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Abstract Nowadays, many works have been presented regarding the modeling,
simulation and circuit realization of different kinds of continuous-time multi-scroll
chaotic attractors. However, very few works describe the experimental realization of
attractors having highmaximumLyapunov exponent (MLE) and high entropy, which
are desirable characteristics to guarantee better chaotic unpredictability. For instance,
two chaotic oscillators having the same MLE values can behave in a very different
way, e.g. showing different entropy values. That way, we describe the experimental
realization of an optimized multi-scroll chaotic oscillator with both high MLE and
entropy. First, the MLE is optimized by applying an evolutionary algorithm, which
provides a set of feasible solutions. Second, the associated entropy is evaluated
for each feasible solution. In this chapter, experimental results are shown for the
electronic implementation of a chaotic oscillator generating 2-, 5- and 10-scrolls.
Finally, the experimental results show that by increasing the number of scrolls both
theMLEand its associated entropy increase in a similar proportion, thus guaranteeing
better unpredictability.
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1 Introduction

In Electronics, a great variety of chaotic oscillators has been implemented with
different kinds of electronic devices [7, 15, 19], using integrated circuits technology
[20], and more recently by using field programmable gate arrays [17]. In addition,
recent works show a relationship between the number of scrolls and the value of the
maximum Lyapunov exponent (MLE) [2, 18], and also a relationship between the
number of scrolls and the associated entropy [23]. Both characteristics associated to
MLE and entropy are quite desirable to improve for the development of enhanced
applications in nonlinear systems, like for example: the implementation of random
number generators [1, 4, 10, 23] that are quite useful in robotics [16, 21].

In this chapter we show the experimental realization of multi-scroll chaotic attrac-
tors that are optimized to provide a high value of the MLE, and for each attractor it
is also guaranteed to have a good distribution of the trajectories that is visualized in
the phase-space portraits. As concluded in [23], the next sections show that the MLE
increases by increasing the number of scrolls, indicating a better unpredictability
of the dynamical system due to the increment of its associated entropy. In addition,
we also show the experimental realization of multi-scroll chaotic attractors having a
uniform distribution of its trajectories in the phase-space portrait, because when the
phases are not well distributed among all the scrolls, some scrolls cannot be formed,
thus leading to a pretty difficult problem for the electronic implementation.

The optimization algorithm proposed in [2], is applied herein. It is based on the
evolutionary algorithm known as non-dominated sorting genetic algorithm (NSGA-
II) [3], and it optimizes two characteristics, namely: (a) Maximizing the positive
Lyapunov exponent, and (b) minimizing the dispersions of the phase transitions
among all scrolls in an attractor. The results of the optimization algorithm show that
both characteristics are in conflict, so that a feasible set of solutions is provided to
select the best one according to the problem at hand.

From the set of feasible solutions provided by applying [2], we select some multi-
scroll chaotic attractors having highMLE, and then we realize experiments by imple-
menting the chaotic oscillators with commercially available operational amplifiers.
The purpose of the experiments are oriented to verify the relationship on the number
of scrolls, their MLE value and the associated entropy.

The case of study is the multi-scroll chaotic oscillator based on saturated non-
linear function series, already described in [7]. It is a third order continuous-time
dynamical system, and then it has three Lyapunov exponents, one being positive,
which is known as MLE and its value indicates the degree of chaotic behavior. It
is optimized by applying the evolutionary algorithm given in [2], and its associ-
ated entropy is evaluated from both numerical simulations and experimental data
for generating 2-, 5- and 10-scrolls. The goal of performing the experiments is to
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verify that the higher the number of scrolls the higher the MLE and its associated
entropy [9]. Further, optimized chaotic oscillators should improve applications like
random number generators [1, 4, 10, 16, 21, 23], synchronization [6], and secure
communication systems [5], for instance.

2 Multi-scroll Chaotic Oscillators

The study of chaotic dynamical systems traces its origin to the findings of E.N. Lorenz
in the early 1960s. His interest in weather forecasting led him to the discovery of a
nonlinear dynamical system that displayed high sensitivity to the initial conditions,
an essential property of chaotic systems. Ever since then, decades of research have
expanded the understanding of this ubiquitous phenomena and produced several
applications in different areas of engineering.

