(vk)

)
. (19)

Substituting (18) and (19) into (10) we obtain:

ω
(2)
jk (u j ) ← ω

(2)
jk (u j ) − μω

1∫

0

(
Tk(vk) − y(2)

k (vk)
)

· y(1)
j

(
ρ

(2)
jk

−1
(vk)

)
dvk (20)

where i = 1, L1, k = 1, L2.
Step 7. Adjust the weights of the hidden layer of the PCN:

⎧
⎨

⎩

ρ
(1)
i j (ui ) ← ρ

(1)
i j (ui ) + μρ · ∂E

∂ρ
(1)
i j (ui )

,

ω
(1)
i j (ui ) ← ω

(1)
i j (ui ) + μω · ∂E

∂ω
(1)
i j (ui )

,
(21)

i = 1, L0, j = 1, L1, where:

∂E

∂ρ
(1)
i j (ui )

=
L2∑

k=1

⎛

⎝
1∫

0

∂Ep(vk)

∂ρ
(1)
i j (ui )

⎞

⎠ dvk (22)

namely

∂E

∂ρ
(1)
i j (ui )

= −
L2∑

k=1

⎛

⎝
1∫

0

(Tk(vk) − y(2)
k (vk)) · ∂y(2)

k (vk)

∂ρ
(1)
i j (ui )

dvk

⎞

⎠ (23)

where

y(2)
k (vk) =

L1∑

j=1

ω
(2)
jk · y(1)

j

(
ρ

(2)
jk

−1
(vk)

)
, (24)

namely
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y(2)
k (vk) =

L1∑

j=1

ω
(2)
jk ·

L0∑

i=1

ω
(1)
i j · y(0)

i

(
ρ

(1)
i j

−1
(ρ

(2)
jk

−1
(vk))

)
(25)

and

∂y(2)
k (vk)

∂ρ
(1)
i j (ui )

= ω
(2)
jk · ω

(1)
i j · ∂y(0)

i

∂ρ
(1)
i j

−1
(ρ

(2)
jk

−1
(vk))

· ∂ρ
(1)
i j

−1
(ρ

(2)
jk

−1
(vk))

ρ
(1)
i j (ui )

, (26)

where

∂ρ
(1)
i j

−1
(ρ

(2)
jk

−1
(vk))

ρ
(1)
i j (ui )

= ∂ρ
(1)
i j

−1

∂ρ
(2)
jk

−1
(vk)

· ∂ρ
(2)
jk

−1
(vk)

∂ρ
(1)
i j (ui )

(27)

Substituting (23), (26), (27) into thefirst formula from the relation (21)we achieve:

ρ
(1)
i j (ui ) ← ρ

(1)
i j (ui ) − μρ · ω

(1)
i j

·
L2∑

k=1

ω
(2)
jk

(
Tk(vk) − y(2)

k (vk)
)

· ∂y(0)
i

∂ρ
(1)
i j

−1
(ρ

(2)
jk

−1
(vk))

(28)

· ∂ρ
(1)
i j

−1

∂ρ
(2)
jk

−1
(vk)

· ∂ρ
(2)
jk

−1
(vk)

∂ρ
(1)
i j (ui )

dvk,

(∀) i = 1, L0, j = 1, L1.
Analogically,

∂E

∂ω
(1)
i j (ui )

=
L2∑

k=1

⎛

⎝
1∫

0

∂Ep(vk)

∂ω
(1)
i j (ui )

)dvk

⎞

⎠ (29)

namely

∂E

∂ω
(1)
i j (ui )

= −
L2∑

k=1

⎛

⎝
1∫

0

(Tk(vk) − y(2)
k (vk)) · ∂y(2)

k (vk)

∂ω
(1)
i j (ui )

dvk

⎞

⎠ , (30)

where

∂y(2)
k (vk)

∂ω
(1)
i j (ui )

= ω
(2)
jk · y(0)

i

(
ρ

(1)
i j

−1
(ρ

(2)
jk

−1
(vk))

)
. (31)
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Substituting (30), (31) into the second formula from the relation (21) we achieve:

ω
(1)
i j (ui ) ← ω

(1)
i j (ui ) − μω·

L2∑

k=1

ω
(2)
jk

1∫

0

(
Tk(vk) − y(2)

k (vk)
)

· y(0)
i

(
ρ

(1)
i j

−1
(ρ

(2)
jk

−1
(vk))

)
dvk, (32)

(∀) i = 1, L2, j = 1, M .
Step 8. Adjust the weights of the CL:

{
γi j (u) ← γi j (u) + μγ · ∂E

∂γi j (u)
,

τi j ← τi j + μτ · ∂E
∂τi j

,
(33)

u ∈ [0, 1], (∀) i = 1, L2, j = 1, M ,μγ andμτ being two constants with themeaning
of learning rates and E is the performance of the system (defined as in (11)), Ep

being in this case the output error of the CL for the pth training sample and it is
defined by:

Ep = 1

2

M∑

j=1

(Uj − z j )
2, (34)

U = (U1, . . . ,UM) being the ideal output vector (the target vector) of the input vector
by the index p applied to the CL.

We shall have:

∂E

∂γi j (u)
= ∂Ep

∂γi j (u)
= −(Uj − z j )

∂z j
∂γi j (u)

. (35)

Let umax the point for which y(2)
i (u)γi j (u) has maximum value. Hence:

∂z j
∂γi j (u)

=
M∑

k=1

τk j ·
∂

(
y(2)
k (u) · γk j (u)

)

∂γi j (umax)
, (36)

namely

∂z j
∂γi j (u)

=
M∑

k=1

τk j

(

γk j (umax) · ∂y(2)
k

∂γi j (umax)
+ y(2)

k (umax) · ∂γk j

∂γi j (umax)

)

, (37)

where

∂y(2)
k

∂γi j (umax)
= 0 (38)
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and

∂γk j

∂γi j (umax)
=

{
1, if k = i
0, otherwise.

(39)

Introducing the relations (36), (37)–(39) into the first formula from (33) one
obtains:

γi j (umax) ← γi j (umax) − μγ · τi j · (Uj − z j ) · y(2)
i (umax), (40)

(∀) i = 1, L2, j = 1, M .
Similarly, we shall have:

∂E

∂τi j
= ∂Ep

∂τi j
= −(Uj − z j )

∂z j
∂τi j

, (41)

where

∂z j
∂τi j

= max
u∈[0,1]

(
y(2)
i (u) · γi j (u)

)
= y(2)

i (umax) · γi j (umax). (42)

Substituting (41) and (42) into the second formula from (33) we shall achieve:

τi j ← τi j − μτ · τi j · (Uj − z j ) · y(2)
i (umax) · γi j (umax), (43)

(∀) i = 1, L2, j = 1, M .
Step 9. Compute the PCN error because of the pth training vector with (12).
Step 10. Compute the CL error because of the pth training vector, using (34).
Step 11. If the training algorithm has not applied for all the training vectors, then

go to the next vector. Otherwise, test the stop condition. For example, we can stop
the algorithm after a fixed training epoch numbers.

4 Conclusion

The paper describes a new type of fuzzy neural network, entitled possibility function
based neural network. Its advantages consist in that it not only can perform as a
standard neural network, but can also accept a group of possibility functions as
input.

Thepossibility functionbasednetworkdiscussed in this paper has novel structures.
The parameter computing network in a possibility function based network can also
be used to predict functions. The converting layer is used to convert the possibility
function to a value. This layer is necessary for data classification.
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Elementary Matrix Decomposition
Algorithm for Symmetric Extension
of Laurent Polynomial Matrices
and Its Application in Construction
of Symmetric M-Band Filter Banks

Jianzhong Wang

Abstract In this paper, we develop a novel and effective algorithm for the construc-
tion of perfect reconstruction filter banks (PRFBs)with linear phase. In the algorithm,
the key step is the symmetric Laurent polynomial matrix extension (SLPME). There
are two typical problems in the construction: (1) For a given symmetric finite low-
pass filter a with the polyphase, to construct a PRFBs with linear phase such that its
low-pass band of the analysis filter bank is a. (2) For a given dual pair of symmetric
finite low-pass filters, to construct a PRFBs with linear phase such that its low-pass
band of the analysis filter bank is a, while its low-pass band of the synthesis filter
bank is b. In the paper, we first formulate the problems by the SLPME of the Laurent
polynomial vector(s) associated to the given filter(s). Then we develop a symmetric
elementary matrix decomposition algorithm based on Euclidean division in the ring
of Laurent polynomials, which finally induces our SLPME algorithm.

1 Introduction

The main purpose of this paper is to develop a novel and effective algorithm for
the construction of perfect reconstruction filter banks (PRFBs) with linear phase. In
the algorithm, the key step is the symmetric Laurent polynomial matrix extension
(SLPME).

PRFBs have been widely used in many areas such as signal and image process-
ing, data mining, feature extraction, and compressive sensing [3, 8, 11–14]. A PRFB
consists of two sub-filter banks: an analysis filter bank, which decomposes a sig-
nal into different bands, and a synthesis filter bank, which composes a signal from
its different band components. Either an analysis filter bank or a synthesis one
consists of several band-pass filters. Assume that an analysis filter bank consists
of the filter set {H0, H1, . . . , HM−1} and a synthesis filter bank consists of the set
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{B0, B1, . . . , BM−1}, where H0 and B0 are low-pass filters. Then they form an M-
band PRFB if and only if the following condition holds:

M−1∑

j=0

Bj (↑M)(↓M)H j = I, (1)

where↓M is theM-downsampling operator,↑M is theM-upsampling operator, I is
the identity operator, and H j denotes the conjugate filter of Hj . Note that the conju-
gate of a real filter a = (. . . , a−1, a0, a1, . . .) is defined as ā = (. . . , a1, a0, a−1, . . .).
In signal processing, a filter H having only finite non-zero entries is called a finite
impulse response (FIR). Otherwise it is called an infinite impulse response (IIR).
Since FIR ismuchmore often used than IIR, in this paper we only study FIRwith real
entries. Recall that the z-transform of a FIR H is a Laurent polynomial (LP) and the z-
transform of the conjugate filter of H is H̄(z) = H(1/z).We define theM-polyphase
form of a signal (or a filter) x by the LP vector

[
a[M,0](z), . . . , a[M,M−1](z)}], where

a[M,k](z) =
∑

j

a(Mj + k)z j , 0 ≤ k ≤ M − 1.

For convenience, we will simplify a[M,k] to a[k] if it does not cause confusion. The
polyphase form of a M-band filter bank {H0, . . . , HM−1} is the following LP matrix.

H(z) =

⎡

⎢⎢⎢
⎣

H [0]
0 (z) H [1]

0 (z) · · · H [M−1]
0 (z)

H [0]
1 (z) H [1]

1 (z) · · · H [M−1]
1 (z)

...
... · · · ...

H [0]
M−1(z) H [1]

M−1(z) · · · H [M−1]
M−1 (z)

⎤

⎥⎥⎥
⎦

Using polyphase form, we represent (1) as a LP matrix identity in the following
theorem.

Theorem 1 The filter bank pair of {H0, . . . , HM−1} and {B0, . . . , BM−1} realizes a
PRFB if and only if the following identity holds:

H(z)B∗(z) = 1

M
I, (2)

where both H(z) and B(z) are LP matrices, and B∗(z) denotes the conjugate trans-
pose matrix of B(z).

We denote by L the ring of all Laurent polynomials, and call a LP matrix is L -
invertible, if its inverse is a LP matrix too. Since MB∗(z) = H−1(z) in a PRFB, the
polyphases of its analysis filter bank and its synthesis one are L -invertible. By (2),
we also have
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M−1∑

j=0

MH [ j]
0 (z)B̄[ j]

0 (z) = 1.

In general, we will call a LP vector a(z) = [a1(z), . . . , aM(z)] a prime one if there
is a LP vector b(z) = [b1(z), . . . , bM(z)] such that a(z)bT (z) = 1. More details of
the theory of PRFBs are referred to [10, 15].

The filters with symmetry (also called with linear phases) are more desirable in
application [10]. They are formally defined as follows:

Definition 2 Let c be an integer. A filter (or signal) x is called symmetric or anti-
symmetric about c/2 if x(k) = x(c − k) or x(k) = −x(c − k), k ∈ Z, respectively.

Later, for simplification, we will use the term symmetric to mention both sym-
metric and antisymmetric. Thus, x is symmetric if and only if x(k) = εx(c − k),
where ε (= 1 or −1) is the symbol of the symmetry-type. Note that we can always
shift a signal/filter x such that the shifted one has the symmetric center at c = 0
or c = ±1. Hence, without loss of generality, in this paper we always assume that
a symmetric filter has the center at c = 0, c = 1, or c = −1, and simply call it 0-
symmetric, 1-symmetric, or (−1)-symmetric, respectively. Correspondingly, the set
of all 0-symmetric filters (1-symmetric, or (−1)-symmetric ones) is denoted by V0

(V1 or V−1). Besides, when we need to stress on the symmetry-type, we denote by
V +
1 ,V +

0 ,V +
−1 for ε = +1 and V −

1 ,V −
0 ,V −

−1 for ε = −1. It is clear that if x ∈ V0,
then so is x̄, and if x ∈ V1, then x̄ ∈ V−1. We also have the following: x ∈ V0 if and
only if x(z) = εx(1/z), x ∈ V1 if and only if x(z) = εzx(1/z), and x ∈ V−1 if and
only if x(z) = ε/zx(1/z). In addition, if a(z) = εb(1/z) (a(z) = εzb(1/z), a(z) =
ε/zb(1/z)), we call [a(z), b(z)] a V0 (V1, V−1) pair. For a symmetric filter H , we
modify its M-polyphase to the following:

H [k](z) =
∑

j

H(Mj + k)z j , −m ≤ k ≤ M − m − 1, m =
[
M − 1

2

]
.

Later, a LP vector is called a S-LP one if it is a polyphase form of a symmetric
filter. Similarly, we will call a LP matrix Sr-LP matrix (Sc-LP matrix) if its rows
(columns) are S-LP vectors. They will be simply called S-LP matrices if row and
column are not stressed. Similarly, a PRFB is called symmetric if all of its band-filters
are symmetric. Two fundamental problems in the construction of symmetric PRFBs
are the following:

Problem 1 Assume that a given symmetric low-band filter H0 has a prime
polyphase. How to construct a symmetric PRFB, in which the first band of its
analysis filter bank is H0?

Problem 2 Assume that a dual pair of symmetric low-band filters H0 and B0 are
given. How to find other symmetric components H1, . . . , HM−1 and B1, . . . , BM−1

so that they form a symmetric PRFB?
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By Theorem 1, we have the following:

Corollary 3 The symmetric filter banks {H0, . . . , HM−1} and {B0, . . . , BM−1} form
a symmetric PRFB if and only if the following identity holds:

H(z)B∗(z) = 1

M
I, (3)

where both H(z) and B(z) are Sr-LP matrices.

Ignoring the factor 1
M on the right-hand side of (3) in Corollary 3, we can see that the

two fundamental problems are equivalent the following symmetric Laurent polyno-
mial Matrix extension (SLPME) problems:

SLPME Problem 1 Assume that a given S-LP row vector a(z) ∈ L M is prime. To
find an L -invertible Sr-LP matrix A(z) such that A(1, :) = a.

SLPME Problem 2 Assume that a given pair of S-LP row vectors [a(z),b(z)] satis-
fies a(z)bT (z) = 1. To find anL -invertible Sr-LP matrix A(z) such that A(1, :) = a
and A−1(:, 1) = bT .

Laurent polynomial matrix extension (LPME) has been discussed in [1, 4, 9].
Having the aid of LPME technique, several algorithms have been developed for the
construction of PRFBs [2, 5–7, 15, 16]. Unfortunately, the methods for constructing
LPME usually do not produce SLPME. The main difficulty in SLPME is how to
preserve the symmetry. Recently, Chui, Han, and Zhuang in [2] proposed a bottom-
up algorithm for solving SPLME Problem 2 based on the properties of dual filters.

In this paper, we solve the problem in the framework of the algebra of Laurent
polynomials. Our approach to SLPME is based on the decomposition ofL -invertible
S-LP matrix in the LP ring [15]. To make the paper more readable, we restrict our
discussion for M = 2, 3, 4. The readers can find that our algorithms can be extended
for any integer M without essential difficulty.

The paper is organized as follows. In Sect. 2, we discuss the properties of S-LP
vectors and the symmetric Euclidean division in the LP ring. In Sect. 3, we introduce
the elementary S-LPmatrix decomposition technique and apply it in the development
of the SLPME algorithms. Finally, two illustrative examples are presented in Sect. 4.

2 S-LP Vectors and Symmetric Euclidean Division

For simplification, in the paper, we only discuss LP with real coefficients. Read-
ers will find that our results can be trivially generalized to LP with coefficients
in the complex field or other number fields. Let the ring of all polynomials be
denoted by P and write Ph = P \ {0}. Similarly, let the ring of all Laurent
polynomials be denoted by L and write Lh = L \ {0}. If a ∈ Lh , we can write
a(z) = ∑n

k=m akzk , where n ≥ m and aman �= 0. We define the highest degree
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Table 1 The symmetry of the components in a S-LP vector

M = 2 c = 0 x [0](z) = εx [0](1/z), x [1](z) = ε/zx [1](1/z)
c = 1 x [0](z) = εx [1](1/z)

M = 3 c = 0 x [0](z) = εx [0](1/z), x [1](z) = εx [−1](1/z)
c = 1 x [0](z) = εx [1](1/z), x [−1](z) = εzx [−1](1/z)

M = 4 c = 0 x [0](z) = εx [0](1/z), x [1](z) = εx [−1](1/z), x [2](z) = ε/zx [2](1/z)
c = 1 x [0](z) = εx [1](1/z), x [−1](z) = εx [2](1/z)

and the lowest degree of a ∈ Lh by deg+(a) = n and deg−(a) = m respectively.
When a = 0, we agree that deg+(0) = −∞ and deg−(0) = ∞. We define the sup-
port length of a by supp(a) = deg+(a) − deg−(a). Particularly, when a(z) ∈ Lh

is 0-symmetric, 1-symmetric, or (−1)-symmetric, we have deg−(a) = − deg+(a),
deg−(a) = − deg+(a) + 1, or deg−(a) = − deg+(a) − 1, respectively.

Let the semi-group G ⊂ Ph be defined by G = {p ∈ Ph : p(0) �= 0}. Then,
the power mapping π : Lh → G , π(a(z)) = z−deg−(a)a(z), defines an equivalent
relation “�” in Lh , i.e., a � b if and only if π(a) = π(b). For convenience, we
agree that π(0) = 0. Let Lm denote the group of all non-vanished Laurent mono-
mials: Lm = {m ∈ Lh; m = cz�, c �= 0, � ∈ Z}. Then, we have π(m) = c. For a
LP vector a = [a1, . . . , as], we define π(a) = [π(a1), . . . , π(as)]. Then the greatest
common divisor (gcd) of a nonzero row (or column) LP vector a ∈ L s is defined
by gcdL (a) = gcd(π(a)) ∈ G . A LP a(z) ∈ Lh is said to be in the subset Ld if
a(z) = εa(1/z) and gcdL (a(z), a(1/z)) = 1. A LP matrix A(z) ∈ L s×s is said to
beL -invertible if A(z) is invertible and A−1(z) ∈ L s×s too. It is obvious that A(z)
isL -invertible if and only if det(A(z)) ∈ Lm .

We now discuss the properties of S-LP vectors. Recall that an M dimensional
S-LP vector is defined as the M-polyphase form of a symmetric filter. Let x(z) be
an M-dimensional S-LP vector. We list its symmetric properties for M = 2, 3, 4, in
Table1.

Let m = [
M−1
2

]
. We can verify that, when M is even and c = 0, x [0](z) ∈

V0, x [m](z) ∈ V−1, and [x [i](z), x [−i](z)], i = 1, . . . , M − 1, are V0 pairs; when M
is even and c = 1, (x [i](z), x [−i+1](z)), i = 1, . . . , M, are V0 pairs; when M is odd
and c = 0, x [0](z) ∈ V0, and [x [i](z), x [−i](z)], i = 1, . . . , M, are V0 pairs; when M
is odd and c = 1, [x [i](z), x [−i+1](z)], i = 1, . . . , M, are V0 pair and x [−M](z) ∈ V1.

We need the following L -Euclid’s division theorem [15] in our discussion.

Theorem 4 Let (a, b) ∈ Lh × Lh and supp(a) ≥ supp(b). Then there exists a
unique pair (q, r) ∈ L × L such that a(z) = q(z)b(z) + r(z) with

supp(r) + deg−(a) ≤ deg+(r) < supp(b) + deg−(a), (4)

which implies that supp(q) ≤ supp(a) − supp(b) and supp(r) < supp(b).
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By Theorem 4, it is also clear that if deg−(a) = deg−(b), then q ∈ Ph and deg(q) ≤
deg+(a) − deg+(b). From Theorem 4, we derive the symmetricL -Euclid’s division
theorem to deal with S-LP vectors.

Theorem 5 Let a(z) ∈ V0 with supp(a) = 2m, b(z) ∈ V−1 with supp(b) = 2k − 1,
c(z) ∈ V1 with supp(c) = 2s − 1, and d(z) ∈ Lh with supp(d) = � be given. Then
we have the following:

1. If m ≥ k, then there is p(z) ∈ V +
1 with supp(p) ≤ 2(m − k) and a1(z) ∈ V0 with

supp(a1) < supp(b) such that a(z) = b(z)p(z) + a1(z). If m < k, then there
is q(z) ∈ V +

−1 with supp(q) ≤ 2(k − m) − 1 and b1(z) ∈ V−1 with supp(b1) <

supp(a) such that b(z) = q(z)a(z) + b1(z).
2. If m ≥ s, then there is q(z) ∈ V +

−1 with supp(q) ≤ 2(m − k) and a1(z) ∈ V0

with supp(a1) < supp(c) such that a(z) = c(z)q(z) + a1(z). If m < s, then there
is p(z) ∈ V +

1 with supp(p) ≤ 2(k − m) − 1 and c1(z) ∈ V1 with supp(c1) <

supp(a) such that c(z) = p(z)a(z) + c1(z).
3. If supp(a) > supp(d), there is a p(z) ∈ Ph with deg(p) ≤ m − [

�+1
2

]
and

a1(z) ∈ V0 with supp(a1) ≤ � such that a(z) = p(z)d(z) + εp(1/z)d(1/z) +
a1(z).

4. If supp(b) > supp(d), there is a q(z) ∈ Ph with deg(q) ≤ k − 1 − [
�+1
2

]
and

b1(z) ∈ V−1with supp(b1) ≤ � such that b(z) = q(z)d(z) + ε/zq(1/z)d(1/z) +
b1(z). Similarly, if supp(c) > supp(d), there is a p(z) ∈ Ph with deg(p) ≤
c − 1 − [

�+1
2

]
and c1(z) ∈ V1 with supp(c1) ≤ � such that c(z) = p(z)d(z) +

εzp(1/z)d(1/z) + c1(z).

Proof To prove (1), we write a(z) = ∑m
j=−m a j z j and set at (z) = ∑m

j=k a j z j +
1
2

∑k−1
j=−k+1 a j z j so that at (z) + εat (1/z) = a(z). By Theorem 4, we can find a

p̂(z) ∈ Ph with deg( p̂) ≤ m − k such that at (z) = p̂(z)b(z) + r(z), where r ∈ L
with deg+(r) < k, deg−(r) > −k. It leads to

a(t) = p̂(z)b(z) + ε p̂(1/z)b(1/z) + r(z) + εr(1/z).

Since b(z) ∈ V−1, we have b(z) = ε/zb(1/z), which yields

a(z) = (
p̂(z) + z p̂(1/z)

)
b(z) + (r(z) + εr(1/z)) .

Write p(z) = p̂(z) + z p̂(1/z), a1(z) = r(z) + εr(1/z). It is obvious that p(z) ∈
V +
1 with supp(p) ≤ 2(m − k) − 1 and a1(z) ∈ V0 with supp(r) < supp(b). The

proof of the first statement of (1) is completed. The proofs of the remains are similar.
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3 SLPME Algorithms Based on Elementary S-LP Matrix
Decomposition

We now discuss SLPME algorithms for M = 2, 3, 4, respectively.

3.1 The Case of M = 2

Wesaya(z) = [a1(z), a2(z)] ∈ V 0,2 ifa1(z) ∈ V0, a2(z) ∈ V−1; and saya(z) ∈ V 1,2

if it is a V0 pair. We also say b(z) ∈ V ∗0,2 if b1(z) ∈ V0, b2(z) ∈ V1. Define

S 0,2 =
{
S(z) = [si j (z)]2i, j=1; sii (z) ∈ V +

0 , i = 1, 2, s21(z) ∈ V +
1 , s12(z) ∈ V +

−1

}
.

Thus, if S(z) ∈ S 0,2, then S(1, :)(z) ∈ V 0,2 and S(:, 1)(z) ∈ V ∗0,2.

3.1.1 The Case of a ∈ V 0,2

To develop our SLPME algorithm, we give the following:

Definition 6 Let s(z) ∈ V +
−1, t (z) ∈ V +

1 , k ∈ Z, and r ∈ R \ {0}. Then the following
matrices

Eu(s) =
[
1 s(z)
0 1

]
El(t) =

[
1 0

t (z) 1

]
, D(r, k) =

[
r zk 0
0 1

]
(5)

are called the elementary S 0,2 matrices, and their product is called a S 0,2-
fundamental matrix.

It can verify that all of the matrices in (5) areL -invertible and their inverses are also
inS 0,2. Indeed, we have

(Eu(s))
−1 = Eu(−s) (El(t))

−1 = El(−t) (D(r, k))−1 = D(1/r,−k). (6)

Later, we simply denote by Eu, El , D for the matrices in (6).
We now return the SLPME for a ∈ V 0,2. WLOG, we assume supp

(a1) > supp(a2) ≥ 1. Since gcdL (a) = 1, By Theorem 5, we can use elementary
S 0,2 matrices to make the following:

a0
El (−p1)−−−−→ a1

Eu(−q1)−−−−→ a2 · · · El (−pn)−−−−→ a2n−1 Eu(−qn)−−−−→ a2n
D(r,k)−−−→ [1, 0],

where a0 = a, a2i El(−pi+1) = a2i+1, a2i+1Eu(−qi+1) = a2i+2, i = 1, . . . , n − 1.
Let

Ea = El(−p1)Eu(−q1) · · · El(−pn)Eu(−qn)D(r, k). (7)
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Then Ea ∈ S 0,2, aEa = [1, 0], and its inverse

Aa(z) = E−1
a (z) ≡ D(1/r,−k)Eu(qn)El(pn) · · · Eu(q1)El(p1) (8)

provides a solution for SLPME Problem 1.
We now consider the SPLME Problem 2. WLOG, assuming that the symmet-

ric dual pair [a(z),b(z)] ∈ V 0,2 × V ∗0,2 is given. Let Ea(z), Aa(z) be the matrices
given in (7) and (8). By a(z)bT (z) = 1 and Aa(1, :) = a, we have Aa(z)bT (z) =
[1, w(z)]T with w(z) ∈ V1, which yields Ea(z)[1, w(z)]T = bT (z). Then the matri-
ces Ã(z) = El(−w)(z)Aa(z) and B̃(z) = Ea(z)El(w)(z) give the solution.

3.1.2 The Case of a(z) ∈ V 1,2

If its dual b(z) is not given, then by the extended Euclidean algorithm in [15],
we can find LP vector s(z) = [s1(z), s2(z)], such that asT = 1. We define b1(z) =
1
2 (s1(z) + εs2(1/z)), b2(z) = εb1(1/z). The vector b(z) is a V0 pair and abT = 1.
We now define

A(z) =
[
a1(z) a2(z)

−b2(z) b1(z)

]
,

which isL -invertible and its inverse is

B(z) = A−1(z) =
[
b1(z) −a2(z)
b2(z) a1(z)

]
.

Then A(z) provides the solution of SPLME Problem 1, and the pair [A(z), B(z)]
gives the solution of SPLME Problem 2.

3.2 The Case of M = 3

We say a(z) = [a1(z), a2(z), a3(z)] ∈ V 0,3 if a2(z) ∈ V0 and [a1(z), a3(z)] is a V0

pair, and say a(z) ∈ V 1,3 if a2(z) ∈ V1 and [a1(z), a3(z)] is a V0 pair. We also say
b(z) ∈ V ∗1,3 if b2(z) ∈ V−1 and [b1(z), b3(z)] is a V0 pair. Note that, in the case of
M = 3, c = 1, the polyphase formx(z) is not inV 1,3, but [x [0](z), x [−1](z), x [1](z)] ∈
V 1,3.

3.2.1 The Case of a ∈ V 0,3

Definition 7 Let q(z) ∈ L . The matrices of the following two types are called
elementary S 0,3 matrices:
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Ev(q) =
⎡

⎣
1 0 0

q(z) 1 q(1/z)
0 0 1

⎤

⎦ , Eh(q) =
⎡

⎣
1 q(z) 0
0 1 0
0 q(1/z) 1

⎤

⎦ .

In general, we simply denote by E an elementaryS 0,3 matrix, and call their product
a Fundamental S 0,3 one.

It is clear that E−1
v (q) = Ev(−q) and E−1

h (q) = Eh(−q). By the same argument for
M = 2, using the elementary S 0,3 matrices, we can obtain the following chain:

a0
E1−→ a1

E2−→ a2 · · · En−→ an

where an has the same symmetry as a and gcdL (an) = 1. Therefore,

an = [p(z), 0, εp(1/z)], p(z) ∈ Ld .

Besides, when ε = 1, it may have another form an = [0, r, 0].Writing E = E1E2 · · ·
En ,wehavea(z) = an(z)E−1(z). Letq(z) ∈ Ld satisfy p(z)q(z) + p(1/z)q(1/z) =
1 and set q(z) = [q(z), 0, εq(1/z)]. We define

Q1(z) =
⎡

⎣
0 1/2 −1/2
r 0 0
0 1/2 1/2

⎤

⎦ Q2(z) =
⎡

⎣
q(z) 0 −εp(1/z)
0 1 0

εq(1/z) 0 p(z)

⎤

⎦ , (9)

whose inverses are

Q−1
1 (z) =

⎡

⎣
0 1

r 0
1 0 1

−1 0 1

⎤

⎦ Q−1
2 (z) =

⎡

⎣
p(z) 0 εp(1/z)
0 1 0

−εq(1/z) 0 q(z)

⎤

⎦ .

Finally, we define

A(z) =
{
Q−1

1 (z)E−1(z), if an = [0, r, 0],
Q−1

2 (z)E−1(z), if an = [p(z), 0, εp(1/z)].

It is clear that A(z) is a SLPME of a(z).
We now return to SPLMEProblem2.Assume a symmetric dual pair [a(z),b(z)] ∈

V 0,3 × V 0,3 is given so that a(z)bT (z) = 1. Let E(z) be the LPmatrix above. Define
w(z) = b(z)(E−1)T (z) ∈ V 0,3. Then anwT = an E−1bT = abT = 1. Hence,

w(z) =
{

[u(z), 1/r, εu(1/z)], if an = [0, r, 0],
[v(z), vc(z), εv(1/z)], if an = [p(z), 0, εp(1/z)],

where p(z)v(z) + p(1/z)v(1/z) = 1. Write q+(z) = u(z) + εu(1/z), q−(z)
= u(z) − εu(1/z). Define
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Q1(z) =
⎡

⎣
u(z) 1 1
1/r 0 0

εu(1/z) 1 −1

⎤

⎦ , Q2(z) =
⎡

⎣
v(z) 0 −εp(1/z)
vc(z) 1 0

εv(1/z) 0 p(z)

⎤

⎦ , (10)

whose inverses are

Q−1
1 (z) = 1

2

⎡

⎣
0 2r 0
1 −rq+(z) 1
1 −rq−(z) −1

⎤

⎦ , Q−1
2 (z) =

⎡

⎣
p(z) 0 εp(1/z)

−vc(z)p(z) 1 −εvc(z)p(1/z)
−εv(1/z) 0 v(z)

⎤

⎦ .

We now define

A(z) =
{
Q−1

1 (z)E−1(z), if an = [0, r, 0],
Q−1

2 (z)E−1(z), if an = [p(z), 0, εp(1/z)].

Then, the pair [A(z), A−1(z)] is a SLPME of the pair [a(z),b(z)].

3.2.2 The Case of a ∈ V 1,3

The discussion is very similar to the case of a ∈ V 0,3.

Definition 8 Let q(z) ∈ L . The matrices of the following two types are called
elementary S 1,3 matrices:

Ev(q) =
⎡

⎣
1 0 0

q(z) 1 zq(1/z)
0 0 1

⎤

⎦ , Eh(q) =
⎡

⎣
1 q(z) 0
0 1 0
0 zq(1/z) 1

⎤

⎦ .

The product of elementary S 1,3 matrices is called a Fundamental S 1,3 one.

Using the elementary S 1,3 matrices, we can obtain the following chain:

a0
E1−→ a1

E2−→ a2 · · · En−→ an

where an has the same symmetry as a and gcdL (an) = 1. Therefore,

an = [p(z), 0, εp(1/z)], p(z) ∈ Ld .

Note that, because a2(z) ∈ S 1,3, an does not have other forms. Writing E =
E1E2 · · · En , we have a(z) = an(z)E−1(z). Let Q2(z) be the LP matrix in (9). Then
A(z) is a SLPME of a(z).

We now consider SPLME Problem 2. In the given dual pair, b(z) ∈ V ∗1,3. Let
E(z) be the LP matrix above. Then the LP vector w(z) = b(z)(E−1)T (z) ∈ V ∗1,3

too. Hence, it has the only form of
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w(z) = [v(z), vc(z), εv(1/z)], vc(z) ∈ V−1,

where p(z)v(z) + p(1/z)v(1/z) = 1. Let Q2(z) be the LP matrix in (10), and
A(z) = Q−1

2 (z)E−1(z). Then [(E(z)Q2(z))−1, E(z)Q2(z)] is a SLPME of the dual
pair [a(z),b(z)].

3.3 The Case of M = 4

In this case, we say a(z) ∈ V 0,4 if a1(z) ∈ V0, [a2(z), a3(z)] is a V0 pair, and a4(z) ∈
V1; say a(z) ∈ V 1,4 if both [a1(z), a4(z)] and [a2(z), a3(z)] are V0 pairs. We also say
b(z) ∈ V ∗0,4 if b(1/z) ∈ V0,4. Note that, if x(z) is the polyphase form of an asymme-
try filter in the case of M = 4, c = 0, then [x [0](z), x [−1](z), x [1](z), x [2](z)] ∈ V 0,4.

3.3.1 The Case of a ∈ V 0,4

Definition 9 Let q(z) ∈ L , s(z) ∈ V1, t (z) ∈ V−1. The followings are called ele-
mentary S 0,4 matrices:

E0
h(q) =

⎡

⎢⎢
⎣

1 q(z) q(1/z) 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ , E0

v (q) = (
E0
h(q)

)T
, Et (s) =

⎡

⎢⎢
⎣

1 0 0 s(z)
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ ,

E1
h(q) =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 q(z) zq(1/z) 1

⎤

⎥⎥
⎦ , E1

v (q) = (
E1
h(q)

)T
, Eb(t) =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0

t (z) 0 0 1

⎤

⎥⎥
⎦ .

Using the elementary S 0,4 matrices, we can obtain the following chain:

a0
E1−→ a1

E2−→ a2 · · · En−→ an,

where an has the same symmetry as a and gcdL (an) = 1. Therefore,

an = [0, p(z), εp(1/z), 0], p(z) ∈ Ld .

If ε = 1, it possibly can also have the form (a)n(z) = [r, 0, 0, 0], r �= 0. Let q(z) ∈
Ld satisfy p(z)q(z) + p(1/z)q(1/z) = 1. Write E = E1E2 · · · En and define
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Q1(z) =

⎡

⎢⎢
⎣

1/r 0 0 0
0 1/2 1/2 0
0 −1/2 1/2 0
0 0 0 1

⎤

⎥⎥
⎦ Q2(z) =

⎡

⎢⎢
⎣

0 1 0 0
q(z) 0 0 −εp(1/z)

εq(1/z) 0 0 p(z)
0 0 1 0

⎤

⎥⎥
⎦ ,

whose inverses are

Q−1
1 (z) =

⎡

⎢⎢
⎣

r 0 0 0
0 1 −1 0
0 1 1 0
0 0 0 1

⎤

⎥⎥
⎦ Q−1

2 (z) =

⎡

⎢⎢
⎣

0 p(z) εp(z) 0
1 0 0 0
0 0 0 1
0 −εq(1/z) q(z) 0

⎤

⎥⎥
⎦ .

Set13sps3,

A(z) =
{
Q−1

1 (z)E−1(z), if an = [r, 0, 0, 0],
Q−1

2 (z)E−1(z), if an = [0, p(z), εp(1/z), 0]. (11)

Then A(z) is a SLPME of a.
We now consider SPLME Problem 2. In the given dual pair, b(z) is now in V ∗0,4.

Let E(z) be the LPmatrix above. Then the LP vectorw = b(z)(E−1)T (z) is inV ∗0,4

too. Hence, if an = [r, 0, 0, 0],

w(z) = [1/r, v(z), εv(1/z), v−1(z)], v−1(z) ∈ V−1,

else if an = [0, p(z), εp(1/z), 0],

w(z) = [v0(z), v(z), εv(1/z), v−1(z)], v0(z) ∈ V0, v−1(z) ∈ V−1,

where p(z)v(z) + p(1/z)v(1/z) = 1. Let

Q1(z) =

⎡

⎢⎢
⎣

1/r 0 0 0
v(z) 1/2 1/2 0

εv(1/z) −1/2 1/2 0
v−1(z) 0 0 1

⎤

⎥⎥
⎦ Q2(z) =

⎡

⎢⎢
⎣

v0(z) 1 0 0
v(z) 0 0 −εp(1/z)

εv(1/z) 0 0 p(z)
v−1(z) 0 1 0

⎤

⎥⎥
⎦ ,

whose inverses are

Q−1
1 (z) =

⎡

⎢
⎢
⎣

r 0 0 0
−w+(z) 1 −1 0
−w−(z) 1 1 0
−v−1(z) 0 0 1

⎤

⎥
⎥
⎦ , Q−1

2 (z) =

⎡

⎢
⎢
⎣

0 p(z) εp(z) 0
1 −p(z)v0(z) −εp(1/z)v0(z) 0
0 −p(z)v−1(z) −εp(1/z)v−1(z) 1
0 −εv(1/z) v(z) 0

⎤

⎥
⎥
⎦ ,

where w+(z) = s(z) + εs(1/z) and w−(z) = s(z) − εs(1/z). Let A(z) be given by
(11). Then [A(z), A−1(z)] is a SLPME of the dual pair [a(z),b(z)].
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3.3.2 The Case of a ∈ V 1,4

Let P =

⎡

⎢⎢
⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥
⎦ be the permutation matrix.

Definition 10 Let q(z) ∈ L . The matrix with the form of

E1(q) =

⎡

⎢⎢
⎣

1 q(z) q(1/z) 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

and E2(q) = PE1(q)P are called elementary S 1,4 matrices.

Using the elementary S 1,4 matrices, we can obtain the following chain:

a0
E1−→ a1

E2−→ a2 · · · En−→ an,

where an(z) = [p(z), 0, 0, εp(1/z)] with p(z) ∈ Ld or

an = [0, p(z), εp(1/z), 0], p(z) ∈ Ld .

Since [p(z), 0, 0, εp(1/z)] = [0, p(z), εp(1/z), 0]P , we only discuss the first case.
Let q(z) ∈ Ld satisfy p(z)q(z) + p(1/z)q(1/z) = 1. Write E = E1E2 · · · En and
define

Q(z) =

⎡

⎢⎢
⎣

q(z) 0 0 −εp(z)
0 1/2 1/2 0
0 −1/2 1/2 0

εq(z) 0 0 p(z)

⎤

⎥⎥
⎦ ,

whose inverse is

Q−1(z) =

⎡

⎢⎢
⎣

p(z) 0 0 εp(1/z)
0 1 −1 0
0 1 1 0

−εq(1/z) 0 0 q(z)

⎤

⎥⎥
⎦ .

The matrix A(z) = Q−1(z)E−1(z) is a SLPME of a(z).
We now consider SPLMEProblem 2. In the given dual pair, b(z) ∈ V 1,4. Let E(z)

be the LP matrix above. We still assume that an = [p(z), 0, 0, εp(1/z)], p(z) ∈ Ld .
Then the LP vector w(z) = b(z)(E−1)T (z) has the form of

w(z) = [v(z), s(z), εs(1/z), εv(1/z)], v(z) ∈ Ld ,
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where p(z)v(z) + p(1/z)v(1/z) = 1.
Let w+(z) = s(z) + εs(1/z), w−(z) = s(z) − εs(1/z), and

Q(z) =

⎡

⎢⎢
⎣

v(z) 0 0 −εp(1/z)
−v(z)w+(z) 1/2 −1/2 εp(1/z)w+(z)
v(z)w−(z) 1/2 1/2 −εp(1/z)w−(z)
εv(1/z) 0 0 p(z)

⎤

⎥⎥
⎦ ,

whose inverse is

Q−1(z) =

⎡

⎢⎢
⎣

p(z) 0 0 εp(1/z)
s(z) 1 1 0

εs(1/z) −1 1 0
−εv(1/z) 0 0 p(z)

⎤

⎥⎥
⎦ .

Define A(z) = Q−1(z)E−1(z). Then [A(z), A−1(z)] is a SLPME of the dual pair
[a(z),b(z)].

4 Illustrative Examples

In this section, we present two examples to the readers for demonstrating the SLPME
algorithm we developed in the previous section.

Example 11 (Construction of 3-band symmetric PRFB)

Let H0 and B0 be two given low-pass symmetric filters with the z-transforms

H0(z) =
(
z−1 + 1 + z

3

)2

and

B0(z) = 1

27
(z−1 + 1 + z)2(−4z + 11 − 4z−1)

Wewant to construct the 3-band symmetric PRFB {H0, H1, H2}, {B0, B1, B2}, which
satisfies

2∑

j=0

Bj (↑ 3)(↓ 3)H j = f rac13I,

Their polyphase forms are the following:

[H̄ [0]
0 (z), H̄ [1]

0 (z), H̄ [2]
0 (z)] = 1

9
[2 + z, 3, 2 + 1/z]

[B[0]
0 (z), B[1]

0 (z), B[2]
0 (z)] =

[
2

9
+ 1

9z
,
−4z + 17 − 4z−1

27
,
2 + z

9

]
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To normalize them, we set

a = [H [0]
0 , H

[1]
0 , H

[2]
0 ] = 1

3
[2 + z, 3, 2 + 1/z]

and

b = 3[B[0]
0 , B[1]

0 , B[2]
0 ] =

[
2

3
+ 1

3z
; −4z + 17 − 4z−1

9
; 2 + z

3

]

so that abT = 1. We now use elementaryS 0,3 matrix decomposition technique. Let

E(z) =
⎡

⎣
1 0 0

− 2+z
3 1 − 2+1/z

3
0 0 1

⎤

⎦ .

We have a1(z) = a(z)E(z) = [0, 1/3, 0]. To make the SLPME for a(z), we set

Q(z) =
⎡

⎣
0 1/2 −1/2
3 0 0
0 1/2 1/2

⎤

⎦ .

Then the LP matrix

A(z) = Q−1(z)E−1(z) =
⎡

⎣
2+z
9 1/3 2+1/z

9
1 0 1

−1 0 1

⎤

⎦

is a SLPME for a. To obtain the SLPME for the dual pair [a,b], we computew(z) =
b(z)(E−1(z))T =

[
2+1/z

3 , 3, 2+z
3

]
, which yields

Q(z) =
⎡

⎣
2+1/z

3 1 1
3 0 0

2+z
3 −1 1

⎤

⎦ ,

where Q(:, 1) = wT . Finally, we have

A(z) = (E(z)Q(z))−1 =
⎡

⎢
⎣

2+z
9

1
3

2+1/z
9

−−2+26z+2z2+z3

54z
−1+z2

18z − 1+2z+26z2−2z3

54z2

− 2−18z+6z2+z3

54z − 1+4z+z2

18z − 1+6z−18z2+2z3)
54z2

⎤

⎥
⎦

and

B(z) = E(z)Q(z) =
⎡

⎣
2+1/z

3 1 1
−4/z+17−4z

9
−1/z+z

3 − 1/z+4+z
3

2+z
3 −1 1

⎤

⎦ ,
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which are SLPME of (a(z),b(z)).
Recovering the filters from their polyphases and applying the normalization factor

1
3 to B(z), we have the following z-transforms for the 3-band PRFB:

H0(z) =
(
z−1 + 1 + z

3

)2

,

H1(z) = (1 − z)3(1 + 5z + 15z2 + 33z3 + 33z4 + 15z5 + 5z6 + z7)

54z5
,

H2(z) = − (z − 1)2(1 + 4z + 10z2 + 22z3 + 16z4 + 22z5 + 10z6 + 4z7 + z8)

54z5
,

and

B0(z) = 1

27
(z−1 + 1 + z)2(−4z + 11 − 4z−1),

B1(z) = − 1

9z3
+ 1

3z
− z

3
− z3

9
,

B2(z) = − 1

9z3
+ 1

3z
− 4

9
+ z

3
− z3

9
.

Example 12 (Symmetric LP matrix extension of 4 × 4 matrix)

Let

a = 1

16

[
−2

z
+ 12 − 2z,−1

z
+ 8 + z,

1

z
+ 8 − z, 4 + 4

z

]
∈ V 0,4

be a given LP independent vector. We first consider the SLPME Problem 1. The
symmetric Euclidean divisions yields the matrices

S1 =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0

1
2 (1 + z) 0 0 1

⎤

⎥⎥
⎦ S2 =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 − 1

4 (7 + z) − 1
4 (1 + 7z) 1

⎤

⎥⎥
⎦

S3 =

⎡

⎢⎢
⎣

1 1
2z

2
z 0

0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ S4 =

⎡

⎢⎢
⎣

1 0 0 − 1+z
4z

0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ .

and a = [1, 0, 0, 0]. Let E = S1S2S3S4 =
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⎡

⎢⎢
⎣

1 1
2z

z
2 − 1+z

4z
0 1 0 0
0 0 1 0

1+z
2

1−6z−z2

4z
−1−6z+z2

4
−1+6z−z2

8z

⎤

⎥⎥
⎦

and

Q =

⎡

⎢⎢
⎣

1 0 0 0
0 1/2 1/2 0
0 −1/2 1/2 0
0 0 0 1

⎤

⎥⎥
⎦ .

Then the SLPME of a is

A(z) =

⎡

⎢⎢
⎣

−1+6z−z2

8z
−1+8z+z2

16z − 1+8z−z2

16z
1+z
4z

0 1 −1 0
0 1 1 0

− 1+z
2

7+z
4z

1+7z
4 1

⎤

⎥⎥
⎦ .

We now solve the SLPME Problem 2. Let

b = 1

16

[
−1

z
+ 10 − z,−2

z
+ 6, 2z + 6, 4 + 4z

]
.

Then (a,b) is a dual pair. We have w = b(E−1)T =
[
1, 3z+1

8z , 3+z
8 , (1+z)3

4z

]
. Set

Q(z) =

⎡

⎢⎢
⎣

1 0 0 0
1+3z
8 1/2 1/2 0

3+z
8 −1/2 1/2 0

(1+z)3

4z 0 0 1

⎤

⎥⎥
⎦ .

Then, the SLPME for the dual pair is
A(z) = (E(z)Q(z))−1 =

⎡

⎢⎢
⎢⎢
⎢
⎢⎢
⎣

−1+6z−z2
8z

−1+8z+z2
16z

1+8z−z2
16z

1+z
4z

1−6z+6z3−z4

64z2
1−8z+126z2+8z3+z4

128z2
− 1+8z+126z2−8z3+z4

128z2
(z−1)(z+1)2

32z2
1−32z2+z4

64z2
− 1−2z+80z2−14z3+z4

128z2
−1−14z+80z2−2z3+z4

128z2
− 1+7z+7z2+z3

32z2

1−3z−30z2−30z3−3z4+z5

32z2
1−5z+90z2−10z3−11z4−z5

64z2
−1−11z−10z2+90z3−5z4+z5

64z2
− (z−1)2(1+6z+z2)

16z2

⎤

⎥⎥
⎥⎥
⎥
⎥⎥
⎦

and

B(z) = E(z)Q(z) =

⎡

⎢⎢
⎢
⎣

−1+10z−z2

16z
1−z2

4z
1+z2

4z − 1+z
4z

3z+1
8z

1
2

1
2 0

3+z
8 −1/2 1/2 0

1+z
4

1−5z+5z2−z3

8z
1−7z−7z2+z3

8z
−1+6z−z2

8z

⎤

⎥⎥
⎥
⎦

.
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Solution of Equation for Ruin Probability
of Company for Some Risk Model
by Monte Carlo Methods

Kanat Shakenov

Abstract The classical process of risk and the equation for ruin probability of some
model (model S.Anderson) is considered. Thismodel is solved by classical numerical
methods and Monte Carlo methods.

1 Introduction

Risk. We are interested not so much in the outcome of a process as the associated
quantitative characteristics. The risk can be described by a random variable. The
meaning of the word “risk” is probabilistic in nature, therefore, we shall call the risk
as arbitrary random variable. The set of all risks is denoted X (see [6–10]).

The risk portfolio. The risk portfolio P is said to be an arbitrary subset of X.
Insurance. Insurance is a transfer of risk from one carrier (the insured) to another
(the insurance company, the insurer) for a fee, called the cost of insurance, tariff
rates or premiums. The essence of insurance is to redistribute risk among multiple
carriers; relatively homogeneous set of risks will be called insurance portfolio.

Insurance portfolio. The simplest insurance portfolio. The simplest insurance
portfolio

P = {X1, . . . , XN }

consists of N risks (random variables)

X1, . . . , XN ,
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which are independent and identically distributed; X has a Bernoulli distribution

X =
{
1, with probability p,
0, with probability 1 − p.

For each risk insurance event may occur with probability of p, and loss due to the
occurrence of the insured event is 1, and the same for all risks. The risk of portfolio

X =
N∑

i=1

Xi

has a binomial distribution with parameters

N , p : P{X = k} =
(
N
k

)
pk(1 − p)N−k, k = 0, 1, . . . , N .

The main numerical characteristics (expectation and variance) of this distribution is
equal

EX = Np and VarX = Np(1 − p).

Simple insurance portfolio. Simple insurance portfolio P = {X1, . . . , XN } also
includes N independent risks X1, . . . , XN and their distributions has form

X =
{
Si , with probability p,
0, with probability 1 − p.

For the i-th risk the insured event occurs with probability p, and the amount of loss
due to the occurrence of this event is Si , and not the same for different risks. An
example is whole life insurance to the value of Si , determined by the insurance sum
of i-th contract in portfolio. The main numerical characteristics (expectation and
variance) of this distribution is equal

EX = NpSN and VarX = Np(1 − p)Ŝ2N ,

where

SN = N−1
N∑

i=1

Si , Ŝ
2
N = N−1

N∑

i=1

S2i .

Real insurance portfolio. Real insurance portfolio is a complication of a simple
portfolio; arbitrary losses from the range [0, Si ] are allowed. It consists of N inde-
pendent risks P = {X1, . . . , XN , the probability of occurrence of the insured event
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of i-th risk is p, and the amount of loss caused by the insured event is described by
a random variable

Xi = ξi ri Si ,

where

ξi =
{
1, with probability p,
0, with probability 1 − p.

is an indicator of the insured event for i-th risk, Si is the insured amount (liability) by
i-th risk, and r1, . . . , rN is a collection of independent and identically distributed ran-
dom variables with distribution function Fr (u) = P{r1 ≤ u}. Here the distribution of
portfolio risk has no simple explicit expression, but with known parameters of dis-
tribution r1, m = Er1, τ 2 = Varr1 you can calculate basic numerical characteristics
of portfolio risk

EX = NpmSN and VarX = Npm2 ŜN (1 − p + τ 2/m2).

The price of insurance. One of the main objectives of risk theory is to determine
the price that must be paid when the transfer of risk from one carrier to another is
executed. The insurance premium is usually expressed as a fraction of the sum insured
(liability) Si of the corresponding risk. Thus, when the amount of the premium T
(same for all portfolio risks) the absolute amount of the premium of i-th risk is equal
to T Si , and the total premium of portfolio is Q = T NSN .

The principles for determining the price. The principle of non-risk. Let’s
attempt to put a price such that the insurance company is non-risk, that is to collect
premiums Q which is enough to cover all insurance claims in portfolio with proba-
bility 1. In the simplest case the maximum size of the portfolio loss is equal to N , and
the probability of its occurrence: pN > 0, so the following equality Q = T N = N
is required, hence T = 1, that is, the absolute size of the award coincides with the
responsibility for the risk. It is clear that such insurance is quite unattractive to insur-
ers, and its consideration is meaningless. It is easy to see that this conclusion is valid
formore complex risk portfolios. The conclusion: non-riskmanagement of insurance
business is impossible. In particular, the premium must satisfy inequality T < 1.

The principle of justice. Now lets provide “justice” of the transfer of risks, that
is the equivalence of financial liabilities of partners. Due that fact that the size of
the insurance premium (financial liability of insurer) determined, and the amount of
liabilities of the insurer (reimbursable insurance loss) is random, we will understand
the equality of these liabilities on average within the portfolio: T N = EX , hence,
taking into accountEX = Np, obtain T = p. Such amount of the premium is too low,
because the multiple reproduction of the insurance portfolio with a probability of 1
causes ruin the insurance company. Let’s get an illustration of this fact. The question
arises: what will be the profit of the insurer afterm reproductions of portfolio formed
by justice principles. Profit of j-th portfolio is a random variable
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Z ( j) = Q − X ( j)

with

EZ ( j) = 0 and VarZ ( j) = σ 2 > 0.

Therefore, needed profit is Zm = ∑m
j=1 Z

( j), and EZ (m) = 0 and (in the case of
independent portfolios) VarZm = mσ 2, i.e. profit of m portfolios on the average
is 0, but the uncertainty in its value increases with m, in particular, it can achieve
an arbitrarily small value, leading to ruin of the company. Thus, the premium must
satisfy inequality T > p. For more complex portfolios premium should exceed the
size of average relative loss of portfolioE(X/R), where R = ∑

Zi is overall liability
for the portfolio.

The principle of sufficient coverage. We have proved that the last two of the
principles of calculation of the premium are inefficient. We should look for other
principles that lead to values T ∈ (0, 1) (for the simplest portfolio). Now consider
the principle of sufficient coverage, the essence of which is as follows: as a unit
probability of covering of future losses in portfolio X with premiums Q fails, try to
provide the given value of this probability: fix number α ∈ (0, 1) and will determine
the premium T from equation P{X ≤ Q} = α. Let F is the distribution function of
portfolio risk: F(x) = P{X ≤ x}, F0 is distribution function corresponding to the
centered and normalized random variable (X − EX)/

√
VarX . Then the preceding

equation reduces to

F0

(
(Q − EX)/

√
VarX

)
= α,

where, taking into account Q = T N SN and EX = Np, VarX = Np(1 − p). We
get

T = p +
√

p(1 − p)

N
F−1
0 (α) = p

(

1 +
√
1 − p

pN
F−1
0 (α)

)

.

In the case of a large volume of portfolio N the reference to the central limit theorem
allows us to rewrite the last expression in the form

T = p +
√

p(1 − p)

N
Φ−1(α) = p

(

1 +
√
1 − p

pN
Φ−1(α)

)

,

where Φ is standard normal distribution function. From

F0

(
(Q − EX)/

√
VarX

)
= α
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using

EX = NpSN ,VarX = Np(1 − p)Ŝ2N ,

and

EX = NpmSN ,VarX = Npm2 ŜN (1 − p + τ 2/m2).

Similarly, we obtain the expression of the insurance premium for a simple portfolio

T = p + ŜN
SN

√
p(1 − p)

N
F−1
0 (α) = p

(

1 + ŜN
SN

√
1 − p

pN
F−1
0 (α)

)

and real portfolio

T = pm

⎛

⎝1 + ŜN
SN

√
1 − p + τ 2/m2

pN
F−1
0 (α)

⎞

⎠ .

Here, the distribution function F0 may also be replaced by a function of the standard
normal distribution in the case of large volume portfolio. It should be noted that this
last formula is recommended to the Russian and Kazakhstan insurers by correspond-
ing standards for the calculation of insurance premiums for all types of insurance
other than life insurance.

2 Risk Process

Classic risk process. Classic risk process has been studied for over a century [5]. The
equation of this process is described by a dynamic portfolio of insurance companies,
banks, other financial institutions, that are redistributors of financial flows in a risky
environment. Consider the definition of risk on the example of an insurance company.
Let premiums received forms steady stream with the intensity c̃, and at random
times 0 < T1 < T2 < . . . insurance events occur, causing damage to a random size
Z1, Z2, . . ., respectively. Then capital size in time t , provided that the initial capital
(at time T0 = 0 ) is equal to x , described by the expression

X̃(t) = x + c̃t −
N (t)∑

i=1

Z̃i , (1)

where N (t) = max{k : Tk ≤ t} is the number of insured events occurring during
the time interval [0, t]. Due that the moments of time Ti , i = 1, 2, . . . are random,
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we can consider time intervals between consecutive insurance events also random
θi = Ti+1 − Ti ≥ 0.

Stochastic process X̃(t) it called classical risk process, if the random variables
θi , i = 1, 2, . . . are independent, identically distributed and have exponential distri-
bution with parameter λ > 0:

Fθ (u) = P{θ1 ≤ u} = 1 − exp(−λu), u ≥ 0,

random variables Z̃i , i = 1, 2, . . . are also independent, identically distributed and
have a distribution function

F̃Z̃ (u) = P{Z̃1 ≤ u}, u ≥ 0; F̃Z̃ (0) = 0.

The number of insurance events N (t) has a Poisson distribution with a parameter λt :

P{N (t) = k} = (λt)k

k! exp(−λt), k = 0, 1, . . . ,

and accumulated amount of insurance losses Z̃[0,t] = ∑N (t)
i=1 Z̃i on time interval [0, t]

is a random variable with so-called compound Poisson distribution, the distribution
function has the form

P{Z̃[0,t] ≤ u} =
∞∑

k=0

(λt)k

k! exp(−λt)F̃∗k
Z̃

(u), u ≥ 0,

where F̃∗k
Z̃

means k-times convolution of the distribution function F̃Z̃ with itself, that
is distribution function of k independent and identically distributed random variables
with distribution function F̃Z̃ . When it is necessary to emphasize the dependence of
the process value X̃(t) from random argument ω ∈ Ω , use designation X̃(ω, t), in
particular, separate trajectory of the process with fixed ω designated as

X̃ω = {X̃(ω, t), t ≥ 0}.

Classical risk process is completely determined by the values of the four parameters(
x, c̃, λ, F̃Z̃

)
, satisfying x ≥ 0, c̃ > 0, λ > 0, F̃Z̃ (0) = 0. Arbitrary classical risk

process with fixed parameter values that satisfy the above conditions is denoted by

X̃ = X̃
(
x, c̃, λ, F̃Z̃

)
,

and the set of all classical processes with such parameters is

ℵ̃ = {X̃ (
x, c̃, λ, F̃Z̃

) : x ≥ 0, c̃ > 0, λ > 0, F̃Z̃ (0) = 0}.

(see [6–10]).
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Ruin process. The ruin of process X̃(t) is understood as achieving to level 0,
that is an event

	̃(x) = 	̃ (
x, c̃, λ, F̃Z̃

) = {ω ∈ Ω : ∃t ≥ 0, X̃(x, t) ≤ 0}.

The moment of ruin is random variable

τ̃ (x) = τ̃
(
x, c̃, λ, F̃Z̃

) = min{t : X̃(t) ≤ 0}.

This random value depends on the process parameters X̃(t) and it may be improper,
with positive probability of taking the value ∞; this situation corresponds to trajec-
tories that do not bankrupt on the entire time [0,∞) [5].

The probability of ruin X̃(t) it is the value

P{̃τ(x) < ∞} = P
(	̃(x)

)
,

that is a probability measure of the set of trajectories that go bankrupt in a finite time.
This value is also a function of process parameters that emphasized by designation

R̃(x) = R̃
(
x, c̃, λ, F̃Z

) = P{̃τ(x) < ∞}.

In some cases, more convenient characteristic of the process risk is the probability
of survival of the process

S̃(x) = S̃
(
x, c̃, λ, F̃Z

) = 1 − R̃(x).

The dependence of the probability of ruin on the parameters of the process.
Note the properties of monotony of ruin probability as a function of process para-
meters. 1. R̃ is a non-increasing function of x ; 2. R̃ it is a non-increasing function
of c̃; 3. It is a decreasing function of λ; 4. R̃ it is a non-increasing function of F̃Z̃ , if
the order on the set of distribution functions specified as

F1 � F2 ⇐⇒ F1(x) ≤ F2(x), ∀x .

Aggregate risk process. The operation of aggregation. Let’s consider the classical
risk process X̃(t), fix a number δ > 0 and divide the positive ray R

+ on intervals

Δi = [(i − 1)δ, iδ)

length δ. Further, we group all premium incomes and insurance losses that have
occurred in these time intervals. Then the size of the premium income for any period
Δi is equal to c = c̃δ. Size Zi of insurance losses accumulated on the interval Δi

is calculated as follows. For each i size Zi is a random variable, and for i = 1 its
distribution has already been calculated and is equal to
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P{Z̃[0,t] ≤ u} =
∞∑

k=0

(λt)k

k! exp(−λt)F̃∗k
Z̃

(u), u ≥ 0,

we need only to substitute the value of the length of the time interval t = δ:

FZ (u) = P{Z1 ≤ u} = P{Z̃[0,δ) ≤ u} =
∞∑

k=0

(λδ)k

k! exp(−λδ)F̃∗k
Z̃

(u),

u ≥ 0. Further, due to the steady-state flow of insurance events and independence
and identically distributed loss of classical risk process

{Z̃k, k = 1, 2, . . .}

amount of damages {Zi , i = 1, 2, . . .} at intervalsΔi are also independent and iden-
tically distributed random variables with distribution function

FZ (u) = P{Z1 ≤ u} = P{Z̃[0,δ) ≤ u} =
∞∑

k=0

(λδ)k

k! exp(−λδ)F̃∗k
Z̃

(u),

u ≥ 0. Thus, the importance of classical risk process X̃(t) at time nδ for integer n is

X (n) = x + cn −
n∑

i=1

Zi , n = 0, 1, . . . . (2)

This process is called aggregate risk process and is approximating classic model of
risk in δ → 0. Here, this process depends on three parameters (x, c, FZ ) calculated
on the parameters of the original classical process

(
x, c̃, λ, F̃Z̃

)
. We denote X =

X (x, c, FZ ) aggregate risk process defined by parameters x, c, FZ , and ℵ is the set
of all aggregated risk processes at all admissible values of the parameters:

ℵ = {X (x, c, FZ ) ; x ≥ 0, c > 0, FZ (0) = 0}.

(see [5, 8, 10]).
Ruin. Let note

	 (x, c, FZ ) = 	(x) = {ω : ∃n > 0, Xω(n) ≤ 0}

is a ruin event of aggregated process,

τ(x) = τ (x, c, FZ ) = min{n : X (n) ≤ 0}

is moment of ruin
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R(x) = R(x, c, FZ ) = P{τ < ∞},
S(x) = S (x, c, FZ ) = P{τ = ∞} = 1 − R(x)

is the probability of ruin (bankruptcy) and survival of the process, respectively. Con-
sidering the relation of inclusion of the ruin (survival) events for various values of the
parameters of risk, we conclude that the probability of survival is a decreasing func-
tion of the initial capital x , the flow rate of the premium c and distribution function
loss FZ , if on the set of distribution functions we consider a natural partial order

F1 � F2 ⇐⇒ F1(u) ≤ F2(u), ∀u.

Random walk. The aggregate risk process by replacement

Yi = c − Zi , i = 1, 2, . . . ,

can be represented as a random walk, [5], X (n) = x + ∑n
i=1 Yi with independent

and identically distributed “steps” Yi , i = 1, 2, . . .. Hence, using the theorem of [5],
we deduce

Theorem 1 The aggregate risk process

X (n) = x + cn −
n∑

i=1

Zi , n = 0, 1, . . .

may belong to one and only one from three types depending on the relation between
its parameters:

1. c = EZ1: oscillatory type; processes of this type with probability one reach any
given level; more precisely:

P
{
inf
n∈N

X (n) = −∞
}

= 1 and P
{
inf
n∈N

X (n) = ∞
}

= 1.

2. c < EZ1: ruining type; for this type of process

P
{
inf
n∈N

X (n) = −∞
}

= 1

and with probability 1 there is a finite maximum M(x) = max
n∈N

X (n).

3. c > EZ1: surviving type; for this type of process

P
{
inf
n∈N

X (n) = ∞
}

= 1

and with probability 1 there is a finite minimum m(x) = min
n∈N

X (n).
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Proof Similar theorem is proved in [5].

According to the theorem it is clear that the processes of the first type

P
{
inf
n∈N

X (n) = −∞
}

= 1

destructed with probability 1. Because the processes of the second type

P
{
inf
n∈N

X (n) = −∞
}

= 1

is also true, they are busting with probability 1. For the third type of process the
probability of survival

S(x) = P{m(x) > 0}

and can be, in general, positive. Moreover, since for arbitrary x, y ≥ 0 holds

m(x) = m(y) + (x − y),

for Gx – distribution function of m(x) – we get

Gx (u) = P{m(x) ≤ u} = P{m(y) − y ≤ u − x}
= Gy(u + y − x) → 0

at x → ∞ and fixed u, y so the following is true.

Theorem 2 Suppose that c > EZ1. Then lim
x→∞ S(x) = 1.

Proof Similar theorem is proved in [5].

The condition c > EZ1 is called the condition of positive risk premium.

3 The Equation for the Probability of Ruin

Using the formula of total probability, it is easy to deduce the integral equation for
the probability of survival

X (n) = x + cn −
n∑

i=1

Zi , n = 0, 1, . . . ,

as a function of the initial capital. Let’s fix parameters c, FZ , and define the event
“survival, with condition that initial capital is x”:
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S(x) = {ω ∈ Ω : X (n) > 0, n = 0, 1, . . . ; X (0) = x},

and for the interval I similar event of “survival, provided that the initial capital belong
to the interval I ”:

S(I ) = {ω ∈ Ω : X (n) > 0, n = 0, 1, . . . ; X (0) = I }.

It is clear that S(x) ⊆ S1 = {Z1 < x + c}. For an arbitrary integerm > 0we separate
the interval [0, x + c) on the m equal parts Ik of length

γ = (x + c)/m : Ik = [
(k − 1)γ, kγ

]
, k = 1, . . . ,m.

Then by the formula of total probability we have

P{S(x)} =
m∑

k=1

S(x + c − Ik)P{Z1 ∈ Ik}

=
m∑

k=1

S(x + c − Ik) (FZ (kγ ) − FZ ((k − 1)γ )) .

The right side of the last expression is an integral sum for the integral

x+c∫

0

S(x + c − u)dFZ (u),

and converges to it when m → ∞, and the left side is independent from m and is
S(x), so

S(x) =
x+c∫

0

S(x + c − u)dFZ (u). (3)

This integral equation allows us to study many of the properties of the aggregate risk,
expressed in terms of probability of survival or ruin (see also [8, 10]).

Example 3 The integral equation of survival for the simplest risk process. Let c =
1, p ∈ (0, 1) and

FZ (u) =
⎧
⎨

⎩

0, u < 0,
p, 0 ≤ u < 2,
1, u ≥ 2.

Note that aggregate risk process

X (n) = x + cn −
n∑

i=1

Zi , n = 0, 1, . . .
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turns into a simple process of risk Xn = z + ∑n
i=1 Zi , where Zi are independent

and identically distributed random variables and the equation for the probability of
survival takes the form

S(x) = S(x + 1) + (1 − p)S(x − 1).

The last equation is a difference equation of the second order and can be easily
solved.

Remark 4 Type of the equation for ruin probability be up to risk process

X (n) = x + cn −
n∑

i=1

Zi , n = 0, 1, . . . ,

i.e. from distribution function FZ (u) of random variables Z (from damages distrib-
ution).

4 Numerical Solutions of the Equation for Ruin
Probability of Some Risk Model

In classical risk model (Model Anderson S.) with Poisson damages stream that enter
an insurance company with intensity’s λ and accumulation speed of payments c and

with damages distribution D(u) under condition
λb

c
< 1, the equation is given as

R(x) = λ

c

x∫

0

D(x − u)R(u)du + λ

c
F(x), (4)

where

F(x) =
∞∫

x

D(t)dt, b =
∞∫

0

tdD(t),

R(x) stands for probability of ruin as a function of the initial capital x ≥ 0, [1]. It is
known that the function R(x) is monotone decreasing to 0 as x → ∞. If F(x) x ≥ 0
is continuous then due to condition λb/c < 1 and Contraction – Mapping Principle
the integral equation for probability of ruin has continuous unique solution in C

function class on interval [0,∞) (in space C [0,∞)). This is the case. The integral
operator K is defined in form
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(K R) (x) = λ

c

∞∫

0

R(u)D(x − u)du.

Then

‖K R‖C ≤ ‖R‖C sup
0≤x<∞

λ

c

x∫

0

D(x − u)du = ‖R‖C λb

c

from this it follows that ‖K‖C ≤ λb

c
< 1.

This integral equation is not easy to be solved by “classical” methods when D(x)
is Pareto distribution,

D(x) ≡ P(x) = 0, 0 ≤ u ≤ α − 1

α
;

P(u) = 1 −
(

α − 1

αu

)α

, u >
α − 1

α

with parameter α = 3, with accuracy at most 0.03, λ = 0.7, c = 1, for x > 500.
It is known that equation (4) can be converted to Cauchy problem for second-

order ODE. It can be solved by different classical numerical methods, for example,
Euler’s, Runge–Kutta and so on. But in this case, for large value of x (x � 500),
error would grow. That is why we solve this integral equation for large x (x � 500)
in one point by Monte Carlo methods (see [2–4, 11]. The calculating experiment
was realized for parameters λ = 0.8, c = 1,

F(x) =
⎧
⎨

⎩

1, for x ≤ k,
( k
x

)α

, for x > k

and also for Pareto distribution with parameters α = 2, 3, 5, 7 and k > 0, k =
α − 1

α
. Results of numerical experiments are completely satisfactory.
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Determinant Reprentation of Dardoux
Transformation for the (2+1)-Dimensional
Schrödinger-Maxwell-Bloch Equation

K.R. Yesmahanova, G.N. Shaikhova, G.T. Bekova
and Zh.R. Myrzakulova

Abstract In this article, we consider a (2+1)-dimensional Schrödinger-Maxwell-
Bloch equation (SMBE). The (2+1)-dimensional SMBE is integrable by the inverse
scattering method. We constructed Darboux transformation (DT) of this equation.
Also, we derive determinant representation of one-fold, two-fold and n-fold DT
of (2+1)-dimensional SMBE. As an application of these conversion of the (2+1)-
dimensional SMBE, soliton solutions will get from trivial “seed” solutions.

1 Introduction

It is well known that the nonlinear nature of the real system is considered to be
fundamental in modern science. Nonlinearity is the fascinating subject which has
many applications in almost all areas of science. Usually nonlinear phenomena are
modeled by nonlinear ordinary and/or partial differential equations. Many of these
nonlinear differential equations (NDE) are completely integrable. This means that
these integrable NDE have some classes of interesting exact solutions such as soli-
tons, dromions, rogue waves, similaritons and so on. They are of great mathematical
as well as physical interest and the investigation of the solitons and other its sisters
have become one of the most exciting and extremely active areas of research in mod-
ern science and technology in the past several decades. In particular, many of the
completely integrable NDE have been found and studied [1–15].
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Among of such integrable nonlinear systems, the Schrödinger-Maxwell-Bloch
equation (SMBE) plays an important role. The SMBEdescribes a soliton propagation
in fibres with resonant and erbium-doped systems [16] and has the (1+1)-dimensions.
The (1+1)-dimensional SMBE has been studied by Darboux transformation (DT) in
[17], where the authors obtained the soliton and periodic solutions from the different
“seeds”.

Recently, the authors in [18, 19] presented the (2+1)-dimensional SMBE. In this
paper, our aim is to construct the DT for the (2+1)-dimensional SMBE and to find
its soliton solutions. It is well known that the DT is an efficient way to find different
solutions for integrable equations [20]. In [21, 22], rogue waves, position solutions
were obtained by theDT for one and two componentHirota-Maxwell-Bloch equation
(HMBE). The determinant representation of the DT for the inhomogeneous HMBE
was given in [23, 24], where the authors found the soliton, position solutions.

The paper is organized as follows. In Sect. 2, we present Lax representation of
the (2+1)-dimensional SMBE. One-fold DT of the (2+1)-dimensional SMBE is con-
structed in Sect. 3. In Sect. 4, we give the determinant representation of the (2+1)-
dimensional SMBE. In Sect. 5 the soliton solutions are obtained from the “seed”
solutions. Here, in particular, we present one-soliton solutions. Finally, in Sect. 6 we
present our conclusion.

2 Lax Representation of (2+1)-Dimensional
Schrödinger-Maxwell-Bloch Equation

Here we consider the (2+1)-dimensional SMBE, which reads as

iqt + qxy − vq − 2ip = 0, (1)

irt − rxy + vr − 2ik = 0, (2)

vx + 2(rq)y = 0, (3)

px − 2iωp − 2ηq = 0 (4)

kx + 2iωk − 2ηr = 0, (5)

ηx + rp + kq = 0, (6)

where q, k, r, p are complex functions, η, v is a real function, ω is a real constant and
subscripts x, y, t denote partial derivatives with respect to the variables. This system
(1)–(6) is integrable by the Inverse Scattering Method [18].

Corresponding Lax representation for the (2+1)-dimensional SMBE (1)–(6) is
given by
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Ψx = AΨ, (7)

Ψt = 2λΨy + BΨ, (8)

where A and B matrices have the form

A = −iλσ3 + A0,

B = B0 + i

λ + ω
B−1.

Here σ3,A0,B0,B1 are 2 × 2 matrices:

A0 =
(

0 q
−r 0

)
, σ3 =

(
1 0
0 −1

)
,

B0 =
(−0.5iv iqy

iry 0.5iv

)
, B−1 =

(
η −p

−k −η

)
.

Let us consider the reductions r = δq∗, k = δp∗, where the asterisk symbol “∗”
means a complex conjugate and δ is the real constant. Then the system (1)–(6) takes
the form

iqt + qxy − vq − 2ip = 0,

vx + 2δ(|q|2)y = 0,

px − 2iωp − 2ηq = 0,

ηx + δ(q∗p + p∗q) = 0,

where we can assume that the δ = ±1. So that δ = +1 corresponds to a attractive
interaction and δ = −1 corresponds to a repulsive interaction.

In the next section, we construct one-fold DT of the (2+1)-dimensional SMBE.

3 One-Fold Darboux Transformation
for the (2+1)-Dimensional Schrödinger-Maxwell-Bloch
Equation

We consider the following transformation of the system of Eqs. (7)–(8)

Ψ [1] = TΨ = (λI − M)Ψ (9)

such that
Ψ [1]
x = A[1]Ψ [1], (10)
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Ψ
[1]
t = 2λΨ [1]

y + B[1]Ψ [1], (11)

where A[1] and B[1] depend on q[1], v[1], p[1], η[1] and λ. Here M and I are matrices
have the form

M =
(
m11 m12

m21 m22

)
, I =

(
1 0
0 1

)
. (12)

The relation between q[1], v[1], p[1], η[1], λ and A[1] − B[1] is the same as the relation
between q, v, p, η, λ and A − B. In order the Eqs. (10)–(11) to hold, T must satisfy
the following equations

Tx + TA = A[1]T , (13)

Tt + TB = 2λTy + B[1]T . (14)

Then the relation between q, v, p, η and q[1], v[1], p[1], η[1] can be reduced from these
equations, which is in fact the DT of the (2+1)-dimensional SMBE. Comparing the
coefficients of λi of the two sides of the Eq. (13), we get

λ0 : Mx = A[1]
0 M − MA0, (15)

λ1 : A[1]
0 = A0 + i[M, σ3], (16)

λ2 : iIσ3 = iσ3I. (17)

Finally, from (15)–(17) we obtain

q[1] = q − 2im12, r[1] = r − 2im21. (18)

Hence we get m21 = −m∗
12 in our attractive interaction case, that is when δ = +1.

Then, comparing the coefficients of λi of the two sides of the Eq. (14) gives us

λ0 : −Mt = iB[1]
−1 − B[1]

0 M − iB−1 + MB0, (19)

λ1 : 2My = B[1]
0 − B0, (20)

(λ + ω)−1 : 0 = −iωB[1]
−1 − iB[1]

−1M + iωB−1 + iMB−1. (21)

Then the system of Eqs. (19)–(21) gives

B[1]
−1 = (M + ωI)B−1(M + ωI)−1. (22)

These Eqs. (18), (22) give one-fold transformation of the (2+1)-dimensional SMBE.
We now assume that

M = HΛH−1,
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where

H =
(

ψ1(λ1; t, x, y) ψ1(λ2; t, x, y)
ψ2(λ1; t, x, y) ψ2(λ2; t, x, y)

)
:=

(
ψ1,1 ψ1,2

ψ2,1 ψ2,2

)
,

Λ =
(

λ1 0
0 λ2

) (23)

and detH �= 0, where λ1 and λ2 are complex constants. In order to satisfy the con-
straints of A0 and B[1]

−1 as mentioned above, we first note that if δ = +1, then

Ψ + = Ψ −1, A+
0 = −A0,

λ2 = λ∗
1, H =

(
ψ1(λ1; t, x, y) −ψ∗

2 (λ1; t, x, y)
ψ2(λ1; t, x, y) ψ∗

1 (λ1; t, x, y)
)

,

H−1 = 1

Δ

(
ψ∗

1 (λ1; t, x, y) ψ∗
2 (λ1; t, x, y)

−ψ2(λ1; t, x, y) ψ1(λ1; t, x, y)
)

.

In the following section we give the determinant representation of the DT for the
(2+1)-dimensional SMBE.

4 Determinant Representation of Darboux Transformation
for the (2+1)-Dimensional Schrödinger-Maxwell-Bloch
Equation

Here the determinant representation is constructed for the one-fold, two-fold and n-
fold DT of the (2+1)-dimensional SMBE. The reduction condition on the eigenfunc-
tions areΨ2,2i = Ψ ∗

1,2i−1, Ψ2,2i−1 = −Ψ ∗
1,2i and for the eigenvalues areλ2i = −λ∗

2i−1.
The determinant representation of the one-fold DT of the (2+1)-dimensional

SMBE formulate the following theorem (as [21–24]).

Theorem 1 The one-fold DT of the (2+1)-dimensional SMBE is

T1(λ, λ1, λ2) = λI − M = λI + t[1]0 = 1

Δ1

(
(T1)11 (T1)12
(T1)21 (T1)22

)
, (24)

where

t[1]0 = 1

Δ1

⎛

⎜
⎜⎜⎜
⎝

∣∣∣∣
Ψ2,1 λ1Ψ1,1

Ψ2,2 λ2Ψ1,2

∣∣∣∣ −
∣∣∣∣
Ψ1,1 λ1Ψ1,1

Ψ1,2 λ2Ψ1,2

∣∣∣∣

∣∣∣∣
Ψ2,1 λ1Ψ2,1

Ψ2,2 λ2Ψ2,2

∣∣∣∣ −
∣∣∣∣
Ψ1,1 λ1Ψ2,1

Ψ1,2 λ2Ψ2,2

∣∣∣∣

⎞

⎟
⎟⎟⎟
⎠

,
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Δ1 =
∣∣
∣∣
Ψ1,1 Ψ1,2

Ψ2,1 Ψ2,2

∣∣
∣∣ ,

(T1)11 =
∣∣∣∣
∣∣

1 0 λ

Ψ1,1 Ψ2,1 λ1Ψ1,1

Ψ1,2 Ψ2,2 λ2Ψ1,2

∣∣∣∣
∣∣
,

(T1)12 =
∣∣∣
∣∣∣

0 1 0
Ψ1,1 Ψ2,1 λ1Ψ1,1

Ψ1,2 Ψ2,2 λ2Ψ1,2

∣∣∣
∣∣∣
,

(T1)21 =
∣∣
∣∣∣∣

1 0 0
Ψ1,1 Ψ2,1 λ1Ψ2,1

Ψ1,2 Ψ2,2 λ2Ψ2,2

∣∣
∣∣∣∣
,

(T1)22 =
∣∣∣∣
∣∣

0 1 λ

Ψ1,1 Ψ2,1 λ1Ψ2,1

Ψ1,2 Ψ2,2 λ2Ψ2,2

∣∣∣∣
∣∣
.

