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Abstract In recent years the study of dynamical systems with hidden attractors,
namely systems in which their basins of attraction do not intersect with small neigh-
borhoods of equilibria, is a great challenge due to their application in many research
fields such as in mechanics, secure communication and electronics. Especially, the
investigation of hyperchaotic systems with hidden attractors plays a crucial role in
this research approach. Motivated by the very complex dynamical behavior of hyper-
chaotic systems and the unusual features of hidden attractors, a bidirectionally and
unidirectionally coupling scheme of systems of this family, by using a nonlinear open
loop controller, is studied in this chapter. For this reason, a recently new proposed
hyperchaotic system with hidden attractors, the four-dimensional modified Lorenz
system,which is structurally the simplest hyperchaotic systemwith hidden attractors,
is used. The simulation results show that the proposed scheme drives the coupled
system either to complete synchronization or anti-synchronization depending on the
choice of the signs of the error function’s parameters. In addition, an electronic cir-
cuit emulating the control scheme of the coupled hyperchaotic systems with hidden
attractors is also presented to verify the feasibility of the proposed model.
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1 Introduction

In the last three decades the phenomenon of synchronization between coupled chaotic
systems has attracted the interest of the scientific community because it is a rich and
multi-disciplinary phenomenonwith broad range applications, such as in secure com-
munications [19] and cryptography [14, 60], in broadband communications systems
[7] and in a variety of complex physical, chemical, and biological systems [17, 37,
41, 51, 54, 57, 62]. In general, synchronization of chaos is a process, where two or
more chaotic systems adjust a given property of their motion to a common behav-
ior, such as equal trajectories or phase locking, due to coupling or forcing. Because
of the exponential divergence of the nearby trajectories of a chaotic system, hav-
ing two chaotic systems being synchronized, might be a surprise. However, today
the synchronization of coupled chaotic oscillators is a phenomenon well established
experimentally and reasonably well understood theoretically.

The history of chaotic synchronization’s theory began with the study of the inter-
action between coupled chaotic systems in the 1980s and early 1990s by Fujisaka
and Yamada [11], Pikovsky [49], Pecora and Carroll [48]. Since then, a wide range of
research activity based on synchronization of nonlinear systems has risen and a vari-
ety of synchronization’s forms depending on the nature of the interacting systems and
of the coupling schemes has been presented. Complete or full chaotic synchroniza-
tion [9, 24–26, 28, 39, 55, 63], phase synchronization [8, 45], lag synchronization
[52, 56], generalized synchronization [53], anti-synchronization [22, 36], anti-phase
synchronization [1, 5, 6, 27, 58, 64], projective synchronization [38], anticipating
[61] and inverse lag synchronization [34] are the most interesting types of syn-
chronization, that have been investigated numerically and experimentally by many
research groups.

This work is referred to complete synchronization and to anti-synchronization.
In the first case, which is the most studied type of synchronization, two identical
coupled chaotic systems leads to a perfect coincidence of their chaotic trajectories
i.e., x1(t) = x2(t) as t → ∞. In the anti-synchronization, on the other hand, which
is also a very interesting type of synchronization, two systems x1 and x2, can be
synchronized in amplitude, but with opposite sign, for initial conditions chosen from
large regions in the phase space, that is x1(t) = −x2(t) as t → ∞.

As it is known, nonlinear systems and especially chaotic systems exhibit high
sensitivity on initial conditions or system’s parameters and thus, if they are identical
and, possibly, starting from almost the same initial conditions, following trajectories
which rapidly become uncorrelated. For this reason, many techniques have been
set up to obtain the aim of chaotic synchronization. So, many of these techniques
to couple two or more nonlinear chaotic systems can be mainly divided into two
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classes: bidirectional or mutual coupling and unidirectional coupling [13]. In the
mutual coupling both the systems are connected and each system’s dynamic behavior
influences the dynamics of the other, while on the contrary in unidirectional coupling,
only the first system drives the second one.

Recently, a great interest for dynamical systems with hidden attractors has been
raised. The term “hidden attractor” is referred to the fact that in this class of systems
the attractor is not associated with an unstable equilibrium and thus often remains
undiscovered because it may occur in a small region of parameter space and with
a small basin of attraction in the space of initial conditions [23, 31–33, 46, 47]. In
2010, for the first time, a chaotic hidden attractor was discovered in the most well-
known nonlinear circuit, in Chua’s circuit, which is described by a three-dimensional
dynamical system [23, 31].

The problem of analyzing hidden oscillations arose for the first time in the second
part of Hilbert’s 16th problem (1900) for two-dimensional polynomial systems [16].
The first nontrivial resultswere obtained inBautin’sworks [2, 3], whichwere devoted
to constructing nested limit cycles in quadratic systems and showed the necessity of
studying hidden oscillations for solving this problem.