Dynamical systems describe motion in nature that can be modeled by equations
of the following forms:

ẋ(t) = f (a, x(t)) t > 0 (1)

and
x(n + 1) = f (a, x(n)) n ∈ N (2)

In these equations, the state variables of the dynamical system are represented by
x(t) and x(n). The possible values of the state variables imply that (1) is a differential
equation while (2) is a difference equation or map. In both cases, x represents a q-
dimensional state vector, i.e. x ∈ Rq. The control parameter a (also called bifurcation
parameter) has m components such that a ∈ Rm. The control parameter affects the
evolution of the state variables, and the relationship between the parameters and the
state variables is defined by a function f . The range of f is in the same space of the
state vector x. Chaos, defined colloquially as irregular an unpredictable behavior, can
stem from dynamical systems as long as f has the suitable properties. Likewise, a
must be set to the appropriate values in order to precipitate a transition to chaos. The
chaotic behavior product of dynamical systems is known as deterministic chaos.

In electronics, chaotic oscillators have been implemented to generate double or
multi-scroll chaotic attractors. In the last case, multi-scrolls have been generated
by using different kinds of electronic devices [7, 15, 19], as well as by designing
integrated circuits [20] or by using configurable digital architectures [17]. However,
analog realizations suffer the limitations of the electronic devices [11], or suffer
the variations problems from integrated circuit fabrication technologies as shown in
[20], where a variation in process, voltage or temperature (PVT)may degrade or even
eliminate the normal behavior of a chaotic oscillator, rendering it useless. That way,
still more research is done regarding the design of chaotic oscillators using analog
devices. In this chapter, the chaotic oscillator is realized by using commercially
available operational amplifiers.
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The case of study is themulti-scroll chaotic oscillator based on saturated nonlinear
function series [7], which can be described by the system of differential equations
given by (3), where a, b, c, and d1 are positive constants that can have values in the
interval [0, 1]. In (3), the dynamical system is controlled by a saturated nonlinear
function series f that is approximated by piecewise-linear functions.

ẋ = y

ẏ = z

ż = −ax − by − cz + d1f (x; m)

(3)

In the following, we describe in detail how the saturated function f in (3) is
obtained. Let f0 be the saturated function:

f0(x; m) =

⎧
⎪⎨

⎪⎩

1, if x > m
x
m , if |x| ≤ m

−1, if x < −m,

(4)

where 1/m is the slope of themiddle segment andm > 0; the upper radial {f0(x; m) =
1 |x > m}, and the lower radial {f0(x; m) = −1 |x < −m} are called saturated
plateaus, and the segment {f0(x; m) = x/m | |x| ≤ m} between the two saturated
plateaus is called saturated slope.

Lets us consider now the saturated functions fh and f−h defined as:

fh(x; m, h) =

⎧
⎪⎨

⎪⎩

2, if x > h + m
x−k

m + 1, if |x − h| ≤ m

0, if x < h − m,

(5)

and

f−h(x; m,−h) =

⎧
⎪⎨

⎪⎩

0, if x > h + m
x−k

m − 1, if |x − h| ≤ m

−2, if x < h − m,

(6)

where h is called the saturated delay time and h > m. Therefore, a saturated function
series for a chaotic oscillator with s scrolls is defined as the function:

f (x; m) =
s−2∑

i=0

f2i−s+2(x; m, 2i − s + 2) (7)

where s > 2.
For example, using f = f0 in (3), a 2-scrolls chaotic oscillator can be gener-

ated. Therefore, the saturated function series to generate 3-scrolls is f (x; m) =
f−1(x; m,−1) + f1(x; m, 1). To generate a 4-scrolls attractor it will be f (x; m) =
f−2(x; m,−2) + f0(x; m) + f2(x; m, 2), and so on.
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In [2], the optimization of theMLE requires as input data, the number of scrolls to
be generated. Then, a bi-objective optimization problem is encoded: (i) to maximize
MLE, and (ii) to minimize the variability in the oscillator’s phase-space transitions
or the trajectories. From (3), the optimization problem is devoted to find the values
of the four coefficient variables a, b, c and d1 that solve both objectives (i) and (ii).
Those four coefficients can take values within the range [0.0, 1.0], and one decides
how many decimal numbers to use.