T1 satisfies the following equations

T1x + T1A = A[1]T1,

T1t + T1B = 2λT1y + B[1]T1.

A[1]
0 = A0 +

[
σ3, t

[1]
0

]
, B[1]

−1 = T1
∣∣
λ=−μ

B−1T
−1
1

∣∣
λ=−μ

.

Then the solutions of the system (1)–(6) have the form

q[1] = q − 2i
(T1)12
Δ1

,

v[1] = v + 4i

(
(T1)11
Δ1

)

y

,

η[1] = (|ω+(T1)11|2−|(T1)12|2)η+p(T1)21(ω+(T1)11)−p∗(T1)12(ω+(T1)22)
W ,

p[1] = p
[
(ω + (T1)11)

2 − p∗(T1)212
] + 2η(T1)12 (ω + (T1)11)

W
,

p∗[1] = p∗ (
(ω + (T1)22)

2 + p(T1)221
) − 2η(T1)21 (ω + (T1)22)

W
,
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where
W = (T1)11(T1)22 − (T1)12(T1)21.

We can find the transformation T1 which has the following property

T1(λ, λ1, λ2)
∣∣
λ=λi

(
Ψ1,i

Ψ2,i

)
= 0, i = 1, 2.

Now we prove the theorem.

Proof of the Main Theorem From the formulae (13), (23) it follows that

M = 1

Δ1

(
λ1Ψ11Ψ22 − λ2Ψ12Ψ21 (λ2 − λ1)Ψ11Ψ12

(λ1 − λ2)Ψ21Ψ22 λ1Ψ12Ψ21 + λ2Ψ11Ψ22

)
.

From Eq. (24), we have

T1(λ, λ1, λ2) = λI − M

= 1

Δ1

⎛

⎜⎜
⎜⎜
⎝

λ · Δ1 −
∣∣∣∣
Ψ2,1 λ1Ψ1,1

Ψ2,2 λ2Ψ1,2

∣∣∣∣ −
∣∣∣∣
Ψ1,1 λ1Ψ1,1

Ψ1,2 λ2Ψ1,2

∣∣∣∣

∣∣∣∣
Ψ2,1 λ1Ψ2,1

Ψ2,2 λ2Ψ2,2

∣∣∣∣ λ · Δ1 +
∣∣∣∣
Ψ1,1 λ1Ψ2,1

Ψ1,2 λ2Ψ2,2

∣∣∣∣

⎞

⎟⎟
⎟⎟
⎠

,

λI + t[1]0 = λI − M

= 1

Δ1

⎛

⎜⎜⎜⎜
⎝

λ · Δ1 −
∣∣
∣∣
Ψ2,1 λ1Ψ1,1

Ψ2,2 λ2Ψ1,2

∣∣
∣∣ −

∣∣
∣∣
Ψ1,1 λ1Ψ1,1

Ψ1,2 λ2Ψ1,2

∣∣
∣∣

∣∣
∣∣
Ψ2,1 λ1Ψ2,1

Ψ2,2 λ2Ψ2,2

∣∣
∣∣ λ · Δ1 +

∣∣
∣∣
Ψ1,1 λ1Ψ2,1

Ψ1,2 λ2Ψ2,2

∣∣
∣∣

⎞

⎟⎟⎟⎟
⎠

,

and the elements of the matrix are as follows:

(T1)11 =
∣∣∣∣
∣∣

1 0 λ

Ψ1,1 Ψ2,1 λ1Ψ1,1

Ψ1,2 Ψ2,2 λ2Ψ1,2

∣∣∣∣
∣∣
=

∣∣∣
∣
Ψ2,1 λ1Ψ1,1

Ψ2,2 λ2Ψ1,2

∣∣∣
∣ − λ · Δ1,

(T1)12 =
∣∣∣
∣∣∣

0 1 0
Ψ1,1 Ψ2,1 λ1Ψ1,1

Ψ1,2 Ψ2,2 λ2Ψ1,2

∣∣∣
∣∣∣
= −

∣∣
∣∣
Ψ1,1 λ1Ψ1,1

Ψ1,2 λ2Ψ1,2

∣∣
∣∣ ,

(T1)21 =
∣∣∣
∣∣∣

1 0 0
Ψ1,1 Ψ2,1 λ1Ψ2,1

Ψ1,2 Ψ2,2 λ2Ψ2,2

∣∣∣
∣∣∣
=

∣∣
∣∣
Ψ2,1 λ1Ψ2,1

Ψ2,2 λ2Ψ2,2

∣∣
∣∣ ,
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(T1)22 =
∣∣
∣∣∣∣

0 1 λ

Ψ1,1 Ψ2,1 λ1Ψ2,1

Ψ1,2 Ψ2,2 λ2Ψ2,2

∣∣
∣∣∣∣
= −

∣
∣∣∣
Ψ1,1 λ1Ψ2,1

Ψ1,2 λ2Ψ2,2

∣
∣∣∣ − λ · Δ1.

t[1]0x + λA0 − iλ2σ3 − λt[1]0 σ3 + t[1]0 A0

= −iλ2σ3 + λA[1]
0 − iλσ3t

[1]
0 + A[1]

0 t[1]0 .
(25)

Comparing the coefficients of λi of the two sides of the Eq. (25), we get

λ0 : t[1]0x + t[1]0 A0 = A[1]
0 t[1]0 ,

λ1 : A0 − it[1]0 σ3 = A[1]
0 − iσ3t

[1]
0 ,

λ2 : iσ3 = iσ3.

In same way Theorem 1 we can formulate the next theorem.

Theorem 2 The two-fold DT of the (2+1)-dimensional SMBE is

T2(λ, λ1, λ2, λ3, λ4) = λ2I + λt[2]1 + t[2]0 = 1

Δ2

(
(T2)11 (T2)12
(T2)21 (T2)22

)
,

where

Δ2 =

∣∣∣∣∣∣
∣∣

Ψ1,1 Ψ2,1 λ1Ψ1,1 λ1Ψ2,1

Ψ1,2 Ψ2,2 λ2Ψ1,2 λ2Ψ2,2

Ψ1,3 Ψ2,3 λ3Ψ1,3 λ3Ψ2,3

Ψ1,4 Ψ2,4 λ4Ψ1,4 λ4Ψ2,4

∣∣∣∣∣∣
∣∣

,

(T2)11 =

∣∣∣
∣∣∣∣∣∣
∣

1 0 λ 0 λ2

Ψ1,1 Ψ2,1 λ1Ψ1,1 λ1Ψ2,1 λ2
1Ψ1,1

Ψ1,2 Ψ2,2 λ2Ψ1,2 λ2Ψ2,2 λ2
2Ψ1,2

Ψ1,3 Ψ2,3 λ3Ψ1,3 λ3Ψ2,3 λ2
3Ψ1,3

Ψ1,4 Ψ2,4 λ4Ψ1,4 λ4Ψ2,4 λ2
4Ψ1,4

∣∣∣
∣∣∣∣∣∣
∣

,

(T2)12 =

∣∣∣∣
∣∣∣∣∣∣

0 1 0 λ 0
Ψ1,1 Ψ2,1 λ1Ψ1,1 λ1Ψ2,1 λ2

1Ψ1,1

Ψ1,2 Ψ2,2 λ2Ψ1,2 λ2Ψ2,2 λ2
2Ψ1,2

Ψ1,3 Ψ2,3 λ3Ψ1,3 λ3Ψ2,3 λ2
3Ψ1,3

Ψ1,4 Ψ2,4 λ4Ψ1,4 λ4Ψ2,4 λ2
4Ψ1,4

∣∣∣∣
∣∣∣∣∣∣

,

(T2)21 =

∣∣∣∣∣
∣∣∣∣∣

1 0 λ 0 0
Ψ1,1 Ψ2,1 λ1Ψ1,1 λ1Ψ2,1 λ2

1Ψ2,1

Ψ1,2 Ψ2,2 λ2Ψ1,2 λ2Ψ2,2 λ2
2Ψ2,2

Ψ1,3 Ψ2,3 λ3Ψ1,3 λ3Ψ2,3 λ2
3Ψ2,3

Ψ1,4 Ψ2,4 λ4Ψ1,4 λ4Ψ2,4 λ2
4Ψ2,4

∣∣∣∣∣
∣∣∣∣∣

,
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(T2)22 =

∣∣∣∣
∣∣∣∣∣∣

0 1 0 λ λ2

Ψ1,1 Ψ2,1 λ1Ψ1,1 λ1Ψ2,1 λ2
1Ψ2,1

Ψ1,2 Ψ2,2 λ2Ψ1,2 λ2Ψ2,2 λ2
2Ψ2,2

Ψ1,3 Ψ2,3 λ3Ψ1,3 λ3Ψ2,3 λ2
3Ψ2,3

Ψ1,4 Ψ2,4 λ4Ψ1,4 λ4Ψ2,4 λ2
4Ψ2,4

∣∣∣∣
∣∣∣∣∣∣

,

T2 satisfies the following equations

T2x + T2A = A[2]T2,

T2t + T2B = 2λT2y + B[2]T1.

A[2]
0 = A0 +

[
σ3, t

[2]
0

]
, B[2]

−1 = T2
∣∣
λ=−μ

B−1T
−1
2

∣∣
λ=−μ

.

Then the solutions of the system (1)–(6) have the form

q[2] = q − 2i
(T2)12
Δ2

,

v[2] = v + 4i

(
(T2)11
Δ2

)

y

,

η[2] = (|ω+(T2)11|2−|(T2)12|2)η+p(T2)21(ω+(T2)11)−p∗(T2)12(ω+(T2)22)
W ,

p[2] = p
[
(ω + (T2)11)

2 − p∗(T2)212
] + 2η(T2)12 (ω + (T2)11)

W
,

p∗[2] = p∗ (
(ω + (T2)22)

2 + p(T2)221
) − 2η(T2)21 (ω + (T2)22)

W
,

where
W = (T2)11(T2)22 − (T2)12(T2)21.

We can find the transformation T1 which has the following property

T2(λ, λ1, λ2, λ3, λ4)
∣∣
λ=λi

(
Ψ1,i

Ψ2,i

)
= 0, i = 1, 2, 3, 4.
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Theorem 3 The n-fold DT of the (2+1)-dimensional SMBE is

Tn(λ, λ1, λ2, λ3, ..., λ2n) = λnI + λn−1t[n]n−1 + · · · + λt[n]1 + t[n]0

= 1

Δn

(
(Tn)11 (Tn)12
(Tn)21 (Tn)22

)
,

where

Δn

=

∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣
∣

Ψ1,1 Ψ2,1 λ1Ψ1,1 λ1Ψ2,1 · · · λn−1
1 Ψ1,1 λn−1

1 Ψ2,1

Ψ1,2 Ψ2,2 λ2Ψ1,2 λ2Ψ2,2 · · · λn−1
2 Ψ1,2 λn−1

2 Ψ2,2

Ψ1,3 Ψ2,3 λ3Ψ1,3 λ3Ψ2,3 · · · λn−1
3 Ψ1,3 λn−1

3 Ψ2,3

Ψ1,4 Ψ2,4 λ4Ψ1,4 λ4Ψ2,4 · · · λn−1
4 Ψ1,4 λn−1

1 Ψ2,4
...

...
...

...
...

...
...

Ψ1,2n−1 Ψ2,2n−1 λ2n−1Ψ1,2n−1 λ2n−1Ψ2,2n−1 · · · λn−1
2n−1Ψ1,2n−1 λn−1

2n−1Ψ2,2n−1

Ψ1,2n Ψ2,2n λ2nΨ1,2n λ2nΨ2,2n · · · λn−1
2n Ψ1,2n λn−1

2n Ψ2,2n

∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣
∣

,

(Tn)11

=

∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣

1 0 λ · · · λn−1 0 λn

Ψ1,1 Ψ2,1 λ1Ψ1,1 · · · λn−1
1 Ψ1,1 λn−1

1 Ψ2,1 λn
1Ψ1,1

Ψ1,2 Ψ2,2 λ2Ψ1,2 · · · λn−1
2 Ψ1,2 λn−1

2 Ψ2,2 λn
2Ψ1,2

Ψ1,3 Ψ2,3 λ3Ψ1,3 · · · λn−1
3 Ψ1,3 λn−1

3 Ψ2,3 λn
3Ψ1,3

...
...

...
...

...
...

...

Ψ1,2n−1 Ψ2,2n−1 λ2n−1Ψ1,2n−1 · · · λn−1
2n−1Ψ1,2n−1 λn−1

2n−1Ψ2,2n−1 λn
2n−1Ψ1,2n−1

Ψ1,2n Ψ2,2n λ2nΨ1,2n · · · λn−1
2n Ψ1,2n λn−1

2n Ψ1,2n λn
2nΨ1,2n

∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣

,

(Tn)12

=

∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣

0 1 0 · · · 0 λn−1 0
Ψ1,1 Ψ2,1 λ1Ψ1,1 · · · λn−1

1 Ψ1,1 λn−1
1 Ψ2,1 λn

1Ψ1,1

Ψ1,2 Ψ2,2 λ2Ψ1,2 · · · λn−1
2 Ψ1,2 λn−1

2 Ψ2,2 λn
2Ψ1,2

Ψ1,3 Ψ2,3 λ3Ψ1,3 · · · λn−1
3 Ψ1,3 λn−1

3 Ψ2,3 λn
3Ψ1,3

...
...

...
...

...
...

...

Ψ1,2n−1 Ψ2,2n−1 λ2n−1Ψ1,2n−1 · · · λn−1
2n−1Ψ1,2n−1 λn−1

2n−1Ψ2,2n−1 λn
2n−1Ψ1,2n−1

Ψ1,2n Ψ2,2n λ2nΨ1,2n · · · λn−1
2n Ψ1,2n λn−1

2n Ψ1,2n λn
2nΨ1,2n

∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣

,
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(Tn)21

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

1 0 λ · · · λn−1 0 0
Ψ1,1 Ψ2,1 λ1Ψ1,1 · · · λn−1

1 Ψ1,1 λn−1
1 Ψ2,1 λn

1Ψ2,1

Ψ1,2 Ψ2,2 λ2Ψ1,2 · · · λn−1
2 Ψ1,2 λn−1

2 Ψ2,2 λn
2Ψ2,2

Ψ1,3 Ψ2,3 λ3Ψ1,3 · · · λn−1
3 Ψ1,3 λn−1

3 Ψ2,3 λn
3Ψ2,3

...
...

...
...

...
...

...

Ψ1,2n−1 Ψ2,2n−1 λ2n−1Ψ1,2n−1 · · · λn−1
2n−1Ψ1,2n−1 λn−1

2n−1Ψ2,2n−1 λn
2n−1Ψ2,2n−1

Ψ1,2n Ψ2,2n λ2nΨ1,2n · · · λn−1
2n Ψ1,2n λn−1

2n Ψ1,2n λn
2nΨ2,2n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

,

(Tn)22

=

∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣

0 1 0 · · · 0 λn−1 λn

Ψ1,1 Ψ2,1 λ1Ψ1,1 · · · λn−1
1 Ψ1,1 λn−1

1 Ψ2,1 λn
1Ψ2,1

Ψ1,2 Ψ2,2 λ2Ψ1,2 · · · λn−1
2 Ψ1,2 λn−1

2 Ψ2,2 λn
2Ψ2,2

Ψ1,3 Ψ2,3 λ3Ψ1,3 · · · λn−1
3 Ψ1,3 λn−1

3 Ψ2,3 λn
3Ψ2,3

...
...

...
...

...
...

...

Ψ1,2n−1 Ψ2,2n−1 λ2n−1Ψ1,2n−1 · · · λn−1
2n−1Ψ1,2n−1 λn−1

2n−1Ψ2,2n−1 λn
2n−1Ψ2,2n−1

Ψ1,2n Ψ2,2n λ2nΨ1,2n · · · λn−1
2n Ψ1,2n λn−1

2n Ψ1,2n λn
2nΨ2,2n

∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣

,

Tn satisfies the next equations

Tnx + TnA = A[n]Tn,

Tnt + TnB = 2λTny + B[n]Tn.

A[n]
0 = A0 +

[
σ3, t

[n]
0

]
, B[n]

−1 = Tn
∣
∣
λ=−μ

B−1T
−1
n

∣
∣
λ=−μ

.

Then the solutions of the system (1)–(6) have the form

q[n] = q − 2i
(Tn)12
Δn

,

v[n] = v + 4i

(
(Tn)11
Δn

)

y

,

η[n] = (|ω+(Tn)11|2−|(Tn)12|2)η+p(Tn)21(ω+(Tn)11)−p∗(Tn)12(ω+(Tn)22)
W ,

p[n] = p
[
(ω + (Tn)11)

2 − p∗(Tn)212
] + 2η(Tn)12 (ω + (Tn)11)

W
,
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p∗[n] = p∗ (
(ω + (Tn)22)

2 + p(Tn)221
) − 2η(Tn)21 (ω + (Tn)22)

W
,

where
W = (T2)11(T2)22 − (T2)12(T2)21.

We can find the transformation T1 which has the following property

Tn(λ, λ1, λ2, λ3, ...., λ2n)
∣∣
λ=λi

(
Ψ1,i

Ψ2,i

)
= 0, i = 1, 2, 3, ..., 2n.

5 Soliton Solutions

To get the one-soliton solution we take the “seed” solution as q = 0, v = 0, p = 0,
η = 1. Let λ1 = a + bi. Then the corresponding associated linear system takes the
form

Ψ1x = −iλΨ1,

Ψ2x = iλΨ2,

Ψ1t = 2λΨ1y + i

λ + ω
Ψ1,

Ψ2t = 2λΨ2y − i

λ + ω
Ψ2.

This system admits the following exact solutions

Ψ1 = Ψ10e
−iλ1x+iμ1y+i(2λ1μ1+ 1

λ1+ω
)t
,

Ψ2 = Ψ20e
iλ1x−iμ1y−i(2λ1μ1+ 1

λ1+ω
)t
,

or

Ψ1 = e−iλ1x+iμ1y+i(2λ1μ1+ 1
λ1+ω

)t+δ1+iδ2 ,

Ψ2 = eiλ1x−iμ1y−i(2λ1μ1+ 1
λ1+ω

)t−δ1−iδ2+iδ0 ,

where μ1 = c + id, δi and c, d are real constants. Then the one-soliton solution of
the (2+1)-dimensional SMBE is given by
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q[1] = 2beL−L∗−iδ0

cosh(L + L∗)
,

v[1] = −4i(a + bi tanh(L + L∗))y,

p[1] = 2bi[(w + a) cosh(L + L∗) + bi sinh(L + L∗)]eL−L∗−iδ0

((w + a)2 + b2) cosh2(L + L∗)
,

where

L = −iλ1x + iμ1y + i(2λ1μ1 + 1

λ1 + ω
)t + δ1 + iδ2;

L∗ = iλ∗
1x − iμ∗

1y − i(2λ∗
1μ

∗
1 + 1

λ∗
1 + ω

)t + δ1 − iδ2.

Using the above presented n-fold DT, similarly, we can construct the n-soliton
solution of the (2+1)-dimensional SMBE. Below, we present the figures of one-
soliton solutions (Figs. 1, 2 and 3).

Fig. 1 One-soliton solution
q[1] when t = 0
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Fig. 2 One-soliton solution
v[1] when t = 0

Fig. 3 One-soliton solution
p[1] when t = 0
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6 Conclusion

In this paper, we have constructed the DT for the (2+1)-dimensional SMBE. Using
the derived DT, some exact solutions like, the one-soliton solution are obtained. The
determinant representations are given for one-fold, two-fold and n-fold DT for the
(2+1)-dimensional SMBE. Using the above presented results, one can also construct
the n-solitons, breathers and roguewave solutions of the (2+1)-dimensional SMBE. It
is interesting to note that the roguewave solutions of nonlinear equations are currently
one of the hottest topics in nonlinear physics and mathematics. The application of
the obtained solutions in physics is an interesting subject. In particular, we hope that
the presented solutions may be used in experiments or optical fibre communication.
Also we will study some important generalizations of the (2+1)-dimensional SMBE
in future.
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Numerical Solution of Nonlinear
Klein-Gordon Equation Using
Polynomial Wavelets

Jalil Rashidinia and Mahmood Jokar

Abstract The main aim of this paper is to apply the polynomial wavelets for the
numerical solution of nonlinear Klein-Gordon equation. Polynomial scaling and
wavelet functions are rarely used in the contexts of numerical computation. A numer-
ical technique for the solution of nonlinear Klein-Gordon equation is presented. Our
approach consists of finite difference formula combinedwith the collocationmethod,
which uses the polynomial wavelets. Using the operational matrix of derivative, we
reduce the problem to a set of algebraic equations by expanding the approximate
solution in terms of polynomial wavelets with unknown coefficients. An estima-
tion of error bound for this method is investigated. Some illustrative examples are
included to demonstrate the validity and applicability of the approach.

1 Introduction

In this work, we are dealing with the numerical solutions of the following nonlinear
partial differential equation, namely a Nonlinear Klein-Gordon equation:

utt + αuxx + βu + γ uk = f (x, t), x ∈ Ω = [−1, 1], t ∈ (0, T ], (1)

subject to the initial conditions

{
u(x, 0) = g1(x), x ∈ Ω,

ut (x, 0) = g2(x), x ∈ Ω,
(2)
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and Dirichlet boundary condition

u(x, t) = h(x, t), x ∈ ∂Ω, t ∈ (0, T ], (3)

where α, β and γ are nonzero real constants and f is a known analytic function.
Nonlinear phenomenaoccur in awide variety of scientific applications such as plasma
physics, solid state physics, fluid dynamics and chemical kinetics [1]. The nonlinear
Klein-Gordon equation is one of the important models in quantum mechanics and
mathematical physics. The equation has received considerable attention in studying
solitons and condensed matter physics, in investigating the interaction of solitons in
collisionless plasma, the recurrence of initial states, and in examining the nonlinear
wave equations [2].

There are a lot of studies on the numerical solution of initial and initial-boundary
problems of the linear or nonlinear Klein-Gordon equation. For instance, Chowd-
hury and Hashim [3] employed the homotopy-perturbation method to obtain approx-
imate solutions of the Klein-Gordon and sine-Gordon equations. Four finite differ-
ence schemes for approximating the solution of nonlinear Klein-Gordon equation
were discussed in [4]. Deeba and Khuri [5] presented a decomposition scheme for
obtaining numerical solutions of the Eq. (1). In [6], a spline collocation approach
for the numerical solution of a generalized nonlinear Klein-Gordon equation was
investigated. Dehghan and Shokri [7] proposed a numerical scheme to solve the one-
dimensional nonlinear Klein-Gordon equation with quadratic and cubic nonlinearity
using the collocation points and approximating the solution by Thin Plate Splines
radial basis functions. Authors in [8] considered a numerical method based on the
cubic B-splines collocation technique on the uniform mesh points. Lakestani and
Dehghan [9] presented two numerical techniques. The first one is Mixed Finite Dif-
ference in time and Collocation Methods using cubic B-spline functions in space
(MFDCM) and the second one is fully Collocation Method (CM) which approxi-
mates the solution in both space and time variables using cubic B-spline functions.
A fully implicit and discrete energy conserving finite difference scheme for the solu-
tion of an initial-boundary value problem of the nonlinear Klein-Gordon equation
derived by Wong et al. [10]. A three-level spline-difference scheme to solve the one
dimensional Klein-Gordon equation which is based on using the finite difference
approximation for the time derivative and the spline approximation for the second-
order spatial derivative was derived by authors in [11]. Most recently, authors in [12]
proposed a spectral method using Legendre wavelets.

In this article we study the application of polynomial scaling functions and
wavelets for computation of numerical solution of nonlinear Klein-Gordon equa-
tion. A numerical technique based on the finite difference and Collocation methods
is presented. At the first stage, our method is based on the discretization of the time
variable by means of the Crank-Nicolson method and freezing the coefficients of the
resulting ordinary differential equation at each time step. At the second stage, we use
the Wavelet-Collocation method on the yield linear ordinary differential equations
at each time step resulting from the time semidiscretization. Considering this basis
being wavelet functions, our method is essentially a spectral method.
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Polynomial scaling andwavelet functions are rarely used in the contexts of numer-
ical computation [13]. One of the advantages of using polynomial scaling function as
expansion functions is the good representation of smooth functions by finite Cheby-
shev expansion. The Crank-Nicolson method is an unconditionally stable, implicit
numerical scheme with second-order accuracy in both time and space. Our approach
consists of reducing the Klein-Gordon equation to a set of algebraic equations by
expanding the approximate solution in terms of wavelet functions with unknown
coefficients. The operational matrix of derivative is presented. This matrix together
with the Collocation method are then utilized to evaluate the unknown coefficients
of the solution at each time step. Finally, the convergence analysis of the proposed
method for the Eq. (1) is developed.

The organization of this paper is as follows. In Sect. 2, we describe the polynomial
scaling and wavelet functions on [−1, 1] and some basic properties. In Sect. 3, the
proposed method is used to approximate the solution of the problem. As a result,
a set of algebraic equations is formed and a solution of the considered problem is
introduced at each time step. In Sect. 4, the error bounds of the method based on the
Crank-Nicolson and polynomial wavelets are presented. In Sect. 5, we discuss the
accuracy and efficiency of the employedmethod by applying to several test problems.
A brief conclusion is given at the end of the paper in Sect. 6.

2 Preliminary

In this section,we shall give abrief introductionof thepolynomialwavelets on [−1, 1]
and their basic properties [14]. Also the construction of the operational matrix of the
derivative and some approximation results [15] are presented.

2.1 Polynomial Wavelets

Suppose that Tn and Un be the following Chebyshev polynomials of the first and
second kind respectively,

Tn(x) = cos(n arccos(x)) and Un−1(x) = sin(n arccos(x))

sin(arccos(x))
,

here to introduce polynomial scaling function we need ω j which is defined as:

ω j (x) = (1 − x2)U2 j−1(x) = (1 − x2)

2 j
T ′
2 j (x), j = 0, 1, 2, . . . .

The zeros ofω j (x) are xk = cos( kπ2 j ) for k = 0, 1, . . . , 2 j and it should be pointed
out that the zeros of ω j are also zeros of ω j+1.
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Let

ε j,l =
{

1
2 for l = 0 or l = 2 j

1 for l = 1, 2, . . . , 2 j − 1

for any j ∈ N0 = N ∪ {0}, the polynomial scaling functions are defined as:

φ j,l(x) = ω j (x)

2 j (−1)l+1(x − xl)
ε j,l , l = 0, 1, . . . , 2 j . (4)

Given j ∈ N0, the space of polynomial scaling functions on [−1, 1] is defined by
Vj = span{φ j,l : l = 0, 1, . . . , 2 j }.

It is easy to see that the spaces Vj = �2 j where �n denotes the set of all polyno-
mials of degree at most n. The interpolatory property of this functions which helps
to accelerate the computations is:

φ j,l(cos(
kπ

2 j
)) = δk,l , k, l = 0, 1, . . . , 2 j . (5)

The wavelet spaces are defined byWj = span{ψ j,l : l = 0, 1, . . . , 2 j − 1}, where

ψ j,l(x) = T2 j (x)

2 j (x − cos((2l + 1)π/2 j+1))

(
2ω j (x) − ω j

(
cos

(2l + 1)π

2 j+1

))
.

The same interpolating property holds with the zeros of ω j+1 as:

ψ j,l(cos(
(2k + 1)π

2 j+1
)) = δk,l , k, l = 0, 1, . . . , 2 j − 1.

We note that dimWj = 2 j and dimVj = 2 j+1, also for all j ∈ N0 we have Vj+1 =
Vj ⊕ Wj and by denoting W−1 as V0 we obtain

�2 j+1 = Vj+1 =
j⊕

k=−1

Wk . (6)

2.2 Function Approximation

For any j ∈ N0, the operator L j mapping any real-valued function f (x) on [−1, 1]
into the space Vj by the Lagrange formula

L j f (x) =
2 j∑

l=0

f (xl)φ j,l(x) = UTΦ j (x), (7)
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where U and Φ j are vectors with 2 j + 1 components as:

U = [ f (x0), f (x1), ..., f (x2 j )]T , (8)

Φ j (x) = [
φ j,0(x), φ j,1(x), ..., φ j,2 j (x)

]T
. (9)

Considering (6) it follows that

L j f (x) =
1∑

k=0

akφ0,k(x) +
j−1∑

l=0

2l−1∑

i=0

bl,iψl,i (x) = CTΨ j−1(x), (10)

where φ0,k(x) and ψl,i (x) are scaling and wavelet functions, respectively, and C and
Ψ j−1 are vectors with 2 j + 1 components as:

C = [
a0, a1, b0,0, b1,0, b1,1, ..., b j−1,2 j−1−1

]T
, (11)

Ψ j−1(x) = [
φ0,0, φ0,1, ψ0,0, ψ1,0, ψ1,1, ..., ψ j−1,2 j−1−1

]T
. (12)

The vector C can be obtained by considering,

Ψ j−1 = GΦ j , (13)

whereG is a (2 j + 1) × (2 j + 1)matrix, which can be determined as follows. Using
the two scale relations and decomposition between polynomial scaling and wavelet
functions represented in [14, pp. 100 ], we have

Φ j−1 = λ j−1Φ j , Ψ j−1 = μ j−1Φ j , (14)

whereλ j−1 is a (2 j−1 + 1) × (2 j + 1)matrix andμ j−1 is a (2 j−1) × (2 j + 1)matrix.
Following [16] and by using Eqs. (13) and (14), we obtain

G =

⎡

⎢
⎢⎢⎢⎢⎢
⎢
⎣

λ0 × λ1 × · · · × λ j−1

μ0 × λ1 × · · · × λ j−1
...

μ j−3 × μ j−2 × λ j−1

μ j−2 × μ j−1

μ j−1

⎤

⎥
⎥⎥⎥⎥⎥
⎥
⎦

.

By using Eqs. (13) and (7), we get

L j f (x) = UTΦ j = UTG−1Ψ j−1,

so that we have CT = UTG−1.
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Interpolation properties of polynomial scaling functions could help to obtaining the
coefficients very fast, because it just needs to replacing the variable of function by
the zeros of ω j (x) and no need of integration. In the rest of the paper for simplicity
and abbreviation we denote Φ j (x) and Ψ j−1(x) by Φ(x) and Ψ (x), respectively.

2.3 Operational Matrix of Derivative

Polynomial scaling functions operational matrix of derivative was derived in [15].
Here, we just list the theorem and a corollary as follows.

Theorem 1 The differentiation of vector Φ(x) in (9) can be expressed as:

Φ ′(x) = DφΦ(x), (15)

where Dφ is (2 j + 1) × (2 j + 1) and the entries of operational matrix of derivative
for polynomial scaling functions Dφ are:

dk,l =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 j∑

i=0, i �=k

1
xl−xi

, if l = k,

22
j− j−1(−1)kε j,k

2 j∏

r=0, r �=l,k
(xl − xr ), if l �= k.

Proof See [15].

Corollary 2 Using matrix G the operational matrix of derivative for polynomial
wavelets can be represented as:

Dψ = G−1DφG. (16)

3 The Polynomial Wavelet Method (PWM)

In this section, we solve nonlinear partial differential equation (1) on a bounded
domain. For this end, we use finite difference method for one variable to reduce these
equations to a system of ordinary differential equations, then we solve this system
and find the solution of the given Klein-Gordon equation at the points tn = nδt for
δt = T−0

N , n = 0, 1, . . . , N .
In order to perform temporal discretization, we discretize (1) according to the

following θ -weighted type scheme

un+1 − 2un + un−1

(δt)2
+ θ

(
αun+1

xx + βun+1) + (1 − θ)
(
αunxx + βun

) + γ (un)k = f (x, tn),

(17)
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where δt is the time step size and un+1 is used to show u(x, t + δt). By choosing
θ = 1

2 (Crank-Nicolson scheme) and rearranging Eq. (17) we obtain

un+1 + β(δt)2

2
un+1 + α(δt)2

2
un+1
xx =

(
2 − β(δt)2

2

)
un − α(δt)2

2
unxx

−γ (δt)2(un)k − un−1 + (δt)2 f (x, tn). (18)

Using Eq. (7), the approximate solution for un(x) via scaling functions is represented
by formula

L ju
n(x) = UT

n Φ(x), (19)

where vectors Un and Φ(x) are defined as (8) and (9) respectively.
For the derivatives of un(x) by using (15) we can write the following relations,

L ju
n
x (x) = UT

n Φ ′(x) = UT
n DφΦ(x), (20)

L ju
n
xx (x) = UT

n Φ ′′(x) = UT
n D

2
φΦ(x). (21)

Replacing Eqs. (19) and (21) in Eq. (18) we obtain

UT
n+1Φ(x) + β(δt)2

2
UT

n+1Φ(x) + α(δt)2

2
UT

n+1D
2
φΦ(x)

=
(
2 − β(δt)2

2

)
UT

n Φ(x) − α(δt)2

2
UT

n D
2
φΦ(x) − γ (δt)2(UT

n Φ(x))k (22)

−UT
n−1Φ(x) + (δt)2 f (x, tn).

SubstitutingEq. (13) intoEq. (22),we change current base to the polynomialwavelets
bases

Un+1

[
I + β(δt)2

2
I + α(δt)2

2
D2

φ

]
G−1Ψ (x)

=
(
2 − β(δt)2

2

)
UT

n G
−1Ψ (x) − α(δt)2

2
UT

n D
2
φG

−1Ψ (x) (23)

−γ (δt)2(UT
n G

−1Ψ (x))k − UT
n−1G

−1Ψ (x) + (δt)2 f (x, tn).

By collocating Eq. (23) in the points xk = cos( kπ2 j ), k = 0, 1, . . . , 2 j , we get,

Un+1

[
I + β(δt)2

2
I + α(δt)2

2
D2

φ

]
G−1Ψ (xk)

=
(
2 − β(δt)2

2

)
UT

n G
−1Ψ (xk) − α(δt)2

2
UT

n D
2
φG

−1Ψ (xk) (24)

−γ (δt)2(UT
n G

−1Ψ (xk))
k − UT

n−1G
−1Ψ (xk) + (δt)2 f (xk, tn),
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which represents a system of (2 j + 1) × (2 j + 1) equations.
Using Eq. (19) in (3) we have

UT
n+1G

−1Ψ (−1) = h(−1, tn+1), (25)

UT
n+1G

−1Ψ (1) = h(1, tn+1). (26)

Because the rank of matrix Dφ is 2 j and the rank of D2
φ is 2 j − 1 we replace Eqs.

(25)–(26) instead of first and last equations of the system (24), so we finally obtain
a following matrix form of equations,

AnUn+1 = Bn, n = 1, 2, . . . (27)

where An is a matrix with dimension (2 j + 1) × (2 j + 1) as,

An =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

Ψ T (−1)(G−1)T

Ψ T (x1)(G−1)T
[
I + β(δt)2

2 I + α(δt)2

2 D2
φ

]T

...

Ψ T (x2 j−1)(G−1)T
[
I + β(δt)2

2 I + α(δt)2

2 D2
φ

]T

Ψ T (1)(G−1)T

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

and

Bn =

⎡

⎢⎢
⎢⎢⎢
⎣

h(−1, tn+1)

Γ1
...

Γ2 j−1

h(1, tn+1)

⎤

⎥⎥
⎥⎥⎥
⎦

with

Γi =
(
2 − β(δt)2

2

)
UT
n G

−1Ψ (xi ) − α(δt)2

2
UT
n D

2
φG

−1Ψ (xi ) − γ (δt)2(UT
n G

−1Ψ (xi ))
k

−UT
n−1G

−1Ψ (xi ) + (δt)2 f (xi , tn), i = 1, . . . , 2 j − 1.

Using the first initial condition of Eq. (2), we have

UT
0 G

−1Ψ (x) = g1(x), (28)
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By using the second initial condition of Eq. (2), one can get

u1(x) − u−1(x)

2(δt)2
= g2(x), x ∈ Ω. (29)

Equation (29) can be rewritten as

UT
−1G

−1Ψ (x) = UT
1 G

−1Ψ (x) − 2(δt)2g2(x). (30)

Equation (27) using Eqs. (28) and (30) as the starting points, gives the system of
equations with 2 j + 1 unknowns and equations, which can be solved to find Un+1

in any step n = 1, 2, . . .. So the unknown functions u(x, tn) in any time t = tn, n =
0, 1, 2, . . . can be found.

4 Error Bounds

Here we give the error analysis of the method presented in the previous section for
the Nonlinear Klein-Gordon equation. Suppose that BV be the set of real valued
functions P : R −→ R with bounded variation on [−1, 1]. The value V (P(x))
is defined as total variation of P(x) on [−1 1]. Let for the given weight function
w(x) = 1√

1−x2
, and for 2 ≤ p < ∞, we define

‖P‖p :=
⎛

⎝
1∫

−1

|P(x)|pw(x)dx

⎞

⎠

1
p

.

Here we need to recall two corollaries from [17].

Corollary 3 Let p ≥ 2,P (s) ∈ BV and 0 ≤ s ≤ 2 j then,

‖ P − L jP ‖p≤ ξ2− j (s+1/p)V (P (s)). (31)

Corollary 4 Let p ≥ 2, 0 ≤ l ≤ s andP (s) ∈ BV , then for the interpolatory poly-
nomial based on the zeros of the Jacobi polynomial we have,

‖ (P − L jP)(l) ‖p≤ ξ2− j (s+1/p−max{l,2l−1/p})V (P (s)). (32)

In the above corollaries ξ is constant depends on s.
We consider Eq. (18) as an operator equation in the form

H un+1 =
(

(1 + β(δt)2

2
)I + α(δt)2

2
D

)
un+1 = F, (33)
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where I is an identity operator and

D = d2

dx2
,

F =
(
2 − β(δt)2

2

)
un − α(δt)2

2
unxx − γ (δt)2(un)k − un−1 + (δt)2 f (x, tn).

For the operator equation (33) the approximate equation is

L j (H ) un+1
j = L j

(
(1 + β(δt)2

2
)I + α(δt)2

2
D

)
un+1
j = Fj . (34)

System (34) may be solved numerically to yield an approximate solution equation
(1) at each level of time given by the expression un+1

j = UT
n+1Φ(x). Next Lemma

will give the approximation results of the differential operator, and then the total
error bound for ||En+1

j ||p = ||un+1 − un+1
j ||p will be presented.

Lemma 5 If
(
un+1

)(s) ∈ BV , s ≥ 0 then for the operator D we have

‖Dun+1 − L jDun+1‖p ≤ C12
− j (s+2/p−4)‖V (

(un+1)(s)
) ‖p. (35)

Proof Using (32) by considering l = 2 we have

‖Dun+1 − L jDun+1‖p ≤ ‖un+1
xx − L ju

n+1
xx ‖p

≤ ‖(un+1 − L ju
n+1)xx‖p

≤ C12
− j (s+2/p−4)V

(
(un+1)(s)

)
.

Theorem 6 If un+1 and un+1
j be the exact and approximate solution of (1) at each

level of time n + 1 respectively, also assume that the operatorH = (1 + β(δt)2

2 )I +
α(δt)2

2 D has bounded inverse and
(
un+1

)(s)
, F (s) ∈ BV , s ≥ 0, then

||En+1
j ||p ≤ Cζ‖(L jH )−1‖p2

− j (s+2/p−4),

where
ζ = max

{
V
(
(un+1)(s)

)
, V

(
F (s)

)}
,

so for s ≥ 4 we ensure the convergence when j goes to the infinity.

Proof Subtracting Eq. (34) form (1) yields

−L jH (un+1 − un+1
j ) = (H − L jH )un+1 − (F − Fj ),
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provided that H −1 exists and bounded, we obtain the error bound

‖En+1
j ‖p = ‖(L jH )−1‖p‖(H − L jH )un+1 − (F − Fj )‖p, (36)

where ‖(L jH )−1‖p = ‖
(
(1 + β(δt)2

2 )I + α(δt)2

2 D2
φ

)−1 ‖p.

Furthermore, by using Lemma 5 and relation (31), we have

‖(H − L jH )un+1‖p ≤ |1 + β(δt)2

2
|‖(I − L jI )un+1‖p (37)

+|α(δt)2

2
|‖(D − L jD)un+1‖p (38)

≤ C1|α(δt)2

2
|2− j (s+2/p−4)V

(
(un+1)(s)

)
(39)

+C2|1 + β(δt)2

2
|2− j (s+1/p)V

(
(un+1)(s)

)
, (40)

and
‖F − Fj‖p ≤ C32

− j (s+1/p)V
(
F (s)

)
, (41)

Substituting Eqs. (40)–(41) in (36), we have

‖un+1 − un+1
j ‖p ≤ ‖(L jH )−1‖p

[
C1|α(δt)2

2
|2− j (s+2/p−4)V

(
(un+1)(s)

)

+C2|1 + β(δt)2

2
|2− j (s+1/p)V

(
(un+1)(s)

)
+ C32

− j (s+1/p)V
(
F (s)

)]
.

By choosing C = max
{
C1| α(δt)2

2 |,C2|1 + β(δt)2

2 |,C3

}
finally we can obtain

‖un+1 − un+1
j ‖p ≤ Cζ‖(L jH )−1‖p2

− j (s+2/p−4).

Remark 7 We know that the order of accuracy for the Crank-Nicolson method is
O(δt2). Therefore total error bound can be represented as

‖u − un+1
j ‖p ≤ Cζ‖(L jH )−1‖p2

− j (s+2/p−4) + O(δt2).

5 Numerical Examples

In this section, we give some computational results of numerical experiments with
method based on applying the technique discussed in Sect. 3 to find numerical solu-
tion of nonlinearKlein-Gordon equation and compare our resultswith exact solutions
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and those already available in literature [7, 12]. In order to test the accuracy of the
presented method we use the error norms L2, L∞ and Root-Mean-Square (RMS)
through the examples. The numerical computations have been done by the software
Matlab.

Example 8 As the first test problem, we consider the nonlinear Klein-Gordon equa-
tion (1) with quadratic nonlinearity as

∂2u

∂t2
(x, t) + α

∂2u

∂x2
(x, t) + βu(x, t) + γ u2(x, t) = −x cos(t) + x2 cos2(t).

The provided parameters are α = −1, β = 0 and γ = 1 in the interval [−1, 1] and
the initial conditions are given by

{
u(x, 0) = x, x ∈ [−1, 1],
ut (x, 0) = 0, x ∈ [−1, 1],

with the Dirichlet boundary condition

u(x, t) = h(x, t).

The analytical solution is given in [7] as u(x, t) = x cos(t).The prescribedDirich-
let boundary function h(x, t) can be extracted from the exact solution. The L2, L∞
and RMS errors by applying method discussed in Sect. 3 for j = 3, in different times
and δt = 0.0001 are presented in Table1 and compared with the RBFs method pro-
posed in [7]. As it can be shown from Table1, our method (PWM) is more accurate
than RBFs method while PWM uses much less number of grid points (9 grid points)
in comparison with RBFs which uses 100 grid points. Figure1, shows the graph
of errors in the computed solution and approximate solution for δt = 0.0001 and
j = 3. The graph of errors in the computed solution for different values of time and
δt = 0.0001, j = 3 are plotted in Fig. 2.

Table 1 L2, L∞ and RMS errors for j = 3 and δt = 0.0001 compared with [7], Example 1

t L∞−error L2−error RMS−error

PWM (9) RBFs (100) PWM (9) RBFs (100) PWM (9) RBFs (100)

1.0 4.12 × 10−9 1.25 × 10−5 1.27 × 10−8 6.54 × 10−5 4.23 × 10−9 6.50 × 10−6

3.0 7.81 × 10−9 1.55 × 10−5 2.50 × 10−8 1.17 × 10−4 8.34 × 10−9 1.16 × 10−5

5.0 2.91 × 10−9 3.37 × 10−5 6.55 × 10−9 2.20 × 10−4 2.18 × 10−9 2.19 × 10−5

7.0 7.47 × 10−9 3.77 × 10−5 2.25 × 10−8 2.58 × 10−4 7.53 × 10−9 2.57 × 10−5

10 2.28 × 10−9 1.30 × 10−5 4.99 × 10−9 7.98 × 10−5 1.66 × 10−9 7.94 × 10−6
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Fig. 1 Plot of errors (left) and approximate solution (right) with δt = 0.0001, j = 3, example 1

Fig. 2 Errors graph for
Example 1, with j = 3,
δt = 0.0001 and different
times

Example 9 This illustrated example presents the nonlinear Klein-Gordon equation
(1) and cubic nonlinearity as

∂2u

∂t2
(x, t) + α

∂2u

∂x2
(x, t) + βu(x, t) + γ u3(x, t)

= (x2 − 2) cosh(x + t) − 4x sinh(x + t) + x6 cosh3(x + t).

The provided parameters are α = −1, β = 1 and γ = 1 in the interval [−1, 1] with
the initial conditions are given by

{
u(x, 0) = x2 cosh(x + t), x ∈ [−1, 1],
ut (x, 0) = x2 sinh(x + t), x ∈ [−1, 1],
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Table 2 L2, L∞ and RMS errors for j = 3 and δt = 0.0001 compared with [12], Example 2

t L∞−error L2−error RMS−error

PWM (9) LWSCM
(24)

PWM (9) LWSCM
(24)

PWM (9) LWSCM
(24)

1.0 6.38 × 10−5 9.45 × 10−5 1.47 × 10−4 1.79 × 10−4 4.90 × 10−5 3.66 × 10−5

2.0 1.19 × 10−4 9.79 × 10−4 3.55 × 10−4 2.06 × 10−3 1.18 × 10−4 4.22 × 10−4

3.0 1.52 × 10−4 3.97 × 10−3 3.91 × 10−4 7.91 × 10−3 1.30 × 10−4 1.61 × 10−3

4.0 2.20 × 10−4 1.29 × 10−2 4.34 × 10−4 2.44 × 10−2 1.44 × 10−4 4.98 × 10−3

5.0 3.40 × 10−4 3.72 × 10−2 4.49 × 10−4 6.99 × 10−2 2.16 × 10−4 1.42 × 10−2

Fig. 3 Errors graph for
Example 2, with j = 3,
δt = 0.0001 and different
times

with the Dirichlet boundary condition

u(x, t) = h(x, t).

The analytical solution is given in [7, 12] as u(x, t) = x2 cosh(x + t). We extract
the boundary function h(x, t) from the exact solution. The L2, L∞ andRMSerrors by
applyingmethod discussed in Sect. 3 for j = 3, in different times and δt = 0.0001 are
presented in Table2 and compared with the Legendre wavelets spectral collocation
method (LWSCM) [12]. As it can be seen from Table 2, our method is accurate
than LWSCM while PWM uses 9 number of Polynomial wavelet basis functions in
comparison with LWSCMwhich uses 24 number of Legendre wavelet basis. On the
other hand, the accuracy of our results remains consistent when the time increases,
which is the advantage of using PWM, but in the case of LWSCM the accuracy
decreases fastly. Figure 3, shows the graph of errors in the computed solution for
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Fig. 4 Plot of errors (left) and approximate solution (right) with δt = 0.0001, j = 3, example 2

different values of time and δt = 0.0001, j = 3. The graph of errors in the computed
solution and approximate solution for δt = 0.0001 and j = 3 are plotted in Fig. 4.

6 Conclusion

A numerical method was employed successfully for the Nonlinear Klein-Gordon
equation. This approach is based on the Crank-Nicolson method for temporal dis-
cretization and the Wavelet-Collocation method in the spatial direction. After tem-
poral discretization, the operational matrix of derivative along with a collocation
method, is used to reduce the considered problem to the corresponding systems of
algebraic equations at each time steps. One of the advantages of using polynomial
wavelets is that the effort required to implement the method is very low, while the
accuracy is high. The convergence analysis is developed. The method is computa-
tionally attractive and applications are demonstrated through illustrative examples.
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A New Approach in Determining Lot Size
in Supply Chain Using Game Theory

Maryam Esmaeili

Abstract Several seller-buyer supply chain models are suggested which emphasis
simultaneously on production andmarket demand. In thesemodels lot size is obtained
based on different approaches. In this paper we present a novel approach to determine
lot size in a seller-buyer supply chain. There is an interaction between the seller and
the buyer, since the seller prefers large production lot sizes and the buyer likes small
ones. Therefore for determining lot size, the seller and buyer’s power is illustrated in
the models.We consider two strategies for each situation (Seller-Stackelberg, Buyer-
Stackelberg) whether the seller or the buyer as a leader, has more power. The leader
can justify or enforce the strategy about the lot size to the follower, or let the follower
determine their own lot size. Based on our findings we propose the optimal strategies
for each situation. Each strategy’s result will be compared by numerical examples
presented. In addition, sensitivity analysis of some key parameters in the models and
further research are presented.

1 Introduction

Seller-buyer supply chain models concern production and market demand decisions
simultaneously [7, 17, 18]. The optimal solution of models are obtained by maxi-
mizing their profit under cooperative or non-cooperative seller and buyer’s relation.
In these models, the term retailer has been used correspond to the buyer. Similarly,
the words manufacturer, vendor and supplier have been used interchangeably corre-
spond to the seller. In this paper, words of the seller and the buyer have also been used
according to the mentioned classification. The seller-buyer models can be observed
from different views: certain or uncertain market demand and various coordination.
We briefly summarize these models in order to compare the model with the new
approach.
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Market demand plays an essential role in the seller and buyer’s profit. In other
words, if the structure of demand is changed the seller and buyer’s optimal policy
under constant, variable, stochastic or uncertain demand will also change. Chan
and Kingsman [2], van den Heuvel et al. [16], Dai and Qi [15] present the seller-
buyer models with a constant demand. The optimal order (production) cycles and lot
size(order quantity) are determined by maximizing the whole supply chain profit in a
cooperative structure.However,Yue et al. [20], Sajadieh and Jokar [13] consider some
factors such as price or marketing expenditure which influence on market demand
in their models. On the other hand, certain demand is avoided in some research. The
optimal selling price and lot size are obtained in the models under market demand
uncertainty [19].

Moreover, various types of coordination have been discussed in the literature on
supply chain [10]. For instance sharing advertising cost is investigated in a supply
chain includes a manufacturer and a retailer [14]. The demand is influenced by price
and advertisement. Their model is developed by Giri and Sharma [8] with compet-
ing the retailers. The centralized and decentralized supply channel are considered
by choosing different pricing strategies in the presence of consumers’ reference-
price effects [21]. However the multiple manufacturers and a common retailer are
considered in a supply chain facing uncertain demand [9].

By reviewing recent publishes, the papers have covered all or some drawbacks
of previous works. For example, Yugang et al. [18], introduce models in which the
demand is a function of both price and marketing; also, not to assume that lot size
is the same as the demand. However, the main question in the supply chain is who
determines the lot size or order quantity which has been ignored by previous models.
The optimal lot size in these models is determined based on their assumption which
specifies who determines the lot size for the whole supply chain, the seller or the
buyer, regardless to their power. Therefore, one of the participants determines the
lot size while the other one has market power, which doesn’t make sense. While
the seller prefers large production lot sizes, the buyer likes small ones [11]. In this
paper, we apply a novel approach to determine lot size in the seller-buyer model
based on the seller or buyer’s power. The seller as a manufacturer produces a product
and wholesales it to the buyer, who then retails the product to the end consumer.
The production rate of the seller is assumed to be linearly related to the market
demand rate and demand is sensitive to selling price and marketing expenditure
both charged by the buyer. The lot size is determined by either seller or the buyer
based on their power. We consider two situations, when the seller dominates the
buyer(Seller-Stackelberg), and also when the power has shifted from the seller to the
buyer(Buyer-Stackelberg). In the Seller-Stackelberg(Buyer-Stackelberg) model, the
seller(buyer) faces two strategies, either determines the lot size for the whole supply
chain or lets the buyer(seller) determine their own lot size. The optimal solution
of each strategy is obtained and it is shown that in each situation, which strategy
for the seller and buyer is the best decision. Numerical examples presented in this
paper, including sensitivity analysis of some key parameters, will compare the results
between the models considered.
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The remainder of this paper is organized as follows. The notation and assumptions
are given in Sect. 2. In Sect. 3, the new approach in the seller and buyer’s model is
presented and compared all situations via optimal solution. In Sect. 4, some com-
putational results, including a number of numerical examples and their sensitivity
analysis that compares the results between different models are presented. Finally,
the paper concludes in Sect. 5 with some suggestions for future work.

2 Notation and Problem Formulation

This section introduces the notation and formulation used in this paper.

• Decision variables

V The price charged by the seller to the buyer ($/unit)
Qb Lot size (units) determined by the buyer
Qs Lot size (units) determined by the seller
P Selling price charged by the buyer ($/unit)
M Marketing expenditure incurred by the buyer ($/unit)

• Input parameters

k Scaling constant for demand function (k > 0)
u Scaling constant for production function (u ≥ 1)
i Percent inventory holding cost per unit per year
α Price elasticity of demand function (α > 1)
β Marketing expenditure elasticity of demand (0 < β < 1, β + 1 < α)
Ab Buyer’s ordering cost ($/order)
As Seller’s setup (ordering cost) ($/setup)
d Market demand rate ($units/day)
r Seller’s production rate ($units/day)

Cs Seller’s production cost including purchasing cost ($/unit)
D(P, M) Annual demand; for notational simplicity we let D ≡ D(P, M)

The demand is assumed to be a function of P and M as follows:

D(P, M) = kP−αMβ. (1)

• Assumptions

The proposed models are based on the following assumptions:

1. Planning horizon is infinite.
2. Parameters are deterministic and known in advance.
3. The annual demand depends on the selling price and marketing expenditure

according to (1) (see [4]).
4. Shortages are not permitted.
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3 Stackelberg Games by Considering Different Lot Sizing
Approaches

In the literature, the relationships between the seller and buyer aremodeled in the sup-
ply chain, by Stackelberg games where the seller and buyer take turn as a leader and
follower [6]. In the previous models, the lot size is determined based on the assump-
tionwhich specifies whether the seller or the buyer determines lot size. Therefore, the
follower determines the lot size for the whole supply chain while the leader has mar-
ket power. This doesn’t make sense. In this section, we consider different approaches
in seller-buyer models: first we consider the seller as the leader (Seller-Stackelberg).
Regarding to the seller’s role, the seller can justify or enforce the strategy about the
lot size to the follower (the buyer), or let the follower determine their own lot size.
We also consider the same role for the buyer when the buyer is a leader and the seller
is a follower (Buyer-Stackelberg). The optimal policy of seller and buyer is obtained
in each strategy in sequence as follows:

3.1 Seller-Stackelberg

The Seller-Stackelberg model has the seller as leader and the buyer as follower is
widely reported in the literature as the conventional form [1, 3]. Therefore the seller
can enforce the optimal lot size to the buyer, or can let the buyer determine their own
lot size. We illustrate each strategy in order as follows:

3.1.1 Optimal Policy of Seller and Buyer Under Seller’s Lot Size

Regarding the seller’s power, for a given Qs = Q and V of the seller, according
to the following model, the buyer obtains the best marketing expenditure M∗ and
selling price P∗, Eqs. (4) and (5) [4]:

Πb(P, M) = PD − V D − MD − Ab
D

Q
− 0.5iV Q,

= kP−α+1Mβ − kV P−αMβ − kP−αMβ+1 (2)

−AbkP
−αMβQ−1 − 0.5iV Q,

Then, the seller maximizes her profit Πs1(V , Q) based on the obtained P∗ and M∗
from the buyer’s model. Thus, the problem reduces to

Max Πs1(V , Q) = V D − CsD − As
D

Q
− 0.5iCsQu−1, (3)
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subject to P∗ = α(V + AbQ−1)

(α − β − 1)
, (4)

M∗ = β(V + AbQ−1)

(α − β − 1)
β + 1 < α. (5)

Substituting the constraints into the objective function, the problem transforms into
an unconstrained nonlinear function of two variables V and Q, where the optimal
solution can be found using a grid search.

3.1.2 Optimal Policy of Seller and Buyer Under Seller’s Lot Size and
Buyer’s Lot Size

For a given V of the seller, according to the following model, the buyer obtains
the best marketing expenditure M∗, selling price P∗ and the buyer’s lot size Q∗

b,
Eqs. (8)–(11) [5].

Πb(P, M, Qb) = PD − V D − MD − Ab
D

Qb
− 0.5iV Qb,

= kP−α+1Mβ − kV P−αMβ − kP−αMβ+1 (6)

−AbkP
−αMβQ−1

b − 0.5iV Qb.

The seller then maximizes their profit Πs2(V , Q); Q = Qs based on the pair P∗,
M∗ and Q∗

b. Thus, the problem reduces to

Max Πs2(V , Q) = V D − CsD − As
D

Q
− 0.5iCs Qu−1, (7)

subject to P∗ = α(V + AbQ
−1
b )

(α − β − 1)
, (8)

M∗ = β(V + AbQ
−1
b )

(α − β − 1)
β + 1 < α, (9)

Q2
b(V + AbQ

−1
b )α−β = 2k Ab(α − β − 1)α−βββ

iV αα
, (10)

Qb >
Ab

V

(
α − β − 2

2

)
. (11)

By considering Eqs. (2), (8) and (9), (10) and (11) could be changed to:

Q∗
b =

√
2AbD

iV
; D = kα−αββ(V + AbQ

−1
b )−α+β

(α − β − 1)−α+β



220 M. Esmaeili

Therefore, the seller’s model would be:

Max Πs2(V , Q) = V D − CsD − As
D

Q
− 0.5iCs Qu−1, (12)

subject to Q∗
b =

√
2AbD

iV

By obtaining D from the constraint and substituting in the objective function the
model transforms into an unconstrained nonlinear function of four variables V , Q,
P and M where the optimal solution can be found using a grid search.

3.2 Buyer-Stackelberg

In the last two decades, the buyer has increased their power relative to the seller’s
power [12]. Therefore, the buyer acts as the leader and the seller act as follower
that is called Buyer-Stackelberg Model. For example, Wal-Mart effectively uses its
power to get reduced prices from its sellers [20]. Since the buyer has more power, the
lot size could be determined by the buyer or the buyer could let the seller determine
their own lot size. Each situation is investigated in sequence as follows:

3.2.1 Optimal Policy of Seller and Buyer Under Buyer’s Lot Size

For a given Qb = Q, P and M of the buyer, according to the following model, the
seller obtains the best price V ∗, Eq. (15) [4].

Πs(V ) = V D − CsD − As
D

Q
− 0.5iCsQ

d

r
,

= kV P−αMβ − kCs P
−αMβ − AskP

−αMβQ−1 (13)

−0.5iCs Qu−1.

The buyer then maximizes their profit Πb3(P, M, Q) based on V ∗. Thus, the
problem reduces to

Max Πb3(P, M, Q) = PD − V D − MD − Ab
D

Q
− 0.5iV Q, (14)

subject to V ∗ = F(Cs + AsQ
−1 + 0.5iCsQ(uD)−1). (15)

Substituting the constraint into objective function, the aboveBuyer-Stackelberg prob-
lem reduces to optimizing an unconstrained nonlinear objective function. The optimal
solution can again be found using a grid search.
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3.2.2 Optimal Policy of Seller and Buyer Under Buyer’s Lot Size and
Seller’s Lot Size

For a given P , M and Qb = Q of the buyer, according to the following model, the
seller obtains the best price V ∗ and Qs , Eqs. (18) and (19) [5].

Πs(V , Qs) = V D − CsD − As
D

Qs
− 0.5iCs Qs

d

r
,

= kV P−αMβ − kCs P
−αMβ − AskP

−αMβQ−1
s (16)

−0.5iCs Qsu
−1.

The buyer then maximizes the profit Πb4(P, M, Qb) based on V ∗. Thus, the
problem reduces to

Max Πb4(P, M, Q) = PD − V D − Ab
D

Q
− 0.5iV Q, (17)

subject to V ∗ = R(Cs + AsQ
−1
s + 0.5iCsQs(uD)−1), (18)

Q∗
s =

√
2AsD

iu−1Cs
. (19)

Substituting the constraints into objective function, the above problem reduces to
optimizing an unconstrained nonlinear objective function of four variables P , M , Q
and V . The optimal solution can again be found using a grid search.

4 Computational Results

In this section, we present numerical examples which are aimed at illustrating some
significant features of the models established in previous sections. We will also
perform sensitivity analysis of the main parameters of these models. We note that
Examples 1, 2, 3 and 4 below illustrate the Seller-Stackelberg and Buyer-Stackelberg
under different scenarios. In all these examples, we set k = 36080, β = 0.15, α =
1.7, i = 0.38, Ab = 38, AS = 40, u = 1.1 and CS = 1.5.

4.1 Numerical Examples

Example 1 The Seller-Stackelberg model when the seller determines the lot size
for the whole supply chain produces the following optimal values for our decision



222 M. Esmaeili

variables: D∗ = 364.6.1, P∗ = 15.3, Q∗ = 301.2, M∗ = 1.3 and V ∗ = 4.8. The
corresponding seller’s and buyer’s profits areΠ∗

s = 1071.8 andΠ∗
b = 3010.1 respec-

tively.

Example 2 The Seller-Stackelberg model when the seller and buyer determine the
lot size for themselves produces the following optimal values for our decision vari-
ables: D∗ = 371.3, P∗ = 15.1, Q∗

b = 127.1, Q∗
s = 217.6M∗ = 1.3 and V ∗ = 4.6

The corresponding seller’s and buyer’s profits are Π∗
s = 1014.7 and Π∗

b = 3196.7
respectively. The second model, in contrast to the first one, utilizes less marketing
expenditure, and has smaller seller’s price and selling price charged by the buyer.
Therefore, demand of the secondmodel is higher than the first one. As expected from
the theory in Sect. 3, the seller’s profit here is less than in Example 1, although the
demand is high. The reason would be the seller’s role in determining a larger lot size
for the whole supply chain. When the seller has more power the buyer’s profit is less
in the first model opposite to the seller’s profit. In fact it makes sense that the buyer
uses the freedom to choose lower lot size in the second model.

Example 3 The Buyer-Stackelberg model when the buyer determines the lot size for
the whole supply chain, produces the following optimal values for the decision vari-
ables: D∗ = 1387.8, P∗ = 6.5, Q∗ = 393.1, M∗ = 0.6 and V ∗ = 2.1. The seller’s
and buyer’s profits are Π∗

s = 586.5 and Π∗
b = 4960.7 respectively. By comparing

Examples 1, 2 and 3 we find out that the profit of the buyer in the buyer-Stackelberg
is more than both models in the Seller-Stackelberg opposite to the seller’s profit.

Example 4 The Buyer-Stackelberg model when the seller and buyer each one
determines the lot size for themselves, produces the following optimal values for
the decision variables: D∗ = 1387.9, P∗ = 6.5, Q∗

s = 420.8, Q∗
b = 362.5M∗ = 0.6

and V ∗ = 2.1. The seller’s and buyer’s profits are Π∗
s = 586.4 and Π∗

b = 4962.5
respectively. As expected from the theorem in Sect. 3 the buyer’s profit when the
buyer enforces the optimal lot size to the seller is less than the buyer lets the seller
determines their own lot size in the Buyer-Stackelberg. When the seller has more
power, the seller would rather determine the lot size for the whole supply chain
although the buyer would like determine the lot size. In addition, when the power
shifts from the seller to the buyer, the buyer would like to let the seller determine the
lot size, while the seller does not like such a strategy.

4.2 Sensitivity Analysis

We investigate the effects of parameters As, Ab, i, andCs on P∗, V ∗, Q∗, M∗, D∗,
Π∗

b and Π∗
s in scenarios of the Seller-Stackelberg and Buyer-Stackelberg models

through a sensitivity analysis. We will fix k = 36080, α = 1.7, β = 0.15, and, u =
1.1 as in the previous examples but allow Ab, AS,Cs , and i to vary. Results of these
sensitivity analysis are summarized in Tables1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15 and 16.
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Table 1 Sensitivity analysis of the model in Sect. 3.1.1 with respect to i

i 0.14 0.26 0.38 0.5 0.62

P∗ 14.4 14.9 15.3 15.7 16.1

V ∗ 4.6 4.7 4.8 4.9 5.03

Q∗ 521.5 372.3 301.2 257.6 227.4

M∗ 1.3 1.3 1.4 1.4 5.03

D∗ 402.8 381.1 364.7 351.0 339.2

Π∗
s 1147.9 1104.8 1071.8 1044.3 1020.3

Π∗
b 3237.7 3110.3 3010.1 2924.7 1624.3

Table 2 Sensitivity analysis of the model in Sect. 3.1.2 with respect to i

i 0.14 0.26 0.38 0.5 0.62

P∗ 14.3 14.7 15.1 15.5 15.8

V ∗ 4.44 4.53 4.60 4.66 4.72

Q∗
s 375.7 268.6 217.7 186.4 164.7

Q∗
b 223.1 158.0 127.1 108.1 94.9

M∗ 1.26 1.30 1.34 1.37 1.40

D∗ 407.5 387.0 371.3 358.2 346.8

Π∗
b 3349.4 3263.7 3196.7 3139.9 3089.7

Π∗
s 1112.9 1057.4 1014.8 979.2 948.2

Table 3 Sensitivity analysis of the model in Sect. 3.2.1 with respect to i

i 0.14 0.26 0.38 0.5 0.62

P∗ 6.2 6.3 6.5 6.6 6.7

V ∗ 2.01 2.07 2.11 2.15 2.19

Q∗ 677.5 484.8 393.1 336.9 297.9

M∗ 0.54 0.56 0.57 0.58 0.59

D∗ 1485.8 1430.3 1387.8 1352.2 1321.2

Π∗
S 598.7 591.9 586.5 582.0 577.9

Π∗
b 5213.8 5071.6 4960.7 4866.7 4783.8

The results in Tables1, 2, 3, 4, 5, 6, 7 and 8 are also graphically displayed in
Fig. 1. In each curve, the numbers 1, 2, 3 and 4 refer to the first, second scenarios in
the Seller-Stackelberg and the third, forth in the Buyer-Stackelberg respectively.
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Table 4 Sensitivity analysis of the model in Sect. 3.2.2 with respect to i

i 0.14 0.26 0.38 0.5 0.62

P∗ 6.2 6.3 6.5 6.6 6.7

V ∗ 2.01 2.07 2.11 2.15 2.19

Q∗
s 717.3 516.5 420.8 362.1 321.4

Q∗
b 632.8 449.6 362.5 309.1 272.2

M∗ 0.55 0.56 0.57 0.58 0.59

D∗ 1485.9 1430.5 1387.9 1352.3 1321.3

Π∗
s 598.7 591.8 586.4 581.8 577.7

Π∗
b 5214.5 5072.9 4962.5 4869.0 4786.6

Table 5 Sensitivity analysis of the model in Sect. 3.1.1 with respect to Cs

Cs 0.5 1.5 2.5 4.0 5.0

P∗ 4.9 15.3 26.2 43.0 54.6

V ∗ 1.6 4.8 8.2 13.5 17.0

Q∗ 1263.6 301.2 154.0 82.8 61.6

M∗ 0.4 1.4 2.3 3.8 4.8

D∗ 2139.2 364.7 158.9 73.5 50.9

Π∗
s 2052.8 1071.8 788.0 591.5 515.5

Π∗
b 5784.5 3010.1 2206.7 1650.1 1434.7

Table 6 Sensitivity analysis of the model in Sect. 3.1.2 with respect to Cs

Cs 0.5 1.5 2.5 4.0 5.0

P∗ 4.8 15.1 25.8 42.4 53.8

V ∗ 1.5 4.6 7.8 12.6 15.9

Q∗
s 911.2 217.7 111.4 60.0 44.7

Q∗
b 538.1 127.1 64.6 34.5 25.6

M∗ 0.4 1.3 2.3 3.7 4.7

D∗ 2169.2 371.3 162.1 75.2 52.1

Π∗
b 6034.6 3196.7 2369.7 1794.3 1570.6

Π∗
s 1975.1 1014.8 738.7 548.4 475.1
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Table 7 Sensitivity analysis of the model in Sect. 3.2.1 with respect to Cs

Cs 0.5 1.5 2.5 4.0 5.0

P∗ 2.1 6.5 11.0 17.9 22.6

V ∗ 0.7 2.1 3.6 5.9 7.4

Q∗ 1643.9 393.1 201.4 108.5 80.9

M∗ 0.18 0.57 0.97 1.58 1.99

D∗ 7972.5 1387.8 612.2 287.2 200.2

Π∗
S 1088.0 586.5 439.3 336.4 296.2

Π∗
b 9384 4960.7 3672.9 2777.3 2429.4

Table 8 Sensitivity analysis of the model in Sect. 3.2.2 with respect to Cs

Cs 0.5 1.5 2.5 4.0 5.0

P∗ 2.1 6.5 11.0 17.9 22.6

V ∗ 0.68 2.11 3.59 5.85 7.39

Q∗
s 1746.9 420.8 216.5 117.2 87.5

Q∗
b 1528.8 362.5 184.8 99.1 73.6

M∗ 0.18 0.57 0.97 1.58 1.99

D∗ 7973.2 1387.9 612.3 287.2 200.2

Π∗
s 1087.9 586.4 439.2 336.2 296.1

Π∗
b 9385.9 4962.5 3674.6 2779.0 2431.1

Table 9 Sensitivity analysis of the model in Sect. 3.1.1 with respect to Ab

Ab 2 20 38 56 74

P∗ 14.7 15.0 15.3 15.6 15.9

V ∗ 4.74 4.78 4.83 4.88 4.93

Q∗ 228.6 268.4 301.2 329.4 354.4

M∗ 1.29 1.32 1.35 1.38 1.40

D∗ 390.2 376.3 364.7 354.5 345.4

Π∗
b 3160.8 3079.6 3010.1 2948.3 2892.2

Π∗
s 1122.9 1095.2 1071.8 1051.3 1032.8
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Table 10 Sensitivity analysis of the model in Sect. 3.1.2 with respect to Ab

Ab 2 20 38 56 74

P∗ 14.74 15.00 15.14 15.26 15.36

V ∗ 4.70 4.64 4.60 4.57 4.55

Q∗
s 222.3 219.3 217.7 216.4 215.3

Q∗
b 29.4 92.5 127.1 153.8 176.3

M∗ 1.30 1.32 1.34 1.35 1.36

D∗ 387.2 376.9 371.3 366.9 363.2

Π∗
s 1100.0 1044.6 1014.8 991.9 972.8

Π∗
b 3331.1 3244.1 3196.7 3160.2 3129.4

Table 11 Sensitivity analysis of the model in Sect. 3.2.1 with respect to Ab

Ab 2 20 38 56 74

P∗ 6.30 6.39 6.47 6.54 6.61

V ∗ 2.12 2.11 2.11 2.11 2.12

Q∗ 310.3 355.0 393.1 426.6 456.5

M∗ 0.56 0.56 0.57 0.58 0.58

D∗ 1444.9 1414.3 1387.8 1364.1 1342.7

Π∗
b 5105.4 5028.1 4960.7 4900.3 4845.1

Π∗
s 612.7 598.0 586.5 577.0 568.7

Table 12 Sensitivity analysis of the model in Sect. 3.2.2 with respect to Ab

Ab 2 20 38 56 74

P∗ 6.22 6.38 6.47 6.54 6.60

V ∗ 2.11 2.11 2.11 2.11 2.12

Q∗
s 433.8 425.4 420.8 417.2 414.2

Q∗
b 85.9 266.0 362.5 436.1 497.4

M∗ 0.55 0.56 0.57 0.58 0.58

D∗ 1474.9 1418.5 1387.9 1364.4 1344.6

Π∗
s 621.1 598.6 586.4 577.0 569.2

Π∗
b 5190.0 5042.8 4962.5 4900.5 4848.2
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Table 13 Sensitivity analysis of the model in Sect. 3.1.1 with respect to As

As 4 22 40 58 76

P∗ 14.7 15.0 15.3 15.6 15.9

V ∗ 4.58 4.72 4.83 4.93 5.03

Q∗ 228.6 268.4 301.2 329.4 354.4

M∗ 1.29 1.32 1.35 1.38 1.40

D∗ 390.2 376.3 364.7 354.5 345.4

Π∗
b 3167.7 3083.0 3010.1 2944.9 2885.4

Π∗
s 1122.9 1095.2 1071.8 1051.3 1032.8

Table 14 Sensitivity analysis of the model in Sect. 3.1.2 with respect to As

As 4 22 40 58 76

P∗ 13.97 14.68 15.14 15.52 15.86

V ∗ 4.3 4.5 4.6 4.7 4.8

Q∗
s 73.3 165.3 217.7 257.1 289.5

Q∗
b 140.7 132.1 127.1 123.1 119.8

M∗ 1.23 1.30 1.34 1.37 1.40

D∗ 420.7 389.5 371.3 357.4 345.7

Π∗
s 1111.0 1050.4 1014.8 987.2 964.0

Π∗
b 3344.0 3252.4 3196.7 3152.8 3115.3

Table 15 Sensitivity analysis of the model in Sect. 3.2.1 with respect to As

As 4 22 40 58 76

P∗ 6.25 6.37 6.47 6.56 6.64

V ∗ 1.97 2.05 2.11 2.17 2.22

Q∗ 284.5 344.6 393.1 434.3 470.5

M∗ 0.55 0.56 0.57 0.58 0.59

D∗ 1462.4 1421.5 1387.8 1358.6 1332.6

Π∗
b 5157.9 5050.6 4960.7 4881.8 4810.6

Π∗
s 575.8 582.8 586.5 588.9 590.4
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Table 16 Sensitivity analysis of the model in Sect. 3.2.2 with respect to As

As 4 22 40 58 76

P∗ 6.20 6.37 6.47 6.55 6.62

V ∗ 1.95 2.05 2.11 2.16 2.21

Q∗
s 137.5 315.9 420.8 501.7 569.5

Q∗
b 390.0 372.6 362.5 354.7 348.1

M∗ 0.55 0.56 0.57 0.58 0.58

D∗ 1480.9 1422.6 1387.9 1360.9 1338.1

Π∗
s 576.9 583.0 586.4 589.0 591.1

Π∗
b 5203.1 5052.5 4962.5 4892.1 4832.7

Fig. 1 The effect of i parameter on D∗, P∗, M∗, v∗, Q∗, Q∗
s , Q

∗
b,Π

∗
b and Π∗

s
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Fig. 2 The effect of Ab parameter on D∗, P∗, M∗, v∗, Q∗, Q∗
s , Q

∗
b,Π

∗
b and Π∗

s

Since i and Cs and also As and Ab have the same effect on P∗, V ∗, Q∗, M∗, D∗,
Π∗

b and Π∗
s , we show only the effect of i and Ab in sequence on Figs. 1 and 2. As is

seen in the figure, by increasing i and Cs , selling price, marketing expenditure and
seller’s price increase which cause the decrease of the demand, seller and the buyer’s
profits. Note due to increasing production cost and percent inventory holding cost, i
and Cs , the holding cost will increase. Therefore, the seller and buyer would change
their strategies to decrease lot size, which validates our model.

The effect of parameter As, Ab on P∗
i , M∗

i , Q
∗
i ,V

∗
i ; i = 1, 2, 3, 4, i.e. for each

scenario of the Seller-Stackelberg and the Buyer-Stackelberg are graphically dis-
played in Fig. 2. As Ab and As increase, P∗, M∗ and V ∗ increase. By increasing Ab

and As the seller and the buyer increase their lot size to decrease the ordering and
the seller’s setup cost respectively. As shown in Figs. 1 and 2 the results validate the
models.
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5 Conclusion

In this paper, the lot size problem in the seller-buyer supply chain is considered. The
lot size in the supply chain is determined based on the seller and the buyer’s power.
The seller produces a product and wholesales it to the buyer, with the production rate
linearly related to themarket demand rate. The demand is sensitive to the selling price
and the buyer’s effort in marketing. We consider the seller-buyer relationship under
Stackelberg games: Seller-Stackelberg, where the seller is the leader, and Buyer-
Stackelberg, where the buyer is the leader. Regarding to the leader’s role, the leader
can justify or enforce the strategy about the lot size to the follower(the buyer), or let
the follower determines their own lot size regardless to the leader’s lot size. Optimal
solution for each models is obtained. It is shown that when the seller has power, it
would be better if the seller determines the lot size for the whole supply chain and
when the buyer has power, it would be better if the buyer let the seller determines
their own lot size. Numerical examples are presented which aim at illustrating the
used approach. Through a sensitivity analysis, the effect of the main parameters of
themodel on the seller and the buyer’s decisions are also investigated which illustrate
our findings.

There is much to be extended the present work. For example, marketing expen-
diture could incorporate advertising expenditure and the seller may agree to share
fraction of the advertising expenditure with the buyer by covering part of it. In this
case, we could investigate cooperative games. Also, we have assumed in this paper
that the production rate is greater than or equal to the demand rate, in order to avoid
having to consider shortage cost. By not making this assumption, the extra cost could
be incorporated into future models. Finally, even though the seller or buyer presum-
ably knows their own costs and price charged to the consumers, it is unlikely that
their opponent would be privy to such information. This would lead to incomplete
knowledge on the part of the two participants and result in bargaining models with
incomplete information along the line of models.
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Voronovskaya Type Asymptotic Expansions
for Multivariate Generalized Discrete
Singular Operators

George A. Anastassiou and Merve Kester

Abstract Here we give asymptotic expansions including simultaneous ones, for the
multivariate generalized discrete versions of unitary Picard, Gauss-Weierstrass, and
Poisson-Cauchy type singular operators. These are Voronovskaya type expansions
and they are connected to the approximation properties of these operators.

1 Introduction

In this article, we give multivariate Voronovskaya type asymptotic expansions
for the multivariate generalized discrete singular Picard, Gauss-Weierstrass, and
Poisson-Cauchy operators. We also demonstrate the simultaneous corresponding
Voronovskaya asymptotic expansion for our operators. Our expansions show the
rate of convergence of the operators mentioned above to unit operator.

2 Background

We are inspired by [4]. In [1], for r ∈ N, m ∈ Z+, the author defined

α
[m]
j,r :=

⎧
⎪⎪⎨

⎪⎪⎩

(−1)r− j

(
r
j

)
j−m, if j = 1, 2, . . . , r,

1 −
r∑

j=1
(−1)r− j

(
r
j

)
j−m, if j = 0,
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and

δ
[m]
k,r :=

r∑

j=1

α
[m]
j,r j

k, k = 1, 2, . . . ,m ∈ N. (2)

See that

r∑

j=0

α
[m]
j,r = 1, (3)

and

−
r∑

j=1

(−1)r− j

(
r
j

)
= (−1)r

(
r
0

)
. (4)

Let μξn be a probability Borel measure on R
N , N ≥ 1, ξn > 0, n ∈ N. In [1], the

author defined the multiple smooth singular integral operators as

θ [m]
r,n ( f ; x1, . . . , xN ) :=

r∑

j=0

α
[m]
j,r

∫

RN

f (x1 + s1 j, x2 + s2 j, . . . , xN + sN j) dμξn (s) ,

(5)

where s := (s1, . . . , sN ), x := (x1, . . . , xN ) ∈ R
N ; n, r ∈ N,m ∈ Z+, f : RN → R

is a Borel measurable function, and also (ξn)n∈N is a bounded sequence of positive
real numbers.

Above the θ [m]
r,n are not in general positive operators and they preserve constants.

In [1], they demonstrated

Theorem 1 Let f ∈ Cm
(
R

N
)
, m, N ∈ N ,with all ‖ fα‖∞ ≤ M, M > 0, all

α : |α| = m. Let ξn > 0, (ξn)n∈N bounded sequence, μξn probability Borel measures
on RN .

Call

cα,n, j̃ =
∫

RN

(
N∏

i=1

sαi
i

)

dμξn (s) ,

all |α| = j̃ = 1, . . . ,m − 1. Assume

ξ−m
n

∫

RN

(
N∏

i=1

|si |αi

)

dμξn (s) ≤ ρ,
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all α : |α| = m, ρ > 0, for any such (ξn)n∈N. Also 0 < γ ≤ 1, x ∈ R
N . Then

θ [m]
r,n ( f ; x) − f (x) =

m−1∑

j̃=1

δ
[m]
j̃,r

⎛

⎝
∑

|α|= j̃

cα,n, j̃ fα (x)
(∏N

i=1 αi !
)

⎞

⎠ + o
(
ξm−γ
n

)
. (6)

When m = 1 the sum collapses.

