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Abstract Chaos in nonlinear dynamics occurs widely in physics, chemistry, biol-
ogy, ecology, secure communications, cryptosystems and many scientific branches.
Control of chaotic systems is an important research problem in chaos theory. Sliding
mode control is an important method used to solve various problems in control sys-
tems engineering. In robust control systems, the slidingmode control is often adopted
due to its inherent advantages of easy realization, fast response and good transient
performance as well as insensitivity to parameter uncertainties and disturbance. In
this work, we derive a novel sliding mode control method for the global stabiliza-
tion of chaotic systems. The general control result derived using novel sliding mode
control method is proved using Lyapunov stability theory. As an application of the
general result, the problem of global stabilization of the Vaidyanathan jerk chaotic
system (2015) is studied and a new sliding mode controller is derived. The Lyapunov
exponents of theVaidyanathan jerk system are obtained as L1 = 0.12476, L2 = 0 and
L3 = −1.12451. Since the Vaidyanathan jerk system has a positive Lyapunov expo-
nent, it is chaotic. The Maximal Lyapunov Exponent (MLE) of the Vaidyanathan
jerk system is given by L1 = 0.12476. Also, the Kaplan–Yorke dimension of the
Vaidyanathan jerk system is obtained as DKY = 2.11095. Numerical simulations
using MATLAB have been shown to depict the phase portraits of the Vaidyanathan
jerk system and the sliding mode controller design for the global stabilization of the
Vaidyanathan jerk system.
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1 Introduction

Chaos theory describes the quantitative study of unstable aperiodic dynamic behav-
iour in deterministic nonlinear dynamical systems. For the motion of a dynamical
system to be chaotic, the system variables should contain some nonlinear terms
and the system must satisfy three properties: boundedness, infinite recurrence and
sensitive dependence on initial conditions [9].

The Lyapunov exponent is a measure of the divergence of phase points that are
initially very close and can be used to quantify chaotic systems. It is common to
refer to the largest Lyapunov exponent as the Maximal Lyapunov Exponent (MLE).
A positive maximal Lyapunov exponent and phase space compactness are usually
taken as defining conditions for a chaotic system.

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [30], Rössler system [40], ACT system [1], Sprott systems [43], Chen system
[15], Lü system [31], Liu system [29], Cai system [14], Chen–Lee system [16], Tigan
system [51], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [116], Zhu system [117], Li system [25], Wei–Yang system [111],
Sundarapandian systems [48, 49], Vaidyanathan systems [60, 63, 65–68, 70, 81,
95–97, 99, 101, 104, 106–108], Pehlivan system [35], Sampath system [41], Pham
system [36],etc.

Chaos theory and control systems have many important applications in science
and engineering [2, 10–13, 118]. Some commonly known applications are oscillators
[22, 42], lasers [26, 113], chemical reactors [71, 75, 77, 79, 82, 86–88], biological
systems [69, 72–74, 76, 78, 83–85, 89, 91–93], ecology [18, 45], encryption [24,
115], cryptosystems [39, 52], mechanical systems [4–8], secure communications
[17, 33, 114], robotics [32, 34, 109], cardiology [38, 112], intelligent control [3,
27], neural networks [20, 21, 28], finance [19, 44], memristors [37, 110], etc.

Control or regulation of a chaotic system deals with the design of a state feedback
control law so as to stabilize or regulate the trajectories of the chaotic system. Many
techniques have been devised for the global control of chaotic systems such as the
active control method [46, 47, 55, 56, 102], adaptive control method [61, 62, 64,
90, 94, 100, 103, 105], sliding mode control method [50, 57–59, 98], etc.

In the sliding mode control theory, the control dynamics will have two sequential
modes, viz. the reaching mode and the sliding mode. Basically, a sliding mode
controller (SMC) design consists of two parts: hyperplane design and controller
design. A hyperplane is first designed via the pole-placement approach in themodern
control theory and a controller is then designed based on the sliding condition. The
stability of the overall system is guaranteed by the sliding condition and by a stable
hyperplane.