3 Computing Lyapunov Exponents and Entropy

Lyapunov exponents are asymptotic measures that characterize the average rate of
growth (or shrinking) of small perturbations to the solutions of a dynamical sys-
tem. Lyapunov exponents provide quantitative measures of response sensitivity of a
dynamical system to small changes in initial conditions. The number of Lyapunov
exponents is equal to the number of states variables in the dynamical system, and at
least three state variables are required to generate chaotic behavior. In this chapter,
the case of study is a multi scroll chaotic oscillator having three state variables,
described by (3). The experimental results presented in the next sections will verify
what is already known that by increasing the number of scrolls both the MLE and
its associated entropy increase in a similar proportion [23].

3.1 Lyapunov Exponents

Lets us consider an n-dimensional dynamical system:

ẋ = f (x), t > 0, x(0) = x0 ∈ R
n (8)

where x and f are n-dimensional vector fields. To determine the n-Lyapunov expo-
nents of the system one have to find the long term evolution of small perturbations
to a trajectory, which are determined by the variational equation of (8),

ẏ = ∂f

∂x

(
x(t)

)
y = J

(
x(t)

)
y (9)

where J is the n × n Jacobian matrix of f . A solution to (9) with a given initial
perturbation y(0) can be written as

y(t) = Y(t)y(0) (10)
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with Y(t) as the fundamental solution satisfying

Ẏ = J
(
x(t)

)
Y , Y(0) = In (11)

Here In denotes the n × n identity matrix. If we consider the evolution of an
infinitesimal n-parallelepiped [p1(t), . . . , pn(t)] with the axis pi(t) = Y(t)pi(0) for
i = 1, . . . , n,where pi(0) denotes an orthogonal basis ofRn. The ith Lyapunov expo-
nent, which measures the long-time sensitivity of the flow x(t) with respect to the
initial data x(0) at the direction pi(t), is defined by the expansion rate of the length
of the ith axis pi(t) and is given by

λi = lim
t→∞

1

t
ln

∥
∥pi(t)

∥
∥ (12)

In summary, the Lyapunov exponents can be computed as follows [2, 13, 18, 22]:

1. Initial conditions of the system and the variational system are set to X0 and In×n,
respectively.

2. The systems are integrated by several steps until an orthonormalization period
TO is reached. The integration of the variational system Y = [y1, y2, y3] depends
on the specific Jacobian that the original system X is using in the current step.

3. The variational system is orthonormalized by using the standard Gram-Schmidt
method [12], and the logarithm of the norm of each Lyapunov vector contained
in Y is obtained and accumulated in time.

4. The next integration is carried out by using the new orthonormalized vectors as
initial conditions. This process is repeated until the full integration period T is
reached.

5. The Lyapunov exponents are obtained by

λi ≈ 1
T

T∑

j =TO

ln
∥
∥yi

∥
∥

The time-step selection was set as in [18], by using the minimum absolute value
of all the eigenvalues of the system λmin, and ψ was chosen well above the sample
theorem as 50.

tstep = 1

λminψ

The orthogonalization period TOwas chosen about 50 tstep. This procedure is used
herein as in [2] to optimize the MLE.
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3.2 Evaluation of Entropy

For chaotic oscillators, the entropy is an alternative choice to Lyapunov exponents
because it reveals aspects of the underlying dynamical system (i.e., it quantifies the
stretching and the folding aspects at the same time). In this manner, in this chapter
the entropy is evaluated because its rate of growth is an interesting parameter to
quantify disorder in chaotic oscillators. In the same direction, as chaotic attractors
can be recognized by visual inspection in their phase-space portraits, we perform a
numerical quantification of chaos by optimizing the MLE of the chaotic oscillator
described by (3). The entropy has also some relationships of interest as for the sum of
Lyapunov exponents [13, 14], which measure the instability of nearby trajectories.