Above they assumed θ [m]
r,n ( f ; x) ∈ R, ∀ x ∈ R

N .
In [1], they continued with

Theorem 2 Let f ∈ Cl
(
R

N
)
, l, N ∈ N . Here μξn is a Borel probability measure

on R
N , ξn > 0, (ξn)n∈N a bounded sequence. Let β := (β1, . . . , βN ), βi ∈ Z

+,
i = 1, . . . , N ; |β| := ∑N

i=1 βi = l. Here f (x + s j), x, s ∈ R
N , is μξn -integrable

wrt s, for j = 1, . . . , r . There exist μξn -integrable functions

hi1, j , hβ1,i2, j , hβ1,β2,i3, j , . . . , hβ1,β2,...,βN−1,iN , j ≥ 0

( j = 1, . . . , r) on RN such that

∣∣∣∣
∣
∂ i1 f (x + s j)

∂xi11

∣∣∣∣
∣
≤ hi1, j (s) , i1 = 1, . . . , β1, (7)

∣∣∣∣∣
∂β1+i2 f (x + s j)

∂xi22 ∂xβ1
1

∣∣∣∣∣
≤ hβ1,i2, j (s) , i2 = 1, . . . , β2,

...

∣∣∣
∣∣
∂β1+β2+···+βN−1+iN f (x + s j)

∂xiNN ∂xβN−1
N−1 . . . ∂xβ2

2 ∂xβ1
1

∣∣∣
∣∣
≤ hβ1,β2,...,βN−1,iN , j (s) , iN = 1, . . . , βN ,

∀ x, s ∈ R
N . Then, both of the next exist and

(
θ [m]
r,n ( f ; x))

β
= θ [m]

r,n

(
fβ; x) . (8)

Finally, the author gave

Theorem 3 Let f ∈ Cm+l
(
R

N
)
, m, l, N ∈ N. Assumptions of Theorem 2 are valid.

Call γ = 0, β. Assume
∥∥ fγ+α

∥∥∞ ≤ M, M > 0, for all α : |α| = m. Let ξn > 0,
(ξn)n∈N bounded sequence, μξn probability Borel measures on R

N . Call

cα,n, j̃ =
∫

RN

(
N∏

i=1

sαi
i

)

dμξn (s) ,
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all |α| = j̃ = 1, . . . ,m − 1. Assume

ξ−m
n

∫

RN

(
N∏

i=1

|si |αi

)

dμξn (s) ≤ ρ,

all α : |α| = m, ρ > 0, for any such (ξn)n∈N. Also 0 < γ ≤ 1, x ∈ R
N . Then

(
θ [m]
r,n ( f ; x))

γ
− fγ (x) =

m−1∑

j̃=1

δ
[m]
j̃,r

⎛

⎝
∑

|α|= j̃

cα,n, j̃ fγ+α (x)
(∏N

i=1 αi !
)

⎞

⎠ + o
(
ξm−γ
n

)
. (9)

When m = 1 the sum collapses.

Additionally, in [3], the authors defined:
Let μξn be a Borel probability measure on R

N , N ≥ 1, 0 < ξn ≤ 1, n ∈ N.
Assume that ν := (ν1, . . . , νN ) , x := (

x1,...,xN
) ∈ R

N and f : RN → R is a Borel
measurable function.

(i) When

μξn (ν) = e−
∑N

i=1|νi |
ξn

∑∞
ν1=−∞ . . .

∑∞
νN=−∞ e−

∑N
i=1|νi |

ξn

, (10)

we define generalized multiple discrete Picard operators as:

P∗ [m]
r,n ( f ; x1, . . . , xN ) (11)

=
∑∞

ν1=−∞ . . .
∑∞

νN=−∞
(∑r

j=0 α
[m]
j,r f (x1 + jν1, . . . , xN + jνN )

)
e−

∑N
i=1|νi |
ξn

∑∞
ν1=−∞ . . .

∑∞
νN=−∞ e−

∑N
i=1|νi |
ξn

.

(ii) When

μξn (ν) = e−
∑N

i=1 ν2i
ξn

∑∞
ν1=−∞ . . .

∑∞
νN=−∞ e−

∑N
i=1 ν2i
ξn

, (12)

we define generalized multiple discrete Gauss-Weierstrass operators as:

W ∗ [m]
r,n ( f ; x1, . . . , xN ) (13)

=
∑∞

ν1=−∞ . . .
∑∞

νN=−∞
(∑r

j=0 α
[m]
j,r f (x1 + jν1, . . . , xN + jνN )

)
e−

∑N
i=1 ν2i
ξn

∑∞
ν1=−∞ . . .

∑∞
νN=−∞ e−

∑N
i=1 ν2i
ξn

.
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(iii) Let α̂ ∈ N and β > 1
α̂
. When

μξn (ν) =
∏N

i=1

(
ν2α̂
i + ξ 2α̂

n

)−β

∑∞
ν1=−∞ . . .

∑∞
νN=−∞

∏N
i=1

(
ν2α̂
i + ξ 2α̂

n

)−β
, (14)

we define the generalized multiple discrete Poisson-Cauchy operators as:

Q∗ [m]
r,n ( f ; x1, . . . , xN ) (15)

=
∑∞

ν1=−∞ . . .
∑∞

νN=−∞
(∑r

j=0 α
[m]
j,r f (x1 + jν1, . . . , xN + jνN )

)∏N
i=1

(
ν2α̂i + ξ2α̂n

)−β

∑∞
ν1=−∞ . . .

∑∞
νN=−∞

(
∏N

i=1

(
ν2α̂i + ξ2α̂n

)−β
) .

Here the authors assumed that 00 = 1. Finally, in [3], they observed

Lemma 4 (i) For j̃ = 1, . . . ,m, and α := (α1, . . . , αN ), αi ∈ Z
+, i = 1, . . . , N ,

|α| := ∑N
i=1 αi = j̃ , we have that

cα,n := cα,n, j̃ :=
∑∞

ν1=−∞ . . .
∑∞

νN=−∞
(∏N

i=1 ν
αi
i

)
e−

∑N
i=1|νi |

ξn

∑∞
ν1=−∞ . . .

∑∞
νN=−∞ e−

∑N
i=1|νi |

ξn

< ∞. (16)

for all ξn ∈ (0, 1]. Additionally, let αi ∈ N, then as ξn → 0 when n → ∞, we get
cα,n, j̃ → 0.

(ii) For j̃ = 1, . . . ,m, and α := (α1, . . . , αN ), αi ∈ Z
+, i = 1, . . . , N , |α| :=

N∑

i=1
αi = j̃ , we have that

pα,n := pα,n, j̃ :=
∑∞

ν1=−∞ . . .
∑∞

νN=−∞
(∏N

i=1 ν
αi
i

)
e−

∑N
i=1 ν2i
ξn

∑∞
ν1=−∞ . . .

∑∞
νN=−∞ e−

∑N
i=1 ν2i
ξn

< ∞. (17)

for all ξn ∈ (0, 1]. Additionally, let αi ∈ N, then as ξn → 0 when n → ∞, we
get pα,n, j̃ → 0.

(iii) For j̃ = 1, . . . ,m, and α := (α1, . . . , αN ), αi ∈ Z
+, i = 1, . . . , N , |α| :=

N∑

i=1
αi = j̃ , we have that

qα,n := qα,n, j̃ :=
∑∞

ν1=−∞ . . .
∑∞

νN=−∞
(∏N

i=1 ν
αi
i

(
ν2α̂
i + ξ 2α̂

n

)−β
)

∑∞
ν1=−∞ . . .

∑∞
νN=−∞

∏N
i=1

(
ν2α̂
i + ξ 2α̂

n

)−β
< ∞.

(18)

for all ξn ∈ (0, 1] where α̂ ∈ N and β > αi+r+1
2α̂ . Additionally, let αi ∈ N, then

as ξn → 0 when n → ∞, we get qα,n, j̃ → 0.
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3 Main Results

We start with

Proposition 5 (i) Let α := (α1, . . . , αN ) , αi ∈ Z
+, i = 1, . . . , N ∈ N, |α| :=∑N

i=1 αi = m ∈ N. Then, there exist K1 > 0 such that

SP∗,ξn =
ξ−m
n

∑∞
ν1=−∞ . . .

∑∞
νN=−∞

(∏N
i=1 |νi |αi

)
e−

∑N
i=1|νi |

ξn

∑∞
ν1=−∞ . . .

∑∞
νN=−∞ e−

∑N
i=1|νi |

ξn

(19)

≤ K1 < ∞,

for all ξn ∈ (0, 1] where n ∈ N and ν = (ν1, . . . , νN ).
(ii) Let α := (α1, . . . , αN ) , αi ∈ Z

+, i = 1, . . . , N ∈ N, |α| := ∑N
i=1 αi = m ∈

N. Then, there exist K2 > 0 such that

SW ∗,ξn =
ξ−m
n

∑∞
ν1=−∞ . . .

∑∞
νN=−∞

(∏N
i=1 |νi |αi

)
e−

∑N
i=1 ν2i
ξn

∑∞
ν1=−∞ . . .

∑∞
νN=−∞ e−

∑N
i=1 ν2i
ξn

(20)

≤ K2 < ∞,

for all ξn ∈ (0, 1] where n ∈ N and ν = (ν1, . . . , νN ).
(iii) There exist K3 > 0 such that

SQ∗,ξn =
ξ−m
n

∑∞
ν1=−∞ . . .

∑∞
νN=−∞

(∏N
i=1 |νi |αi

) (∏N
i=1

(
ν2α̂
i + ξ 2α̂

n

)−β
)

∑∞
ν1=−∞ . . .

∑∞
νN=−∞

∏N
i=1

(
ν2α̂
i + ξ 2α̂

n

)−β

≤ K3 < ∞, (21)

for all ξn ∈ (0, 1] where n, α̂ ∈ N, β > m+1
2α̂ , and ν = (ν1, . . . , νN ).

Proof We observe that

m =
N∑

i=1

αi ≥ αi , for all i = 1, 2, . . . , N ∈ N. (22)

Thus, we get

N∏

i=1

|νi |αi ≤
N∏

i=1

|νi |m . (23)
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Therefore

SP∗,ξn ≤
ξ−m
n

∑∞
ν1=−∞ . . .

∑∞
νN=−∞

(∏N
i=1 |νi |m

)
e−

∑N
i=1|νi |

ξn

∑∞
ν1=−∞ . . .

∑∞
νN=−∞ e−

∑N
i=1|νi |

ξn

≤
ξ−mN
n

∑∞
ν1=−∞ . . .

∑∞
νN=−∞

(∏N
i=1 |νi |m

)
e−

∑N
i=1|νi |

ξn

∑∞
ν1=−∞ . . .

∑∞
νN=−∞ e−

∑N
i=1|νi |

ξn

=
∑∞

ν1=−∞ . . .
∑∞

νN=−∞

(
∏N

i=1

(
|νi |
ξn

)m
e− |νi |

ξn

)

∑∞
ν1=−∞ . . .

∑∞
νN=−∞

(
∏N

i=1 e
− |νi |

ξn

)

=
N∏

i=1

⎛

⎜⎜
⎝

ξ−m
n

∑∞
νi=−∞

(
|νi |m e− |νi |

ξn

)

∑∞
νi=−∞ e− |νi |

ξn

⎞

⎟⎟
⎠ . (24)

In [2], the authors showed that there exist M1 > 0 such that

ξ−m
n

∑∞
νi=−∞

(
|νi |m e− |νi |

ξn

)

∑∞
νi=−∞ e− |νi |

ξn

< M1 < ∞, (25)

for all ξn ∈ (0, 1]. Therefore, by (24) and (25), we obtain

SP∗,ξn ≤
N∏

i=1

M1 = MN
1 := K1 < ∞. (26)

On the other hand, as in (24), we observe that

SW ∗,ξn ≤
N∏

i=1

⎛

⎜⎜
⎝

ξ−m
n

∑∞
νi=−∞

(
|νi |m e− ν2i

ξn

)

∑∞
νi=−∞ e− ν2i

ξn

⎞

⎟⎟
⎠ . (27)

In [2], the authors showed that there exist M2 > 0 such that

ξ−m
n

∑∞
νi=−∞

(
|νi |m e− ν2i

ξn

)

∑∞
νi=−∞ e− ν2i

ξn

≤ M2 < ∞,
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for all ξn ∈ (0, 1]. Hence, we have

SW ∗,ξn ≤
N∏

i=1

M2 = MN
2 := K2 < ∞, (28)

for all ξn ∈ (0, 1]. Finally, similar to (24), we get the inequality

SQ∗,ξn ≤
N∏

i=1

⎛

⎝
ξ−m
n

∑∞
νi=−∞

(
|νi |m

(
ν2α̂
i + ξ 2α̂

n

)−β
)

∑∞
νi=−∞

(
ν2α̂
i + ξ 2α̂

n

)−β

⎞

⎠ . (29)

In [2], the authors showed that there exist M3 > 0 such that

ξ−m
n

∑∞
νi=−∞

(
|νi |m

(
ν2α̂
i + ξ 2α̂

n

)−β
)

∑∞
νi=−∞

(
ν2α̂
i + ξ 2α̂

n

)−β
< M3 < ∞, (30)

for all ξn ∈ (0, 1], α̂ ∈ N, and β > m+1
2α̂ . Therefore, by (29) and (30), we obtain

SQ∗,ξn ≤
N∏

i=1

M3 = MN
3 := K3 < ∞. (31)

Hence, by (26), (28), and (31), the proof is done.

Next, we state

Theorem 6 Let m, n ∈ N, f ∈ Cm
(
R

N
)
, N ≥ 1, and γ, ξn ∈ (0, 1]. Assume∥∥∥ ∂m f (·,...,·)

∂x
α1
1 ...∂x

αN
N

∥∥∥
∞

< ∞, for all α j ∈ Z
+, j = 1, . . . , N : |α| := ∑N

j=1 α j = m. Then,

for all x ∈ R
N , we have

(i)

P∗ [m]
r,n ( f ; x) − f (x) =

m−1∑

j̃=1

δ
[m]
j̃,r

⎛

⎝
∑

|α|= j̃

cα,n, j̃ fα (x)
(∏N

i=1 αi !
)

⎞

⎠ + o
(
ξm−γ
n

)
, (32)

(ii)

W ∗ [m]
r,n ( f ; x) − f (x) =

m−1∑

j̃=1

δ
[m]
j̃,r

⎛

⎝
∑

|α|= j̃

pα,n, j̃ fα (x)
(∏N

i=1 αi !
)

⎞

⎠ + o
(
ξm−γ
n

)
, (33)
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and
(iii)

Q∗ [m]
r,n ( f ; x) − f (x) =

m−1∑

j̃=1

δ
[m]
j̃,r

⎛

⎝
∑

|α|= j̃

qα,n, j̃ fα (x)
(∏N

i=1 αi !
)

⎞

⎠ + o
(
ξm−γ
n

)
, (34)

where α̂ ∈ N, and β > m+1
2α̂ . Above when m = 1, the sums on R.H.S. collapse.

Proof By Theorem 1 and Proposition 5.

We have

Theorem 7 Let f ∈ Cl
(
R

N
)
, l, N ∈ N. Here μξn is a Borel probability measure

on RN , ξn > 0, (ξn)n∈N a bounded sequence. Let β̃ :=
(
β̃1, . . . , β̃N

)
, β̃i ∈ Z

+, i =
1, . . . , N ;

∣∣∣β̃
∣∣∣ := ∑N

i=1 β̃i = l. Here f (x + ν j), x ∈ R
N , ν ∈ Z

N , is μξn -integrable

with respect to ν, for j = 1, . . . , r . There existμξn -integrable functions hi1, j , hβ̃1,i2, j ,

hβ̃1,β̃2,i3, j , . . . , hβ̃1,β̃2,...,β̃N−1,iN , j ≥ 0 ( j = 1, . . . , r) on R
N such that

∣∣
∣∣∣
∂ i1 f (x + ν j)

∂xi11

∣∣
∣∣∣
≤ hi1, j (ν) , i1 = 1, . . . , β̃1, (35)

∣∣
∣∣∣
∂β̃1+i2 f (x + ν j)

∂xi22 ∂x β̃1
1

∣∣
∣∣∣
≤ hβ̃1,i2, j (ν) , i2 = 1, . . . , β̃2,

...

∣∣
∣∣∣
∂β̃1+β̃2+···+β̃N−1+iN f (x + ν j)

∂xiNN ∂x β̃N−1
N−1 . . . ∂x β̃2

2 ∂x β̃1
1

∣∣
∣∣∣
≤ hβ̃1,β̃2,...,β̃N−1,iN , j (ν) , iN = 1, . . . , β̃N ,

∀ x ∈ R
N , ν ∈ Z

N .

(i) When

μξn (ν) = e−
∑N

i=1|νi |
ξn

∑∞
ν1=−∞ . . .

∑∞
νN=−∞ e−

∑N
i=1|νi |

ξn

, (36)

then both of the next exist and

(
P∗ [m]
r,n ( f ; x))

β̃
= P∗ [m]

r,n

(
fβ̃; x

)
. (37)
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(ii) When

μξn (ν) = e−
∑N

i=1 ν2i
ξn

∑∞
ν1=−∞ . . .

∑∞
νN=−∞ e−

∑N
i=1 ν2i
ξn

, (38)

then both of the next exist and

(
W ∗ [m]

r,n ( f ; x))
β̃

= W ∗ [m]
r,n

(
fβ̃; x

)
. (39)

(iii) Let α̂ ∈ N and β > 1
α̂
. When

μξn (ν) =
∏N

i=1

(
ν2α̂
i + ξ 2α̂

n

)−β

∑∞
ν1=−∞ . . .

∑∞
νN=−∞

∏N
i=1

(
ν2α̂
i + ξ 2α̂

n

)−β
, (40)

then both of the next exist and

(
Q∗ [m]

r,n ( f ; x))
β̃

= Q∗ [m]
r,n

(
fβ̃; x

)
. (41)

Proof By Theorem 2.

We give our final result as follows

Theorem 8 Let f ∈ Cm+l
(
R

N
)
, m, l, N ∈ N. Assumptions of Theorem 7 are valid.

Callψ = 0, β̃. Assume
∥∥ fψ+α

∥∥∞ ≤ M, M > 0, for all α : |α| = m. Let 1 ≥ ξn > 0
andμξn be probability Borel measures onR

N . Also, let 0 < γ ≤ 1 and x ∈ R
N . Then

(i) when

μξn (ν) = e−
∑N

i=1|νi |
ξn

∑∞
ν1=−∞ . . .

∑∞
νN=−∞ e−

∑N
i=1|νi |

ξn

, (42)

we get

(
P∗ [m]
r,n ( f ; x))

ψ
− fψ (x) =

m−1∑

j̃=1

δ
[m]
j̃,r

⎛

⎝
∑

|α|= j̃

cα,n, j̃ fψ+α (x)
(∏N

i=1 αi !
)

⎞

⎠ + o
(
ξm−γ
n

)
.

(43)

When m = 1 the sum on R.H.S. collapses.
(ii) When

μξn (ν) = e−
∑N

i=1 ν2i
ξn

∑∞
ν1=−∞ . . .

∑∞
νN=−∞ e−

∑N
i=1 ν2i
ξn

, (44)
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we have

(
W ∗ [m]

r,n ( f ; x))
ψ

− fψ (x) =
m−1∑

j̃=1

δ
[m]
j̃,r

⎛

⎝
∑

|α|= j̃

pα,n, j̃ fψ+α (x)
(∏N

i=1 αi !
)

⎞

⎠ + o
(
ξm−γ
n

)
.

(45)

When m = 1 the sum on R.H.S. collapses.
(iii) Let α̂ ∈ N, and β > m+1

2α̂ . When

μξn (ν) =
∏N

i=1

(
ν2α̂
i + ξ 2α̂

n

)−β

∑∞
ν1=−∞ . . .

∑∞
νN=−∞

∏N
i=1

(
ν2α̂
i + ξ 2α̂

n

)−β
, (46)

we get

(
Q∗ [m]

r,n ( f ; x))
ψ

− fψ (x) =
m−1∑

j̃=1

δ
[m]
j̃,r

⎛

⎝
∑

|α|= j̃

qα,n, j̃ fψ+α (x)
(∏N

i=1 αi !
)

⎞

⎠ + o
(
ξm−γ
n

)
.

(47)

When m = 1 the sum on R.H.S. collapses.

Proof By Theorems 6, 7.

4 Applications

For m = 1, we have

Corollary 9 Let f ∈ C1
(
R

N
)
, N ≥ 1, with all

∥∥∥ ∂ f
∂xi

∥∥∥∞
≤ M, M > 0, i =

1, . . . , N. Let 1 ≥ ξn > 0, (ξn)n∈N bounded sequence, μξn probability Borel mea-
sures on R

N and 0 < γ ≤ 1. Then

P∗ [1]
r,n ( f ; x) − f (x) = o

(
ξ 1−γ
n

)
,

W ∗ [1]
r,n ( f ; x) − f (x) = o

(
ξ 1−γ
n

)
,

and for α̂ ∈ N, and β > 1
α̂
, we have

Q∗ [1]
r,n ( f ; x) − f (x) = o

(
ξ 1−γ
n

)
.

Proof By Theorem 6.

For m = 2, we get
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Corollary 10 Let f ∈ C2
(
R

2
)
, with all

∥∥
∥ ∂2 f

∂x21

∥∥
∥∞

,

∥∥
∥ ∂2 f

∂x22

∥∥
∥∞

,

∥∥
∥ ∂2 f

∂x1∂x2

∥∥
∥∞

≤ M,

M > 0. Let 1 ≥ ξn > 0, (ξn)n∈N bounded sequence, μξn probability Borel measures
on R2. Also 0 < γ ≤ 1, x ∈ R

2. Then

P∗ [2]
r,n ( f ; x) − f (x) =

⎛

⎝
r∑

j=1

α
[2]
j,r j

⎞

⎠

⎛

⎝
∑

|α|=1

cα,n,1 fα (x)
(∏2

i=1 αi !
)

⎞

⎠ + o
(
ξ 2−γ
n

)
,

W ∗ [2]
r,n ( f ; x) − f (x) =

⎛

⎝
r∑

j=1

α
[2]
j,r j

⎞

⎠

⎛

⎝
∑

|α|=1

pα,n,1 fα (x)
(∏2

i=1 αi !
)

⎞

⎠ + o
(
ξ 2−γ
n

)
,

and for α̂ ∈ N, and β > 3
2α̂ , we have

Q∗ [2]
r,n ( f ; x) − f (x) =

⎛

⎝
r∑

j=1

α
[2]
j,r j

⎞

⎠

⎛

⎝
∑

|α|=1

qα,n,1 fα (x)
(∏2

i=1 αi !
)

⎞

⎠ + o
(
ξ 2−γ
n

)
.

Proof By Theorem 6.
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Variational Analysis of a Quasistatic
Contact Problem

Mircea Sofonea

Abstract We start by proving an existence and uniqueness result for a new class
of variational inequalities which arise in the study of quasistatic models of contact.
The novelty lies in the special structure of these inequalities which involve history-
dependent operators. The proof is based on arguments of monotonicity, convexity
and fixed point. Then, we consider a mathematical model which describes the fric-
tional contact between an elastic-viscoplastic body and a moving foundation. The
mechanical process is assumed to be quasistatic, and the contact is modeled with
a multivalued normal compliance condition with unilateral constraint and memory
term, associated to a sliding version of Coulomb’s law of dry friction. We prove that
the model casts in the abstract setting of variational inequalities, with a convenient
choice of spaces and operators. Further, we apply our abstract result to prove the
unique weak solvability of the contact model.

1 Introduction

Contact phenomena involving deformable bodies abound in industry and everyday
life. They lead to nonsmooth and nonlinear mathematical problems. Their analysis,
including existence and uniqueness results, was carried out in a large number of
works, see for instance [3, 4, 6, 9, 16, 17] and the references therein. The numer-
ical analysis of the problems, including error estimation for discrete schemes and
numerical simulations, can be found in [10, 11, 13, 14, 22]. The state of the art in
the field, including applications in engineering, could be found in the recent special
issue [15].

The study of both the qualitative and numerical analysis of various mathematical
models of contact is made by using various mathematical tools, including the theory
of variational inequalities. At the heart of this theory is the intrinsic inclusion of
free boundaries in an elegant mathematical formulation. Existence and uniqueness
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results in the study of variational inequalities can be found in [1, 2, 12, 16, 20], for
instance. References concerning their numerical analysis of include [5, 11, 13].

The large variety of frictional or frictionless models of quasistatic contact led to
different classes of time-dependent or evolutionary variational inequalities which, on
occasion, have been studied in an abstract framework. Examples could be found in
[7, 8, 19, 20]. Nevertheless, it was recently recognized that some models of contact
lead to weak formulations expressed in terms of variational inequalities which are
more general than those studied in the above-mentioned papers. Therefore, in order
to prove the unique solvability of these models, there is a need to extend these results
to a more general classes of inequalities.

The first aim of the present paper is to provide such extension. Thus, we provide
here an abstract existence and uniqueness result in the study of a new class of history-
dependent variational inequalities. Our second aim is to illustrate how this result is
useful in the analysis of a new model of contact with viscoplastic materials.

The rest of the paper is structured as follows. In Sect. 2,we introduce somenotation
and preliminary material. Then, we state and prove our main abstract result, Theo-
rem 2. In Sect. 3 and we describe the frictional contact problem, list the assumption
on the data, derive its variational formulation and state its unique weak solvabil-
ity, Theorem 3. The proof of Theorem 3, based on the abstract result provided by
Theorem 2, is presented in Sect. 4.

2 An Abstract Existence and Uniqueness Result

Everywhere in this paper, we use the notation N for the set of positive integers
andR+ will represent the set of nonnegative real numbers, i.e.R+ = [0,+∞). For a
normed space (X, ‖ · ‖X )we use the notationC(R+; X) for the space of continuously
functions defined onR+ with values in X . For a subset K ⊂ X we still use the symbol
C(R+; K ) for the set of continuous functions defined on R+ with values on K . The
following result, obtained in [18], will be used twice in this paper.

Theorem 1 Let (X, ‖ · ‖X ) be a real Banach space and let Λ : C(R+; X) →
C(R+; X) be a nonlinear operator. Assume that for all n ∈ N there exist two con-
stants cn ≥ 0 and dn ∈ [0, 1) such that

‖Λu(t) − Λv(t)‖X ≤ cn

t∫

0

‖u(s) − v(s)‖X ds + dn ‖u(t) − v(t)‖X

for all u, v ∈ C(R+; X) and all t ∈ [0, n]. Then the operator Λ has a unique fixed
point η∗ ∈ C(R+; X).

The proof of Theorem 1 was carried out in several steps, based on the fact that
the space C(R+; X) can be organized as a Fréchet space with a convenient distance
function.



Variational Analysis of a Quasistatic Contact Problem 247

We assume in what follows that X is real Hilbert space and Y is a real normed
space. Let K be a subset of X , A : K ⊂ X → X andS : C(R+; X) → C(R+; Y ).
Moreover, let j : Y × X × K → R and f : R+ → X . We consider the following
assumptions.

K is a closed, convex, nonempty subset of X. (1)
⎧
⎪⎪⎨

⎪⎪⎩

(a) There exists L > 0 such that
‖Au1 − Au2‖X ≤ L‖u1 − u2‖Y ∀ u1, u2 ∈ K .

(b) There exists m > 0 such that
(Au1 − Au2, u1 − u2)X ≥ m‖u1 − u2‖2X ∀ u1 , u2 ∈ K .

(2)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a) For all y ∈ Y and u ∈ X, j (y, u, ·) is convex and l.s.c on K .

(b) There exists α > 0 and β > 0 such that
j (y1, u1, v2) − j (y1, u1, v1) + j (y2, u2, v1) − j (y2, u2, v2)

≤ α‖y1 − y2‖Y ‖v1 − v2‖X + β ‖u1 − u2‖X ‖v1 − v2‖X

∀ y1, y2 ∈ Y, ∀ u1, u2 ∈ X, ∀ v1, v2 ∈ K .

(3)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

For all n ∈ N there exists sn > 0 such that

‖S u1(t) − S u2(t)‖Y ≤ sn

t∫

0

‖u1(s) − u2(s)‖X ds

∀ u1, u2 ∈ C(R+; X), ∀ t ∈ [0, n].

(4)

f ∈ C(R+; X). (5)

Concerning these assumptions we have the following comments. First, assumption
(2) show that A is a Lipschitz continuous strongly monotone operator on K . Next,
in (3) we use the abbreviation l.s.c. for a lower semicontinuous function. Finally,
following the terminology introduced in [19] and used in various papers, condition
(4) show that the operator S is a history-dependent operator. Example of opera-
tors which satisfies this condition could be find in [19, 20]. Variational inequalities
involving history-dependent operators are also called history-dependent variational
inequalities. In their study we have the following existence and uniqueness result.

Theorem 2 Assume that (1)–(5) hold. Moreover, assume that

m > β, (6)

where m and β are the constants in (2) and (3), respectively. Then, there exists a
unique function u ∈ C(R+; K ) such that, for all t ∈ R+, the following inequality
holds:

u(t) ∈ K , (Au(t), v − u(t))X + j (S u(t), u(t), v) (7)

− j (S u(t), u(t), u(t)) ≥ ( f (t), v − u(t))X ∀ v ∈ K .
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Proof The proof of Theorem 2 is based on argument similar to those presented in
[19] and, for this reason, we skip the details. The main step in the proof are the
followings.

(i) Let η ∈ C(R+; X) be fixed and denote by yη ∈ C(R+; Y ) the function given by

yη(t) = S η(t) ∀ t ∈ R+. (8)

In the first step we use standard arguments on time-dependent elliptic variational
inequalities to prove that there exists a unique function uη ∈ C(R+; K ) such that,
for all t ∈ R+, the following inequality holds:

uη(t) ∈ K , (Auη(t), v − uη(t))X + j (yη(t), η(t), v) (9)

− j (zη(t), η(t), uη(t)) ≥ ( f (t), v − uη(t))X ∀ v ∈ K .

(ii)Next, in the second step,weconsider the operatorΛ : C(R+; X) → C(R+; K )

⊂ C(R+; X) defined by equality

Λη = uη ∀ η ∈ C(R+; X) (10)

and we prove that it has a unique fixed point η∗ ∈ C(R+; K ). Indeed, let η1, η2 ∈
C(R+; X), and let yi , be the functions defined by (8) for η = ηi , i.e. yi = yηi , for
i = 1, 2. Also, denote by ui the solution of the variational inequality (9) for η = ηi ,
i.e. ui = uηi , i = 1, 2. Let n ∈ N and t ∈ [0, n]. Then, using (9), (2) and (3) is easy
to see that

m ‖u1(t) − u2(t)‖X ≤ α ‖y1(t) − y2(t)‖Y + β ‖η1(t) − η2(t)‖X . (11)

Moreover, by the assumptions (4) on the operator S one has

‖y1(t) − y2(t)‖Y = ‖S η1(t) − S η2(t)‖Y ≤ sn

t∫

0

‖η1(s) − η2(s)‖X ds. (12)

Thus, using (10)–(12) yields

‖Λη1(t) − Λη2(t)‖X = ‖u1(t) − u2(t)‖X

≤ αsn
m

t∫

0

‖η1(s) − η2(s)‖X ds + β

m
‖η1(t) − η2(t)‖X

which, together with the smallness assumption (6) and Theorem 1, implies that the
operator Λ has a unique fixed point η∗ ∈ C(R+; X) . Moreover, since Λ has values
on C(R+; K ), we deduce that η∗ ∈ C(R+; K ).
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(iii) Let η∗ ∈ C(R+; K ) be the fixed point of the operator Λ. It follows from (8)
and (10) that

yη∗(t) = S η∗(t), uη∗(t) = η∗(t). (13)

for all t ∈ R+. Now, letting η = η∗ in the inequality (9) and using (13) we conclude
that η∗ ∈ C(R+; K ) is a solution to the variational inequality (7). This proves the
existence part in Theorem 2.

(iv) The uniqueness part is a consequence of the uniqueness of the fixed point of
the operatorΛ and can be proved as follows. Denote by η∗ ∈ C(R+; K ) the solution
of the variational inequality (7) obtained above, and let η ∈ C(R+; K ) be a different
solution of this inequality, which implies that

(Aη(t), v − η(t))X + j (S η(t), η(t), v) (14)

− j (S η(t), η(t), η(t)) ≥ ( f (t), v − η(t))X ∀ v ∈ K , t ∈ R+.

Letting yη = S η ∈ C(R+; Y ), inequality (14) implies that η is solution to the vari-
ational inequality (9). On the other hand, by step (i) this inequality has a unique
solution uη and, therefore,

η = uη. (15)

This shows that Λη = η where Λ is the operator defined by (10). Therefore, by Step
(i) it follows that η = η∗, which concludes proof.

3 The Contact Model and Main Result

We turn now to an application of Theorem 2 in Contact Mechanics and, to this end,
we start by presenting some notations and preliminaries. Let Ω a regular domain of
R

d (d = 2, 3) with surface Γ that is partitioned into three disjoint measurable parts
Γ1, Γ2 and Γ3, such that meas (Γ1) > 0 and, in addition, Γ3 is plane. We use the
notation x = (xi ) for a typical point in Ω and ν = (νi ) for the outward unit normal
at Γ . In order to simplify the notation, we do not indicate explicitly the dependence
of various functions on the spatial variable x. Let Rd be d-dimensional real linear
space and the let Sd denote the space of second order symmetric tensors on R

d

or, equivalently, the space of symmetric matrices of order d. The canonical inner
products and the corresponding norms on R

d and S
d are given by

u · v = uivi , ‖v‖ = (v · v)1/2 ∀u = (ui ), v = (vi ) ∈ R
d ,

σ · τ = σi jτi j , ‖τ‖ = (τ · τ )1/2 ∀ σ = (σi j ), τ = (τi j ) ∈ S
d ,

respectively. Here and below the indices i , j , k, l run between 1 and d and, unless
stated otherwise, the summation convention over repeated indices is used.
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We use standard notation for the Lebesgue and the Sobolev spaces associated to
Ω and Γ . Also, we introduce the spaces

V = { v = (vi ) ∈ H 1(Ω)d : v = 0 a.e. on Γ1 },
Q = { τ = (τi j ) ∈ L2(Ω)d×d : τi j = τ j i },
Q1 = { τ = (τi j ) ∈ Q : Divτ ∈ L2(Ω)d }.

Here and below Divτ = (τi j, j ) denotes the divergence of the field τ , where the index
that follows a coma indicates a partial derivative with the corresponding component
of the spatial variable x, i.e. τi j, j = ∂τi j/∂x j . The spaces Q and Q1 are real Hilbert
spaces with the canonical inner products given by

(σ , τ )Q =
∫

Ω

σ · τ dx ∀ σ , τ ∈ Q,

(σ , τ )Q1 =
∫

Ω

σ · τ dx +
∫

Ω

Divσ · Divτ dx ∀ σ , τ ∈ Q1.

In addition, since meas (Γ1) > 0, it is well known that V is a real Hilbert space with
the inner product

(u, v)V =
∫

Ω

ε(u) · ε(v) dx ∀u, v ∈ V

where ε is the deformation operator, i.e. ε(u) = εi j (u), εi j (u) = 1
2 (ui, j + u j,i ),

ui, j = ∂ui/∂x j . The associated norms on the spaces V , Q and Q1 will be denoted
by ‖ · ‖V , ‖ · ‖Q and ‖ · ‖Q1 , respectively.

For all v ∈ V we still write v for the trace of v to Γ . We recall that, by the Sobolev
trace theorem, there exists a positive constant c0 which depends on Ω , Γ1 and Γ3

such that
‖v‖L2(Γ3)d ≤ c0 ‖v‖V ∀ v ∈ V . (16)

For v ∈ V we denote by vν and vτ the normal and tangential components of v
on Γ , in the sense of traces, given by vν = v · ν, vτ = v − vνν. Moreover, for
σ ∈ Q1 we denote by σν ∈ H− 1

2 (Γ ) its normal component, in the sense of traces.
Let R : H− 1

2 (Γ ) → L2(Γ ) be a linear continuous operator. Then, there exists a
positive constant cR > 0 which depends on R, Ω and Γ3 such that

‖Rσν‖L2(Γ3) ≤ cR ‖σ‖Q1 ∀ σ ∈ Q1. (17)

Next, we recall that if σ is a regular function, then its normal and tangential com-
ponents of the stress field σ on the boundary are defined by σν = (σν) · ν, σ τ =
σν − σνν and the following Green’s formula holds:
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∫

Ω

σ · ε(v) dx +
∫

Ω

Divσ · v dx =
∫

Γ

σν · v da ∀ v ∈ V . (18)

With these notation, we formulate the following problem.
Problem P . Find a displacement field u = (ui ) : Ω × R+ → R

d and a stress
field σ = (σi j ) : Ω × R+ → S

d such that

σ̇ (t) = E ε(u̇(t)) + G (σ (t), ε(u(t)) in Ω, (19)

Divσ (t) + f0 = 0 in Ω, (20)

u(t) = 0 on Γ1, (21)

σ (t)ν = f2(t) on Γ2, (22)

−σ τ (t) = μ|Rσν(t)|n∗ on Γ3, (23)

for all t ∈ R+, there exists ξ : Γ3 × R+ → R which satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uν(t) ≤ g, σν(t) + p(uν(t)) + ξ(t) ≤ 0,
(uν(t) − g)

(
σν(t) + p(uν(t)) + ξ(t)

) = 0,

0 ≤ ξ(t) ≤ F
( t∫

0

u+
ν (s) ds

)
,

ξ(t) = 0 if uν(t) < 0,

ξ(t) = F
( t∫

0

u+
ν (s) ds

)
if uν(t) > 0

on Γ3, (24)

for all t ∈ R+ and, moreover,

u(0) = u0, σ (0) = σ 0 in Ω. (25)

Problem P represents a mathematical model which describes the quasistatic
process of contact between a viscoplastic body and a moving foundation. Here Ω

represents the reference configuration of a the body and the dot above denotes the
derivative with respect the time variable, i.e. ḟ = ∂ f

∂t . Equation (19) represents the
viscoplastic constitutive law. Details and various mechanical interpretation concern-
ing such kind of laws can be found in [9, 20], for instance. Equation (20) represents
the equation of equilibrium in which f0 denotes the density of body forces, assumed
to be time-independent. We use this equation since the process is quasistatic and,
therefore, the inertial term in the equation of motion is neglected. Conditions (21)
and (22) are the displacement and the traction boundary condition, respectively. They
describe the fact that the body is fixed on Γ1 and prescribed traction of density f2 act
on Γ2, during the contact process.
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Conditions (23) and (24) represent a sliding version of Coulomb’s law of dry
friction and a normal compliance contact condition with unilateral constraint and
memory term, respectively. Their are obtained from arguments presented in our
recent paper [21] and, for this reason, we do not describe them with details. We just
mention that μ denotes the coefficient of friction, n∗ denotes a given unitary vector
in the plane on Γ3 and v∗ < 0 is given. In addition, p and F are given function
which describe the deformability and the memory effects of the foundation, g > 0
is a given depth and r+ represent the positive part of r , i.e. r+ = max {r, 0}. Finally,
conditions (25) represent the initial conditions for the displacement and the stress
field, respectively.

In the study of Problem P we assume that the elasticity operator E and the
nonlinear constitutive function G satisfy the following conditions.

⎧
⎪⎪⎨

⎪⎪⎩

(a) E = (Ei jkl) : Ω × S
d → S

d .

(b) Ei jkl = Ekli j = E j ikl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.

(c) There exists mE > 0 such that
E τ · τ ≥ mE ‖τ‖2 for all τ ∈ S

d , a.e. in Ω.

(26)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) G : Ω × S
d × S

d → S
d .

(b) There exists LG > 0 such that
‖G (x, σ 1, ε1) − G (x, σ 2, ε2)‖ ≤ LG (‖σ 1 − σ 2‖ + ‖ε1 − ε2‖)

for all σ 1, σ 2, ε1, ε2 ∈ S
d , a.e. x ∈ Ω.

(c) The mapping x �→ G (x, σ , ε is measurable on Ω,

for all σ , ε ∈ S
d .

(d) The mapping x �→ G (x, 0, 0) belongs to Q.

(27)

The densities of body forces and surface traction are such that

f0 ∈ L2(Ω)d , f2 ∈ C(R+; L2(Γ2)
d). (28)

The normal compliance function p and the surface yield function F satisfy

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a) p : Γ3 × R → R+.

(b) There exists L p > 0 such that
|p(x, r1) − p(x, r2)| ≤ L p |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) (p(x, r1) − p(x, r2))(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(d) The mapping x �→ p(x, r) is measurable on Γ3, for any r ∈ R.

(e) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(29)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a) F : Γ3 × R → R+.

(b) There exists LF > 0 such that
|F(x, r1) − F(x, r2)| ≤ LF |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) The mapping x �→ F(x, r) is measurable on Γ3, for any r ∈ R.

(d) F(x, 0) = 0 a.e. x ∈ Γ3.

(30)
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Also, the the coefficient of friction verifies

μ ∈ L∞(Γ3), μ(t, x) ≥ 0 a.e. x ∈ Γ3, (31)

and the initial data are such that

u0 ∈ V, σ 0 ∈ Q. (32)

In what follows we consider the set of admissible displacements fields and the set
of admissible stress fields defined by

U = { v ∈ V : vν ≤ g on Γ3 }, (33)

Σ = { τ ∈ Q : Divτ + f0 = 0 in Ω }. (34)

respectively. Note that assumptions g > 0 and f0 ∈ L2(Ω)d imply thatU and Σ are
closed, convex nonempty subsets of the spaces V and Q, respectively.

Assume inwhat follows that (u, σ ) are sufficiently regular functions which satisfy
(19)–(24) and let v ∈ U and t > 0 be given. First, we use the equilibrium equation
(20) and the contact condition (23) to see that

u(t) ∈ U, σ (t) ∈ Σ. (35)

Then, we use Green’s formula (18), the equilibrium equation (20) and the friction
law (23) to obtain that

∫

Ω

σ (t) · (ε(v) − ε(u(t))) dx (36)

=
∫

Ω

f0 · (v − u(t)) dx +
∫

Γ2

f2(t) · (v − u(t)) da

+
∫

Γ3

σν(t)(vν − uν(t)) da −
∫

Γ3

μ|Rσν(t)|n∗ · (vτ − uτ (t)) da.

We now use the contact conditions (24) and the definition (33) of the set U to see
that

σν(t)(vν − uν(t)) ≥ −(p(uν(t)) + ξ(t))(vν − uν(t)) on Γ3. (37)

Next, we use (24), again, and the hypothesis (30)(a) on function F to deduce that

F

⎛

⎝
t∫

0

u+
ν (s)ds

⎞

⎠ (v+
ν − u+

ν (t)) ≥ ξ(t)(vν − uν(t)) on Γ3. (38)
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We now add the inequalities (37) and (38) and integrate the result on Γ3 to find that

∫

Γ3

σν(t)(vν − uν(t)) da ≥ −
∫

Γ3

p(uν(t))(vν − uν(t)) da (39)

−
∫

Γ3

F

⎛

⎝
t∫

0

u+
ν (s)ds

⎞

⎠ (v+
ν − u+

ν (t)) da.

Finally, we combine (36) and (39) to deduce that

∫

Ω

σ (t) · (ε(v) − ε(u(t))) dx +
∫

Γ3

p(uν(t))(vν − uν(t)) da (40)

+
∫

Γ3

F

⎛

⎝
t∫

0

u+
ν (s)ds

⎞

⎠ (v+
ν − u+

ν (t)) da +
∫

Γ3

μ|Rσ ν(t)|n∗ · (vτ − uτ (t)) da

≥
∫

Ω

f0 · (v − u(t)) dx +
∫

Γ2

f2(t).(v − u(t)) da.

We now integrate the the constitutive law (19) with the initial conditions (25),
then we gather the resulting equation with the regularity (35) and inequality (40) to
obtain the following variational formulation of Problem P .

ProblemPV .Find a displacement field u : R+ → U and a stress field σ : R+ →
Σ such that

σ (t) = E ε(u(t)) +
t∫

0

G (σ (s), ε(u(s)) ds + σ 0 − E ε(u0), (41)

∫

Ω

σ (t) · (ε(v) − ε(u(t))) dx +
∫

Γ3

p(uν(t))(vν − uν(t)) da (42)

+
∫

Γ3

F

⎛

⎝
t∫

0

u+
ν (s)ds

⎞

⎠ (v+
ν − u+

ν (t)) da +
∫

Γ3

μ|Rσ ν(t)|n∗ · (vτ − uτ (t)) da

≥
∫

Ω

f0 · (v − u(t)) dx +
∫

Γ2

f2(t).(v − u(t)) da

for all t ∈ R+.
Our main existence and uniqueness result in the study of the ProblemP , that we

state here and prove in the next section is the following.
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Theorem 3 Assume that (26)–(32) hold. Then there exists a positive constant μ0

which depends only on Ω , Γ1, Γ3, R and E such that Problem PV has a unique
solution, if

‖μ‖L∞(Γ3) < μ0. (43)

Moreover, the solution satisfies u ∈ C(R+;U ), σ ∈ C(R+;Σ).

Note that Theorem 3 provides the unique weak solvability of Problem P , under
the smallness assumption (43) on the coefficient of friction.

4 Proof of Theorem 3

The proof of the theorem will be carried out in several steps. To present it we assume
inwhat follows that (26)–(32) hold.We start with the following existence and unique-
ness result.

Lemma 4 For each function u ∈ C(R+; V ) there exists a unique function Θu ∈
C(R+; Q) such that

Θu(t) =
t∫

0

G (Θu(s) + E ε(u(s)), ε(u(s))) ds + σ 0 − E ε(u0) ∀ t ∈ R+. (44)

Moreover, the operator Θ : C(R+; V ) → C(R+; Q) is history-dependent, i.e. for
all n ∈ N there exists θn > 0 such that

‖Θu1(t) − Θu2(t)‖Q ≤ θn

t∫

0

‖u1(s) − u2(s)‖V ds (45)

∀u1, u2 ∈ C(R+; V ), ∀ t ∈ [0, n].

Proof Let u ∈ C(R+; V ) and consider the operator Λ : C(R+; Q) → C(R+; Q)

defined by

Λτ (t) =
t∫

0

G (τ (s) + E ε(u(s)), ε(u(s)))ds + σ 0 − E ε(u0) (46)

∀ τ ∈ C(R+; Q), t ∈ R+.

The operator Λ depends on u but, for the sake of simplicity, we do not indicate
it explicitly. Let τ 1, τ 2 ∈ C(R+; Q) and let t ∈ R+. Then, using (46) and (27) we
have
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‖Λτ 1(t) − Λτ 2(t)‖Q ≤ LG

t∫

0

‖τ 1(s) − τ 2(s)‖Q ds.

This inequality combined with Theorem 1 shows that the operatorΛ has a unique
fixed point in C(R+; Q). We denote by Θu the fixed point of Λ and we combine
(46) with the equality Λ(Θu) = Θu to see that (44) holds.

To proceed, let n ∈ N, t ∈ [0, n] and let u1, u2 ∈ C(R+; V ). Then, using (44) and
taking into account (27), (26) we write

‖Θu1(t) − Θu2(t)‖Q

= L0

( t∫

0

‖Θu1(s) − Θu2(s)‖Q ds +
t∫

0

‖u1(s) − u2(s)‖V ds
)
,

where L0 is a positive constant which depends on G and E . Using now a Gronwall
argument we deduce that

‖Θu1(t) − Θu2(t)‖Q ≤ L0 e
L0n

t∫

0

‖u1(s) − u2(s)‖V ds.

This inequality shows that (45) holds with θn = L0 eL0n .

Next, we consider the operators A : V → V and R : V × Q → L2(Γ3) defined
by

(Au, v)V = (E ε(u), ε(v))Q +
∫

Γ3

p(uν)vν da ∀u , v ∈ V, (47)

R(u, z) = |R(
PΣ(E ε(u) + z)

)
ν
| ∀u ∈ V, z ∈ Q, (48)

where PΣ : Q → Σ represents the projection operator. Note that, since Σ ⊂ Q1,
the operator R is well defined. Denote Y = Q × L2(Γ3) × Q where, here and
below, X1 × . . . × Xm represents the product of the Hilbert spaces X1, . . . , Xm

(m = 2, 3), endowed with its canonical inner product. Besides the operator Θ :
C(R+; V ) → C(R+; Q) defined in Lemma 4, letΦ : C(R+; V ) → C(R+; L2(Γ3))

and S : C(R+; V ) → C(R+; Y ) be the operators given by

(Φv)(t) = F

⎛

⎝
t∫

0

v+
ν (s)ds

⎞

⎠ , (49)

S v(t) = (Θv(t),Φv(t),Θv(t)) (50)
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for all v ∈ C(R+; V ), t ∈ R+. Finally, let j : Y × V × V → R and f : R+ → V
denote the functions defined by

j (w,u, v) = (x, ε(v))Q + (y, v+
ν )L2(Γ3) + (μR(u, z)n∗, vτ )L2(Γ3)d (51)

∀w = (x, y, z) ∈ Y, u, v ∈ V,

(f(t), v)V =
∫

Ω

f0 · v dx +
∫

Γ2

f2(t) · v da ∀ v ∈ V, t ∈ R+. (52)

We have the following equivalence result.

Lemma 5 Assume that u ∈ C(R+;U ) and σ ∈ C(R+;Σ). Then, the couple (u, σ )

is a solution of Problem PV if and only if

σ (t) = E ε(u(t)) + Θu(t), (53)

(Au(t), v − u(t))V + j (S u(t),u(t), v) (54)

− j (S u(t),u(t),u(t)) ≥ (f(t), v − u(t))V ∀ v ∈ U

for all t ∈ R+.

Proof Let (u, σ ) ∈ C(R+;U × Σ), be a solution of Problem PV and let t ∈ R+.
By (41) we have

σ (t) − E ε(u(t)) =
t∫

0

G (σ (s) − E ε(u(s)) + E ε(u(s)), ε(u(s))) ds + σ 0 − E ε(u0),

and, using the definition (44) of the operator Θ , we obtain (53). Moreover, we
substitute (41) in (42), then we use (49) and equality PΣσ (t) = σ (t). As a result, we
deduce that

∫

Ω

E ε(u(t)) · (ε(v) − ε(u(t))) dx +
∫

Ω

Θu(t) · (ε(v) − ε(u(t))) dx (55)

+
∫

Γ3

p(uν(t))(vν − uν(t)) da +
∫

Γ3

Φu(t) (v+
ν − u+

ν (t)) da

+
∫

Γ3

μ|R(
PΣ(E ε(u(t)) + Θu(t))

)
ν
|n∗ · (vτ − uτ (t)) da

≥
∫

Ω

f0 · (v − u(t)) dx +
∫

Γ2

f2(t) · (v − u(t)) da ∀ v ∈ U.
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Using now the definitions (47), (48) and (52) yields

(Au(t), v − u(t))V + (Θu(t) · (ε(v) − ε(u(t)))Q
+(Φu(t)) (v+

ν − u+
ν (t)))L2(Γ3) + (μR(u(t),Θ(u(t))n∗, vτ − uτ (t))L2(Γ3)d

≥ (f(t), v − u(t))V ∀ v ∈ U.

This inequality combinedwith the definitions (50) and (51) shows that the variational
inequality (54) holds.

Conversely, assume that (u, σ ) ∈ C(R+;U × Σ) is a couple of functions which
satisfies (53) and (54) and let t ∈ R+. Then, using the definitions (47), (48), (50)–
(52) it follows that (55) holds. Moreover, recall that the regularity σ ∈ C(R+;Σ)

implies that PΣσ (t) = σ (t) and, in addition, (53) yields σ (t) = E ε(u(t)) + Θu(t).
Substituting these equalities in (55) and using (49) we see that (42) holds. Finally,
to conclude, we note that (41) is a direct consequence of (53) and the definition of
the operator Θ in Lemma 5.

The interest in Lemma 5 arrises in the fact that it decouples the unknowns u and
σ in the system (41)–(42). The next step is to provide the unique solvability of the
variational inequality (54) in which the unknown is the displacement field. To this
end we need the following intermediate result on the operator R.

Lemma 6 There exists LR > 0 which depends only on Ω , Γ3 and R, such that

‖R(u1, z1) − R(u2, z2)‖L2(Γ3) ≤ LR

(‖u1 − u2‖V + ‖z1 − z2‖Q
)

(56)

∀u1,u2 ∈ V, z1, z2 ∈ Q.

Proof Let u1,u2 ∈ V, z1, z2 ∈ Q. Then, by the definition (48) of the operator R
combined with inequality (17) we have

‖R(u1, z1) − R(u2, z2)‖L2(Γ3) (57)

≤ cR‖PΣ(E ε(u1) + z1) − PΣ(E ε(u2) + z2)‖Q1 .

On the other hand, the definition of the set Σ and the nonexpansivity of the operator
PΣ yields

‖PΣ(E ε(u1) + z1) − PΣ(E ε(u2) + z2)‖Q1 (58)

≤ ‖E ε(u1) − E ε(u2) + z1 − z2‖Q

We now combine inequalities (57) and (58) to see that

‖R(u1, z1) − R(u2, z2)‖L2(Γ3) ≤ cR
(‖E ε(u1) − E ε(u2) + z1 − z2‖Q

)
(59)

Lemma 6 is now a consequence of inequality (59) and assumption (26).
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We proceed with the following existence and uniqueness result.

Lemma 7 The variational inequality (54) has a unique solution with regularity
u ∈ C(R+,U ).

Proof It is straightforward to see that inequality (54) represents a variational inequal-
ity of the form (7) in which X = V , K = U and Y = Q × L2(Γ3) × Q. Therefore,
in order to prove its unique solvability, we check in what follows the assumptions of
Theorem 2.

First, we note that assumption (1) is obviously satisfied.Next, we use the definition
(47), assumptions (26), (29)(b) and inequality (16) to obtain that

‖Au − Av‖V ≤ (LE + c20L p)‖u − v‖V ∀u, v ∈ V, (60)

where LE is a positive constant which depends on the elasticity operator E . On the
other hand, from (26)(c) and (29)(c) the we deduce that

(Au − Av,u − v)V ≥ mE ‖u − v‖2V . (61)

We conclude from above that the operator A satisfies condition (2) with L = LE +
c20L p and m = mE .

Letw = (x, y, z) ∈ Y and u ∈ V be fixed. Then, using the properties of the traces
it is easy to see that the function v �→ j (w,u, v) is convex and continuous and, there-
fore, it satisfies condition (3)(a). We now consider the elements w1 = (x1, y1, z1),
w2 = (x2, y2, z2) ∈ Y , u1,u2, v1, v2 ∈ V . Then, using inequality (56), assumption
(31) and inequality (16) we find that

j (w1,u1, v2) − j (w1,u1, v1) + j (w2,u2, v1) − j (w2,u2, v2)

≤ ‖x1 − x2‖Q‖v1 − v2‖V + c0‖y1 − y2‖L2(Γ3)‖v1 − v2‖V
+c0LR‖μ‖L∞(Γ3)

(‖u1 − u2‖V + ‖z1 − z2‖Q
) ‖v1 − v2‖V

≤ α ‖w1 − w2‖Z‖v1 − v2‖V + β ‖u1 − u2‖V ‖v1 − v2‖V
whereα = 2max {1, c0, c0LR‖μ‖L∞(Γ3) } andβ = c0LR‖μ‖L∞(Γ3). It follows from
here that j satisfies condition (3)(b). Let

μ0 = mE

c0LR
, (62)

which, clearly, depends only on Ω,Γ1, Γ3, R and E . Then, it is easy to see that if
the smallness assumption ‖μ‖L∞(Γ3) < μ0 is satisfied we have β < m and, therefore,
condition (6) holds.
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Next, let u, v ∈ C(R+; V ), n ∈ N and let t ∈ [0, n]. Then, using (49) and taking
into account (30)(b) and (16) we obtain that

‖Φu(t) − Φv(t)‖L2(Γ3) =
∥
∥∥∥∥∥
F

⎛

⎝
t∫

0

u+
ν (s)ds

⎞

⎠ − F

⎛

⎝
t∫

0

v+
ν (s)ds

⎞

⎠

∥
∥∥∥∥∥
L2(Γ3)

≤ LF

∥∥∥∥∥
∥

t∫

0

(u+
ν (s) − v+

ν (s))ds

∥∥∥∥∥
∥
L2(Γ3)

≤ c0LF

t∫

0

‖u(s) − v(s)‖V ds.

Therefore, using this the definition (50) of the operator S and (45) we have

‖S u(t) − S v(t)‖Q×L2(Γ3)×Q ≤ (2 θn + c0LF )

t∫

0

‖u(s) − v(s)‖V ds.

It follows from here that the operator S satisfies condition (4). Finally, we note
that assumption (28) on the body forces and traction and definition (52) imply that
f ∈ C(R+; V ).

We conclude from above that all the assumptions of Theorem 2 are satisfied.
Therefore, we deduce that inequality (54) has a unique solution u ∈ C(R+;U )which
concludes the proof.

We now have all the ingredients to provide the proof of Theorem 3.

Proof (Proof of Theorem 3) Let u ∈ C(R+;U ) be the unique solution of inequality
(54) obtained in Lemma 7 and let σ the function defined by (53). Then, using assump-
tion (26) it follows that σ ∈ C(R+; Q). Let t ∈ R+ be given. Arguments similar to
those used in the proof of Lemma 7 show that

∫

Ω

σ (t) · (ε(v) − ε(u(t))) dx +
∫

Γ3

p(uν(t))(vν − uν(t)) da

+
∫

Γ3

F

⎛

⎝
t∫

0

u+
ν (s)ds

⎞

⎠ (v+
ν − u+

ν (t)) da

+
∫

Γ3

μ|R(PΣ(σ ν(t))|n∗ · (vτ − uτ (t)) da

≥
∫

Ω

f0 · (v − u(t)) dx +
∫

Γ2

f2(t) · (v − u(t)) da ∀ v ∈ U.
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Let ϕ ∈ C∞
0 (Ω)d . We test in this inequality with v = u(t) ± ϕ to deduce that

∫

Ω

σ (t) · ε(ϕ) dx =
∫

Ω

f0 · ϕ dx

which implies that Divσ (t) + f0 = 0 in Ω . It follows from here that σ (t) ∈ Σ and,
moreover, σ ∈ C(R+;Σ).

We conclude from above that (u, σ ) represents a couple of functions which sat-
isfies (53)–(54) and, in addition, it has the regularity (u, σ ) ∈ C(R+;U × Σ). The
existence part in Theorem 3 is now a direct consequence of Lemma 5. The unique-
ness part follows from the uniqueness of the solution of the variational inequality
(54), guaranteed by Lemma 7.
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10. Haslinger, J., Hlavácek, I., Nečas, J.: Numerical methods for unilateral problems in solid
mechanics. In: Lions, J.-L., Ciarlet, P. (eds.) Handbook of Numerical Analysis, vol. IV, pp.
313–485. North-Holland, Amsterdam (1996)
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Efficient Lower Bounds for Packing
Problems in Heterogeneous Bins
with Conflicts Constraint

Mohamed Maiza, Mohammed Said Radjef and Lakhdar Sais

Abstract In this paper we discuss a version of the classical one dimensional bin-
packing problem, where the objective is to minimize the total cost of heterogeneous
bins needed to store given items, each with some space requirements. In this version,
some of the items are incompatible with each other, and cannot be packed together.
This problem with various real world applications generalizes both the Variable
Sized Bin Packing Problem and the Vertex Coloring Problem.We propose two lower
bounds for this problem based on both the relaxation of the integrity constraints and
the computation of the large clique in the conflicts graph.

1 Introduction and Problem Positioning

The purpose of this paper, is to investigate the problem of determining the minimal
possible cost generated by the use of heterogeneous warehouses required in a supply
chain to store given items, where some of the items are in conflicting with each other,
and cannot be stored together in the same warehouse. We say with compatible items
the items that can be stored simultaneously in the samewarehouse, otherwise they are
called incompatible items. This problem occur in a number of industrial and trans-
portation contexts within a supply chain where generally we prospect to ask the best
transfer cost of diverse available products. For example, a manufacturing company
has to ship n customer orders from its factory to a distribution center. All shipments
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are carried out by leased trucks and several truck sizes are available with different
leasing costs. Besides, some customer orders cannot be stored simultaneously in the
same truck for reasons of deterioration or to avoid fire danger. The problem is to
determine the least-cost fleet mix and size for shipping all the orders with the respect
of compatibility constraint. It is convenient to associate with the problem a conflict
graph G = (V ; E), where an edge (i; i ′) ∈ E exists if and only if items i and i ′ are
the incompatible items. This problem which we called in what follows the Variable
Sized Bin-Packing Problem with Conflicts (VSBPPC) is strongly NP-hard since it
generalizes both the Variable Sized Bin Packing Problem (VSBPP) inwhich all items
are mutually compatible, and the Vertex Coloring Problem (VCP) in which all items
weights take value 0. Also, it is clear that the particular case where we consider only
one type of warehouses (i.e. all warehouses are identical) turns out to be the studied
one-dimensional Bin Packing Problem with Conflicts (BPPC).

Although the VSBPPC is NP-hard with important real world application, few
workswhich it investigate are outlined. Indeed, only theonline versionof this problem
has been addressed by [1] and [2] whose the goal was to pack all items into a set of
bins with a minimum total size. In this version, a set of unpacked items is defined at
the beginning of the assignment and heterogeneous bins arrive one by one. Before
arriving of such a bin, authors proposed and analyzed the asymptotic competitive
ratio of algorithms need to decide on which items to pack into the existing bin.
Whereas, in this paper we address the offline version of the VSBPPC which can
be showed as a common problem with many other combinatorial problems such
as the BPPC, VSBPP and VCP where we considered them as a particular cases of
described problem. So, these problems has been extensively investigated in numerous
papers and therefore we restrict our reviewing to the papers which are used heuristics
approaches that we will base to solve a problem in the remainder of this paper.

For solving the VSBPP, it is worth to note that [3] proposed and analyzed two
variants of the well-known first-fit decreasing and best-fit decreasing algorithms.
They show that these algorithms give a solution which is less than 3

2copt + 1 for the
general case where copt refers to the value of an optimal cost solution. Haouari and
Serairi [4] proposed four constructive greedy heuristics based on iteratively solving
a subset-sum problem, together with a set-covering based heuristic and a genetic
based algorithm. Performances of their proposition are analyzed on a large set of
randomly generated test instances with up to seven bin-type and 2000 items. Among
the proposed greedy heuristics, the best compromise between solution quality and
running time is obtained by the named SSP3 heuristic. In [5], the same authors
proposed six different lower bounds for the VSBPP where the number of bins for
each bin-type is limited, as well as an exact algorithm. They show that the particular
case with all size items larger than a third the largest bin capacity can be restated and
solved in polynomial-time as amaximum-weightmatchingproblem in anon-bipartite
graph. Introducing the conflict constraints, it is noteworthy to studies the propriety
of the conflicts graph, but most problem are also NP-hard for the arbitrary conflicts
graph, particularly the VCP and the maximal clique search problem. These last
problems are extensively discussed in the literature. Johnson [6] described an efficient
polynomial greedy heuristic to determine the largest clique set. This heuristicmethod
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initializes the clique with the vertex of maximum degree in the graph and then adds
successive vertices each of which has edges with all the vertices already included in
the clique. At each iteration, vertices are considered according to a decreasing degree
order. Thereafter, this greedy heuristic was widely applied to solve numerous related
problems such as the BPPCwhere the main heuristic approaches resolution available
in the literature are those given in [7, 8], in which authors surveyed previous results
in the literature, presented new lower and upper bounds, and introduced benchmark
instances.

Based on these cited works, this paper aimed at providing new lower and upper
bounds for the VSBPPC. So, it is organized as follows: in the next section (Sect. 2)
we provide the description and the mathematical formulation of our problem. Then,
we present in the followed section (Sect. 3) our new lower bounds based on both the
computation of themaximal clique set and the relaxation scheme of themathematical
formulation. Finally, we close this paper in Sect. 4 with concluding remarks.

2 Problem Description and Formulation

The VSBPPC is formally defined as follows; Given a set V of n items of sizes
w1, w2, . . . , wn with

w1 � w2 � · · · � wn,

where we it associate an undirected graph named as a conflict graph G = (V ; E)
such that (i, i ′) ∈ E when the two items i and i ′ of V are incompatible items.
Likewise, given m different bin-types (Categories of warehouses), each bin-type j
( j = 1, . . . ,m) includes an infinite number of identical bins (bins are warehouses),
each having a capacity Wj and a fixed cost c j with

W1 � W2 � · · · � Wm

and

c1 � c2 � · · · � cm .

The VSBPPC problem consists in assigning each items from V into one bin while
ensuring that no bin contains incompatible items and the cumulated size in each
bin does not exceed its capacity and the total cost of the needed bins is minimized.
Without loss of generality, we assume that the data is deterministic and presented in
off-line mode and that the largest item can be assigned at least to one type of bins
(w1 � Wm). Note that if c j > c j ′ for 1 � j < j ′ � m then bin-type j is dominated
and should therefore not be considered.

The VSBPPC can be formulated as an integer linear program (ILP). Let xi jk be a
binary variable equal to 1 if and only if item i is assigned to bin k of bin-type j and
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0 otherwise, and let y jk be a binary variable equal to 1 if and only if bin k of bin-type
j is used, 0 otherwise. The formulation is then

min
m∑

j=1

n∑

k=1

c j y jk , (1)

s.t.
m∑

j=1

n∑

k=1

xi jk = 1, i = 1, . . . , n, (2)

n∑

i=1

wi xi jk ≤ Wj y jk , j = 1, . . . ,m, k = 1, . . . , n, (3)

xi jk + xi ′ jk � 1, (i, i ′) ∈ E j = 1, . . . ,m, k = 1, . . . , n, (4)

xi jk ∈ {0, 1}, i = 1, . . . , n j = 1, . . . ,m, k = 1, . . . , n, (5)

y jk ∈ {0, 1}, j = 1, . . . ,m, k = 1, . . . , n. (6)

The objective function to be minimized (1) represents the cost of the bins used to
pack all items. Constraint (2) ensures that each item i has to be packed. Constraint
(3) indicates that the amount packed in each bin does not exceed the capacity of this
bin, whereas, constraint (4) make sure that each incompatible pair (i, i ′) of items
does not assigned to the same bin. Finally, constraints (5) and (6) restrict decision
variables to be binary. Note that the above ILP without constraint (4) is the well
formulation of the VSBPP without conflict.

In the remaining of the paper we will use the definition of extended conflict graph
G ′(V, E ′) where

E ′ = E ∪ {
(i, i ′) : i, i ′ ∈ V and wi + wi ′ > Wm

}
.

3 Lower Bounds

We have developed two lower bounds L1 and L2 for the VSBPPC in order to provide
themeans tomeasure the solution quality of the various procedure and also to be used
as performance criterion of the heuristics developed in the next section. Obtained
through the resolution of the relaxed mathematical formulation, these lower bounds
are based on the principle of relaxing the constraint (5) which ensures that each item
should be entirely—not in fractional way—assigned to such a bin. The similarly
principle has been adopted on splitting-based lower bound of [5] for the VSBPP
without conflicts—denoted in what follows L0-. This last bound is based on the
resolution of the relaxation problem (7)–(9) where authors consider the set S of large
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items in which each item should be fit alone, only in the largest bin. Therefore one
bin is initialized for each item in this set, and only the remaining items in V \ S are
assigned in a fractional way to the residual capacity of initialized bins and possibly
to other new bins.

L0 = min
m∑

j=1

c j x j + qcm (7)

s.t.

m∑

j=1

Wj x j �
m∑

i=q+1

wi − min

⎛

⎝qWm −
q∑

i=1

wi ,

m∑

i=p

wi

⎞

⎠ (8)

x j ∈ N; j = 1, . . . ,m, (9)

x j , q and p are respectively, the number of bins of type j , the largest index of
item such that wq > max

(
Wm−1,

Wm
2

)
, and the smallest index of item such that

wq + wp � Wm .
The VSBPPC can be shown as a particular case of the VSBPP in which the

corresponding conflicts graph is the discrete graph Dn of order n (G(V, E)with E =
∅; Graph without edges in which all the items are mutually compatible). Therefore,
any lower bound for the VSBPP without conflicts is also a valid lower bound for
the problem with conflicts. Indeed, if the total cost of packing of such an instance
without a conflicts constraint is defined then it is trivial to constant that by addition
of restrictions on the packing process, this initial cost increases or, in the worst cases,
remains unchanged. Then we have

L0 = L(Dn) � L(G), (10)

where L(G) is any lower bound for the VSBPPC with conflicts graph G.
Now, consider the case where the conflicts graph is a complete graph (Kn) of n

items in which each item should be loaded into a distinct bin (A complete graph is
defined here as a graph in which every pair of items is mutually incompatible). Under
the assumption imposed on this paper (W1 < W2 < · · · < Wm and c1 < c2 < · · · <
cm), each item should be loaded in the smallest possible (i.e. cheapest) bin that fits.
Then the problem becomes to finding for each item the smallest index of bin-type
that which can fit and therefore the optimal cost solution copt (Kn) that is also the
VSBPPC lower bound for a complete conflicts graph L(Kn) can be given in O(n)
time as follows.

Define q j ( j = 1, . . . ,m) be the largest index of item i such asWj−1 < wi � Wj

with W0 = 0.

L(Kn) = copt (Kn) =
m∑

j=1

c j
(
q j − q j−1

)
with q0 = 0. (11)
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Bydefinition, the value (q j − q j−1) is the number of itemswith sizewi in [Wj−1,Wj ].
The cost obtained by formula (11) represents an optimal solution for the problem
(1)–(6) where the constraints (4) is instantiated for each items pair. Obviously, this
optimal cost solution is an upper bound for the VSBPPC in which we cannot be
increases when we have to relaxing or to remove some instances of this constraint,
which is the case of the VSBPPC with no complete conflicts graph. Then from
formulas (10) and (11), we have

L0 = L(Dn) � L(G) � L(Kn) = copt (Kn). (12)

Here again, we derive our lower bounds for the VSBPPC for the general conflicts
graph.Themainprinciple of our proposition canbe summarized in the three following
steps:

1. Find the maximal clique set VK from the conflicts graph;
2. Initialize one bin for each item of VK ;
3. Assign the items of V \ VK into the initialized bins in fractional way and possibly

into new bins without considering the conflicts.

The two last steps will be carried out by solving the relaxed mathematical formu-
lation and both lower bounds L1 and L2 execute the same procedure to solve this
mathematical model. Themain difference between these two propositions lies in how
to obtain themaximal clique set (Step 1). Indeed, finding themaximal clique set VK is
also an NP-hard problem. In L1 this set is determined by application of Johnson’s [6]
greedy heuristic directly on the extended conflicts graph G ′(V, E ′). Whilst in L2, it
is obtained throughMuritiba’s improvement computation [8] where authors compute
the large clique set on the initial conflicts graph G(V ; E) using Johnson’s greedy
heuristic and remove this set from the graph G, then from the obtained partial graph,
they updating the set E to E ′ and enlarge the initial clique by added items from this
new partial extended conflicts graph using constantly Johnson’s greedy heuristic. In
[8], authors indicate that this strategy leads to larger cliques set than those obtained
by applying the Johnson’s algorithm directly on the extended conflicts graph.

Now, consider the following notation:

• VK : a set of a maximal clique from the extended conflict graph G ′(V, E ′);
• V K : a complement set of VK in V (V K = V \ VK );
• s = ∑

i∈V K
wi be the total items size of the set V K .

Obviously, each item from VK should be assigned into a distinct bin that can fits
and consequently we have to initialize |VK | bins at least. Let j∗ be the smallest index
of bin-type that can receive the smallest item of the clique set (Wj∗ � min

i∈VK

(wi )), and

consider the partition of VK into the subsets Vh as follows:

Vh = {i ∈ VK : Wh−1 < wi � Wh} for h = j∗, . . . ,m.



Efficient Lower Bounds for Packing Problems … 269

Clearly, each item i from Vh (h = j∗, . . . ,m.) should be assigned alone into one
bin from a selected bin-type j j ∈ [h,m] . Let yhj be the number of bins of type j
( j = h, . . . ,m) that are used for packing the items of subset Vh . Then, we have

m∑

j=h

yhj = |Vh | for h = j∗, . . . ,m (13)

Also, the assignment of any item from Vh into one bin of a given bin-type j ( j ∈
[h,m]) generates a residual capacity W̃hj that it is at most equal toWj − mini∈Vhwi .
In the calculation of our lower bound, the residual capacity will be occupied with the
items of V K without considering the conflicts in this last subset. Hence, for every
bin-type j and for a given subset Vh , the maximum value of W̃hj can be obtained by
solving the following subset sum problem (SSP)

W̃hj = Max
∑

i∈V K

wi zi (14)

s.t. ∑

i∈V K

wi zi � Wj − min
i∈Vh

wi (15)

zi ∈ {0, 1}, i ∈ V K (16)

Both lower bounds consist in the resolution of the VSBPPC by relaxing the inte-
grality constraints in which we assume that only items from V K might be split. For
that, define an integer variable y j as the number of added bins of type j used for
complete the packing of the items of V K set. Then, we have to solve the following
mathematical programming formulation

LB = Min

⎛

⎝
m∑

j=1

c j y j +
m∑

h= j∗

m∑

j=h

c j yhj

⎞

⎠ (17)

s.t.
m∑

j=h

yhj = |Vh | h = j∗, . . . ,m (18)

m∑

j=1

Wj y j +
m∑

h= j∗

m∑

j=h

Wj yhj �
∑

i∈V
wi (19)

m∑

j=1

Wj y j +
m∑

h= j∗

m∑

j=h

W̃hj yhj �
∑

i∈V K

wi (20)
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y j ∈ N, j = 1, . . . ,m (21)

yhj ∈ N, h = j∗, . . . ,m j = h, . . . ,m. (22)

The objective function (17) is to minimize the total cost of required bins (both
the additional bins that are added for complete the packing of items from V K and
the bins used for the packing of items from the maximal clique set VK ). Constraint
(18) is derived from formula (13) ensure that each item of the maximal clique set VK

is packed into a distinct bin. Constraint (19) ensures that the total capacity of used
bins enables to pack all the items. Constraint (20) informs that the residual capacities
generated by the packing of the maximal clique items together with the capacity of
additional bins are enable to pack the set of items from V K . Whilst, formulas (21)
and (22) represent the integrality constraints.

4 Conclusion

The variable sized bin-packing problem with conflicts is an NP-hard combinatorial
problem often encountered in the practical field; it generalizes both the bin-packing
problem with heterogeneous bins and the vertex coloring problem, both well known
and notoriously difficult. In this paper, we have addressed the offline version of
this problem, where we have proposed two variant of lower bound based on the
combination of the clique computation and the constraint relaxing formulation.

Finally, considering the practical relevance of discussed problem and the fact that
the offline version of this problemhas not been excessively addressed in the literature,
this work can be considered as a comparison basis for the future works.
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Global Existence, Uniqueness and
Asymptotic Behavior for a Nonlinear
Parabolic System

Naima Aïssa and H. Tsamda

Abstract This paper is dealing with a cancer invasion model proposed by Chaplain
(J Theor Biol 241:564–589, 2006). We are interested by the case of small initial data
and when matrix-degrading enzymes initial data is bounded by below by a strictly
positive constant. We provide global existence and uniqueness of weak solutions.
We prove that the global solution converges with an exponential decay to a study
state which is a solution of the corresponding stationary equation.

1 The Model Equation

The model is described by the following system [2]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t n = DΔn − ρ∇ · (n∇ f ), (t, x) ∈ R
+ × Ω,

∂t f = −γm f, (t, x) ∈ R
+ × Ω,

∂tm = εΔm + αn − νm, (t, x) ∈ R
+ × Ω,

n(0) = n0, f (0) = f0, m(0) = m0,

∂νn = ∂νm = 0, on R
+ × ∂Ω,

(1)

where n is the cancer cell density, m is the concentration of the matrix degrading
enzyme, f is the extracellular matrix density, D, ρ, γ, ε, ν are nonnegative constant
and Ω is a bounded regular domain of R2.

One can summarize briefly the invasion-degradation process as follow. The extra-
cellular matrix is invaded by the migration of cancer cells following the haptotactic
gradient ∇ · (n∇ f ). The migrated cells produce degrading matrix enzyme m which
degrades the surrounded extracellular matrix leading to the cancer growth. Local
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existence and uniqueness of regular solutions for such a model has been proved by
[4] for classical initial data. The most feature of such equations is the possibility of
blowing-up in finite time for arbitrary initial conditions. However, global existence
can be obtained for small initial data.

In the sequel, L2(Ω) will denote the Hilbert space of measurable and square
integrable functions endowed with the norm ‖.‖ while the Banach space L p(Ω)

will be endowed with the usual norm denoted by ‖.‖0,p. The weak solutions are
constructed the Sobolev spaces Hm(Ω) endowed with the classical norm ‖.‖Hm .

The plan of the manuscript is the following. In Sect. 2 we will prove existence
and uniqueness of a local in time solution while in Sect. 3, we will prove that the
previous solution is global in time. Finally, the Sect. 4 is devoted to the asymptotic
behavior of the solution. More precisely, we will prove that the solution converges
with an exponential decay to the average of the initial data.

2 Local in Time Existence and Uniqueness of a Solution

Definition 1 The triplet (n, f,m) with

n ∈ L∞(0, T ; L∞(Ω)) ∩ L2(0, T ; H 1(Ω)), ∂t n ∈ L2(0, T ; (H 1(Ω))
),

f ∈ C (0, T ; H 1(Ω)) ∩ L∞(0, T ; H 2(Ω)),

m ∈ L∞(0, T ; L2(0, T )) ∩ L2(0, T ; H 1(Ω)); ∂tm ∈ L2(QT ),

is called a weak solution of (1) if f satisfies the ODE a.e; and if for all
ϕ ∈ L2(0, T ; H 1(Ω))

T∫

0

〈∂t n, ϕ〉 +
T∫

0

∫

Ω

{D∇n − ρn∇ f } · ∇ϕdxdt = 0,

∫

QT

∂tmϕ + ε∇m · ∇ϕ − (νm − αn)ϕdxdt = 0.

The aim of this section is to prove the following Theorem

Theorem 2 Assume that

n0 ∈ L∞(Ω), f0 ∈ W 2,p(Ω),m0 ∈ W 1,p(Ω), p > 2

n0 ≥ 0, f0 ≥ 0, m0 ≥ γ
 > 0, ∂ν f0 = 0,
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for some positive constant γ
. Then, there exists a unique local nonnegative weak
solution

(n, f,m) ∈ L2(0, T 
, H 1(Ω)) × L2(0, T 
, H 2(Ω)) × L2(0, T 
, H 1(Ω))

satisfying m ≥ γ
.

The proof will be done in several steps.

2.1 The Equation Satisfied by m for Given n

Suppose that the initial condition satisfies m0 ≥ γ
, and let n ≥ 0,

n ∈ L2(0, T ; H 1(Ω))

be given. Our aim is to construct a solution satisfying m ≥ γ
 to the problem

{
∂tm = εΔm + αn − νm, (t, x) ∈ R

+ × Ω.

m(0, .) = m0, ∂νm = 0.
(2)

To do so, we will consider the following intermediate problem

{
∂tm = εΔm + αn − νm1{m≥γ
}, (t, x) ∈ R

+ × Ω,

m(0, .) = m0, ∂νm = 0.
(3)

Solution for such a problem can be constructed by an iteration argument. Indeed, let
us consider the sequence (mk), defined for given m1, by

{
∂tmk+1 = εΔmk+1 + αn − νmk+11{mk≥γ
}, (t, x) ∈ R

+ × Ω,

mk+1(0, .) = m0, ∂νmk+1 = 0.
(4)

We check easily by standard calculus that for fixed T > 0, there exists a constant
CT,n independent of k such that

∥
∥mk+1

∥
∥2

L∞(0,T ;L2(Ω))
+ ∥

∥mk+1
∥
∥2

L2(0,T ; H 1(Ω))
+ ∥

∥∂tm
k+1

∥
∥2

L2(ΩT )
≤ CT,n.

Then, for a subsequence, mk → m strongly in L2(ΩT ), where m is a solution to (3).
Then multiplying (3) by (m − γ
)

− and integrating by parts, we get

−∂t
∥∥(m − γ
)

−∥∥2 = ∥∥∇(m − γ
)
−∥∥2 +

∫

Ω

n(m − γ
)
−dx ≥ 0.
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As m0 ≥ γ
 then ‖(m − γ
)
−‖2 = 0 hence m ≥ γ
. Consequently the solution m

to (3) is also a solution to (2). Then we proved that if m0 ≥ γ
, n ≥ 0 and
n ∈ L2(0, T ; H 1(Ω)), the solution to (2) satisfies m ≥ γ 
. Moreover, by standard
computations on parabolic equations, there exists a constant C > 0 depending on
the initial data such that

‖m‖2L∞(0,T ; L2(Ω)) + ‖m‖2L2(0,T ; Hk (Ω)) ≤ C
(
‖n‖2L2(0,T ; H 1(Ω)) + 1

)
, (5)

k=1, 2, 3.

