
Chapter 4

Network Forming Ionic Liquids

4.1 Binary Network Forming Salts

Some inorganic salts associate in the molten state to large aggregates forming a

network of bonds. Such a molten salt on cooling form a glass rather than crystallize.

The glass is characterized by infinitely large viscosity and a loss of configurational

entropy [1]. Among inorganic salts the foremost examples are BeF2, ZnCl2, B2O3,

SiO2, and GeO2, the physicochemical data of which are shown in Table 4.1.

There is some information in the literature regarding these molten salts beyond

the data in Table 4.1. The structure of the network forming salts has been studied by

means of the methods already discussed in Sect. 3.2 for highly ionic high-melting

salts. A common feature is the existence in the MX2 melts of a close-packed anion

(X ¼ F�, Cl�, O2�) structure with the multivalent cations (M ¼ Be2+, Zn2–, Si4+,

Ge4+) occupying tetrahedral sites in this structure. Thus networks of MX4
2 or 4�

tetrahedra that share corners are the common structural feature of these salts. This

information resulted from the application of a variety of methods to the molten

MX2 salts: x-ray diffraction [22–24], neutron diffraction [24–27], XAFS [28, 29],

Raman spectroscopy [30, 31], and computer simulations [24, 32–36]. Most of these

reports dealt with ZnCl2 [22, 24–28, 30, 32, 35], some of them with ZnBr2 (a less

pronounced network former) [25, 29, 30], and only very few with BeF2 [33], SiO2

[31, 32, 36], and GeO2 [34]. (Studies of the structures of mixtures involving these

compounds, e.g. LiF + BeF2 and various non-stoichiometric silicates, are much

more prolific).

The structure of molten B2O3 differs, in that three-fold coordination of boron

atoms with oxygen atoms prevails in it [37–40]. The structure, obtained by x-ray

diffraction at 923 K [37, 39] and up to 1073 K by neutron diffraction [38], thus

involves hexagonal boroxol rings and independent BO3 triangles, the proportion of

the latter increasing with the temperature. Raman and luminescence studies of

molten B2O3 at higher temperatures (up to 1700 K) showed further fragmentation

to bent triatomic BO2
� units [40].
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The glass transition temperature Tg (the temperature at which on cooling a liquid

the viscosity reaches the value of 1012 Pa s) recorded in Table 4.1 can be interpreted

in several manners. These include the temperature at which, on super-cooling of the

melt, the free volume Vf vanishes or the heat capacity undergoes a deep decline,

ΔCP, to below the crystal values. For glass forming substances the Arrhenius-type

dependence of transport properties, ln η=Pa sð Þ ¼ Aηexp Bη=RT
� �

for the viscosity,

may have to be changed to the Vogel- Fulcher-Tammann- (VFT) form:

η=Pa s ¼ Aη
0exp Bη

0=R T � T0ð Þ� � ð4:1Þ

where T0 < Tg. At temperatures not far from the melting point the transport

phenomena (viscosity, conductivity, self-diffusion of the ions) depend on the

temperature according to the Arrhenius expression with the coefficients Aη and Bη
for the viscosity (and corresponding ones for the conductivity) shown in Table 4.1.

However, deviations may occur at higher temperatures and definitely do so for the

super-cooled liquids. The apparent activation energy Bη declines at higher temper-

atures in the cases of B2O3 and SiO2 and appears to do so also in those of BeF2 and

GeO2 [41], a behavior attributed to the breakdown of the network to smaller

fragments. This finding was challenged in the case of B2O3 [12], where true

Arrhenius-type behavior of the viscosity was found above 1073 K, and in the

case of BeF2 [42] where such behavior was found all the way up to 1250 K. On

the other hand, the VFT expression was found to describe accurately the viscosity

of SiO2 and GeO2 over at least 12 orders of magnitude [14], with T0¼ 530 K and

199 K respectively. The original data were re-examined here and the VFT expres-

sion holds very well for ZnCl2 at 598� T/K �716 [43] or 600� T/K �893 [44] and

for ZnBr2 at 673� T/K�813 [44] with the same T0¼ 260 K (The T1/2factor used in
[43] is unnecessary, because it varies only by 9% over the T-range studied). The

same VFT expression with T0 ¼ 260 K holds also for the viscosity, specific

conductance, and self-diffusion coefficients of zinc and chloride ions in molten

ZnCl2, albeit for much fewer data [17].

