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Abstract This paper presents a new scale and orientation adaptive object tracking
system using Kalman filter in a video sequence. This object tracking is an important
task in many vision applications. The main steps in video analysis are two: detection
of interesting moving objects and tracking of such objects from frame to frame. We
use an efficient local search scheme (based on expected likelihood kernel) to find the
image region with a histogram most similar to the histogram of the tracked object. In
this paper, we address the problem of scale adaptation. The proposed approach
tracker with scale selection is compared with recent state-of-the-art algorithms.
Experimental results have been presented to show the effectiveness of our proposed
system.

Keywords Object tracking � Computer vision � Integral image � Expected like-
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1 Introduction

Real-time object tracking is a critical task in computer vision, and many algorithms
have been proposed to overcome the difficulties arising from noise, occlusions,
clutters, pose, and changes in the foreground object and/or background environ-
ment. Many different algorithms [1–3], have been proposed for object tracking,
including mean-shift tracking [4], optical flow, and feature matching. Each algo-
rithm has strengths in certain environments and weaknesses in others. This project
aims to combine several such algorithms as inputs or “measurements” to a single
Kalman filter [5], for robust object tracking. The filter can favor the algorithm that is
most applicable to the current environment by decreasing its measurement noise
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variance, and similarly ignore less suitable algorithms by increasing their mea-
surement variances.

Two major components can be distinguished in a typical visual tracker. Target
Representation and Localization is mostly a bottom-up process which has also to
cope with the changes in the appearance of the target. Filtering and Data
Association is mostly a top-down process dealing with the dynamics of the tracked
object, learning of scene priors, and evaluation of different hypotheses [4, 6, 7]. The
way the two components are combined [8, 9], and weighted is application
dependent and plays a decisive role in the robustness and efficiency of the tracker.
In real-time applications, only a small percentage of the system resources can be
allocated for tracking, the rest being required for the preprocessing stages or to
high-level tasks such as recognition, trajectory interpretation, and reasoning.
Therefore, it is desirable to keep the computational complexity of a tracker as low
as possible.

The goal of this paper is dedicated to improve the similarity measure for the
target representation in the Kalman filter. We derive a similarity measure by
combining between the expected likelihood kernel [10–12], and the integral image
[13], as a similarity measure between target and estimated scale/shape regions in the
frames of video sequence. In this paper we analyzes and compares between our
system with: Firstly in [7], the efficient local search framework for real-time
tracking of complex non-rigid objects. The shape of the object is approximated by
an ellipse and its appearance by histogram based features derived from local image
properties based on mean-shift and Kalman filter. Secondly the Kalman filter is
used as in [4]. Where the shape of the tracked object is approximated by an ellipse
and the appearance within the ellipse is described by a histogram based model. The
obvious advantage of such a model is its simplicity and general applicability.
Another advantage, that made this observation model rather popular, is the exis-
tence of efficient local search schemes to find the image region with a histogram
most similar to the histogram of the tracked object. Experimental results show that
the proposed approach has superior discriminative power and achieves good
tracking performance.

The rest of the paper is organized as follows: Sect. 2, introduces basic Kalman
filter for object tracking. Section 3, present the expected likelihood kernel.
Section 4, present scale estimation. And then Sect. 5 the proposed approach.
Section 6 the experiment result. Section 7 concludes the paper.

2 Kalman Filter

The Kalman filter is a framework for predicting a process state, and using mea-
surements to correct or “update” these predictions.
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2.1 State Prediction

For each time step k, a Kalman filter first makes a prediction ŝk of the state at this
time step:

ŝk ¼ A� sk�1 ð1Þ

where sk�1 is a vector representing process state at time k − 1 and A is a process
transition matrix. The Kalman filter concludes the state prediction steps by pro-
jecting estimate error covariance P�

k forward one time step:

P�
k ¼ A� Pk�1 � At þW ð2Þ

where Pk�1 is a matrix representing error covariance in the state prediction at time
k − 1, and W is the process noise covariance.