2.2 The Equation Satisfied by the Extracellular Matrix
Density f for Given m

Let m be given by the previous subsection and f be the solution of the ordinary
differential equation,

∂t f = −γm f, f (0) = f0.

We prove easily that

‖ f ‖2Hk (Ω)(t) ≤ C f0

(
1 + t ‖m‖2L2(0,T ; Hk (Ω))

)
e−2γ γ
t , k = 1, 2, 3. (6)

∥∥∥∥∥
∥∥
Δ f − f0

∣∣∣∣∣
∣
γ

t∫

0

∇m(τ )dτ

∣∣∣∣∣
∣

2
∥∥∥∥∥
∥∥

2

L2(Ω)

(t) ≤ C f0

(
1 + t‖n‖2L2(QT )

)
e−2γ γ
t , (7)

where
C f0 = ‖Δ f0‖2L2(Ω) + 2γ ‖∇ f0‖2L2(Ω) + γ ‖ f0‖2L∞(Ω) . (8)

2.3 The Parabolic Equation Satisfied by Cell Density
for Given ECM Density f

For f satisfying properties of the previous subsection, we consider n
 the weak
solution of the linear parabolic problem

{
∂t n
 = DΔn
 − ρ∇ · (n
∇ f ), (t, x) ∈ (0, T ) × Ω,

n(0) = n0, ∂νn
 = 0.
(9)

From classical results on parabolic equations, there exists a unique solution n
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n
 ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H 1(Ω)), ∂t n

 ∈ L2(0, T, (H 1(Ω)
)),

where (H 1(Ω))
 is the dual space of H 1(Ω).

2.4 Fixed Point Procedure

For fixed T > 0, Ri > 0 i = 1, 2, 3, we define VT by

VT =
{
n ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)), n ≥ 0, n(0, x) = n0
‖n‖L∞(0,T ;L2(Ω)) ≤ R1, ‖∇n‖L2(0,T ;L2(Ω)) ≤ R2, ‖∂t n‖L2(0,T ;(H1(Ω))
) ≤ R3

}

Define L on VT as follows. Let n ∈ K and m be the corresponding solution of

∂tm = Δm + αn − νm, m(0) = m0, ∂νm = 0.

Then consider f the solution of the ODE

∂t f = −γm f, f (0) = f0

Then L (n) is defined as the weak solution

∂t n

 = DΔn
 − ρ∇ · (n
∇ f ), n
(0) = n0, ∂νn


 = 0.

It is clear that VT is a compact and convex subset of L2(QT ) and we use standard
arguments to prove that there exists Ri , i = 1, 2, 3 such that for T small enough, the
operator L sends VT into itself and that L is continuous. Indeed, Multiplying the
parabolic equation by n
 and integrating by parts we get

d

2dt

∥∥n

∥∥2 + D

∥∥∇n

∥∥2 = ρ

∫

Ω

n
∇ f · ∇n
 = ρ

2

∫

Ω

∇((n
)2) · ∇ f

= −ρ

2

∫

Ω

((n
)2) · Δ f.

Consequently

d

2dt

∥∥n

∥∥2 + D

∥∥∇n

∥∥2 ≤ ρ

2
‖Δ f ‖ ∥∥(n
)2

∥∥ ≤ ρ

2
‖Δ f ‖ ∥∥n


∥∥
0,3

∥∥n

∥∥
0,6 .

Then using the Gagliardo-Nirenberg inequality

‖n‖0,3 ≤ C‖n‖ 1
2

H 1(Ω)
‖n‖ 1

2
0,2,
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and the fact that H 1(Ω) is continuously embedded into L6(Ω), we obtain

d

2dt

∥∥n

∥∥2 + D

∥∥∇n

∥∥2 ≤ C ‖Δ f ‖ ∥∥n


∥∥
3
2

H 1(Ω)
‖n
‖ 1

2 .

Furthermore, by Young’s inequality (p = 4
3 , q = 4)

d

2dt
‖n
‖2 + D‖∇n
‖2 ≤ Cα‖n
‖2H 1(Ω) + Cα‖Δ f ‖4 ∥∥n


∥∥2
.

Then, choosing α small enough, we get

d

2dt
‖n
‖2 + D

2
‖∇n
‖2 ≤ (Cα‖Δ f ‖4 + Cα)‖n
‖2.

Combining (6), (5) and the fact that n ∈ VT , we deduce that

d

2dt
‖n
‖2 + D

2
‖∇n
‖2 ≤ C(R1, R2, α, T )‖n
‖2,

for some positive constant depending on R1, R2, α, T . Using Gronwall’s lemma,
we get

‖n
‖(t) ≤ e

t∫

0
C(R1,R2,α,T )dτ‖n0‖2,

‖∇n
‖2L2(QT )
≤

⎛

⎝1 +
T∫

0
e

t∫

0
C(R1,R2,α,T )dτ)

⎞

⎠ ‖n0‖2.
(10)

To provide time derivative estimate, we test the parabolic equation satisfied by n
 by
ϕ ∈ L2(0, T ; H 1(Ω))

〈∂t n
;ϕ〉 = −D
∫

Ω

∇n
 · ∇ϕdx + ρ

∫

Ω

n
∇ f · ∇ϕdx .

Then

|〈∂t n
;ϕ〉| ≤ D‖∇n
‖‖∇ϕ‖ + ρ‖n
∇ f ‖‖∇ϕ‖
≤ D‖∇n
‖‖∇ϕ‖ + ρ‖n
‖0,4‖∇ f ‖0,4‖∇ϕ‖.

As H 1(Ω) is continuously embedded in L4(Ω), we deduce that

|〈∂t n
;ϕ〉| ≤ D‖∇n
‖‖∇ϕ‖ + ρ‖n
‖H 1(Ω)‖∇ f ‖H 1(Ω)‖∇ϕ‖,
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consequently

t∫

0

|〈∂t n
;ϕ〉|dt

≤ (
D‖∇n
‖L2(0,T,L2(Ω)) + ρ‖n
‖L2(0,T,H 1(Ω))‖ f ‖L∞(0,T,H 2(Ω))

) ‖ϕ‖L2(0,T ;H 1(Ω)).

This means

‖∂t n
‖L2(0,T ;(H 1)
)

≤ D‖∇n
‖L2(0,T,L2(Ω)) + ρ‖ f ‖L∞(0,T,H 2(Ω))‖n
‖L2(0,T,H 1(Ω))

≤ DR2 + ρ(R1 + R2) + C(R1, R2, T ).

(11)

Then, recalling (10) and (11), we check that for R2
1 = 2‖n0‖2, R2

2 = ‖n0‖2 + 1 and
R3 = DR2 + ρ(R1 + R2) + C(R1, R2, T ), the operator L sends VT into itself for
small time T .

Next, using again (10) and (11) and the uniqueness of the solution of (9) we prove
that the operator L is continuous on L2(0, T, L2(Ω)).

Finally, the existence of a solution (n, f,m) to (1) is a consequence of Schauder’s
fixed point theorem.

However, the uniqueness cannot be obtained by standard arguments because the
solution n is not smooth enough. We will use the idea developed by Gajewski-
Zakarias [3]. We set

g(n) = n(log(n) − 1)

Let (ni , fi ,mi ) two solutions of (1) with the same initial data. Then setting

h(n1, n2) = g(n1) + g(n2) − 2g

(
n1 + n2

2

)
,

we check that

∂t (h(n1, n2)) = (∂t n1) log

(
2n1

n1 + n2

)
+ (∂t n2) log

(
2n2

n1 + n2

)
.

Then replacing ∂t ni by DΔni − ρ∇ · (ni∇ fi ) and integrating by parts, we get

∫

Ω

h(n1, n2)dx ≤ C‖n1 + n2‖L∞(QT )

t∫

0

‖∇ f1 − ∇ f2‖2ds. (12)

Using the equations satisfied by f1 − f2 and m1 − m2 respectively, we prove easily
that
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t∫

0

‖∇ f1 − ∇ f2‖2ds ≤ C

⎛

⎝
t∫

0

‖∇m1 − ∇m2‖2 + ‖m1 − m2‖2ds
⎞

⎠ , (13)

and
‖∇m1 − ∇m2‖2(t) + ‖m1 − m2‖2(t)
≤ C

t∫

0
‖n1 − n2‖2ds

≤ C‖n1 + n2‖∞,QT

t∫

0
‖√n1 − √

n2‖2ds.
(14)

Then combining (12), (13) and (14), we get

∫

Ω

h(n1, n2)dx + ‖m1 − m2‖2H 1(Ω)(t)

≤ C‖n1 + n2‖∞,QT

⎧
⎨

⎩

t∫

0

‖√n1 − √
n2‖2 + ‖m1 − m2‖2H 1(Ω)(s)ds

⎫
⎬

⎭

Finally uniqueness follows from the following inequality ([3, Lemma 6.4; p. 112])

h(n1, n2) ≥ 1

4
(
√
n1 − √

n2)
2,

and Gronwall’s Lemma.

3 Global Existence of a Solution

We prove that the previous local solution is global in time by adapting some ideas
of Yagi [7].

Theorem 3 Denoting by CΩ the constant appearing in the interpolation inequality

‖a‖L8(Ω) ≤ CΩ‖a‖ 1
4

L2(Ω)
‖a‖ 3

4

H 1(Ω)
, ∀a ∈ L8(Ω) ∩ H 1(Ω),

and by p(x) = CΩx2(x + 1). Assuming that the initial data n0, f0 satisfy

4D − 1

2
(1 + C f0

γ 2γ 2



p2(‖n0‖
1
6

L1(Ω)
)) > 0, (15)

where D is the diffusion coefficient of cancer cells and C f0 the constant

C f0 = ‖Δ f0‖2L2(Ω) + 2γ ‖∇ f0‖2L2(Ω) + γ ‖ f0‖2L∞(Ω) . (16)
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Then there exists a constant C > 0 independent of time, depending only on the initial
data such that ∥∥∥∇√

(n + 1)
∥∥∥
2

L2(QT )
≤ C, ∀T > 0. (17)

Consequently, there exists C > 0 depending only on the initial data such that

‖n‖L2(0,t,H 2(Ω)) + ‖m‖L2(0,t,H 2(Ω)) + ‖ f ‖L2(0,t,H 2(Ω)) ≤ C(1 + t), t ∈ (0, T )

(18)
which leads to the global existence of a solution to (1).

Proof The proof relies on interpolation inequalities and mass conservation leading
to

‖n‖L2(Ω)(t)

≤ p
(
‖n0‖

1
6

L1(Ω)

) ∥∥∇√
(n + 1)

∥∥ (t) + (‖n0‖L1(Ω) + 1)
1
2 p(‖n0‖

1
6

L1(Ω)
),

(19)

for 0 ≤ t ≤ T (p is the polynomial defined above) and the following entropy inequal-
ity obtained by multiplying the first equation of (1) by the entropy term ln(n + 1)
and integrating by parts

ϕ(t) + (4D − 1
2 (1 + C f0

(γ γ
)2
)p2(‖n0‖

1
6

L1(Ω)
))

∥∥∇√
(n + 1)

∥∥2
L2((0,T )×Ω)

≤ C + ϕ(0),
(20)

where

ϕ(t) =
∫

Ω

(n + 1) (ln(n + 1) − n) dx

and C is a positive constant which is independent of T , depending only on the initial
data and γ, γ
. Finally, using (20) and (15) we deduce that

∥∥∥∇√
(n + 1)

∥∥∥
2

L2((0,T )×Ω)

is bounded by a constant which is independent of T then (17) is proved.
Next, combining (19) and (17) we deduce that there exists C , independent of T ,

depending only on the data such that

‖n‖L2(0,T ); L2(Ω) ≤ C. (21)

Consequently (18) follows from classical results on parabolic equations. To end this
section, it remains to prove that n ∈ L∞(0, T, L∞(Ω)). This is done by controlling
L p norms and using the theorem of Alikakos [1] based on the iterations theorem of
Moser. See also [3].
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4 Asymptotic Behavior of the Solution

We will need more regularity on the initial data to provide the asymptotic behavior
of the solution. We will prove that n → n0, m → α

ν
n0, f → 0 in L∞(Ω) with

exponential decay, where

n0 = 1

|Ω|
∫

Ω

n0(x)dx .

Theorem 4 Assume that the initial data satisfy (15) and

(n0,m0, f0) ∈ H 2(Ω) × H 2(Ω) × H 3(Ω).

Then for arbitrary 0 < β < γγ


lim
t→∞ eβt‖ f (t, .)‖L∞(Ω) = 0. (22)

Moreover, there exists a constant k > 0 depending on D and |Ω| such

lim
t→∞ ekt‖n(t, .) − n0‖L∞(Ω) = 0. (23)

Finally for 0 < δ < min(2ν, κ)

lim
t→∞ eδt‖m(t, .) − α

ν
n0‖L∞(Ω) = 0. (24)

Proof As

f (t, x) = f0(x)e
−

t∫

0
m(τ,x)dτ

, m ≥ γ
, a.e.,

then ‖ f (t, .)‖L∞(Ω) ≤ ‖ f0‖L∞(Ω)e−γ γ
t then (22) holds. Denoting by

P1(u) = ∂t n − DΔn + ρ∇ · (n∇ f )

and testing ∇P1(u) by ∇Δn and integrating by parts, we get

d

2dt
‖Δn‖2L2(Ω) + D‖∇Δn‖2L2(Ω) ≤ D

2
‖∇Δn‖2L2(Ω) + C‖∇ · (n∇ f )‖2H 1(Ω).

Hence

d

2dt
‖Δn‖2L2(Ω) + D

2
‖∇Δn‖2L2(Ω) ≤ C‖n∇ f ‖2H 2(Ω) ≤ ‖n‖2H 2(Ω)‖ f ‖2H 3(Ω).
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Consequently, using (6), (5) and (18)

d

2dt
‖Δn‖2L2(Ω) + D

2
‖∇Δn‖2L2(Ω) ≤ C(1 + t)e−2γ γ2t ≤ Ce−γ γ2t . (25)

Moreover, testing P1(u) by Δu and integrating by parts

d

2dt
‖∇n‖2L2(Ω) + D‖Δn‖2L2(Ω) ≤ D

2
‖Δn‖2L2(Ω) + C‖∇ · (n∇ f )‖2L2(Ω).

By the previous arguments we get

d

2dt
‖∇n‖2L2(Ω) + D

2
‖Δn‖2L2(Ω) ≤ C(1 + t)e−2γ γ2t ≤ Ce−γ γ2t . (26)

Next, wewill need the following Lemmawhose proof is based on Poincaré-Wirtinger
inequality

Lemma 5 LetΩ be a bounded and regular domain ofRN , N ≤ 3. Then there exists
a constant CΩ > 0 depending only on Ω such that for every uv ∈ H 2(Ω) satisfying
∂νu = 0

‖∇u‖L2(Ω) ≤ CΩ‖Δu‖L2(Ω) (27)

‖u − u‖L∞(Ω) ≤ CΩ‖Δu‖L2(Ω). (28)

Using (27) we get ‖∇Δn‖2 ≥ 1
C2

Ω

‖∇n‖2 and adding (25) and (26)

d

dt
(‖∇n‖2 + ‖Δn‖2) + κ(‖∇n‖2 + ‖Δn‖2) ≤ Ce−γ γ
t (29)

for 0 < κ ≤ max( D
2 ,

C2
Ω D
2 ). Consequently

‖∇n‖2(t) + ‖Δn‖2(t) ≤ e−κt (cn0 +
t∫

0

e(κ−γ γ
)t ds), (30)

then choosing κ such that κ − γ γ
 ≤ 0, we get

‖Δn‖2 ≤ cn0(1 + t)e−κt .

Finally, as n = n0, we deduce from (28) and the previous estimate that

‖n − n0‖2L∞(Ω) ≤ cn0(1 + t)e−κt ,

then (23) follows. We will use the same arguments for m. Denoting by P2(m) =
∂tm − αn − εΔm + νm and testing ∇P2(m) by ∇Δm we get
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d

2dt
‖Δm‖2 + ε

2
‖∇Δm‖ + ν‖Δm‖2 ≤ c‖∇n‖2.

Hence using (30),

d

2dt
‖Δm‖2 + ν‖Δm‖2 ≤ c(1 + t)e−κt .

Consequently

‖Δm‖2 ≤ e−νt c(1 +
t∫

0

(1 + s)e(ν−κ)sds). (31)

Moreover, simple calculus yield

m = e−νt (m0 − α

ν
n0) + α

ν
n0, (32)

So that
‖m − α

ν
n0‖L∞ ≤ Ceνt (33)

Then combining (31), (28), (32) and (33) we get (24) and the proof of the theorem
is achieved.

Remark 6 We proved existence and uniqueness of a global strong solution to (1)
for small data in the two dimensional case. In the papers of [5] and [6], we can find
existence and uniqueness of a global classical solution without restriction on the
initial data, to a similar model with a logistic source term n(1 − n − f ) in the cancer
cell equation, which is known to prevent blow up. Comparing to those papers, blow
up is not excluded in our case, so condition (15) is justified.
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Mathematical Analysis of a Continuous
Crystallization Process

Amira Rachah and Dominikus Noll

Abstract In this paper we discuss a mathematical model of crystallization of KCl in
continuous operational mode with fines dissolution and classified product removal.
We prove the global existence and the uniqueness of solutions of the model under
realistic hypotheses.

1 Introduction

Crystallization is the unitary operation of formation of solid crystals from
a solution. It is a key technology for a wide range of pharmaceutical, food and chemi-
cal industries where it is used to produce solid particles with desirable characteristics.
The crystallization process is initiatedwhen a solution becomes supersaturated, either
by cooling, evaporation of solvent, addition of anti-solvent, or by chemical reaction.
The principal processes in crystallization include nucleation or crystal birth, crys-
tal growth, breakage, attrition and possibly agglomeration, in tandem with external
processes like heating and cooling, product removal, fines dissolution [1–3], and
much else.

Crystallizers can be operated in batch, semi-batch or continuousmode. In the con-
tinuous operational mode, solution is continuously fed to the crystallizer and product
is continuously removed [4–6] in order tomaintain a steady state.Mathematicalmod-
els of crystallization processes are based on population, molar and energy balances.
The population balance is described by a first order hyperbolic partial differential
equation. The molar and energy balances are described by integro-differential equa-
tions.
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In this work we discuss a mathematical model of crystallization of potassium
chloride (KCl) in continuous operational mode with fines dissolution and classified
product removal. Crystalline KCl is used in medicine and food processing, and
as a sodium-free substitute for table salt. The process operates as follows: liquid
solution is fed to the crystallizer. The supersaturation is generated by cooling. Due
to supersaturation, crystals are formed from the solution and grow. Solution and
crystals are continuously removed from the crystallizer by the product outlet (see
several applications [4, 7, 8]). To justify our model we prove the existence and the
uniqueness of solutions of the model under realistic hypotheses [9–14].

The structure of the paper is as follows. In first sectionwe present themathematical
model of continuous crystallization ofKCl. In the second part we justify themodel by
proving global existence and the uniqueness of solutions under realistic hypotheses.

2 Modelling and Dynamics of Process

In this section we present the population and mass balance equations which describe
the dynamic model of continuous crystallization of KCl.

2.1 Population Balance Equation

The population balance equation describes a first interaction between the population
of solid crystals, classified by their size, the characteristic length L , and a ageless
populations of solute molecules of the constituent in liquid phase. The population
balance equationmodels birth, growth and death of crystals due to breakage,washout,
removal and is given by

∂ (V (t)n(L , t))

∂t
+ G(c(t))

∂ (V (t)n(L , t))

∂L
= −qh f,p(L) n(L , t) − a(L) V (t)n(L , t) (1)

+
∞∫

L

a(L ′)b(L ′ → L) V (t)n(L ′, t) dL ′.

The boundary value is given by

n(0, t) = B(c(t))

G(c(t))
, t ≥ 0 (2)
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and the initial condition is given by

n(L , 0) = n0(L), L ∈ [0,∞). (3)

The second term on the left of (1) describes the growth of the population of crystals
of size L , while the terms on the right describe external effects like fines dissolution,
product removal, flow into andout of the crystallizer, breakage and attrition. Extended
modeling could also account for agglomeration of crystals [1, 2]. The term h f p(L) =
h f (L) + h p(L) regroups the classification and the dissolution functions h f (L) and
h p(L), depends on the volume V (t). The classification function h p(L) describes the
profile of the product removal filter, which removes large particles with a certain
probability according to size. In the ideal case, assumed e.g. in [15], one has

h p(L) =
{
Rp, if L ≥ L p

0, if L < L p,
(4)

where L p is the product removal size and Rp the product removal rate. This corre-
sponds to an ideal high-pass filter. Fines removal is characterized by the classification
function h f , which ideally is a low-pass filter of the form

h f (L) =
{
0, if L > L f

R f , if L ≤ L f ,
(5)

where R f is the fines removal rate, and L f is the fine size.
The growth rate G(c(t)) in (1) is dependent of crystal size L and depends on the

concentration of solute c(t). One often assumes a phenomenological formula

G(c(t)) = kg (c(t) − cs)
g , (6)

where growth coefficient kg and growth exponent g depend on the constituent, and
where cs is the saturation concentration, [4, 6, 15]. For theory it suffices to assume
that G is locally Lipschitz with G(c) > 0 for supersaturation c > cs , and G(c) < 0
for c < cs , in which case crystals shrink.

The breakage integral on the right of (1) can be explained as follows. The break-
age rate a(L) represents the probability that a particle of size L and volume kvL3

undergoes breakage. The daughter distribution b(L , L ′) represents the conditional
probability that a particle of size L , when broken, produces a particle of size L ′ < L .
Equation (1) goes along with initial and boundary conditions. The initial crystal dis-
tribution n0(L) is called a seed. The boundary condition n(0, t) = B(c(t))/G(c(t))
models birth of crystals at size L = 0 and is governed by the ratio B/G of birth rate
B(c) over growth rate G(c). Again it is customary to assume a phenomenological
law of the form

B(c(t)) = kb
(
(c(t) − cs)+

)b
(7)
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for the birth rate, where kb is the nucleation or birth coefficient, b the birth exponent,
and q+ = max{0, q}. For theory it is enough to assume that B is locally Lipschitz
with B > 0 for c > cs and B = 0 for c ≤ cs , meaning that nucleation only takes
place in a supersaturated suspension.

2.2 Mole Balance Equation

We now derive a second equation which models the influence of various internal
and external effects on the second population, the concentration c(t) of solute mole-
cules in the liquid. In order to derive the so-called mole balance equation, we start
by investigating the mass balance within the crystallizer. The total mass m of the
suspension in the crystallizer is given by

m = m liquid + msolid = msolvent + msolute + msolid. (8)

In this study we consider non-solvated crystallization, where solute molecules transit
directly into solid state without integrating (or capturing) solvent molecules. We
therefore have

dmsolvent

dt
= ṁ±

solvent.

In continuous or semi-batch mode this equation has to be completed by external
sources and sinks, takes the form

dm

dt
= dmsolute

dt
+ dmsolid

dt
+ dmsolvent

dt
(9)

= ṁ+
solute − ṁ−

solute + ṁ+
solid − ṁ−

solid + ṁ+
solvent − ṁ−

solvent.

We will now have to relate this equation to the population balance equation (1). In
analogy with (8) we decompose the total volume V of the suspension as

V = Vliquid + Vsolid = Vsolute + Vsolvent + Vsolid.

Since the crystallization is non-solvated, we have dmsolute
dt = − dmsolid

dt . The mass of
solute is given by

msolute = VcM. (10)

Here M is the molar mass of the constituent, V the total volume of the suspension,
and Vsolute is the volume of solute in the suspension. The unit of c is [mol/�]. In this
study we will consider the total volume of the suspension as time-varying, which
leads to the formula

dmsolute

dt
= d(VcM)

dt
= dV

dt
cM + V

dc

dt
M. (11)
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Let us now get back to (9). We start by developing the expressions on the right hand
side. Decomposing

ṁ±
solid = ṁ±

fines + ṁ±
product + ṁ±

general,

we have
ṁ+

fines + ṁ+
product + ṁ+

general = 0,

meaning that we do not add crystals during the process. For crystal removal we have

ṁ−
product = qkvρ

∞∫

0

h p(L)n(L , t)L3dL ,

which means that crystals of size L are filtered with a certain probability governed
by the classification function h p. Similarly, fines are removed according to

ṁ−
fines = qkvρ

∞∫

0

h f (L)n(L , t)L3dL ,

where h f is the fines removal filter profile. Here ρ := ρsolute = ρsolid is the density
of solute, and also the crystal density.

The term

ṁ−
general = qkvρ

∞∫

0

n(L , t)L3 dL

corresponds to a size indifferent removal of particles caused by the flow with rate q.
The external terms for solute include ṁ−

solute = q
V msolute, meaning that due to the

flow with rate q a portion of the solute mass is lost. In the input we have ṁ+
solute =

qc f M + ṁ−
fines, where qc f M means solute feed and is a control input. The second

term ṁ−
fines means that the mass which is subtracted from msolid in the dissolution

phase is recycled and added to msolute. Altogether fines removal does not alter the
mass balance. We now have related the dotted expressions to quantities used in the
population balance equation.

Our next step is to relate the internal dynamics of the mass balance to the popu-
lation balance equation. We start by noting that

msolid(t) = kvρV (t)

∞∫

0

n(L , t)L3 dL .
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Therefore, differentiating with respect to time and substituting the integrated right
hand side of the population balance equation

∫ ∞
0 {. . . }L3dL in (1) gives

dmsolid(t)

dt
= kvρ

∞∫

0

∂ (V (t)n(L , t))

∂t
L3dL

= −kvρG(c(t))

∞∫

0

∂ (V (t)n(L , t))

∂L
L3dL

− kvρq

∞∫

0

(
1 + h f (L) + h p(L)

)
n(L , t)L3 dL

= 3kvV (t)ρG(c(t))

∞∫

0

n(L , t)L2 dL

− kvρq

∞∫

0

(
1 + h f (L) + h p(L)

)
n(L , t)L3 dL ,

where the third line uses integration by parts and also the fact that breakage conserves
mass at all times

∞∫

0

(
Q+

break(L , t) − Q−
break(L , t)

)
L3dL = 0,

so that terms related to breakage cancel. Altogether, Eq. (9) becomes

d(VcM)

dt
+ 3kvρV (t)G(c(t))

∞∫

0

n(L , t)L2 dL

− kvρq

∞∫

0

(
1 + h f (L) + h p(L)

)
n(L , t)L3 dL

= − q

V
VcM + qc f M − qkvρ

∞∫

0

(1 + h p(L))n(L , t)L3dL .

Canceling the term qkvρ
∫ ∞
0 (1 + h p(L))n(L , t)L3dL on both sides gives

d(VcM)

dt
= qc f M − qcM − 3VkvρG(c(t))

∞∫

0

n(L , t)L2dL (12)
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+qkvρ

∞∫

0

h f (L)n(L , t)L3dL ,

where c f is the feed concentration.
Finally, using (11) and (6), Eq. (12) is transformed to

dc(t)

dt
= −

(
V ′(t)
V (t)

+ q

V (t)
+ 3kvρμ(t)

M

)
c(t) + qc f

V (t)
(13)

+3
kvρcsμ(t)

M
+ qkvρ

V (t)M
ν(t)

where

ν(t) =
∞∫

0

h f (L)n(L , t)L3dL .

and

μ(t) =
∞∫

0

n(L , t)L2 dL .

3 Introducing Characteristics

In this partwepresent a transformation of themodel usingmoments and characteristic
curves. Let us recall the complete model described by the population and molar
balances. The population balance equation is given by

∂ (V (t)n(L , t))

∂t
+ G(c(t))

∂V (t)n(L , t)

∂L
= −h(L)V (t)n(L , t) + w(L , t) (14)

where

w(L , t) =
∞∫

L

a(L ′)b(L ′ → L)
(
V (t)n(L ′, t)

)
dL ′

is the source term due to breakage and attrition.

h(L) = h̃(L) + a(L) > 0 (15)

where h̃ = qh f +p/V since h f +p depends on the volume V . The boundary value and
the initial condition are given respectively by (2) and (3).
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Then, we can define

w0 = w(L , 0) =
∞∫

L

a(L ′)b(L ′ → L)V (t)n0(L
′) dL ′ (16)

Lemma 1 Suppose the non-negative function c(t) with c(0) = c0 satisfies the mole
balance equation (13). Then

c(t) = e

t∫

0
−

(
V ′(τ )

V (τ )
+ q

V (τ )
+ 3kvρμ(τ)

M

)
dτ

×
(
c0 +

t∫

0

[
qc f

V (τ )
+ 3kvρcsμ(τ)

M
+ qkvρν(τ )

V (τ )M

]

×e

τ∫

0

(
V ′(s)
V (s) + q

V (s) + 3kvρμ(s)
M

)
ds
dτ.

)
(17)

Proof By solving (13) with respect to c(t) using variation of the constant, we obtain
(17).

Next we introduce characteristic curves. For t0 and L0 fixed we let φt0,L0 be the
solution of the initial value problem

dφ(t)

dt
= G(c(t)), φ(t0) = L0.

Since the right hand side does not depend on L , we have explicitly

φt0,L0(t) = L0 +
t∫

t0

G(c(τ ))dτ. (18)

We write specifically z(t) := φ0,0(t). Now we introduce a family of functions Nt,L

which we use later to define n(L , t) via

Nt0,L0(t) := V (t)n(φt0,L0(t), t).

We let L = φt0,L0(t), then Nt0,L0 satisfies

N ′
t0,L0

(t) = ∂(V (t)n(L , t))

∂L
φ′
t0,L0

(t) + ∂(V (t)n(L , t))

∂t

= ∂(V (t)n(L , t))

∂L
G(c(t)) + ∂(V (t)n(L , t))

∂t
.
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Therefore (14) transforms into

N ′
t0,L0

(t) = −h(φt0,L0(t))Nt0,L0(t) + w(φt0,L0(t), t), (19)

and we consequently use these ODEs to define the functions Nt,L . Integration of (19)
gives

Nt0,L0(t) =
⎛

⎝Nt0,L0(t0) +
t∫

t0

w(φt0,L0(τ ), τ ) exp

⎧
⎨

⎩

τ∫

t0

h(φt0,L0(σ ))dσ

⎫
⎬

⎭
dτ

⎞

⎠

× exp

⎧
⎨

⎩
−

t∫

t0

h(φt0,L0(τ ))dτ

⎫
⎬

⎭
. (20)

We can exploit this for two possible situations, where Nt0,L0(t0) can be given an
appropriate value.

Before putting this to work, we will need two auxiliary functions τ and ξ , which
are easily defined using the characteristics. First we define τ = τ(t, L) implicitly by

φτ,0(t) = L , or equivalently φt,L(τ ) = 0, (21)

or again,
t∫

τ(t,L)

G(c(t)) dσ = L . (22)

Then we define ξ = ξ(t, L) = φt,L(0), which gives ξ = L + ∫ 0
t G(c(t)) dτ . Using

Nt,L , respectively (20), we can now define

V (t0)n(L0, t0) (23)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

V (t0)
B(c(t))
G(c(t)) +

t0∫

τ0

w(φτ0,0(s), s) exp

{
s∫

τ0

h(φτ0,0(σ ))dσ

}

ds

)

× exp

(

−
t0∫

τ0

h(φτ0,0(s)) ds

)

, if L0 < z(t0)

(
V (t0)n0(φt0,L0(0)) +

t0∫

0
w(φt0,L0(s), s) exp

{
s∫

0
h(φt0,L0(σ ))dσ

}
ds

)

× exp

(
−

t0∫

0
h(φt0,L0(s)) ds

)
, if L0 ≥ z(t0)

where τ0 = τ(t0, L0) and t0 ∈ [0, t f ]. The formula is justified as follows. Let t0, L0

be such that L0 < z(t0) = φ0,0(t0). This is the case where τ0 = τ(t0, L0) > 0. Here
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we consider Eq. (19) for Nτ0,0 with initial value

Nτ0,0(τ0) = V (τ0)n(φτ0,0(τ0), τ0) = V (τ0)n(0, τ0)

= V (τ0)B(c(τ0))/G(c(τ0)).

This uses the fact that φτ0,0(τ0) = 0 according to the definition of φτ,0. Integration
gives the upper branch of (23).

Next consider t0, L0 such that L0 ≥ z(t0). Then τ0 < 0, so that we do not want to
use it as initial value. We therefore apply (19), (20) to Nt0,L0 , now with initial time
0. Then we get

Nt0,L0(t0) =
⎛

⎝Nt0,L0(0) +
t0∫

0

w(φt0,L0(s), s) exp

⎧
⎨

⎩

s∫

0

h(φt0,L0(σ ))dσ

⎫
⎬

⎭
ds

⎞

⎠

× exp

⎛

⎝−
t0∫

0

h(φt0,L0(s)) ds

⎞

⎠ . (24)

Here Nt0,L0(0) = V (0)n(φt0,L0(0), 0) = V (0)n0(φt0,L0(0)), so we get the lower
branch of (23) all right. This justifies the formula and completes the definition of the
characteristic curves and the representation of the V (t)n(L , t) via the characteristics.

4 Apriori Estimates

In this section we discuss an hypothesis on the control input q, which lead to apriori
estimates, under which later on global existence of a solution will be shown. This
conditions is motivated by the physics of the process and lead to bounds on mass
and volume. Note that we do not get prior estimates on surface, length and number
of solids, which as we shall see presents a difficulty when proving global existence
of solutions. In this section we focus on the total volume and the feed rate. The total
mass of slurry is given by (9), then m(0) = msolvent(0) + msolute(0) + msolid(0). The
total volume of slurry V is

V (t) = msolvent(t) + msolute(t) + msolid(t) (25)

= msolvent(t)

ρH2O
+ msolute(t)

ρ
+ msolid(t)

ρ
.

where ρH2O is the density of the solvent and ρ = ρsolute = ρsolid. Now suppose we
are allowed a maximum volume Vmax of slurry in the crystallizer. We then have to
steer the process such that V (t) ≤ Vmax at all times t . Naturally, this can only be
arranged by a suitable control of the feed rate. Let us recall that the crystallization
is not solvated (means dmsolute

dt = − dmsolid
dt ). Then, the control of the feed rate is linked



Mathematical Analysis of a Continuous Crystallization Process 293

to msolvent by the relation
dmsolvent

dt
= q(t)ρH2O. (26)

Lemma 2 Suppose the feed rate q satisfies the constraint

(H1)

t∫

0

q(τ )dτ ≤
[

Vmax − V (0)

ρH2O
(
ρH2O

−1 + 2ρ−1
)

]

(27)

at all times t ≥ 0. Then the total volume of slurry V (t) satisfies V (t) ≤ Vmax.

Proof From (9) we obviously have

m ′(t) = m ′
solvent(t) + m ′

solute(t) + m ′
solid(t). (28)

Using the fact that the crystallization is not solvated and (26) in (28), we obtain

m ′(t) = q(t)ρH2O (29)

which on integration gives

t∫

0

q(τ )dτ = m(t) − m(0)

ρH2O

for every t > 0. Hence, using the hypothesis (H1) and (29), we obtain

m(t) ≤ Vmax

ρH2O
−1 + 2ρ−1

. (30)

Using (9) and (25), this implies V (t) ≤ Vmax.

In a practical process, q could be steered by feedback to avoid overflow of the
crystallizer.

As we have seen, bounding the feed rate via (H1) gives a bound on the total
volume of slurry, and also on the total mass, namely

m(t) ≤ mmax = Vmax

ρH2O
−1 + 2ρ−1

. (31)
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5 Existence and Uniqueness of Solutions

In this section we will assemble the results from the previous sections and prove
global existence and uniqueness. We use the method of characteristics with a fixed-
point argument for an operator Q which we now define.

5.1 Setting up the Operator

For the function w we introduce the Banach space

E = C∞(R+ × [0, t f ]) ∩ L 1
u (R+ × [0, t f ], h(L)dL),

where we set h(L) = max{1, L3} and introduce the norm on E as

‖w‖ = ‖w‖∞ + sup
0≤t≤t f

∞∫

0

|w(L , t)|h(L)dL .

Let us introduce the moments of the CSD as

μi (t) =
∞∫

0

V (t)n(L , t)Li dL , i = 0, 1, . . . , (32)

This initial data are then

μi,0 =
∞∫

0

V (t)n0(L)Li dL , i = 0, 1, . . . . (33)

We consider x = (c, ν, μ2, μ1, μ0, w) an element of the space

F = C[0, t f ]5 × E,

where each copy of C[0, t f ] is equipped with the supremum norm, so that the norm
on F is ⎪⎪⎪⎪x

⎪⎪⎪⎪= ‖c‖∞ + ‖ν‖∞ + ‖μ2‖∞ + ‖μ1‖∞ + ‖μ0‖∞ + ‖w‖.

We proceed to define the action of the operator Q on element x ∈ F, writing

Qx = x̃ = (̃c, ν̃, μ̃2, μ̃1, μ̃0, w̃).
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The initial values at t = 0 are

x0 = (c0, ν0, μ2,0, μ1,0, μ0,0, w0),

In order to define the elements w̃ and μ̃2, we first have to introduce the charac-
teristics φt,L via formula (18). Then we define the functions Nt,L via formula (20).
We are now ready to define μ̃2 as

μ̃2(t)

= ρkv

∞∫

0

V (t)n(L , t)L2dL

= ρkv

z(t)∫

0

⎛

⎝V (τ )B(c(τ ))

G(c(τ ))
+

t∫

τ

w(φτ,0(s), s) exp

⎧
⎨

⎩

s∫

τ

a(φτ,0(σ ))dσ

⎫
⎬

⎭
ds

⎞

⎠

× exp

⎛

⎝−
t∫

τ

a(φτ,0(s)) ds

⎞

⎠L2dL (34)

+ ρkv

∞∫

z(t)

⎛

⎝V (0)n0(φt,L(0)) +
t∫

0

w(φt,L(s), s) exp

⎧
⎨

⎩

s∫

0

a(φt,L(σ ))dσ

⎫
⎬

⎭
ds

⎞

⎠

× exp

⎛

⎝−
t∫

0

a(φt,L(s)) ds

⎞

⎠L2dL .

In the first integral
∫ z(t)
0 we use the change of variables L → τ = τ(t, L). Then

[0, z(t)] 
 L �→ τ(t, L) ∈ [0, t], dL = G(c(t))dτ.

In the second integral
∫ ∞
z(t) we use the change of variables L → ξ(t, L) := φt,L(0).

Then
[z(t),∞) 
 L �→ ξ ∈ [0,∞), dL = dξ.

The inverse relation is

L = ξ +
t∫

0

G(c(σ ))dσ = ξ + z(t).



296 A. Rachah and D. Noll

From (34) we obtain

μ̃2(t)

= ρkv

t∫

0

⎛

⎝V (τ )B(c(τ )) +
t∫

τ

w(φτ,0(s), s) exp

⎧
⎨

⎩

s∫

τ

a(φτ,0(σ ))dσ

⎫
⎬

⎭
ds

⎞

⎠

× exp

⎛

⎝−
t∫

τ

a(φτ,0(s)) ds

⎞

⎠ L(τ )2 dτ (35)

+ ρkv

∞∫

0

⎛

⎝V (0)n0(ξ) +
t∫

0

w(φ0,ξ (s), s) exp

⎧
⎨

⎩

s∫

0

a(φ0,ξ (σ ))dσ

⎫
⎬

⎭
ds

⎞

⎠

× exp

⎛

⎝−
t∫

0

a(φ0,ξ (s)) ds

⎞

⎠ L(ξ)2dξ,

where L(τ ) = ∫ t
τ
G(c(σ )) dσ and L(ξ) = ξ + ∫ t

0 G(c(σ )) dσ , and where we use
φt,L(s) = φ0,ξ (s) in the second integral. For fixed t the functions L �→ τ(t, L) and
τ �→ L(τ ) are inverses of each other, and similarly, L ↔ ξ is one-to-one via the
formula L = ξ − ∫ t

0 G(c(σ )) dσ . A Similar formula is obtained for ν̃:

ν̃(t)

= ρkv

t∫

0

⎛

⎝V (τ )B(c(τ )) +
t∫

τ

w(φτ,0(s), s) exp

⎧
⎨

⎩

s∫

τ

a(φτ,0(σ ))dσ

⎫
⎬

⎭
ds

⎞

⎠

× exp

⎛

⎝−
t∫

τ

a(φτ,0(s)) ds

⎞

⎠ h f (τ )L(τ )3 dτ

+ ρkv

∞∫

0

⎛

⎝V (0)n0(ξ) +
t∫

0

w(φ0,ξ (s), s) exp

⎧
⎨

⎩

s∫

0

a(φ0,ξ (σ ))dσ

⎫
⎬

⎭
ds

⎞

⎠

× exp

⎛

⎝−
t∫

0

a(φ0,ξ (s)) ds

⎞

⎠ h f (ξ)L(ξ)3dξ,

Similarly, continuing to define the operator Q, we define the moments μ̃i , i = 0, 1
within x̃ via μ̃i (t) = ∫ ∞

0 V (t)n(L , t)Li dL , where we express the right hand side
via characteristics and the elements of x in much the same way as done for μ̃2.
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We also need to get back to the function w̃(L , t). We introduce

β(L , L ′) =
{
a(L)b(L → L ′), if L ≥ L ′
0, else

then we can write

w̃(L ′, t) =
∞∫

L ′

a(L)b(L → L ′)V (t)n(L , t)dL =
∞∫

0

β(L , L ′)V (t)n(L , t)dL ,

which is essentially like the moment integral (35), the function L �→ Li being
replaced by β(L , L ′). Applying the same technique as in the case of (35), we obtain

w̃(L ′, t)

=
t∫

0

⎛

⎝V (τ )B(c(τ )) +
t∫

τ

w(φτ,0(s), s) exp

⎧
⎨

⎩

s∫

τ

a(φτ,0(σ ))dσ

⎫
⎬

⎭
ds

⎞

⎠

× exp

⎛

⎝−
t∫

τ

a(φτ,0(s)) ds

⎞

⎠ β(L(τ ), L ′) dτ

+
∞∫

0

⎛

⎝V (0)n0(ξ) +
t∫

0

w(φt,L(s), s) exp

⎧
⎨

⎩

s∫

0

a(φt,L(σ ))dσ

⎫
⎬

⎭
ds

⎞

⎠

× exp

⎛

⎝−
t∫

0

a(φt,L(s)) ds

⎞

⎠ β(L(ξ), L ′)dξ,

which expresses w̃ in terms ofw and the characteristics, hence by elements of x. Here
we use w ∈ E, and it is routine to check that w̃ ∈ E, so that x̃ ∈ F. This completes
the definition of Q.

We will also need the following hypotheses on the breakage terms a and b:

(H2) ‖a‖∞ : = max
0≤L<∞ a(L) < +∞,

‖a‖L = sup
0≤L<L ′

∣∣∣∣
a(L) − a(L ′)

L − L ′

∣∣∣∣ < ∞,



298 A. Rachah and D. Noll

(H3) ‖b‖∞ : = max
0≤L≤L ′ b(L

′ → L) < +∞,

‖b‖L : = sup
L≥0

sup
L≤L ′<L ′′

∣∣∣
∣
b(L → L ′) − b(L → L ′′)

L ′ − L ′′

∣∣∣
∣ < ∞.

5.2 Setting up the Space

We now have to define a closed subset X of F on which the operator Q acts as a
contraction with respect to the metric induced by the norm of F. In other words, we
need to assureQ(X) ⊂ X and

⎪⎪⎪⎪Qx(1) − Qx(2)
⎪⎪⎪⎪ ≤ γ

⎪⎪⎪⎪x(1) − x(2)
⎪⎪⎪⎪

for a constant 0 < γ < 1 and all x(1), x(2) ∈ X. This will be achieved by choosing t f
small enough, as usual, but in order to prove global existence, we will have to make
a careful quantification of γ in terms of t f and the initial values x0.

We distinguish between globally bounded states and those for which no prior
bound can be put forward. Due to our hypothesis (H1), c is globally bounded thanks
to the formulas (31). We write y = c for the globally bounded states. On the other
hand, it is not clear whether the moments ν, μ2, μ1, μ0 nor w are globally bounded,
and whether such a bound can be obtained from the physical constraints. This is
due to particle breakage, which may lead to an exceedingly large number of small
particles, or fines. We write z = (μ0, μ1, μ2, ν) and w ∈ E for the unbounded state.
Altogether x = (y, z, w) ∈ F.

The axiom (H1) on the controls q will then assure that on every interval of exis-
tence of a solution x(t), the bounded states y(t) satisfy the same global bound.
We split the initial conditions into x0 = (y0, z0, w0), where y0 is the bounded part,
z0, w0 that part which does not have a prior bound. The state x(t) is split accord-
ingly as x(t) = (y(t), z(t), w(t)). Now define the moments of w(L , t) as μw,i (t) =∫ ∞
0 w(L , t)Li dL andfix K > |z0| + |μw,0(0)| + |μw,1(0)| + |μw,2(0)|+ |μw,3(0)|.
Then we define the space X as

X=
{

x∈ F : x(0)= x0, x= (y, z, w), |z(t)|+
3∑

i=0

|μw,i (t)|≤ K for all t ∈ [0, t f ]
}

.

Lemma 3 There exists a constant s > 0 depending only on the global volume bound
Vmax such that for every y0, every z0, w0, and every K > |z0| + ∑3

i=0 |μw,i (0)| the
following is true: Suppose t f > 0 satisfies

0 < t f <

(

K − |z0| −
3∑

i=0

|μw,i (0)|
)

/s. (36)
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Then Q(X) ⊂ X.

Proof Estimating the states over an interval [0, t f ] leads to estimates of the form

z̃(t) = z0 +
t∫

0

f (y(τ ), z(τ ), w(τ)) dτ ≤ |z0| + (s + K ) t f , for all 0 ≤ t ≤ t f

where a global bound s for y(t) is used on [0, t f ], while the bounds |z(t)| ≤ K ,
|μw,i (t)| ≤ K are used for the states z, w. Then in order to assure |̃z(t)| ≤ K , we
have but to force the condition

|z0| + s(1 + K )t f ≤ K ,

which gives t f ≤ K−|z0|
s(1+K )

≤ K−|z0|
s . A similar argument applies to the moments μw,i

of w, and combining the two gives (36).

5.3 Proving γ ∈ (0, 1)

For the globally bounded states gathered in y we obtain an estimate of the form

‖̃y(1) − ỹ(2)‖ ≤ s1 (1 + |z0| + K ) t f
⎪⎪⎪⎪x(1) − x(2)

⎪⎪⎪⎪

for a global constant s1 depending on Vmax. For the state z = (μ0, μ1, μ2, ν) on the
other hand we obtain an estimation of the form

‖̃z(1) − z̃(2)‖ ≤ s2

(

1 + |z0| +
3∑

i=0

|μw,i (0)| + K

)

t f
⎪⎪⎪⎪x(1) − x(2)

⎪⎪⎪⎪,

where s2 is another global constant. The Lipschitz constant now depends on the initial
condition z0, μw,i (0), for which no global bound is available. A similar estimate

‖w̃(1) − w̃(2)‖ ≤ s3

(

1 + ‖z0‖ +
3∑

i=0

|μw,i (0)| + K

)

t f
⎪⎪⎪⎪x(1) − x(2)

⎪⎪⎪⎪

is obtained for the terms involving w. Altogether, we have

Lemma 4 There exists a constant s depending only on Vmax such that for every initial
condition y0, every initial z0, w0, and every K with ‖z0‖ + ∑3

i=0 |μw,i (0)| < K, the
operator Q satisfies the following Lipschitz estimate on X:
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⎪⎪⎪⎪Qx(1) − Qx(2)
⎪⎪⎪⎪ ≤ s

(

1 + |z0| +
3∑

i=0

|μw,i (0)| + K

)

t f
⎪⎪⎪⎪x(1) − x(2)

⎪⎪⎪⎪. (37)

Condition (37) in tandemwith (36) allows us now to apply the Banach contraction
theorem to the operator Q. Using this, we can prove the following

Theorem 5 Suppose hypothesis (H1) assuring global bounds onmasses and volume
are satisfied, and that the initial condition of the crystallizer respects the global
volume bound Vmax. Assume further that the breakage kernel satisfies the axioms
(H2) − (H3). Then the crystallizer system (14), (13) has a unique global solution on
[0,∞).

Proof (1) Suppose we choose K > |z0| + ∑3
i=0 |μw,i (0)|, then

t f = min

{
K − |z0| − ∑3

i=0 |μw,i (0)|
s + K

,
1

2s(1 + |z0| + ∑3
i=0 |μw,i (0)| + K )

}

(38)
assures that Q is a self-map and a contraction on X, so that a unique solution with
the initial condition x0 exists on [0, t f ].

(2) We will now have to iterate the process, and for that we shall have to change
our notation.Wewritew(t) = |z(t)| + ∑3

i=0 |μw,i (t)|.We start themethod at t0 = 0.
Puttingw0 = w(0), we chose K = w0 + 1 > w(0) in part (1) above, so that condition
(38) re-written at t f = t1 becomes

t1 = min

{
1

s + w0 + 1
,

1

4s(1 + w0)

}
.

This gives a unique solution on [0, t f ] = [t0, t1].
(3) Since by construction of X on [t0, t1] = [0, t f ] we have w(t) ≤ K for every

t ∈ [t0, t1], we get w1 ≤ K = w0 + 1. In addition, the initial condition respect
msolvent(0) + msolute(0) + msolid(0) < mmax and therefore the global bound related
to Vmax, so that we will be able to continue to use the same global constant s in the
next iteration. We now use x(t1) as the new initial condition at the new initial time t1
and repeat the same argument to the right of t1. That requires choosing a new constant
K > |z(t1)| + ∑3

i=0 |μw,i (t1)| = w(t1) = w1. We choose again K = w1 + 1. Then
the final time corresponding to t f , which is now called t2 − t1, has to satisfy (38),
which reads

t2 − t1 = min

{
1

s + w1 + 1
,

1

2s(1 + w1 + K )

}

≥ min

{
1

s + w0 + 2
,

1

4s(2 + w0)

}
.
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By recursion we find that

tn − tn−1 ≥ min

{
1

s + w0 + n
,

1

4s(n + w0)

}
,

so that for some constant s ′ depending only on Vmax andw0 = |z0| + ∑3
i=0 |μw,i (0)|,

tN =
N∑

n=1

tn − tn−1 ≥ s ′
N∑

n=1

1

n
→ ∞ (N → ∞).

Since the solution can be continues from 0 to any tN , this proves global existence
and uniqueness.
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Wave Velocity Estimation in Heterogeneous
Media

Sharefa Asiri and Taous-Meriem Laleg-Kirati

Abstract In this paper, modulating functions-based method is proposed for
estimating space-time dependent unknown velocity in the wave equation. The pro-
posed method simplifies the identification problem into a system of linear algebraic
equations. Numerical simulations on noise-free and noisy cases are provided in order
to show the effectiveness of the proposed method.

1 Introduction

Inverse velocity problem for the wave equation is crucial in many applications such
as medical imaging and oil exploration [2, 11]. This inverse problem consists in
estimating the velocity from available measurements which are practically limited.
In heterogeneous media, estimating the velocity helps in characterizing the media
and detecting its discontinuities. Different methods have been proposed to solve this
problem such as optimization-based techniques [3, 4] or observer-based approaches
[1, 6, 10]. However, these methods are heavy computationally and not very efficient
when the data is corrupted with noise.

In this work, we propose a new technique based on modulating functions. Modu-
lating functions-basedmethod has been introduced in the early fifties [13, 14] and has
been used in parameters identification for ordinary differential equations. In 1966,
Perdreauville and Goodson [9] extended the method to identify parameters for par-
tial differential equations using distributed measurements for all space and for all the
time. However, it is not practically possible to use a large number of sensors.
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The objective of this paper is to extend the method to estimate the wave velocity
in heterogeneous media using a small number of measurement points. We will inves-
tigate the properties of this method when solving the inverse problem.

The major advantages of this approach are significant. First, it does not require
solving the direct problem by which the computation is simplified. Moreover, it
converts the identification problem into a system of linear algebraic equations. In
addition, it does not require knowing the initial values which are usually unknown
in real applications. Also, it is robust against noise.

The paper is organized as follows: Sect. 2 presents the problem. In Sect. 3, mod-
ulating functions are defined then the method is applied to one-dimensional wave
equation to estimate the velocity. Section4 provides numerical simulations in order to
show the effectiveness of the proposedmethod. A discussion and concluding remarks
are presented in Sects. 5 and 6; respectively.

2 Problem Statement

Consider the one-dimensional wave equation in the domain Ω := (0, L) × (0, T ] :
⎧
⎨

⎩

utt (x, t) − c(x, t)uxx (x, t) = f (x, t),
u(0, t) = g1(t), u(L , t) = g2(t), t ∈ (0, T )

u(x, 0) = r1(x), ut (x, 0) = r2(x), x ∈ (0, L).

(1)

where x is the space coordinate, t is the time coordinate, L is the final point in the
spatial interval, and T is the final time. g1(t), g2(t) and r1(x), r2(x) are the boundary
conditions and the initial conditions; respectively. The source function is denoted
by f (x, t). c(x, t) is the square of the velocity of wave propagation at point x and
time t , and it is assumed to be positive and bounded. All the functions, including the
velocity, are assumed to be sufficiently regular. The notations ua and uaa refer to the
first and second derivatives of u with respect to a, respectively.

The objective of this paper is to estimate the velocity using the following mea-
surements: u(x∗, t) and uxx (x∗, t); where x∗ refers to specific points in the spatial
interval [0, L] such that x∗ = {x∗

1 , x
∗
2 , . . . , x

∗
n̄ }. Moreover, the initial conditions and

the boundary conditions are not necessary to be known.

3 Velocity Estimation

In this section, firstwe recall the definitionofmodulating functions. Then,modulating
functions-based method is applied on (1) to estimate c(x, t).
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Definition 1 [5] A function φ(t) is called a modulating function of order N in the
interval [0, T ] if it satisfies:

{
φ(t) ∈ CN ([0, T ])
φ

(p)
m (0) = φ

(p)
m (T ) = 0, ∀p = 1, 2, . . . , N − 1,

(2)

where p is the derivative order.

The wave velocity estimation in heterogeneous media using the proposed method is
illustrated in the following proposition:

Proposition 2 Let c(x∗, t) = ∑I
i=1 γiξi (t) be a basis expansion of the unknown

coefficient c(x∗, t) in (1) where x∗ is a specific point in the spatial interval; ξi (t)
and γi are basis functions and basis coefficients, respectively. Let {φm(t)}m=M

m=1 be a
class of modulating functions with M ≥ I . Then, the unknown coefficients γi can be
estimated by solving the system:

A Γ = K , (3)

where the components of the M × I matrix A have the form:

ami =
∫ T

0
φm(t)ξi (t)uxx (x

∗, t) dt, (4)

the components of the vector K , which has length M, are:

km =
∫ T

0
φ

′′
m(t)u(x∗, t) dt −

∫ T

0
φm(t) f (x∗, t) dt, (5)

and Γ is the vector of the unknowns γi .

Proof First, at fixed spatial point x∗, we multiply Eq. (1) by φm(t) and integrate over
the time interval, so we obtain:

∫ T

0
φm(t)c(x∗, t)uxx (x

∗, t) dt =
∫ T

0
φm(t)utt (x

∗, t) dt −
∫ T

0
φm(t) f (x∗, t) dt.

(6)

Then by integrating the first term in the right-hand side by parts twice, one can obtain:

∫ T

0
φm(t)c(x∗, t)uxx (x

∗, t) dt =
∫ T

0
φ

′′
m(t)u(x∗, t) dt − φm(t) f (x∗, t) dt; (7)

where the initial conditions are eliminated thanks to the properties of the modulating
functions. Finally, by writing c(x∗, t) in its basis expansion, system (3) is obtained
with components as in (4) and (5).
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Remark 3 Note that matrix A is full-column rank; hence, system (3) has a unique
solution.

Remark 4 Proposition 2 can be applied directly to estimate time-dependent velocity
c(t) or space-time-dependent velocity c(x, t). For constant velocity case, the method
becomes simpler and more accurate as the basis expansion is not required. In this
case, the estimated velocity is:

ĉ = A t K

A tA
. (8)

where the components of the vectors A and K have the form

am =
∫ T

0
φm(t)uxx (x

∗, t) dt, (9)

and

km =
∫ T

0
φ

′′
m(t)u(x∗, t) dt −

∫ T

0
φm(t) f (x∗, t) dt; (10)

respectively.

4 Numerical Simulations

The systemhas been discretized usingfinite difference scheme.A set of synthetic data
has been generated using the following parameters: L = 4, T = 1, Nx = Nt = 801,
and a source f (x, t) = sin(x)t2; Nx and Nt refer to the number of grid points in space
and time; respectively. For the velocity, three cases have been studied: c = 0.5,

(a) (b)

Fig. 1 Black dashed lines represent the exact measurements while the gray solid lines represent
the noisy measurements with 5 and 10% of noise. The sub-figures a is for the displacement u(x, t)
and b for uxx (x, t); both at fixed point x∗
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c(t) = t2, and c(x, t) = (xt)2. The method has been implemented in Matlab and
applied in: noise-free and noisy data cases. In the noise-corrupted case, 1, 3, 5 and
10% white Gaussian random noises with zero means have been added to the data
(see Fig. 1).

For the modulating functions, one can note that there are many functions which
satisfy (2), see e.g. [7, 8, 12, 15]. In this paper, we propose to use the following
polynomial modulating functions [5]:

φm(t) = (T − t)5+mt5+M+1−m, (11)

where m = 1, 2, . . . , M with M = 4, 14, 15 for the first, second, and third case of
the velocity; respectively.

The exact constant velocity c and the estimated one ĉ versus different noise levels
are shown in Fig. 2.

Fig. 2 Constant case: the
exact speed c = 0.5 is given
by the horizontal red line, the
bars represent the estimated
velocity for different noise
levels: 0, 1, 3, 5 and 10%

Fig. 3 Time-dependent
case: the exact velocity c(t)
(dashed blue) and the
estimated one ĉ(t) (solid
red) using modulating
function-based method, in
noise-free case
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Figures3 and 4 show the estimated time-dependent velocity ĉ(t) in noise-free
and noise-corrupted cases; respectively. The corresponding relative error values for
these two figures are shown in Table1. The errors, c(t) − ĉ(t), in the noisy case
are exhibited in Fig. 5 which shows that the maximum error is significantly small.
In these two cases, constant velocity and time-dependent velocity, it is sufficient to
have the measurements at only one point, x∗, in the spatial interval.

For c(x, t), first the velocity has been estimated at three fixed spatial points x∗
1 , x

∗
2

and x∗
3 . Then, the estimated velocities c(x∗

1 , t), c(x
∗
2 , t) and c(x

∗
3 , t) have been inter-

polated to find c(x, t) for all x ∈ [0, L].
Figure6 shows the estimated velocity at these different points where the level of

noise is 5%; and the estimated velocity ĉ(x, t) after interpolation is presented in
Fig. 7. Table2 presents the relative errors of estimating c(x, t) versus different noise
levels. Certainly, as the number of measurements n̄ increases, the error decreases.

The presented figures and tables show that the estimated unknown is in quite good
agreement with the exact one; therefore, it proves the efficiency and the robustness

Fig. 4 Time-dependent case: the exact velocity c(t) (dashed blue) and estimated one ĉ(t) (solid
red) corresponding to different noise levels
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Table 1 Relative errors of ĉ(t) versus different levels of noise

Noise level (%) Relative error (%)

0 3.1 × 10−6

1 0.080162

3 0.24016

5 0.39974

10 0.79681

Fig. 5 Estimation errors, c(t) − ĉ(t), corresponding to the sub-figures in Fig. 4

of the proposed method for solving velocity inverse problem for wave equation in
heterogeneous media.
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Fig. 6 Exact velocity c(x∗, t) (dashed blue) and estimated one ĉ(x∗, t) (solid red) at three different
points in the spatial interval; the level of noise = 5%

Fig. 7 Space-time-dependent case: exact velocity c(x, t) (left) and estimated one ĉ(x, t) after
applying modulating functions-based method and doing interpolation; noise level = 5%

Table 2 Relative errors of
ĉ(x, t) versus different levels
of noise

Noise level (%) Relative error (%)

0 0.0002

1 0.3763

3 1.1305

5 1.8860

10 3.7812

5 Discussion

The obtained results in Sect. 4 prove the effectiveness of the proposed method and
its robustness even with high level of noise and few number of measurements.

The effect of the number of modulating functions M on the estimation is shown in
Fig. 8; the figure exhibits the relative error versus the number ofmodulating functions
for the three cases and with 5% noise level. Although it shows that there exist an
optimum number of modulating functions, M∗; it also shows that the estimation is
generally good within a relatively large interval for M . Moreover, it proves that this
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(a) (b) (c)

Fig. 8 Relative error (in percent) versus different number of modulating functions: a constant
velocity c, b time-dependent velocity c(t), c space-time-dependent velocity c(x∗, t) at fixed point
x∗. M∗ refers to the optimum number of modulating functions. The level of noise is 5% in this
figure

optimum number depends on the considered problem; M∗ = 4, 14, 15 for the first,
second, and third cases; respectively.

In this paper, we illustrated the method on velocities of low-order polynomial
types. Thus, it was sufficient to use polynomial basis with I = 3. However, if the
unknown is non polynomial, then the use of another type of basis functions may be
required.

In case of applications that depend on final time measurements, one can apply
space-dependent modulating function, φ(x), instead of time-dependent function. In
addition, if full measurements are available, N-dimensional modulating functions
can be applied as in [9].

6 Conclusion

In this paper, modulating functions-based method for solving inverse velocity prob-
lem for one-dimensional wave equation was proposed. By applying this method,
the problem was converted into a system of linear algebraic equations which can
be solved using least square. Numerical simulations in both noise-free and noise-
corrupted cases showed the effectiveness of this method.

As a future work, more investigations on the number of modulating functions M
will be carried on in order to find an efficient and systematic approach for choosing
this number.

Acknowledgments Research reported in this publication was supported by the King Abdullah
University of Science and Technology (KAUST).
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Asymptotic Rate for Weak Convergence
of the Distribution of Renewal-Reward
Process with a Generalized Reflecting Barrier

Tahir Khaniyev, Başak Gever and Zulfiye Hanalioglu

Abstract In this study, a renewal-reward process (X (t)) with a generalized reflect-
ing barrier is constructedmathematically and under someweak conditions, the ergod-
icity of the process is proved. The explicit form of the ergodic distribution is found
and after standardization, it is shown that the ergodic distribution converges to the
limit distribution R(x), when λ → ∞, i.e.,

QX (λx) ≡ lim
t→∞ P{X (t) ≤ λx} → R(x)

≡ 2

m2

x∫

0

∞∫

v

[1 − F(u)]dudv.

Here, F(x) is the distribution function of the initial random variables {ηn}, n =
1, 2, . . . ,which express the amount of rewards andm2 ≡ E(η2

1). Finally, to evaluate
asymptotic rate of the weak convergence, the following inequality is obtained:

|QX (λx) − R(x)| ≤ 2

λ
|π0(x) − R(x)|.
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Here,

π0(x) = (
1

m1
)

x∫

0

(1 − F(u))du

is the limit distribution of residual waiting time generated by {ηn}, n = 1, 2, . . . ,
and m1 = E(η1).

1 Introduction

A number of very interesting problems of queuing, reliability, stock control theory,
stochastic finance, mathematical insurance, physics and biology are expressed by
means of randomwalks and renewal-reward processes. Because of the theoretical and
practical importance, random walk and renewal-reward processes are investigated
very well in literature (e.g., Feller [5], Gihman and Skorohod [7], Borovkov [3],
Brown and Solomon [4], Lotov [15], Kastenbaum [9], Weesakul [19], Zang [20],
Khaniyev et al. [10–12], Nasirova [16], Aliyev et al. [1] Patch et al. [17]). Moreover,
many modifications of renewal—reward processes can be used for solutions of some
problems in these fields, as well. These modifications are mostly given with various
types of barriers such as absorbing, delaying, reflecting and elastic barriers or some
kinds of discrete interference of chance. For instance, a renewal-reward process with
triangular distributed interference of chance is dealt with in the studies of [13, 14],
to apply a stochastic inventory problem.

Note that the stochastic processes with reflecting barriers are more complex than
the processes with other types of barriers (e.g., [11]). Because, when barriers are
reflecting, the dependency between interferences causes a complexity on the prob-
abilistic calculations. We confronted with this difficulty while we were proving the
ergodicity of our process.

Recently, the stochastic processes with reflecting barrier are begun to apply to
some real-life problems (e.g., motion of the particle with high energy in a diluted
environment). To examine these problems, it is necessary to investigate the stochastic
processes with reflecting barrier. To fill the lack of information about reflecting
barriers, researchers get to obtain some results on this subject (e.g., Feller [5],Gihman
and Skorohod [7], Borovkov [3]). However, in these studies, authors generally have
obtained analytical results which consist of highly complex mathematical structures,
unfortunately. This caused to have some difficulties to implement them to real-world
applications. For this reason, even though these results are approximate, nowadays,
researchers tend to get asymptotic results for the applications (e.g., Aliyev et al. [2],
Janssen and Leeuwaarden [8], Khaniyev et al. [10]). Therefore, in this study, we also
aim to obtain asymptotic results for the ergodic distribution of the considered process
and its rate of the convergence.

In this study, the following model is considered.
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TheModel. Suppose that there is a depot and the initial level of which is λz : (λ > 0,
z > 0) at the beginning of the time. There are demands ({ηn} : n = 1, 2, . . . ) which
consecutively come over to depot with an inter-arrival times denoted by {ξn}, n =
1, 2, . . . . The amounts of demand and inter-arrival times are both random variables.
According to the demand quantities, the level of depot begins to decrease until it drops
to a negative value. Itmeans that depot becomes empty and it gets into debt ({ζn} : n =
1, 2, . . . ). When the time debt come up, the new initial value is determined as λ times
of this debt quantity (λζ1). Since the demands arrive successively, the inventory of
depot continues to reduce until the depot gets into debt. Then, the process proceeds
likewise. Here, these debts {ζn} are interpreted as reflections and the zero-axis is
reflecting barrier of the process.

A process serves like that is called as a renewal-reward process with a generalized
reflecting barrier.

Let us construct the process mathematically.

2 Mathematical Construction of the Process X (t)

Let {(ξn, ηn)}, n = 1, 2, 3, . . ., be a sequence of independent and identically distrib-
uted random pairs defined on a probability space (Ω,F , P), such that the random
variables ξn and ηn are also mutually independent and take only positive values.
Suppose that the distribution functions of ξn and ηn are given and these are denoted
by Φ(t) and F(x), respectively, i.e.,

Φ(t) = P{ξn ≤ t}, F(x) = P{ηn ≤ x}; t ≥ 0 x ≥ 0, n = 1, 2, . . .

Define the renewal sequences {Tn} and {Sn} as follows:

T0 = S0 = 0, Tn =
n∑

i=1

ξi , Sn =
n∑

i=1

ηi , n = 1, 2, . . . ,

and construct sequences of random variables {Nn} and {ζn}, n = 0, 1, 2, . . . , as
follows:

N0 = 0; ζ0 = z ≥ 0; N1 = N1(λz) = inf{k ≥ 1 : λz − Sk < 0};
ζ1 = ζ1(λz) = ∣∣λz − SN1

∣∣ ;
Nn ≡ Nn(λζn−1) = inf{k ≥ Nn−1 + 1 : λζn−1 − (Sk − SNn−1) < 0};
ζn ≡ ζn(λζn−1) = |λζn−1 − (SNn − SNn−1)|, n = 2, 3, . . .

Here, λ > 0 is an arbitrary positive constant.
Using {Nn : n = 0, 1, 2, . . .}, define the following sequence {τn : n = 0, 1, 2, . . .}:

τ0 = 0; τ1 ≡ τ1(λz) =
N1∑

i=1

ξi , . . . , τn =
Nn∑

i=1

ξi , n = 1, 2, . . .
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Fig. 1 A trajectory of the process X (t)

Moreover, let ν(t) = max{n ≥ 1 : Tn ≤ t}, t > 0.
We can now construct the desired stochastic process X (t) as follows:

X (t) = λζn − (
Sν(t) − SNn

)

for all τn ≤ t < τn+1, n ≥ 0.
The process X (t) can be also rewritten as follows:

X (t) =
∞∑

n=0

{
λζn − (

Sν(t) − SNn

)}
I[τn;τn+1)(t).

Here IA(t) represents the indicator function of the set A, such that

IA(t) =
{
1, t ∈ A

0, t /∈ A

A trajectory of the process X (t) is given as in Fig. 1.
The process X (t) is called renewal-reward process with a generalized reflecting

barrier. In the case λ = 1, the process X (t) is known as renewal-reward process with
a reflecting barrier.
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3 The Ergodicity of the Process X (t)

To investigate the stationary characteristics of the process considered, it is necessary
to prove that X (t) is ergodic under some assumptions. Before giving this property
as a theorem, let us define some notations.

Put πλ(z) = limn→∞ P{ζn ≤ z}, i.e., πλ(z) is the ergodic distribution of the
Markov chain {ζn}, n = 1, 2, 3 . . . , which represents the reflections of the process.
Let us define a new random variable ζ̂λ as follows:

ζ̂λ : P{ζ̂λ ≤ z} = πλ(z),

i.e., ζ̂λ is a random variable, the distribution function of which is πλ(z). Furthermore,
Uη(x) is a renewal function generated by the sequence {ηn}, n = 1, 2, . . . and mn ≡
E
(
ηn
1

)
, n = 1, 2, . . ..

Now, state the following Lemma.

Lemma 1 Suppose that m3 ≡ E(η3
1) < ∞ is satisfied. Then, the following asymp-

totic expansion can be given, when λ → ∞:

E
(
Uη

(
λζ̂λ

))
= m2

2m2
1

λ + m2

2m2
1

+ o (1) . (1)

Proof By definition,

E
(
Uη

(
λζ̂λ

))
=

∞∫

0

Uη(λz)dπλ(z).

According to refined renewal theorem, when m2 = E(η2
1) < ∞ and λ → ∞, for

each z > 0 the following expansion can be written (Feller: [5, p. 366]):

Uη(λz) = λz

m1
+ m2

2m2
1

+ g(λz). (2)

In Eq. (2), g(λz) is a bounded function such that limλ→∞ g(λz) = 0. Therefore,

∞∫

0

Uη(λz)dπλ(z) =
∞∫

0

[
λz

m1
+ m2

2m2
1

+ g(λz)

]
dπλ(z)

= λ

m1

∞∫

0

zdπλ(z) + m2

2m2
1

+
∞∫

0

g(λz)dπλ(z).

= λ

m1
E(ζ̂λ) + m2

2m2
1

+
∞∫

0

g(λz)dπλ(z).
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Here,
∫∞
0 g(λz)dπλ(z) → 0,whenλ → ∞ (Gever [6]).Additionally, it is known that

(Feller [5] and Rogozin [18]), when λ → ∞, πλ(x) converges to a limit distribution
π0(x), i.e.,

πλ(x) → π0(x) ≡ 1

m1

x∫

0

(1 − F(v))dv. (3)

Note that, π0(x) is the limit distribution of a residual waiting time generated by the
random variables ηn, n = 1, 2, . . . , andm1 = E(η1). According to Eq. (3) and prop-
erty of the convergence of moments (Feller: [5, p. 251]), the following convergence
also satisfied, when λ → ∞:

E(ζ̂λ) ≡
∞∫

0

zdπλ(z) →
∞∫

0

zdπ0(z) = m2

2m1
.

Additionally, m3 = E(η3
1) < ∞ is hold, the following asymptotic expansion can be

written, when λ → ∞:

E(ζ̂λ) = m2

2m1
+ o

(
1

λ

)
. (4)

Using the asymptotic expansion in (4), the following calculations can be done:

∞∫

0

Uη(λz)dπλ(z) = λ

m1
E(ζ̂λ) + m2

2m2
1

+ o(1)

= m2

2m2
1

λ + m2

2m2
1

+ o(1).

Thus, the Lemma 1 is proved.

Now, we can express the theorem on the ergodicity of the process X (t) which is
the main aim of this section as follows.

Theorem 2 Let the initial sequence of the random pairs {(ξn, ηn)}, n = 1, 2 . . . ,
satisfy the following supplementary conditions:

(i) 0 < E(ξ1) < ∞;
(i i) E(η1) > 0;

(i i i) E(η3
1) < ∞;

(iv) η1 is a non-arithmetic random variable.

Then, the process X (t) is ergodic and the following relation is correctwith probability
1 for each measurable bounded function f (x) ( f : [0,+∞) → R):
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lim
T→∞

1

T

T∫

0

f (X (u))du = S f (5)

≡ 1

E(τ̄1)

∞∫

0

∞∫

0

∞∫

0

f (v)Pλz{τ1 > t : X (t) ∈ dv}dtdπλ(z).

Here πλ(z) is the ergodic distribution of the Markov chain {ζn}, n = 0, 1, 2, . . . and

E(τ̄1) ≡
∞∫

0

E(τ1(λz))dπλ(z).

Proof The process X (t) belongs to a wide class of processes which is known in
the literature as “the class of semi-Markov processes with a discrete interference
of chance”. Furthermore, the general ergodic theorem of type Smith’s “key renewal
theorem” exists in the literature (Gihman and Skorohod [7]) for these processes. Let
us show the conditions of general ergodic theorem are satisfied under the conditions
of Theorem 2. According to the general ergodic theorem, to make sure the process
X (t) is ergodic, the following assumptions must be provided.

Assumption 1 There exist a monotone increasing random times

0 < γ1 < γ2 < · · · < γn−1 < γn < · · ·

such that the values of the process X (t) at these times, i.e., κn = X (γn), form an
embedded ergodic Markov chain.

For satisfying Assumption 1, it is sufficient to choose the stopping times {τn},
n = 0, 1, 2, . . .which is defined in Sect. 2 instead of γn . Due to definition of stopping
times τn , it is obvious that X (τn) = λζn, n = 0, 1, 2, . . .. Here, ζn expresses the
quantity of nth reflection which is defined in Sect. 2. Furthermore, the reflection
quantities ζn form a Markov chain with a stationary distribution πλ(z). Therefore,
the sequence {λζn} can be considered as an embeddedMarkov chainwith a stationary
distribution function πλ(z/λ). Here, the distribution function πλ(x) can be obtained
from the following integral equation:

πλ(x) =
∞∫

0

Gλz(x)dπλ(z),

where Gλz(x) ≡ P{ζn ≤ x | ζn−1 = z}. In the study Rogozin [18], this probability is
represented as follows:
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Gλz(x) = Pλz{ζ1 ≤ x} = −
x∫

0

[1 − F(t)] dtUη(λz + x − t).

Here,Uη(t) is a renewal function generated by the random variables ηn , i.e.,Uη(t) =∑∞
n=0 F

∗n(t). Thus, Assumption 1 is satisfied.

Assumption 2 The expected values of the differences γn − γn−1, n = 1, 2, . . .must
be finite, so E(γn − γn−1) < ∞.

Let us show that the second assumption is satisfied under the conditions of
Theorem 2. For this purpose, it is sufficient to prove that E(τ1) and E(τ2 − τ1)

are finite. Due to the conditions of Theorem 2, E(ξ1) < ∞ is hold. On the other
hand, for each 0 < λ < ∞ and 0 < z < ∞, the renewal functionUη(λz) < ∞ (see,
Feller: [5, p. 185]). Therefore,

E(τ1) = E (τ1(λz)) = E(ξ1)Uη(λ) < ∞.

On the other hand,

E(τ2 − τ1) =
∞∫

0

E(τ1(λz))dπλ(z) = E(ξ1)

∞∫

0

E (N1(λz)) dπλ(z)

= E(ξ1)

∞∫

0

Uη(λz)dπλ(z).

According to Lemma 1,

∞∫

0

Uη(λz)dπλ(z) = m2

2m2
1

(λ + 1 + o(1)).

Thus, for the finite values of λ, the following inequality holds:

∞∫

0

Uη(λz)dπλ(z) < ∞.

Therefore, E (τ2 − τ1) < ∞ is hold. Hence, the Assumption 2 is proved. Conse-
quently, under the conditions of the Theorem 2, the process X (t) is ergodic.

Moreover, under the conditions of the Theorem 2, time average of the process
X (t) converges with probability 1, to space average, when t → ∞. Hence, the Eq.
(5) is true (see, Gihman and Skorohod: [7, p. 243]).

We can derive many important conclusion from Theorem 2, one of which is given
in Theorem 3.
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Theorem 3 Assume that the conditions of Theorem 2 are satisfied. Then, for each
x > 0, the ergodic distribution function (QX (x)) of the process X (t) can be written
as follows:

QX (x) = 1 − E(Uη(λζ̂λ − x))

E(Uη(λζ̂λ))
. (6)

Here, QX (x) = limt→∞ P{X (t) ≤ x} is the ergodic distribution function of the
process X (t); Uη(z) is a renewal function generated by the sequence {ηn}, n =
1, 2, . . .. Furthermore, for each bounded function M(x), E

(
M
(
λζ̂λ

))
is given by

the following integral:

E
(
M
(
λζ̂λ

))
≡

∞∫

0

M(λz)dπλ(z).

Proof Define the indicator function as follows (x > 0):

I(0,x](v) =
{
1, v ≤ x

0, v > x .

Then, substituting the indicator function I(0,x](v) instead of f (v) in Eq. (5), the
following equation is hold:

S f ≡ 1

E(τ̄1)

∞∫

z=0

∞∫

v=0

∞∫

t=0

f (v)Pλz{τ1 > t; X (t) ∈ dv}dtdπλ(z)

= 1

E(τ̄1)

∞∫

z=0

∞∫

v=0

Pλz{τ1 > t; X (t) ≤ x}dtdπλ(z).

Therefore, for each x > 0, the function QX (x) is obtained as follows:

QX (x) = 1

E(τ̄1)

∞∫

t=0

∞∫

z=0

Pλz{τ1 > t; X (t) ≤ x}dtdπλ(z).

For shortness G(t, x, λz) ≡ Pλz{τ1 > t; X (t) ≤ x}. First, calculate the function
G(t, x, λz):

G(t, x, λz) =
∞∑

n=0

Pλz{ν(t) = n; τ1 > t; X (t) ≤ x}.
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Here, ν(t) = max{n ≥ 0; Tn ≤ t}. Using the renewal sequences Tn and Sn ,
G(t, x, λz) is calculated as follows:

G(t, x, λz) =
∞∑

n=0

Pλz {Tn ≤ t ≤ Tn+1; τ1 > t; X (t) ≤ x} (7)

=
∞∑

n=0

P {Tn ≤ t ≤ Tn+1} P {λz − Sn > 0; λz − Sn ≤ x}

=
∞∑

n=0

(Φn(t) − Φn+1(t)) (Fn(λz) − Fn+1(λz − x)) .

Here, Φn(t) = P {Tn ≤ t} and Fn(z) = P {Sn ≤ z}. Applying Laplace transform
with respect to parameter t to the Eq. (7),

G̃(s, x, λz) ≡
∞∫

0

e−stG(t, x, λz)dt

=
∞∑

n=0

(Fn(λz) − Fn+1(λz − x))
ϕn(s) (1 − ϕ(s))

s
, s > 0,

is obtained. Here

ϕ(s) = E (exp{−sξ1}) ≡
∞∫

0

e−st dΦ(t).

Since E(ξ1) < ∞, the following relation is hold (Feller [5]):

lim
s→0

1 − ϕ(s)

s
= E(ξ1).

We can write the Laplace transform of G̃(0, x, λz) as follows:

G̃(0, x, λz) ≡ lim
s↘0

G̃ (s, x, λz) = E(ξ1)

∞∑

n=0

(Fn (λz) − Fn+1 (λz − x))

= E(ξ1)
(
Uη(λz) −Uη(λz − x)

)
.

Therefore,

QX (x) = 1

E (τ̄1)

∞∫

z=0

∞∫

t=0

Pλz {τ1 ≥ t; X (t) ≤ x} dtdπλ(z)

= 1

E (τ̄1)

⎧
⎨

⎩
E (ξ1)

∞∫

z=0

[
Uη(λz) −Uη(λz − x)

]
dπλ(z)

⎫
⎬

⎭
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is hold. According to Wald identity, we can obtained the expected value of τ1:

E(τ̄1) ≡
∞∫

0

E(τ1(λz))dπλ(z) = E(ξ1)

∞∫

0

E(N1(λz))dπλ(z)

= E(ξ1)

∞∫

0

Uη(λz)dπλ(z) = E(ξ1)E(Uη(λζ̂λ)).

