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Abstract The most unsupervised methods of classification suffer from several
performance problems, especially the class number, the initialization start points
and the solution quality. In this work, we propose a new approach to estimate the
class number and to select a set of centers that represent, fiddly, a set of given data.
Our key idea consists to express the clustering problem as a bivalent quadratic
optimization problem with linear constraints. The proposed model is based on three
criterions: the number of centers, the density data and the dispersion of the chosen
centers. To validate our proposed approach, we use a genetic algorithm to solve the
mathematical model. Experimental results applied on IRIS Data, show that the
proposed solution selects an adequate centers and leads to a reasonable class
number.
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1 Introduction

The classification problem consists of partitioning a set of data into clusters
(classes, groups, subsets, …) [1]. A cluster is described by considering the internal
homogeneity and the external separation; in this sense, the elements of the same
class should be similar to each other, while those belonging to different classes
should be not.

The classification problem has been applied in a wide variety of fields, especially
engineering, computer science, life and medical science, social science, and
economy [2]. Several methods are proposed to solve the classification problem such
as K-means, ISODATA, SVM, SOM, trees method and the Bayesian method [1–4].
Most of them require a priori specifying the number of classes k. Indeed, the quality
of resulting clusters is, largely, dependents on the estimated k. An algorithm can,
always, generate a division, no matter whether the structure exists or not.

Determining the number of clusters in a data set is a frequent problem in data
clustering and is a distinct issue from the process of solving the clustering problem
[5]. This works aims to propose a new approach to estimate the number of classes
k and to select a set of centers that represent fiddly a given data set. Our solution
consists to express the clustering problem as a bivalent quadratic optimization
problem with linear constraints. The proposed model is based on three criterions:
the number of centers, density data and dispersion of the chosen centers. For it
performance, the genetic algorithm is used in order to solve this model. In this
context, we have proposed the classical mutation and crossover operators; the
selection function is nothing but the objective function of the proposed model.

This paper is organized as follow: in Sect. 2, we present the 0–1 mathematical
programming model for the unsupervised classification problem. The genetic
algorithm for solving the proposed model is presented in Sect. 3. While in Sect. 5,
the performances of this new method are evaluated by some experimental results.
The last section concludes this work.

2 The 0–1 Mathematical Programming Model
for the Unsupervised Classification Problem

Let D = {d1,…,dn} � IRm be the set of data, where n and m are integer numbers.
The Unsupervised Classification Problem (UCP) looks for a set S, called set of
centers, of an optimal size that represents fiddly the set D. In this part, we express
the UCP problem as a bivalent quadratic problem with linear constraints, such that
S is a subset of D. To this end, we define some necessary concepts. From a
computational point of view, the UCP is one of the most difficult optimization
problems; it is an NP-hard problem and the existence of efficient heuristic
approaches for the general case cannot be assured.
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2.1 The Sample Density

Let σ be a non negative number, for each sample di, we introduce the set Ai = {dj/
kdi − djk ≤ σ}. The density parameter of di is given by αi = |Ai|/n, where |Ai| is the
size of the set Ai. In this sense, an isolated sample is the one that has a low density;
an interior point is the one that has a large density. In this context, the Fig. 1
represents the IRIS Data for σ = 0.4 and 0.086 as density threshold.

Noted that, the right centers of the IRIS Data are c1 = (1.464,0.244),
c2 = (4.242,1.336), c3 = (5.57,2.016). Basing on the samples density, the problem
UCP looks for one set S of center among D such that:

• The elements of S should have a large dispersion,
• The |density(S)-density(D)| is small as possible,
• The size of the center set S is small as possible.

2.2 The Decision Variable

Let S be a centers set among D; for each sample di, we introduce the binary variable
xi that equals to 1 if the sample di is into S, 0 else. The vector decision is denoted by
x = (x1,…,xn)

t.

DensityThreshold=0.086
=0.4

Fig. 1 The isolated point, represented by the character ‘i’, and the interior ones, represented by the
character ‘o’, of the IRIS data
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2.3 The Decision Dispersion

Let βii = kdi – djk be the distance between the samples di and dj. The deviation of
the selected samples around the sample di is given by xi

Pn
j¼1 bijxj. In this sense, for

some vector decision x = (x1,…,xn)
t, we measure the dispersion of this decision by

the quantity:

f1ðxÞ ¼
Xn
i;j¼1

xibijxj ð1Þ

Remark 1 There exist several methods to measure this dispersion; such as
interquartile range and standard deviation. These criterions of dispersion measure
geometrically de dispersion of all data in order to specify automatically the center
which represents these data. This type of dispersion is chosen for three resents: Is
less sensitive to extreme data, Represent fiddly all data and is easy to implement it.