2.2 State Correction

After predicting the state ŝk (and its error covariance) at time k using the state
prediction steps, the Kalman filter next uses measurements to “correct” its pre-
diction during the measurement update steps. First, the Kalman filter computes a
Kalman gain Kk , which is later used to correct the state estimate ŝk:

Kk ¼ P�
k � ðP�

k þRkÞ�1 ð3Þ

where R is measurement noise covariance. Determining Rk for a set of measure-
ments is often difficult. In our implementations we calculated R dynamically from
the measurement algorithms state. Using Kalman gain Kk and measurements zk
from time step k, we can update the state estimate:

ŝk ¼ ŝk þKk � ðzk � ŝkÞ ð4Þ

Conventionally, the measurements Zk are often derived from sensors. In our
approach, measurements Zk are instead the output of various tracking algorithm
given the same input: one frame of a streaming video, and the most likely x and
y coordinates of the target object in this frame (taken the first two dimensions of ŝk).

The final step of the Kalman filter iteration is to update the error covariance P�
k

into Pk:

Pk ¼ ðI � KkÞ � P�
k ð5Þ
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The updated error covariance will be significantly decreased if the measurements
are accurate (some entries in Rk are low), or only slightly decreased if the mea-
surements are noise (all of Rk is high). For more details, see [8, 9, 5].

3 Expected Likelihood Kernel

Let p and q be probability distributions on a space χ and ρ be a positive constant. In
this work, we are using the probability product kernels (Kq : v� v ! R on the
space of normalized discrete distributions over some indexs set Ω) as the similarity
measures for comparing two discrete distributions p1; p2; p3; . . .; pN 2 v and
q1; q2; q3; . . .; qN 2 v. The probability product kernel between distributions
fpg1::Nev and fqg1::N 2 v is defined as:

Kqðp; qÞ ¼
XN
k¼1

pðkÞqqðkÞq ð6Þ

It is easy to show that such a similarity measure is a valid kernel, since for any
p1; p2; p3; . . .; pN 2 v, the Gram matrix K consisting of elements Kij ¼ Kqðpi; qjÞ is
positive semi-definite:X

i

X
j

aiajKqðpi; pjÞ ¼
X
k

ð
X
i

aipiðkÞqÞ2 � 0 ð7Þ

for a1; a2; a3; . . .; aN 2 IR. Different ρ values are corresponded to different types of
probability product kernels. For q ¼ 1, we have:

K1ðp; qÞ ¼
X
k

pðkÞqðkÞ ¼ IEp qðkÞ½ � ¼ IEq pðkÞ½ � ð8Þ

Wecall this the Expected LikelihoodKernel, is defined byKðp; qÞ ¼Pk pðkÞqðkÞ.
We denote the histogram of Target of object tracking T as hT , and the number of pixels
inside T as jTj, which is also equal to the sum over bins, jT j ¼Pk hTðkÞ. Let q be the
normalized version of hT given by q ¼ hT

jT j, so we can consider q as a discrete distri-

bution, with
P

k qðkÞ ¼ 1. Let p the normalized histogram obtained in the farms of
video sequence. For the k-bin of hT , its value is obtained by counting the pixels that are
mapped to the index k:

hTðkÞ ¼
X
xeT

d bðxÞ � k½ � ð9Þ

where d t½ � is the Kronecker delta, with d t½ � ¼ 1 if t = 0, and d t½ � ¼ 0 otherwise. The
mapping function bðxÞ maps a pixel x to its corresponding bin index. The com-
putation of the expected likelihood kernel can be expressed as:
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Kðp; qÞ ¼
X
k

pðkÞqðkÞ ¼
X
k

pðkÞ 1
jT j
X
xeR

d bðxÞ � k½ �
 !

¼ 1
jT j
X
xeT

X
k

pðkÞd bðxÞ � k½ � ¼ 1
jT j
X
xeT

pðbðxÞÞ
ð10Þ

Therefore, the computation of the expected likelihood kernel can be done by taking
the sum of values pðbðxÞÞ within candidate target T. The output of the following
algorithm is a support map using integral image to compute the similarity measure
between target and candidate region from each frame of the video sequence.