The sliding mode control method is an effective control tool which has the advan-
tages of low sensitivity to parameter variations in the plant and disturbances affecting
the plant.
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In this work, we use a novel sliding mode control method for deriving a general
result for the global stabilization of chaotic systems using sliding mode control
(SMC) theory.

The general control result derived using novel sliding mode control method is
proved using Lyapunov stability theory. As an application of the general result, the
problemof global stabilization of theVaidyanathan jerk chaotic system [80] is studied
and a new sliding mode controller is derived.

This work is organized as follows. Section2 contains the problem statement of
global chaos control of chaotic systems. Section3 describes the novel sliding mode
controller design for globally stabilizing chaotic systems. The general control result
derived using novel sliding mode control method is proved using Lyapunov stability
theory.

Section4 describes the Vaidyanathan jerk chaotic system [80] and its properties.
The Lyapunov exponents of the Vaidyanathan jerk system are obtained as L1 =
0.12476, L2 = 0 and L3 = −1.12451. Since the Vaidyanathan jerk system has a
positive Lyapunov exponent, it is chaotic. The Maximal Lyapunov Exponent (MLE)
of the Vaidyanathan jerk system is given by L1 = 0.12476. Also, the Kaplan–Yorke
dimension of the Vaidyanathan jerk system is obtained as DKY = 2.11095.

Section5 describes the application of the general result derived in Sect. 3 for
the global chaos control of the Vaidyanathan jerk chaotic system [80]. Numerical
simulations using MATLAB have been shown to depict the phase portraits of the
Vaidyanathan jerk system and the sliding mode controller design for the global
stabilization of the Vaidyanathan jerk system. Section6 contains the conclusions
of this work.

2 Problem Statement

This section gives a problem statement for the global chaos control of a given chaotic
system.

To start with, we consider a chaotic system given by

ẋ = Ax + f (x) + u (1)

where x ∈ Rn denotes the state of the system, A ∈ Rn×n denotes the matrix of system
parameters, f (x) ∈ Rn contains the nonlinear parts of the system and u is the control.

Thus, the global chaos control for the given chaotic system (1) can be stated
as follows: Find a feedback controller u(x) so as to render the state x(t) of the
corresponding closed-loop system to be globally asymptotically stable for all values
of x(0) ∈ Rn, i.e.

lim
t→∞ ‖x(t)‖ = 0 for all x(0) ∈ Rn (2)
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3 A Novel Sliding Mode Control Method for Global
Stabilization of Chaotic Systems

This section details the main results of this work, viz. novel sliding mode controller
design for achieving global asymptotic stabilization of a given chaotic system.

First, we start the design by setting the control as

u(t) = −f (x) + Bv(t) (3)

In Eq. (3), B ∈ Rn is chosen such that (A,B) is completely controllable.
By substituting (3) into (1), we get the closed-loop plant dynamics

ẋ = Ax + Bv (4)

The system (4) is a linear time-invariant control system with single input v.
Next, we start the sliding controller design by defining the sliding variable as

s(x) = Cx = c1x1 + c2x2 + · · · + cnxn, (5)

where C ∈ R1×n is a constant vector to be determined.
The sliding manifold S is defined as the hyperplane

S = {x ∈ Rn : s(x) = Cx = 0} (6)

We shall assume that a sliding motion occurs on the hyperplane S.
In sliding mode, the following equations must be satisfied:

s = 0 (7a)

ṡ = CAx + CBv = 0 (7b)

We assume that
CB �= 0 (8)

The sliding motion is influenced by the equivalent control derived from (7b) as

veq(t) = −(CB)−1 CAx(t) (9)

By substituting (9) into (4), we obtain the equivalent system dynamics in the
sliding phase as

ẋ = Ax − (CB)−1CAx = Ex, (10)

where
E = [

I − B(CB)−1C
]

A (11)
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We note that E is independent of the control and has at most (n − 1) non-zero
eigenvalues, depending on the chosen switching surface, while the associated eigen-
vectors belong to ker(C).

Since (A,B) is controllable, we can use sliding control theory [53, 54] to choose
B and C so that E has any desired (n − 1) stable eigenvalues.

This shows that the dynamics (10) is globally asympotically stable.
Finally, for the sliding controller design, we apply a novel sliding control law, viz.

