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Abstract In a dispersive medium, GPR signal is classified as a nonstationary signal,
and which is widely attenuated, as so, some reflected echoes become none visible
neither in the time or the frequency representation of the signal. In fact, we are aimed to
calculate the travel time inside a cavity, i.e. the time between two transition that are
highly attenuated, in order to identify the nature of the dielectric inside this cavity,
which become impossible due to the attenuation phenomena. In this outlook, we
proposed to analysis this signal using a time-frequency representation. The continu-
ous wavelet transform is the alternative approach to the Fourier transform due to the
fact that the spectrogram is limited in the resolution by the width of the window.
Besides the Stockwell transform, in addition to the Hilbert Huang transform are
widely used for the analyzed of the electrical, biomedical (ECGs), GPR signals, and
seismic sections.
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Continuous wavelet transform � Fourier transform � Hilbert Huang transform �
Stockwell transform � Electrical and biomedical signals

1 Introduction

GPR signals is a nonstationary signal affected by several phenomena, such as noise
and clutter signal caused principally by little diffracting objects localized in the
subsurface layers. As so, the signal is widely attenuated, and the transitions echo’s
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become undistinguished. In a dispersive medium this phenomena becomes more
important, as so, some reflected echoes become none visible neither in the time or
the frequency representation of the signal.

In fact, in geophysical data analysis, the concept of a stationary time series is a
mathematical idealization that is never realized and is not particularly useful in the
detection of signal arrivals. Although the Fourier transform of the entire time series
does contain information about the spectral components in a time series, for a large
class of practical applications, this information is inadequate. The spectral com-
ponents of such a time series clearly have a strong dependence on time. It would be
desirable to have a joint time-frequency representation (TFR).

Besides, in this study, we must calculate the travel time inside a cavity, i.e. the
time between two transition that are highly attenuated, in order to identify the nature
of the dielectric inside this cavity.

For time-frequency signal analysis, different techniques can be used. Three
techniques that have notably better properties in the analysis of nonstationary
signals are Hilbert Huang Transform (HHT), Continuous Wavelet Transform
(CWT), and Stockwell Transform.

In fact, Short Time Fourier Transform (STFT) is commonly used. However, the
limitation of this technique is that it has a constant resolution in time and in
frequency, where the width of the windowing function defines the resolution.

Continuous Wavelet Transform (CWT), is a technique suitable for time local-
ization of frequency content of the signal, has drawn significant attention in the
field, especially in seismic trace analyzing, signal denoising and enhancement.

The Stockwell transform is a combination of short-time Fourier (STFT) and
wavelet transforms, since it employs a variable window length and the Fourier
kernel. The advantage of S-transform is that it preserves the phase information of
signal, and also provides a variable resolution similar to the wavelet transform. In
addition, the S-transform is a linear transform that can be used as both an analysis
and a synthesis tool, which is not the case with some of the bilinear transforms such
as Wigner–Ville distribution. However, the S-transform suffers from poor energy
concentration at higher frequency and hence poor frequency localization.

However, Hilbert Huang Transform (HHT) is a recent technique for
time-frequency analysis, based on the empirical mode decomposition concept,
which simultaneously provides excellent resolution in time and frequency [1]. Its
essential feature is the use of an adaptive time-frequency decomposition that does
not impose a fixed basis set on the data, and therefore it is not limited by the
time-frequency uncertainty relation characteristic of Fourier or Wavelet analysis.

HHT has been applied for target signal enhancement in depth resolution problem
for high frequency range. In fact, Hilbert-Huang transform is widely studied and
applied in the many fields such as system simulation, spectral data preprocessing,
geophysics and the like through being developed for more than ten years. Besides,
Feng et al. [2] appliedHilbert transform to convert ground penetrating radar real signal
into complex signals. The instantaneous amplitude, instantaneous phase and instan-
taneous frequency waveform Figs were extracted, and independent profiles of three
parameters were formed, thereby improving the accuracy of radar interpretation.
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Based onHilbert transform, the signalsmust be narrowbandwhenHilbert transform is
used for calculating instantaneous parameters of signals. The GPR data often adopt
broadband, and error physical interpretation can be caused through directly adopting
Hilbert for calculating instantaneous parameters, such as negative frequency and the
like.