4 Adaptive Scale of Target Model

A target is represented by an ellipsoidal region in the image. To eliminate the
influence of different target dimensions. Let xi denote the pixel locations of target
model and i are all the pixels that belong to the object tracker, and θ is the location
of the center of the object tracker in the frame to frame in sequence video. Suppose
we are given an arbitrary shape S in an image specified by a set of pixel locations xi,
i.e., S ¼ fxig. The original shape S we have been initially selected manually. The
covariance matrix can be used to approximate the shape of the object:

h ¼ 1
Ns

X
xieS

xi; and; V ¼ 1
Ns

X
xieS

ðxi � hÞðxi � hÞt ð11Þ

where Ns pixels that belong to the object of interest, and V describe an arbitrary
elliptical region. We use here the following parametrization s ¼ ½ht; scalex;
scaley; skew�t where scalex and scaley are the scaling and skew is the skew transfor-
mation obtained from V using the unique Cholesky factorization:

V ¼ scalex skew
0 scaley

� �t scalex skew
0 scaley

� �
ð12Þ

We will refer to the state S as s ¼ ðh;VÞ to explicitly highlight the dependence
on θ and V. Similarly, SðsÞ will denote the elliptical shape defined by s.

The appearance of an object is described by a set of k scalar features r1; . . .; rk that
are extracted from the local area of an image I defined by SðsÞ. We view each rk as a
“bin” of a histogram. Let Γ be the set of pixel values IðxiÞ, for example C ¼ ½0; 255�3
for RGB images. We define a quantization function b : C ! ½1; . . .; k�, that associ-
ates with each observed pixel value a particular bin index k. The value rk of the k-th
bin is calculated from the elliptical image region Sðs ¼ ðh;VÞÞ using:
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rkðI; sÞ ¼ jV jc2
X
xieSðsÞ

Nðxi; h;VÞd½bðIðxiÞÞ � k� ð13Þ

where δ is the Kronecker delta function. The kernel function N is chosen such that
pixels in the middle of the object have higher weights than pixels at the borders of
the objects. A natural choice is a Gaussian kernel defined by:

Nðx; h;VÞ ¼ 1
j2pV j expð�

1
2
ðx� hÞtV�1ðx� hÞÞ ð14Þ

The prefactor jV jc2 in (13) discounts for the fact that in practice we use only the
Ns pixels from a finite neighborhood of the kernel center. We disregard samples
further than 1.6-sigma and it is easy to show that one should use c � 1:6 in this
case. The smooth kernel function will suppress the influence of the (arguably less
reliable) pixels near the borders.

5 Proposed Approach

To ensure good organization the progress of work, we used the benefits of modular
design in our approach implemented using MATLAB. The goal of an object
tracking is to generate the trajectory of an object over time by discovering its exact
position in every frame of the video sequence. We have implemented several object
tracking algorithms (Kalman filter, Expected likelihood kernel, Adaptive scale)
with different processing methods. The step of object tracking system are shown in
Fig. 1.

The proposed approach for object tracking is composed of four blocks named as:
Block processing, Block prediction, Block Tracking, Block correction and Block
result. The functions of these blocks are as follows:

Block Processing In block processing, we start video sequence and converting
video into images processing for extracting color information of images and target
of object tracking.

Block Prediction Block Prediction step attempts to evaluate how the state of the
target will change by feeding it through a state prediction of Kalman filter. The state
prediction serves two purposes: The time update equations are responsible for
projecting forward (in time) the current state and error covariance estimates to
obtain the a priori estimate for the next time step.

Block Tracking In this block we combine between the expected likelihood kernel,
and the integral image to compute similarity measure, and the histograms of all
possible target regions of object tracking in video sequence. And we based of state
predicted to estimate shape and orientation of object tracker.
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Block Correction The Block correction update equations are responsible for the
feedback. That is used for incorporating a new measurement into the a priori
estimate to obtain an improved a posteriori estimate. The time update equations can
also be thought of as predictor equations, while the measurement update equations
can be thought of as corrector equations based on Block Tracking.

Block Result Tracking trajectory of object is done on the basis of the region
properties of the object such as, shape, centroid, etc.