As a result, QX (x) is calculated as follows:

QX (x) =
E(ξ1)

[
E(Uη(λζ̂λ)) − E(Uη(λζ̂λ − x))

]

E(ξ1)E
(
Uη(λζ̂λ)

)

= 1 −
E
(
Uη(λζ̂λ − x)

)

E
(
Uη(λζ̂λ)

) .

Here

E
(
M
(
λζ̂λ

))
≡

∞∫

0

M(λz)dπλ(z).

Thus, the proof of Theorem 3 is hold.

4 Asymptotic Rate of the Weak Convergence
for the Ergodic Distribution of the Process

To prove the weak convergence theorem for the ergodic distribution of the process,
we need to standardize the process X (t) as follows:

Yλ(t) ≡ X (t)

λ
, λ > 0.

The aim is to calculate the limit form for the ergodic distribution of the process Yλ(t),
when λ → ∞. Therefore, first of all, give the following Lemmas.

Lemma 4 The following relation can be written for the distribution πλ(x), when
λ → ∞:

πλ(x) ≡ lim
n→∞ P {ζn ≤ x} = π0(x) + 1

λ
gλ(x). (8)
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Here, π0(x) = 1
m1

∫ x
0 (1 − F(u)) du; m1 = E(η1) and gλ(x) is a measurable

bounded function such that limλ→∞ gλ(x) = 0.

Proof Since ζ1 is a residual waiting time generated by {ηn}, n = 1, 2, . . . at the first
cycle, the exact expression for its distribution function can be given as follows (Feller
[5, p. 369]):

H(λz; x) ≡ P{ζ1(λz) ≤ x} =
∞∫

0

[F(λz − v + x) − F(λz − v)] dUη(v). (9)

Applying Laplace transform to Eq. (9) and using Tauber-Abel Theorems, the distri-
bution function H(λz; x) can be presented as follows:

H(λz; x) ≡ P{ζ1(λz) ≤ x} = πλ1(λz; x) = π0(x) + 1

λ
g1(λz; x).

Here, for all z, x > 0, g1(λz; x) is a measurable and bounded function such that
limλ→∞ g1(λz; x) = 0.

Now, let us obtain the distribution function of ζ2 as follows:

π2λ(λz; x) ≡ P{ζ2(λζ1) ≤ x} =
∞∫

v=+0

P{ζ1 ∈ dv; ζ2(λζ1) ≤ x}

=
∞∫

v=+0

P{ζ1 ∈ dv}P{ζ1(λv) ≤ x}

=
∞∫

v=+0

H(λv; x)dvH(λz; v). (10)

Here, when λ → ∞, H(λv; x) = π0(x) + 1
λ
g1(λv; x). Substituting H(λv; x) in Eq.

(10):

π2λ(λz; x) =
∞∫

v=+0

{
π0(x) + 1

λ
g1(λv; x)

}
dvH(λz; v)

= π0(x)

∞∫

v=+0

H(λz; dv) + 1

λ

∞∫

v=+0

g1(λv; x)dvH(λz; v)

= π0(x) + 1

λ
g2(λz; x).
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is obtained. Here, g2(λz; x) = ∫∞
v=+0 g1(λv; x)dvH(λz; v) and it is possible to show

that g2(λz; x) is ameasurable and bounded function such that limλ→∞ g2(λz; x) = 0.
Hence, when λ → ∞, for all v, x > 0, the following equality can be written:

π2λ(λz; x) = π0(x) + 1

λ
g2(λz; x).

Now, let us obtain the distribution function of ζ3 as follows:

π3λ(λz; x) ≡ P{ζ3(λζ2) ≤ x} =
∞∫

v=+0

P{ζ2 ∈ dv; ζ3(λζ2) ≤ x}

=
∞∫

v=+0

P{ζ2 ∈ dv}P{ζ3(λζ2) ≤ x |ζ2 = v}

=
∞∫

v=+0

H(λv; x)π2λ(λz; dv)

=
∞∫

v=+0

{
π0(x) + 1

λ
g1(λv; x)

}
π2λ(λz; dv)

= π0(x) + 1

λ

∞∫

v=+0

g1(λv; x)π2λ(λz; dv).

Here let us denote the integral
∫∞
v=+0 g1(λv; x)π2λ(λz; dv) with g3(λz; x), i.e.,

g3(λz; x) =
∞∫

v=+0

g1(λv; x)π2λ(λz; dv)

and it is possible to show that g3(λz; x) is a measurable and bounded function such
that limλ→∞ g3(λz; x) = 0. Hence, the distribution function π3λ(λz; x) can be writ-
ten as follows:

π3λ(λz; x) = π0(x) + 1

λ
g3(λz; x).

Similarly, when λ → ∞, it is finally shown that the following asymptotic expansion
can be written by induction:

πnλ(λz; x) = π0(x) + 1

λ
gn(λz; x). (11)
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Here, π0(x) = (1/m1)
∫ x
0 (1 − F(v)) dv and gn(λz; x) is a measurable and bounded

function such that limλ→∞ gn(λz; x) = 0.
Taking limit in Eq. (11), when n → ∞, the following relation is hold:

πλ(x) = lim
n→∞ πnλ(λz; x) = π0(x) + 1

λ
lim
n→∞ gn(λz; x). (12)

In the relation (12), limn→∞ gn(λz; x) can be denoted by gλ(x). Therefore,

πλ(x) = π0(x) + 1

λ
gλ(x).

is obtained. Thus, Lemma 4 is proved.

Lemma 5 Under the conditions of Theorem 2, for each x > 0, the following asymp-
totic expansion can be written, when λ → ∞:

E
(
Uη

(
λ
(
ζ̂λ − x

)))
= λ

m1

∞∫

x

(z − x) dπλ(z) + m2

2m2
2

(1 − πλ(x)) + o (1) .

(13)
Here, mn = E

(
ηn
1

)
, n = 1, 2, . . ..

Proof It is easy to conclude that it can be proved with the same method on the proof
of Lemma 1. Briefly, the following equation can be written by definition:

E
(
Uη

(
λ
(
ζ̂λ − x

)))
=

∞∫

0

Uη (λ (z − x)) dπλ(z). (14)

From Eq. (14), the following asymptotic expansion can be hold:

E
(
Uη

(
λ
(
ζ̂λ − x

)))
= λ

m1

∞∫

x

(z − x) dπλ(z) + m2

2m2
2

(1 − πλ(x)) + o (1) .

Thus, it proves the Lemma 5.

Using these lemmas, the weak convergence theorem for the standardized process
Yλ(t) can be stated as follows:

Theorem 6 Under the conditions of Theorem 2, Yλ(t) is ergodic and the ergodic
distribution of this process (QY (x)) convergences to the following limit distribution
R(x), for each x > 0, when λ → ∞:

lim
λ→∞ QY (x) = R(x) ≡ 2

m2

x∫

0

⎧
⎨

⎩

∞∫

z

(1 − F(v)) dv

⎫
⎬

⎭
dz (15)
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Here, m2 = E(η2
1).

Proof According to Theorem 3, Lemmas 1 and 5, the following calculations can be
done:

QY (x) = QX (λx) = 1 −
E
(
Uη

(
λζ̂λ − λx

))

E
(
Uη

(
λζ̂λ

))

= 1 −
⎡

⎣ λ

m1

∞∫

x

(z − x) dπλ(z) + m2

2m2
2

(1 − πλ(x)) + o (1)

⎤

⎦
[

m2

2m2
1

λ + m2

2m2
1

+ o(1)

]−1

= 1 − 1

m̂1

∞∫

x

[1 − πλ(z)] dz + o(1) = 1

m̂1

x∫

0

[1 − πλ(z)] dz + o(1).

Here m̂1 ≡ E(ζ̂λ) = ∫∞
0 (1 − πλ(z)) dz, according to the property of convergence of

moments (Feller [5]), m̂1 = m2
2m1

+ o(1) canbewritten.Then, the following expansion
can be given:

QY (x) = 2m1

m2

x∫

0

⎧
⎨

⎩
1

m1

∞∫

z

(1 − F(v)) dv

⎫
⎬

⎭
dz + o(1)

= 2

m2

x∫

0

⎧
⎨

⎩

∞∫

z

(1 − F(v)) dv

⎫
⎬

⎭
dz + o(1) = R(x) + o(1).

When λ → ∞, the following relation is obtained:

lim
λ→∞ QY (x) = R(x) ≡ 2

m2

x∫

0

⎧
⎨

⎩

∞∫

z

(1 − F(v)) dv

⎫
⎬

⎭
dz.

Thus, Theorem 6 is proved.

Theorem 7 Under the conditions of Theorem 6, for the sufficiently large values of
λ, the following inequality can be written:

|QY (x) − R(x)| ≤ 2

λ
|π0(x) − R(x)| . (16)

Here

π0(x) = 1

m1

x∫

0

[1 − F(v)] dv

is the limit distribution of the residual waiting time generated by {ηn} and
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R(x) = 2

m2

x∫

0

⎧
⎨

⎩

∞∫

z

(1 − F(v)) dv

⎫
⎬

⎭
dz

is the limit distribution of the process Yλ(t), where mn = E(ηn
1), n = 1, 2 . . .

Proof We can rewrite the Eq. (6) as follows:

QY (x) =
E
(
Uη

(
λ
(
ζ̂λ − x

)))
− E

(
Uη

(
λζ̂λ

))

E
(
Uη

(
λζ̂λ

)) .

Denote that CF ≡ m2

2m2
1
and using Lemmas 1 and 5, the following equality can be

written:

Δ ≡ E
(
Uη

(
λ
(
ζ̂λ − x

)))
− E

(
Uη

(
λζ̂λ

))

= λ

m1
D(x) + CFπλ(x) + o(1).

Here, D(x) = 1
m1

∫ x
0 (1 − πλ(z)) dz. According to Lemma 1, the following expan-

sion can be written:

E
(
Uη

(
λζ̂λ

))
= CFλ

(
1 + 1

λ
+ o

(
1

λ

))

Hence, we obtain that

QY (x) = Δ

E
(
Uη

(
λζ̂λ

)) = Δ
(
CFλ

(
1 + 1

λ
+ o

(
1
λ

))) .

Using Taylor expansion, the following calculations can be done:

QY (x) = Δ

CFλ

(
1 − 1

λ
+ o

(
1

λ

))

=
{
D(x)

CF
+ πλ(x)

λ
+ o

(
1

λ

)}

= 2m1

m2

x∫

0

(1 − πλ(z)) dz

+1

λ

⎡

⎣πλ(x) + 2m1

m2

x∫

0

(1 − πλ(z)) dz

⎤

⎦+ o

(
1

λ

)
. (17)
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Recall that according to Lemma 4:

πλ(z) ≡ P
{
ζ̂λ ≤ z

}
= π0(z) + o

(
1

λ

)
. (18)

Substituting the Eq. (18) into Eq. (17), we obtain that

QY (x) = 2m1

m2

x∫

0

(1 − π0(z)) dz

+1

λ

⎡

⎣π0(x) + 2m1

m2

x∫

0

(1 − π0(z)) dz

⎤

⎦+ o

(
1

λ

)

= 2m1

m2

x∫

0

⎧
⎨

⎩
1

m1

∞∫

z

(1 − F(v)) dv

⎫
⎬

⎭
dz

+ 1

λ

⎡

⎣ 1

m1

x∫

0

(1 − F(v)) dv − 2m1

m2

x∫

0

⎧
⎨

⎩
1

m1

∞∫

z

(1 − F(v)) dv

⎫
⎬

⎭
dz

⎤

⎦

+ o

(
1

λ

)
.

According to Theorem 6,

QY (x) = R(x) + 1

λ
[π0(x) − R(x)] + o

(
1

λ

)

To obtain the asymptotic rate,

|QY (x) − R(x)| ≤ 1

λ
|π0(x) − R(x)| +

∣
∣∣∣o
(
1

λ

)∣∣∣∣ .

When λ is large enough, then the following inequality can be written:

∣∣
∣∣o
(
1

λ

)∣∣
∣∣ ≤ 1

λ
|π0(x) − R(x)| .

Hence, it can be written as follows:

|QY (x) − R(x)| ≤ 2

λ
|π0(x) − R(x)| .

Thus, Theorem 7 is proved.
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5 Conclusion

In this study, the weak convergence theorem for the ergodic distribution of renewal-
reward process with a generalized reflecting barrier (X (t)) is proved. As a result, the
asymptotic relation for the ergodic distribution function QY (x) is hold as in the Eq.
(15). It can be inferred from this result that the limit distribution R(x) is a distribution
of a residualwaiting timewhich is generated by another residualwaiting times. That is
a very interesting interpretation in the aspect of stochastic process theory. According
to this result, the rate is expressed by the distribution functions of π0(x) and R(x).
Since they are distribution functions, they can only take values in the interval [0, 1].
Thus, the absolute difference between π0(x) and R(x) can’t be greater than 1. On
the other hand, when x → ∞, this absolute difference goes to zero. Therefore, in
that case, the rate can be 2

λ
at most and it gets smaller as well, when λ → ∞.
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Bias Study of the Naive Estimator
in a Longitudinal Linear Mixed-Effects
Model with Measurement Error
and Misclassification in Covariates

Jia Li, Ernest Dankwa and Taraneh Abarin

Abstract This research presents a generalized likelihood approach to estimate the
parameters in a longitudinal linear mixed-effects model. In our model, we consider
measurement error and misclassification in the covariates. Through simulation stud-
ies, we observe the impact of each parameter of the model on the bias of the naive
estimation that ignores the errors in the covariates.

1 Introduction

Longitudinal studies are research studies that involve repeated observations of the
same factors over a period of time. As observational studies, they are applied in the
health science to uncover predictors of certain outcome. Frequently, existing stud-
ies examine such predicting variables under the assumption that they are measured
accurately. However, unobserved or error-prone variables are unavoidable. It is now
well-known that measurement and/or misclassification error can influence the results
of a study [1]. The impact of ignoring these errors varies from bias and large vari-
ability in estimators to low power in testing hypothesis [2, 3]. In order to improve
the accuracy and precision in assessing the variables, one needs to take into account
of the imprecise data of the studies.

In this research, we consider a longitudinal linearmixed-effectsmodel. Themodel
contains a repeatedly measured response, yit , continuous predictor(s), Xit , subject
to measurement error, and a classified predictor, Gi , subject to misclassification. We
consider the model error term, εi t , with an autoregressive model with lag one, AR(1),
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to account for the correlation between the time points. Autoregressive models with
lag one are widely applied in science [4–6]. We also consider a time-independent
random effect, γi , for a specific individual. As both X and G are random variables,
we calculated the marginal moments of the response in order to obtain a closed-form
for the parameter estimates using Generalized Least Square (GLS) estimation [7].

This paper is organized as follows: In Sect. 2, we describe the models in the
research.Webeginwith a longitudinal linearmixed effectmodelwithout any errors in
the covariates; then we introduce measurement error and misclassification models as
well as a finalmodel with bothmeasurement error andmisclassification in covariates.
Section3 is a discussion of simulations studies for thefinalmodelwhere there are both
measurement error and misclassification involved. The last section draws conclusion
on the whole research.

2 The Models

2.1 Error-Free Model

Without considering any errors in covariates, we define the longitudinal linearmixed-
effects model as follows:

yit = X ′
i tβ + γi + Giα + εi t , i = 1, . . . , k, t = 1, . . . , T, (1)

where yit ∈ R is the response for the i th individual, at timepoint t , t = 1, . . . , T, γi is
the individual random effect with mean zero and variance σ 2

γ . Moreover, Xit ∈ R
p is

the p dimensional continuous covariate with coefficient vector β, and independent of
Gi ∈ R, which is the categorical time-invariant predictor. In model (1) also, α ∈ R

is the coefficient of the categorical predictor, εi t is an error term that follows an
AR(1), such that εi t = ρ1εi,t−1 + ait and |ρ1| < 1. In this autoregressive model, ait
is a random error termwithmean zero and variance σ 2

ε , independent of γi . Themodel
error term εi t can, therefore, be expressed as εi t = ∑∞

t=0 ρ t
1ait . TheGeneralizedLeast

Square (GLS) estimate of θ = (β ′, α)′, the vector of coefficient parameters, based
on the marginal (in terms of the random effects) moments of the response, has a
closed-form given as follows:

θ̂ =
(

β̂

α̂

)
=

⎡

⎣
n∑

i=1

⎛

⎝
Xi

··
1′
T Gi

⎞

⎠ Σ−1
i (X ′

i : 1T Gi )

⎤

⎦

−1 ⎡

⎣
n∑

i=1

⎛

⎝
Xi

··
1′
T Gi

⎞

⎠ Σ−1
i yi

⎤

⎦

where Xi = (X ′
i1, . . . , X

′
i p)

′, X ′
i p = (Xi1p, . . . , XiT p)

′, 1T is a T-dimensional col-
umn vector of ones, yi is (yi1, . . . , yiT )′, and Σi is the covariance matrix of yi which
satisfies:
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1. var(yit |Xit ,Gi ) = σ 2
γ + σ 2

a

1− ρ2
1
,

2. for t �= u, cov(yit , yiu |Xit ,Gi ) = σ 2
γ + σ 2

a ρ
|t−u|
1

1− ρ2
1
.

The GLS estimators of the model coefficient parameters may be computed, iter-
atively, based on other model parameters.

2.2 Model with Measurement Error

In this model, the true continuous predictor Xit is not observed, instead another
variable Wit is observed subject to measurement error. We consider an additive
measurement error model as follows.

Wit = Xit +Uit , i = 1, . . . , n, t = 1 . . . T (2)

Here,Uit is the p-dimensionalmeasurement error, independent of Xit withmean vec-
tor 0 and variances σ 2

u1 . . . σ 2
up. We assume measurement error for any two covariates

are independent irrespective of their occurrence times. Furthermore, measurement
errors for measuring the same covariate at different time points are likely to be
correlated.

2.3 Model with Misclassification

First, we examined the case where the categorical predictor is a binary variable with
values 0 or 1; where 0 is failure and 1 is success. Thus, instead of the true categorical
predictor G, a binary variable, G∗, is observed subject to misclassification. The
conditional probabilities of G∗ given G are as follow.

θi j = P(G∗ = i |G = j), i = 0, 1, j = 0, 1. (3)
1∑

i=0

θi j = 1, j = 0, 1.

In literature, θ11 = P(G∗ = 1|G = 1), or the probability of correct classification of
success, is known as sensitivitywhile θ00 = P(G∗ = 0|G = 0), or the probability of
correct classification of failure, is known as specificity. We also extended the study
to a more complicated case where the categorical covariate has three categories with
values 0, 1 or 2 (not presented in this paper). For detailed discussions on the case
where the categorical variable has three categories, please refer to Chap.5 of [8].
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2.4 Model with Measurement Error and Misclassification

In this model, error-prone variables, Wit and G∗
i , are observed instead of the true

covariates, Xit andGi , respectively. Using themodel assumptions and lawof iterative
expectations, we obtained marginal mean, variance and covariance of the response
as follows. Detailed steps on calculating these moments, can be found in Chap.5 of
[8].

1. E(yit |Wit ,G∗
i ) = E(X ′

i t |Wit )β + αE(Gi |G∗
i )

2. var(yit |Wit ,G∗
i ) = β ′var(X ′

i t |Wit )β + α2var(Gi |G∗
i ) + σ 2

γ + σ 2
a

1− ρ2
1
,

3. for t �= u, cov(yit , yiu |Wit ,Wiu,G∗
i ) = β ′cov((X ′

i t , X
′
iu)|Wit ,Wiu)β + var(Gi |

G∗
i )α

2 + σ 2
γ + σ 2

a ρ
|t−u|
1

1− ρ2
1
.

The naiveGLS estimate of themodel coefficient parameters based on the observed
W and G∗ rather than X and G, is expressed as follows.

θ̂n =
⎡

⎣
n∑

i=1

⎛

⎝
Wi

··
1′
T G

∗
i

⎞

⎠ Φ∗−1

i (W ′
i : 1T G∗

i )

⎤

⎦

−1 ⎡

⎣
n∑

i=1

⎛

⎝
Wi

··
1′
T G

∗
i

⎞

⎠ Φ∗−1

i yi

⎤

⎦ , (4)

where θ̂n =
(

β̂n

α̂n

)
and Φ∗

i is the covariance matrix of the response based on Wi

and G∗, which satisfy expressions (2) and (3) given above. The naive estimator is
generally biased for θ , as themarginalmoments of the response based on the observed
covariates, W and G∗, differ from the ones based on the true covariates, X and G.

The covariance matrix of θ̂n conditioned on Wi and G∗
i , can be expressed as

Cov(θ̂n|Wi ,G
∗
i ) =

⎡

⎣
n∑

i=1

⎛

⎝
Wi

··
1′
T G

∗
i

⎞

⎠ Φ∗−1

i (W ′
i : 1T G∗

i )

⎤

⎦

−1

3 Simulation Results

We now present the common set-ups for all the scenarios. For each of the con-
tinuous covariates (in here, p = 2), and T = 4 time points, we generated indepen-
dent time-variant continuous predictors from uniform distributionsU (0, 1). We used
autoregressive models to account for such correlations in the covariates. Therefore,
the measurement error for covariate one, (say η1i t ), follows an AR(1), such that
η1i t = ρ2η1i,t−1 + u1i t and |ρ2| < 1. In this autoregressive model, u1i t is a random
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error term with mean zero and variance σ 2
u1 . The measurement error for covariate

two, (say η2i t ), follows an AR(1), such that η2i t = ρ3η2i,t−1 + u2i t and |ρ3| < 1.
Similarly, u2i t is a random error term with mean zero and variance σ 2

u2 . ρ2 and ρ3

were both set for 0.8, except in the scenarios that they changed. The categorical
time-invariant, G, was generated from a binary distribution with probability of suc-
cess π = 0.4. The regression model parameters for most scenarios were set to be
α = 0.2 and β = (1,−0.5)′. However, in order to investigate the impact of the signs
(negative/positive) of the coefficients, we also considered α = −0.2, and other pos-
sible signs of each βs. The model error term, εi t , follows a first order auto-regressive
model, such that εi t = ρ1εi,t−1 + ait and |ρ1| < 1. We generated ait from a normal
distribution with mean zero. Except when they changed, we set ρ1 and σ 2

ε to be 0.8
and 1, respectively.

For the misclassification, the categorical time-invariant, G∗, was generated based
on G, in order to guarantee specific values of sensitivity and specificity. A sample
size of 200 units were selected for all the scenarios. For each of the sample sizes,
1000 Monte Carlo replicates were simulated and the Monte-Carlo mean estimates
and standard errors of the estimators were computed. In our simulation studies, we
observed the bias in the naive estimator as we vary the parameters of the model one
after the other with all the other parameters remaining the same. We present here
some results from the simulations.

The results of changing α from −3 to 3 is shown in Fig. 1a. The bias in the naive
estimate of α increases sharply as α changes. As it could be expected, when α = 0,
the bias in the naive estimator of α is approximately zero. The bias of the estimators
of β1 and β2 were not affected by the changes in α.

Figure1b shows the bias in the naive estimator as π , the probability of the of
success of the categorical covariate, varies from 0 to 1. It is interesting to note that
when the parameter α is set as a negative value, the bias in the naive estimator of α

increases, however when α is set positive (not shown in here) the bias in the naive
estimator decreases.

As ρ1 increases from −1 to 1, Fig. 1c indicates that the bias in the naive estimator
of β1 initially decreases to a point a point where ρ1 = −0.25 and then rises again
giving it a ∪ shape. The bias in the naive estimator of α increases to the same point
for ρ1 and declines afterwards giving it an ∩ shape. However, the bias in the naive
estimator of β2 decreases to a point a point where ρ1 = 0 and increases slowly,
thereafter.

From the graph in Fig. 1d,we observe that as the variance of themeasurement error
of covariate X1 increases, bias in the naive estimator of β1 increases, as was expected.
Since X1 and X2 were generated independently, the bias in the naive estimator of
β2 remains unchanged while the bias of the naive estimator of α declines. Although,
the main goal of our research was to study the bias in the naive estimates, we also
investigated the variabilities in them. From Table1, we observe that the increase in
measurement error of X1 decreases the variabilities in the naive estimators of the
three parameters, making the naive estimator of β1 even worse.

In Fig. 2, we take a critical look at the magnitude of bias in the naive estimators
as we vary β1 from −3 to 3. For graphs (a) and (b), we set β2 to be positive (0.5).
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Table 1 Bias and standard error for the different values of σ 2
u1

σ 2
u1 α̂ β̂1 β̂2

Bias SE Bias SE Bias SE

0.2 0.5050 0.0395 −0.6946 0.0060 −0.6105 0.0015

0.4 0.3774 0.0355 −0.4345 0.0033 −0.6194 0.0014

0.6 0.2788 0.0332 −0.2328 0.0022 −0.6260 0.0013

0.8 0.2041 0.0316 −0.0798 0.0016 −0.6308 0.0012

1.0 0.1456 0.0305 −0.0401 0.0012 −0.6345 0.0012

1.2 0.0983 0.0296 0.1371 0.0010 −0.6375 0.0011

1.4 0.0592 0.0289 0.2174 0.0008 −0.6399 0.0011

1.6 0.0261 0.0284 0.2851 0.0007 −0.6419 0.0011

1.8 −0.022 0.0279 0.3433 0.0006 −0.6436 0.0010

2.0 −0.0021 0.0275 0.3436 0.0023 −0.6456 0.0009

(a) (b)

(c) (d)

Fig. 1 Graphs for scenarios where the categorical predictor has two categories
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(a) (b)

(c) (d)

Fig. 2 Graphs for the study of bias in naive estimator as β1 changes. a β2 = 0.5. b β2 = 0.5. c
β2 = −0.5. d β2 = −0.5

The results indicate that as β1 changes, in both graphs, the bias in the naive estimator
of α declines. However, the magnitude of bias is larger in the scenario in which α

is set positive. Similar observations were made in graphs (c) and (d), where we set
β2 to be negative (−0.5). In addition to the above results, we observe that although
in each graph, the bias in the naive estimator of β2 remains unchanged, the naive
estimator tends to underestimate β1, when it is actually positive and over estimate it
when it is negative. Comparing graphs (a) and (b) with (c) and (d) also reveals that
the magnitude of the bias in α̂ is higher for positive β2 as comparing to the negative
value.
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3.1 More Interesting Results Not Shown in Graphs or Table

• By increasing either sensitivity or specificity, when α is set as a negative value, the
bias in the naive estimator of α increases but when α is set as a positive value the
bias in the naive estimator of α decreases.

• We also observe the behaviour of the bias in the naive estimates, as sample size
changes from 100 to 1000. It is interesting that increasing the sample size does not
improve the naive estimators of the coefficient parameters. More interestingly, as
the sample size increases, the variabilities of all the estimates decline, leaving the
naive estimates to perform very poorly.

• Increasing either σ 2
γ or σ 2

ε (from zero to one) had almost the same effects on the
bias of naive estimator of the parameters. While the bias of naive estimator of α

increases, that of β1 and β2 decrease slightly.

4 Conclusions

• Even though assessing bias through the closed-form naive estimates is quite chal-
lenging, one may assess the bias (and variabilities) of naive estimator by varying
model parameters one at a time while keeping the others constant. These results
provide useful insights on the effect of errors in covariates in the linear mixed
effect models.

• Bias in the naive estimator tend to be high when the parameter have high con-
tributions in the model. A typical case was where the magnitude of bias for the
naive estimator of α was high when the parameter α was set as a positive value. So
when the categorical covariate has a positive contribution in the model, we expect
measurement error and misclassification to have worse influence on the estimate
of α, the coefficient of the categorical predictor.

• Bias, accompanied by low variabilities, indicate how poor estimates are when
we have error-prone covariates in the model. This has been a very consistent
observation in our study of the effects of errors in the covariates of our model.
This implies that one cannot do any better inference without accounting for the
errors in the covariates.

• Changes in some of the parameters of the model such as the coefficients of the
predictor variables, α, β1 and β2, lag correlations coefficients, ρ1 and ρ2, and
sensitivity, were found to have much influence on the magnitude and direction of
bias of the estimators of the parameters as compared to the other parameters.
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Transformations of Data in Deterministic
Modelling of Biological Networks

Melih Ağraz and Vilda Purutçuoğlu

Abstract TheGaussiangraphicalmodel (GGM) is a probabilisticmodelling approach
used in the system biology to represent the relationship between genes with an undi-
rected graph. In graphical models, the genes and their interactions are denoted by
nodes and the edges between nodes. Hereby, in this model, it is assumed that the
structure of the system can be described by the inverse of the covariance matrix, Θ ,
which is also called as the precision, when the observations are formulated via a lasso
regression under the multivariate normality assumption of states. There are several
approaches to estimateΘ in GGM. The most well-known ones are the neighborhood
selection algorithm and the graphical lasso (glasso) approach. On the other hand,
the multivariate adaptive regression splines (MARS) is a non-parametric regression
technique to model nonlinear and highly dependent data successfully. From previous
simulation studies, it has been found thatMARScan be a strong alternative ofGGM if
the model is constructed similar to a lassomodel and the interaction terms in the opti-
mal model are ignored to get comparable results with respect to the GGM findings.
Moreover, it has been detected that themajor challenge in bothmodelling approaches
is the high sparsity ofΘ due to the possible non-linear interactions between genes, in
particular, when the dimensions of the networks are realistically large. In this study,
as the novelty, we suggest the Bernstein operators, namely, Bernstein and Szasz poly-
nomials, in the raw data before any lasso type of modelling and associated inference
approaches. Because from the findings via GGM with small and moderately large
systems, we have observed that the Bernstein polynomials can increase the accuracy
of the estimates. Hence, in this work, we perform these operators firstly into the
most well-known inference approaches used in GGM under realistically large net-
works. Then, we investigate the assessment of these transformations for the MARS
modelling as the alternative of GGM again under the same large complexity. By this
way, we aim to propose these transformation techniques for all sorts of modellings
under the steady-state condition of the protein-protein interaction networks in order
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to get more accurate estimates without any computational cost. In the evaluation of
the results, we compare the precision and F-measures of the simulated datasets.

1 Introduction

The description of the biochemical activations via networks and the mathematical
modelling are very powerful approaches to understand the actual behaviour of the bio-
logical process and present the structure of the complex systems. There are different
levels to present biochemical events. The protein-protein interaction and metabolic
networks are the two well-known representations. Here we deal with the former
type of networks which aims to explain the functional/physical interactions between
proteins. This biological network can be modelled with different techniques. One of
the very well known models to describe and to visualize biological networks is the
Gaussian Graphical Model (GGM). GGM is extensively used in many fields, includ-
ing image process [1], economy [2], gene regularity network [3] and the process
of sampling [4]. Basically, it is a parametric method and applies the inverse of the
covariance matrix, i.e. precision Θ , to explain relationships between genes. Here
every gene is regressed by the other genes in such a way that the coefficients of
the regression indicate conditionally dependent structure [5]. Thus the entries of the
precision matrix are the model parameters of interest. But the estimation of these
parameters are challenging, especially, under high dimensional systems with sparse
observations. Because it leads to the ill-posed problem. There are numerous works
to overcome this problem [6–8]. One of the common solutions is the neighbor-
hood selection method [9]. This method is a subproblem of the covariance selection
methods. It uses the neighborhoods of the nodes and assumes that two nodes in
the graph are conditionally independent to each other given the remaining nodes.
Finally the given neighbors of the variable are estimated by fitting a lasso regression.
The other common approach for the estimation is the L1-penalized likelihood, i.e.
glasso method [10]. This approach simply performs the lasso regression by putting
the L1-penalty into the precision matrix.

MARS is an innovative nonparametric and nonlinear regression modelling tech-
nique which is introduced by statistician Friedman in 1991 [11]. It efficiently models
the variables’ nonlinearities and interactions by using the linear terms and does not
make any assumption about the functional relationship between the response and
the exploratory variables [12]. When constructing the model, it partitions the input
variables into regions where each has its own regression equation. This method is
implemented in various fields such as financial data clustering [13], data mining [14],
time series [15] and the engineering analyses [16].

In this study,we suggest towork on theBernstein andSzasz-MirakyanPolinamials
in inference with GGM and MARS to accurately estimate realistically complex
biological networks and to compare their results. By this way, we aim to detect
whether these operators can be suggested in advance of all lasso types of models
for protein interaction networks. In general the Bernstein operators are applied to
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prove polynomials ability on the approximation of any function over an interval
and smoothing the datasets by transforming them on the [0, 1] interval. Moreover,
the Bernstein operators are not only used for smoothing the functions, but also, for
smoothing statistics [17], solving numerical analysis [18] and drawing computer
graphs via the bezier curves [19]. Finally, they can be also performed in generalized
Fourier series in order to proximate curves and surfaces [20].

Hence, in the rest of the paper, we present the following organization. In Sect. 2,
GGM is explained briefly and its estimation technique via two major methods are
introduced. In Sect. 3, the MARS method and Bernstein operators are shortly pre-
sented. In order to evaluate the results, the simulation studies are applied in Sect. 4.
Then the findings are compared and future works are presented in Sect. 5.

2 Graphical Models

A graph is a representation of pairs of nodes and edges where the nodes are the basic
components of biological networks and the edges show the interactions between
nodes. In biological networks, the graphical models are one of the useful ways to
extract the meaning of networks from a dataset. The graphical models can be divided
into the two groups, known as directed and undirected graphical structures. As it is
seen in Fig. 1, the directed graph shows the direction and interactions between nodes,
but the undirected graph only presents the interactions between nodes without their
directional information.

2.1 Gaussian Graphical Models

The Gaussian graphical models (GGM) are one of the well-known modelling
approaches, which show the undirected graphical interactions over a set of random
variables under the multivariate normal distribution. GGM have been firstly used in
the literature under the name of the covariance selection models by Dempster [21].
But the graphical representation of these models is firstly introduced by Whittaker
[22]. In GGM, the nodes can be formulated as Y = (Y 1,Y 2, . . . ,Y p) which is
multivariate normally distributed via

Fig. 1 Basic representation
of the a directed and b the
undirected graph between
three nodes
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Y ∼ N (μ,�), (1)

where μ is a p-dimensional vector with μ = (μ1, μ2, . . . , μp) and � is a (p × p)-
dimensional covariance matrix. So the probability distribution function of Y can be
presented by

f (y) = 1

(2π)n/2|�|1/2 e
− 1

2 (y−μ)
′
�−1(y−μ) (2)

in which Y describes a multivariate normally distributed variable, μ refers to a mean
vector and � is the variance-covariance matrix as stated beforehand. Finally, |.|
denotes the determinant of the given matrix. The main idea of GGM is based on the
conditionally independent structure. For three nodes A, B and C, we say that A and
B are conditionally independent with C if the structure of A and B is separated by C.
In gene networks, if two nodes, i.e. genes, are conditionally independent, there is no
edge between two nodes and is represented with a zero entry in the precision matrix.
On the other hand, the precision is the inverse of the covariance matrix �, denoted
by Θ with a (p × p)-dimensional matrix. Thus, the pairwise dependency between
two nodes i and j can be shown by θi j as follows.

Θ = �−1 = θi j . (3)

As the precision matrices consist of partial covariances, its diagonal entries are
obtained from θi i = 1/var(Y (i)|Y 1,Y 2, . . . ,Y i−1,Y i , . . . ,Y p) and the off-diagonal
entries are found from

φi j = −θi j√
θi iθi j

, (4)

where θi j shows the partial correlation between Y i and Y j and var(.) denotes the
variance term in the given random variable. In gene networks, the number of nodes
p is much more than the number of observations n (i.e. p � n) that leads to the
singularity problem. In other words, the estimated sample covariance matrix S is not
invertible. There are many methods to infer this partial covariance matrix. One of
them is to apply the lasso regression method. Let’s assume that Y is a vector and
all the observed networks are contained by Y . So a regression model is constructed
between a response variable Y p and the explanatory variables Y−p. Hereby, the
model is described as

Y p = Y−pβ + ε. (5)

In this expression, ε is the error termwhich has a normal distribution with zero mean.
Thus, themean vectorμ and the variance-covariancematrix� of themodel in Eq. (5)
can be shown by
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μ =
(

μ−p

μp

)
and � =

(
�−p,p σ−p,p

σ−p,p σp,p

)
, (6)

respectively. Here, μ−p indicates the mean vector of all nodes except the pth node,
�−p,p is the (p−1)× (p−1) -dimensional variance-covariance matrix of all nodes
except the pth node, σ−p,p refers to a (p − 1)-dimensional vector and σp,p is the
covariance value of the pth node. In Eq. (5), β stands for the regression coefficient.
Interestingly, there is a relation between β and the precision matrix Θ which is
formalized by

β = −Θ−p,p

Θp,p
. (7)

In Eq. (7), Θ−p,p describes the precision of nodes except the pth entry and Θp,p

represents the (p× p)-dimensional full-rank precision matrix. Therefore, the entries
of Θ are used to infer the strength of the interactions between nodes.

There are some approaches to estimate the model parameters of GGM. When the
number of observations is greater than the number of dimensions (i.e. n > p), one can
estimate θ by the maximum likelihood estimation (MLE) easily. On the other hand if
n < p, then the singularity problem can occur. In order to overcome this challenge,
the L1-penalized method and the neighborhood selection with the lasso approach
are the two well-known approaches. The mathematical details of both techniques are
presented as below.

2.1.1 Graphical Lasso (L1-Penalized Method)

One of the efficient ways to estimate a sparse and symmetricmatrixΘ is the graphical
lasso approach (glasso) which is introduced by Friedman et al. [7]. According to the
Lagrangian dual form, the problem is the maximization of the loglikelihood function
with respect to the nonnegative matrix as follows.

max
Θ

(
log(|Θ|) − Trace(SΘ)

)
, (8)

where S = XX
′
/n is an estimate of the covariancematrix. Yuan andLin [6] show that

instead ofmaximizingEq. (8), the penalized loglikelihood function canbemaximized
via

max
Θ

{
log(|Θ|) − Trace(SΘ) − λ||Θ||1

}
(9)

in which Trace(.) denotes the trace matrix as used before. ||Θ||1 is the L1-norm
which is the summation of the absolute values of the elements of the precision
matrix. According to the Karush-Kuhn-Ticker condition to maximize Θ , Eq. (9)
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must provide the following equation.

Θ−1 − S − λ�(Θ) = 0, (10)

where �(x) shows the subgradient of |x |. That means, if Θi j > 0, �(Θi, j ) equals to
1. If Θi j < 0, �(Θi, j ) sets to −1 and Θi j = 0.

A sufficient condition for the solution of the graphical lasso is to block the diagonal
matrix with blocks if the inequality Sii ′ < λ is satisfied for all i ∈ Ck , i

′ ∈ Ck ′ and
k �= k

′
, whereC1,C2, . . . ,Ck represent a partition of p features. θ̂ is a block diagonal

matrix with k blocks by

Θ̂ =

⎡

⎢⎢⎢
⎣

Θ1

Θ2

. . .

Θk

⎤

⎥⎥⎥
⎦

.

Here the kth block of Θ̂ satisfies Eq. (8) and Θ̃ is estimated. From the findings [8],
it is seen that the blocking idea is computationally efficient in inference.

2.1.2 Neighborhood Selection with the Lasso Approach

A popular alternative way to overcome the underlying singularity of the variance-
covariance matrix is to apply the neighborhood selection with the lasso approach [9].
This method is computationally attractive for sparse and high dimensional graphes.

The neighborhood selection method is a sub-problem of the covariance selection.
If Φ is a set of nodes, the neighborhood of nep of the node p ∈ Φ is the smallest
subset ofΦ \{p}, which denotes the set of nodes except the pth node. So all variables
Ynep in the neighborhood, Yp is conditionally independent on all remaining variables.
The neighborhoods of the node p consist of the node b ∈ Φ \ {p} so that (p, b) ∈ E
when E denotes the set of edges.

This method can be converted as a standard regression problem and can be solved
efficiently with the lasso approach [10]. Hereby, the lasso estimate of θ̂ for the pth
node and under the penalty constant λ is given by

Θ̂ p,λ = argmin

(
||Yp − YΘ||22 + λp||Θ||1

)
(11)
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where ||Θ||1 = ∑

b∈Φ(n)

|Θb| is the L1-norm of the coefficient vector and ||.||22 shows
the L2-norm. But the solution of Eq. (11) is not unique. Because each choice of
the penalty parameter λ indicates an estimate of the neighborhood nep for the node
p ∈ Φ(n).

3 Multivariate Adaptive Regression Splines and Bernstein
Polynomials

3.1 Multivariate Adaptive Regression Splines (MARS)

The Multivariate Adaptive Regression Splines (MARS) is a nonparametric regres-
sion technique that makes no assumption about the functional relationship between
dependent and independent variables and it has an increasing number of applications
inmany areas of the science over the last few years. Because it builds a flexible model
for the high-dimensional non-linear data by introducing piecewise linear regressions.
The classical nonparametric model has the following structure.

yi = f (β, x ′
i ) + ε, (12)

where β is the unknown parameter, n represents the sample size and x stands for
the independent variable. Moreover, f describes an unknown functional form and ε

denotes the random error term. Hence, the MARS method affords to proximate the
nonlinear functions of f by using piecewise linear basis elements, known as basis
functions BFs [11]. The form of BFs can be shown as (x − t)+ and (t − x)+ in which
x is an input variable on the positive side “+”. So

(x − t)+ =
{
x − t if x > t
0 otherwise

, (t − x)+ =
{
t − x if x < t
0 otherwise

. (13)

In Eq. (13), t is a univariate knot obtained from the dataset simply shown in Fig. 2
too.

From Fig. 2, it is seen that each function is piecewise linear with a knot at the value
t . These two functions are called the reflected pairs. The aim of such applications is to
construct the reflected pairs for each input variable X j with knots at each observed
value xi j of that input. Therefore, the collection of BFs under (i = 1, 2, . . . , N ;
j = 1, 2, . . . , p) is defined as

C =
{
(X j − t)+, (t − X j )+}|t ∈ {x1, j , x2, j , . . . , xN , j , j ∈ {1, 2, . . . , p}

}
, (14)
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Fig. 2 Simple
representation of the
smoothing method for the
curvature structure via BFs
of MARS with t1, t2, t3 knots

where N is the number of observations and p shows the dimension of the input
space. If all of the input values are distinct, we can construct 2Np basis functions
altogether.

The general method to produce spline fitting in higher dimensions is to employ
basis functions that are tensor products of univariate spline functions. Hence, the
multivariate spline BFs which take the following form is performed as the mth BF
that are tensor products of the univariate spline functions.

Bm(x) =
Km∏

k=1

[skm(xv(km) − tkm)]+ (15)

in which Km is the total number of truncated linear functions in the mth BF and
xv(km) describes the input variable corresponding to the kth truncated linear function
in the mth basis function. Moreover, tkm refers to the corresponding knot value and
skm takes the value ∓1 and indicates the (right/left) sense of the combined step
function. The v(km) identifies the predictor variable and tkm substitutes for values
on the corresponding variable. Finally, [.]+ indicates the partial function as described
in Eq. (13). Accordingly, the construction of the modelling strategy is similar to a
forward stepwise linear regression. But different from this model, the functions from
the set C are allowed to be used in MARS, instead of the original inputs. Therefore,
the MARS model is represented by

f (x) = c0 +
M∑

m=1

cm Bm(X) + ε, (16)

where Bm(x) is a function of C as shown in Eq. (15), X = (X1, X2, . . . , X p)
′, c0

presents the intercepts, cm’s are the regression coefficient for eachbasis function and it
is estimated byminimizing the residual sum of squares in the linear regressionmodel.
Furthermore, M denotes the number of basis functions and finally, ε corresponds to
the uncorrelated random error term with a zero mean and an unknown constant
variance.
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MARS performs both forward and backward methods. At the end of the forward
stage, it generates the best fitted and the largest model similar to Eq. (16). So we
need to reduce the complexity. Friedman [11] suggests to perform a modified form
of the generalized cross validation criterion (GCV) as denoted in Eq. (17) in order
to choose the best model. GCV produces an estimated best fitted model f̂λ of each
size of λ produced at the end of the backward process.

GCV (λ) =
∑N

i=1(yi − f̂λ(xi ))2

(1 − M(λ)/N )2
, (17)

where N represents the number of observations and M(λ) is the effective number of
parameters. In this equation, M(λ) is found via M(λ) = r + cK in which r refers to
the number of linearly independent basis functions and K describes the number of
selected knots during the forward stage. Additionally, c is the cost in the optimization
of BF and the smoothing parameter of the model that is generally taken as c = 3
[23]. Finally, y and f̂λ show the response variable and the estimated f with data y,
respectively.

3.2 Bernstein Polynomials

The Bernstein polynomials are based on the theorem of the Weierstrass approxi-
mation. Assuming that f is a function over the range C[a, b], f can be uniformly
approximated by polynomials. Hereby, the Bernstein polynomials are one of the
most well-known polynomials with a real-valued function f bounded on the interval
[0, 1]. These polynomials are defined by

Bn( f ; x) =
n∑

k=0

f

(
k

n

)(
n

k

)
bk,n(x) (18)

in which n is the degree of the Bernstein polynomials. f
(
k
n

)
is equivalent to the

approximation of the values for the function f at points k/n (k = 0, . . . , n) in the
domain of f implying that any interval [a, b] can be transformed into the interval
[0, 1]. Finally, bk,n(x) is the Bernstein basis with the degree n on the parameter
x ∈ [0, 1] via

bk,n(x) =
(
n

k

)
(1 − x)n−k xk . (19)

In Eq. (19),

(
n

k

)
is a binomial coefficient that can be obtained from the Pas-

cals triangle where k = 0, 1, . . . , n. For instance, some of the first Bernstein basis
polynomials can be listed as below.
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b0,0 =1,

b0,1 =1 − x, b1,1 = x,

b0,2 =(1 − x)2, b1,2 = 2x(1 − x), b2,2 = x2,

b0,3 =(1 − x)3, b1,3 = 3x(1 − x)2, b2,3 = 3x2(1 − x), b3,3 = x3.

Furthermore, the Bernstein polynomial approximates to a given function f (x) is
always at least as smooth as f (x) is allocated uniformly in [0, 1] for a continuous
f (x) on the range [0, 1] as shown in Eq. (18).

lim
n→∞ Bn( f ; x) = f (x).

This expression satisfies the fundamental property of the Bernstein polynomials.
On the other hand, the Szasz-Mirakyan operators are the generalizations of the Bern-
stein polynomials [24, 25] still keeping the properties of these polynomials. These
operators are defined by

Sn( f ; x) = e−nx
∞∑

k=0

f

(
k

n

)
(nx)k

k! ,

where x ∈ [0, 1] and the function f is presented in an infinite interval R+ = [0,∞).

4 Application

In the application, we show the comparison of the MARS and GGM approaches via
different estimation techniques together with the Bernstein and Szasz polynomials.
For the analyses of bothmodels, we generate 500, 900 and 1000 dimensional datasets
in which each gene has 20 observations. In the data generation, we arbitrarily set the
off-diagonal of the precision matrix Θ to 0.9 so that the interactions between genes
can be clearly observed and we generate scale-free networks [26] under the given Θ

by running the huge package in the R programme. Accordingly, in the calculation
based on the 1000Monte Carlo simulations, we initially produce a network structure
for the true network and generate sample datasets from this true network. Then we
transform these data by the Bernstein and Szasz operators and finally, use them for
modelling and inferring Θ .

In modelling via MARS, every single node is implemented as a response and
the remaining nodes are taken as covariates similar to the lasso regression. Hereby,
we consider only main effects and eliminate all interaction terms. Then, we take
into account the significant β parameters in Eq. (5) to estimate Θ . These steps are
repeated until every gene i explained by the remaining other genes as the lasso
regression applies. Furthermore, the forward and backward steps are performed for
constructing the optimal model and the GCV criterion is calculated to eliminate
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overfitted coefficients. Finally, we convert the estimated Θ to the binary form. To
obtain a symmetric Θ , the AND rule is performed. Hereby, if the covariate j for the
lasso model with the response i is significant as well as the covariate j for the lasso
model with the response i is significant (i, j = 1, . . . , p), the entries of (i, j) and
( j, i) pairs in the estimated Θ can be assigned as 1 in the binary form. Otherwise
both entries, i.e. (i, j) and ( j, i), are set to 0. In biological speaking, it means that
there is a relation between genes when the associated entry of Θ is 1 and there is no
relation between genes when this entry equals to 0.

On the other side, we apply GGM and estimate its model parameters via the
neighborhood selection [9] and glasso methods. In GGM with the neighborhood
selection method, the inference is performed by fitting the lasso regression. Whereas
in modelling via GGM with the glasso method, we implement the lasso regression
under the penalized likelihood function. In the application of GGM, firstly, the true
precision matrix Θ is estimated and then, the estimated Θ under the transformed
data via the Bernstein operators’ results are compared with the findings under the
non-transformed datasets. In this comparison, as stated previously, we generate 500,
900 and 1000 dimensional scale-free networks. Lastly, we repeat this process via
1000 Monte Carlo runs.

In the evaluation of the outcomes based on the underlying dimensional systems,
we calculate the F-score and the precision values for the measures of accuracy by
using the following expressions.

Precision = TP

TP+FP
and F-measure = 2

Precision × Recall

Precision + Recall
, (20)

where TP denotes the true positive measures correctly identified edges. FP shows
the false positive value and computes misclassified edges that have zero entries
in the estimate Θ . Moreover, FN presents the false negatives and measures the
missclassified edges that have zero values in Θ and finally, Recall is calculated
as Recall=TP/(TP+FN).

From the outcomes in Tables1 and 2, it is observed that F-measure via MARS
is not computable since the recalls are indefinite, resulting in indefinite F-measure.

Table 1 Comparison of the precision and F-measure value via MARS under 1000 Monte-Carlo
runs based on systems with 500, 900 and 1000 dimensional networks

Accuracy
measure

Number of nodes Only MARS MARS with
bernstein

MARS with szasz

Precision 500 0.0017 0.0012 0.0013

900 0.0000 0.0005 0.0007

1000 0.0000 0.0004 0.0005

F-measure 500 0.0029 0.0025 0.0026

900 Not computable 0.0013 0.0013

1000 Not computable 0.0011 0.0012
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Table 2 Comparison of the precision and F-measure values via GGM estimated by the neighbor-
hood selection (NS) and glasso methods under 1000 Monte-Carlo runs based on 500, 900 and 1000
dimensional networks

Method Accuracy
measure

Number of
nodes

Only MARS MARS with
bernstein

MARS with
szasz

NS Precision 500 Not computable 0.4768 0.4731

900 Not computable 0.4679 0.4702

1000 Not computable 0.4729 0.4700

NS F-measure 500 0.0000 0.0179 0.0173

900 0.0000 0.0092 0.0091

1000 0.0000 0.0227 0.0289

glasso Precision 500 Not computable 0.5002 0.4995

900 Not computable 0.4968 0.4972

1000 Not computable 0.4951 0.5342

glasso F-measure 500 0.0000 0.1201 0.1531

900 0.0000 0.1126 0.0830

1000 0.0000 0.0775 0.1062

WhereasGGMwith the neighborhood selection and the glassomethods can calculate
F-value successfully. Moreover, it is seen that GGM overperforms MARS under the
transformed datasets. If we compare the findings of both Bernstein operators, it
is seen that the Szasz polynomials are more accurate for all cases. Furthermore,
F-measure and precision values decrease when the dimension increases under all
conditions. Additionally, we find that the accuracy of the estimates under MARS is
higher when the data are not transformed via the Bernstein operators under relatively
low dimensions. But when the dimension of the system raises, the transformed data
have higher F-measure for both MARS and GGM models. On the contrary, when
the dimension increases, the precision value decreases too.

5 Conclusion

In this study, two major lasso modelling approaches suggested for the biological
networks, i.e. MARS and GGM models, are compared with the Bernstein operators
under the Monte Carlo simulation. In GGM, we have performed the estimation by
two main methods which are GGM with the neighborhood selection and GGM with
the glasso techniques. In the comparison under the multivariate normally distributed
data, the network structure and its precision matrix have evaluated based on the
precision and F-measures in the Monte Carlo runs. From the analyses, we have
detected that MARS gives more accurate results than GGM with/without Bernstein
operators under realistically complex systems. On the other hand, the transformed
data via the Bernstein operators, in particular, via the Szasz polynomials, have higher
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accuracy in the estimates. Therefore, we suggest that the Bernstein operators can be
used to improve the accuracy under different types of lasso modelling.

As the extension of this study, we consider to perform other operator systems as
the alternative of the Bernstein operators, which can specifically transform the data
by taking into account their distributional features. Under such conditions, we believe
that the operators based on binomial/multinomial, poisson or normal distributions
can have better performance than their alternatives as they are more suitable for the
description of the biochemical systems depending on the chemical master equations
[27].
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Tracking the Interface
of the Diffusion-Absorption Equation:
Theoretical Analysis

Waleed S. Khedr

Abstract This work is devoted to the theoretical study of the Cauchy problem for
the degenerate parabolic equation of the diffusion-absorption type ut = Δum − auq

with the exponents m > 1, q > 0, m + q ≥ 2 and constant a > 0. We propose an
algorithm for tracking the interface in the case of arbitrary m > 1 and q > 0. Based
on the idea of Shmarev (Nonlinear Anal 53:791–828, 2003; Progr Nonlinear Diff
Eqn Appl Birkhäuser, Basel 61:257–273, 2005), we transform the moving support
of the solution into a time-independent domain by means of introduction of a local
systemofLagrangian coordinates. In the newcoordinate system the problemconverts
into a system of nonlinear differential equations, which describes the motion of a
continuousmedium. This system is solved bymeans of themodifiedNewtonmethod,
which allows one to reduce the nonlinear problem to a sequence of linear degenerate
problems. We formulate the problem in the framework of Sobolev spaces and prove
the convergence of the sequence of approximate solutions to the solution of the
original problem.

1 Introduction

In this article, our main concern is the study of the free boundary problem

{
Ut = ΔU m − aU q in (0, T ] × R

n

U (X, 0) = U0(X) ≥ 0 in R
n (1)

wherea, q > 0,m > 1, are constants andm + q ≥ 2.The solutionU (x, t) represents
the density of some substance per unit volume and T > 0 is a fixed interval. It is
known that the solutions of problem (1) possess the property of finite speed of
propagation, which means that if the support of the initial function u0 is compact,
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so is the support of the solution at every instant t . The a priori unknown boundary
of the support is the free boundary that has to be defined together with the solution
U (x, t). The question of regularity of interfaces has been studied by many authors. It
is shown in [1] that in the case n = 1 the interfaces are real analytic plane curves. For
the multi-dimensional case, the moving interface is shown to be a C∞ hypersurface
in [5, 15].

A special approach for the study of interfaces in the one-dimensional case was
proposed in [11, 12]. In these papers the authors demonstrated the effect of different
choices for the parameters m, q and a. In the case when q ∈ (0, 1), they had shown
that the right interface, which in the one dimensional case is a plane curve defined
by the equality

χ(t) = sup{x ∈ R : u(x, t) > 0},

which is governed by the first-order differential equation

χ ′(t) = − m

m − 1
(U m−1)X (χ(t), t) + a(1 − q)

(U 1−q)X (χ(t), t)
, (2)

which is a generalized version of Darcy law that relates the velocity of the particles
with the system’s pressure. The authors have shown that both terms on the right-
hand side of equation (2) are well-defined as long as the solution is not identically
zero but for m + q > 2 only one of them is different from zero. In the critical case
m + q = 2 the motion of the interface is defined by an interaction of these two terms.
This interaction can be observed in the behaviour of the solution as per the deduced
explicit formula in that critical case, see [14].

In the multi-dimensional case of the diffusion-absorption equation, Shmarev used
the transformation to the Lagrangian coordinates and proved that the solution exists
in a special weighted Hölder space and that the solution itself and the corresponding
interface are real analytic in time. He also provided explicit formulas that represent
the interface γ (t) as a bijection of the initial interface γ (0) and demonstrated the
improvement of the interface regularitywith respect to the spatial variables compared
to the initial instant [22]. However, these results were constrained to the case of
n = 1, 2, 3. In [24], the author managed to eliminate that constraint by means of
Helmholtz’s orthogonal decomposition.

2 Objective

The above equation offers three main difficulties. First, it degenerates at some set of
points (a hyper-surface) separating the zone where the solution is positive and the
zone where the solution is identically zero. This degeneracy hides the information
needed to accurately imitate the rate of vanishing of the solution, which causes any
numerical simulation to fluctuate near the boundary. Multiple numerical schemes
were suggested to simulate the solution of the above equation. The most remarkable
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results were presented at the 80s by Mimura et al. [19, 20, 25] and Dibenedetto
and Hoff [8]. The proposed schemes were based on the utilization of Darcy law to
approximate the location of the interface on a finite difference grid. All these schemes
were designed for the one dimensional case, moreover, even in the cases when the
convergence was proven, accuracy and stability remained unsolved issues.

The second obstacle is that the support of the solution is moving, which increases
the difficulty of building a mesh which nodes are located exactly where the solution
vanishes. To overcome such a problem, specific methods are employed, which allow
one to control the vanishing rate of the solution in order to guarantee that the solution
does not go negative. These methods succeed to preserve the physical nature of the
solution, however, on the account of other mathematical or even physical measures.
Solving the equation using Galerkin’s methods produced unstable solutions and
negativity started to appear due to the fact that we can’t force the interface to where
the nodes are located. Cockburn, and many others, had utilized the discontinuous
Galerkin method with slope limiters to overcome this problem [3, 4, 26]. However,
the difficulty to choose the proper fluxes, the complication of the implementation
and the inaccurate gradient due to the application of the slope limiters were negative
sides of such approach. The third obstacle is the presence of the low order termwhich
implies the loss of the mass conservation property and consequently the loss of a
very important mathematical tool.

Our goal is to handle these obstacles by constructing a transformation that allow
for the exact location of the interface. To overcome this difficulty we reduce the
initial domain into a ring near the boundary and pose a condition on the interior
surface of that ring to guarantee that it moves in a way that compensates the loss of
the mass. Hence, the mass within the initial ring is conserved for all times. Then we
transfer the problem from Eulerian coordinates into Lagrangian coordinates so that
the moving domain is converted into a fixed one. The most interesting advantage of
the transformation to Lagrangian coordinates is that we can express the position of
all particles in terms of the initial state’s attributes. Hence, we know the position of
the particles composing the interface at each time instant. Such information can be
used to build a mesh with well known surfaces and then solve the original degenerate
free-boundary problem as a sequence of elliptic problems endowedwith theDirichlet
boundary condition. Since we know that the solution vanishes just by construction
at each of those surfaces, we need no extra control on the rate of vanishing and we
guarantee that the solution preserves its physical properties in the whole domain.

This transformation yields a system of nonlinear degenerate partial differential
equations that describes different attributes of the fluid motion, and one of these
equations describes the position of the fluid’s particles. The existence of a solution for
the degenerate systemwas proven inweightedHölder spaces [22, 24].However, these
spaces are not suitable for numerical purposes. We propose a simple regularization
scheme for the resultant system of equations, show that this system admits a weak
solution, and prove the convergence of the regularized weak solution to the exact
solution in the weak sense.
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3 Background of the Problem

In this section we summarise what had been established in [22, 24]. According to
the above discussion, (1) was rewritten in the following form

⎧
⎨

⎩

Ut = Δ(U m) − aU q in Ωt × (0, T ],
U = 0 on ΓT ,

U (X, 0) = U0(X) ≥ 0 in Ω0,

(3)

where

Ωt = Ω(t) = {X ∈ R
n, t ∈ [0, T ] : U (X, t) > 0} ≡ SuppU (X, t),

ΓT = {X ∈ R
n, t ∈ [0, T ] : U (X, t) = 0} =

⋃

t∈[0,T ]
γt ,

and γt = γ (t) ≡ ∂Ωt ∀ t ∈ [0, T ]. The weak solution of problem (3) was defined in
the following sense.

Definition 1 A pair (U (X, t), ΓT ) is said to be a weak solution of problem (3) if:

I. U is bounded, continuous, and nonnegative inΩ t × (0, T ] and∇U m ∈ L2(Ω t ×
(0, T ]),

II. ΓT is a surface of class C1,
III. for every test function ψ ∈ C1(Ω t × (0, T ]), vanishing at t = T and for all

(X, t) ∈ ΓT , the following identity holds:

T∫

0

∫

Ωt

(Uψt − ∇U m .∇ψ − aψU q) d X dt +
∫

Ω0

U0ψ(X, 0) d X = 0. (4)

Thus a new variable was added to the problem that is ΓT . The introduction of the
Lagrangian coordinates generates a time-independent domain with fixed boundaries
such that ΓT can be expressed as a function in the new coordinates, which then can
be obtained by solving a system of differential equations on the plane of Lagrangian
coordinates. However, due to the presence of the low order term, the principle of the
mass conservation is no longer valid. The transformation to the Lagrangian coordi-
nates entails a system with some fixed attribute. The author compensated the loss
of the mass by reducing the domain of the problem to some annular domain near
the interface. He introduced a simple-connected surface ST = ⋃

t∈[0,T ] st such that
ST ⊂ ΓT and ST ∩ ΓT = ∅. He defined ωt ⊂ Ωt as the annular domain bounded
by the surfaces γt and st such that the problem’s domain is E = ⋃

t∈[0,T ] ωt and

∂E = ST ∪ ΓT . Denote by Û (X, t) the solution inside the annular domain. The sur-
face ST is an artificial surface and it is chosen such that the following identity is
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fulfilled:

∀ t ∈ (0, T ]
∫

ωt

Û (X, t) d X =
∫

ω0

U0(X) d X = const. (5)

Therefore a new auxiliary problem has been introduced as

⎧
⎪⎨

⎪⎩

Ût = Δ
(

Û m
)

− aÛ q in E ,

Û |ST = f(s), Û |ΓT = 0,
Û (X, 0) = U0(X) ≥ 0 in ω0,

(6)

where f(s) represents the dummy values of Û on the inner surface which depend
mainly on our choice of the boundary conditions on that surface. As per (5), our
choice of the inner surface ST guarantees that the mass is conserved in the new
domain E . Although this is a different problem, the author in [22, 24] proved that
(6) and (3) coincide up to the motion of the boundary.

The general equation of the mass conservation is

ρt + div(ρ V ) = 0, (7)

where V is the velocity of the fluid particles. Two terms define the velocity. The first
is the gradient of the pressure denoted by P̂ , which is induced by the diffusive term,
and the second is the gradient of some artificial pressure Π̂ induced by the low order
term, such that

V = −∇ P̂ + ∇Π̂, (8)

where,

P̂ = m

m − 1
Û m−1, P0 = m

m − 1
U m−1

0 , (9)

and Π̂ is the solution of the following degenerate elliptic problem:

{
div(Û∇Π̂) = aÛ q in E ,

Π̂ = 0 on ∂E ,
(10)

given that π0 be the solution of the degenerate elliptic problem at the initial instant
such that {

div(U0∇π0) = aU q
0 in E ,

π0 = 0 on ∂E .
(11)

The mechanical problem of the fluid flow until now is described in terms of func-
tions that depend on the time and on a Cartesian coordinate system not connected
with the flow. As in [6, 7, 13, 22, 24] an alternative description was given by trans-
forming the system into geometrical Lagrangian coordinates so that all the functions
characterizing the motion became dependent on the initial positions of the particles



362 W.S. Khedr

and the time as a parameter. The cylinder Q with fixed lateral boundaries was defined
as

Q = ω0 × [0, T ], ∂ Q = ∂ω0 × [0, T ].

Let us denote the initial positions by η. In this way, the positions of the particles at
any instant t are

X = x(η, t), η ∈ ω0,

and consequently Û [x(η, t), t] = û(η, t) is the density corresponding to that particle,
P̂[x(η, t), t] = p̂(η, t) and Π̂[x(η, t), t] = π̂(η, t) are the functions representing
the pressure, and V [x(η, t), t] = v(η, t) is the velocity of that particle. We may then
write the trajectory equation as

{
xt (η, t) = v(η, t) = −∇x p̂(η, t) + ∇x π̂(η, t),
x(η, 0) = η, η ∈ ω0.

(12)

Let J = [Ji j ] be the Jacobi matrix of the mapping η → x(η, .) such that

⎧
⎪⎨

⎪⎩

Ji j = ∂xi
∂η j

, i, j = 1, 2,

|J | ≡ det
(

∂x
∂η

)
,

d|J |
dt = |J |divxV [x, t], (Cauchy identity).

The Lagrangian version of the mass conservation law was deduced to be:

d

dt

(
Û |J |

)
= 0,

or equivalently

Û [x, t]|J | = û(η, t)|J | = û(η, 0) = U0 in Q. (13)

The analysis in [24] leads to the following system on the plane of Lagrangian
coordinates:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

divη(J∇ηv̂t ) + Δη( p̂ − π̂) = 0, in Q,

p̂|J |m−1 = P0 in Q,

divη

(
U0(J−1)2∇ηπ̂

) = aU0ûq−1 in Q,

v̂(η, 0) = 0, π̂(η, 0) = π0(η), and
p̂(η, 0) = P0(η) in ω0,

p̂ = 0 on γ0 × [0, T ] and v̂ = π̂ = 0 on ∂ Q .

(14)

Solving the above system to obtain the triad solution (v̂, p̂, π̂) enables us to
calculate the motion of the interface in a direction normal to the initial interface by
the formula
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x = η + ∇ηv̂ in Q, (15)

which is our target. The ability to solve the nonlinear system (14) and recovering
the position of the particles x provides us with the necessary information to locate
the interface ΓT of (3). We need not worry about the solution or the motion of the
particles in the rest of the domain E . We only use the information we have regarding
the position of the interface to solve (3) (which is equivalent to (1)) as a boundary-
value problem with zero boundary condition on ΓT , which is already defined.

The nonlinear system (14) is to be solved by means of an abstract version of the
modifiedNewtonmethod. Let us consider the three equations in (14) as the arguments
of the functional equation F (ẑ) ≡ {F1(ẑ),F2(ẑ),F3(ẑ)}, where ẑ = {v̂, p̂, π̂}. In
the modified Newton method the differential of F is calculated once at the initial
state. The solution is obtained then as the limit of the sequence

ẑn+1 = ẑn − [G (ẑ0)]−1〈F (ẑn)〉, (16)

where in this case the operator G (ẑ0)〈z〉 is the Frechét derivative of F at the initial
instant ẑ0 = {0, P0, π0} and z = {v, p, π} is the correction at each iteration. If the
Frechét derivative is well defined at the initial instant and is Lipschitz-continuous,
then it coincides with the Gateaux differential. More details regarding the Newton
method and the modified Newton method can be found in [16].

Theorem 2 Let X and Y be Banach spaces and assume that:

I. the operator F : X �→ Y admits a strong Frechét derivative G in a ball
Br (0) ⊂ X of radius r > 0,

II. the differential G (ẑ) : X �→ Y is Lipschitz continuous in Br (0)

‖G (ẑ2) − G (ẑ1)‖ ≤ L‖ẑ2 − ẑ1‖, L = const. (17)

III. there exists an inverse operator [G (ẑ0)]−1 such that

∥∥[G (ẑ0)]−1
∥∥ = M and

∥∥[G (ẑ0)]−1〈F (ẑ0)〉
∥∥ = K . (18)

Then, if λ = M K L < 1
4 , the equation F (ẑ) = 0 has a unique solution ẑ∗ obtained

as the limit of the sequence in (16), ẑ∗ ∈ BK h0(0), where h0 is the least root of the
equation λh2 − h + 1 = 0.

In our case, X and Y are Sobolev spaces such that

X = {v̂ ∈ L2(0, T ; H 4(ω0)), π̂ ∈ L2(0, T ; H 2(ω0)), p̂ ∈ L2(0, T ; H 2(ω0))},

and

Y = { f ∈ L∞(0, T ; H 2(ω0)),Φ ∈ L2(0, T ; H 2(ω0)), H ∈ L2(0, T ; H 2(ω0))}.
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The ball Br (0) is defined as Br (0) := {(v̂, π̂ , p̂) : ‖v̂‖ + ‖π̂ − π0‖ + ‖ p̂ −
P0‖ < r}. In [22, 24] the modified Newton method was used in the scale of weighted
Hölder spaces. For more details regarding the weighted Hölder spaces, see [15, 22–
24]. If we follow the linearization techniques introduced in [22, 24] we get the
following linearized system:

⎧
⎨

⎩

vt − (m − 1)P0Δv = f + π − Φ in Q,

div
(
U0∇π − 2U0D2(v).∇π0

) − a(1 − q)U q
0 Δv = H in Q,

v = π = 0 on ∂ Q .

(19)

We get the corrections z at each iteration by solving the system of linear equations
in (19) given that all the assumptions posed in [21–24] are fulfilled. Yet, the weighted
Hölder spaces are not suitable for finite element implementation. Hence, in the rest of
this article we try to obtain the same results in some spaces more fit to the numerical
implementation.

4 Regularization

We recall the definition of uniform elliptic and parabolic equations from [10, 17, 18].
The stated condition in these definitions is not only important to define a uniform
equation, it is also a necessary condition for implementing a stable finite element
scheme. In the linearized system (19), this condition is not satisfied neither for the
elliptic equation nor for the parabolic one due to the degeneracy. Next, we explain
how to satisfy the requirements for a stable finite element implementation.

4.1 Reduction to a Sequence of Linear Problems

Let us introduce the new functions w as a solution of the regularized parabolic
equation and s as a solution for the regularized elliptic one, and introduce two small
parameters δ > 0 and μ > 0 such that P0δ = P0 + δ and P0μ = P0 + μ. Denote
α = m + q − 2 ≥ 0 and Cm = (m − 2)/(m − 1). We introduce also the following
general assumptions

(A1) ∂ω0 is of class C2.
(A2) U0 ∈ C2(ω0).
(A3) P0 ∈ C1(ω0), ∇ P0 ∈ C0(ω0), and ΔP0 ∈ L∞(ω0).
(A4) The annular domain is chosen initially such that −C0 ≤ ΔP0 ≤ −M0 a.e. in

ω0.
(A5) There exists some constant 0 < ν < 1 such that ν < |J | < ν−1.
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We introduce the regularized parabolic equation

⎧
⎨

⎩

wt − (m − 1)P0μΔw = f − Φ + s in Q,

w(η, 0) = 0,
w = 0 on ∂ Q .

(20)

We define p as
p = Φ − (m − 1)P0Δw in Q. (21)

Finally, we introduce the regularized elliptic equation

⎧
⎨

⎩

div (P0δ∇s) − Cm∇ P0∇s = div
(
2P0D2(w)∇s0

) − 2Cm∇ P0D2(w)∇s0
+a(1 − q)Uα

0 Δw + U m−2
0 H in Q,

s = 0 on ∂ Q,

(22)
where s0 is the solution of

{
div (P0δ∇s0) − Cm∇ P0∇s0 = aUα

0 in ω0,

s0 = 0 on ∂ω0.
(23)

Therefore, the solution of the nonlinear system is obtained as the limit of the
sequence

ŵn+1 = ŵn − w and ŝn+1 = ŝn − s, for n = 0, 1, 2, . . .

Consequently, the position of the interface is obtained by

y = η + ∇ŵ. (24)

For every δ, μ > 0, the existence of a unique weak solution of the elliptic and the
parabolic equations follows directly from the standard theories, review [10, 17, 18].
However, we need to investigate the effect of these small parameters on the solution
and also we need to prove the convergence of this approach to the degenerate case
when δ, μ → 0. In order to perform this we need to pose an extra condition which is
∇ P0 �= 0 on ∂ Q. This condition was necessary to prove the existence of a solution
for the degenerate linear system in weighted Hölder spaces, see [22, 24].

Notation: Sometimes we will use the notation L p(Q) to shorten L p(0, T ; L p(ω0)).

4.2 Linear Elliptic Equations

The solution of the elliptic equation (23) is understood in the following sense.
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Definition 3 The function s0(η) is said to be a weak solution of the regularized
problem (23) if it satisfies the following conditions:

I. s0 ∈ H 2(ω0) ∩ H 1
0 (ω0),

II. for any test function ψ(η) ∈ H 1
0 (ω0) the following identity holds:

∫

ω0

(
P0δ∇s0∇ψ + Cm∇ P0∇s0ψ + Uα

0 ψ
)

dη = 0. (25)

By assumption A3, P0 and ∇ P0 are continuous and bounded functions in ω0.
Moreover, P0δ ≥ δ > 0 and Uα

0 ∈ L2(ω0) since it is a continuous function as per
assumption A2. Hence, problem (23) has a weak solution s0 ∈ H 2(ω0). For more
details regarding solutions of linear uniformly elliptic equations, review [10, 17].

Lemma 4 If assumptions (A2) and (A4) are fulfilled, then

‖s0‖2L2(ω0)
+ δ‖∇s0‖2L2(ω0)

≤ C, (26)

where C is a constant that does not depend on δ.

Proof Multiply equation (23) by s0 and integrate by parts over ω0, apply Green’s
theorem, use assumption A4 and Cauchy’s inequality, and use the fact that P0δ ≥ δ

to get the required result.

Lemma 5 Suppose that assumptions (A2) and (A3) are fulfilled. Then

‖Δs0‖L2(ω0) ≤ Cδ− 3
2 , (27)

where C is a constant that does not depend on δ.

Proof Let us rewrite the elliptic equation in the form

P0δΔs0 = aUα
0 − 1

m − 1
∇ P0∇s0.

Square and integrate both sides, use assumption A3 and the fact that P0δ ≥ δ then
utilize Hölder’s inequality and estimate (26) to obtain the above result.

Theorem 6 Suppose that s0 is the solution of the regularized problem (23) and π0

is the solution of the degenerate problem (11). If assumptions (A1–A4) are fulfilled,
then for some 0 < β < ∞, we have the estimates

‖π0 − s0‖β

Lβ (ω0)
≤ Cδ

1
4 , (28)

and
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‖∇π0 − ∇s0‖2L2(ω0)
≤ Cδ

1
4 , (29)

where C is a constant that does not depend on δ.

Proof We use the technique of [2, 9]. First we need to highlight that the transfor-
mation of the initial elliptic equation (11) into the plane of Lagrangian coordinates
will generate the same equation, since initially J = I , where I is the identity matrix.
Let us multiply each of the Eqs. (11) and (23) by an arbitrary test function ψ that
satisfies the conditions of Definition 3, integrate by parts, subtract and apply Green’s
theorem to get

∫

ω0

(eP0Δψ + (1 + Cm)e∇ P0∇ψ + CmeΔP0ψ)dη =
∫

ω0

δs0Δψ dη, (30)

where e = π0 − s0.
Let us introduce the following linear uniform elliptic equation

{
(P0 + ε)Δy + (1 + Cm)∇ P0∇ y + CmΔP0y = h in ω0,

y = 0 on ∂ω0,
(31)

where ε > 0 is a constant, h is an arbitrary function, and both will be defined later. If
h ∈ L2(ω0) and assumptions (A3) and (A4) are fulfilled, then there exists a unique
solution y ∈ H 2(ω0), review [10, 17]. We multiply (31) by y and integrate by parts,
we use Green’s theorem, assumption A4, Cauchy’s inequality, and the assumption
that h ∈ L2(ω0) to conclude

ε‖∇ y‖2L2(ω0)
+ C‖y‖2L2(ω0)

≤ C. (32)

Now, taking for ψ the solution of (31) and plugging it into (30), we obtain

∫

ω0

e h dη ≤
∫

ω0

δ|∇s0 · ∇ψ | dη +
∫

ω0

ε|∇e · ∇ψ | dη.

Applying Hölder’s inequality to both terms on the right-hand side, using estimates
(26) and (32), and choosing ε = δ

1
2 yields

∫

ω0

e h dη ≤ C1δ
1
4 + C2δ

1
4 ‖∇e‖L2(ω0). (33)

It remains to make a proper choice of h which guarantees that h ∈ L2(ω0).
The degenerate problem (11) has a solution in the weighted Hölder spaces and
this solution and its first two derivatives are bounded point-wise [22]. Moreover,
the regularized problem (23) has a weak solution that belongs to H 2(ω0), review
[10, 17]. Therefore, we have e,Δe ∈ L2(ω0). Choose h = Δe, substitute it in (33)
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and consider the estimates of Lemmas 4 and 5 to obtain ‖∇e‖L2(ω0) ≤ Cδ
1
8 . This is

the second result of the theorem. The first result follows by setting h = eβ−1 with
some power 0 < β < ∞, thus ‖e‖β

Lβ (ω0)
≤ C1δ

1
4 + C2δ

3
8 ≤ Cδ

1
4 .

Corollary 7 If assumptions (A1–A4) are fulfilled, then s0 ∈ H 2(ω0) ∩ H 1
0 (ω0). In

particular, s0 ∈ C1,γ (ω0) for some 0 < γ < 1, and we have the estimate

‖∇s0‖L∞(ω0) ≤ ‖s0‖H 2(ω0) ≤ Cδ− 3
2 , (34)

where C is a constant that depends on U0, m, q, and the geometry but not on δ.

Proof The assertion follows from Sobolev Embedding Theorem, the definition of
Sobolev norm, and the estimates (26) and (27). For more details, review Sobolev
spaces in [10].

Now, let us consider the elliptic equation

{
div (P0δ∇s) − Cm∇ P0∇s = g in Q,

s = 0 on ∂ Q .
(35)

with an arbitrary function g ∈ L2(0, T ; L2(ω0)). The solution s(η, t) is a function
of the variables η and depends on t as a parameter. The solution of the above elliptic
equation is understood in the following sense.

Definition 8 The function s(η, t) is said to be a weak solution of the regularized
Eq. (35) if it satisfies the following conditions:

I. s ∈ L2(0, T ; H 2(ω0)) ∩ L2(0, T ; H 1
0 (ω0)),

II. for any test function ψ ∈ L2(0, T ; H 1
0 (ω0)) the following identity holds:

t2∫

t1

∫

ω0

P0δ∇s∇ψ + Cm∇ P0∇s ψ + gψ dηdt = 0, ∀ t0 ≤ t1 < t2 ≤ T . (36)

Since P0δ ≥ δ > 0, P0 and ∇ P0 are bounded and continuous functions in ω0 as
per condition A3, then for every g ∈ L2(0, T ; L2(ω0)) problem (35) has a weak
solution s ∈ L2(0, T ; H 2(ω0)). For almost every t ∈ (0, T ) the solution belongs
to H 2(ω0), the inclusion s ∈ L2(0, T ; H 2(ω0)) follows by integrating the spatial
estimate with respect to the time over (0, T ). For more details regarding solutions of
linear uniformly elliptic equations, review [10, 17].

Corollary 9 Suppose that assumption (A1–A4) are fulfilled, then

δ‖∇s‖2L2(Q) + C‖s‖2L2(Q) ≤ C1‖g‖2L2(Q), (37)

and
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‖Δs‖L2(Q) ≤ C2δ
− 3

2 ‖g‖L2(Q), (38)

where C1 and C2 are constants that do not depend on δ.

Proof Using identical arguments to those used for the initial elliptic equation, we
conclude that for each t ∈ (0, T ] we have the estimates

δ‖∇s(η, t)‖2L2(ω0)
+ C‖s(η, t)‖2L2(ω0)

≤ ‖g(η, t)‖2L2(ω0)
,

and
δ2‖Δs(η, t)‖2L2(ω0)

≤ δ−1‖g(η, t)‖2L2(ω0)
.

Integrating these estimates with respect to t completes the proof.

Corollary 10 Suppose that s is the solution of the regularized problem (35) and π

is the solution of the degenerate problem (41). If assumptions (A1–A4) are fulfilled,
then for some 0 < β < ∞ we have the estimates

‖π − s‖β

Lβ (Q)
≤ Cδ

1
4 ‖g‖L2(Q), (39)

and
‖∇π − ∇s‖2L2(Q) ≤ Cδ

1
4 ‖g‖L2(Q), (40)

where C is a constant that does not depend on δ.

Proof Consider the degenerate elliptic equation

{
div (P0∇π) − Cm∇ P0∇π = g in Q,

π = 0 on ∂ Q ,
(41)

and follow the proof of Theorem 26.

Corollary 11 If assumptions (A1–A4) are fulfilled, then s ∈ L2(0, T ; H 2(ω0)) ∩
L2(0, T ; H 1

0 (ω0)). In particular, s ∈ L2(0, T ; C1,γ (ω0)) for some 0 < γ < 1, and
we have the estimate

‖s‖L2(0,T ;H 2(ω0)) ≤ Cδ− 3
2 ‖g‖L2(0,T ;L2(ω0)), (42)

where C is a constant that does not depend on δ.