ṡ = −ks − qs2 sgn(s) (12)

In (12), sgn(·) denotes the sign function and the SMC constants k > 0, q > 0 are
found in such a way that the sliding condition is satisfied and that the sliding motion
will occur.

By combining Eqs. (7b), (9) and (12), we finally obtain the slidingmode controller
v(t) as

v(t) = −(CB)−1
[
C(kI + A)x + qs2 sgn(s)

]
(13)

Next, we establish the main result of this section.

Theorem 1 The chaotic system (1) is globally asymptotically stabilized for all initial
conditions x(0) in Rn, where v is defined by the novel sliding mode control law (13),
B ∈ Rn×1 is such that (A,B) is controllable, C ∈ R1×n is such that CB �= 0 and the
matrix E defined by (11) has (n − 1) stable eigenvalues.

Proof Upon substitution of the control laws (3) and (13) into the system dynamics
(1), we obtain the closed-loop system as

ẋ = Ax − B(CB)−1
[
C(kI + A)x + qs2 sgn(s)

]
(14)

We shall show that the error dynamics (14) is globally asymptotically stable by
considering the quadratic Lyapunov function

V (x) = 1

2
s2(x) (15)

The sliding mode motion is characterized by the equations

s(x) = 0 and ṡ(x) = 0 (16)

By the choice of E, the dynamics in the sliding mode given by Eq. (10) is globally
asymptotically stable.

When s(x) �= 0, V (x) > 0.
Also, when s(x) �= 0, differentiating V along the error dynamics (14) or the equiv-

alent dynamics (12), we get

V̇ (x) = sṡ = −ks2 − qs3 sgn(s) < 0 (17)



542 S. Vaidyanathan

Hence, by Lyapunov stability theory [23], the error dynamics (14) is globally
asymptotically stable for all x(0) ∈ Rn.

This completes the proof. �

4 Vaidyanathan Jerk Chaotic System and Its Properties

In this section, we describe the Vaidyanathan jerk chaotic system [80] and discuss
its dynamic properties.

The Vaidyanathan jerk chaotic system [80] is described by the 3-D dynamics

ẋ1 = x2
ẋ2 = x3
ẋ3 = ax1 − bx2 − x3 − x21 − x22

(18)

where x1, x2, x3 are the states and a, b are constant, positive, parameters.
In [80], it was shown that the system (18) exhibits a strange chaotic attractor,

when the parameters take the values

a = 7.5 b = 4 (19)

For numerical simulations, we take the initial values of the Vaidyanathan jerk
chaotic system (18) as

x1(0) = 0.2, x2(0) = 0.6, x3(0) = 0.4 (20)

For the parameter values in (19) and the initial values in (20), the Lyapunov
exponents of the Vaidyanathan jerk system (18) are numerically obtained as

L1 = 0.12476, L2 = 0, L3 = −1.12451 (21)

Since the sum of the Lyapunov exponents in (21) is negative, the Vaidyanathan
jerk system (18) is dissipative.

The Kaplan–Yorke dimension of the Vaidyanathan jerk system (18) is calculated
as

DKY = 2 + L1 + L2

|L3| = 2.11095, (22)

which is fractional.
It is easy to show that the Vaidyanathan hyperjerk system (18) has two equilibrium

points given by

E0 =
⎡

⎣
0
0
0

⎤

⎦ and E1 =
⎡

⎣
7.5
0
0

⎤

⎦ (23)
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In [80], it was shown that both E0 and E1 are saddle-focus points, and hence they
are unstable.

For the initial conditions given in (20), phase portraits of the Vaidyanathan jerk
system (18) are plotted using MATLAB.

Figures1 shows the strange chaotic attractor of the Vaidyanathan jerk system (18).
Figures2, 3 and 4 show the 2-D projection of the Vaidyanathan jerk system (18) on
the (x1, x2), (x2, x3) and (x1, x3) planes, respectively.
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Fig. 1 Strange chaotic attractor of the Vaidyanathan jerk system
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Fig. 2 2-D projection of the Vaidyanathan jerk system on the (x1, x2) plane
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Fig. 3 2-D projection of the Vaidyanathan jerk system on the (x2, x3) plane
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Fig. 4 2-D projection of the Vaidyanathan jerk system on the (x1, x3) plane
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5 Sliding Mode Controller Design for the Global
Stabilization of Vaidyanathan Jerk System

In this section, we describe the sliding mode controller design for the global stabi-
lization of Vaidyanathan jerk system [80] by applying the novel method described
by Theorem1 in Sect. 3.