This paper gives comparative survey of the three time-frequencies approaches
with the intention of giving the guidelines for deciding which of these techniques
will be chosen for the analysis of signals obtained from GPR survey, considering
the desired outcomes of the analysis, and the specific application for the resolution
of the problem of undistinguished reflections in dispersive medium, due to the
attenuation phenomena. Besides brief mathematical foundations of the transforms,
the paper illustrates their utilization using simulated examples.

2 Time-Frequency Analysis

2.1 Wavelet Transform

A wavelet function, is a function w 2 L2ðRÞ with zero average, normalized (i.e.R
R
w ¼ 0), and centered in the neighborhood of t = 0. Scalingw by a positive quantity

s, and translating it by u 2 R, we define a family of time-frequency atoms, wu;s, as:

wu;sðtÞ ¼
1ffiffi
s

p w
t � u
s

� �
; u 2 R; s[ 0 ð1Þ

Given a signal sig 2 L2ðRÞ, the continuous wavelet transform (CWT) of sig at
time u and scale s is defined as:

W sigðu; sÞ ¼ sig;wu;s

� � ¼
Zþ1

�1
sigðtÞw�

u;sðtÞdt ð2Þ

It provides the frequency component (or details) of sig corresponding to the
scale s and time location t.

The revolution of wavelet theory comes precisely from this fact: the two
parameters (time u and scale s) of the CWT make possible the study of a signal in
both time and frequency domains simultaneously, with a resolution that depends on
the scale of interest. According to these considerations, the CWT provides a
time-frequency decomposition of sig in the so called time-frequency plane. This
method, as it is discussed previously, is more accurate and efficient than the win-
dowed Fourier transform (WFT) basically.
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The scalogram of sig is defined by the function :

SðsÞ ¼k Wsigðs; uÞ k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zþ1

�1
W sig ðs; uÞj j2du

vuuut ð3Þ

Representing the energy of (W sig) at a scale s. Obviously, S(s) ≥ 0 for all
scales s, and if s > 0 we will say that the signal sig has details at scale s. Thus, the
scalogram allows the detection of the most representative scales (or frequencies) of
a signal, that is, the scales that contribute the most to the total energy of the signal.

Versatile as the wavelet analysis is, the problem with the most commonly used
Morlet wavelet is its leakage generated by the limited length of the basic wavelet
function, which makes the quantitative definition of the energy-frequency-time
distribution difficult. Sometimes, the interpretation of the wavelet can also be
counterintuitive. In fact, to define a change occurring locally, one must look for the
result in the high-frequency range, for the higher the frequency the more localized
the basic wavelet will be. If a local event occurs only in the low-frequency range,
one will still be forced to look for its effects in the high-frequency range. Such
interpretation will be difficult if it is possible at all. Another difficulty of the wavelet
analysis is its non adaptive nature. Once the basic wavelet is selected, one will have
to use it to analyze all the data. Since the most commonly used Morlet wavelet is
Fourier based, it also suffers the many shortcomings of Fourier spectral analysis, it
can only give a physically meaningful interpretation to linear phenomena. In spite
of all these problems, wavelet analysis is still the best available non-stationary data
analysis method so far [2].

2.2 Stockwell Transform

There are several methods of arriving at the S transform. We consider it illumi-
nating to derive the S transform as the phase correction of the CWT [3].

The S transform of a function sig(t) is defined as a CWT with a specific mother
wavelet multiplied by the phase factor :

Sðr; fÞ ¼ ei2pfuW sigðu; sÞ ð4Þ

where W sig (u,s) is the CWT given by (2), and the mother wavelet is defined as :

w t; fð Þ ¼ sigj j
k

ffiffiffiffiffiffi
2p

p e�
t2f2

2k2 ei2pft; 8k[ 0 ð5Þ
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where k is the scaling factor which controls the time-frequency resolution. The
wavelet is generally chosen to be positive and normalized Gaussian. In particular,
the transform with a Gaussian window can be rewritten in terms of a Morlet wavelet
transform [4].