2.4 The Decision Density

For a decision vector x = (x1,…,xn)
t, the total density of the selected centers is given

by:

f2ðxÞ ¼
Xn
i¼1

aixi ð2Þ

2.5 The Centers Set Size

For a decision vector x = (x1,…,xn)
t, the centers number is calculated by:

f3ðxÞ ¼
Xn
i¼1

xi ð3Þ

Basing on the criterions f1, f2 and f3, we can define several bivalent quadratic
problems with linear constraints. In our case, we fix some thresholds for the
decision density, and then we look for one decision that maximizes the centers
dispersion and minimizes the number of centers:
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ðPrÞ :
Max

Pn
i;j¼1

xibijxj � k
Pn
i¼1

xi

 !
SC :Pn

i¼1
aixi � td

xi 2 f0; 1g; i ¼ 1; . . .; n

8>>>>>><
>>>>>>:

ð4Þ

where λ is a penalty parameter. This penalty term is must be chosen in order to
equilibrate the compromise between the dispersion and the number of centers terms.

In the next section, we will use the genetic algorithm to solve the problem Pr.

3 Genetic Algorithm for Solving the Proposed Model

Since the proposed model is NP-complete, we use the genetic algorithm as opti-
mization tool [6]. In this regard, we define our own coding, fitness function,
selection mechanisms, crossover and mutation operators.

3.1 Coding

As it is known, the UCP problem is a 0–1 quadratic programming. Then, it is
natural to use the binary codes in order to produce our population; see Fig. 2. The
size of each individual is equals to n (number of data).

3.2 Fitness Function

In order to evolve good solutions and to implement natural selection, the notion of
fitness, which evaluates the solution, is used. In this case, the fitness function is no
think but the objective function of our model:

f ðxÞ ¼
Xn
i¼1

Xn
j¼1

xibijxj � k
Xn
i¼1

xi ð5Þ

0 1 0 0 0 1 0 0 1Fig. 2 Example of the
encoding individuals
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3.3 Mechanism of Selection Genetic Operators

At each step, a new population is created by applying the genetic operators:
selection, crossover and mutation [7].

At the level of selection, the main idea is to prefer better solutions over worse
ones. In this work, the type of the selection used is roulette-wheel selection. This
type of selection guarantees a good luck to the good individual in order to be
selected in the future generation, and a bad luck to the unsuitable individual tar-
geted to be vanished in the future generation.

Crossover consists in building two new chromosomes from two old ones
referred to as the parents, Fig. 3a. Mutation realizes the inversion of one or several
genes in a chromosome, Fig. 3b.

After several experiments, the population size is fixed in function of the number
n of variables. So, the size of population is equal to the number of data set n. In
general, the probability of applying crossover operator is equal to 0.6 and the
probability of applying mutation operator is equal to 0.02. The stopping criterion is
based on a maximal number of iterations and/or when the performance function
doesn’t change.

4 Experimentation

To evaluate the performance of our method, the parameters α and β are calculated
from data iris. Several runs have been conducted for different values of the density
parameter. To measure the performance of used algorithms, we used the following
measures:

Chromosome initial 1 0 0 0 1 1 1 1

Chromosome mutant 1 0 0 0 0 1 1 1
b

1 0 0 0 1 1 1 1
Parents

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0
Children

1 1 0 0 1 1 1 1
a

Fig. 3 Crossover and
mutation operators
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• MCN: Mean Class Number,
• MTE: Mean Total Error,
• MInP: Mean Interior Point,
• MIsP: Mean Isolated Point,
• MECi: Mean Error of the Class i.

The parameter σ is randomly chosen from the interval [0.4,0.11]; see the
Table 1. The density parameter was fixed near to 70 %.

As shown in the Table 1, the mean number of selected centers using our
approach is 6. The selected centers are equitably reparted between the three classes
of the Iris Data; see the Figs. 4 and 5. In fact, our method assigns almost two centers
to each class; see Table 1.

As shown in the Fig. 6, for σ > 0.15, the errors MEC1, MEC2 and MEC3
become almost constant. In this sense, the density has a low impact on the decision
errors. Then, we can deduce that our method is consistent.

The most selected data are interiors samples; this means all the selected samples
are representative ones. It should be noted that we can use the Euclidian distance to
group the collected centers to obtain the right centers of the data under study [8].

Fig. 4 The selected centers, for σ = 0.4, are represented by the character ‘s’
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Fig. 5 The selected centers for σ = 0.12 are represented by the character ‘s’

Fig. 6 Mean errors density versus density parameter σ
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5 Conclusion

In this work, we have proposed a new approach to estimate the class number and to
select a set of centers that represent fiddly the D set. Our approach consists
expressing this problem as a bivalent quadratic problem with linear constraints
ensuring a large dispersion of the chosen centers, respects the information percent
imposed by the experts of different domains. In the future, we will combine our
approach with some performance labeling method to construct a new system able to
solve classification problem.
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