Proof Consider Sobolev Embedding Theorem, the definition of Sobolev norm, and
the estimates of Corollary 9. For more details, review Sobolev spaces in [10].
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4.3 Linear Parabolic Equation

Consider the regularized parabolic problem

⎧
⎨

⎩

wt − (m − 1)P0μΔw = f̃ in Q,

w(η, 0) = 0,
w = 0 on ∂ Q ,

(43)

where f̃ is some arbitrary function. We will assume for now that

f̃ ∈ L∞(0, T ; H 2(ω0)) ∩ L∞(0, T ; H 1
0 (ω0)).

The solution of problem (43) is understood in the following sense.

Definition 12 The function w(η, t) is said to be a weak solution of the regularized
problem (43) if it satisfies the following conditions:

I. w ∈ L2(0, T ; H 2(ω0)) ∩ L2(0, T ; H 1
0 (ω0)),

II. for any test function ψ(η, t), vanishing at t = T and satisfying the conditions

ψ ∈ L2(0, T ; H 1
0 (ω0)), ψt ∈ L2(0, T ; L2(ω0)),

the following identity holds:

t2∫

t1

∫

ω0

(
(m − 1)(P0μ∇w∇ψ + ∇ P0∇w ψ) − (wψt + f̃ ψ)

)
dηdt = 0, (44)

∀ t0 ≤ t1 < t2 ≤ T .

Since P0μ ≥ μ > 0 and it is a continuous and bounded function in ω0 as per
condition A3, then for every f̃ ∈ L2(0, T ; L2(ω0)) there exists a solution w ∈
L2(0, T ; H 2(ω0)). Formore details regarding solutions of linear uniformly parabolic
equations, review [10, 18].

Lemma 13 Suppose (A1), (A3) and (A4) are fulfilled and f̃ ∈ L∞(0, T ; H 2(ω0)).
Then

max
0<t≤T

‖w(η, t)‖2L2(ω0)
+ μ‖∇w‖2L2(Q) ≤ CT ‖ f̃ ‖2L∞(0,T ;L2(ω0))

, (45)

where C is a constant that does not depend on μ nor T .

Proof Let us multiply (43) by w and integrate by parts over ω0, apply Green’s
theorem, use assumption A4, and apply Cauchy’s inequality. Then, integrate the
result over the interval (0, t), use the facts that P0μ ≥ μ and w(η, 0) = 0, and the
assumption that f̃ ∈ L∞(0, T ; H 2(ω0)) to obtain the required result.
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Lemma 14 Suppose that assumptions (A1), (A3) and (A4) are fulfilled and f̃ ∈
L∞(0, T ; H 2(ω0)) ∩ L∞(0, T ; H 1

0 (ω0)). Then,

max
0<t≤T

‖∇w(η, t)‖2L2(ω0)
+ μ‖Δw‖2L2(Q) ≤ Cμ−1T ‖ f̃ ‖2L∞(0,T ;L2(ω0))

, (46)

where C is a constant that does not depend on μ nor T .

Proof Since f̃ ∈ L∞(0, T ; H 2(ω0)) ∩ L∞(0, T ; H 1
0 (ω0)), then by virtue of [10,

Sect. 7.1, Theorem 6], problem (43) has a weak solution w ∈ L2(0, T ; H 4(ω0)).
We apply the Laplace operator to both sides of (43) and we use the initial and the
boundary conditions of w to conclude the problem

⎧
⎨

⎩

Δwt − (m − 1)Δ(P0μΔw) = Δ f̃ in Q,

Δw(η, 0) = 0,
Δw = 0 on ∂ Q.

Note that the boundary condition (Δw = 0 on ∂ Q) follows from the boundary
conditions of problem (43) on bothw and f̃ . Ifwe consider solving the above problem
to obtain Δw, then by virtue of [10, Sect. 7.1, Theorem 5], the above problem has
a weak solution Δw ∈ L2(0, T ; H 2(ω0)) ∩ L2(0, T ; H 1

0 (ω0)). Hence Δw satisfies
the conditions of Definition 12 for test functions. We multiply (43) by Δw and
integrate by parts over ω0, we recall that P0μ ≥ μ and ∇w(η, 0) = 0, and we use
Cauchy’s inequality then we integrate over the interval (0, t) to obtain the result.

Lemma 15 Suppose that assumptions (A1), (A3) and (A4) are fulfilled and f̃ ∈
L∞(0, T ; H 2(ω0)). Then,

‖wt‖L2(Q) ≤ Cμ−1T
1
2 ‖ f̃ ‖L∞(0,T ;L2(ω0)), (47)

where C is a constant that does not depend on μ nor T .

Proof Write (43) in the form

wt = f̃ + (m − 1)P0μΔw.

Square and integrate both sides over Q, use the assumptions on f̃ and P0, recall
estimate (46), and utilize Hölder’s inequality to get the required result.

Let us consider the degenerate parabolic equation in (19) combined with f̃ as the
right hand side such that

⎧
⎨

⎩

vt − (m − 1)P0Δv = f̃ in Q,

v(η, 0) = 0,
v = 0 on ∂ Q .

(48)
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Theorem 16 Suppose that w is the solution of the regularized problem (43) and v is
the solution of the degenerate problem (48). If the assumptions (A1–A4) are fulfilled
and f̃ ∈ L∞(0, T ; H 2(ω0)), then

‖v − w‖β

Lβ (Q)
≤ Cμ

1
2 T

1
4 ‖ f̃ ‖L∞(0,T ;L2(ω0)), (49)

and
‖∇v − ∇w‖2L2(Q) ≤ Cμ

1
2 T

1
4 ‖ f̃ ‖L∞(0,T ;L2(ω0)), (50)

where C is a constant that does not depend on μ nor T .

Proof Multiply (43) and (48) by the same test functionψ that satisfies the conditions
of Definition 12, subtract, and follow the technique used in the proof of Theorem 6.

Corollary 17 If assumptions (A1–A4) are fulfilled and f̃ ∈ L∞(0, T ; H 2(ω0)), then
w ∈ L2(0, T ; H 2(ω0)) ∩ L2(0, T ; H 1

0 (ω0)).

Corollary 18 If assumptions (A1–A4) are fulfilled and f̃ ∈ L∞(0, T ; H 2(ω0)), then
w ∈ L2(0, T ; H 4(ω0)) ∩ L2(0, T ; H 1

0 (ω0)). In particular, w ∈ C(0, T ; C2,γ (ω0))

and Δw ∈ C(0, T ; C0,α(ω0)) for some 0 < γ, α < 1, and we have the estimate

‖w‖L2(0,T ;H 4(ω0)) ≤ Cμ− 3
2 T ‖Δ f̃ ‖L∞(0,T ;L2(ω0)), (51)

where C is a constant that does not depend on μ nor T .

Proof Let us apply the Laplace operator to (43) to get

Δwt − (m − 1)Δ(P0μΔw) = Δ f̃ .

Let w̃ = Δw. Hence, we obtain

⎧
⎨

⎩

w̃t − (m − 1)Δ(P0μw̃) = Δ f̃ in Q,

w̃(η, 0) = Δw(η, 0) = 0,
w̃ = Δw = 0 on ∂ Q .

(52)

By assumption f̃ , Δ f̃ ∈ L∞(0, T ; L2(ω0)). Consequently, this equation has
a weak solution w̃ ∈ L2(0, T ; H 2(ω0)) ∩ L2(0, T ; H 1

0 (ω0)), review [10, 18]. But
w̃ = Δw which implies the result. To obtain the estimate we follow the proofs of
Lemmas 13, 14 and 15. The Hölder continuity of w and Δw with respect to the time
and the spatial follows by virtue of [10, Sect. 5.6, Theorem 6] (Sobolev Embedding
Theorem) and [10, Sect. 5.9, Theorem 4].
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Corollary 19 For a sufficiently small time interval T , the Jacobian |J | is separated
away from zero and infinity.

Proof The Jacobian |J | is defined as

|J | = |I + D2(w)|.

Corollary 18 asserts the Hölder continuity of Δw, which implies the boundedness
of the components of |J | at a.e. t ∈ (0, T ]. Moreover, initially |J | = 1 and since the
estimate provided in the same corollary depends on T , then for sufficiently small
time interval we guarantee that |J | is separated away from zero.

4.4 Existence of a Solution

Up to this point we were investigating the set of equations that represents the inverse
of the operator G (ẑ0). According to our definition of the operator G (review [22,
24]) the functions f , Φ and H are calculated such that they represent the error in the
nonlinear system (14) at each iteration, hence,

⎧
⎪⎪⎨

⎪⎪⎩

Δ f = div(J∇v̂t ) + Δ( p̂ − π̂) in Q,

f = 0 on ∂ Q ,

Φ = p̂|J |m−1 − P0 in Q,

H = div
(
U0(J−1)2∇π̂

) − aU0ûq−1 in Q.

(53)

Notice that initially f (η, 0) = P0 − s0 and Φ = H = 0. Consequently, by the
assumptions on P0 and due to the results obtained for s0, the choice f̃ = f + s − Φ

fulfills the required assumptions on f̃ at the initial state. In turn, it validates all
the results obtained for the parabolic equation. It remains to investigate the elliptic
equation for right-hand side of a special form.

Lemma 20 Let H be defined as per the last equation in (53) and suppose that
assumptions (A1–A4) are fulfilled. Then the solution s of the regularized elliptic
equation (22) satisfies the following estimate:

‖s‖L2(0,T ;H 2(ω0)) ≤ C1

(
δ−3‖w‖L2(0,T ;H 4(ω0)) + δ− 3

2 ‖H‖L2(0,T ;L2(ω0))

)
. (54)

Moreover, at the initial state we have the estimate

‖s‖L2(0,T ;H 2(ω0)) ≤ C2δ
− 9

2 μ− 3
2 T , (55)
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where C1 and C2 are constants not depending on δ, μ nor T .

Proof The elliptic equation takes the form

div (P0δ∇s) − Cm∇ P0∇s = div
(
2P0D2(w) · ∇s0

) − 2Cm∇ P0 · (D2(w) · ∇s0)

+a(1 − q)Uα
0 Δw + U m−2

0 H.

Recall that the results of Corollary 9 were derived for an arbitrary function g ∈
L2(0, T ; L2(ω0)). We can now take g as the right hand side of the above formula.
If we expand the first term on the right hand side. Considering the continuity of
P0, w ∈ L2(0, T ; H 4(ω0)) and s0 ∈ H 2(ω0); we can then use standard estimation
techniques to get

∫

Q

g2dηdt ≤ Cδ− 3
2 ‖g‖L2(Q)‖w‖L2(0,T ;H 4(ω0)).

By estimate (27) and the embedding theorem we get the first result assuming that
H exists and that it is bounded in L2(Q). The results of Corollaries 11, 19 and 21
imply the boundedness of H in L2(Q). Initially H = Φ = 0 andΔ f = Δ(P0 − s0),
thus, by virtue of the assumptions on P0 and estimate (51) we have

‖g‖L2(Q) ≤ Cδ− 3
2 μ− 3

2 T ‖Δ f + Δs − ΔΦ‖L∞(0,t;L2(ω0)) ≤ Cδ−3μ− 3
2 T . (56)

Consequently, from the estimate of Corollary 11 we get the second estimate.

Corollary 21 Let p be defined by (21), w be the solution of (20), and Φ be defined
as per (53). If the conditions of Corollary 18 hold and assumption (A5) is fulfilled,
then p ∈ L2(0, T ; H 2(ω0)), p = 0 on γ0 × [0, T ], and we have the estimate

‖p‖L2(0,T ;H 2(ω0)) ≤ C1
(‖Φ‖L2(0,T ;H 2(ω0)) + ‖w‖L2(0,T ;H 4(ω0))

)
. (57)

Moreover, at the initial state of the modified Newton method’s iterations we have
the estimate

‖p‖L2(0,T ;H 2(ω0)) ≤ C2δ
− 3

2 μ− 3
2 T . (58)

where C1 and C2 are constants that do not depend on δ, μ nor T .

Proof Recalling that the linear system consisted originally of three linear equations,
the reduction was made by eliminating the equation

p = Φ − (m − 1)P0Δw.

It is straightforward to deduce the first result from the above formula assuming that
Φ is bounded in L2(0, T ; H 2(ω0)). By the definition ofΦ in (53), our assumptions on
the initial data, and the result of Corollary 19; it is evident thatΦ ∈ L2(0, T ; H 2(ω0))
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and Φ = 0 on γ0 × [0, T ]. Initially, Φ = 0 and Δ f = Δ(P0 − s0). Using estimates
(27) and (51) completes the proof.

Corollary 22 Let f and Φ be defined by (53) and s be the solution of the regularized
elliptic equation (22). Suppose assumptions (A1–A4) are fulfilled. Then the solution
w of the regularized parabolic equation (20) satisfies the following estimate:

‖w‖L2(0,T ;H 4(ω0)) ≤ C1μ
− 3

2 T
(‖s‖L2(0,T ;H 2(ω0)) + ‖ f ‖L2(0,T ;H 2(ω0))

+‖Φ‖L2(0,T ;H 2(ω0))

)
.

Moreover, at the initial state, we have the estimate

‖w‖L2(0,T ;H 4(ω0)) ≤ C2δ
− 3

2 μ− 3
2 T, (59)

where C1 and C2 are constants that do not depend on δ, μ nor T .

Corollary 23 ‖[G (ẑ0)]−1‖ = M ≤ C(δ− 3
2 + μ− 3

2 T ), where C is the sum of the
constants defined in Corollary 21, Lemma 20 and Corollary 22 respectively.

Proof For details of the proof review [6, 7] and the references within.

Corollary 24 ‖[G (ẑ0)]−1〈F (ẑ0)〉‖ = K ≤ Cδ− 9
2 μ− 3

2 T .

Proof For details of the proof review [6, 7] and the references within.

We need now to check the Lipschitz continuity of the operator G at an arbitrary
iteration. To do so we can follow the steps of the author in [22] to arrive at

G (ẑn)〈z〉 =

⎧
⎪⎪⎨

⎪⎪⎩

div
(
D2(w)∇ŵnt + A∇wt

) + Δ(p − s),
|A|m−1

(
p + (m − 1) p̂n trace

(
A−1D2(w)

))
,

div
(
U0(A−1)2∇s − U0

(
B(A−1)2 + (A−1)2B

)∇ ŝn
)

−(1 − q)U q
0 |A|−q trace(A−1D2(w)).

Since the above formula is linearized, we deduce that G (ẑn+1)〈z〉 − G (ẑn)〈z〉 is
only given in terms of the corrections z and the quantities ŵn , ŵn+1, ŝn and ŝn+1.
The inverse matrices can be expressed in terms of nth-order polynomials of their
algebraic adjoints and determinants which depend also on ŵn and ŵn+1. Moreover,
we have the estimates for the corrections w and s at each iteration. At the initial
iteration ŵ = w and ŝ = s0 − s which we have proven their boundedness and their
dependence on T . By mathematical induction we can prove the validity of these
estimates for each iteration and their continuous dependence on T . Therefore we
have

‖G (ẑn+1)〈z〉 − G (ẑn)〈z〉‖ ≤ L‖ẑn+1 − ẑn‖ ≤ L‖z‖ ≤ L̂‖w‖L2(0,T ;H 4(ω0)), (60)

where L̂ ≡ L̂(m, q, a, μα, δβ, ω0, U0, T σ ) for some real numbers {α < 0, β < 0,
σ > 0}. ChoosingT sufficiently small is enough to fulfill the conditions of Theorem2
and to prove the following theorem.
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Theorem 25 Suppose that assumptions (A1–A5) are fulfilled. Then there exists 0 <

T ∗ � 1 such that λ = M K L̂ < 1
4 , where M, K and L̂ are the constants defined

by Corollary 23, Corollary 24 and estimate (60), and the nonlinear regularization
of problem (14) has a unique solution ẑ ∈ Br (0) such that ‖ẑ‖ < r , where r =
K
2λ

(
1 − √

1 − 4λ
)

< 2K . Moreover, the dynamics of the interface Γt is defined by
formula (24).

Proof For details of the proof review [6, 7] and the references within.

Theorem 26 Let y be the trajectories calculated by (24) and x be the exact trajec-
tories defined by (15). If assumptions (A1–A5) are fulfilled, then

lim
δ,μ→0

‖x − y‖L2(Q) = 0. (61)

Proof As per (24) and (15), the quantity x − y is defined as

x − y = ∇v̂ − ∇ŵ.

The quantities ∇ŵ and ∇v̂ are calculated at each iteration as

∇ŵn+1 = ∇ŵn − ∇w and ∇v̂n+1 = ∇v̂n − ∇v,

By recalling the estimates of Theorem 16 we conclude that

lim
δ,μ→0

‖∇v − ∇w‖L2(Q) = 0,

and using induction we conclude the result of the theorem.

5 Conclusions and Suggestions

We adopted the framework of Sobolev spaces to approximate the solution of problem
(1), previously solved in weighted Hölder spaces [22, 24]. We proved the conver-
gence of the approximated solution to the theoretical one in the weak sense. In that
way a suitable background was provided for the numerical implementation of the
interface tracking algorithm based on the introduction of Lagrangian coordinates,
which transforms the free boundary problem into a problem posed in a time inde-
pendent domain.

It can be of a great benefit to consider the classical Newton method instead of
the modified one. Employing an iterative method with higher rate of convergence
can lead to a significant increase in the accuracy of the output. Yet, it will be on the
account of the complexity of the implementation.
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Abstract Our concern in this article is the Cauchy problem for the degenerate
parabolic equation of the diffusion-absorption type ut = Δum − auq with the expo-
nentsm > 1, q > 0,m + q ≥ 2 and constant a > 0. In a previous article (KhedrW.S.
Tracking the Interface of the Diffusion-Absorption Equation: Theoretical Analysis)
we investigated an algorithm for tracking the moving interface of the above model
based on the idea of Shmarev (Nonlinear Anal 53:791–828, 2003; Interfaces in
solutions of diffusion-absorption equations in arbitrary space dimension, 2005). By
means of domain reduction, introduction of local system of Lagrangian coordinates,
utilization of the modified Newton method, linearization and regularization we man-
aged to transform the nonlinear problem into a system of linearized equations, and
we proved the convergence of the approximated solution of the regularized problem
to the solution of the original problem in the weak sense. The introduction of the
regularization parameters provided the necessary requirement for a stable numer-
ical implementation of the algorithm. In this article we investigate the numerical
error at each Newtonian iteration in terms of the discretization and the regularization
parameters. We also try to deduce the minimum order of the finite element’s inter-
polating polynomials to be used in order to maintain the stability of the algorithm.
Finally, we present a number of numerical experiments to validate the algorithm and
to investigate its advantages and disadvantages. We will also illustrate the preference
of adaptive implementation of the algorithm over direct implementation.
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1 Introduction

In this article, our main concern is the study of the free boundary problem

{
Ut = ΔUm − aUq in (0, T ] × R

n

U (X, 0) = U0(X) ≥ 0 in R
n (1)

wherea, q > 0,m > 1, are constants andm + q ≥ 2.The solutionU (x, t) represents
the density of some substance per unit volume and T > 0 is a fixed interval. It is
known that the solutions of problem (1) possess the property of finite speed of
propagation, which means that if the support of the initial function u0 is compact, so
is the support of the solution at every instant t . The a priori unknown boundary of the
support is the free boundary that has to be defined together with the solutionU (x, t).
In [10] Shmarev used the transformation to the Lagrangian coordinates and proved
that the solution exists in a special weighted Hölder space and that the solution itself
and the corresponding interface are real analytic in time. He also provided explicit
formulas that represent the interfaceγ (t) as a bijection of the initial interfaceγ (0) and
demonstrated the improvement of the interface regularity with respect to the spatial
variables compared to the initial instant. However, these results were constrained to
the case of n = 1, 2, 3. In [11] the author managed to eliminate that constraint by
means of Helmholtz’s orthogonal decomposition. More results regarding the above
problem exist in the literature and they can be obtained by exploring [5] and the
references within.

In [6] we followed the idea of Shmarev, but instead of dealing with the degenerate
problem we used the regularization technique and we formulated the problem in the
framework of Sobolev spaces. The convergence of the sequence of the approximate
solutions of the regularized problem to the solution of the degenerate one was proven
in the weak sense. The main advantage of the introduction of the regularization
parameters is the replacement of the degenerate system of the linearized equations
by a uniform one, which consequently fulfils the condition of a stable finite element’s
implementation of the linearized system of equations.

2 Objective

In [6] our concern was to investigate the analytical foundation of the algorithm and
to prove the theoretical convergence of the approximated solution to the solution
of the original problem. As mentioned earlier, the main goal was to facilitate a
stable implementation of the algorithm which was not possible in the presence of the
degeneracy.

Our objective in this article is to investigate the numerical implementation of the
algorithm.We study the definition of the discrete solution of the linearized system of
equations.We also try to find a rough estimate for the numerical error at each iteration
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of the modified Newton method in terms of the discretization and the regularization
parameters. Additionally, we pose a condition on the minimum order of the inter-
polating polynomials to be used in order to maintain the stability of the algorithm.
Finally, we present a number of numerical experiments to validate the algorithm and
to illustrate different aspects of its functionality.

3 Background

In this section we introduce a quick review for the basic steps for establishing the
algorithm, for more details see [6, 10, 11].

3.1 Statement of the Problem

Our main problem was formulated in the following form

⎧
⎨

⎩

Ut = Δ(Um) − aUq in Ωt × (0, T ],
U = 0 on ΓT ,

U (X, 0) = U0(X) ≥ 0 in Ω0,

(2)

where

Ωt = Ω(t) = {X ∈ R
n, t ∈ [0, T ] : U (X, t) > 0} ≡ SuppU (X, t),

ΓT = {X ∈ R
n, t ∈ [0, T ] : U (X, t) = 0} =

⋃

t∈[0,T ]
γt ,

and γt = γ (t) ≡ ∂Ωt ∀ t ∈ [0, T ]. The weak solution of problem (2) was defined in
the following sense.

Definition 1 A pair (U (X, t), ΓT ) is said to be a weak solution of problem (2) if:

I. U is bounded, continuous, and nonnegative in Ω t × (0, T ] and ∇Um ∈ L2

(Ω t × (0, T ]),
II. ΓT is a surface of class C1,
III. for every test function ψ ∈ C1(Ω t × (0, T ]), vanishing at t = T and for all

(X, t) ∈ ΓT , the following identity holds:

T∫

0

∫

Ωt

(Uψt − ∇Um .∇ψ − aψUq) dX dt +
∫

Ω0

U0ψ(X, 0) dX = 0. (3)
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The loss of the mass was compensated by reducing the domain of the problem to
some annular domain near the interface. Consider a simple-connected surface ST =⋃

t∈[0,T ] st such that ST ⊂ ΓT and ST ∩ ΓT = ∅. Let also ωt ⊂ Ωt be the annular
domain bounded by the surfaces γt and st such that the problem’s domain is E =⋃

t∈[0,T ] ωt and ∂E = ST ∪ ΓT . Denote by Û (X, t) the solution inside the annular
domain. The surface ST is an artificial surface and it is chosen such that the following
identity is fulfilled:

∀ t ∈ (0, T ]
∫

ωt

Û (X, t) dX =
∫

ω0

U0(X) dX = const. (4)

Therefore a new auxiliary problem has been introduced as

⎧
⎪⎨

⎪⎩

Ût = Δ
(
Ûm

)
− aÛq in E ,

Û |ST = f(s), Û |ΓT = 0,
Û (X, 0) = U0(X) ≥ 0 in ω0,

(5)

where f(s) represents the dummy values of Û on the inner surface which depend
mainly on our choice of the boundary conditions on that surface. As per (4), our
choice of the inner surface ST guarantees that the mass is conserved in the new
domain E . Although this is a different problem, the author in [10, 11] proved that
(5) and (2) coincide up to the motion of the boundary. The general equation of the
mass conservation is

ρt + div(ρ V ) = 0, (6)

where V is the velocity of the fluid particles. Two terms define the velocity. The first
is the gradient of the pressure denoted by P̂ , which is induced by the diffusive term,
and the second is the gradient of some artificial pressure Π̂ induced by the low order
term, such that

V = −∇ P̂ + ∇Π̂, (7)

where,

P̂ = m

m − 1
Ûm−1, P0 = m

m − 1
Um−1

0 , (8)

and Π̂ is the solution of the following degenerate elliptic problem:

{
div(Û∇Π̂) = aÛq in E ,

Π̂ = 0 on ∂E ,
(9)
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given that π0 be the solution of the degenerate elliptic problem at the initial instant
such that

{
div(U0∇π0) = aUq

0 in E ,

π0 = 0 on ∂E .
(10)

As in [1, 2, 4, 10, 11] an alternative description was given by transforming the
system into geometrical Lagrangian coordinates so that all the functions character-
izing the motion became dependent on the initial positions of the particles and the
time as a parameter. The cylinder Q with fixed lateral boundaries was defined as

Q = ω0 × [0, T ], ∂Q = ∂ω0 × [0, T ].

Let us denote the initial positions by η. In this way, the positions of the particles at
any instant t are

X = x(η, t), η ∈ ω0,

and consequently Û [x(η, t), t] = û(η, t) is the density corresponding to that particle,
P̂[x(η, t), t] = p̂(η, t) and Π̂ [x(η, t), t] = π̂(η, t) are the functions representing the
pressure, and V [x(η, t), t] = v(η, t) is the velocity of that particle. The Lagrangian
version of the mass conservation law can be deduced as

Û [x, t]|J | = û(η, t)|J | = û(η, 0) = U0 in Q. (11)

where J = [Ji j ] is the Jacobi matrix of the mapping η → x(η, .), for more details
review [10, 11].

The analysis in [11] led us to the following system on the plane of Lagrangian
coordinates:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

divη(J∇ηv̂t ) + Δη( p̂ − π̂) = 0, in Q,

p̂|J |m−1 = P0 in Q,

divη

(
U0(J−1)2∇ηπ̂

) = aU0ûq−1 in Q,

v̂(η, 0) = 0, π̂(η, 0) = π0(η), and
p̂(η, 0) = P0(η) in ω0,

p̂ = 0 on γ0 × [0, T ] and v̂ = π̂ = 0 on ∂Q .

(12)

Solving the above system to obtain the triad solution (v̂, p̂, π̂) enables us to
calculate the motion of the interface in a direction normal to the initial interface by
the formula

x = η + ∇ηv̂ in Q, (13)

which is our target. The ability to solve the nonlinear system (12) and recovering
the position of the particles x provides us with the necessary information to locate



384 W.S. Khedr

the interface ΓT of (2). We need not worry about the solution or the motion of the
particles in the rest of the domain E . We only use the information we have regarding
the position of the interface to solve (2) (which is equivalent to (1)) as a boundary-
value problem with zero boundary condition on ΓT , which is already defined.

The nonlinear system (12) is to be solved by means of an abstract version of the
modifiedNewtonmethod. Let us consider the three equations in (12) as the arguments
of the functional equation F (ẑ) ≡ {F1(ẑ),F2(ẑ),F3(ẑ)}, where ẑ = {v̂, p̂, π̂}. In
the modified Newton method the differential of F is calculated once at the initial
state. The solution is obtained then as the limit of the sequence

ẑn+1 = ẑn − [G (ẑ0)]−1〈F (ẑn)〉, (14)

where in this case the operator G (ẑ0)〈z〉 is the Frechét derivative of F at the initial
instant ẑ0 = {0, P0, π0} and z = {v, p, π} is the correction at each iteration. More
details regarding the Newton method and the modified Newton method can be found
in [7].

Following the linearization techniques introduced in [10, 11] leads us to the fol-
lowing linearized system:

⎧
⎨

⎩

vt − (m − 1)P0Δv = f + π − Φ in Q,

div
(
U0∇π − 2U0D2(v).∇π0

) − a(1 − q)Uq
0 Δv = H in Q,

v = π = 0 on ∂Q .

(15)

We get the corrections z at each iteration by solving the system of linear equations
in (15) given that all the assumptions posed in [10–13] are fulfilled. We should note
that f, Φ and H represent the error within the nonlinear system at each iteration such
that

⎧
⎪⎪⎨

⎪⎪⎩

Δ f = div(J∇ v̂t ) + Δ( p̂ − π̂) in Q,

f = 0 on ∂Q ,

Φ = p̂|J |m−1 − P0 in Q,

H = div
(
U0(J−1)2∇π̂

) − aU0ûq−1 in Q.

(16)

To overcome the degeneracy in the linearized system, we approximated it by a
sequence of regularized linear problems [6].

3.2 Reduction to a Sequence of Linear Problems

We introduced the new functions w as a solution of the regularized parabolic equa-
tion and s as a solution for the regularized elliptic one, and introduced two small
parameters δ > 0 and μ > 0 such that P0δ = P0 + δ and P0μ = P0 + μ. Denote
α = m + q − 2 ≥ 0 and Cm = (m − 2)/(m − 1). We introduced also the following
general assumptions
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(A1) ∂ω0 is of class C2.
(A2) U0 ∈ C2(ω0).
(A3) P0 ∈ C1(ω0), ∇P0 ∈ C0(ω0), and ΔP0 ∈ L∞(ω0).
(A4) The annular domain is chosen initially such that −C0 ≤ ΔP0 ≤ −M0 a.e. in

ω0.
(A5) There exists some constant 0 < ν < 1 such that ν < |J | < ν−1.

We introduced the regularized parabolic equation

⎧
⎨

⎩

wt − (m − 1)P0μΔw = f − Φ + s in Q,

w(η, 0) = 0,
w = 0 on ∂Q .

(17)

We defined p as

p = Φ − (m − 1)P0Δw in Q. (18)

Finally, we introduced the regularized elliptic equation

⎧
⎨

⎩

div (P0δ∇s) − Cm∇P0∇s = div
(
2P0D2(w)∇s0

) − 2Cm∇P0D2(w)∇s0
+a(1 − q)Uα

0 Δw +Um−2
0 H in Q,

s = 0 on ∂Q,

(19)

where s0 is the solution of

{
div (P0δ∇s0) − Cm∇P0∇s0 = aUα

0 in ω0,

s0 = 0 on ∂ω0.
(20)

Therefore, the solution of the nonlinear system is obtained as the limit of the
sequence

ŵn+1 = ŵn − w and ŝn+1 = ŝn − s, for n = 0, 1, 2, . . .

Consequently, the position of the interface is obtained by

y = η + ∇ŵ. (21)

For every δ, μ > 0, the existence of a unique weak solution of the elliptic and
the parabolic equations follows directly from the standard theories, review [3, 8, 9].
We investigated the effect of these small parameters on the solution and also we
proved the convergence of this approach to the degenerate case when δ, μ → 0. In
the rest of this article we discuss numerical aspects related to the implementation of
the regularized scheme.
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4 Discretization of the Regularized Problem

First, let us decompose the cylinder Q = [0, T ] × ω0 using a set of time layers
sharing a common base of closed triangulation Th that consists of the triangles Tr
with the diameters hr . The intersection of any two distinct elements is empty, a
common edge, or a vertex such that ω0 = ⋃

Tr∈Th
T r . The maximal diameter of the

mesh is

h = max
Tr∈Th

hr .

We define the finite element space Ψh = {ψh ∈ H 1
0 (ω0) : ψh |Tr ∈ Pr (Tr )∀ Tr ∈

Th}wherePr is the piecewise approximating polynomials.Wemake the assumption
that U0, Uα

0 , P0 ∈ Ψh . We use the index j ∈ N with a fixed time step k > 0 such
that each instant of time is denoted by t j = jk and 0 ≤ t0 < t1 < t2 < . . . tN , where
N = 1 + T/k is the total number of instants. Sometimes in the numerical analysis
we will need what is so called the inverse estimate. For some numerical function f
and some constant C , it states that ‖∇ f ‖ ≤ Ch−1‖ f ‖.

4.1 The Discrete Initial Elliptic Equation

The discrete solution s0h of the regularized initial elliptic equation (20) is understood
in the following sense.

Definition 2 A function s0h ∈ Ψh is said to be a discrete solution of (20) and (10)
if s0h = 0 on ∂ω0 and it satisfies the integral identity:

∫

ω0

(
P0δ∇s0h∇ψ + Cm∇P0∇s0hψ +Uα

0 ψ
)
dη = 0. (22)

Theorem 3 Let s0 be the solution of (20), π0 be the solution of (10) and s0h be their
discrete solution. If the conditions of [6, Theorem 25.6] hold, then for an arbitrary
0 < β < ∞

‖s0 − s0h‖β

Lβ (ω0)
≤ Cδ−2hr , (23)

and

‖π0 − s0h‖β

Lβ (ω0)
≤ C(δ−2hr + δ

1
4 ),

where C is a constant that does not depend on δ nor h.
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Proof Choosingψ = ψh ∈ Ψh as a test function and subtracting the discrete identity
(22) from the original identity [6, Eq.25.25] yields

∫

ω0

(P0δ(∇s0 − ∇s0h)∇ψh + Cm∇P0(∇s0 − ∇s0h)ψh) dη = 0.

We define a representative s̃0 such that

‖s0 − s̃0‖ = inf
ψh∈Ψh

‖s0 − ψh‖.

We denote ρ = s0 − s̃0. By virtue of the previous estimates and standard finite ele-
ment arguments [14], we have

‖ρ‖L2(ω0) ≤ Chr+1‖s0‖Hr+1(ω0) ≤ Cδ− 3
2 hr+1. (24)

We denote e = s0 − s0h = ρ + θ , where θ = s̃0 − s0h and for which we need to
derive some estimate. Returning to the last subtraction, substituting and rearranging
we obtain

∫

ω0

(P0δ∇θ∇ψh + Cm∇P0h∇θψh)dη =
∫

ω0

−(P0δ∇ρ∇ψh + Cm∇P0∇ρψh)dη

= −(I1 + I2).

We apply Green’s theorem to both terms of the left-hand side to obtain

∫

ω0

θ (P0δΔψh + (1 + Cm)∇P0∇ψh + CmΔP0ψh) dη = I1 + I2. (25)

Let us consider the elliptic problem

{
P0δΔy + (1 + Cm)∇P0∇ y + CmΔP0y = φ, in ω0

y = 0 on ∂ω0.
(26)

We have a nondegenerate linear elliptic equation, for which if we have φ ∈ L2(ω0),
then y ∈ H 2(ω0), review [3, 8]. By standard estimation techniques involving the use
of Green’s theorem, Cauchy’s inequality, assumption A4 stating that ΔP0 ≤ −M0,
and assuming φ ∈ L2(ω0) we can conclude that

δ‖∇ y‖2L2(ω0)
+ C‖y‖2L2(ω0)

≤ C. (27)
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If ψh is the discrete solution of (26), then

∫

ω0

θφdη ≤ I1 + I2.

By assumption A3 on P0 and Hölder’s inequality, we get for the right-hand side

|I1| ≤
∫

ω0

|P0δ∇ρ∇ψh |dη

≤ C‖P0‖L∞(ω0)

∫

ω0

|∇ρ∇ψh |dη ≤ C‖∇ρ‖L2(ω0)‖∇ψh‖L2(ω0).

Using estimates (24), (27) and the inverse estimate, we conclude

|I1| ≤ Cδ−2hr , and |I2| ≤ Cδ− 3
2 hr .

Setting φ = θβ−1 yields
∫

ω0

|θ |βdη ≤ Cδ−2hr .

Combining this estimate with the estimate (24) provides the first result. Using the
triangle inequality with the estimate of [6, Theorem 25.6], we get the second result.

4.2 The Discrete Elliptic Equation

We consider the discretization of the regularized elliptic equation (19), for which we
know that

g = div(2P0D
2(w) · ∇s0) − 2Cm∇P0 · (D2(w) · ∇s0)

+ a(1 − q)Uα
0 Δw +Um−2

0 H,

and H is the error function defined by (16).We assume that H ∈ Ψh . We introduce sh
as the discrete solution of the elliptic problem which is understood in the following
sense.

Definition 4 A function sh ∈ Ψh is said to be a discrete solution of the regularized
elliptic equation (19) and the degenerate elliptic equation in (15) if sh = 0 on ∂ω0

and it satisfies the integral identity:
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t2∫

t1

∫

ω0

(P0δ∇sh∇ψ + Cm∇P0∇sh ψ + ghψ) dηdt = 0, (28)

∀ t0 ≤ t ≤ T .

Theorem 5 Let s be the solution of (19), π be the solution of the elliptic equation in
(15) and sh be their discrete solution. If the conditions of [6, Corollary 25.10] hold,
then for an arbitrary 0 < β < ∞

‖s − sh‖β

Lβ (Q)
≤ C1

⎛

⎝δ−2
2∑

i, j=1

‖D2
i j (w − wh)‖L2(Q) + (δμ)−

3
2 T hr−1

⎞

⎠ , (29)

and

‖π − sh‖β

Lβ (Q)
≤ C2

(
‖s − sh‖β

Lβ (Q)
+ δ

1
4 ‖g‖L2(Q)

)
, (30)

where C1 and C2 are constants that do not depend on δ, μ, h nor T .

Proof To prove this result we repeat the same steps as in the proof of the previous
theorem; however, we add an extra integral I3 in (25) which is expressed as

|I3| =
∣∣∣
∣∣∣

∫

Q

(g − gh)ψhdηdt

∣∣∣
∣∣∣
≤

∫

Q

|(g − gh)ψh |dηdt,

Expanding g and gh , simplifying the produced terms, performing standard estima-
tion techniques, assuming that ψh is the discrete solution of (26) at each instant t j ,
applying the inverse estimate to (23), and recalling the estimates of [6, Corollary
25.7, Corollary 25.18] provides us with multiple terms. We consider the term with
the highest order to get

|I3| ≤ C

⎛

⎝δ−2
2∑

i, j=1

‖D2
i j (w − wh)‖L2(Q) + δ− 3

2 μ− 3
2 T hr−1

⎞

⎠ .

Using the triangle inequality with the estimate of [6, Corollary 25.10] we conclude
the second result.

4.3 The Discrete Parabolic Equation

We consider the function wh as the discrete solution of the regularized parabolic
equation (17) which is understood in the following sense.
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Definition 6 A function wh ∈ Ψh is said to be a discrete solution of the regularized
equation (17) and the degenerate parabolic equation in the system (15) if wh = 0 on
∂ω0 and it satisfies the integral identity:

t2∫

t1

∫

ω0

(
−whψt + (m − 1)(P0μ∇wh∇ψ + ∇P0∇wh ψ) − f̃hψ

)
dηdt = 0, (31)

∀ t0 ≤ t1 < t2 ≤ T .

We will consider the general case when f̃ = f + s − Φ, where s is the solution
of the regularized elliptic equation (19) and f and Φ represent the error in the
nonlinear system as per (16). We will assume that Φ(η, t j ) ∈ Ψh for every t0 ≤ t j ≤
T . Moreover, since in (16) we actually calculate Δ f , then the projection fh(η, t j )
is calculated as Δ−1

h (Δ f (η, t j )). Hence, it is standard to consider the error ‖ f −
fh‖L2(ω0) of order O(hr+1) for every t0 ≤ t j ≤ T , see [14].

Theorem 7 Let w be the solution of the regularized parabolic equation (17), v
be the solution of the degenerate parabolic equation in (15) and wh be their dis-
crete solution. If the conditions of [6, Theorem 25.16] hold, then for an arbitrary
0 < β < ∞

‖w − wh‖β

Lβ (Q)
≤ C1

(
μ− 1

2 ‖s − sh‖L2(Q) + μ−2T (k2 + hr )
)

,

and

‖v − wh‖β

Lβ (Q)
≤ C2

(
‖w − wh‖β

Lβ (Q)
+ μ

1
2 T

1
4 ‖ f + s − Φ‖L2(Q)

)
,

where C1 and C2 are constants that do not depend on δ, μ, T , k nor h.

Proof We choose the test functionψ = ψh ∈ Ψh . We integrate by parts the first term
of both identities [6, Eq. 25.44] and (31), then we subtract to get

t2∫

t1

∫

ω0

∂(w − wh)

∂t
ψhdηdt + (m − 1)

t2∫

t1

∫

ω0

P0μ∇(w − wh)∇ψhdηdt

+(m − 1)

t2∫

t1

∫

ω0

∇P0∇(w − wh)ψhdηdt

=
t2∫

t1

∫

ω0

( f̃ − f̃h)ψhdηdt.
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We denote the approximation error by e = w − wh = ρ + θ , where ρ = w − w̃, θ =
w̃ − wh and w̃ is a representative for w chosen as the elliptic projection of w which
is defined as

b(w̃, ψh) = b(w, ψh),

where the bilinear form b(x, y) is defined in the following way:

b(x, y) = (m − 1)
∫

ω0

(−P0μ∇x∇ y − ∇P0∇x y)dη.

We use the well known Cranck-Nicolson time discretization scheme. Using the pre-
vious estimates and assuming that w is three times differentiable with respect to t ,
we can verify by standard finite element argument that [14]

max
0< j≤N

‖ρ‖L2(ω0) ≤ Cμ− 3
2 T (k2 + hr+1). (32)

Since we assume the continuity of the discrete solution with respect to t , we extend
the time integral over Q. We rewrite the difference equation, make all substitutions
and rearrange to obtain

∫

Q

(etψh + (m − 1)(P0μ∇e∇ψh + ∇P0∇eψh))dηdt =
∫

Q

( f − fh + s − sh)ψhdηdt,

and by decomposing e, we arrive at

∫

Q

(θtψh + (m − 1)(P0μ∇θ∇ψh + ∇P0∇θ ψh))dηdt

=
∫

Q

( f − fh)ψhdηdt +
∫

Q

(s − sh)ψhdηdt

−(m − 1)

⎛

⎝
∫

Q

P0μ∇ρ∇ψhdηdt +
∫

Q

∇P0∇ρ ψhdηdt

⎞

⎠

= I1 + I2 − I3 − I4.

Wehighlight that ρt were dropped because ρ was defined as an elliptic projection.We
proceed trying to find an estimate for θ . Assuming that ψh(η, T ) = 0, we integrate
the first term on the left-hand side by parts to get

∫

Q

(θψth − (m − 1)(P0μ∇θ∇ψh + ∇P0∇θ ψh))dηdt = −I1 − I2 + I3 + I4.
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By applying Green’s theorem to the second and the third terms on the left-hand side
we can deduce that

∫

Q

θ(ψth + (m − 1)(P0μΔψh + 2∇P0∇ψh + ΔP0ψh))dηdt ≤
∑

i

|Ii | (33)

We introduce the uniformly parabolic equation

⎧
⎨

⎩

yt − (m − 1)(P0μΔy + 2∇P0∇ y + ΔP0y) = φ in Q,

y(η, 0) = 0, in Q
y = 0 on ∂Q ,

for which, if φ ∈ L2(0, T, L2(ω0)), then y ∈ L2(0, T, H 2(ω0)), review [3, 9].
Assuming that φ is bounded in L2(Q), we can use standard estimation techniques
to conclude that

‖y‖L2(Q) ≤ ‖∇ y‖L2(Q) ≤ Cμ− 1
2 . (34)

Ifψh is the discrete solution of this problem in the sense thatψh(η, t j ) = y(η, T − t j )
for every 0 < t j ≤ T , then we can plug it in (33) to obtain

∫

Q

θφdη ≤
∑

i

|Ii |.

Using theprevious estimates and assumptions, applyingHölder’s inequality, applying
the inverse estimate to (32), and choosing φ = θβ−1 we get the first result,

∫

Q

|θ |βdηdt ≤ C
(
μ− 1

2 ‖s − sh‖L2(Q) + μ−2T (k2 + hr )
)

,

and the second result follows by virtue of [6, Theorem 25.16] and the triangle
inequality.

Theorem 8 Suppose that the conditions and assumptions of Theorems 5 and 7 are
fulfilled. Then, the minimum order of interpolating polynomials to be used in order
to maintain the stability of the finite element scheme is r ≥ 3.

Proof We consider the mutual dependence of the errors in the elliptic and the par-
abolic equations. The error in the elliptic equation depends on the error in the pro-
jection of the second derivative of w. But the error in projecting w is of order O(hr ).
The result is an immediate consequence of applying the inverse estimate twice to the
estimate of Theorem 7.
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5 Experiments

In all the experiments we employ an unstructuredmeshwith extra refinement near the
boundaries andwe construct the output of the algorithm using standard finite element
implementation. We use r = 3 as a minimum order of the Lagrange polynomials.
The initial instant is always considered as t0 = 1. The solutions generated by the
tracking algorithm will be denoted by uc. Whenever needed to measure the error in
the convergence of the iteration scheme we shall use un and un−1 to denote the error
in the last iteration and for that purpose only we will use xn − xn−1 to denote the
convergence error in the position of the interface.

5.1 Experiment 1

We start with a benchmark experiment considering the standard Barenblatt solution.
In this case we set a = 0 and no absorption should be present. The parameters of the
experiment are provided by Table1 and the exact formula that governs the solution’s
evolution is

um−1 = max

(
0 ,

L

t + t0

(
R2(t + t0)

α − x2 − y2
))

,

where t ∈ [0, T ] and t0 = 1. The initial data are calculated by the same formula at
t = 0 considering R = 4. The constructed trajectories of the interface’s particles are
illustrated in Fig. 1. The relative error between the exact solution and the constructed
solution is

‖u − uc‖L∞(Q)

‖u‖L∞(Q)

= 0.012.

In Fig. 2 we provide a combination of the exact profile at the last instant and
the trajectories of the particles to illustrate the high accuracy of approximating the
interface’s position. The gradient of the potential function ∇v, which represents the
normal motion of the interface as per (13), is shown in Fig. 3. We recall the error
functional defined by (16); the norm of the error at the 25th Newton’s iteration is
provided for different quantities in Table2. Note that H = 0 since we have no low
order term and consequently π = 0.

Table 1 Parameters of Experiment 1

m a c0 α L T

2 0 – 0.5 0.0625 1
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Fig. 1 Illustration of the trajectories of the interface’s particles. a The motion of the interface. b
Zoom on the trajectories

Fig. 2 The match between the constructed interface and the exact one

Fig. 3 Illustration of both components of the potential’s gradient ∇v. a The x-component of ∇v.
b The y-component of ∇v

Table 2 The convergence error of Newton’s iterations for Experiment 1

‖un − un−1‖L∞(Q) ‖xn − xn−1‖L∞(Q) ‖Δ f ‖L∞(Q) ‖Φ‖L∞(Q) ‖H‖L∞(Q)

0.0013719 0.0052311 0.019367 0.0016108 0

5.2 Experiment 2

In the previous experiment we established a strong verification on the accuracy of the
algorithmwhen we considered a suitable choice of the initial data. In this experiment
we choose the initial function in an ellipsoidal domain according to the following
formula:

u0 = max
(
0, L

(
R2 − (x − y)2 − 16(x + y)2

)) 1
m−1 ,
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Fig. 4 The initial function u0 and its lower and upper barriers. a The lower barriers at t = 0. b The
upper barrier at t = 0. c The initial data u0

Table 3 Parameters of Experiment 2

m a c0 α L T

2 0 – 0.5 0.0625 1

Fig. 5 Illustration of the trajectories of the interface’s particles. a The motion of the interface. b
Zoom on the trajectories

where R = 8. We can not use Barenblatt solution in a direct way as in the previous
experiment. However, we can use the profiles admitted by his explicit formula as
lower and upper barriers. Then we consider the maximum principle to establish
another way of verification. The pictures in Fig. 4 illustrate the shape of the initial
data, the inner and the outer barriers. We design the experiment with the parameters
shown in Table 3.

The output of the interface tracking algorithm is illustrated in Fig. 5. We establish
the verification by comparing the position of the interface at any instant with the
position of the barriers’ interfaces at the same instant. We choose the last instant
and the verification is established as shown in Figs. 6 and 7. Since we have no exact
solution to compare with we will only present the convergence error in the iteration
scheme by Table4.

5.3 Experiment 3

In this experiment we introduce a more complicated type of initial data. We will
consider a square domain with edge length 2R, over which the initial function u0 is
defined as
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Fig. 6 Lower bound for the
interface location imposed
by the lower barriers

Fig. 7 Upper bound for the
interface location imposed
by the explicit solution

Table 4 The convergence error of Newton’s iterations for Experiment 2

‖un − un−1‖L∞(Q) ‖xn − xn−1‖L∞(Q) ‖Δ f ‖L∞(Q) ‖Φ‖L∞(Q) ‖H‖L∞(Q)

6.2708 × 10−5 0.0002442 0.0007 5.1818 × 10−5 0

u0 = max(0, (R2 − x2)(R2 − y2)),

where R = 4. The difficulty with such type of initial data is the ability to correctly
simulate the evolution of the solution or the interface at the corners. The reason is
that at the corner points not only the solution vanishes, but also the gradient of the
solution does. Since the gradient is zero initially at this point we expect no motion
for a certain amount of time called the waiting time. During that time the profile of
the solution keeps adjusting itself until the moment when the gradient is non zero
and the corner point starts moving.

Wewill keep the configuration of the last experiment whichmeans that no absorp-
tion will be present. We will employ the technique of the barriers as in the previous
experiment, and we will use the ellipsoidal initial function which was introduced and
verified in the previous experiment as an inner barrier to verify the evolution of the
corners. The upper barrier will be taken as the profile admitted by the explicit formula
and will be designed to touch the corners from outside. Moreover, we will consider
small time steps so that we can catch the moment when the corners start moving such
that dt = 0.001 and T = 0.01. Since the data is completely irregular we will only
consider m = 2, the rest of the parameters are meaningless in this context except
maybe for choosing a proper upper barrier. The initial data, the lower and the upper
barriers are shown in Fig. 8.
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Fig. 8 The initial function u0 and its lower and upper barriers. a The lower barriers at t = 0. b The
upper barrier at t = 0. c The initial data u0

Fig. 9 Non-agreement with the maximum principle. a The trajectories at t = 0.007. b Inaccurate
interface positioning

We start by showing the output of the direct implementation of the algorithm
accompanied with the evolution of the interface of the inner ellipsoidal barrier in
Fig. 9. We note that the algorithm fails to complete after t = 0.007. We recall that
the mass conservation law in the Lagrangian coordinates takes the form

u = u0
|J | .

As we explained earlier, the profile of the solution near the corners keeps raising
which means that |J | around the corners keeps decreasing. Actually, the moment
when the corner starts moving is when |J | approaches zero, which consequently
generates explosion in the output of the algorithm, see Fig. 10. Another drawback of

Fig. 10 The profile of |J |
approaching zero at the
corners
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the direct implementation of the algorithm is that it keeps tracking the motion of the
interface in the normal direction to the interface of the initial data. The changes in
the normal vector itself is not considered which leads to inaccurate tracking of the
interface’s position. As shown in Fig. 9b, the trajectories of the lower barriers exceeds
those of the solution, which means that there exists a region where the profile of the
lower barrier is actually higher than the solution. This indicates that the maximum
principle is not fulfilled in this case.

To overcome both problems we implement the algorithm in an adaptive way.
Instead of constructing the solution in the whole cylinder we only construct the
solution for three time steps at once. In other words, we perform the iteration process
considering three time steps, then we set the solution at the third time step as the
initial data of the next three time steps. In that way we keep tracking the changes in
the interface’s normal direction instead of being stuck to the normal direction of the
initial interface. Moreover, when we reset the algorithm every three time steps, we
actually reset J to the identity matrix and thus we keep |J | separated away from the
zero level.

The reason for choosing three time steps is that we approximate the time derivative
of the potential vt using three points scheme, so this is the minimum number of
instants required to initiate the algorithm. It can be reduced to two instants in the
case of approximating the time derivatives using two points scheme but not less than
that. The only drawback of such scheme is the accumulation of the convergence error
of the iteration process in each realization specially at the corners in our case, see the
convergence error in the last realization in Table5. We illustrate the accurate motion
of the interface together with a focus on the corner motion in Fig. 11. The interface’s
trajectories generated by the algorithm are bounded from below by the interface of

Table 5 The convergence error of Newton’s iterations for Experiment 3

‖un − un−1‖L∞(Q) ‖xn − xn−1‖L∞(Q) ‖Δ f ‖L∞(Q) ‖Φ‖L∞(Q) ‖H‖L∞(Q)

0.31521 0.0011882 9.3055 0.079621 0

Fig. 11 The interface’s particles trajectories with a zoom on the corners. a The interface‘s trajec-
tories. b Zoom on the corner‘s motion



Tracking the Interface of the Diffusion-Absorption Equation: Numerical Analysis 399

Fig. 12 Lower bound for
the interface location
imposed by the lower barrier

Fig. 13 Upper bound for the
interface location imposed
by the explicit solution

the lower barrier and from above by the interface of the upper barrier. We represent
this result at the last instant as illustrated in Figs. 12 and 13.

5.4 Experiment 4

In the previous experiments we were considering the Porous Medium Equation with
different choices of the initial data and the low order term was not present. In this
experiment we consider the diffusion-absorption equation (5) with the presence of a
linear sink, in other words we set q = 1. To provide a way of verification we perform
a couple of transformations, first we hide the linear term away then we scale the time
and thus we can easily retrieve the Porous Medium Equation again. To clarify, let us
consider the following diffusion-absorption equation with a linear sink

ut + au = Δum .

Multiply both sides by eat , let v = eatu, and consider a new time scale τ such that
eat (m−1)∂t = ∂τ . By integrating both sides we conclude that
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τ = τ0 + 1 − e−at (m−1)

a(m − 1)
, (35)

where we choose τ0 = 1. Thus we can obtain

vτ = Δvm, (36)

which is the PorousMediumEquation for the newvariable v on the time scale denoted
by τ . The purpose of this experiment is to run the algorithm in the presence of the
linear low order term over the interval t ∈ [0, T ]. We choose the initial data as

u0 = max
(
0 , L

(
R2 − x2 − y2

)) 1
m−1 ,

where R = 4. Since the initial data are chosen from the set of Barenblatt profiles,
then we can verify the output of the algorithm at t = T by comparing it with the
exact Barenblatt profile

vm−1 = max

(
0 ,

L

τ

(
R2τα − x2 − y2

))
,

calculated at τ = T , where

T = τ0 + 1 − e−aT (m−1)

a(m − 1)
.

Note that v0 = u0. We will consider three cases in this experiment. The parameters
of the first case are shown in Table6.

We recall from [6] that in the presence of the low order term we need to reduce
the domain in order to compensate the loss of the mass due to the presence of the
sink. Moreover, we will consider zero Dirichlet boundary conditions for π on both
the exterior and the interior boundaries. The profile of u0 and the corresponding
pressure π0 in the reduced domain are shown in Fig. 14. The calculated motion of
both the exterior and the interior interfaces is illustrated in Fig. 15.

In Fig. 16 we represent a comparison between the location of the interface pro-
duced by the algorithm and the location calculated as per Barenblatt profile at
τ = T . We note in the zoom provided in Fig. 16b that the calculated location
of the interface is not accurately matching the interface of the exact profile–at

Table 6 Parameters of Experiment 4a

m a c0 α L T T

2 0.1 – 0.5 0.0625 0.2 1.198
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Fig. 14 The initial functions u0 and π0 in the reduced domain. The initial data u0. b The initial
pressure π0

Fig. 15 The interfaces motion in the case when a = 0.1 and π = 0 on both interfaces

Fig. 16 Comparing the exact location of the exterior interface and the calculated one. aVerification
of the match. b Zoom on the exterior interfaces

least not at all the points. To understand this behaviour we recall from [6] that the
problem in the reduced domain is a new problem and completely different than the
original one, and that the solutions of both problems coincides only on the exterior
interface. We need also to recall the formula of the velocity (7). The velocity of
the particles depends on the gradient of the pressure induced by the diffusion (∇ p)
and the gradient of the pressure induced by the low order term (∇π ). As shown in
Fig. 17, the slope of the profile of π supports a motion in the outward direction on the
side of the exterior interface. On the other hand, the motion of the interior boundary
should maintain the condition of the mass conservation regardless the direction or
the rate of this motion. The choice of zero Dirichlet boundary conditions for π on
both interfaces restricts the profile of π from being corrected quickly. However, as
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Fig. 17 Illustration of both components of the velocity in x direction. a The x-component of−∇ p0.
b The x-component of ∇π0. c The x-component of −∇ p(x, T ). d The x-component of ∇πx, T

per [6, Theorem 25.25], the convergence of the algorithm in the reduced domain
entails a small time interval, which in turn does not allow sufficient corrections of π .

To overcome this problem we keep the zero Dirichlet boundary condition on the
exterior interface only and we leave the interior interface free of any conditions.
However, such approach was found to diverge when we choose large values of a.
The reason can be seen by observing the sharp slope of π on the exterior boundary.
We need to keep in mind that even if the profile of π implies a motion in the outward
direction with respect to the exterior interface, it is not necessarily implying the same
motion with the same rate in the interior of the domain. Larger values of a can easily
lead to the deformation of the mesh, which in this case entails the re-initiation of
the algorithm. Accordingly, we choose a smaller value a = 0.01 and we rerun the
algorithm. Liberating π from any conditions on the interior interface improves the
accuracy of the algorithm and a better match can be seen in Fig. 18. The profile of π

with the free interior surface is shown in Fig. 19. Yet, analytical justification of this
approach is still not revealed.

In the third case we reduce the value of a, consider the parameters in Table7. In
Fig. 20 we can note that this motion is slightly slower compared to the above case
with the higher value of a. That should not be confusing; in the reduced domain there
is no absorption and the mass is conserved. The motion of the interface is controlled
according to a new system of equations and the function π is meant only to translate
the dynamics of the absorption from the original domain into the reduced onewithout
losing the mass conservation. By performing several experiments one can deduce
that, in the case of a linear sink, the diffusion process is dominating and the motion of
the interface is always in the outward direction only with different rates. The strength
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Fig. 18 Comparing the exact location of the exterior interface and the calculated one. aVerification
of the match. b Zoom on the exterior interfaces

Fig. 19 The profile and the gradient of π in the case of no condition on the interior surface. a
The profile of π0. b The profile of π(x, T ). c The x-component of ∇π0. d The x-component of
∇π(x, T )

Table 7 Parameters of Experiment 4b

m a c0 α L T T

2 0.001 – 0.5 0.0625 0.2 1.2

of the low order term affects the motion and such effect is implicitly translated by π

which is defined in terms of u in the first place.
To clarify our findings more, let us observe the profile of π in Figs. 17d and 19d.

Both profiles share a sharp rate at the exterior interface which implies an outward
motion in both cases. On the other hand, the flatness of the second profile (Fig. 19d)
in the interior of the domain implies a slower motion inside the ring. In spite of
having no clear motion in the inward direction, the dynamics of the absorption can
be seen in the reduction of the rate with witch the inner particles move even if such
motion is in the outward direction.
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Fig. 20 Comparison of the displacements of the exterior interface for different values of a. a The
case when a = 0.01. b The case when a = 0.001

Table 8 The convergence error of Newton’s iterations for Experiment 5 (a = 0.01)

‖un − un−1‖L∞(Q) ‖xn − xn−1‖L∞(Q) ‖Δ f ‖L∞(Q) ‖Φ‖L∞(Q) ‖H‖L∞(Q)

0.1152 0.1332 0.5234 0.0518 0.0377

Table 9 The convergence error of Newton’s iterations for Experiment 5 (a = 0.001)

‖un − un−1‖L∞(Q) ‖xn − xn−1‖L∞(Q) ‖Δ f ‖L∞(Q) ‖Φ‖L∞(Q) ‖H‖L∞(Q)

0.0117 0.0105 0.1085 8.7339e-04 0.0021

Finally we need to highlight the necessity to implement the algorithm over a
small time intervals, refer to [6, Theorem 25.25]. In the case of large time intervals
direct implementation of the algorithm fails andNewton’s iterations diverge. This can
be fixed by sequential implementation over successive small intervals as explained
in Experiment 3. However, with each iteration process a certain amount of error
remains due to the incomplete convergence, and these amounts of error accumulates
each time the algorithm is re-initiated. See Tables8 and 9 for details on the level of
the convergence errors due to a single iteration process for each case of the last two
cases.

6 Failures

In spite of the satisfactory results of the tracking algorithm in detecting the motion
of the interface they were only tangible in the case of the forward motion. The
algorithm fails to detect the backward motion of the interface. In other words it
can not represent the process of the absorption. The reason is not related to the
mathematical model upon which the algorithmworks. It is more likely the numerical
environment itself. In the case when the diffusion process takes place, the particles
move outside and the worst scenario is the deformation of the mesh which can be
overcome by reconstructing the mesh and re-initiating the algorithm as we explained
in the last experiment.
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On the other hand, when the absorption process occurs the particles of the inter-
face move inside with a rate much faster than the rate of the motion of the particles
inside the domain, which eventually causes the intersection of the particles’ trajec-
tories. These collisions are not allowed in the Lagrangian coordinates as the inverse
transformation becomes impossible. Imposing restrictions on the rate of the motion
of the interface is not a solution since it contradicts the nature of the problem and the
target of the study which aims at maintaining both the physical and the mathematical
measures of the solution. Nonetheless, the particles inside the domain move with
a rate much slower than the rate of the motion of the interface’s particles and not
necessarily in the inward direction; especially at the initial instant.

7 Conclusions

In this article we managed to deduce a rough estimate for the numerical error at each
Newtonian iteration in terms of the discretization and the regularization parameters.
We also concluded the minimum order of the finite element’s interpolating polyno-
mials to be used in order to preserve the stability of the algorithm. We validated the
output of the interface tracking algorithm in the case when the diffusion is dominat-
ing over the absorption. We illustrated the drawbacks of the direct implementation
of the algorithm and proposed an adaptive scheme which enhances the accuracy of
the interface tracking.

It was discovered that the numerical implementation failed to work when the
absorption prevails over the diffusion. The reason is that the algorithm, based on the
mechanical idea of the possibility of two counterpart representation of the motion of
a continuum, can not proceed when the particles’ trajectories cross and the particles
collide. The nature of the problem imposes the possibility of such collisions and the
numerical environment can not prevent it.

We shall design some kind of monitor-control-correction scheme to prevent the
particles from colliding in the presence of absorption forces. The proper choice of
the boundary conditions on the artificial free boundary also can greatly enhance the
output of the algorithm. Another promising possibility is to use a generalization of
the interface equation [6, Eq.25.2] to the case of several space dimensions in order
to correct the interface location at every time step.
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Analyzing Multivariate Cross-Sectional
Poisson Count Using a Quasi-Likelihood
Approach: The Case of Trivariate Poisson

Naushad Mamode Khan, Yuvraj Sunecher and Vandna Jowaheer

Abstract In the last few years, the modelling of multivariate count data has been
a topic of concern for many researchers in the field of epidemiology, agriculture,
economics and finance. The most recent findings in the analysis of such data illus-
trate that it is easier to specify the likelihood function of these multivariate count
responses through the use of copula constructors such as Clayton and Frank copulas.
However, in a regression set-up, the resulting maximum likelihood estimation equa-
tion involves huge computationally intensive expressions that make themethodology
almost unfeasible. This raises the need to explore some other parsimonious estima-
tion methodologies. In this context, this paper proposes an alternative estimation
scheme based on the quasi-likelihood (QL) approach. The performance of the QL
method is assessed through a simulation study that is based on an observation-driven
generating process for trivariate and multivariate Poisson counts.

1 Background and Motivation

In the last five years, the modelling of multivariate count data has preoccupied the
interest of many researchers as such data appear in various disciplines related to
sports, epidemiology, criminology among many others [5, 14]. Under the simple
case of bivariate Poisson, the analysis of counts do not pose any modelling and
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estimation challenges since the likelihood function can easily be expressed [6]. How-
ever, in trivariate or multivariate set-up, the expression for the likelihood function
becomes tedious even though copula is used [3, 10, 12] and thus necessitates numer-
ical approximations for the application of the maximum likelihood approach (MLE)
[13]. In the same context, Nikoloulopoulos and Karlis [11] have developed the multi-
variate Poisson model but in terms of applications, these authors have restricted their
analysis to a simple bivariate data set-up, thus not portraying the real difficulties.
In this paper, we review their derivation of the trivariate Poisson model and par-
ticularly highlight the difficulties in obtaining the derivatives of the log-likelihood
function under Frank Copula assumption. Our concern here is to propose an alter-
native approach that would reduce the computational difficulties in obtaining the
regression and correlation estimates whilst at the same time maintain the level of
efficiency of the estimates. Until now, the only alternative methodology that omits
the specification of the likelihood function is the quasi-likelihood based approach
(QL). This is an approach that has been expounded byWedderburn [15] and McCul-
lagh and Nelder [8] and lately in longitudinal system by Jowaheer and Sutradhar [4]
as a perfect substitute to MLE. Overall, QL equation has a parsimonious structure
constituting of the derivative and covariance components only.

As for the covariance components, the only work carried out so far in this direc-
tion is the formulation of the dependence structure by Nikoloulopoulos and Karlis
[11] which is based on the use of copulas. Their covariance formulation has yielded
consistent estimates but is very complicated. This complexity arises because of the
structure of the copula and as a result this influences the time and computational
involvements. To overcome this challenge, this paper proposes to model the depen-
dence among the variates through an observation-driven modelling strategy [1, 9]
and the moment estimating equations. Thus, to summarize, our contribution in this
paper is to first develop an observation-driven model that connects the multivariate
counts and thereafter obtain the covariance expressions. The second contribution
of this paper is to assess the QL method in the estimation of parameters mainly
the regression and dependence parameters under trivariate and multivariate cross-
sectional set-ups which has yet not been covered in statistics literature. The outline of
this paper is as follows: In the next section, the MLE approach under trivariate Pois-
son regressions are discussed followed by the development of observation-driven
process and QL methodology under trivariate and multivariate set-ups in Sects. 4
and 5, respectively. Section6 focuses on simulation studies to assess the perfor-
mance of QL under trivariate set-ups based under different parameter assumptions.
The conclusion and the scope for future work are presented in the last section.

2 The Cross-Sectional Set-Up

This section provides an overview on the notations used in this paper along with the
basic assumptions. Under a multivariate cross-sectional set-up, where we assume
k = 1, 2, 3, . . . , p variates, the vector of responses is represented by
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Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y [1]
1 Y [2]

1 . . . Y [k]
1 . . . Y [p]

1

Y [1]
2 Y [2]

2 . . . Y [k]
2 . . . Y [p]

2
...

...
. . .

...
...

...

. . . . . . Y [k]
i . . . Y [k ′]

i . . .

Y [1]
I Y [2]

I . . . Y [k]
I . . . Y [p]

I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where i = 1, 2, . . . , I independent individuals. Under this representation, there is
a clear dependence between y[k]

i and y[k ′]
i but obviously there exists no association

between measurements y[k]
i and y[k]

j and y[k]
i and y[k ′]

j , that is,

Cov(Y [k]
i , Y [k]

j ) = 0,Cov(Y [k]
i , Y [k ′]

j ) = 0,

Under the first dependence, Nikoloulopoulos and Karlis [11] formulated the depen-
dence coefficient between any variate Y1 and Y2 as

τ(Y1, Y2) =
∞∑

y1=0

∞∑
y2=0

h(y1, y2)

∗4C(F1(y1 − 1), F2(y2 − 1)) − h(y1, y2)

+
∞∑

y1=0

( f 21 (y1) + f 22 (y1)) − 1

Suppose these responses are influenced by a common set of J explanatory variables
represented by the structure

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X11 X12 . . . X1J

X21 X22 . . . X2J
...

...
...

Xi1 Xi2 . . . Xi J
...

...
...

XI1 XI2 . . . XI J

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the vector of the kth variate regression parameter

β[k] = [β[k]
1 , β

[k]
2 , . . . , β

[k]
i , . . . , β

[k]
J ]
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3 A Note on the MLE Approach

To proceed to the multivariate set-up, we first consider the situation under the trivari-
ate mode. Thus, in this section, the trivariate Poisson likelihood functions are devel-
oped under the Frank copula assumption, that is,

C(u, v) = 1

θ
ln[1 + (exp(−θu) − 1)(exp(−θv) − 1)

exp(−θ) − 1
]

For this, we assume the marginal Poisson density function for the kth variate where
k = 1, 2, 3 is given by

fk(yi ) = exp(−μ
[k]
i )

[μ[k]
i ]yi
yi !

where i = 1, 2, 3, . . . , I subjects and where, following Sect. 2,

μ
[k]
i = exp(xiβ

[k])

and the marginal distribution function is given by

Fk(yi ) =
yi∑

s=0

exp(−μ
[k]
i )

[μ[k]
i ]s
s!

The trivariate Poisson probability function based on copula representation is then
expressed as

−h(y1, y2, y3) =C(F1(y1), F2(y2), F3(y3))

+ C(F1(y1 − 1), F2(y2)F3(y3))

+ C(F1(y1), F2(y2 − 1)F3(y3))

+ C(F1(y1), F2(y2)F3(y3 − 1))

− C(F1(y1 − 1), F2(y2 − 1)F3(y3))

− C(F1(y1 − 1), F2(y2)F3(y3 − 1))

− C(F1(y1), F2(y2 − 1)F3(y3 − 1))

+ C(F1(y1 − 1), F2(y2 − 1)F3(y3 − 1))

From the above, it is clear that taking the derivative of the log-likelihood function
with respect to the vector of regression parameters will not be a straightforward
task. Obviously, further computational problems will arise when assuming a high-
dimensional space of variates.
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4 Developing an Observation-Driven Model Under
Trivariate Assumption and Its Extension
to a Multivariate Set-Up

Following the drawbacks of the copula approach, we aim to establish a model
whereby under the trivariate assumption, the variates [y[1]

i , y[2]
i , y[3]

i ] are related by
a certain dependence structure of the form To proceed with the derivation of the
observation-driven approach, assume

y[1]
i ∼ P(μ

[1]
i ) (1)

y[2]
i = α1 ∗ y[1]

i + d [1]
i (2)

y[3]
i = α1 ∗ y[1]

i + α2 ∗ y[2]
i + d [2]

i (3)

where y[2]
i ∼ P(μ

[2]
i ), y[3]

i ∼ P(μ
[3]
i ), d [1]

i ∼ P(μ
[2]
i − α1μ

[1]
i ) and d [2]

i ∼ P(μ
[3]
i −

α1μ
[1]
i − α2μ

[2]
i ). Note here, the dependence between y[1]

i , y[2]
i y[3]

i are induced by
α1, α2 and the error terms d [k]

i . Under these assumptions,

E(Y [2]
i ) = EY [1]

i
E[α1 ∗ y[1]

i + d [1]
i |Y [1]

i ]
= EY [1]

i
[α1y

[1]
i + μ

[2]
i − α1μ

[1]
i ]

= α1μ
[1]
i + μ

[2]
i − α1μ

[1]
i

= μ
[2]
i

Under the same principle

E(Y [2]
i ) = μ

[2]
i and E(Y [3]

i ) = μ
[3]
i

V ar(Y [2]
t ) = Var [α1 ∗ y[1]

i ] + Var(d [1]
i )

= EY [1]
i

[Var(α1 ∗ y[1]
i |y[1]

i )] + VarY [1]
i

[E(α1 ∗ y[1]
i |y[1]

i )]
+ Var [d [1]

i ]
= EY [1]

i
[α1(1 − α1)y

[1]
i |y[1]

i ] + VarY [1]
i

[α1y
[1]
i |y[1]

i ]
+ Var [d [1]

t ]
= α1(1 − α1)μ

[1]
i + α2

1μ
[1]
i + μ

[2]
i − α1μ

[1]
i

= μ
[2]
i
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Hence,

Var(Y [1]
i ) = μ

[1]
i , Var(Y [2]

i ) = μ
[2]
i , Var(Y [3]

i ) = μ
[3]
i

We formulate expressions for E(Y [1]
i Y [2]

i )

E(Y [1]
i Y [2]

i ) = E[y[1]
i (α1 ∗ y[1]

i + d [1]
i )]

= E[Y [1]
i (α1 ∗ Y [1]

i ) + Y [1]
i )d [1]

i

From above,

E[Y [1]
i (α1 ∗ Y [1]

i )] = EY [1]
i
E[Y [1]

i (α1 ∗ Y [1]
i )|Y [1]

i ]
= E[Y [1]

i (α1Y
[1]
i )]

= α1E[Y [1]
i

2]
= α1[μ[1]

i + μ
[1]
i

2]

Hence,

E(Y [1]
i Y [2]

i ) = α1[μ[1]
i + μ

[1]
i

2] + μ
[1]
i (μ

[2]
i − α1μ

[1]
i )

= α1μ
[1]
i + μ

[1]
i μ

[2]
i

Since E(y[1]
i ) = μ

[1]
i and E(y[2]

i ) = μ
[2]
i ,

Cov(Y [1]
i , Y [2]

i ) = E(Y [1]
i Y [2]

i ) − E(Y [1]
i )E(Y [2]

i ) = α1μ
[1]
i (4)

Similarly,

Cov(Y [1]
i , Y [3]

i ) = α2Cov[Y [1]
i Y [2]

i ] + α1μ
[1]
i

= α1α2μ
[1]
i + α1μ

[1]
i (5)

Cov(Y [2]
i , Y [3]

i ) = α1α2Cov[Y [1]
i Y [2]

i ] + α2
1μ

[1]
i + Cov(d [1]

i d [2]
i )

= α2
1α2μ

[1]
i + α2

1μ
[1]
i + Cov(d [1]

i , d [2]
i ) (6)

At this stage, the dependence parameters α1, α2, φ12 = Cov(d [1]
i , d [2]

i ) are estimated
using the method of moments and this yields: Given

ˆρ jk =
∑I

i=1

∑I
i=1(y

[ j]
i − μ

[ j]
i )(y[k]

i − μ
[k]
i )√∑I

i=1(y
[ j]
i − μ

[ j]
i )2

√∑I
i=1(y

[k]
i − μ

[k]
i )2
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Then, by equating (4), (5) and (6) with the sample moment estimators,

α̂1 =
ˆρ12

√
μ

[2]
i√

μ
[1]
i

,

α̂2 =
ˆρ13

√
μ

[3]
i

ˆρ12

√
μ

[2]
i

− 1,

φ̂ = ( ˆρ23 − ˆρ13 ˆρ12)

√
μ

[2]
i

√
μ

[3]
i

Now, for a general p-variate set-up,

y[1]
i ∼ P(μ

[1]
i )

y[2]
i = α1 ∗ y[1]

i + d [1]
i

y[3]
i = α1 ∗ y[1]

i + α2 ∗ y[2]
i + d [2]

i

. . .

y[p]
i = α1 ∗ y[1]

i + α2 ∗ y[2]
i + · · · + αp−1 ∗ y[p−1]

i + d [p−1]
i

where

d [l]
i ∼ P(μ

[l+1]
i −

l∑
j=1

α jμ
[l]
i )

Following the moment estimation procedures developed above, here, as well, for any
p variate set-up, the sample correlations between the different variates will be used
for estimating the dependence parameters.

5 The QL Approach for the Multivariate
Cross-Sectional Set-Up

The QL approach [8, 15] is an estimation methodology that does not require the
specification of the likelihood function but only depends on the moments of the
distribution. It is a very appealing technique particularly where the density func-
tion is cumbersome to express. In literature, the QL approach has been intensively
used in longitudinal studies as the likelihood function for longitudinal models can-
not be expressed explicitly because of multiple integrals and necessitate complex
approaches like the MCMC approach and EM algorithms [2]. While, on the other
hand, QL reduces this burden of estimating the regression and correlation parame-
ters through simply the notion of the moments and the appropriate modelling of the
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covariances [4, 7]. In similar lines, Pedeli and Karlis [13] claimed that MLE yields
huge complicated expressions and necessitate numerical approximations. However,
these authors have noted these computational problems at a bivariate stage (Refer to
Nikoloulopoulos and Karlis [12]) and have not investigated the status of MLE at
trivariate or multivariate stages. Following the derivation of the trivariate models
in the previous two sections, it is clear that MLE is almost unfeasible. To overcome
these challenges, this paper motivates the use of QL as an alternate option to MLE.
Given that the QL approach has never been explored under multivariate domains,
this section provides the details of how to construct the different components in the
QL equation given by

I∑
i=1

DT
i Σ−1

i (yi − μi ) = 0 (7)

where the components of GQL under a general multivariate set-up comprising of J
explanatory variables and p variates are: The derivative matrix has a block structure
of the form

D[k]
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂μ
[1]
i

∂β̂1
[k]

∂μ
[2]
i

∂β̂1
[k] . . .

∂μ
[P]
i

∂β̂1
[k]

∂μ
[1]
i

∂β̂2
[k]

∂μ
[2]
i

∂β̂2
[k] . . .

∂μ
[P]
i

∂β̂2
[k]

...
...

...
∂μ

[1]
i

∂β̂J
[k]

∂μ
[2]
i

∂β̂J
[k] . . .

∂μ
[P]
i

∂β̂J
[k]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

J×P

DT
i = [[DT ][1]i , [DT ][2]i , . . . , [DT ][k]i , . . . , [DT ][P]

i ]TJ P×P

where the general term

∂μ
[k]
i

∂β
[k]
j

= μ
[k]
i × xi j

and

Σi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V (Y [1]
i ) Cov(Y [1]

i , Y [2]
i ) . . . Cov(Y [1]

i , Y [p]
i )

... V (Y [2]
i ) . . . Cov(Y [2]

i , Y [p]
i )

...
...

. . .
...

...
... V (Y [k]

i ) . . . Cov(Y [k]
i , Y [p]

i )
...

... . . .
. . .

...
...

... . . . V (Y [p]
i )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

yi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y[1]
i

y[2]
i

y[3]
i
...

y[p]
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, μi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ
[1]
i

μ
[2]
i

μ
[3]
i
...

μ
[p]
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

By letting

β̂[k]
r = [β̂[k]

1,r , β̂
[k]
2,r , . . . , β̂

[k]
J,r ]T

The GQL equation is solved using the Newton-Raphson iterative scheme that
yields

⎛
⎜⎜⎜⎜⎜⎜⎝

β̂
[1]
r+1
...

β̂
[k]
r+1
...

β̂
[P]
r+1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

β̂[1]
r
...

β̂[k]
r
...

β̂[P]
r

⎞
⎟⎟⎟⎟⎟⎟⎠

+ [
I∑

i=1

DT
i Σ−1

i Di ]−1
r [

I∑
i=1

DT
i Σ−1

i (yi − μi )]r

where [.]r represents the expressions at the rth iteration. The algorithm works as
follows: For an initial set of vector of regression parameters of the p variates, we
calculate the means, variances and the dependence parameters and replace these
estimates in the Hessian and score parts to obtain an update of the set of regres-
sion vectors under the different variates. This iterative process is stopped when the
absolute difference between the updated and previous regression estimates becomes
less than a tolerance 10−10. The estimators are consistent and under mild regularity
conditions, for I → ∞, it may be shown that I

1
2 ((β̂1, . . . , β̂ p) − (β1, . . . , β p))T

has an asymptotic normal distribution with mean 0 and covariance matrix

[DTΣ−1D]−1[DTΣ−1(ỹ − μ̃)(ỹ − μ̃)TΣ−1D][DTΣ−1D]−1

and the

V (β̂) = [
I∑

i=1

DT
i Σ−1

i Di ]−1
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6 Simulations and Results

In this section, a simulation design is developed under the assumption ˆ
β

[k]
1 = ˆ

β
[k]
2 = 1

for k = 1, 2, 3 and for values of α1 = α2 = φ = 0.3, 0.5, 0.9 under I = 30, 60, 100
and 500. Under each combination of parameters, 5000 simulations were run. Note
that themean parametersμ

[k]
i were obtained assuming two sets of covariates [xi1, xi2]

as follows:

xi1 =
⎧⎨
⎩

−1 (i = 1, . . . , I/3),
0 (i = (I/3) + 1, . . . , 2I ),
1 (i = 2I + 1, . . . , 3I ),

and xi2 = rnorm(1, 0, 1). Using these information, the values of y[k]
i were generating

using Eqs. (1), (2) and (3) and thereafter, the QL Eq. (7) was solved to obtain the
following results.

The results in the Tables1 and 2 were obtained assuming initial values of the
regression parameters under the different variates. The main remarks are the simula-
tion results indicate that the generating process with the various assumed parameters
ρ̂1, ρ̂2, α̂1 and φ̂ were reliable for all sample sizes. In fact, as the number of time
points increase, the estimates come closer to the population values. On the other hand,
for small sample size, some non-convergent simulations were noted. For instance,
for T = 30, when ρ̂1 = ρ̂2 = 0.9 and α̂1 = 0.3, the simulation failed in 1500 out
of 5,000 simulations. Moreover, as the sample size increases to T = 100 with same
parameters, the number of non-convergent simulations increases to 2100. These fail-
ure rates were noted across almost all clusters. The non-convergence was mainly
due to the ill-conditioned nature of the covariance matrix which is inevitable here.
However, overall, at a cross-sectional level, apart from this computational issue,
the estimation procedure works satisfactory well and yields consistent parameter
estimates (Tables1 and 2).