In fact, the S-transform provides a useful extension to the wavelets by having a
frequency dependent progressive resolution as opposed to the arbitrary dilations
used in wavelets. The kernel of the S-transform does not translate with the local-
izing window function, in contrast to the wavelet counterpart. For that reason the
S-transform retains both the amplitude and absolutely referenced phase information
[3]. Absolutely referenced phase information means that the phase information
given by the S-transform is always referenced to time. This is the same meaning of
the phase given by the Fourier transform, and is true for each S-transform sample of
the time-frequency space. The continuous wavelet transform, in comparison can
only localize the amplitude or power spectrum, not the absolute phase. There is, in
addition, an easy and direct relation between the S-transform and the Fourier
transform.

2.3 Hilbert Huang Transform

Hilbert-Huang transform is a new method for analyzing nonlinear and
non-stationary signals, which was proposed by Huang in 1998. It mainly includes
empirical mode decomposition (EMD) and Hilbert spectral analysis, which firstly
decomposes signals into a number of intrinsic mode functions (IMF) through uti-
lizing EMD method, then acts Hilbert transform on every IMF, and obtains cor-
responding Hilbert instantaneous spectrum, and the multi-scale oscillation change
characteristics of original signals are revealed through analyzing each component
and its Hilbert spectrum [5].

2.3.1 EMD Decomposition

In fact, we define as IMF any function having the same number of zero-crossings
and extrema, and also having symmetric envelopes defined by the local maxima and
minima respectively. Since IMFs admit well-behaved Hilbert transforms, the sec-
ond stage of the algorithm is to use the Hilbert transform to provide instantaneous
frequencies as a function of time for each one of the IMF components. Depending
on the application, only the first stage of the Hilbert-Huang Transform may be used.

For a signal x(t) the EMD starts by defining the envelopes of its maxima and
minima using cubic splines interpolation. Then, the mean of the two envelopes
(Emax and Emin) is calculated:
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m1ðtÞ ¼ ðEmaxðtÞþEminðtÞÞ=2 ð6Þ

Accordingly, the mean m1(t) is then subtracted from the original signal x(t) :

h1ðtÞ ¼ xðtÞ �m1ðtÞ ð7Þ

And the residual h1(t) is examined for the IMF criteria of completeness. If it is an
IMF then the procedure stops and the new signal under examination is expressed as:

x1ðtÞ ¼ xðtÞ � h1ðtÞ ð8Þ

However, if h1(t) if is not an IMF, the procedure, also known as sifting, is
continued k times until the first IMF is realized. Thus:

h11ðtÞ ¼ h1ðtÞ �m11ðtÞ ð9Þ

where the second subscript index corresponds to sifting number, and finally:

IMF1ðtÞ ¼ h1kðtÞ ¼ hk�1ðtÞ �m1kðtÞ ð10Þ

In fact, the sifting process is continued until the last residual is either a mono-
tonic function or a constant. It should be mentioned that as the sifting process
evolves, the number of the extrema from one residual to the next drops, thus
guaranteeing that complete decomposition is achieved in a finite number of steps.
The signal given by:

x tð Þ ¼
Xn
i¼1

IMFiðtÞþ rðtÞ ð11Þ

where k is the total number of the IMF components and r(t) is the residual [5].
The final product is a wavelet-like decomposition going from higher to lower

oscillation frequencies, with the frequency content of each mode decreasing as
the order of the IMF increases. The big difference however, with the wavelet
analysis is that while modes and residuals can intuitively be given a spectral
interpretation in the general case, their high versus low frequency discrimination
applies only locally and corresponds in no way to a predetermined sub-band
filtering. Selection of modes instead, corresponds to an automatic and adaptive
time variant filtering.
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2.3.2 Hilbert Spectrum