4.2 Molten Borates and Silicates

Physicochemical data of borate and silicate melts having stoichiometric composi-

tions are shown in Table 4.2. Although a large amount of information regarding

mixtures of molten oxides or molten silicates and borates can be found in the

literature, data regarding pure, stoichiometric single compounds is relatively scarce.

Some information beyond what is shown in Table 4.2 has been reported. The

adiabatic compressibility, obtained from sound velocity and density data (Sect.

3.3.3) was reported [55] as κS/GPa
�1 at 1473 K for Na2SiO3 (0.588), Na2Si2O5

(0.643), K2SiO3 (1.27), K2Si2O5 (0.791), and at 1173 K for LiBO2 (1.205) and

Li2B4O7 (1.29). The isothermal compressibility κT/GPa
�1 (the reciprocal of the bulk
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modulus) is 0.050 forMgSiO3 at 1913K and 0.040 for CaSiO3 at 1836K [50, 60]. The

viscosity of Na2Si2O5 follows the VFT expression (4.1) with Aη
0 ¼ 0.0611,

Bη
0 ¼ 31.5 kJ mol�1, and T0 ¼ 454.5 K [57]. The surface tension of calcium silicates,

σ/mN m�1, hardly varies between 1780 and 1870 K: it is 530 for CaSiO3 and 450 for

CaSi2O5 (read from a curve [61]). The thermal conductivity of Na2SiO3 follows the

Table 4.2 The molar masses, M, melting points, Tm, molar enthalpies of melting, ΔmH, constant
pressure molar heat capacities, Cp, (from [2]), and the molar volumes, V, isobaric expansivities, αP,
and viscosities, η, at 1.1Tm of molten silicates and borates

Salt, M Tm ΔmH Cp V 103αP η

kg mol�1 K kJ mol�1 J K�1 mol�1 cm3 mol�1 K�1 Pa s

Li2SiO3 0.08997 1474 28.0 167.4 21.8f 0.107f

Li2Si2O5, 0.15005 1307 53.8 251 23.4v

LiBO2 0.04975 1117 33.9 144.6 26.5u 0.247u

Li2B4O7 0.16912 1190 120.5 470.6a 89.0i 0.218i

Na2SiO3 0.12206 1362 51.8 177.3 27.2f 0.128f 132w

Na2Si2O5 0.18215 1147 35.6 261.2 79.4u 0.096u

NaBO2 0.06580 1239 36.2 146 35.5y 0.359y

Na2B4O7 0.20122 1016 81.2 444.9 99.8p 0.427p 7.0� 10�3 n

K2SiO3 0.15428 1249b 50.2z 167.4z 35.3f 0.160f

K2Si2O5 0.21436 1318c 35.2z 275.3z 95.9u 0.125u

K2B4O7 0.23344 1088 104.2 473.2a 125m

MgSiO3 0.10039 1850 75.3 146.4z 39.3h 0.07h 0.164k

Mg2SiO4 0.14069 2171 71.1 205.0z

CaSiO3 0.11616 1813 56.1 151 44.7h 0.07h 0.120k

CaB2O4 0.12570 1433 74.1 258

CaB4O7 0.19532 1263 113.4 444.8

SrSiO3 0.16370 1851d 56e 0.139k

Sr2SiO4 0.26732 2598e

SrB4O7 0.24286 1267l 139.8l

BaSiO3 0.21341 1877d 139.8 0.117k

BaB4O7 0.29257 1182l

MnSiO3 0.13102 1543 66.9 153.8 0.043k

Mn2SiO4 0.20196 1613 94.6 230.1 180x

Fe2SiO4 0.20377 1493 92 240.6 18.3x 7.0x 520x

ZnSiO3 0.14149 1710d

Zn2SiO4 0.22290 1783d

CdSiO3 0.18849 1516d

Cd2SiO4 0.31691 1516d

PbSiO3 0.28328 1037 26.0 130.1

Pb2SiO4 0.50648 1016 51.0 189.1
aAt 1.1 Tm,

b[45], c[46], d[47], e[49], f[48] (according to [53]V¼ 69.0 cm3mol–1 at 1.1Tm),
g[8], h[50],

i[51], j[11], k[12], l[52], m[53], n[54], o[16], p[18], u[55], v[56] at 1673 K, w[57], x[58] (at 1873 K for

Mn2SiO4),
y[59], z[71]
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Arrhenius expression ln λth=W m�1K�1
� � ¼ �14:5þ 20319=T, i.e., with an activa-

tion energy Bλ¼ 170 kJ mol�1 [62].