The entropy is computed herein by applying the algorithm presented by Modde-
meijer, which is online available at http://www.cs.rug.nl/~rudy/matlab/. That way,
in Sect. 5, we list 10 values of the MLE and their associated entropy that is evalu-
ated from both numerical simulation and experimental data for generating 2-, 5- and
10-scrolls attractors.

4 Circuit Realization with Commercially Available
Operational Amplifiers

The multi-scroll chaotic oscillator based on saturated nonlinear function series f is
described by (3). For the circuit realization, one should approximate function f by
piecewise-linear (PWL) segments as follows:

f (x; k, h, p, q) =

⎧
⎪⎪⎨

⎪⎪⎩

(2q + 1)k,

k(x − ih) + 2ik,

(2i + 1)k,

−(2p + 1)k.

(13)

with
x > qh + 1
|x − ih| ≤ 1, −p ≤ i ≤ q
ih + 1 < x < (i + 1)h − 1, −p ≤ i ≤ q − 1
x < −ph − 1.

For instance, Fig. 1 shows two kinds of saturated functions. The one with 5 linear
segments is used to generate odd number of scrolls, and the one with 7 segments
is used to generate even number of scrolls. The difference is that the one on the
right has an slope crossing the origin of the plane. Thus, by increasing the number
of segments from the three near the origin in Fig. 1b, one generates as many even
number of scrolls as the number of saturated levels, which are the linear segments
with slope= 0. In a similar way, starting from five segments, as the PWL description

http://www.cs.rug.nl/~rudy/matlab/
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Fig. 1 PWL descriptions of
a saturated nonlinear
function series to generate a
3-scrolls, and b 4-scrolls

2k

k

h1

h -1 h +1
x

(a)

h -1 h +1

k

2k

3k

h1 x

(b)

in Fig. 1a, one can generate as many odd number of scrolls as the number of saturated
levels.

In simulating multi-scroll chaotic oscillators, one should scale the values to be
realized with electronic devices. For example, by simulating 6-scrolls one needs a
PWL description like the one in Fig. 1b but with 11 segments (6 saturated levels
plus 5 slopes). Therefore, by setting a, b, c, d1 = 0.7, k = 10, h = 20, p = q = 2,
the simulation result is shown in Fig. 2. As one sees, the ranges for the vertical
and horizontal axes are around ±12 and ±60, respectively. It is pretty clear that
the horizontal range cannot be realized using commercially available operational
amplifiers because they can be biased only up to ±18V.

To copewith this problemone can scale the PWLdescription bymodifying (13) by
α. Now, the saturated nonlinear function series is redefined by (14), where α allows
that k < 1, because the chaos condition now applies on s = k

α
, the new slope. In this

manner, k andα can be selected to allow k < 1, so that the ranges in (13) can be scaled.
As a result, now the generation of a 6-scrolls attractor with a = b = c = d1 = 0.7,
k = 1, α = 0.1, s = 10, h = 2, and p = q = 2, is shown in Fig.3. As one sees, the
ranges of the attractor are within the ranges that can be processed by commercially
available operational amplifiers. Besides, it is possible to compute small ranges for
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Fig. 2 Generating a
6-scrolls attractor without
scaling
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Fig. 3 Generating 6-scrolls
with ranges that can be
processed by commercially
available operational
amplifiers
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Fig. 4 Block diagram
description of (3)
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realizing attractors with integrated circuit technology [20], it just depends on setting
the values of k and α.

f (x1; k, h, p, q) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2q + 1)k x1 > qh + α
k
α
(x1 − ih) + 2ik | x1 − ih |≤ α

−p ≤ i ≤ q
(2i + 1)k ih + α < x1 < (i + 1)h − α

−p ≤ i ≤ q − 1
−(2p + 1)k x1 < −ph − α

(14)

By applying flow diagrams from linear systems, the dynamical system in (3) can
be described by the block diagram shown in Fig. 4. An analogy to electronics, the
diagram consists of 3 integrators, 1 adder, one current-to-voltage (I/V) converter, one
block for the saturated nonlinear function series (f (x1)) and amplifiers. In thismanner,
each block can be realized with commercially available operational amplifiers. One
of the realizations is shown in Fig. 5, where the block for (f (x1)) is labeled SNLF.