7 Conclusion

This paper introduces an observation-driven approach to generate multivariate cross-
sectional Poisson counts where the count observations were influenced by a number
of explanatory variables. As illustrated in previous studies, the MLE approach is
quite unfeasible under the multivariate cross-sectional set-up. This paper overcomes
this shortcoming through the application of the QL approach which requires only
the moments of the responses under the different variates. The QL estimates of the
regression parameters were obtained using the Newton-Raphson scheme while the
dependence parameters were estimated using themethod ofmoment estimation tech-
nique. Through a simulation study, it is noted that this estimation procedure yielded
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consistent parameter estimates but with some computational issues in inverting the
covariance matrix. Overall, QL works satisfactorily and can be an emerging solution
in more complex multivariate solutions.
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Generalized Caputo Type Fractional
Inequalities

George A. Anastassiou

Abstract We establish here generalized Caputo type fractional inequalities of the
following kinds: Opial, Ostrowski, Comparison of means, Grüss and Csiszar’s f-
divergence. Prior to these we derive an interesting generalized fractional representa-
tion formula, using it we prove our inequalities.

1 Background

Here AC ([a, b]) stands for the space of absolutely continuous functions from [a, b]
into R. Also f ∈ ACn ([a, b]), n ∈ N, means that f (n−1) ∈ AC ([a, b]).

We need

Definition 1 (see also [10, p. 99]) The left and right fractional integrals, respectively,
of a function f with respect to given function g are defined as follows:

Let a, b ∈ R, a < b, α > 0. Here g ∈ AC ([a, b]) and is strictly increasing, f ∈
L∞ ([a, b]). We set

(
I α
a+;g f

)
(x) = 1

Γ (α)

x∫

a

(g (x) − g (t))α−1 g′ (t) f (t) dt, x ≥ a, (1)

where Γ is the gamma function, clearly
(
I α
a+;g f

)
(a) = 0, I 0a+;g f := f and

(
I α
b−;g f

)
(x) = 1

Γ (α)

b∫

x

(g (t) − g (x))α−1 g′ (t) f (t) dt, x ≤ b, (2)
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clearly
(
I α
b−;g f

)
(b) = 0, I 0b−;g f := f.

When g is the identity function id, we get that I α
a+;id = I α

a+, and I α
b−;id = I α

b−,
the ordinary left and right Riemann-Liouville fractional integrals, where

(
I α
a+ f

)
(x) = 1

Γ (α)

x∫

a

(x − t)α−1 f (t) dt, x ≥ a, (3)

(
I α
a+ f

)
(a) = 0 and

(
I α
b− f

)
(x) = 1

Γ (α)

b∫

x

(t − x)α−1 f (t) dt, x ≤ b, (4)

(
I α
b− f

)
(b) = 0.

We also need

Definition 2 (see [1]) Let α > 0, �α� = n, �·� the ceiling of the number. Again
here g ∈ AC ([a, b]) and strictly increasing. We assume that

(
f ◦ g−1

)(n) ◦ g ∈
L∞ ([a, b]). We define the left generalized g-fractional derivative of f of order
α as follows:

(
Dα

a+;g f
)
(x) := 1

Γ (n − α)

x∫

a

(g (x) − g (t))n−α−1 g′ (t)
(
f ◦ g−1

)(n)
(g (t)) dt ,

(5)
x ≥ a.

If α /∈ N, by [1], we have that Dα
a+;g f ∈ C ([a, b]).

We see that
(
I n−α
a+;g

((
f ◦ g−1

)(n) ◦ g
))

(x) = (Dα
a+;g f

)
(x) , x ≥ a. (6)

We set
Dn

a+;g f (x) :=
((

f ◦ g−1)(n) ◦ g
)

(x) , (7)

D0
a+;g f (x) = f (x) , ∀x ∈ [a, b] .

When g = id, then
Dα

a+;g f = Dα
a+;id f = Dα

∗a f, (8)

the usual left Caputo fractional derivative.
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We will use the following g-left fractional generalized Taylor’s formula:

Theorem 3 (see [1]) Let g be strictly increasing function and g ∈ AC ([a, b]). We
assume that

(
f ◦ g−1

) ∈ ACn ([g (a) , g (b)]), where N � n = �α�, α > 0. Also we

assume that
(
f ◦ g−1

)(n) ◦ g ∈ L∞ ([a, b]). Then

f (x) = f (a) +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (a))

k! (g (x) − g (a))k

+ 1

Γ (α)

x∫

a

(g (x) − g (t))α−1 g′ (t)
(
Dα

a+;g f
)
(t) dt, (9)

∀ x ∈ [a, b] . Calling Rn (a, x) the remainder of (9), we get that

Rn (a, x) = 1

Γ (α)

g(x)∫

g(a)

(g (x) − z)α−1
((
Dα

a+;g f
) ◦ g−1

)
(z) dz, (10)

∀ x ∈ [a, b] .

Remark 4 By [1], Rn (a, x) is a continuous function in x ∈ [a, b]. Also, by [9],
change of variable in Lebesgue integrals, (10) is valid.

We need

Definition 5 (see [1]) Here we assume that
(
f ◦ g−1

)(n) ◦ g ∈ L∞ ([a, b]), where
N � n = �α�, α > 0. We define the right generalized g-fractional derivative of f of
order α as follows:

(
Dα

b−;g f
)
(x) := (−1)n

Γ (n − α)

b∫

x

(g (t) − g (x))n−α−1 g′ (t)
(
f ◦ g−1

)(n)
(g (t)) dt ,

(11)
all x ∈ [a, b] .

If α /∈ N, by [1], we get that
(
Dα

b−;g f
)

∈ C ([a, b]).

We see that

I n−α
b−;g

(
(−1)n

(
f ◦ g−1

)(n) ◦ g
)

(x) = (Dα
b−;g f

)
(x) , a ≤ x ≤ b. (12)

We set
Dn

b−;g f (x) = (−1)n
((

f ◦ g−1
)(n) ◦ g

)
(x) , (13)

D0
b−;g f (x) = f (x) , ∀ x ∈ [a, b] .
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When g = id, then
Dα

b−;g f (x) = Dα
b−;id f (x) = Dα

b− f, (14)

the usual right Caputo fractional derivative.

We will use the g-right generalized fractional Taylor’s formula:

Theorem 6 (see [1]) Let g be strictly increasing function and g ∈ AC ([a, b]). We
assume that

(
f ◦ g−1

) ∈ ACn ([g (a) , g (b)]), where N � n = �α�, α > 0. Also we

assume that
(
f ◦ g−1

)(n) ◦ g ∈ L∞ ([a, b]). Then

f (x) = f (b) +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (b))

k! (g (x) − g (b))k

+ 1

Γ (α)

b∫

x

(g (t) − g (x))α−1 g′ (t)
(
Dα

b−;g f
)
(t) dt, (15)

all a ≤ x ≤ b. Calling Rn (b, x) the remainder in (15), we get that

Rn (b, x) = 1

Γ (α)

g(b)∫

g(x)

(z − g (x))α−1 ((Dα
b−;g f

) ◦ g−1) (z) dz, (16)

∀ x ∈ [a, b] .

Remark 7 By [1], Rn (b, x) is a continuous function in x ∈ [a, b]. Also, by [9],
change of variable in Lebesgue integrals, (16) is valid.

2 Main Results

We give the following representation formula:

Theorem 8 Let f ∈ C ([a, b]). Let g be strictly increasing function and g ∈ AC
([a, b]). We assume that

(
f ◦ g−1

) ∈ ACn ([g (a) , g (b)]), whereN � n = �α�, α >

0. We also assume that
(
f ◦ g−1

)(n) ◦ g ∈ L∞ ([a, b]). Then
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f (y) = 1

b − a

b∫

a

f (x) dx (17)

−
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (b − a)

b∫

a

(g (x) − g (y))k dx + R1 (y) ,

for any y ∈ [a, b], where

R1 (y) = 1

Γ (α) (b − a)

⎡

⎣
b∫

a

⎛

⎝
y∫

x

|g (x) − g (t)|α−1 g′ (t) (18)

· [χ[y,b] (x)
(
Dα

y+;g f
)
(t) − χ[a,y) (x)

(
Dα

y−;g f
)
(t)
]
dt
)
dx
]
,

here χA stands for the characteristic function set A, where A is an arbitrary set.
One may write also that

R1 (y) = − 1

Γ (α) (b − a)

⎡

⎣
y∫

a

⎛

⎝
y∫

x

(g (t) − g (x))α−1 g′ (t)
(
Dα

y−;g f
)
(t) dt

⎞

⎠ dx

+
b∫

y

⎛

⎝
x∫

y

(g (x) − g (t))α−1 g′ (t)
(
Dα

y+;g f
)
(t) dt

⎞

⎠ dx

⎤

⎦ , (19)

for any y ∈ [a, b] .
Putting things together, one has

f (y) = 1

b − a

b∫

a

f (x) dx −
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (b − a)

b∫

a

(g (x) − g (y))k dx

+ 1

Γ (α) (b − a)

⎡

⎣
b∫

a

⎛

⎝
y∫

x

|g (x) − g (t)|α−1 g′ (t) · (20)

[
χ[y,b] (x)

(
Dα

y+;g f
)
(t) − χ[a,y) (x)

(
Dα

y−;g f
)
(t)
]
dt
)
dx
]
.

In particular, one has

f (y) − 1

b − a

b∫

a

f (x) dx +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (b − a)

b∫

a

(g (x) − g (y))k dx

= R1 (y) , (21)
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for any y ∈ [a, b] .

Proof Here x, y ∈ [a, b]. We keep y as fixed. By Theorem3 we get:

f (x) = f (y) +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (g (x) − g (y))k (22)

+ 1

Γ (α)

x∫

y

(g (x) − g (t))α−1 g′ (t)
(
Dα

y+;g f
)
(t) dt,

for any x ≥ y. By Theorem 6 we get:

f (x) = f (y) +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (g (x) − g (y))k (23)

+ 1

Γ (α)

y∫

x

(g (t) − g (x))α−1 g′ (t)
(
Dα

y−;g f
)
(t) dt,

for any x ≤ y. By (22), (23) we notice that

b∫

a

f (x) dx =
y∫

a

f (x) dx +
b∫

y

f (x) dx (24)

=
y∫

a

f (y) dx +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k!

y∫

a

(g (x) − g (y))k dx

+ 1

Γ (α)

y∫

a

⎛

⎝
y∫

x

(g (t) − g (x))α−1 g′ (t)
(
Dα
y−;g f

)
(t) dt

⎞

⎠ dx

+
b∫

y

f (y) dx +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k!
b∫

y

(g (x) − g (y))k dx

+ 1

Γ (α)

b∫

y

⎛

⎝
x∫

y

(g (x) − g (t))α−1 g′ (t)
(
Dα
y+;g f

)
(t) dt

⎞

⎠ dx .
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Hence it holds

1

b − a

b∫

a

f (x) dx

= f (y) +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (b − a)

b∫

a

(g (x) − g (y))k dx (25)

+ 1

Γ (α) (b − a)

⎡

⎣
y∫

a

⎛

⎝
y∫

x

|g (x) − g (t)|α−1 g′ (t)
(
Dα

y−;g f
)
(t) dt

⎞

⎠ dx

+
b∫

y

⎛

⎝
x∫

y

|g (x) − g (t)|α−1 g′ (t)
(
Dα

y+;g f
)
(t) dt

⎞

⎠ dx

⎤

⎦ .

Therefore we obtain

f (y) = 1

b − a

b∫

a

f (x) dx (26)

−
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (b − a)

b∫

a

(g (x) − g (y))k dx

− 1

Γ (α) (b − a)

⎡

⎣
y∫

a

⎛

⎝
y∫

x

|g (x) − g (t)|α−1 g′ (t)
(
Dα

y−;g f
)
(t) dt

⎞

⎠ dx

+
b∫

y

⎛

⎝
x∫

y

|g (x) − g (t)|α−1 g′ (t)
(
Dα

y+;g f
)
(t) dt

⎞

⎠ dx

⎤

⎦ .
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Hence the remainder

R1 (y)

:= − 1

Γ (α) (b − a)

⎡

⎣
y∫

a

⎛

⎝
y∫

x

|g (x) − g (t)|α−1 g′ (t)
(
Dα
y−;g f

)
(t) dt

⎞

⎠ dx

+
b∫

y

⎛

⎝
x∫

y

|g (x) − g (t)|α−1 g′ (t)
(
Dα
y+;g f

)
(t) dt

⎞

⎠ dx

⎤

⎥
⎦ (27)

= − 1

Γ (α) (b − a)

⎡

⎢
⎣

b∫

a

χ[a,y) (x)

⎛

⎝
y∫

x

|g (x) − g (t)|α−1 g′ (t)
(
Dα
y−;g f

)
(t) dt

⎞

⎠ dx

+
b∫

a

χ[y,b] (x)

⎛

⎝
x∫

y

|g (x) − g (t)|α−1 g′ (t)
(
Dα
y+;g f

)
(t) dt

⎞

⎠ dx

⎤

⎥
⎦

= 1

Γ (α) (b − a)

⎡

⎢
⎣−

b∫

a

⎛

⎝
y∫

x

χ[a,y) (x) |g (x) − g (t)|α−1 g′ (t)
(
Dα
y−;g f

)
(t) dt

⎞

⎠ dx

+
b∫

a

⎛

⎝
y∫

x

χ[y,b] (x) |g (x) − g (t)|α−1 g′ (t)
(
Dα
y+;g f

)
(t) dt

⎞

⎠ dx

⎤

⎥
⎦ . (28)

The theorem is proved.

Next we present a left fractional Opial type inequality:

Theorem 9 All as in Theorem 8. Additionally assume that α ≥ 1, g ∈ C1 ([a, b]),
and

(
f ◦ g−1

)(k)
(g (a)) = 0, for k = 0, 1, . . . , n − 1. Let p, q > 1 : 1

p + 1
q = 1.

Then

x∫

a

| f (w)| ∣∣(Dα
a+;g f

)
(w)
∣∣ g′ (w) dw

≤ 1

Γ (α) 2
1
q

⎛

⎝
x∫

a

⎛

⎝
w∫

a

(g (w) − g (t))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p

(29)

·
⎛

⎝
x∫

a

(
g′ (w)

)q ∣∣(Dα
a+;g f

)
(w)
∣∣q dw

⎞

⎠

2
q

,

∀ x ∈ [a, b] .
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Proof By Theorem 3, we have that

f (x) = 1

Γ (α)

x∫

a

(g (x) − g (t))α−1 g′ (t)
(
Dα

a+;g f
)
(t) dt, ∀ x ∈ [a, b] . (30)

Then, by Hölder’s inequality we obtain,

| f (x)| ≤ 1

Γ (α)

⎛

⎝
x∫

a

(g (x) − g (t))p(α−1) dt

⎞

⎠

1
p
⎛

⎝
x∫

a

(
g′ (t)

)q
∣
∣
∣
(
Dα
a+;g f

)
(t)
∣
∣
∣
q
dt

⎞

⎠

1
q

.

(31)
Call

z (x) :=
x∫

a

(
g′ (t)

)q ∣∣(Dα
a+;g f

)
(t)
∣∣q dt, (32)

z (a) = 0.
Thus

z′ (x) = (g′ (x)
)q ∣∣(Dα

a+;g f
)
(x)
∣∣q ≥ 0, (33)

and (
z′ (x)

) 1
q = g′ (x)

∣∣(Dα
a+;g f

)
(x)
∣∣ ≥ 0, ∀ x ∈ [a, b] . (34)

Consequently, we get

| f (w)| g′ (w)
∣
∣(Dα

a+;g f
)
(w)
∣
∣ (35)

≤ 1

Γ (α)

⎛

⎝
w∫

a

(g (w) − g (t))p(α−1) dt

⎞

⎠

1
p

(
z (w) z′ (w)

) 1
q ,

∀w ∈ [a, b] . Then

x∫

a

| f (w)| ∣∣(Dα
a+;g f

)
(w)
∣∣ g′ (w) dw

≤ 1

Γ (α)

x∫

a

⎛

⎝
w∫

a

(g (w) − g (t))p(α−1) dt

⎞

⎠

1
p

(
z (w) z′ (w)

) 1
q dw (36)

≤ 1

Γ (α)

⎛

⎝
x∫

a

⎛

⎝
w∫

a

(g (w) − g (t))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p
⎛

⎝
x∫

a

z (w) z′ (w) dw

⎞

⎠

1
q
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= 1

Γ (α)

⎛

⎝
x∫

a

⎛

⎝
w∫

a

(g (w) − g (t))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p (

z2 (x)

2

) 1
q

(37)

= 1

Γ (α)

⎛

⎝
x∫

a

⎛

⎝
w∫

a

(g (w) − g (t))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p

(38)

·
⎛

⎝
x∫

a

(
g′ (t)

)q ∣∣(Dα
a+;g f

)
(t)
∣
∣q dt

⎞

⎠

2
q

· 2− 1
q .

The theorem is proved.

We also give a right fractional Opial type inequality:

Theorem 10 All as in Theorem 8. Additionally assume that α ≥ 1, g ∈ C1 ([a, b]),
and

(
f ◦ g−1

)(k)
(g (b)) = 0, k = 0, 1, . . . , n − 1. Let p, q > 1 : 1

p + 1
q = 1. Then

b∫

x

| f (w)| ∣∣(Dα
b−;g f

)
(w)
∣∣ g′ (w) dw

≤ 1

2
1
q Γ (α)

⎛

⎝
b∫

x

⎛

⎝
b∫

w

(g (t) − g (w))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p

(39)

·
⎛

⎝
b∫

x

(
g′ (w)

)q ∣∣(Dα
b−;g f

)
(w)
∣∣q dw

⎞

⎠

2
q

,

all a ≤ x ≤ b.

Proof By Theorem 6, we have that

f (x) = 1

Γ (α)

b∫

x

(g (t) − g (x))α−1 g′ (t)
(
Dα

b−;g f
)
(t) dt, all a ≤ x ≤ b. (40)

Then, by Hölder’s inequality we obtain,

| f (x)| ≤ 1

Γ (α)

⎛

⎜
⎝

b∫

x

(g (t) − g (x))p(α−1) dt

⎞

⎟
⎠

1
p
⎛

⎜
⎝

b∫

x

(
g′ (t)

)q
∣∣
∣
(
Dα
b−;g f

)
(t)
∣∣
∣
q
dt

⎞

⎟
⎠

1
q

.

(41)
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Call

z (x) :=
b∫

x

(
g′ (t)

)q ∣∣(Dα
b−;g f

)
(t)
∣∣q dt, (42)

z (b) = 0.

Hence

z′ (x) = − (g′ (x)
)q ∣∣(Dα

b−;g f
)
(x)
∣∣q ≤ 0, (43)

and

− z′ (x) = (g′ (x)
)q ∣∣(Dα

b−;g f
)
(x)
∣
∣q ≥ 0, (44)

and

(−z′ (x)
) 1

q = g′ (x)
∣∣(Dα

b−;g f
)
(x)
∣∣ ≥ 0, ∀ x ∈ [a, b] . (45)

Consequently, we get

| f (w)| g′ (w)
∣∣(Dα

b−;g f
)
(w)
∣∣ (46)

≤ 1

Γ (α)

⎛

⎝
b∫

w

(g (t) − g (w))p(α−1) dt

⎞

⎠

1
p

(
z (w)

(−z′ (w)
)) 1

q ,

∀ w ∈ [a, b] . Then

b∫

x

| f (w)| ∣∣(Dα
b−;g f

)
(w)
∣
∣ g′ (w) dw (47)

≤ 1

Γ (α)

b∫

x

⎛

⎝
b∫

w

(g (t) − g (w))p(α−1) dt

⎞

⎠

1
p

(−z (w) z′ (w)
) 1

q dw

≤ 1

Γ (α)

⎛

⎝
b∫

x

⎛

⎝
b∫

w

(g (t) − g (w))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p
⎛

⎝−
b∫

x

z (w) z′ (w) dw

⎞

⎠

1
q
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= 1

Γ (α)

⎛

⎝
b∫

x

⎛

⎝
b∫

w

(g (t) − g (w))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p (

z2 (x)

2

) 1
q

(48)

= 1

2
1
q Γ (α)

⎛

⎝
b∫

x

⎛

⎝
b∫

w

(g (t) − g (w))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p

(49)

·
⎛

⎝
b∫

x

(
g′ (t)

)q ∣∣(Dα
b−;g f

)
(t)
∣∣q dt

⎞

⎠

2
q

.

The theorem is proved.

A left fractional reverse Opial type inequality follows:

Theorem 11 All as in Theorem 8. Additionally assume that α ≥ 1, g ∈ C1 ([a, b]),
and

(
f ◦ g−1

)(k)
(g (a)) = 0, for k = 0, 1, . . . , n − 1. Let 0 < p < 1 and q < 0 :

1
p + 1

q = 1. We assume that
(
Dα

a+;g f
)
is of fixed sign and nowhere zero. Then

x∫

a

| f (w)| ∣∣(Dα
a+;g f

)
(w)
∣∣ g′ (w) dw

≥ 1

2
1
q Γ (α)

⎛

⎝
x∫

a

⎛

⎝
w∫

a

(g (w) − g (t))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p

(50)

·
⎛

⎝
x∫

a

(
g′ (w)

)q ∣∣(Dα
a+;g f

)
(w)
∣∣q dw

⎞

⎠

2
q

,

for all a < x ≤ b.

Proof For every x ∈ [a, b], we get again

f (x) = 1

Γ (α)

x∫

a

(g (x) − g (t))α−1 g′ (t)
(
Dα

a+;g f
)
(t) dt. (51)

We have by assumption that

| f (w)| = 1

Γ (α)

w∫

a

(g (w) − g (t))α−1 g′ (t)
∣∣(Dα

a+;g f
)
(t)
∣∣ dt, (52)

for a < w ≤ x . Then, by reverse Hölder’s inequality we obtain
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| f (w)| ≥ 1

Γ (α)

⎛

⎝
w∫

a

(g (w) − g (t))(α−1)p dt

⎞

⎠

1
p

(53)

·
⎛

⎝
w∫

a

(
g′ (t)

)q ∣∣(Dα
a+;g f

)
(t)
∣∣q dt

⎞

⎠

1
q

,

for a < w ≤ x . Call

z (w) :=
w∫

a

(
g′ (t)

)q ∣∣(Dα
a+;g f

)
(t)
∣∣q dt, (54)

z (a) = 0, all a ≤ w ≤ x; z (w) > 0 on (a, x] . Thus

z′ (w) = (g′ (w)
)q ∣∣(Dα

a+;g f
)
(w)
∣∣q > 0, (55)

all a < w ≤ x . Hence

(
z′ (w)

) 1
q = g′ (w)

∣∣(Dα
a+;g f

)
(w)
∣∣ > 0, (56)

all a < w ≤ x . Consequently we get

| f (w)| g′ (w)

∣
∣∣
(
Dα
a+;g f

)
(w)

∣
∣∣ (57)

≥ 1

Γ (α)

⎛

⎝
w∫

a

(g (w) − g (t))p(α−1) dt

⎞

⎠

1
p
(
z (w) z′ (w)

) 1
q ,

all a < w ≤ x . Let a < θ ≤ w ≤ x and θ ↓ a. Then it holds

x∫

a

| f (w)| g′ (w)

∣
∣∣
(
Dα
a+;g f

)
(w)

∣
∣∣ dw

= lim
θ↓a

x∫

θ

| f (w)| g′ (w)

∣
∣∣
(
Dα
a+;g f

)
(w)

∣
∣∣ dw (58)

≥ 1

Γ (α)
lim
θ↓a

x∫

θ

⎛

⎝
w∫

a

(g (w) − g (t))p(α−1) dt

⎞

⎠

1
p
(
z (w) z′ (w)

) 1
q dw

≥ 1

Γ (α)
lim
θ↓a

⎛

⎝
x∫

θ

⎛

⎝
w∫

a

(g (w) − g (t))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p

lim
θ↓a

⎛

⎝
x∫

θ

z (w) z′ (w) dw

⎞

⎠

1
q
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= 2− 1
q

1

Γ (α)

⎛

⎝
x∫

a

⎛

⎝
w∫

a

(g (w) − g (t))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p

lim
θ↓a
(
z2 (x) − z2 (θ)

) 1
q

= 2− 1
q

1

Γ (α)

⎛

⎝
x∫

a

⎛

⎝
w∫

a

(g (w) − g (t))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p

(z (x))
2
q . (59)

The theorem is proved.

A right fractional reverse Opial type inequality follows:

Theorem 12 All as in Theorem 8. Additionally assume that α ≥ 1, g ∈ C1 ([a, b]),
and

(
f ◦ g−1

)(k)
(g (b)) = 0, for k = 0, 1, . . . , n − 1. Let 0 < p < 1 and q < 0 :

1
p + 1

q = 1. We assume that
(
Dα

b−;g f
)
is of fixed sign and nowhere zero. Then

b∫

x

| f (w)| ∣∣(Dα
b−;g f

)
(w)
∣∣ g′ (w) dw

≥ 1

2
1
q Γ (α)

⎛

⎝
b∫

x

⎛

⎝
b∫

w

(g (t) − g (w))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p

(60)

⎛

⎝
b∫

x

(
g′ (w)

)q ∣∣(Dα
b−;g f

)
(w)
∣∣q dw

⎞

⎠

2
q

,

for all a ≤ x < b.

Proof As before it holds

f (x) = 1

Γ (α)

b∫

x

(g (t) − g (x))α−1 g′ (t)
(
Dα

b−;g f
)
(t) dt, (61)

a ≤ x ≤ b. We also have that

| f (w)| = 1

Γ (α)

b∫

x

(g (t) − g (w))α−1 g′ (t)
∣
∣(Dα

b−;g f
)
(t)
∣
∣ dt, (62)

x ≤ w < b. Then it holds
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| f (w)| ≥ 1

Γ (α)

⎛

⎝
b∫

w

(g (t) − g (w))p(α−1) dt

⎞

⎠

1
p

(63)

·
⎛

⎝
b∫

w

(
g′ (t)

)q ∣∣(Dα
b−;g f

)
(t)
∣∣q dt

⎞

⎠

1
q

,

x ≤ w < b. Call

z (w) :=
b∫

w

(
g′ (t)

)q ∣∣(Dα
b−;g f

)
(t)
∣∣q dt = −

w∫

b

(
g′ (t)

)q ∣∣(Dα
b−;g f

)
(t)
∣∣q dt, (64)

z (b) = 0, all x ≤ w ≤ b; z (w) > 0 on [x, b) . Thus

z′ (w) = − (g′ (w)
)q ∣∣(Dα

b−;g f
)
(w)
∣∣q , (65)

and
− z′ (w) = (g′ (w)

)q ∣∣(Dα
b−;g f

)
(w)
∣∣q > 0, (66)

all x ≤ w < b, and

(−z′ (w)
) 1

q = g′ (w)
∣
∣(Dα

b−;g f
)
(w)
∣
∣ > 0, (67)

all x ≤ w < b. Consequently we get

| f (w)| g′ (w)
∣∣(Dα

b−;g f
)
(w)
∣∣ (68)

≥ 1

Γ (α)

⎛

⎝
b∫

w

(g (t) − g (w))p(α−1) dt

⎞

⎠

1
p

(−z (w) z′ (w)
) 1

q ,

all x ≤ w < b. Let x ≤ w ≤ θ < b and θ ↑ b. Then we obtain

b∫

x

| f (w)| g′ (w)
∣∣(Dα

b−;g f
)
(w)
∣∣ dw

= lim
θ↑b

θ∫

x

| f (w)| g′ (w)
∣
∣(Dα

b−;g f
)
(w)
∣
∣ dw (69)
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≥ 1

Γ (α)
lim
θ↑b

θ∫

x

⎛

⎝
b∫

w

(g (t) − g (w))p(α−1) dt

⎞

⎠

1
p

(−z (w) z′ (w)
) 1

q dw

≥ 1

Γ (α)
lim
θ↑b

⎛

⎝
θ∫

x

⎛

⎝
b∫

w

(g (t) − g (w))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p

· lim
θ↑b

⎛

⎝
θ∫

x

(−z (w) z′ (w)
)
dw

⎞

⎠

1
q

= 2− 1
q

1

Γ (α)

⎛

⎝
b∫

x

⎛

⎝
b∫

w

(g (t) − g (w))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p

(70)

· lim
θ↑b
(
z2 (x) − z2 (θ)

) 1
q

= 2− 1
q

1

Γ (α)

⎛

⎝
b∫

x

⎛

⎝
b∫

w

(g (t) − g (w))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p

(71)

· (z2 (x) − z2 (b)
) 1

q

= 1

Γ (α) 2
1
q

⎛

⎝
b∫

x

⎛

⎝
b∫

w

(g (t) − g (w))p(α−1) dt

⎞

⎠ dw

⎞

⎠

1
p

(z (x))
2
q . (72)

The theorem is proved.

Two extreme fractional Opial type inequalities follow (case p = 1, q = ∞).

Theorem 13 All as in Theorem 8. Assume that
(
f ◦ g−1

)(k)
(g (a)) = 0, k = 0, 1,

. . . , n − 1. Then

x∫

a

| f (w)| ∣∣Dα
a+;g f (w)

∣∣ dw ≤
∥
∥∥Dα

a+;g f
∥
∥∥
2

∞
Γ (α + 1)

⎛

⎝
x∫

a

(g (w) − g (a))α dw

⎞

⎠ , (73)

all a ≤ x ≤ b.

Proof For any w ∈ [a, b], we have that

f (x) = 1

Γ (α)

w∫

a

(g (w) − g (t))α−1 g′ (t)
(
Dα

a+;g f
)
(t) dt, (74)
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and

| f (x)| ≤ 1

Γ (α)

⎛

⎝
w∫

a

(g (w) − g (t))α−1 g′ (t) dt

⎞

⎠
∥∥Dα

a+;g f
∥∥

∞

=
∥∥
∥Dα

a+;g f
∥∥
∥∞

Γ (α + 1)
(g (w) − g (a))α . (75)

Hence we obtain

| f (w)| ∣∣Dα
a+;g f (w)

∣∣ ≤
∥∥∥Dα

a+;g f
∥∥∥
2

∞
Γ (α + 1)

(g (w) − g (a))α . (76)

Integrating (76) over [a, x] we derive (73).

Theorem 14 All as in Theorem 8. Assume that
(
f ◦ g−1

)(k)
(g (b)) = 0, k = 0, 1,

. . . , n − 1. Then

b∫

x

| f (w)| ∣∣Dα
b−;g f (w)

∣∣ dw ≤
∥
∥∥Dα

b−;g f
∥
∥∥
2

∞
Γ (α + 1)

⎛

⎝
b∫

x

(g (b) − g (w))α dw

⎞

⎠ , (77)

all a ≤ x ≤ b.

Proof For any w ∈ [a, b], we have

f (x) = 1

Γ (α)

b∫

w

(g (t) − g (w))α−1 g′ (t)
(
Dα

b−;g f
)
(t) dt, (78)

and

| f (x)| ≤ 1

Γ (α)

⎛

⎝
b∫

w

(g (t) − g (w))α−1 g′ (t) dt

⎞

⎠
∥
∥Dα

b−;g f
∥
∥

∞

=
∥∥∥Dα

b−;g f
∥∥∥∞

Γ (α + 1)
(g (b) − g (w))α . (79)
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Hence we obtain

| f (w)| ∣∣Dα
b−;g f (w)

∣
∣ ≤

∥∥∥Dα
b−;g f

∥∥∥
2

∞
Γ (α + 1)

(g (b) − g (w))α . (80)

Integrating (80) over [x, b] we derive (77).

Next we present three fractional Ostrowski type inequalities:

Theorem 15 All as in Theorem 8. Then

∣∣
∣
∣
∣∣
∣
f (y) − 1

b − a

b∫

a

f (x) dx +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (b − a)

b∫

a

(g (x) − g (y))k dx

∣∣
∣
∣
∣∣
∣

≤ 1

Γ (α + 1) (b − a)
(81)

·
[
(g (y) − g (a))α (y − a)

∥∥
∥Dα

y−;g f
∥∥
∥∞ + (g (b) − g (y))α (b − y)

∥∥
∥Dα

y+;g f
∥∥
∥∞
]
,

any y ∈ [a, b] .

Proof Define

(
Dα

y+;g f
)
(t) = 0, for t < y, (82)

and
(
Dα

y−;g f
)
(t) = 0, for t > y.

Notice for 0 < α /∈ N that

∣∣(Dα
a+;g f

)
(x)
∣∣

≤ 1

Γ (n − α)

⎛

⎝
x∫

a

(g (x) − g (t))n−α−1 g′ (t) dt

⎞

⎠
∥∥∥
(
f ◦ g−1)(n) ◦ g

∥∥∥∞

= 1

Γ (n − α)

(g (x) − g (a))n−α

(n − α)

∥
∥∥
(
f ◦ g−1

)(n) ◦ g
∥
∥∥∞

(83)

= 1

Γ (n − α + 1)
(g (x) − g (a))n−α

∥∥∥
(
f ◦ g−1

)(n) ◦ g
∥∥∥∞

.

Hence

(
Dα

a+;g f
)
(a) = 0. (84)
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Similarly it holds

∣∣(Dα
b−;g f

)
(x)
∣∣

≤ 1

Γ (n − α)

⎛

⎝
b∫

x

(g (t) − g (x))n−α−1 g′ (t) dt

⎞

⎠
∥
∥∥
(
f ◦ g−1

)(n) ◦ g
∥
∥∥∞

= 1

Γ (n − α)

(g (b) − g (x))n−α

(n − α)

∥∥
∥
(
f ◦ g−1

)(n) ◦ g
∥∥
∥∞

(85)

= 1

Γ (n − α + 1)
(g (b) − g (x))n−α

∥
∥∥
(
f ◦ g−1

)(n) ◦ g
∥
∥∥∞

.

Hence (
Dα

b−;g f
)
(b) = 0. (86)

I.e. (
Dα

y+;g f
)
(y) = 0,

(
Dα

y−;g f
)
(y) = 0, (87)

0 < α /∈ N, any y ∈ [a, b] . We observe that

|R1 (y)| (88)

(19)≤ 1

Γ (α) (b − a)

⎡

⎣

⎛

⎝
y∫

a

⎛

⎝
y∫

x

(g (t) − g (x))α−1 g′ (t) dt

⎞

⎠ dx

⎞

⎠
∥∥Dα

y−;g f
∥∥

∞

+
⎛

⎝
b∫

y

⎛

⎝
x∫

y

(g (x) − g (t))α−1 g′ (t) dt

⎞

⎠ dx

⎞

⎠
∥∥Dα

y+;g f
∥∥

∞

⎤

⎦

= 1

Γ (α) (b − a)

⎡

⎣

⎛

⎝
y∫

a

(g (y) − g (x))α

α
dx

⎞

⎠
∥∥Dα

y−;g f
∥∥

∞

+
⎛

⎝
b∫

y

(g (x) − g (y))α

α
dx

⎞

⎠
∥∥Dα

y+;g f
∥∥

∞

⎤

⎦ ,

≤ 1

Γ (α + 1) (b − a)

[
(g (y) − g (a))α (y − a)

∥∥Dα
y−;g f

∥∥
∞ (89)

+ (g (b) − g (y))α (b − y)
∥∥Dα

y+;g f
∥∥

∞
]
.
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We have proved that

|R1 (y)| ≤ 1

Γ (α + 1) (b − a)

[
(g (y) − g (a))α (y − a)

∥∥
∥Dα

y−;g f
∥∥
∥∞ (90)

+ (g (b) − g (y))α (b − y)
∥
∥
∥Dα

y+;g f
∥
∥
∥∞
]
,

any y ∈ [a, b]. We have established the theorem.

Theorem 16 All as in Theorem 8. Here we take α ≥ 1. Then

∣
∣
∣
∣∣
∣
∣
f (y) − 1

b − a

b∫

a

f (x) dx +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (b − a)

b∫

a

(g (x) − g (y))k dx

∣
∣
∣
∣∣
∣
∣

≤ 1

Γ (α) (b − a)

[∥
∥
∥
(
Dα
y−;g f

)
◦ g−1

∥
∥
∥
1,[g(a),g(y)]

(y − a) (g (y) − g (a))α−1

+
∥
∥
∥
(
Dα
y+;g f

)
◦ g−1

∥
∥
∥
1,[g(y),g(b)]

(b − y) (g (b) − g (y))α−1
]

. (91)

Proof We can rewrite

R1 (y) (92)

= − 1

Γ (α) (b − a)

⎡

⎢
⎣

y∫

a

⎛

⎜
⎝

g(y)∫

g(x)

(z − g (x))α−1
((

Dα
y−;g f

)
◦ g−1

)
(z) dz

⎞

⎟
⎠ dx

+
b∫

y

⎛

⎜
⎝

g(x)∫

g(y)

(g (x) − z)α−1
((

Dα
y+;g f

)
◦ g−1

)
(z) dz

⎞

⎟
⎠ dx

⎤

⎥
⎦ .

We assumed α ≥ 1, then

|R1 (y)| (93)

≤ 1

Γ (α) (b − a)

⎡

⎢
⎣

y∫

a

⎛

⎜
⎝

g(y)∫

g(x)

(z − g (x))α−1
∣
∣∣
((

Dα
y−;g f

)
◦ g−1

)
(z)
∣
∣∣ dz

⎞

⎟
⎠ dx

+
b∫

y

⎛

⎜
⎝

g(x)∫

g(y)

(g (x) − z)α−1
∣∣∣
((

Dα
y+;g f

)
◦ g−1

)
(z)
∣∣∣ dz

⎞

⎟
⎠ dx

⎤

⎥
⎦

≤ 1

Γ (α) (b − a)

⎡

⎢
⎣

⎛

⎜
⎝

y∫

a

⎛

⎜
⎝

g(y)∫

g(x)

∣
∣∣
((

Dα
y−;g f

)
◦ g−1

)
(z)
∣
∣∣ dz

⎞

⎟
⎠ dx

⎞

⎟
⎠ (g (y) − g (a))α−1

+
⎛

⎜
⎝

b∫

y

⎛

⎜
⎝

g(x)∫

g(y)

∣∣∣
((

Dα
y+;g f

)
◦ g−1

)
(z)
∣∣∣ dz

⎞

⎟
⎠ dx

⎞

⎟
⎠ (g (b) − g (y))α−1

⎤

⎥
⎦
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≤ 1

Γ (α) (b − a)

[∥∥
∥
(
Dα
y−;g f

)
◦ g−1

∥∥
∥
1,[g(a),g(y)]

(y − a) (g (y) − g (a))α−1

+
∥∥
∥
(
Dα
y+;g f

)
◦ g−1

∥∥
∥
1,[g(y),g(b)]

(b − y) (g (b) − g (y))α−1
]

. (94)

So when α ≥ 1, we obtained

|R1 (y)| (95)

≤ 1

Γ (α) (b − a)

[∥
∥∥
(
Dα
y−;g f

)
◦ g−1

∥
∥∥
1,[g(a),g(y)]

(y − a) (g (y) − g (a))α−1

+
∥
∥∥
(
Dα
y+;g f

)
◦ g−1

∥
∥∥
1,[g(y),g(b)]

(b − y) (g (b) − g (y))α−1
]

.

Clearly here g−1 is continuous, thus
(
Dα

y−;g f
)

◦ g−1 ∈ C ([g (a) , g (y)]), and
(
Dα

y+;g f
)

◦ g−1 ∈ C ([g (y) , g (b)]) . Therefore
∥∥(Dα

y−;g f
) ◦ g−1

∥∥
1,[g(a),g(y)]

,
∥∥(Dα

y+;g f
) ◦ g−1

∥∥
1,[g(y),g(b)]

< ∞. (96)

The proof of the theorem now is complete.

Theorem 17 All as in Theorem 8. Let p, q > 1 : 1
p + 1

q = 1 , α > 1
q . Then

∣∣
∣∣∣
∣∣
f (y) − 1

b − a

b∫

a

f (x) dx +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (b − a)

b∫

a

(g (x) − g (y))k dx

∣∣
∣∣∣
∣∣

≤ 1

Γ (α) (b − a) (p (α − 1) + 1)
1
p

(97)

·
[
(g (y) − g (a))

α−1+ 1
p (y − a)

∥∥∥
(
Dα
y−;g f

)
◦ g−1

∥∥∥
q,[g(a),g(y)]

+ (g (b) − g (y))
α−1+ 1

p (b − y)
∥∥
∥
(
Dα
y+;g f

)
◦ g−1

∥∥
∥
q,[g(y),g(b)]

]
.

Proof Here we use (92). We get that

|R1 (y)|

≤ 1

Γ (α) (b − a)

⎡

⎢⎢
⎣

y∫

a

⎛

⎜
⎝

g(y)∫

g(x)

(z − g (x))p(α−1) dz

⎞

⎟
⎠

1
p

·
⎛

⎜
⎝

g(y)∫

g(x)

∣∣∣
((

Dα
y−;g f

)
◦ g−1

)
(z)
∣∣∣
q
dz

⎞

⎟
⎠

1
q

dx +
b∫

y

⎛

⎜
⎝

g(x)∫

g(y)

(g (x) − z)p(α−1) dz

⎞

⎟
⎠

1
p

·
⎛

⎜
⎝

g(x)∫

g(y)

∣
∣∣
((

Dα
y+;g f

)
◦ g−1

)
(z)
∣
∣∣
q
dz

⎞

⎟
⎠

1
q

dx

⎤

⎥⎥
⎦
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≤ 1

Γ (α) (b − a)

⎡

⎣

⎛

⎝
y∫

a

(g (y) − g (x))(α−1)+ 1
p

(p (α − 1) + 1)
1
p

dx

⎞

⎠
∥∥(Dα

y−;g f
) ◦ g−1

∥∥
q,[g(a),g(y)]

+
⎛

⎝
y∫

a

(g (x) − g (y))(α−1)+ 1
p

(p (α − 1) + 1)
1
p

dx

⎞

⎠
∥
∥(Dα

y+;g f
) ◦ g−1

∥
∥
q,[g(y),g(b)]

⎤

⎦ (98)

(here it is α − 1 + 1
p > 0). Hence it holds

|R1 (y)|
≤ 1

Γ (α) (b − a) (p (α − 1) + 1)
1
p

(99)

·
[
(g (y) − g (a))

α−1+ 1
p (y − a)

∥∥(Dα
y−;g f

) ◦ g−1
∥∥
q,[g(a),g(y)]

+ (g (b) − g (y))α−1+ 1
p (b − y)

∥∥(Dα
y+;g f

) ◦ g−1
∥∥
q,[g(y),g(b)]

]
.

Clearly here

∥
∥(Dα

y−;g f
) ◦ g−1

∥
∥
q,[g(a),g(y)]

,
∥
∥(Dα

y+;g f
) ◦ g−1

∥
∥
q,[g(y),g(b)]

< ∞.

We have proved the theorem.

We make

Remark 18 Letμ be a finite positivemeasure ofmassm > 0 on ([c, d] ,P ([c, d])),
with [c, d] ⊆ [a, b], where P stands for the power set.

We found that (by Theorem 8)

f (y) − 1

b − a

b∫

a

f (x) dx +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (b − a)

b∫

a

(g (x) − g (y))k dx

= − 1

Γ (α) (b − a)

⎡

⎢
⎣

y∫

a

⎛

⎜
⎝

g(y)∫

g(x)

(z − g (x))α−1
((
Dα

y−;g f
) ◦ g−1

)
(z) dz

⎞

⎟
⎠ dx

+
b∫

y

⎛

⎜
⎝

g(x)∫

g(y)

(g (x) − z)α−1
((
Dα

y+;g f
) ◦ g−1

)
(z) dz

⎞

⎟
⎠ dx

⎤

⎥
⎦ . (100)
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Then we have

Mn ( f, g)

:= 1

m

∫

[c,d]

f (y) dμ (y) − 1

b − a

b∫

a

f (x) dx

+
n−1∑

k=1

1

k! (b − a)

1

m

∫

[c,d]

⎛

⎜
⎝

b∫

a

(
f ◦ g−1

)(k)
(g (y)) (g (x) − g (y))k dx

⎞

⎟
⎠ dμ (y)

= − 1

Γ (α) (b − a)m

⎡

⎢
⎣
∫

[c,d]

⎧
⎪⎨

⎪⎩

y∫

a

⎛

⎜
⎝

g(y)∫

g(x)

(z − g (x))α−1
((

Dα
y−;g f

)
◦ g−1

)
(z) dz

⎞

⎟
⎠ dx

+
b∫

y

⎛

⎜
⎝

g(x)∫

g(y)

(g (x) − z)α−1
((

Dα
y+;g f

)
◦ g−1

)
(z) dz

⎞

⎟
⎠ dx

⎫
⎪⎬

⎪⎭
dμ (y)

⎤

⎥
⎦ (101)

= 1

m

∫

[c,d]

R1 (y) dμ (y) . (102)

We present the following fractional comparison of means inequalities:

Theorem 19 All as in Theorem 8. Then

1.

|Mn ( f, g)|

≤ 1

Γ (α + 1) (b − a)m

⎡

⎣
∫

[c,d]

[
(g (y) − g (a))α (y − a)

∥∥Dα
y−;g f

∥∥
∞

+ (g (b) − g (y))α (b − y)
∥∥Dα

y+;g f
∥∥

∞
]
dμ (y)

]
, (103)

2. if α ≥ 1, we get:

|Mn ( f, g)|

≤ 1

Γ (α) (b − a)m

⎡

⎢
⎣
∫

[c,d]

[∥
∥
∥
(
Dα

y−;g f
)

◦ g−1
∥
∥
∥
1,[g(a),g(y)]

(y − a) (g (y) − g (a))α−1

+
∥
∥∥
(
Dα

y+;g f
)

◦ g−1
∥
∥∥
1,[g(y),g(b)]

(b − y) (g (b) − g (y))α−1
]
dμ (y)

]
, (104)

3. if p, q > 1 : 1
p + 1

q = 1, α > 1
q , we get:
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|Mn ( f, g)|

≤ 1

Γ (α) (b − a)m

⎡

⎢
⎢
⎣

∫

[c,d]

⎡

⎢
⎢
⎣

∫ y

a

⎛

⎜
⎝

g(y)∫

g(x)

(z − g (x))p(α−1) dz

⎞

⎟
⎠

1
p

·
⎛

⎜
⎝

g(y)∫

g(x)

∣∣
∣
((

Dα
y−;g f

)
◦ g−1

)
(z)
∣∣
∣
q
dz

⎞

⎟
⎠

1
q

dx +
b∫

y

⎛

⎜
⎝

g(x)∫

g(y)

(g (x) − z)p(α−1) dz

⎞

⎟
⎠

1
p

·
⎛

⎜
⎝

g(x)∫

g(y)

∣∣∣
((

Dα
y+;g f

)
◦ g−1

)
(z)
∣∣∣
q
dz

⎞

⎟
⎠

1
q

dx

⎤

⎥
⎥
⎦ dμ (y)

⎤

⎥
⎥
⎦ . (105)

Proof By Theorems 15, 16, 17, for (103), (104), ( 105), respectively.

Next we give some fractional Grüss type inequalities:

Theorem 20 Let f, h as in Theorem 8. Here R1 (y) will be renamed as R1 ( f, y),
so we can consider R1 (h, y). Then

1.

Δn ( f, h) := 1

b − a

∫ b

a
f (x) h (x) dx −

(∫ b
a f (x) dx

)
(

b∫

a
h (x) dx

)

(b − a)2

+ 1

2 (b − a)2

n−1∑

k=1

1

k!

⎡

⎢
⎣

b∫

a

⎛

⎜
⎝

b∫

a

(
h (y)

(
f ◦ g−1

)(k)
(g (y))

+ f (y)
(
h ◦ g−1

)(k)
(g (y))

)
(g (x) − g (y))k dx

)
dy

]

= 1

2 (b − a)

⎡

⎢
⎣

b∫

a

(h (y) R1 ( f, y) + f (y) R1 (h, y)) dy

⎤

⎥
⎦ (106)

=: Kn ( f, h) ,

2. it holds

|Δn ( f, h)| (107)

≤ (g (b) − g (a))α

2Γ (α + 1)

[

‖h‖∞

(

sup
y∈[a,b]

(∥∥Dα
y−;g f

∥∥
∞ + ∥∥Dα

y+;g f
∥∥

∞
))

+ ‖ f ‖∞

(

sup
y∈[a,b]

(∥∥Dα
y−;gh

∥∥
∞ + ∥∥Dα

y+;gh
∥∥

∞
))]

,
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3. if α ≥ 1, we get:

|Δn ( f, h)| (108)

≤ 1

2Γ (α) (b − a)
(g (b) − g (a))α−1

·
{

‖h‖1
(

sup
y∈[a,b]

(∥∥
∥
(
Dα
y−;g f

)
◦ g−1

∥∥
∥
1,[g(a),g(b)]

+
∥∥
∥
(
Dα
y+;g f

)
◦ g−1

∥∥
∥
1,[g(a),g(b)]

))

+ ‖ f ‖1
(

sup
y∈[a,b]

(∥∥∥
(
Dα
y−;gh

)
◦ g−1

∥∥∥
1,[g(a),g(b)]

+
∥∥∥
(
Dα
y+;gh

)
◦ g−1

∥∥∥
1,[g(a),g(b)]

))}

,

4. if p, q > 1 : 1
p + 1

q = 1, α > 1
q , we get:

|Δn ( f, h)| (109)

≤ (g (b) − g (a))
α−1+ 1

p

2Γ (α) (p (α − 1) + 1)
1
p

·
{

‖h‖∞
(

sup
y∈[a,b]

(∥∥∥
(
Dα
y−;g f

)
◦ g−1

∥∥∥
q,[g(a),g(b)]

+
∥∥∥
(
Dα
y+;g f

)
◦ g−1

∥∥∥
q,[g(a),g(b)]

))

+ ‖ f ‖∞
(

sup
y∈[a,b]

(∥
∥∥
(
Dα
y−;gh

)
◦ g−1

∥
∥∥
q,[g(a),g(b)]

+
∥
∥∥
(
Dα
y+;gh

)
◦ g−1

∥
∥∥
q,[g(a),g(b)]

))}

.

All right hand sides of (107)–(109) are finite.

Proof By Theorem 8 we have

h (y) f (y)

= h (y)

b − a

b∫

a

f (x) dx (110)

−
n−1∑

k=1

h (y)
(
f ◦ g−1

)(k)
(g (y))

k! (b − a)

b∫

a

(g (x) − g (y))k dx + h (y) R1 ( f, y) ,

and

f (y) h (y)

= f (y)

b − a

b∫

a

h (x) dx (111)

−
n−1∑

k=1

f (y)
(
h ◦ g−1

)(k)
(g (y))

k! (b − a)

b∫

a

(g (x) − g (y))k dx + f (y) R1 (h, y) ,
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∀ y ∈ [a, b] . Then integrating (110) we find

b∫

a

h (y) f (y) dy

=
(∫ b

a h (y) dy
)

b − a

⎛

⎝
b∫

a

f (x) dx

⎞

⎠ (112)

−
n−1∑

k=1

1

k! (b − a)

b∫

a

b∫

a

h (y)
(
f ◦ g−1

)(k)
(g (y)) (g (x) − g (y))k dxdy

+
b∫

a

h (y) R1 ( f, y) dy,

and integrating (111) we obtain

b∫

a

f (y) h (y) dy

=
(∫ b

a f (y) dy
) (∫ b

a h (x) dx
)

b − a
(113)

−
n−1∑

k=1

1

k! (b − a)

b∫

a

b∫

a

f (y)
(
h ◦ g−1

)(k)
(g (y)) (g (x) − g (y))k dxdy

+
b∫

a

f (y) R1 (h, y) dy.

Adding the last two equalities (112) and (113), we get:

2

b∫

a

f (x) h (x) dx

=
2
(∫ b

a f (x) dx
) (∫ b

a h (x) dx
)

b − a
(114)

−
n−1∑

k=1

1

k! (b − a)

⎡

⎣
b∫

a

b∫

a

[h (y)
(
f ◦ g−1

)(k)
(g (y)) + f (y)

(
h ◦ g−1

)(k)
(g (y))]

· (g (x) − g (y))k dxdy
]+

b∫

a

(h (y) R1 ( f, y) + f (y) R1 (h, y)) dy.
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Divide the last (114) by 2 (b − a) to obtain (106).
Then, we upper bound Kn ( f, h) using Theorems 15, 16, 17, to obtain (107), (108)

and (109), respectively.
We use also that a norm is a continuous function. The theorem is proved.

Background Next we follow [10]. This is related to Information theory. Let f be a
convex function from (0,+∞) into R, which is strictly convex at 1 with f (1) = 0.
Let (X,A , λ) be a measure space, where λ is a finite or a σ -finite measure on
(X,A ). And let μ1, μ2 be two probability measures on (X,A ) such that μ1 � λ,

μ2 � λ (absolutely continuous), e.g. λ = μ1 + μ2. Denote by p = dμ1

dλ
, q = dμ2

dλ
the

Radon-Nikodym derivatives ofμ1,μ2 with respect to λ (densities). Here, we assume
that

0 < a ≤ p

q
≤ b, a.e. on X and a ≤ 1 ≤ b.

The quantity

Γ f (μ1, μ2) =
∫

X

q (x) f

(
p (x)

q (x)

)
dλ (x) (115)

was introduced by Csiszar in 1967 (see [7]), and is called the f -divergence of
the probability measures μ1 and μ2. By Lemma 1.1 of [7], the integral (115) is
well defined, and Γ f (μ1, μ2) ≥ 0, with equality only when μ1 = μ2. Furthermore
Γ f (μ1, μ2) does not depend on the choice of λ. Here, by assuming f (1) = 0, we
can consider Γ f (μ1, μ2) the f -divergence, as a measure of the difference between
the probability measures μ1, μ2.

Here we give a representation and estimates for Γ f (μ1, μ2) .

Furthermore, we assume f as in Theorem 8, where [a, b] ⊂ (0,+∞) as above.
We make

Remark 21 By Theorem 8 we have found that

f (y)

= 1

b − a

b∫

a

f (x) dx +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (b − a)

b∫

a

(g (x) − g (y))k dx (116)

− 1

Γ (α) (b − a)

⎡

⎢
⎣

y∫

a

⎛

⎜
⎝

g(y)∫

g(x)

(ρ − g (x))α−1
((
Dα

y−;g f
) ◦ g−1

)
(ρ) dρ

⎞

⎟
⎠ dx

+
b∫

y

⎛

⎜
⎝

g(x)∫

g(y)

(g (x) − ρ)α−1
((
Dα

y+;g f
) ◦ g−1

)
(ρ) dρ

⎞

⎟
⎠ dx

⎤

⎥
⎦ .
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We get the equality:

q (z) f

(
p (z)

q (z)

)

= q (z)

b − a

b∫

a

f (x) dx (117)

+
n−1∑

k=1

(
f ◦ g−1

)(k) (
g
(
p(z)
q(z)

))

k! (b − a)
q (z)

b∫

a

(
g (x) − g

(
p (z)

q (z)

))k
dx

− q (z)

Γ (α) (b − a)

⎡

⎢
⎢
⎢
⎣

p(z)
q(z)∫

a

⎛

⎜
⎜
⎜
⎝

g
(

p(z)
q(z)

)

∫

g(x)

(ρ − g (x))α−1
((

Dα
p(z)
q(z) −;g f

)
◦ g−1

)
(ρ) dρ

⎞

⎟
⎟
⎟
⎠
dx

+
b∫

p(z)
q(z)

⎛

⎜⎜
⎜
⎝

g(x)∫

g
(

p(z)
q(z)

)
(g (x) − ρ)α−1

((
Dα

p(z)
q(z) +;g f

)
◦ g−1

)
(ρ) dρ

⎞

⎟⎟
⎟
⎠
dx

⎤

⎥⎥
⎥
⎦

,

a.e. on X. Hence, it holds the representation

Γ f (μ1, μ2)

=
∫

X

q (z) f

(
p (z)

q (z)

)
dλ (z)

= 1

b − a

b∫

a

f (x) dx +
n−1∑

k=1

1

k! (b − a)

∫

X

[
q (z)

(
f ◦ g−1

)(k)
(
g

(
p (z)

q (z)

))

·
⎛

⎝
b∫

a

(
g (x) − g

(
p (z)

q (z)

))k

dx

⎞

⎠

⎤

⎦ dλ (z) − 1

Γ (α) (b − a)
(118)

·

⎧
⎪⎪⎨

⎪⎪⎩

∫

X

q (z)

⎡

⎢⎢
⎣

p(z)
q(z)∫

a

⎛

⎜⎜
⎝

g
(

p(z)
q(z)

)

∫

g(x)

(ρ − g (x))α−1

((
Dα

p(z)
q(z) −;g f

)
◦ g−1

)
(ρ) dρ

⎞

⎟⎟
⎠ dx

+
b∫

p(z)
q(z)

⎛

⎜⎜⎜
⎝

g(x)∫

g
(

p(z)
q(z)

)

(g (x) − ρ)α−1

((
Dα

p(z)
q(z) +;g f

)
◦ g−1

)
(ρ) dρ

⎞

⎟⎟⎟
⎠
dx

⎤

⎥⎥⎥
⎦
dλ (z)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.
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Clearly here R1 (y) is continuous function in y ∈ [a, b] .
Let here

(
Dα

x0+;g f
)
(x) = 1

Γ (n − α)

x∫

x0

(g (x) − g (t))n−α−1 g′ (t)
(
f ◦ g−1

)(n)
(g (t)) dt,

(119)
x ≥ x0;

(
Dα

y0+;g f
)
(x) = 1

Γ (n − α)

x∫

y0

(g (x) − g (t))n−α−1 g′ (t)
(
f ◦ g−1)(n)

(g (t)) dt,

(120)
x ≥ y0; where fixed x : x ≥ y0 ≥ x0; x, x0, y0 ∈ [a, b]. Then we obtain

∣∣(Dα
x0+;g f

)
(x) − (Dα

y0+;g f
)
(x)
∣∣

= 1

Γ (n − α)

∣∣∣
∣∣∣

y0∫

x0

(g (x) − g (t))n−α−1 g′ (t)
(
f ◦ g−1

)(n)
(g (t)) dt

∣∣∣
∣∣∣

(121)

≤

∥∥∥
(
f ◦ g−1

)(n) ◦ g
∥∥∥∞,[a,b]

Γ (n − α)

⎛

⎝
y0∫

x0

(g (x) − g (t))n−α−1 g′ (t) dt

⎞

⎠

(by [11, p. 107] and [9])

=

∥∥∥
(
f ◦ g−1

)(n) ◦ g
∥∥∥∞,[a,b]

Γ (n − α)

⎛

⎜
⎝

g(y0)∫

g(x0)

(g (x) − ρ)n−α−1 dρ

⎞

⎟
⎠ (122)

=

∥∥∥
(
f ◦ g−1

)(n) ◦ g
∥∥∥∞,[a,b]

Γ (n − α + 1)

(
(g (x) − g (y0))

n−α − (g (x) − g (x0))
n−α
)

→ 0,

as y0 → x0, proving continuity of
(
Dα

x0+;g f
)

(x) in x0 ∈ [a, b]. Similarly
(
Dα

x0−;g f
)

(x) is continuous in x0 ∈ [a, b]. We want to estimate

I :=
∫

X

q (z) R1

(
p (z)

q (z)

)
dλ (z) .
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That is

|I | =
∣∣
∣∣∣∣

∫

X

q (z) R1

(
p (z)

q (z)

)
dλ (z)

∣∣
∣∣∣∣
≤
∫

X

q (z)

∣
∣∣∣R1

(
p (z)

q (z)

)∣∣∣∣ dλ (z) . (123)

Notice, by (118), that

I = Γ f (μ1, μ2) − 1

b − a

b∫

a

f (x) dx (124)

−
n−1∑

k=1

1

k! (b − a)

∫

X

[
g (z)

(
f ◦ g−1

)(k)
(
g

(
p (z)

q (z)

))

·
⎛

⎝
b∫

a

(
g (x) − g

(
p (z)

q (z)

))k

dx

⎞

⎠

⎤

⎦ dλ (z) .

We give

Theorem 22 All as above. Then

|I | (125)

≤ 1

Γ (α + 1) (b − a)

⎡

⎣
∫

X

q (z)

[(
g

(
p (z)

q (z)

)
− g (a)

)α ( p (z)

q (z)
− a

)

·
∥∥
∥
∥D

α
p(z)
q(z) −;g f

∥∥
∥
∥∞

+
(
g (b) − g

(
p (z)

q (z)

))α (
b − p (z)

q (z)

)∥∥
∥
∥D

α
p(z)
q(z) +;g f

∥∥
∥
∥∞

]

dλ (z)

]

.

Proof By Theorem 14.

Theorem 23 All as above and α ≥ 1. Then

|I |

≤ 1

Γ (α) (b − a)

⎡

⎣
∫

X

q (z)

[∥∥∥∥

(
Dα

p(z)
q(z) −;g f

)
◦ g−1

∥∥∥∥
1,[g(a),g(b)]

(126)

·
(
p (z)

q (z)
− a

)(
g

(
p (z)

q (z)

)
− g (a)

)α−1

+
∥
∥∥∥

(
Dα

p(z)
q(z) +;g f

)
◦ g−1

∥
∥∥∥
1,[g(a),g(b)]

·
(
b − p (z)

q (z)

)(
g (b) − g

(
p (z)

q (z)

))α−1
]

dλ (z)

]

.
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Proof By Theorem 16, and
(
Dα

y±;g f
)

◦ g−1 are continuous functions in y ∈ [a, b] .

Theorem 24 All as above. Let p∗, q∗ > 1 : 1
p∗ + 1

q∗ = 1, α > 1
q∗ . Then

|I |
≤ 1

Γ (α) (b − a) (p∗ (α − 1) + 1)
1
p∗

(127)

·
⎡

⎣
∫

X

q (z)

[(
g

(
p (z)

q (z)

)
− g (a)

)α−1+ 1
p∗
(
p (z)

q (z)
− a

)

∥∥∥
∥

(
Dα

p(z)
q(z) −;g f

)
◦ g−1

∥∥∥
∥
q∗,[g(a),g(b)]

+
(
g (b) − g

(
p (z)

q (z)

))α−1+ 1
p∗

·
(
b − p (z)

q (z)

)∥∥∥∥

(
Dα

p(z)
q(z) +;g f

)
◦ g−1

∥∥∥∥
q∗,[g(a),g(b)]

]

dλ (z)

]

.

Proof By Theorem 17.

Remark 25 Some examples for g follow:

g (x) = ex , x ∈ [a, b] ⊂ R,

g (x) = sin x,

g (x) = tan x,

where x ∈
[
−π

2
+ ε,

π

2
− ε
]
, where ε > 0 small.

Indeed, the above examples of g are strictly increasing and absolutely contimuous
functions.

One can apply all of our results here for the above specific choices of g.We choose
to omit this lengthy job.
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Basic Iterated Fractional Inequalities

George A. Anastassiou

Abstract Using fundamental formulae of iterated fractional Caputo type calculus,
we establish several important fractional representation formulae, included iterated
ones. Based on these we derive: a whole family of fractional Opial type inequalities,
Hilbert-Pachpatte type fractional inequalities, Ostrowski type fractional inequali-
ties, Poincaré and Sobolev type fractional inequalities, finally we give Grüss type
fractional inequalities.

1 Background

Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]), the left Caputo fractional
derivative of order α is defined as follows:

(
Dα

a f
)
(x) = 1

Γ (1 − α)

x∫

a

(x − t)−α f ′ (t) dt, (1)

where Γ is the gamma function, ∀ x ∈ [a, b] .
We observe that

∣∣(Dα
a f
)
(x)
∣∣ ≤ 1

Γ (1 − α)

x∫

a

(x − t)−α
∣∣ f ′ (t)

∣∣ dt

≤
∥∥ f ′∥∥∞

Γ (1 − α)

⎛

⎝
x∫

a

(x − t)−α dt

⎞

⎠

=
∥∥ f ′∥∥∞

Γ (1 − α)

(x − a)1−α

(1 − α)
=
∥∥ f ′∥∥∞ (x − a)1−α

Γ (2 − α)
.
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That is

∣
∣(Dα

a f
)
(x)
∣
∣ ≤

∥∥ f ′∥∥∞
Γ (2 − α)

(x − a)1−α , ∀x ∈ [a, b] . (2)

We obtain

∣∣(Dα
a f
)
(a)
∣∣ = 0, (3)

and

∥
∥Dα

a f
∥
∥∞ ≤

∥
∥ f ′∥∥∞

Γ (2 − α)
(b − a)1−α . (4)

Denote for n ∈ N:

Dnα
a = Dα

a D
α
a . . . Dα

a (n-times). (5)

Assume that Dkα
a f ∈ C ([a, b]), k = 0, 1, . . . , n + 1; n ∈ N, 0 < α < 1.

Then, by [7, 9], we get the left fractional Taylor formula:

f (x) = f (a) +
n∑

i=2

(x − a)iα

Γ (iα + 1)

(
Diα

a f
)
(a)

+ 1

Γ ((n + 1) α)

x∫

a

(x − t)(n+1)α−1
(
D(n+1)α

a f
)
(t) dt, (6)

∀ x ∈ (a, b].
Let fixed y ∈ [a, b], we define

(
Dα

y f
)
(x) = 1

Γ (1 − α)

x∫

y

(x − t)−α f ′ (t) dt, (7)

for any x ≥ y; x ∈ [a, b], and

(
Dα

y f
)
(x) = 0, for x < y. (8)

Of course
(
Dα

y f
)
(y) = 0.

By [3], p. 388, we get that
(
Dα

y f
) ∈ C ([a, b]).

We assume that f ′ ∈ L∞ ([a, b]), and Dkα
y f ∈ C ([a, b]), k = 0, 1, 2, 3, . . . ,

n + 1, n ∈ N; 0 < α < 1.
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Then, by (6), we obtain

f (x) = f (y) +
n∑

i=2

(x − y)iα

Γ (iα + 1)

(
Diα

y f
)
(y) (9)

+ 1

Γ ((n + 1) α)

x∫

y

(x − t)(n+1)α−1
(
D(n+1)α

y f
)
(t) dt,

∀ x ≥ y; x, y ∈ [a, b], 0 < α < 1.
Let again 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]), the right Caputo

fractional derivative of order α is defined as follows:

(
Dα

b− f
)
(x) = −1

Γ (1 − α)

b∫

x

(z − x)−α f ′ (z) dz, ∀ x ∈ [a, b] . (10)

We notice that

∣∣(Dα
b− f

)
(x)
∣∣ (11)

≤ 1

Γ (1 − α)

b∫

x

(z − x)−α
∣∣ f ′ (z)

∣∣ dz ≤
∥∥ f ′∥∥∞

Γ (1 − α)

⎛

⎝
b∫

x

(z − x)−α dz

⎞

⎠

=
∥
∥ f ′∥∥∞

Γ (1 − α)

(b − x)1−α

(1 − α)
=

∥
∥ f ′∥∥∞

Γ (2 − α)
(b − x)1−α .

That is

∣
∣(Dα

b− f
)
(x)
∣
∣ ≤

∥∥ f ′∥∥∞
Γ (2 − α)

(b − x)1−α , ∀ x ∈ [a, b] . (12)

We derive
(
Dα

b− f
)
(b) = 0, (13)

and

∥∥Dα
b− f

∥∥∞ ≤
∥∥ f ′∥∥∞

Γ (2 − α)
(b − a)1−α . (14)

Denote for n ∈ N:

Dnα
b− = Dα

b−D
α
b− . . . Dα

b− (n-times). (15)

Assume that Dkα
b− f ∈ C ([a, b]), k = 0, 1, . . . , n + 1; n ∈ N, 0 < α < 1.
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Then, by [6], we get the right fractional Taylor formula:

f (x) = f (b) +
n∑

i=2

(b − x)iα

Γ (iα + 1)

(
Diα

b− f
)
(b) (16)

+ 1

Γ ((n + 1) α)

b∫

x

(z − x)(n+1)α−1
(
D(n+1)α

b− f
)

(z) dz,

∀ x ∈ [a, b] .
Let fixed y ∈ [a, b], we define

(
Dα

y− f
)
(x) = − 1

Γ (1 − α)

y∫

x

(z − x)−α f ′ (z) dz, (17)

∀ x ≤ y; x ∈ [a, b], and

(
Dα

y− f
)
(x) = 0, for x > y. (18)

Of course
(
Dα

y− f
)
(y) = 0.

By [4], we get that
(
Dα

y− f
) ∈ C ([a, b]).

We assume that f ′ ∈ L∞ ([a, b]), and Dkα
y− f ∈ C ([a, b]), k = 0, 1, 2, 3, . . . , n +

1, n ∈ N; 0 < α < 1.
Then, by (16), we obtain

f (x) = f (y) +
n∑

i=2

(y − x)iα

Γ (iα + 1)

(
Diα

y− f
)
(y) (19)

+ 1

Γ ((n + 1) α)

y∫

x

(z − x)(n+1)α−1
(
D(n+1)α

y− f
)

(z) dz,

∀ x ≤ y; x, y ∈ [a, b], 0 < α < 1.

2 Main Results

We give the following representation formula:

Theorem 1 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]), y ∈ [a, b]
is fixed. We assume that Dkα

y f, Dkα
y− f ∈ C ([a, b]), k = 0, 1, 2, 3, . . . , n + 1; n ∈ N.

Then
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f (y) = 1

b − a

b∫

a

f (x) dx (20)

−
n∑

i=2

1

(b − a) Γ (iα + 2)

[(
Diα

y− f
)

(y) (y − a)iα+1 +
(
Diα

y f
)

(y) (b − y)iα+1
]

+ R1 (y) ,

where

R1 (y)

= − 1

Γ ((n + 1) α) (b − a)

⎡

⎣
y∫

a

⎛

⎝
y∫

x

(t − x)(n+1)α−1
(
D(n+1)α

y− f
)

(t) dt

⎞

⎠ dx

+
b∫

y

⎛

⎝
x∫

y

(x − t)(n+1)α−1
(
D(n+1)α

y f
)
(t) dt

⎞

⎠ dx

⎤

⎦ . (21)

Proof Here x, y ∈ [a, b]. We keep y as fixed. By (9) and (19), we obtain

1

b − a

b∫

a

f (x) dx = 1

b − a

⎛

⎝
y∫

a

f (x) dx +
b∫

y

f (x) dx

⎞

⎠ (22)

= 1

b − a

⎧
⎨

⎩

y∫

a

[

f (y) +
n∑

i=2

(y − x)iα

Γ (iα + 1)

(
Diα

y− f
)

(y)

+ 1

Γ ((n + 1) α)

y∫

x

(z − x)(n+1)α−1
(
D(n+1)α

y− f
)

(z) dz

⎤

⎦ dx

+
b∫

y

[

f (y) +
n∑

i=2

(x − y)iα

Γ (iα + 1)

(
Diα

y f
)

(y)

+ 1

Γ ((n + 1) α)

x∫

y

(x − t)(n+1)α−1
(
D(n+1)α

y f
)

(t) dt

⎤

⎦ dx

⎫
⎬

⎭

= f (y) +
n∑

i=2

1

(b − a) Γ (iα + 1)

[(
Diα

y− f
)

(y) (y − a)iα+1 +
(
Diα

y f
)

(y) (b − y)iα+1
]

+ 1

Γ ((n + 1) α) (b − a)

⎡

⎣
y∫

a

⎛

⎝
y∫

x

(z − x)(n+1)α−1
(
D(n+1)α

y− f
)

(z) dz

⎞

⎠ dx

+
b∫

y

⎛

⎝
x∫

y

(x − t)(n+1)α−1
(
D(n+1)α

y f
)

(t) dt

⎞

⎠ dx

⎤

⎦ . (23)
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Solving (22), (23) for f (y), we have proved theorem.

Next we present a left fractional Opial type inequality:

Theorem 2 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]). Assume that
Dkα

a f ∈ C ([a, b]), k = 0, 1, . . . , n + 1; n ∈ N. Suppose that
(
Diα

a f
)
(a) = 0, for

i = 0, 2, 3, . . . , n. Let p, q > 1 : 1
p + 1

q = 1, such that α > 1
(n+1)q . Then

x∫

a

| f (w)| ∣∣D(n+1)α
a f (w)

∣∣ dw (24)

≤ (x − a)

(
(n+1)α+ 1

p − 1
q

)

2
1
q Γ ((n + 1) α) [(p ((n + 1) α − 1) + 1) (p ((n + 1) α − 1) + 2)]

1
p

·
⎛

⎝
x∫

a

∣
∣D(n+1)α

a f (w)
∣
∣q dw

⎞

⎠

2
q

,

∀ x ∈ [a, b] .

Proof By [7, 9], our assumption, and (6), we obtain

f (x) = 1

Γ ((n + 1) α)

x∫

a

(x − t)(n+1)α−1 (D(n+1)α
a f

)
(t) dt, (25)

∀ x ∈ [a, b] . Then, by Hölder’s inequality we obtain,

| f (x)| ≤ 1

Γ ((n + 1) α)

x∫

a

(x − t)(n+1)α−1
∣∣D(n+1)α

a f (t)
∣∣ dt

≤ 1

Γ ((n + 1) α)

⎛

⎝
x∫

a

(x − t)p((n+1)α−1) dt

⎞

⎠

1
p
⎛

⎝
x∫

a

∣∣D(n+1)α
a f (t)

∣∣q dt

⎞

⎠

1
q

= 1

Γ ((n + 1) α)

(x − a)
((n+1)α−1)+ 1

p

(p ((n + 1) α − 1) + 1)
1
p

⎛

⎝
x∫

a

∣∣D(n+1)α
a f (t)

∣∣q dt

⎞

⎠

1
q

= (x − a)
(n+1)α− 1

q

Γ ((n + 1) α) (p ((n + 1) α − 1) + 1)
1
p

⎛

⎝
x∫

a

∣∣D(n+1)α
a f (t)

∣∣q dt

⎞

⎠

1
q

.

(26)
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That is

| f (x)| ≤ (x − a)
(n+1)α− 1

q

Γ ((n + 1) α) (p ((n + 1) α − 1) + 1)
1
p

⎛

⎝
x∫

a

∣∣D(n+1)α
a f (t)

∣∣q dt

⎞

⎠

1
q

,

(27)
∀ x ∈ [a, b] . Call

z (x) :=
x∫

a

∣∣D(n+1)α
a f (t)

∣∣q dt, (28)

z (a) = 0. Thus

z′ (x) := ∣∣D(n+1)α
a f (x)

∣∣q ≥ 0, (29)

and

(
z′ (x)

) 1
q := ∣∣D(n+1)α

a f (x)
∣∣ ≥ 0, ∀x ∈ [a, b] .

Consequently, we get

| f (w)|
∣
∣
∣D(n+1)α

a f (w)

∣
∣
∣ ≤ (w − a)

(n+1)α− 1
q

Γ ((n + 1) α) (p ((n + 1) α − 1) + 1)
1
p

(
z (w) z′ (w)

) 1
q ,

(30)
∀ w ∈ [a, b] . Then it holds

x∫

a

| f (w)| ∣∣D(n+1)α
a f (w)

∣
∣ dw

≤ 1

Γ ((n+1)α)(p((n+1)α−1)+1)
1
p

x∫

a

(w − a)
(p((n+1)α−1)+1)

p
(
z (w) z′ (w)

) 1
q dw

≤ 1

Γ ((n + 1) α) (p ((n + 1) α − 1) + 1)
1
p

(31)

·
⎛

⎝
x∫

a

(w − a)(p((n+1)α−1)+1) dw

⎞

⎠

1
p
⎛

⎝
x∫

a

z (w) z′ (w) dw

⎞

⎠

1
q
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= (x − a)
((n+1)α−1)+ 2

p

Γ ((n + 1) α) [(p ((n + 1) α − 1) + 1) (p ((n + 1) α − 1) + 2)]
1
p

(
z2 (x)

2

) 1
q

= (x − a)
(n+1)α+ 1

p − 1
q

2
1
q Γ ((n + 1) α) [(p ((n + 1) α − 1) + 1) (p ((n + 1) α − 1) + 2)]

1
p

·
⎛

⎝
x∫

a

∣∣D(n+1)α
a f (t)

∣∣q dt

⎞

⎠

2
q

. (32)

The theorem is proved.

It follows a right fractional Opial type inequality:

Theorem 3 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]). Assume that
Dkα

b− f ∈ C ([a, b]), for k = 0, 1, . . . , n + 1; n ∈ N. Suppose that
(
Diα

b− f
)
(b) = 0,

for i = 0, 2, 3, . . . , n. Let p, q > 1 : 1
p + 1

q = 1, such that α > 1
(n+1)q . Then

b∫

x

| f (w)|
∣∣∣
(
D(n+1)α

b− f
)

(w)

∣∣∣ dw

≤ (b − x)
(
(n+1)α+ 1

p − 1
q

)

2
1
q Γ ((n + 1) α) [(p ((n + 1) α − 1) + 1) (p ((n + 1) α − 1) + 2)]

1
p

·
⎛

⎝
b∫

x

∣∣∣
(
D(n+1)α

b− f
)

(w)

∣∣∣
q
dw

⎞

⎠

2
q

, (33)

∀ x ∈ [a, b] .

Proof By [6], our assumption, and (16), we obtain

f (x) = 1

Γ ((n + 1) α)

b∫

x

(z − x)(n+1)α−1
(
D(n+1)α

b− f
)

(z) dz, (34)

∀ x ∈ [a, b] . Then, by Hölder’s inequality we find,

| f (x)|

≤ 1

Γ ((n + 1) α)

b∫

x

(z − x)(n+1)α−1
∣∣∣
(
D(n+1)α

b− f
)

(z)
∣∣∣ dz (35)
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≤ 1

Γ ((n + 1) α)

⎛

⎝
b∫

x

(z − x)p((n+1)α−1) dz

⎞

⎠

1
p
⎛

⎝
b∫

x

∣∣∣
(
D(n+1)α

b− f
)

(z)
∣∣∣
q
dz

⎞

⎠

1
q

= 1

Γ ((n + 1) α)

(b−x)
(p((n+1)α−1)+1)

p

(p((n+1)α−1)+1)
1
p

⎛

⎝
b∫

x

∣
∣∣
(
D(n+1)α

b− f
)

(t)
∣
∣∣
q
dt

⎞

⎠

1
q

.

That is, we derive

| f (x)| ≤ (b−x)
(p((n+1)α−1)+1)

p

(p((n+1)α−1)+1)
1
p Γ ((n+1)α)

⎛

⎝
b∫

x

∣∣∣
(
D(n+1)α

b− f
)

(t)
∣∣∣
q
dt

⎞

⎠

1
q

, (36)

∀ x ∈ [a, b] . Call

z (x) :=
b∫

x

∣∣∣
(
D(n+1)α

b− f
)

(t)
∣∣∣
q
dt, (37)

z (b) = 0. Hence

z′ (x) = −
∣∣∣
(
D(n+1)α

b− f
)

(x)
∣∣∣
q
, (38)

and

−z′ (x) =
∣∣∣
(
D(n+1)α

b− f
)

(x)
∣∣∣
q ≥ 0, (39)

and

(−z′ (x)
) 1

q =
∣∣
∣
(
D(n+1)α

b− f
)

(x)
∣∣
∣ ≥ 0, ∀x ∈ [a, b] . (40)

Consequently, we get

| f (w)|
∣∣∣
(
D(n+1)α

b− f
)

(w)

∣∣∣ (41)

≤ (b − w)
((p(n+1)α−1)+1)

p

Γ ((n + 1) α) (p ((n + 1) α − 1) + 1)
1
p

(
z (w)

(−z′ (w)
)) 1

q ,

∀ w ∈ [a, b] . Then, it holds
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b∫

x

| f (w)|
∣∣∣
(
D(n+1)α

b− f
)

(w)

∣∣∣ dw

≤ 1

Γ ((n + 1) α) (p ((n + 1) α − 1) + 1)
1
p

(42)

·
b∫

x

(b − w)
(p((n+1)α−1)+1)

p
(
z (w)

(−z′ (w)
)) 1

q dw

≤ 1

Γ ((n + 1) α) (p ((n + 1) α − 1) + 1)
1
p

·
⎛

⎝
b∫

x

(b − w)(p((n+1)α−1)+1) dw

⎞

⎠

1
p
⎛

⎝
b∫

x

z (w)
(−z′ (w)

)
dw

⎞

⎠

1
q

= (b−x)
(p((n+1)α−1)+2)

p

Γ ((n+1)α)[(p((n+1)α−1)+1)(p((n+1)α−1)+2)]
1
p

(
z2 (x)

2

) 1
q

(43)

= (b − x)
(
(n+1)α+ 1

p − 1
q

)

2
1
q Γ ((n + 1) α) [(p ((n + 1) α − 1) + 1) (p ((n + 1) α − 1) + 2)]

1
p

·
⎛

⎝
b∫

x

∣∣∣
(
D(n+1)α

b− f
)

(w)

∣∣∣
q
dw

⎞

⎠

2
q

, (44)

proving the claim.