Thus, we consider the controlled Vaidyanathan jerk system given by

ẋ1 = x2 + u1
ẋ2 = x3 + u2
ẋ3 = ax1 − bx2 − x3 − x21 − x22 + u3

(24)

In matrix form, we can write the error dynamics (24) as

ẋ = Ax + ψ(x) + u (25)

The matrices A and ψ in (25) are given by

A =
⎡

⎣
0 1 0
0 0 1
a −b −1

⎤

⎦ , ψ(x) =
⎡

⎣
0
0

−x21 − x22

⎤

⎦ (26)

We follow the procedure given in Sect. 3 for the construction of the novel sliding
controller to achieve global stabilization of the Vaidyanathan jerk system (24).

We take the parameter values of a and b as in the chaotic case, i.e.

a = 7.5, b = 4 (27)

First, we set u as
u(t) = −ψ(x) + Bv(t) (28)

where B is selected such that (A,B) is completely controllable.
A simple choice of B is

B =
⎡

⎣
1
1
1

⎤

⎦ (29)

It can be easily checked that (A,B) is completely controllable.
Next, we take the sliding variable as

s(x) = Cx = [
1 −1 −20

]
e = x1 − x2 − 20x3 (30)
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If we define E = [I − B(CB)−1C]A, then the matrix E has the eigenvalues

eig(E) = {0,−1.7500 ± 2.1243i} (31)

which shows that the motion along the sliding manifold is globally asymptotically
stable.

Next, we take the sliding mode gains as

k = 5, q = 0.2 (32)

From Eq. (13) in Sect. 3, we obtain the novel sliding control v as

v(t) = −7.25x1 + 3.8x2 − 4.05x3 + 0.01s2 sgn(s) (33)

As an application of Theorem1 to the identical Vaidyanathan jerk chaotic system,
we obtain the following main result of this section.

Theorem 2 Vaidyanathan jerk chaotic system (24) is globally and asymptoti-
cally stabilized for all initial conditions x(0) ∈ R3 with the sliding controller u
defined by (28), where ψ(x) is defined by (26), B is defined by (29) and v is
defined by (33). �

For numerical simulations, we use MATLAB for solving the systems of differ-
ential equations using the classical fourth-order Runge–Kutta method with step size
h = 10−8.
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Fig. 5 Time-history of the controlled states x1, x2, x3
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The parameter values of the Vaidyanathan jerk system are taken as in the chaotic
case, viz. a = 7.5 and b = 4.

The sliding mode gains are taken as k = 5 and q = 0.2.
As an initial condition for the Vaidyanathan jerk system (24), we take

x1(0) = 5.7, x2(0) = 8.2, x3(0) = 14.3 (34)

Figure5 shows the time-history of the controlled states x1, x2, x3.

6 Conclusions

In this work, we derived a novel sliding mode control method for the global stabiliza-
tion of chaotic systems. The general control result derived using novel sliding mode
control method was proved using Lyapunov stability theory. As an application of the
general result, the problem of global stabilization of the Vaidyanathan jerk chaotic
system (2015) was studied and a new sliding mode controller has been derived.
The Lyapunov exponents of the Vaidyanathan jerk system have been obtained as
L1 = 0.12476, L2 = 0 and L3 = −1.12451. Since the Vaidyanathan jerk system has
a positive Lyapunov exponent, it is chaotic. TheMaximal LyapunovExponent (MLE)
of the Vaidyanathan jerk system is seen as L1 = 0.12476. Also, the Kaplan–Yorke
dimension of the Vaidyanathan jerk system has been derived as DKY = 2.11095.
Numerical simulations using MATLAB were shown to depict the phase portraits of
the Vaidyanathan jerk system and the sliding mode controller design for the global
stabilization of the Vaidyanathan jerk system.
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