For realizing the nonlinear saturated function series, one can take advantage of the
saturation properties of the operational amplifiers. In thismanner, two saturated levels
can be implemented in voltagemode by using the finite-gainmodel of the operational
amplifier, as shown in Fig. 6. It is clear that by simulation, several limitations can
be included, for example: gain, bandwidth, slew rate and saturation [11]. Therefore,
if a shift-voltage (±E) is added, one gets the shifted-voltage saturated functions
described by (15) for positive and negative shifts, respectively, these effects are
shown in Fig. 7.

Vo = Av

2

(

|Vi + Vsat

Av
− E| − |Vi − Vsat

Av
− E|

)

(15)

Vo = Av

2

(

|Vi + Vsat

Av
+ E| − |Vi − Vsat

Av
+ E|

)

The saturated nonlinear function series can now be implemented as shown in
Fig. 8, where the number of operational amplifiers equals the number of scrolls to
be generated, minus one. The reason is that one operational amplifier can generate
2-scrolls, then one needs three amplifiers to generate 3-scrolls, and so on. In the same
manner, to generate a saturated nonlinear function with different voltage-shifts, then
E takes different values in (15). On the other hand, the values of the plateaus k, in
voltage and current, the breakpoints α, the slope s and the saturated delays h are
evaluated by (16) [15, 19].

k = RixIsat, Isat = Vsat

Rc
, α = Riz|Vsat|

Rfz
, h = Ei

(1 + Riz

Rfz
)

(16)
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Fig. 5 Circuit realization of (3) by using commercial operational amplifiers
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Fig. 6 Finite gain model of
the operational amplifier

Fig. 7 Shift of the voltage
when E takes a Negative and
b Positive values

(a)

(b)

E

E

5 Experimental Verification Results

To have control on varying the coefficients a, b, c and d1 in (3), the multi-scroll
chaotic oscillator was implemented as shown in Fig. 5, where the block sketching
the saturated nonlinear function (SNLF) is shown in Fig. 8. The values of the circuit
elements are: C = 1nF, R = 1M�, Ria = Rib = Ric = Rid = 10 k�, Ri = Rf , with
Vsat = ±16 to ±18V. Besides, to set the corresponding values of the coefficients a,
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Fig. 8 Realization of the saturated nonlinear function series using operational amplifiers

Table 1 Optimized MLE and its associated entropy for generating 2-scrolls

Case a b c d1 MLE Simulated
entropy

1 1.0000 1.0000 0.4997 1.0000 0.3761 1.4742

2 1.0000 0.7884 0.6435 0.6665 0.3713 1.0709

3 0.8661 1.0000 0.3934 0.9903 0.3607 1.15806

4 0.7746 0.6588 0.5846 0.4931 0.3460 1.1133

5 1.0000 0.7000 0.6780 0.1069 0.3437 0.7281

6 1.0000 0.7000 0.7000 0.2542 0.3425 1.16843

7 0.7743 0.6716 0.5892 1.8469 0.3391 1.5712

8 0.9248 0.7491 0.6686 0.6814 0.3385 1.1628

9 0.7178 0.6593 0.5546 0.2247 0.3376 0.2925

10 0.7060 0.6451 0.5523 0.2181 0.3320 0.2765

11 0.7060 0.7000 0.7000 0.7000 0.2658 1.3312

b, c and d1, associated to the optimized values for MLE listed in Tables1, 2 and 3,
linear precision potentiometers were used to tune the four decimals. In Fig. 5, the
resistances associated to the four coefficients are labeled as: Rfa, Rfb, Rfc, Rfd .
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Table 2 Optimized MLE and its associated entropy for generating 5-scrolls