We need
Background Let ν > 0; the operator J ν

a , defined on L1 ([a, b]) is given by

J ν
a f (x) = 1

Γ (ν)

x∫

a

(x − t)ν−1 f (t) dt, (45)

for a ≤ x ≤ b, is called the left Riemann-Liouville fractional integral operator of
order ν. We set J 0

a = I , the identity operator; see [3], p. 392, also [8].
From [1], p. 543, when f ∈ C ([a, b]), μ, ν > 0, we get that

Jμ
a

(
J ν
a f
) = Jμ+ν

a f = J ν
a

(
Jμ
a f
)
, (46)

which is the semigroup property.
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Let now γ > 0,m := 	γ 
 (	·
 ceiling of the number), f ∈ ACm ([a, b]) (it means
f (m−1) ∈ AC ([a, b]) (absolutely continuous functions)). The left Caputo fractional
derivative of order γ is given by

Dγ
a f (x) = 1

Γ (m − γ )

x∫

a

(x − t)m−γ−1 f (m) (t) dt = (
Jm−γ
a f (m)

)
(x) , (47)

and it exists almost everywhere for x ∈ [a, b]. See Corollary 16.8, p. 394, of [3], and
[8], pp. 49–50.

We set Dm
a f = f (m), m ∈ N.

We need

Remark 4 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]). Assume that
Dkα

a f ∈ C ([a, b]), k = 0, 1, . . . , n + 1; n ∈ N. Suppose that
(
Diα

a f
)
(a) = 0, for

i = 0, 2, 3, . . . , n. By [7, 9] and (6), and our assumption here, we obtain

f (x) = 1

Γ ((n + 1) α)

x∫

a

(x − t)(n+1)α−1
(
D(n+1)α

a f
)
(t) dt, (48)

∀ x ∈ [a, b] .
By [3], Theorem 7.7, p. 117, when (n + 1) α − 1 > 0, equivalently when α >

1
n+1 , we get that there exists

f ′ (x) = ((n + 1) α − 1)

Γ ((n + 1) α)

x∫

a

(x − t)(n+1)α−2
(
D(n+1)α

a f
)
(t) dt, (49)

∀ x ∈ [a, b] .
If (n + 1) α − 2 > 0, equivalently, if α > 2

n+1 , we get that there exists

f ′′ (x) = ((n+1)α−1)((n+1)α−2)
Γ ((n+1)α)

x∫

a

(x − t)(n+1)α−3 (D(n+1)α
a f

)
(t) dt, (50)

∀ x ∈ [a, b] .
In general, if (n + 1) α − m > 0, equivalently, if α > m

n+1 , we get that there exists

f (m) (x) =
∏m

j=1 ((n + 1) α − j)

Γ ((n + 1) α)

x∫

a

(x − t)(n+1)α−m−1 (D(n+1)α
a f

)
(t) dt, (51)

∀ x ∈ [a, b] .
By [3], p. 388, we get that f (m) ∈ C ([a, b]).

http://dx.doi.org/10.1007/978-3-319-30322-2_7
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By (45), we derive

f (m) (x) =
∏m

j=1((n+1)α− j)Γ ((n+1)α−m)

Γ ((n+1)α)

(
J ((n+1)α−m)
a

(
D(n+1)α

a f
))

(x)

= (
J ((n+1)α−m)
a

(
D(n+1)α

a f
))

(x) . (52)

We have proved that

f (m) (x) = (
J ((n+1)α−m)
a

(
D(n+1)α

a f
))

(x) , (53)

∀ x ∈ [a, b] .
We have that (case of γ < m)

(
Dγ

a f
)
(x) = (

Jm−γ
a f (m)

)
(x) (54)

= (
Jm−γ
a J ((n+1)α−m)

a

(
D(n+1)α

a f
))

(x)

= (
J (n+1)α−γ
a

(
D(n+1)α

a f
))

(x) .

That is

(
Dγ

a f
)
(x) = (

J (n+1)α−γ
a

(
D(n+1)α

a f
))

(x) , (55)

∀ x ∈ [a, b] .
I.e. we have found the representation formula:

(
Dγ

a f
)
(x) = 1

Γ ((n + 1) α − γ )

x∫

a

(x − t)(n+1)α−γ−1
(
D(n+1)α

a f
)
(t) dt, (56)

∀x ∈ [a, b] .
The last formula (56) is true under the assumption (n + 1) α > m, and since

m ≥ γ , it implies (n + 1) α > γ and (n + 1) α − γ > 0. Furthermore, by [3], p.
388, we get that

(
Dγ

a f
) ∈ C ([a, b]) .

We have proved the following left fractional representation theorem:

Theorem 5 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]). Assume
that Dkα

a f ∈ C ([a, b]), k = 0, 1, . . . , n + 1; n ∈ N. Suppose that
(
Diα

a f
)
(a) = 0,

for i = 0, 2, 3, . . . , n. Let γ > 0 with 	γ 
 = m < n + 1, such that m < (n + 1) α,
equivalently, α > m

n+1 . Then

(
Dγ

a f
)
(x) = 1

Γ ((n + 1) α − γ )

x∫

a

(x − t)(n+1)α−γ−1
(
D(n+1)α

a f
)
(t) dt, (57)

∀ x ∈ [a, b] . Furthermore it holds
(
Dγ

a f
) ∈ C ([a, b]) .
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We make

Remark 6 Call λ := (n + 1) α − γ − 1, i.e. λ + 1 = (n + 1) α − γ , and call δ :=
(n + 1) α. Then we can write

(
Dγ

a f
)
(x) = 1

Γ (λ + 1)

x∫

a

(x − t)λ
(
Dδ

a f
)
(t) dt, ∀ x ∈ [a, b] . (58)

If λ > 0, then

(
Dγ

a f
)′

(x) = λ

Γ (λ + 1)

x∫

a

(x − t)λ−1 (Dδ
a f
)
(t) dt, ∀x ∈ [a, b] . (59)

If λ − 1 > 0, then

(
Dγ

a f
)′′

(x) = λ (λ − 1)

Γ (λ + 1)

x∫

a

(x − t)λ−2
(
Dδ

a f
)
(t) dt, ∀x ∈ [a, b] . (60)

If λ − 2 > 0, then

(
Dγ

a f
)(3)

(x) = λ(λ−1)(λ−2)
Γ (λ+1)

x∫

a

(x − t)λ−3
(
Dδ

a f
)
(t) dt, ∀x ∈ [a, b] , (61)

etc.
In general, if λ − m + 1 > 0, then

(
Dγ

a f
)(m)

(x) (62)

= λ (λ − 1) (λ − 2) . . . (λ − m + 1)

Γ (λ + 1)

x∫

a

(x − t)(λ−m+1)−1
(
Dδ

a f
)
(t) dt

= λ (λ − 1) (λ − 2) . . . (λ − m + 1) Γ (λ − m + 1)
(
J (λ−m+1)
a

(
Dδ

a f
))

(x)

Γ (λ + 1)

= (
J (λ−m+1)
a

(
Dδ

a f
))

(x) , (63)

∀x ∈ [a, b] .
That is, if λ − m + 1 > 0, then

(
Dγ

a f
)(m)

(x) = (
J (λ−m+1)
a

(
Dδ

a f
))

(x) , (64)

∀x ∈ [a, b] .
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We notice that

(
D2γ

a f
)
(x) = (

Dγ
a

(
Dγ

a f
))

(x) =
(
Jm−γ
a

(
Dγ

a f
)(m)

)
(x) (65)

= (
Jm−γ
a J λ−m+1

a

(
Dδ

a f
))

(x) = (
J λ−γ+1
a

(
Dδ

a f
))

(x)

= (
J (n+1)α−γ−1−γ+1
a

(
Dδ

a f
))

(x) = (
J (n+1)α−2γ
a

(
Dδ

a f
))

(x) . (66)

That is

(
D2γ

a f
)
(x) = (

J (n+1)α−2γ
a

(
D(n+1)α

a f
))

(x) , (67)

∀x ∈ [a, b] , under the condition γ+m
n+1 < α < 1.

We give

Theorem 7 Under the assumptions of Theorem 5, and when γ+m
n+1 < α < 1, we get

that

(
D2γ

a f
)
(x) = 1

Γ ((n + 1) α − 2γ )

x∫

a

(x − t)(n+1)α−2γ−1
(
D(n+1)α

a f
)
(t) dt, (68)

∀x ∈ [a, b] , and
(
D2γ

a f
)

∈ C ([a, b]) .

We make

Remark 8 Call ρ := (n + 1) α − 2γ − 1, i.e. ρ + 1 = (n + 1) α − 2γ , and call
again δ := (n + 1) α. Then we can write

(
D2γ

a f
)
(x) = 1

Γ (ρ + 1)

x∫

a

(x − t)ρ
(
Dδ

a f
)
(t) dt, (69)

∀x ∈ [a, b] .
If ρ > 0, then

(
D2γ

a f
)′

(x) = ρ

Γ (ρ + 1)

x∫

a

(x − t)ρ−1 (Dδ
a f
)
(t) dt, (70)

∀x ∈ [a, b] .
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If ρ − 1 > 0, then

(
D2γ

a f
)′′

(x) = ρ (ρ − 1)

Γ (ρ + 1)

x∫

a

(x − t)ρ−2
(
Dδ

a f
)
(t) dt, (71)

∀x ∈ [a, b] .
If ρ − 2 > 0, then

(
D2γ

a f
)(3)

(x) = ρ (ρ − 1) (ρ − 2)

Γ (ρ + 1)

x∫

a

(x − t)ρ−3
(
Dδ

a f
)
(t) dt, (72)

∀x ∈ [a, b], etc.
In general, if ρ − m + 1 > 0, then

(
D2γ

a f
)(m)

(x) (73)

= ρ (ρ − 1) (ρ − 2) . . . (ρ − m + 1)

Γ (ρ + 1)

x∫

a

(x − t)(ρ−m+1)−1
(
Dδ

a f
)
(t) dt

=
ρ (ρ − 1) (ρ − 2) . . . (ρ − m + 1) Γ (ρ − m + 1)

(
J (ρ−m+1)
a

(
Dδ

a f
))

(x)

Γ (ρ + 1)

= (
J (ρ−m+1)
a

(
Dδ

a f
))

(x) , (74)

∀x ∈ [a, b] .
That is, if ρ − m + 1 > 0, then

(
D2γ

a f
)(m)

(x) = (
J (ρ−m+1)
a

(
Dδ

a f
))

(x) , (75)

∀x ∈ [a, b] .
We notice that

(
D3γ

a f
)
(x) = (

Dγ
a

(
D2γ

a f
))

(x) =
(
Jm−γ
a

(
D2γ

a f
)(m)

)
(x) (76)

= (
Jm−γ
a J ρ−m+1

a

(
Dδ

a f
))

(x) = (
J ρ−γ+1
a

(
Dδ

a f
))

(x)

= (
J (n+1)α−2γ−1−γ+1
a

(
Dδ

a f
))

(x) = (
J (n+1)α−3γ
a

(
D(n+1)α

a f
))

(x) . (77)

That is, if m+2γ
n+1 < α < 1, we get

(
D3γ

a f
)
(x) = (

J (n+1)α−3γ
a

(
D(n+1)α

a f
))

(x) , (78)

∀x ∈ [a, b] .
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We have proved

Theorem 9 Under the assumptions of Theorem5, and when m+2γ
n+1 < α < 1, we

obtain that

(
D3γ

a f
)
(x) = 1

Γ ((n + 1) α − 3γ )

x∫

a

(x − t)(n+1)α−3γ−1
(
D(n+1)α

a f
)
(t) dt, (79)

∀x ∈ [a, b] , and
(
D3γ

a f
)

∈ C ([a, b]) .

In general, we derive:

Theorem 10 Under the assumptions of Theorem 5, and when m+(k−1)γ
n+1 < α < 1,

k ∈ N, we obtain that

(
Dkγ

a f
)
(x) = 1

Γ ((n + 1) α − kγ )

x∫

a

(x − t)(n+1)α−kγ−1
(
D(n+1)α

a f
)
(t) dt, (80)

∀x ∈ [a, b] , and
(
Dkγ

a f
)

∈ C ([a, b]) .

We need
Background Let f ∈ L1 ([a, b]), ν > 0. The right Riemann-Liouville fractional
integral operator of order ν is defined by

(
I ν
b− f

)
(x) = 1

Γ (ν)

b∫

x

(z − x)ν−1 f (z) dz, (81)

∀x ∈ [a, b]. We set I 0b− = I , the identity operator.
Let now f ∈ ACm ([a, b]), m ∈ N, with m = 	γ 
. We define the right Caputo

fractional derivative of order γ > 0, by

(
Dγ

b− f
)
(x) = (−1)m

Γ (m − γ )

b∫

x

(z − x)m−γ−1 f (m) (z) dz, (82)

i.e.

(
Dγ

b− f
)
(x) = (−1)m Im−γ

b− f (m) (x) , (83)

∀x ∈ [a, b] .Weset D0
b− f = f , and

(
Dm

b− f
)
(x) = (−1)m f (m) (x), form ∈ N,∀x ∈

[a, b] .
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By [2], when f ∈ C ([a, b]) and μ, ν > 0, we get that

Iμ

b− I
ν
b− f = Iμ+ν

b− f = I ν
b− I

μ

b− f, (84)

which is the semigroup property.
We need

Remark 11 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]). Assume that
Dkα

b− f ∈ C ([a, b]), for k = 0, 1, . . . , n + 1; n ∈ N. Suppose that
(
Diα

b− f
)
(b) = 0,

i = 0, 2, 3, . . . , n.

By (16) we obtain

f (x) = 1

Γ ((n + 1) α)

b∫

x

(z − x)(n+1)α−1
(
D(n+1)α

b− f
)

(z) dz, (85)

∀x ∈ [a, b] .
Call δ := (n + 1) α, then we have

f (x) = 1

Γ (δ)

b∫

x

(z − x)δ−1 (Dδ
b− f

)
(z) dz, (86)

∀x ∈ [a, b] .
By [5], when δ − 1 > 0, we get that there exists

f ′ (x) = (−1) (δ − 1)

Γ (δ)

b∫

x

(z − x)δ−2
(
Dδ

b− f
)
(z) dz, (87)

∀x ∈ [a, b] .
If δ − 2 > 0, then

f ′′ (x) = (−1)2 (δ − 1) (δ − 2)

Γ (δ)

b∫

x

(z − x)δ−3 (Dδ
b− f

)
(z) dz, (88)

∀x ∈ [a, b] .
In general, if δ − m > 0, equivalently, if α > m

n+1 , we get that there exists

f (m) (x) = (−1)m
∏m

j=1 (δ − j)

Γ (δ)

b∫

x

(z − x)δ−m−1
(
Dδ

b− f
)
(z) dz, (89)

∀x ∈ [a, b] .
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By [4], we get f (m) ∈ C ([a, b]) .

By (81), we derive

f (m) (x) = (−1)m
∏m

j=1 (δ − j) Γ (δ − m)
(
I δ−m
b−

(
Dδ

b− f
))

(x)

Γ (δ)

= (−1)m
(
I δ−m
b−

(
Dδ

b− f
))

(x) , (90)

∀x ∈ [a, b] .
We have proved that

f (m) (x) = (−1)m
(
I δ−m
b−

(
Dδ

b− f
))

(x) , (91)

∀x ∈ [a, b] .
We have that (case of γ < m)

(
Dγ

b− f
)
(x) = (−1)m

(
I m−γ

b− f (m)
)

(x)

= (−1)2m
(
I m−γ

b−
(
I δ−m
b−

(
Dδ

b− f
)))

(x)

=
(
I δ−γ

b−
(
Dδ

b− f
))

(x) , (92)

∀x ∈ [a, b] .
That is

(
Dγ

b− f
)
(x) =

(
I (n+1)α−γ

b−
(
D(n+1)α

b− f
))

(x) , (93)

∀x ∈ [a, b] .
I.e. we have found the representation formula:

(
Dγ

b− f
)
(x) = 1

Γ ((n + 1) α − γ )

b∫

x

(z − x)(n+1)α−γ−1
(
D(n+1)α

b− f
)

(z) dz, (94)

∀x ∈ [a, b] .
The last formula (94) is true under the assumption (n + 1) α > m, and since

m ≥ γ , it implies (n + 1) α > γ and (n + 1) α − γ > 0. Furthermore, by [4] , we
get that

(
Dγ

b− f
) ∈ C ([a, b]).

We have proved the following right fractional representation theorem:

Theorem 12 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]). Assume
that Dkα

b− f ∈ C ([a, b]), for 0, 1, . . . , n + 1; n ∈ N. Suppose that
(
Diα

b− f
)
(b) = 0,

i = 0, 2, 3, . . . , n. Let γ > 0 with 	γ 
 = m < n + 1, such that m < (n + 1) α,
equivalently, α > m

n+1 . Then
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(
Dγ

b− f
)
(x) = 1

Γ ((n + 1) α − γ )

b∫

x

(z − x)(n+1)α−γ−1
(
D(n+1)α

b− f
)

(z) dz, (95)

∀x ∈ [a, b] . Furthermore it holds
(
Dγ

b− f
) ∈ C ([a, b]) .

We make

Remark 13 Call λ := (n + 1) α − γ − 1, i.e. λ + 1 = (n + 1) α − γ , and call δ :=
(n + 1) α. Then we can write

(
Dγ

b− f
)
(x) = 1

Γ (λ + 1)

b∫

x

(z − x)λ
(
Dδ

b− f
)
(z) dz, (96)

∀ x ∈ [a, b] .
If λ > 0, then

(
Dγ

b− f
)′

(x) = (−1) λ

Γ (λ + 1)

b∫

x

(z − x)λ−1
(
Dδ

b− f
)
(z) dz, (97)

∀ x ∈ [a, b] .
If λ − 1 > 0, then

(
Dγ

b− f
)′′

(x) = (−1)2 λ (λ − 1)

Γ (λ + 1)

b∫

x

(z − x)λ−2
(
Dδ

b− f
)
(z) dz, (98)

∀ x ∈ [a, b] .
If λ − 2 > 0, then

(
Dγ

b− f
)(3)

(x) = (−1)3 λ (λ − 1) (λ − 2)

Γ (λ + 1)

b∫

x

(z − x)λ−3
(
Dδ

b− f
)
(z) dz, (99)

∀ x ∈ [a, b] , etc.
In general, if λ − m + 1 > 0, then

(
Dγ
b− f

)(m)
(x)

= (−1)m λ (λ − 1) (λ − 2) . . . (λ − m + 1)

Γ (λ + 1)

b∫

x

(z − x)(λ−m+1)−1
(
Dδ
b− f

)
(z) dz
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=
(−1)m λ (λ − 1) (λ − 2) . . . (λ − m + 1) Γ (λ − m + 1)

(
I (λ−m+1)
b−

(
Dδ
b− f

))
(x)

Γ (λ + 1)

= (−1)m
(
I (λ−m+1)
b−

(
Dδ
b− f

)
(x)
)

, (100)

∀ x ∈ [a, b] .
That is, if λ − m + 1 > 0, then

(
Dγ

b− f
)(m)

(x) = (−1)m
(
I (λ−m+1)
b−

(
Dδ

b− f
))

(x) , (101)

∀ x ∈ [a, b] .
We notice that

(
D2γ

b− f
)

(x) = (
Dγ

b−
(
Dγ

b− f
))

(x) = (−1)m
(
I m−γ

b−
(
Dγ

b− f
)(m)

)
(x)

= (−1)2m
(
I m−γ

b− I λ−m+1
b−

(
Dδ

b− f
))

(x) =
(
I λ−γ+1
b−

(
Dδ

b− f
))

(x) (102)

=
(
I (n+1)α−γ−1−γ+1
b−

(
Dδ

b− f
))

(x) =
(
I (n+1)α−2γ
b−

(
Dδ

b− f
))

(x) ,

∀ x ∈ [a, b] .
That is

(
D2γ

b− f
)

(x) =
(
I (n+1)α−2γ
b−

(
D(n+1)α

b− f
))

(x) , (103)

∀ x ∈ [a, b] , under the condition γ+m
n+1 < α < 1.

We have proved

Theorem 14 Under the assumptions of Theorem 12, and when γ+m
n+1 < α < 1, we

get that

(
D2γ

b− f
)

(x) = 1
Γ ((n+1)α−2γ )

b∫

x

(z − x)(n+1)α−2γ−1
(
D(n+1)α

b− f
)

(z) dz, (104)

∀ x ∈ [a, b] . Furthermore it holds
(
D2γ

b− f
)

∈ C ([a, b]) .

We make

Remark 15 Call ρ := (n + 1) α − 2γ − 1, i.e. ρ + 1 = (n + 1) α − 2γ , and call
again δ := (n + 1) α. Then we can write

(
D2γ

b− f
)

(x) = 1

Γ (ρ + 1)

b∫

x

(z − x)ρ
(
Dδ

b− f
)
(z) dz, (105)
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∀ x ∈ [a, b] .
If ρ > 0, then

(
D2γ

b− f
)′

(x) = (−1) ρ

Γ (ρ + 1)

b∫

x

(z − x)ρ−1
(
Dδ

b− f
)
(z) dz, (106)

∀ x ∈ [a, b] .
If ρ − 1 > 0, then

(
D2γ

b− f
)′′

(x) = (−1)2 ρ (ρ − 1)

Γ (ρ + 1)

b∫

x

(z − x)ρ−2
(
Dδ

b− f
)
(z) dz, (107)

∀ x ∈ [a, b] .
If ρ − 2 > 0, then

(
D2γ

b− f
)(3)

(x) = (−1)3ρ(ρ−1)(ρ−2)
Γ (ρ+1)

b∫

x

(z − x)ρ−3
(
Dδ

b− f
)
(z) dz, (108)

∀ x ∈ [a, b] , etc.
In general, if ρ − m + 1 > 0, then

(
D2γ
b− f

)(m)
(x) (109)

= (−1)m ρ (ρ − 1) (ρ − 2) . . . (ρ − m + 1)

Γ (ρ + 1)

b∫

x

(z − x)(ρ−m+1)−1
(
Dδ
b− f

)
(z) dz

=
(−1)m ρ (ρ − 1) (ρ − 2) . . . (ρ − m + 1) Γ (ρ − m + 1)

(
I (ρ−m+1)
b−

(
Dδ
b− f

))
(x)

Γ (ρ + 1)

= (−1)m
(
I (ρ−m+1)
b−

(
Dδ
b− f

)
(x)
)

, (110)

∀ x ∈ [a, b] .
That is, if ρ − m + 1 > 0, then

(
D2γ

b− f
)(m)

(x) = (−1)m
(
I (ρ−m+1)
b−

(
Dδ

b− f
))

(x) , (111)

∀ x ∈ [a, b] .
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We notice that

(
D3γ

b− f
)

(x) =
(
Dγ

b−
(
D2γ

b− f
))

(x) = (−1)m
(
I m−γ

b−
(
D2γ

b− f
)(m)

)
(x)

= (−1)2m
(
I m−γ

b− I ρ−m+1
b−

(
Dδ

b− f
))

(x) =
(
I ρ−γ+1
b−

(
Dδ

b− f
))

(x) (112)

=
(
I (n+1)α−2γ−1−γ+1
b−

(
D(n+1)α

b− f
))

(x) =
(
I (n+1)α−3γ
b−

(
D(n+1)α

b− f
))

(x) ,

∀ x ∈ [a, b] .
That is, if m+2γ

n+1 < α < 1, we get

(
D3γ

b− f
)

(x) =
(
I (n+1)α−3γ
b−

(
D(n+1)α

b− f
))

(x) , (113)

∀ x ∈ [a, b] .

We have proved

Theorem 16 Under the assumptions of Theorem 12, and when m+2γ
n+1 < α < 1, we

get that:

(
D3γ

b− f
)

(x) = 1
Γ ((n+1)α−3γ )

b∫

x

(z − x)(n+1)α−3γ−1
(
D(n+1)α

b− f
)

(z) dz, (114)

∀ x ∈ [a, b] , and
(
D3γ

b− f
)

∈ C ([a, b]) .

In general, we derive:

Theorem 17 Under the assumptions of Theorem 12, and when m+(k−1)γ
n+1 < α < 1,

k ∈ N, we get that:

(
Dkγ

b− f
)

(x) = 1
Γ ((n+1)α−kγ )

b∫

x

(z − x)(n+1)α−kγ−1
(
D(n+1)α

b− f
)

(z) dz, (115)

∀ x ∈ [a, b] , and
(
Dkγ

b− f
)

∈ C ([a, b]) .

Next we present a very general left fractional Opial type inequality:

Theorem 18 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]). Assume
that Dkα

a f ∈ C ([a, b]), k = 0, 1, . . . , n + 1; n ∈ N. Suppose that
(
Diα

a f
)
(a) = 0,

for i = 0, 2, 3, . . . , n. Let γ > 0 with 	γ 
 = m, and p, q > 1 : 1
p + 1

q = 1. We fur-
ther assume that (k ∈ N)
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1 > α > max

(
m + (k − 1) γ

n + 1
,
kγ q + 1

(n + 1) q

)
. (116)

Then

x∫

a

∣∣(Dkγ
a f

)
(w)

∣∣ ∣∣D(n+1)α
a f (w)

∣∣ dw

≤ (x−a)
((n+1)α−kγ−1)+ 2

p

2
1
q Γ ((n+1)α−kγ )[(p((n+1)α−kγ−1)+1)(p((n+1)α−kγ−1)+2)]

1
p

·
⎛

⎝
x∫

a

∣∣(D(n+1)α
a f

)
(w)

∣∣q dw

⎞

⎠

2
q

, (117)

∀ x ∈ [a, b] .

Proof Assumption (116) implies

p ((n + 1) α − kγ − 1) + 1 > 0. (118)

By (80) and Hölder’s inequality we have

∣∣(Dkγ
a f

)
(x)
∣∣

≤ 1
Γ ((n+1)α−kγ )

x∫

a

(x − t)(n+1)α−kγ−1
∣
∣(D(n+1)α

a f
)
(t)
∣
∣ dt

≤ 1
Γ ((n+1)α−kγ )

⎛

⎝
x∫

a

(x − t)p((n+1)α−kγ−1) dt

⎞

⎠

1
p
⎛

⎝
x∫

a

∣∣(D(n+1)α
a f

)
(t)
∣∣q dt

⎞

⎠

1
q

= 1
Γ ((n+1)α−kγ )

(x−a)
p((n+1)α−kγ−1)+1

p

(p((n+1)α−kγ−1)+1)
1
p

⎛

⎝
x∫

a

∣∣(D(n+1)α
a f

)
(t)
∣∣q dt

⎞

⎠

1
q

, (119)

∀ x ∈ [a, b] . We have proved that

∣∣
∣
(
Dkγ
a f

)
(x)
∣∣
∣ (120)

≤ (x − a)
p((n+1)α−kγ−1)+1

p

Γ ((n + 1) α − kγ ) (p ((n + 1) α − kγ − 1) + 1)
1
p

⎛

⎝
x∫

a

∣∣
∣
(
D(n+1)α
a f

)
(t)
∣∣
∣
q
dt

⎞

⎠

1
q

,

∀ x ∈ [a, b] . Call
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z (x) :=
x∫

a

∣∣(D(n+1)α
a f

)
(t)
∣∣q dt, (121)

z (a) = 0. Thus

z′ (x) = ∣∣(D(n+1)α
a f

)
(x)
∣∣q ≥ 0, (122)

and

(
z′ (x)

) 1
q = ∣

∣(D(n+1)α
a f

)
(x)
∣
∣ ≥ 0, ∀x ∈ [a, b] .

Consequently, we get

∣∣(Dkγ
a f

)
(w)

∣∣ ∣∣D(n+1)α
a f (w)

∣∣ (123)

≤ (w − a)
p((n+1)α−kγ−1)+1

p

Γ ((n + 1) α − kγ ) (p ((n + 1) α − kγ − 1) + 1)
1
p

(
z (w) z′ (w)

) 1
q ,

∀ w ∈ [a, b] . Then it holds

x∫

a

∣∣(Dkγ
a f

)
(w)

∣∣ ∣∣D(n+1)α
a f (w)

∣∣ dw

≤ 1

Γ ((n + 1) α − kγ ) (p ((n + 1) α − kγ − 1) + 1)
1
p

·
x∫

a

(w − a)
p((n+1)α−kγ−1)+1

p
(
z (w) z′ (w)

) 1
q dw

≤ 1

Γ ((n + 1) α − kγ ) (p ((n + 1) α − kγ − 1) + 1)
1
p

(124)

·
⎛

⎝
x∫

a

(w − a)(p((n+1)α−kγ−1)+1) dw

⎞

⎠

1
p
⎛

⎝
x∫

a

z (w) z′ (w) dw

⎞

⎠

1
q

= (x−a)
p((n+1)α−kγ−1)+2

p

Γ ((n+1)α−kγ )[(p((n+1)α−kγ−1)+1)(p((n+1)α−kγ−1)+2)]
1
p

·
(
z2 (x)

2

) 1
q
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= (x−a)
((n+1)α−kγ−1)+ 2

p

2
1
q Γ ((n+1)α−kγ )[(p((n+1)α−kγ−1)+1)(p((n+1)α−kγ−1)+2)]

1
p

·
⎛

⎝
x∫

a

∣∣(D(n+1)α
a f

)
(w)

∣∣q dw

⎞

⎠

2
q

, (125)

∀ x ∈ [a, b] , proving the claim.

Next we present a very general right fractional Opial type inequality:

Theorem 19 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]). Assume
that Dkα

b− f ∈ C ([a, b]), k = 0, 1, . . . , n + 1; n ∈ N. Suppose that
(
Diα

b− f
)
(b) =

0, for i = 0, 2, 3, . . . , n. Let γ > 0 with 	γ 
 = m, and p, q > 1 : 1
p + 1

q = 1. We
further assume that (k ∈ N)

1 > α > max

(
m + (k − 1) γ

n + 1
,
kγ q + 1

(n + 1) q

)
. (126)

Then

b∫

x

∣∣∣
(
Dkγ

b− f
)

(w)

∣∣∣
∣∣∣D(n+1)α

b− f (w)

∣∣∣ dw

≤ (b−x)((n+1)α−kγ−1)+ 2
p

2
1
q Γ ((n+1)α−kγ )[(p((n+1)α−kγ−1)+1)(p((n+1)α−kγ−1)+2)]

1
p

·
⎛

⎝
b∫

x

∣∣∣
(
D(n+1)α

b− f
)

(w)

∣∣∣
q
dw

⎞

⎠

2
q

, (127)

∀ x ∈ [a, b] .

Proof Assumption (126) implies

p ((n + 1) α − kγ − 1) + 1 > 0. (128)

By (115) and Hölder’s inequality we have

∣∣∣
(
Dkγ

b− f
)

(x)
∣∣∣

≤ 1

Γ ((n + 1) α − kγ )

b∫

x

(t − x)(n+1)α−kγ−1
∣∣∣
(
D(n+1)α

b− f
)

(t)
∣∣∣ dt
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≤ 1
Γ ((n+1)α−kγ )

⎛

⎝
b∫

x

(t − x)p((n+1)α−kγ−1) dt

⎞

⎠

1
p
⎛

⎝
b∫

x

∣∣∣
(
D(n+1)α

b− f
)

(t)
∣∣∣
q
dt

⎞

⎠

1
q

= 1
Γ ((n+1)α−kγ )

(b−x)
p((n+1)α−kγ−1)+1

p

(p((n+1)α−kγ−1)+1)
1
p

⎛

⎝
b∫

x

∣∣∣
(
D(n+1)α

b− f
)

(t)
∣∣∣
q
dt

⎞

⎠

1
q

, (129)

∀ x ∈ [a, b] . We have proved that

∣∣
∣
(
Dkγ
b− f

)
(x)
∣∣
∣ (130)

≤ (b − x)
p((n+1)α−kγ−1)+1

p

Γ ((n + 1) α − kγ ) (p ((n + 1) α − kγ − 1) + 1)
1
p

⎛

⎜
⎝

b∫

x

∣
∣∣
(
D(n+1)α
b− f

)
(t)
∣
∣∣
q
dt

⎞

⎟
⎠

1
q

,

∀ x ∈ [a, b] . Call

z (x) :=
b∫

x

∣∣∣
(
D(n+1)α

b− f
)

(t)
∣∣∣
q
dt, (131)

z (b) = 0. Thus

z′ (x) = −
∣∣∣
(
D(n+1)α

b− f
)

(x)
∣∣∣
q ≤ 0, (132)

and

(−z′ (x)
) 1

q =
∣∣∣
(
D(n+1)α

b− f
)

(x)
∣∣∣ ≥ 0, ∀x ∈ [a, b] .

Consequently, we get

∣∣∣
(
Dkγ

b− f
)

(w)

∣∣∣
∣∣∣D(n+1)α

b− f (w)

∣∣∣ (133)

≤ (b − w)
p((n+1)α−kγ−1)+1

p

Γ ((n + 1) α − kγ ) (p ((n + 1) α − kγ − 1) + 1)
1
p

(
z (w)

(−z′ (w)
)) 1

q ,

∀ w ∈ [a, b] . Then it holds
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b∫

x

∣∣∣
(
Dkγ

b− f
)

(w)

∣∣∣
∣∣∣D(n+1)α

b− f (w)

∣∣∣ dw

≤ 1

Γ ((n + 1) α − kγ ) (p ((n + 1) α − kγ − 1) + 1)
1
p

·
b∫

x

(b − w)
p((n+1)α−kγ−1)+1

p
(
z (w)

(−z′ (w)
)) 1

q dw

≤ 1

Γ ((n + 1) α − kγ ) (p ((n + 1) α − kγ − 1) + 1)
1
p

(134)

·
⎛

⎝
b∫

x

(b − w)(p((n+1)α−kγ−1)+1) dw

⎞

⎠

1
p
⎛

⎝−
b∫

x

z (w) z′ (w) dw

⎞

⎠

1
q

= (b−x)
p((n+1)α−kγ−1)+2

p

Γ ((n+1)α−kγ )[(p((n+1)α−kγ−1)+1)(p((n+1)α−kγ−1)+2)]
1
p

·
(
z2 (x)

2

) 1
q

= (b−x)((n+1)α−kγ−1)+ 2
p

2
1
q Γ ((n+1)α−kγ )[(p((n+1)α−kγ−1)+1)(p((n+1)α−kγ−1)+2)]

1
p

(135)

·
⎛

⎝
b∫

x

∣
∣∣
(
D(n+1)α

b− f
)

(w)

∣
∣∣
q
dw

⎞

⎠

2
q

,

∀ x ∈ [a, b] , proving the claim.

It follows a reverse general left fractional Opial type inequality:

Theorem 20 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]). Assume
that Dkα

a f ∈ C ([a, b]), k = 0, 1, . . . , n + 1; n ∈ N. Suppose that
(
Diα

a f
)
(a) = 0,

for i = 0, 2, 3, . . . , n. Let γ > 0with 	γ 
 = m, and 0 < p < 1, q < 0 : 1
p + 1

q = 1.

We assume that
(
D(n+1)α

a f
)
is of fixed sign and nowhere zero. We finally assume that

(k ∈ N)

1 > α >
m + (k − 1) γ

n + 1
. (136)
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Then

x∫

a

∣∣(Dkγ
a f

)
(w)

∣∣ ∣∣D(n+1)α
a f (w)

∣∣ dw

≥ (x−a)
((n+1)α−kγ−1)+ 2

p

2
1
q Γ ((n+1)α−kγ )[(p((n+1)α−kγ−1)+1)(p((n+1)α−kγ−1)+2)]

1
p

·
⎛

⎝
x∫

a

∣∣(D(n+1)α
a f

)
(w)

∣∣q dw

⎞

⎠

2
q

, (137)

∀ x ∈ [a, b] .

Proof Clearly we have

p ((n + 1) α − kγ − 1) + 1 > 0.

By (80), we get that

∣∣(Dkγ
a f

)
(x)
∣∣ = 1

Γ ((n+1)α−kγ )

x∫

a

(x − t)(n+1)α−kγ−1
∣∣(D(n+1)α

a f
)
(t)
∣∣ dt, (138)

∀ x ∈ [a, b] . Then, by reverse Hölder’s inequality we obtain

∣∣(Dkγ
a f

)
(x)
∣∣

≥ 1
Γ ((n+1)α−kγ )

⎛

⎝
x∫

a

(x − t)p((n+1)α−kγ−1) dt

⎞

⎠

1
p
⎛

⎝
x∫

a

∣∣(D(n+1)α
a f

)
(t)
∣∣q dt

⎞

⎠

1
q

= 1
Γ ((n+1)α−kγ )

(x−a)
p((n+1)α−kγ−1)+1

p

(p((n+1)α−kγ−1)+1)
1
p

⎛

⎝
x∫

a

∣∣(D(n+1)α
a f

)
(t)
∣∣q dt

⎞

⎠

1
q

, (139)

∀ x ∈ [a, b] . Call

z (w) :=
w∫

a

∣∣(D(n+1)α
a f

)
(t)
∣∣q dt, (140)

all a ≤ w ≤ x; z (a) = 0, z (w) > 0 on (a, x]. Thus

z′ (w) = ∣
∣(D(n+1)α

a f
)
(w)

∣
∣q > 0, (141)
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all a < w ≤ x . Hence

(
z′ (w)

) 1
q = ∣∣(D(n+1)α

a f
)
(w)

∣∣ > 0, (142)

all a < w ≤ x . Consequently we get

∣∣(Dkγ
a f

)
(w)

∣∣ ∣∣D(n+1)α
a f (w)

∣∣ (143)

≥ 1

Γ ((n + 1) α − kγ )

(w − a)
p((n+1)α−kγ−1)+1

p

(p ((n + 1) α − kγ − 1) + 1)
1
p

(
z (w) z′ (w)

) 1
q ,

all a < w ≤ x . Let a < θ ≤ w ≤ x and θ ↓ a. Then, it holds

x∫

a

∣∣(Dkγ
a f

)
(w)

∣∣ ∣∣D(n+1)α
a f (w)

∣∣ dw

= lim
θ↓a

x∫

θ

∣∣(Dkγ
a f

)
(w)

∣∣ ∣∣D(n+1)α
a f (w)

∣∣ dw

≥ 1

Γ ((n + 1) α − kγ ) (p ((n + 1) α − kγ − 1) + 1)
1
p

· lim
θ↓a

x∫

θ

(w − a)
p((n+1)α−kγ−1)+1

p
(
z (w) z′ (w)

) 1
q dw

≥ 1

Γ ((n + 1) α − kγ ) (p ((n + 1) α − kγ − 1) + 1)
1
p

(144)

· lim
θ↓a

⎛

⎝
x∫

θ

(w − a)(p((n+1)α−kγ−1)+1) dw

⎞

⎠

1
p

lim
θ↓a

⎛

⎝
x∫

θ

z (w) z′ (w) dw

⎞

⎠

1
q

= 1

Γ ((n + 1) α − kγ ) (p ((n + 1) α − kγ − 1) + 1)
1
p 2

1
q

·
⎛

⎝
x∫

a

(w − a)(p((n+1)α−kγ−1)+1) dw

⎞

⎠

1
p

lim
θ↓a

(
z2 (x) − z2 (θ)

) 1
q

= 1

2
1
q Γ ((n + 1) α − kγ ) (p ((n + 1) α − kγ − 1) + 1)

1
p

· (x − a)
p((n+1)α−kγ−1)+2

p

(p ((n + 1) α − kγ − 1) + 2)
1
p

(z (x))
2
q . (145)
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The theorem is proved.

It follows a reverse general right fractional Opial type inequality:

Theorem 21 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]). Assume
that Dkα

b− f ∈ C ([a, b]), k = 0, 1, . . . , n + 1; n ∈ N. Suppose that
(
Diα

b− f
)
(b) = 0,

for i = 0, 2, 3, . . . , n. Let γ > 0with 	γ 
 = m, and 0 < p < 1, q < 0 : 1
p + 1

q = 1.

We assume that
(
D(n+1)α

b− f
)
is of fixed sign and nowhere zero. We finally assume

that (k ∈ N)

1 > α >
m + (k − 1) γ

n + 1
. (146)

Then

b∫

x

∣∣∣
(
Dkγ

b− f
)

(w)

∣∣∣
∣∣∣D(n+1)α

b− f (w)

∣∣∣ dw

≥ (b−x)((n+1)α−kγ−1)+ 2
p

2
1
q Γ ((n+1)α−kγ )[(p((n+1)α−kγ−1)+1)(p((n+1)α−kγ−1)+2)]

1
p

(147)

·
⎛

⎝
b∫

x

∣∣
∣
(
D(n+1)α

b− f
)

(w)

∣∣
∣
q
dw

⎞

⎠

2
q

,

∀ x ∈ [a, b] .

Proof Similar to proof of Theorem 20, using (115). As such it is omitted.

Two extreme fractional Opial type inequalities follow (case p = 1, q = ∞).

Theorem 22 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]). Assume
that Dkα

a f ∈ C ([a, b]), k = 0, 1, . . . , n + 1; n ∈ N. Suppose that
(
Diα

a f
)
(a) = 0,

for i = 0, 2, 3, . . . , n. Let γ > 0 with 	γ 
 = m. We further assume that (k ∈ N)

1 > α >
m + (k − 1) γ

n + 1
. (148)

Then

x∫

a

∣∣(Dkγ
a f

)
(w)

∣∣ ∣∣(D(n+1)α
a f

)
(w)

∣∣ dw ≤ (x−a)(n+1)α−kγ+1

Γ ((n+1)α−kγ+2)

∥∥D(n+1)α
a f

∥∥2∞ , (149)

∀x ∈ [a, b] .
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Proof By (80), we get

∣∣(Dkγ
a f

)
(x)
∣∣

≤ 1

Γ ((n + 1) α − kγ )

⎛

⎝
x∫

a

(x − t)(n+1)α−kγ−1 dt

⎞

⎠
∥
∥D(n+1)α

a f
∥
∥∞

= 1

Γ ((n + 1) α − kγ )

(x − a)(n+1)α−kγ

((n + 1) α − kγ )

∥∥D(n+1)α
a f

∥∥∞ (150)

= (x − a)(n+1)α−kγ

Γ ((n + 1) α − kγ + 1)

∥∥D(n+1)α
a f

∥∥∞ .

Hence we obtain

∣
∣(Dkγ

a f
)
(w)

∣
∣
∣
∣(D(n+1)α

a f
)
(w)

∣
∣ ≤ (w−a)(n+1)α−kγ

Γ ((n+1)α−kγ+1)

∥
∥D(n+1)α

a f
∥
∥2∞ , (151)

∀ w ∈ [a, x] . Integrating (151) over [a, x], we derive (149).

Theorem 23 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]). Assume
that Dkα

b− f ∈ C ([a, b]), k = 0, 1, . . . , n + 1; n ∈ N. Suppose that
(
Diα

b− f
)
(b) = 0,

for i = 0, 2, 3, . . . , n. Let γ > 0 with 	γ 
 = m. We further assume that (k ∈ N)

1 > α >
m + (k − 1) γ

n + 1
. (152)

Then

b∫

x

∣∣
∣
(
Dkγ

b− f
)

(w)

∣∣
∣
∣∣
∣
(
D(n+1)α

b− f
)

(w)

∣∣
∣ dw ≤ (b−x)(n+1)α−kγ+1

Γ ((n+1)α−kγ+2)

∥∥
∥D(n+1)α

b− f
∥∥
∥
2

∞
, (153)

∀x ∈ [a, b] .

Proof Similar to the proof of Theorem 22, by using (115). As such it is omitted.

Next we present a left fractional Hilbert-Pachpatte type inequality:

Theorem 24 Here i = 1, 2. Let 0 < αi < 1, fi : [ai , bi ] → R such that f ′
i ∈ L∞

([ai , bi ]). Assume that Dkiαi
ai fi ∈ C ([ai , bi ]), ki = 0, 1, . . . , ni + 1;ni ∈ N. Suppose

that
(
D jiαi

ai fi
)

(ai ) = 0, for ji = 0, 2, 3, . . . , ni . Let γi > 0 with 	γi
 = mi , and

p, q > 1 : 1
p + 1

q = 1. We further assume that (ki ∈ N)
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1 > α1 > max

(
m1 + (k1 − 1) γ1

n1 + 1
,
k1γ1q + 1

(n1 + 1) q

)
. (154)

and

1 > α2 > max

(
m2 + (k2 − 1) γ2

n2 + 1
,
k2γ2 p + 1

(n2 + 1) p

)
. (155)

Then

b1∫

a1

b2∫

a2

∣∣∣
(
Dk1γ1

a1 f1
)

(x1)
∣∣∣
∣∣∣
(
Dk2γ2

a2 f2
)

(x2)
∣∣∣ dx1dx2

[
(x1−a1)

p((n1+1)α1−k1γ1−1)+1

p(p((n1+1)α1−k1γ1−1)+1) + (x2−a2)
q((n2+1)α2−k2γ2−1)+1

q(q((n2+1)α2−k2γ2−1)+1)

]

≤ (b1 − a1) (b2 − a2)

Γ ((n1 + 1) α1 − k1γ1) Γ ((n2 + 1) α2 − k2γ2)
(156)

·
⎛

⎝
b1∫

a1

∣
∣D(n1+1)α1

a1 f1 (t1)
∣
∣q dt1

⎞

⎠

1
q
⎛

⎝
b2∫

a2

∣
∣D(n2+1)α2

a2 f2 (t2)
∣
∣p dt2

⎞

⎠

1
p

.

Proof We have from (80) that

(
Dkiγi

ai fi
)
(xi ) (157)

= 1

Γ ((ni + 1) αi − kiγi )

xi∫

ai

(xi − ti )
(ni+1)αi−kiγi−1

(
D(ni+1)αi

ai fi
)
(ti ) dti ,

where i = 1, 2; xi ∈ [ai , bi ], with D
kiγi
ai fi ∈ C ([ai , bi ]) .Hence byHölder’s inequal-

ity we get:

∣∣(Dk1γ1
a1 f1

)
(x1)

∣∣ (158)

≤ 1

Γ ((n1 + 1) α1 − k1γ1)

⎛

⎝
x1∫

a1

(x1 − t1)
p((n1+1)α1−k1γ1−1) dt1

⎞

⎠

1
p

·
⎛

⎝
x1∫

a1

∣∣D(n1+1)α1
a1 f1 (t1)

∣∣q dt1

⎞

⎠

1
q

,

and
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∣∣(Dk2γ2
a2 f2

)
(x2)

∣∣ (159)

≤ 1

Γ ((n2 + 1) α2 − k2γ2)

⎛

⎝
x2∫

a2

(x2 − t2)
q((n2+1)α2−k2γ2−1) dt2

⎞

⎠

1
q

·
⎛

⎝
x2∫

a2

∣∣D(n2+1)α2
a2 f2 (t2)

∣∣p dt2

⎞

⎠

1
p

.

So we have

∣∣(Dk1γ1
a1 f1

)
(x1)

∣∣ (160)

≤ 1

Γ ((n1 + 1) α1 − k1γ1)

(
(x1 − a1)

p((n1+1)α1−k1γ1−1)+1

(p ((n1 + 1) α1 − k1γ1 − 1) + 1)

) 1
p

·
⎛

⎝
x1∫

a1

∣∣D(n1+1)α1
a1 f1 (t1)

∣∣q dt1

⎞

⎠

1
q

,

and

∣∣(Dk2γ2
a2 f2

)
(x2)

∣∣ (161)

≤ 1

Γ ((n2 + 1) α2 − k2γ2)

(
(x2 − a2)

q((n2+1)α2−k2γ2−1)+1

(q ((n2 + 1) α2 − k2γ2 − 1) + 1)

) 1
q

·
⎛

⎝
x2∫

a2

∣
∣D(n2+1)α2

a2 f2 (t2)
∣
∣p dt2

⎞

⎠

1
p

.

Hence

∣∣(Dk1γ1
a1 f1

)
(x1)

∣∣ ∣∣(Dk2γ2
a2 f2

)
(x2)

∣∣

≤ 1

Γ ((n1 + 1) α1 − k1γ1) Γ ((n2 + 1) α2 − k2γ2)
(162)

·
(

(x1 − a1)
p((n1+1)α1−k1γ1−1)+1

(p ((n1 + 1) α1 − k1γ1 − 1) + 1)

) 1
p
(

(x2 − a2)
q((n2+1)α2−k2γ2−1)+1

(q ((n2 + 1) α2 − k2γ2 − 1) + 1)

) 1
q

·
⎛

⎝
x1∫

a1

∣
∣D(n1+1)α1

a1 f1 (t1)
∣
∣q dt1

⎞

⎠

1
q
⎛

⎝
x2∫

a2

∣
∣D(n2+1)α2

a2 f2 (t2)
∣
∣p dt2

⎞

⎠

1
p
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(using Young’s inequality for a, b ≥ 0, a
1
p b

1
q ≤ a

p + b
q )

≤ 1

Γ ((n1 + 1) α1 − k1γ1) Γ ((n2 + 1) α2 − k2γ2)
(163)

·
[(

(x1 − a1)p((n1+1)α1−k1γ1−1)+1

p (p ((n1 + 1) α1 − k1γ1 − 1) + 1)

)

+
(

(x2 − a2)q((n2+1)α2−k2γ2−1)+1

q (q ((n2 + 1) α2 − k2γ2 − 1) + 1)

)]

·
⎛

⎝
x1∫

a1

∣
∣
∣D(n1+1)α1

a1 f1 (t1)
∣
∣
∣
q
dt1

⎞

⎠

1
q
⎛

⎝
x2∫

a2

∣
∣
∣D(n2+1)α2

a2 f2 (t2)
∣
∣
∣
p
dt2

⎞

⎠

1
p

.

So far we have
∣∣
∣
(
Dk1γ1

a1 f1
)

(x1)
∣∣
∣
∣∣
∣
(
Dk2γ2

a2 f2
)

(x2)
∣∣
∣

[(
(x1−a1)

p((n1+1)α1−k1γ1−1)+1

p(p((n1+1)α1−k1γ1−1)+1)

)
+
(

(x2−a2)
q((n2+1)α2−k2γ2−1)+1

q(q((n2+1)α2−k2γ2−1)+1)

)]

≤ 1

Γ ((n1 + 1) α1 − k1γ1) Γ ((n2 + 1) α2 − k2γ2)
(164)

·
⎛

⎝
x1∫

a1

∣∣D(n1+1)α1
a1 f1 (t1)

∣∣q dt1

⎞

⎠

1
q
⎛

⎝
x2∫

a2

∣∣D(n2+1)α2
a2 f2 (t2)

∣∣p dt2

⎞

⎠

1
p

.

The denominator in (164) can be zero only when x1 = a1 and x2 = a2. Therefore we
obtain

b1∫

a1

b2∫

a2

∣∣∣
(
Dk1γ1

a1 f1
)

(x1)
∣∣∣
∣∣∣
(
Dk2γ2

a2 f2
)

(x2)
∣∣∣ dx1dx2

[(
(x1−a1)

p((n1+1)α1−k1γ1−1)+1

p(p((n1+1)α1−k1γ1−1)+1)

)
+
(

(x2−a2)
q((n2+1)α2−k2γ2−1)+1

q(q((n2+1)α2−k2γ2−1)+1)

)]

≤ 1

Γ ((n1 + 1) α1 − k1γ1) Γ ((n2 + 1) α2 − k2γ2)
(165)

·
⎛

⎜
⎝

b1∫

a1

⎛

⎝
x1∫

a1

∣∣D(n1+1)α1
a1 f1 (t1)

∣∣q dt1

⎞

⎠

1
q

dx1

⎞

⎟
⎠

·
⎛

⎜
⎝

b2∫

a2

⎛

⎝
x2∫

a2

∣
∣D(n2+1)α2

a2 f2 (t2)
∣
∣p dt2

⎞

⎠

1
p

dx2

⎞

⎟
⎠

≤ 1

Γ ((n1 + 1) α1 − k1γ1) Γ ((n2 + 1) α2 − k2γ2)
(166)

·
⎛

⎜
⎝

b1∫

a1

⎛

⎝
b1∫

a1

∣
∣D(n1+1)α1

a1 f1 (t1)
∣
∣q dt1

⎞

⎠

1
q

dx1

⎞

⎟
⎠
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·
⎛

⎜
⎝

b2∫

a2

⎛

⎝
b2∫

a2

∣∣D(n2+1)α2
a2 f2 (t2)

∣∣p dt2

⎞

⎠

1
p

dx2

⎞

⎟
⎠

= (b1 − a1) (b2 − a2)

Γ ((n1 + 1) α1 − k1γ1) Γ ((n2 + 1) α2 − k2γ2)
(167)

·
⎛

⎝
b1∫

a1

∣∣D(n1+1)α1
a1 f1 (t1)

∣∣q dt1

⎞

⎠

1
q
⎛

⎝
b2∫

a2

∣∣D(n2+1)α2
a2 f2 (t2)

∣∣p dt2

⎞

⎠

1
p

.

The theorem is proved.

Next we present a right fractional Hilbert-Pachpatte type inequality:

Theorem 25 Here i = 1, 2. Let 0 < αi < 1, fi : [ai , bi ] → R such that f ′
i ∈ L∞

([ai , bi ]). Assume that D
kiαi
bi− fi ∈ C ([ai , bi ]), ki = 0, 1, . . . , ni + 1;ni ∈ N. Suppose

that
(
D jiαi

bi− fi
)

(bi ) = 0, for ji = 0, 2, 3, . . . , ni . Let γi > 0 with 	γi
 = mi , and

p, q > 1 : 1
p + 1

q = 1. We further assume that (ki ∈ N)

1 > α1 > max

(
m1 + (k1 − 1) γ1

n1 + 1
,
k1γ1q + 1

(n1 + 1) q

)
. (168)

and

1 > α2 > max

(
m2 + (k2 − 1) γ2

n2 + 1
,
k2γ2 p + 1

(n2 + 1) p

)
. (169)

Then

b1∫

a1

b2∫

a2

∣∣
∣
(
Dk1γ1

b1− f1
)

(x1)
∣∣
∣
∣∣
∣
(
Dk2γ2

b2− f2
)

(x2)
∣∣
∣ dx1dx2

[
(b1−x1)

p((n1+1)α1−k1γ1−1)+1

p(p((n1+1)α1−k1γ1−1)+1) + (b2−x2)
q((n2+1)α2−k2γ2−1)+1

q(q((n2+1)α2−k2γ2−1)+1)

]

≤ (b1 − a1) (b2 − a2)

Γ ((n1 + 1) α1 − k1γ1) Γ ((n2 + 1) α2 − k2γ2)
(170)

·
⎛

⎝
b1∫

a1

∣∣∣D(n1+1)α1
b1− f1 (t1)

∣∣∣
q
dt1

⎞

⎠

1
q
⎛

⎝
b2∫

a2

∣∣∣D(n2+1)α2
b2− f2 (t2)

∣∣∣
p
dt2

⎞

⎠

1
p

.

Proof Similar to the proof of Theorem 24, using (115). As such it is omitted.
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We give the following fractional Ostrowski type inequalities:

Theorem 26 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]), y ∈ [a, b]
is fixed. We assume that Dkα

y f , Dkα
y− f ∈ C ([a, b]), k = 0, 1, 2, . . . , n + 1; n ∈ N.

Let p, q > 1 : 1
p + 1

q = 1. Set

Δ( f, y) := f (y) − 1

b − a

b∫

a

f (x) dx +
n∑

i=2

1

(b − a) Γ (iα + 2)

· [(Diα
y− f

)
(y) (y − a)iα+1 + (

Diα
y f

)
(y) (b − y)iα+1

]
. (171)

Then

(i)

|Δ( f, y)|
≤ 1

Γ ((n + 1) α + 2) (b − a)
(172)

·
[
(b − y)(n+1)α+1

∥∥D(n+1)α
y f

∥∥
∞ + (y − a)(n+1)α+1

∥∥∥D(n+1)α
y− f

∥∥∥∞

]
,

(i i) if 1
n+1 ≤ α < 1, we derive:

|Δ( f, y)|
≤ 1

Γ ((n + 1) α) (b − a)
(173)

·
[
(b − y)(n+1)α

∥∥D(n+1)α
y f

∥∥
1,[y,b]

+ (y − a)(n+1)α
∥∥∥D(n+1)α

y− f
∥∥∥
1,[a,y]

]
,

(i i i) if 1
(n+1)q < α < 1, we obtain:

|Δ ( f, y)| (174)

≤ 1

Γ ((n + 1) α) (b − a)
(
(n + 1) α + 1

p

)
(p ((n + 1) α − 1) + 1)

1
p

·
[
(b − y)(n+1)α+ 1

p

∥
∥∥D(n+1)α

y f
∥
∥∥
q,[y,b]

+ (y − a)
(n+1)α+ 1

p

∥
∥∥D(n+1)α

y− f
∥
∥∥
q,[a,y]

]
.

Proof (i) By (20) and (21), we notice that

Δ( f, y) = R1 (y)
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and

|R1 (y)|

≤ 1
Γ ((n+1)α)(b−a)

⎡

⎣

⎛

⎝
y∫

a

⎛

⎝
y∫

x

(t − x)(n+1)α−1 dt

⎞

⎠ dx

⎞

⎠
∥∥∥D(n+1)α

y− f
∥∥∥∞

+
⎛

⎝
b∫

y

⎛

⎝
x∫

y

(x − t)(n+1)α−1 dt

⎞

⎠ dx

⎞

⎠
∥∥D(n+1)α

y f
∥∥

∞

⎤

⎦

= 1
Γ ((n+1)α)(b−a)

[
(y − a)(n+1)α+1

((n + 1) α) ((n + 1) α + 1)

∥∥∥D(n+1)α
y− f

∥∥∥∞

+ (b − y)(n+1)α+1

((n + 1) α) ((n + 1) α + 1)

∥∥D(n+1)α
y f

∥∥
∞

]

= 1

Γ ((n + 1) α + 2) (b − a)
(175)

·
[
(b − y)(n+1)α+1

∥∥D(n+1)α
y f

∥∥
∞ + (y − a)(n+1)α+1

∥∥∥D(n+1)α
y− f

∥∥∥∞

]
,

proving (172).

(i i) We use here that 1
n+1 ≤ α < 1. We have

|R1 (y)| (176)

≤ 1

Γ ((n + 1) α) (b − a)

·
⎡

⎣
y∫

a

⎛

⎝
y∫

x

(t − x)(n+1)α−1
∣∣∣
(
D(n+1)α

y− f
)

(t)
∣∣∣ dt

⎞

⎠ dx

+
b∫

y

⎛

⎝
x∫

y

(x − t)(n+1)α−1
∣∣(D(n+1)α

y f
)
(t)
∣∣ dt

⎞

⎠ dx

⎤

⎦

≤ 1
Γ ((n+1)α)(b−a)

·
⎡

⎣

⎛

⎝
y∫

a

⎛

⎝
y∫

x

∣∣∣
(
D(n+1)α

y− f
)

(t)
∣∣∣ dt

⎞

⎠ dx

⎞

⎠ (y − a)(n+1)α−1

+
⎛

⎝
b∫

y

⎛

⎝
x∫

y

∣∣(D(n+1)α
y f

)
(t)
∣∣ dt

⎞

⎠ dx

⎞

⎠ (b − y)(n+1)α−1

⎤

⎦
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≤ 1

Γ ((n + 1) α) (b − a)
(177)

·
[∥∥∥D(n+1)α

y− f
∥∥∥
1,[a,y]

(y − a)(n+1)α + ∥∥D(n+1)α
y f

∥∥
1,[y,b]

(b − y)(n+1)α

]
,

proving (173).
(i i i) We use here that 1

(n+1)q < α < 1. We observe that

|R1 (y)|
≤ 1

Γ ((n + 1) α) (b − a)
(178)

·
⎡

⎢
⎣

y∫

a

⎛

⎝
y∫

x

(t − x)p((n+1)α−1) dt

⎞

⎠

1
p
⎛

⎝
y∫

x

∣
∣∣
(
D(n+1)α

y− f
)

(t)
∣
∣∣
q
dt

⎞

⎠

1
q

dx

+
b∫

y

⎛

⎝
x∫

y

(x − t)p((n+1)α−1) dt

⎞

⎠

1
p
⎛

⎝
x∫

y

∣∣(D(n+1)α
y f

)
(t)
∣∣q dt

⎞

⎠

1
q

dx

⎤

⎥
⎦

≤ 1
Γ ((n+1)α)(b−a)

·
⎡

⎣

⎛

⎝
y∫

a

(y − x)(n+1)α−1+ 1
p

(p ((n + 1) α − 1) + 1)
1
p

dx

⎞

⎠
∥∥∥D(n+1)α

y− f
∥∥∥
q,[a,y]

+
⎛

⎝
b∫

y

(x − y)(n+1)α−1+ 1
p

(p ((n + 1) α − 1) + 1)
1
p

dx

⎞

⎠
∥∥D(n+1)α

y f
∥∥
q,[y,b]

⎤

⎦ (179)

= 1

Γ ((n + 1) α) (b − a) (p ((n + 1) α − 1) + 1)
1
p

(180)

·
[

(y−a)
(n+1)α+ 1

p
(
(n+1)α+ 1

p

)
∥∥
∥D(n+1)α

y− f
∥∥
∥
q,[a,y]

+ (b−y)(n+1)α+ 1
p

(
(n+1)α+ 1

p

)
∥
∥D(n+1)α

y f
∥
∥
q,[y,b]

]

= 1

Γ ((n + 1) α) (b − a)
(
(n + 1) α + 1

p

)
(p ((n + 1) α − 1) + 1)

1
p

(181)

·
[
(b − y)(n+1)α+ 1

p
∥∥D(n+1)α

y f
∥∥
q,[y,b]

+ (y − a)
(n+1)α+ 1

p

∥∥∥D(n+1)α
y− f

∥∥∥
q,[a,y]

]

proving the claim (174).

The theorem is proved.
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We present the following very general left fractional Poincaré type inequality:

Theorem 27 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]). Assume
that Dkα

a f ∈ C ([a, b]), k = 0, 1, . . . , n + 1; n ∈ N. Suppose that
(
Diα

a f
)
(a) = 0,

for i = 0, 2, 3, . . . , n. Let γ > 0 with 	γ 
 = m, and p, q > 1 : 1
p + 1

q = 1. We fur-
ther assume that (k ∈ N)

1 > α > max

(
m + (k − 1) γ

n + 1
,
kγ q + 1

(n + 1) q

)
. (182)

Then
∥
∥Dkγ

a f
∥
∥
q

≤ 1

Γ ((n + 1) α − kγ )
(183)

· (b − a)(n+1)α−kγ

(p ((n + 1) α − kγ − 1) + 1)
1
p q

1
q ((n + 1) α − kγ )

1
q

∥∥D(n+1)α
a f

∥∥
q .

Proof We use (80). We observe that

∣∣(Dkγ
a f

)
(x)
∣∣

≤ 1

Γ ((n + 1) α − kγ )
(184)

·
⎛

⎝
x∫

a

(x − t)p((n+1)α−kγ−1) dt

⎞

⎠

1
p
⎛

⎝
x∫

a

∣∣(D(n+1)α
a f

)
(t)
∣∣q dt

⎞

⎠

1
q

≤ 1

Γ ((n + 1) α − kγ )

(x − a)
p((n+1)α−kγ−1)+1

p

(p ((n + 1) α − kγ − 1) + 1)
1
p

(185)

·
⎛

⎝
b∫

a

∣∣(D(n+1)α
a f

)
(t)
∣∣q dt

⎞

⎠

1
q

.

That is, we have
∣
∣(Dkγ

a f
)
(x)
∣
∣q

≤ 1

(Γ ((n + 1) α − kγ ))q
(186)

· (x − a)
(p((n+1)α−kγ−1)+1) q

p

(p ((n + 1) α − kγ − 1) + 1)
q
p

⎛

⎝
b∫

a

∣∣(D(n+1)α
a f

)
(t)
∣∣q dt

⎞

⎠ .
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Therefore it holds

b∫

a

∣∣(Dkγ
a f

)
(x)
∣∣q dx

≤ 1

(Γ ((n + 1) α − kγ ))q

· (b − a)
(p((n+1)α−kγ−1)+1) q

p +1

(p ((n + 1) α − kγ − 1) + 1)
q
p

(
(p ((n + 1) α − kγ − 1) + 1) q

p + 1
)

·
⎛

⎝
b∫

a

∣∣(D(n+1)α
a f

)
(t)
∣∣q dt

⎞

⎠

= 1

(Γ ((n + 1) α − kγ ))q
(187)

· (b − a)q((n+1)α−kγ )

(p ((n + 1) α − kγ − 1) + 1)
q
p q ((n + 1) α − kγ )

·
⎛

⎝
b∫

a

∣∣(D(n+1)α
a f

)
(t)
∣∣q dt

⎞

⎠ ,

proving the claim.

Next we present a very general right fractional Poincaré type inequality:

Theorem 28 Let 0 < α < 1, f : [a, b] → R such that f ′ ∈ L∞ ([a, b]). Assume
that Dkα

b− f ∈ C ([a, b]), k = 0, 1, . . . , n + 1; n ∈ N. Suppose that
(
Diα

b− f
)
(b) =

0, for i = 0, 2, 3, . . . , n. Let γ > 0 with 	γ 
 = m, and p, q > 1 : 1
p + 1

q = 1. We
further assume that (k ∈ N)

1 > α > max

(
m + (k − 1) γ

n + 1
,
kγ q + 1

(n + 1) q

)
.

Then
∥∥∥Dkγ

b− f
∥∥∥
q

≤ 1

Γ ((n + 1) α − kγ )
(188)

· (b − a)(n+1)α−kγ

(p ((n + 1) α − kγ − 1) + 1)
1
p q

1
q ((n + 1) α − kγ )

1
q

∥∥∥D(n+1)α
b− f

∥∥∥
q
.
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Proof Similar to Theorem 27, using (115). It is omitted.

We continue with a Sobolev type left fractional inequality:

Theorem 29 Let all here as in Theorem 27. Assume that r ≥ 1. Then

∥∥Dkγ
a f

∥∥
r

≤ 1

Γ ((n + 1) α − kγ )
(189)

·
(b − a)

(n+1)α−kγ− 1
q + 1

r
∥
∥D(n+1)α

a f
∥
∥
q

(p ((n + 1) α − kγ − 1) + 1)
1
p

[
r
(
(n + 1) α − kγ − 1

q

)
+ 1

] 1
r

.

Proof As in the proof of Theorem 27, we obtain

∣∣(Dkγ
a f

)
(x)
∣∣ (190)

≤ 1

Γ ((n + 1) α − kγ )

· (x − a)
p((n+1)α−kγ−1)+1

p

(p ((n + 1) α − kγ − 1) + 1)
1
p

⎛

⎝
b∫

a

∣∣(D(n+1)α
a f

)
(t)
∣∣q dt

⎞

⎠

1
q

,

∀ x ∈ [a, b] . Hence by r ≥ 1, we derive

∣∣(Dkγ
a f

)
(x)
∣∣r (191)

≤ 1

(Γ ((n + 1) α − kγ ))r

· (x − a)
r(p((n+1)α−kγ−1)+1)

p

(p ((n + 1) α − kγ − 1) + 1)
r
p

∥∥D(n+1)α
a f

∥∥r
q ,

∀ x ∈ [a, b] . Consequently, it holds

b∫

a

∣∣(Dkγ
a f

)
(x)
∣∣r dx (192)

≤ 1

(Γ ((n + 1) α − kγ ))r

·
(b − a)

r((n+1)α−kγ−1)+ r
p +1 ∥∥D(n+1)α

a f
∥∥r
q

(p ((n + 1) α − kγ − 1) + 1)
r
p

(
r ((n + 1) α − kγ − 1) + r

p + 1
) .
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Finally, we get

∥∥Dkγ
a f

∥∥
r (193)

≤ 1

Γ ((n + 1) α − kγ )

·
(b − a)

(n+1)α−kγ−1+ 1
p + 1

r
∥∥D(n+1)α

a f
∥∥
q

(p ((n + 1) α − kγ − 1) + 1)
1
p

[
r ((n + 1) α − kγ − 1) + r

p + 1
] 1

r

= 1

Γ ((n + 1) α − kγ )
(194)

·
(b − a)

(n+1)α−kγ− 1
q + 1

r
∥∥D(n+1)α

a f
∥∥
q

(p ((n + 1) α − kγ − 1) + 1)
1
p

[
r
(
(n + 1) α − kγ − 1

q

)
+ 1

] 1
r

,

proving the claim.

We continue with a Sobolev type right fractional inequality:

Theorem 30 Let all here as in Theorem 28. Assume that r ≥ 1. Then

∥∥
∥Dkγ

b− f
∥∥
∥
r

(195)

≤ 1

Γ ((n + 1) α − kγ )

·
(b − a)

(n+1)α−kγ− 1
q + 1

r

∥∥∥D(n+1)α
b− f

∥∥∥
q

(p ((n + 1) α − kγ − 1) + 1)
1
p

[
r
(
(n + 1) α − kγ − 1

q

)
+ 1

] 1
r

.

Proof As in the proof of Theorem 29, using (115). It is omitted.

We give the following fractional Grüss type inequality:

Theorem 31 Let 0 < α < 1, f, h : [a, b] → R such that f ′, h′ ∈ L∞ ([a, b]). We
assume that Dkα

y f , Dkα
y− f , Dkα

y h, Dkα
y−h ∈ C ([a, b]), ∀ y ∈ [a, b] ; k = 0, 1, 2, . . . ,

n + 1; n ∈ N. Then

1.

Δ(n+1)α ( f, h)

:= 1

b − a

b∫

a

f (x) h (x) dx − 1

(b − a)2

⎛

⎝
b∫

a

f (x) dx

⎞

⎠

⎛

⎝
b∫

a

h (x) dx

⎞

⎠

+ 1
2(b−a)2

n∑

i=2

1
Γ (iα+2)

⎡

⎣
b∫

a

{
(y − a)iα+1

[
h (y)

(
Diα

y− f
)

(y) + f (y)
(
Diα

y−h
)

(y)
]
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+ (b − y)iα+1
[
h (y)

(
Diα

y f
)

(y) + f (y)
(
Diα

y h
)

(y)
]}

dy
]

(196)

= 1

2 (b − a)

b∫

a

[ f (y) R1 (h, y) + h (y) R1 ( f, y)] dy =: K(n+1)α ( f, h) .

Above R1 ( f, y) is the same as R1 (y) in (20), (21); similarly for R1 (h, y) now it
is R1 (y) for h.

2. it holds

∣∣Δ(n+1)α ( f, h)
∣∣ ≤ (b − a)(n+1)α

2Γ ((n + 1) α + 2)
(197)

·
[

‖ f ‖∞

(

sup
y∈[a,b]

(∥∥D(n+1)α
y h

∥∥
∞ +

∥∥∥D(n+1)α
y− h

∥∥∥∞

)
)

+ ‖h‖∞

(

sup
y∈[a,b]

(∥
∥D(n+1)α

y f
∥
∥

∞ +
∥∥
∥D(n+1)α

y− f
∥∥
∥∞

))]

.

3. when 1
n+1 ≤ α < 1, we obtain

∣∣Δ(n+1)α ( f, h)
∣∣

≤ (b − a)(n+1)α−1

2Γ ((n + 1) α)
(198)

·
[

‖ f ‖∞

(

sup
y∈[a,b]

(∥∥D(n+1)α
y h

∥∥
1,[a,b]

+
∥∥∥D(n+1)α

y− h
∥∥∥
1,[a,b]

))

+ ‖h‖∞

(

sup
y∈[a,b]

(∥∥D(n+1)α
y f

∥∥
1,[a,b]

+
∥∥∥D(n+1)α

y− f
∥∥∥
1,[a,b]

))]

.

4. when p, q > 1 : 1
p + 1

q = 1, and 1
(n+1)q < α < 1, we obtain

∣∣Δ(n+1)α ( f, h)
∣∣ (199)

≤ (b − a)
(n+1)α− 1

q

2Γ ((n + 1) α)
(
(n + 1) α + 1

p

)
(p ((n + 1) α − 1) + 1)

1
p

·
[

‖ f ‖∞

(

sup
y∈[a,b]

(∥∥D(n+1)α
y h

∥∥
q,[a,b]

+
∥∥∥D(n+1)α

y− h
∥∥∥
q,[a,b]

))

+ ‖h‖∞

(

sup
y∈[a,b]

(∥
∥D(n+1)α

y f
∥
∥
q,[a,b]

+
∥
∥∥D(n+1)α

y− f
∥
∥∥
q,[a,b]

))]

.

Proof Notice Δ( f, y) = R1 ( f, y), Δ(h, y) = R1 (h, y), see (171).
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1. We use (20), and we denote R1 (y) as R1 ( f, y), see (21), to associate it to f ,
similarly for R1 (h, y) . So we have

h (y) f (y)

= h (y)

b − a

b∫

a

f (x) dx (200)

−
n∑

i=2

h(y)
(b−a)Γ (iα+2)

[(
Diα

y− f
)
(y) (y − a)iα+1 + (

Diα
y f

)
(y) (b − y)iα+1

]

+ h (y) R1 ( f, y) ,

∀ y ∈ [a, b] . We also can write:

f (y) h (y)

= f (y)

b − a

b∫

a

h (x) dx (201)

−
n∑

i=2

f (y)
(b−a)Γ (iα+2)

[(
Diα

y−h
)
(y) (y − a)iα+1 + (

Diα
y h
)
(y) (b − y)iα+1

]

+ f (y) R1 (h, y) ,

∀ y ∈ [a, b] , where R1 (h, y) coresponds to (21) written for h. Then integrating
(200) we find

b∫

a

f (y) h (y)

=

(
b∫

a
f (x) dx

)(
b∫

a
h (x) dx

)

b − a
(202)

−
n∑

i=2

1

(b − a) Γ (iα + 2)

b∫

a

h (y)

· [(Diα
y− f

)
(y) (y − a)iα+1 + (

Diα
y f

)
(y) (b − y)iα+1

]
dy

+
b∫

a

h (y) R1 ( f, y) dy.
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And integrating (201) we derive

b∫

a

f (y) h (y) dy

=

(
b∫

a
f (x) dx

)(
b∫

a
h (x) dx

)

b − a
(203)

−
n∑

i=2

1

(b − a) Γ (iα + 2)

b∫

a

f (y)

· [(Diα
y−h

)
(y) (y − a)iα+1 + (

Diα
y h
)
(y) (b − y)iα+1

]
dy

+
b∫

a

f (y) R1 (h, y) dy.

Adding (202) and (203), we get:

2

b∫

a

f (x) h (x) dx

=
2

(
b∫

a
f (x) dx

)(
b∫

a
h (x) dx

)

b − a
(204)

−
n∑

i=2

1

(b − a) Γ (iα + 2)

·
⎡

⎣
b∫

a

{
h (y)

[(
Diα

y− f
)
(y) (y − a)iα+1 + (

Diα
y f

)
(y) (b − y)iα+1]

+ f (y)
[(
Diα

y−h
)
(y) (y − a)iα+1 + (

Diα
y h
)
(y) (b − y)iα+1]} dy

]

+
b∫

a

[ f (y) R1 (h, y) + h (y) R1 ( f, y)] dy.

Next we divide the last (204) by 2 (b − a), and rewrite it properly to obtain:
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1

b − a

b∫

a

f (x) h (x) dx

=

(
b∫

a
f (x) dx

)(
b∫

a
h (x) dx

)

(b − a)2
(205)

− 1
2(b−a)2

n∑

i=2

1
Γ (iα+2)

⎡

⎣
b∫

a

{
(y − a)iα+1

[
h (y)

(
Diα

y− f
)

(y) + f (y)
(
Diα

y−h
)

(y)
]

+ (b − y)iα+1
[
h (y)

(
Diα

y f
)

(y) + f (y)
(
Diα

y h
)

(y)
]}

dy
]

+ 1

2 (b − a)

b∫

a

[ f (y) R1 (h, y) + h (y) R1 ( f, y)] dy,

proving (196).
2. It holds

∣∣Δ(n+1)α ( f, h)
∣∣

= ∣∣K(n+1)α ( f, h)
∣∣

= 1

2 (b − a)

∣∣
∣∣
∣∣

b∫

a

[ f (y) R1 (h, y) + h (y) R1 ( f, y)] dy

∣∣
∣∣
∣∣

≤ 1

2 (b − a)

b∫

a

[| f (y)| |R1 (h, y)| + |h (y)| |R1 ( f, y)|] dy (206)

(172)≤ 1

2Γ ((n + 1) α + 2) (b − a)2

·
b∫

a

[
| f (y)|

(
(b − y)(n+1)α+1

∥
∥∥D(n+1)α

y h
∥
∥∥∞ + (y − a)(n+1)α+1

∥
∥∥D(n+1)α

y− h
∥
∥∥∞

)

+ |h (y)|
(
(b − y)(n+1)α+1

∥∥
∥D(n+1)α

y f
∥∥
∥∞ + (y − a)(n+1)α+1

∥∥
∥D(n+1)α

y− f
∥∥
∥∞

)]
dy

≤ (b − a)(n+1)α

2Γ ((n + 1) α + 2)

[

‖ f ‖∞ sup
y∈[a,b]

(∥∥∥D(n+1)α
y h

∥
∥∥∞ +

∥
∥∥D(n+1)α

y− h
∥
∥∥∞

)

+ ‖h‖∞ sup
y∈[a,b]

(∥∥∥D(n+1)α
y f

∥
∥∥∞ +

∥
∥∥D(n+1)α

y− f
∥
∥∥∞

)]

, (207)

proving (197).
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3. It holds, when 1
n+1 ≤ α < 1, that

∣
∣Δ(n+1)α ( f, h)

∣
∣ (208)

≤ 1

2 (b − a)

b∫

a

[| f (y)| |R1 (h, y)| + |h (y)| |R1 ( f, y)|] dy

(29.173)≤ 1

2 (b − a)2 Γ ((n + 1) α)

·
b∫

a

[
| f (y)|

[
(b − y)(n+1)α

∥∥
∥D(n+1)α

y h
∥∥
∥
1,[y,b]

+ (y − a)(n+1)α
∥∥
∥D(n+1)α

y− h
∥∥
∥
1,[a,y]

]

+ |h (y)|
[
(b − y)(n+1)α

∥∥
∥D(n+1)α

y f
∥∥
∥
1,[y,b]

+ (y − a)(n+1)α
∥∥
∥D(n+1)α

y− f
∥∥
∥
1,[a,y]

]]
dy

≤ (b − a)(n+1)α−1

2Γ ((n + 1) α)

[

‖ f ‖∞ sup
y∈[a,b]

(∥
∥∥D(n+1)α

y h
∥
∥∥
1,[a,b]

+
∥
∥∥D(n+1)α

y− h
∥
∥∥
1,[a,b]

)

+ ‖h‖∞ sup
y∈[a,b]

(∥
∥∥D(n+1)α

y f
∥
∥∥
1,[a,b]

+
∥
∥∥D(n+1)α

y− f
∥
∥∥
1,[a,b]

)]

, (209)

proving (198).
4. It holds, when 1

(n+1)q < α < 1, that

∣∣Δ(n+1)α ( f, h)
∣∣

≤ 1

2 (b − a)

b∫

a

[| f (y)| |R1 (h, y)| + |h (y)| |R1 ( f, y)|] dy (210)

(174)≤ 1

2Γ ((n+1)α)(b−a)2
(
(n+1)α+ 1

p

)
(p((n+1)α−1)+1)

1
p

(211)

·
b∫

a

[
| f (y)|

(
(b − y)(n+1)α+ 1

p

∥∥∥D(n+1)α
y h

∥∥∥
q,[y,b]

+ (y − a)
(n+1)α+ 1

p

∥∥∥D(n+1)α
y− h

∥∥∥
q,[a,y]

)

+ |h (y)|
(

(b − y)(n+1)α+ 1
p

∥∥∥D(n+1)α
y f

∥∥∥
q,[y,b]

+ (y − a)
(n+1)α+ 1

p

∥∥∥D(n+1)α
y− f

∥∥∥
q,[a,y]

)]
dy

≤ (b − a)
(n+1)α+ 1

p −1

2Γ ((n + 1) α)
(
(n + 1) α + 1

p

)
(p ((n + 1) α − 1) + 1)

1
p

(212)

·
[

‖ f ‖∞ sup
y∈[a,b]

(∥∥∥D(n+1)α
y h

∥∥∥
q,[a,b]

+
∥∥∥D(n+1)α

y− h
∥∥∥
q,[a,b]

)

+ ‖h‖∞ sup
y∈[a,b]

(∥∥∥D(n+1)α
y f

∥∥∥
q,[a,b]

+
∥∥∥D(n+1)α

y− f
∥∥∥
q,[a,b]

)]

,

proving (199).

We use also that a norm is a continuous function. The theorem is proved.
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