For given decomposed signal, sig(t), the Hilbert transform, HT (t), is defined as:

HTðtÞ ¼ 1
p

Zþ1

�1

sigðsÞ
t� s

ds ð12Þ

HT (t) can be combined to form analytical signal A (t), given by:

A tð Þ ¼ sig tð Þþ iHT tð Þ ¼ a tð ÞehðtÞ ð13Þ

From the polar coordinate expression, the instantaneous frequency can be
defined

x ¼ dh
dt

ð14Þ

Applying the Hilbert transform to the n IMF components, the signal sig(t) can be
written as :

sig tð Þ ¼ R
Xn
j¼1

ajðtÞeih
R xj tð Þdt ð15Þ

where R is the real part of the value to be calculated and aj the analytic signal
associated with the jth IMF.

The above Equation is written in terms of amplitude and instantaneous fre-
quency associated with each component as functions of time. The time-dependent
amplitude and instantaneous frequency might not only improve the flexibility of the
expansion, but also enable the expansion to accommodate nonstationary data [5].

The frequency-time distribution of the amplitude is designated as the Hilbert
amplitude spectrum, H(ω, t), or Hilbert spectrum simply, defined as:

H x; tð Þ ¼
Xn
j¼1

ajd tð Þdt ð16Þ

The marginal spectrum, h(ω), is defined as :

h xð Þ ¼
Xn
j¼1

ZT

0

ajd tð Þdt ð17Þ

It is provides a measure of total amplitude contribution from each frequency
value, in which T denotes the time duration of data.
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3 Simulation

3.1 Example of Simulation

An example of simulation for a prospection type surface-surface, is realized for a
cavity embedded in a dispersive clay (Fig. 1) using Matlab. The received signal is
analyzed with the three time-frequency techniques discussed bellow.

3.2 Results and Discussion

We present the result of the GPR signal analyzed by wavelet transform (Fig. 2),
Stockwell transform (Fig. 3), and Hilbert Huang Transform (Fig. 4).

CWT (Fig. 2) shows excellent time localization for different frequencies, but it is
limited by the choice of the mother wavelet. Nevertheless, although CWT is able to
provide sharper time localization of appearance of different frequencies than HHT
(Fig. 4), it is not capable to determine the instantaneous frequency of the signal.
But, otherwise, the Hilbert transform, with EMD algorithm, is unstable with noisy
data (Fig. 5), which is the case for real data.

The S-transform (Fig. 3) improves the short-time Fourier transform and the
continuous wavelet transform by merging the multi-resolution and
frequency-dependent analysis properties of wavelet transform with the absolute
phase retaining of Fourier transform.

The common S-transform applies a Gaussian window to provide appropriate
time and frequency resolution and minimizes the product of these resolutions.
However, the Gaussian S-transform is unable to obtain uniform time and frequency
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Fig. 1 Simulation model: permittivity profile
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resolution for all frequency components. In fact, the S-transform suffers from
inherently poor frequency resolution, particularly at the high frequencies, in addi-
tion to the misleading interference terms.

Fig. 2 Time-frequency representation using continuous wavelet transform
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Fig. 3 Time-frequency representation using Stockwell transform
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4 Conclusion

This research aims to calculate the travel time inside a cavity, i.e. the time between
two transition that are highly attenuated, in order to identify the nature of the
dielectric inside this cavity, which become impossible due to the attenuation phe-
nomena. Accordingly to the comparison study done between the three
time-frequency representations algorithms explained, it was clear that the CWT
gives good time-frequency resolution of the events (not affected by noise or mis-
leading terms).

However the Hilbert Huang technique could be modified in the phase of EMD
decomposition and IMF selection to perform the desired task. Future works will be
concentrated on this points.

(a)                                         (b)
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Fig. 4 Time-frequency representation using Hilbert Huang transform: a Time-frequency
spectrum, b EMD decomposition which show the three IMF and the residue
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