Case a b c d MLE Entropy
simulated

Entropy
experi-
ment

1 1.0000 0.7250 0.2250 1.0000 0.6919 2.2481 2.0131

2 0.9880 0.7140 0.2050 1.0000 0.6914 2.2962 2.1472

3 0.9890 0.7300 0.2070 1.0000 0.6908 2.2708 2.0779

4 0.9910 0.6810 0.2300 0.9810 0.6814 2.2906 2.1175

5 0.9880 0.7480 0.1890 1.0000 0.6663 1.3800 1.9619

6 0.9840 0.6810 0.2270 0.9830 0.6651 2.3365 2.0757

7 0.9890 0.6810 0.2040 0.9790 0.6645 2.1736 2.3032

8 1.0000 0.7840 0.2000 1.0000 0.6533 2.2628 2.3024

9 0.9800 0.7960 0.1570 1.0000 0.6523 1.3214 2.1260

10 1.0000 0.7330 0.2050 1.0000 0.6471 2.2560 2.0287

11 0.7000 0.7000 0.7000 0.7000 0.2840 2.2352 1.9403

Table 3 Optimized MLE and its associated entropy for generating 10-scrolls

Case a b c d MLE Entropy
simulated

Entropy
experi-
ment

1 1.0000 0.5160 0.1190 1.0000 0.8853 2.8882 2.6302

2 1.0000 0.5054 0.1140 1.0000 0.8826 2.9032 2.6152

3 1.0000 0.5130 0.1180 1.0000 0.8792 2.8863 2.6193

4 1.0000 0.5410 0.1060 1.0000 0.8712 2.8874 2.5166

5 1.0000 0.5930 0.0840 1.0000 0.8545 2.8664 2.4594

6 1.0000 0.5160 0.1580 1.0000 0.8438 2.9273 2.6874

7 1.0000 0.6430 0.0975 1.0000 0.8314 2.8957 2.4891

8 1.0000 0.7000 0.1160 1.0000 0.7825 2.8788 2.6890

9 1.0000 0.7995 0.2127 0.9831 0.7249 2.6036 1.8740

10 1.0000 0.7200 0.4195 1.0000 0.6177 2.8748 2.6213

11 0.7000 0.7000 0.7000 0.7000 0.3026 2.8956 2.6157

Themeasurementswere performed using a 200MHzoscilloscopewith a sampling
frequency of 1G/s. This equipment introduces errors in saving the samples, so that
it is reflected in the differences when computing the entropy from simulated and
experimental results, as shown in Tables2 and 3.

The experimental results for the realization of the saturated nonlinear function
series with 3 and 19 segments, to generate 2- and 10-scrolls, respectively, are shown
in Fig. 9. Other saturated nonlinear function series can be generated as already shown
in [8, 11].
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Fig. 9 Experimental results
for the saturated nonlinear
function series with a 3, and
b 19 segments

Figure10 shows the simulation results for six cases from Table1. As one sees,
case 11 has the lowest MLE, where all coefficients are set to traditional values of 0.7,
as used in [8]. Furthermore, when applying [2], the other 10 cases provide higher
MLEs, because the coefficients a, b, c and d1 were varied (optimized). The simulated
entropy also shown in Table1, shows slight variations when the MLE increases, but
it can be appreciated that in general it increases as MLE does it.

Figure11 shows experimental results for generating two-scrolls for six cases in
Table1. As one sees, the more complex behavior appears for the highest MLE.
This is better appreciated when incrementing the number of scrolls, as shown in the
following cases for generating 5- and 10-scrolls.

Figure12 shows six cases from Table2. In these cases it is better appreciated that
the higher the value of the MLE, the better the complex behavior of the 5-scrolls
attractor, i.e. the scrolls are less defined in the phase-space portraits, as already
shown in [2]. This is indeed confirmed in Fig. 13 for generating a 5-scrolls attractor,
for which we list the entropy computed from experimental data. It can be appreciated
that the entropy increases as MLE does it.

Figure14 shows six simulation results for generating 10-scrolls from Table3. As
one sees, case 11 is generated when the four coefficients have the same value of 0.7,
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Fig. 10 Simulation results generating 2-scrolls for six cases in Table1

for which the 10-scrolls are pretty good appreciated. However, the scrolls become
more complex as the MLE increases, so that case 2 in Fig. 14 shows a more complex
attractor.