The Algorithm of the proposed approach can be explained as follows:

1. Start video sequence and select the target of object tracker in the first frame

2. Prediction using State prediction of Kalman filter to estimate how the state of an target will
change by feeding it through a the current state and error covariance estimates to obtain the a
priori estimate for the next time step. Using Eqs. (1) and (2)

3. Calculate similarity measure between target model and candidate regions and estimate shape
and orientation of object tracker using Eqs. (10) and (13)

4. Correction and update equations into the a priori estimate to obtain an improved a posteriori
estimate, using Eqs. (3)–(5), and state of similarity measure, which calculates the new position of
the object

5. Draw trajectory by line joining each stored position has been drawn in every frame which
shows the trajectory of the selected moving object. And go to step 2 in the next frame

Fig. 1 Basic block diagram for proposed algorithm
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6 Experiment Result

To verify the efficiency of the proposed approach (PA), we compared our system
with two existing algorithms MKF [7] and MS [4], the experimental results show
that, the PA system achieves good estimation accuracy of the scale and orientation
of object in the sequences videos. We used different sequences, each has its own
characteristics but the use of a single object in movement is a commonality between
these different sequences, and we set up experiments to listed the estimated width,
height, trajectory, and orientation of object. In this work, we selected RGB color
space as the feature space and it was quantised into 16 × 16 × 16 bins for a fair
comparison between different algorithms. One synthetic video sequence and two
real videos sequences are used in the experiments:

We first use a Synthetic Ellipse sequence to verify the efficiency of the proposed
approach. As shown in Fig. 2. The external ellipses represent the target candidate
regions, which are used to estimate the real targets, that is, the inner ellipses. The
experimental results show that the proposed approach could reliably track the tra-
jectory of ellipse with scale and orientation changes. Meanwhile, the experimental
results by the MKF and MS are not good because of significant scale and orien-
tation changes of the object.

The second video is a Occlusion sequence is on a more complex sequence. As
can be seen in Fig. 3, both proposed approach and MKF [7], algorithm can track the
target over the whole sequence, and MS [4], does not estimate the trajectory of
target orientation change and has bad tracking results. However, the proposed
approach system works much better in estimating the scale and orientation of the
target, especially when occlusion occurs.

Fig. 2 a Tracking results of the synthetic ellipse sequence by different tracking algorithms. The
frames 1, 16 and 77 are displayed. b Trajectory results of the synthetic ellipse video sequence by
different tracking algorithms
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The last video is a Player sequence where the scale of the object increases
gradually as shown Fig. 4. The experimental results show that the proposed
approach estimates more accurately the scale changes and good trajectory of target
region than the MKF and MS algorithms.

Table 1 lists the average time by different methods on the videos sequences. We
notice that our proposed approach (PA) has an average time of execution better than
MKF and MS algorithms.

Fig. 3 a Tracking results of the occlusion sequence by different tracking algorithms. The frames
1, 35 and 193 are displayed. b Trajectory results of the occlusion video sequence by different
tracking algorithms

Fig. 4 a Tracking results of the player sequence by different tracking algorithms. The frames 1, 43
and 60 are displayed. b Trajectory results of the player video sequence by different tracking
algorithms
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The experimental results demonstrate that the proposed approach is robust to
track the trajectory of objects in different situations (scale variation, pose, rotation,
and occlusion). It can be seen that the proposed approach achieves good estimation
accuracy in real-time of the scale and orientation of the target.

7 Conclusion

In this paper, the proposed approach has been presented for tracking a single
moving object in the video sequence using color information. In this approach we
combine between Kalman filter and expected likelihood kernel as a similarity
measure using integral image to compute the histograms of all possible target
regions of object tracking in video sequence. The newly proposed approach has
been compared with the state-of-the-art algorithms on a very large dataset of
tracking sequences and it outperforms in the processing speed. The extensive
experiments are performed to testify the proposed approach and validate its
robustness to the scale and orientation changes of the target in real-time. This
implemented system can be applied to any computer vision application for moving
object detection and tracking.
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