Later, in the middle of the 20th century, Kapranov studied [21] the qualitative
behavior of Phase-Locked Loop (PLL) systems, which are used in telecommuni-
cations and computer architectures, and estimated stability domains. In that work,
Kapranov assumed that in PLL systems there were self-excited oscillations only.
However, in 1961, Gubar’ [15] revealed a gap in Kapranov’s work and showed ana-
lytically the possibility of the existence of hidden oscillations in two-dimensional
system of PLL, thus, from a computational point of view, the system considered was
globally stable, but, in fact, there was only a bounded domain of attraction.

Also, in the sameperiod, the investigations ofwidely knownMarkus–Yamabe [40]
and Kalman [20] conjectures on absolute stability have led to the finding of hidden
oscillations in automatic control systems with a unique stable stationary point and
with a nonlinearity, which belongs to the sector of linear stability [4, 10, 30].

Furthermore, systems with hidden attractors have received attention due to their
practical and theoretical importance in other scientific branches, such as inmechanics
(unexpected responses to perturbations in a structure like a bridge or in an airplane
wing) [18, 29]. So, the study of these systems is an interesting topic of a significant
importance.

In thiswork a hyperchaotic four-dimensionalmodifiedLorenz systemwith hidden
attractors, is used for studying the bidirectional or unidirectional coupling by using
the nonlinear open loop controller. The simulation results from system’s numerical
integration as well as the circuital implementation of the proposed system in SPICE,
confirm the appearance of complete synchronization and anti-synchronization phe-
nomena depending on the signs of the parameters of the error functions.

The chapter is organized as follows. In Sect. 2 the four-dimensional modified
Lorenz system, which is used in this work, is presented. The scheme, by using the
nonlinear open loop controller, in both coupling ways (bidirectional and unidirec-
tional) as well as the simulation results are discussed in Sect. 3. Section4 presents
the circuital implementation of the unidirectional coupling system and the simula-
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tion results which are obtained by using SPICE. Finally, the conclusive remarks are
drawn in the last section.

2 The Four-Dimensional Modified Lorenz System

In this work the simplest four-dimensional hyperchaotic Lorenz-type system, which
has been proposed by Gao and Zhang [12], is used. This system is an extension of
a modified Lorenz system, which was studied by Schrier and Maas as well as by
Munmuangsaen and Srisuchinwong [42, 59]. The proposed system is described by
the following set of differential equations.

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = y − x
ẏ = −xz + u
ż = xy − c
u̇ = −dy

(1)

It is structurally a very simple four-dimensional dynamical system having only
two independent parameters (c, d). Also, as it is mentioned in [35], it has many
interesting properties not found in other proposed systems, such as:

(i) It has very few terms, only seven with two quadratic nonlinearities, and two
parameters.

(ii) All its attractors are hidden.
(iii) It exhibits hyperchaos over a large region of parameter space.
(iv) Its Jacobian matrix has rank less than four everywhere in the space of the

parameters.
(v) It exhibits a quasi-periodic route to chaos with an attracting torus for some

choice of parameter values.
(vi) It has regions inwhich the torus coexistswith either a symmetric pair of strange

attractors or a symmetric pair of limit cycles and other regions where three
limit cycles coexist.

(vii) The basins of attraction have an intricate fractal structure.
(viii) There is a series of Arnold tongues [43] within the quasi-periodic region where

the two fundamental oscillations mode-lock and form limit cycles of various
periodicities.

All the afore-mentioned reasonsmake the dynamical system (1) an ideal candidate
for the coupling schemewhich is used in thiswork. Especially, the existence of hidden
attractors and the hyperchaotic nature of a system like this have played a crucial role
in our decision.

In this section the system’s dynamic behavior is investigated numerically by
employing a fourth order Runge–Kutta algorithm. For this reason, the bifurcation
diagram, which is a very useful tool from nonlinear theory, is used. In Figs. 1, 2, 3,
4, 5, 6 and 7 the bifurcation diagrams of the variable y versus the parameter d, for
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Fig. 1 Bifurcation diagram
of y versus d for c = 5, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 2 Bifurcation diagram
of y versus d for c = 4, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 3 Bifurcation diagram
of y versus d for c = 3.5,
with initial conditions (x0,
y0, z0, u0) = (0.55,−0.49,
−0.08, 0.50)
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Fig. 4 Bifurcation diagram
of y versus d for c = 2.97,
with initial conditions (x0,
y0, z0, u0) = (0.55,−0.49,
−0.08, 0.50)

Fig. 5 Bifurcation diagram
of y versus d for c = 2.9,
with initial conditions (x0,
y0, z0, u0) = (0.55,−0.49,
−0.08, 0.50)