The simulated entropy in Table3 shows a little bit difference for the 11 cases,
where cases 2 and 6 have the higher simulated entropy value.
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Fig. 11 Experimental results generating 2-scrolls for six cases in Table1

Figure15 shows six experimental cases from Table3. The 10-scrolls attractors
for those cases were generated using the saturated nonlinear function series shown
in Fig. 9b, with 19 segments. As supposed, case 1 has the more complex chaotic
behavior because it has the highest MLE. The other 5 cases shown in Fig. 15 are also
complex because MLE is higher than when using traditional coefficient values of
0.7 [8]. In that case, the scrolls are more defined in the phase space diagram, as for
the simulated case 11 in Fig. 14. As it was done for the 5-scrolls attractor, we list the
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Fig. 12 Simulation results generating 5-scrolls for six cases in Table2

entropy computed from experimental data in Table3. Again, it can be appreciated
that the entropy varies as MLE does it.

Figure16 shows the state variable x for case 11, where one can count quite clearly
the 10 levels that are associated to the 10 saturated levels of the saturated nonlinear
function series shown in Fig. 9b. A similar behavior is for the state variable x for the
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Fig. 13 Experimental results generating 5-scrolls for six cases in Table2

other cases, but the phase space portraits are more complex as MLE being increased,
as shown in Figs. 14 and 15.

From the simulated and experimental data, it can be concluded that the more
scrolls are generated the higher the values for the entropy and MLE.

It is worth mentioning that because we used a 200MHz oscilloscope with a sam-
pling frequency of 1G/s, the saved experimental data is contaminatedwith undesired
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Fig. 14 Simulation results generating 10-scrolls for six cases in Table3

frequencies, as shown in Fig. 17. It means that one should filter the experimental
signal to avoid aliasing and then recover the chaotic signal. Figure18 shows the
comparison of the signals in the phase space portraits, when they are plotted directly
from the experimental data, and after the signal is filtered.
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Fig. 15 Experimental results generating 10-scrolls for six cases in Table3

Fig. 16 Counting 10 levels when generating a 10-scrolls attractor
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Fig. 17 Signal from experimental data and after it is filtered in MATLABTM
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Fig. 18 Phase space portraits for the 10-scrolls attractor from: a experimental data and, b after it
is filtered
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Fig. 19 Phase space portraits from experimental data showing 5-scrolls with the highest a MLE
and, b entropy

The signals were filtered in MATLAB using y= sgolayfilt(x, k, f ) (a Savitzky–
Golay Finite Impulse Response smoothing filter). If x is a matrix, sgolayfilt operates
on each column. The polynomial order k must be less than the frame size f , which
must be odd. In our experiments, we used k = 9 and f = 31, to approximate the
experimental data to the observed signals in the oscilloscope.

Finally, from the filtered data and from Tables2 and 3, we selected the cases
with the highest values for the MLE and their associated entropy computed from
experimental data, so that they are shown in Figs. 19 and 20 for generating 5- and
10-scrolls, respectively.
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Fig. 20 Phase space portraits from experimental data showing 10-scrolls with the highest a MLE
and, b entropy

6 Conclusion

This article showed the experimental verification on optimizing the MLE in a multi-
scroll chaotic oscillator based on saturated function series, and its associated entropy.
The optimization of MLE was performed by applying an evolutionary algorithm for
generating 2-, 5- and 10-scrolls.

The laboratory experiments confirmed that the chaotic behavior becomes more
complex asMLE ismaximized. Furthermore, to better confirm the chaotic complexity
associated to the value of MLE, we listed the associated entropy from simulated and
experimental data for generating 2-, 5- and 10-scrolls attractors.

It was also discussed that to eliminate the undesired frequencies introduced by the
poor sampling of the oscilloscope, the experimental data (signal) should be filtered.

As a final conclusion, the experiments showed that multi-scroll chaotic oscillators
have a more complex chaotic behavior when the number of scrolls increases. For
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instance, Tables1, 2 and 3 clearly show that by increasing the number of scrolls,
when the chaotic oscillator is optimized, both MLE and the entropy increases.
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