Molecular dynamics simulation of Mg2SiO4 [63] yielded values for the isother-

mal compressibility κT¼ 0.025 GPa�1 at 2100 K, the density at 2110 K and at 2 GPa

ρ¼ 2.75 g cm�3 (read from a figure) and the molar volume V¼ 51 cm3 mol�1, and

an average molar isochoric heat capacity CV ¼ 200 J K�1 mol�1. The self-

diffusion coefficients for Mg2SiO4 at low pressures are D=m2 s�1 ¼ 2:6� 10�7

exp 66:4 kJ mol�1=RT
� �

for Mg and 1.7� 10–7 exp(79.2 kJ mol�1/RT) for Si, and

the dynamic viscosity is η=Pa s ¼ 4:5� 10�4exp 41:0kJ mol�1=RT
� �

.

The structures of only a few of the stoichiometric molten borates and silicates

(among those listed in Table 4.2) has been determined. The molecular dynamics

simulation of Mg2SiO4 [63]. at relatively low pressures showed that >75% of the

silicon atoms are tetrahedrally surrounded by oxygen atoms, the rest mainly in

fivefold coordination defining distorted trigonal bipyramidal polyhedra. At low

pressure, the average coordination number of the Mg atoms is�5.5. As the pressure

increases the average coordination number increases (~7.5) near 100 GPa. Octahe-

drally coordinated Mg attains a maximum at about 20 GPa and decreases system-

atically as the pressure increases. X-ray absorption spectroscopy of liquid Fe2SiO4

at 1575 K and ambient pressure [64] showed ~11% shortening of the Fe–O distance

in the melt compared with the crystal at the melting point, and a similar increase in

the volume, indicating a decrease of the average coordination number of the Fe

from 6 in the crystal to 4 in the melt, i.e., both Fe(II) and Si(IV) are tetrahedrally

coordinated. Neutron diffraction with isotope substitution (see Sect. 3.2) was

applied to molten Li2B4O7 [65] and to molten CaSiO3 [66]. For the former the

Li–O distance decreased somewhat and that of Li–B increased at 1073 K compared

to the glassy state, signifying an increase in the non-bridging oxygen content in the

lithium coordination in the melt. In the latter salt the melt comprises primarily six-

and sevenfold Ca–O coordination. Short chains of edge-shared Ca-octahedra fea-

ture in the structure of molten CaSiO3.

A molecular dynamics simulation [67] showed similarities between alkaline

earth silicates and alkali metal fluoroberyllates of the stoichiometries MSiO3 with

M0BF3 and M2SiO4 with M0
2BeF4 at corresponding temperatures ~1.1Tm when

having cations of similar sizes (Li+ and Mg2+, Na+ and Ca2+, K+ and Ba2+).

The structures contain monomer, dimer, chain, and sheet units and experimental

determinations of properties of fluoroberyllates in the more readily accessible range

620–1070 K could replace those on silicates, pertinent to geological problems, at

the higher range of 1700–3000 K.

Another topic that pertains to the molten borate and silicate salts and to oxide

melts in general is their acid-base behavior, in which oxygen atoms take the place of

the hydrogen ions commonly encountered in aqueous solutions. Flood and F€orland
[68] established the concept of ‘oxoacidity’ and introduced the quantity pO ¼ –

logaO, the negative of the logarithm of the oxygen activity in the melt, analogous to

the pH. Dron [69] applied this framework to molten silicates, starting with equilib-

ria such as MSiO3 + MO ⇆ M2SiO4, involving free O2� ions and bridging and
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non-bridging oxygen atoms. Konakov [70] reviewed the application of the acid-

base concept to oxide melts via the pO scale and discussed the use of the stabilized

zirconia electrode (ZrO2 stabilized by 5% CaO or Y2O3) to its measurement. The

electrochemical cells to be used consist of molten silica, SiO2, as the standard, and

the pO of other oxide melts is measured relative to this standard, assigned pO¼ 7. A

secondary standard of Na2SiO3 was established, with pO ¼ 5.88. Applications to

binary alkali metal borate, silicate, and germanate systems were reviewed.
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