Fig. 6 Bifurcation diagram
of y versus d, for c = 2.7,
with initial conditions (x0,
y0, z0, u0) = (0.55,−0.49,
−0.08, 0.50)
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Fig. 7 Bifurcation diagram
of y versus d, for c = 1, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

various values of the parameter c, reveal the richness of system’s dynamical behav-
ior. Besides limit cycles, system (1) has quasi-periodicity, chaos, and hyperchaos,
which can make the control of the system a difficult case in practical applications
where a particular dynamic is desired. In more, details, as the value of d is decreased
from d = 0.9 the system goes from a period-1 steady state (Fig. 8), through a quasi-
periodic route (Figs. 9, 10, 11, 12 and 13), to a chaotic state, which is confirmed by
the chaotic attractor in x–z plane, that is shown in Fig. 14. However, a very interesting
feature of the specific system is the existence of hyperchaos for a range of parameters
as it is shown in the phase portraits of Figs. 15, 16, 17, 18 and 19. Figure20 shows

Fig. 8 Phase portrait of z
versus x for c = 2.7 and
d = 0.9 (period-1 state),
with initial conditions (x0,
y0, z0, u0) = (0.55,−0.49,
−0.08, 0.50)
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Fig. 9 Quasi-periodic
attractor for c = 2.7 and
d = 0.75, in x–y plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 10 Quasi-periodic
attractor for c = 2.7 and
d = 0.75, in x–z plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 11 Quasi-periodic
attractor for c = 2.7 and
d = 0.75, in x–u plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)
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Fig. 12 Quasi-periodic
attractor for c = 2.7 and
d = 0.75, in y–z plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 13 Quasi-periodic
attractor for c = 2.7 and
d = 0.75, in y–u plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 14 Phase portrait of z
versus x for c = 2.7 and
d = 0.2 (chaotic state), with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)
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Fig. 15 Hyperchaotic
attractor for c = 2.7 and
d = 0.44, in x–y plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 16 Hyperchaotic
attractor for c = 2.7 and
d = 0.44, in x–z plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 17 Hyperchaotic
attractor for c = 2.7 and
d = 0.44, in x–u plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)
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Fig. 18 Hyperchaotic
attractor for c = 2.7 and
d = 0.44, in y–z plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

Fig. 19 Hyperchaotic
attractor for c = 2.7 and
d = 0.44, in y–u plane, with
initial conditions (x0, y0, z0,
u0) = (0.55,−0.49,−0.08,
0.50)

the Lyapunov exponents’ spectra for chosen value of the parameter c (c = 2.7). The
system’s hyperchaotic behavior is found for c = 2.7 in the range of d ∈ [0.388, 0.49]
(Figs. 15, 16, 17, 18 and 19), where the system has two positive Lyapunov exponents,
as it is shown in the embedded diagram in Fig. 20.
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Fig. 20 The diagrams of Lyapunov exponents (λi ) versus the parameter d, for c = 2.7

3 The Coupling Scheme

Two identical coupled chaotic systems can be described by the following system of
differential equations: {

ẋ = f (x) + UX

ẏ = f (y) + UY
(2)

where ( f (x), f (y)) ∈ Rn are the flows of the systems. The coupling of the systems
is defined by the Nonlinear Open Loop Controllers (NOLCs), UX and UY [44]. The
error function is given by e = βy − αx , where α and β are constants. If one applies
the Lyapunov Function Stability (LFS) technique, a stable synchronization state will
be realized when the error function of the coupled system follows the limit

lim
t→∞ ||e(t)|| → 0 (3)

so that αx = βy.
As it is mentioned, the design process of the coupling scheme, is based on the

Lyapunov function

V (e) = 1

2
eT e (4)

where T denotes transpose of a matrix and V (e) is a positive definite function. For
known system’s parameters andwith the appropriate choice of the controllersUX and
UY , the coupled system has V̇ (e) < 0. This ensures the asymptotic global stability
of synchronization and thereby realizes any desired synchronization state.
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By using the appropriate NOLCs functions UX , UY and error function’s
parameters α, β, a unidirectional or bidirectional (mutual) coupling scheme can
be implemented. In more details, for (UX = 0, β = 1) or (UY = 0, α = 1), a unidirec-
tional coupling scheme is realized, while for UX,Y �= 0 and α, β �= 0, a bidirectional
coupling scheme is realized, respectively. The signs of α, β play a crucial role to the
type of synchronization (complete synchronization or anti-synchronization), which
is observed in this work. On the other hand, the ratio of α over β decides the ampli-
fication or attenuation of one oscillator relative to another one.

Next, the results of the simulation process in the two coupling (bidirectional and
unidirectional) schemes and for various values of parameters α and β are presented.

3.1 Bidirectional Coupling

Systems of chaotic oscillators bidirectionally (mutually) coupled are frequently
found not only in the simulation environment or the laboratory but also in the nat-
ural world [41, 50]. This way of coupling, which is the simplest, is very interesting
because it displays much of the phenomenology that is observed in more complex
networks. Asymptotically stable synchronization between the coupled oscillators
happens to be one of the basic phenomena that is observed.

As it is mentioned, the synchronization of coupled chaotic systems is a process
where two or more systems adjust a given property of their motion to a common
behavior, such as identical trajectories, due to coupling.

So, in the first case, the bidirectional coupling scheme of two coupled systems of
Eq. (1), which is described by the following systems (5) and (6), is studied.

Coupled System-1: ⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2 − x1 + UX1

ẋ2 = −x1x3 + x4 + UX2

ẋ3 = x1x2 − c + UX3

ẋ4 = −dx2 + UX4

(5)

Coupled System-2: ⎧
⎪⎪⎨

⎪⎪⎩

ẏ1 = y2 − y1 + UY1

ẏ2 = −y1y3 + y4 + UY2

ẏ3 = y1y2 − c + UY3

ẏ4 = −dy2 + UY4

(6)

where UX = [UX1, UX2, UX3, UX4]T and UY = [UY1, UY2, UY3, UY4]T are the
NOLCs functions. The error function is defined by e = β y − αx, with e = [e1, e2,
e3, e4]T, x = [x1, x2, x3, x4]T and y = [y1, y2, y3, y4]T. So, the errors dynamics, by
taking the difference of Eqs. (5) and (6), are written as:
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⎧
⎪⎪⎨

⎪⎪⎩

ė1 = e2 − e1 + βUY1 − αUX1

ė2 = αx1x3 − βy1y3 + e4 + βUY2 − αUX2

ė3 = −αx1x2 + βy1y2 − c(β − α) + βUY3 − αUX3

ė4 = −de2 + βUY4 − αUX4

(7)

For stable synchronization e → 0 as t → ∞. By substituting the conditions in
Eq. (7) and taking the time derivative of Lyapunov function

V̇ (e) = e1ė1 + e2ė2 + e3ė3 + e4ė4
= e1 (e2 − e1 + βUY1 − αUX1)

+ e2 (αx1x3 − βy1y3 + e4 + βUY2 − αUX2)

+ e3 [−αx1x2 + βy1y2 − c (β − α) + βUY1 − αUX1]

+ e4 (−de2 + βUY1 − αUX1) (8)

we consider the following NOLC controllers:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

UX1 = 1
2α e2

UX2 = 1
α

(αx1x3 + e2 + e4)

UX3 = 1
α

(−αx1x2 + e3)

UX4 = 1
α

(− d
2 e2 + e4

)

(9)

and ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

UY1 = − 1
2β e2

UY2 = 1
β

(βy1y3)
UY3 = 1

β
[−βy1y2 + c(β − α)]

UY4 = 1
2β (de2)

(10)

such that
V̇ (e) = −e21 − e22 − e23 − e24 < 0 (11)

So, Eq. (11) ensures the asymptotic global stability of synchronization.
Next, the simulation results, in this coupling scheme, for three different cases of

system’s parameters (α, β), are presented.

3.1.1 The symmetric case (α = β)

Firstly, the parameters α, β are chosen to be equal (α = β = 1). This is the most
studied type ofmutual coupling and also themost interesting due to its applications in
a variety of scientific fields. Also, by choosing, in this case, the systems’ parameters
as c = 2.7 and d = 0.44, each one of the coupled systems is in a hyperchaotic state.
In this case of coupled identical systems with the proposed coupling scheme, only
the complete synchronization is observed. This type of synchronization is confirmed
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Fig. 21 The phase portrait
of y1 versus x1, for
α = β = 1, c = 2.7 and
d = 0.44

Fig. 22 The time-series of
x2, y2, for α = β = 1,
c = 2.7 and d = 0.44

by the y1 versus x1 plot of Fig. 21. Furthermore, the time-series of the variables
x2, y2 as well as the errors ei (i = 1, 2, 3, 4) show the exponential conver-
gence to zero which confirms the expected system’s complete synchronization
(Figs. 22 and 23).

3.1.2 The case α = 2, β = 1

In this case, the parameters of the error functions are chosen to be α = 2 and β = 1.
By choosing again the systems’ parameters as c = 2.7, d = 0.44 and for α = 2 the
hyperchaotic attractor of the second system is enlarged by two times, as it is shown
with red color in Fig. 24, as well as by the time-series of signals y1 and y2 in regard to
the signals x1 and x2 respectively (Figs. 26 and 27). The y1 versus x1 plot in Fig. 25
confirms that the coupled system is in complete synchronization state independently
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Fig. 23 The plot of errors
ei (=βyi − αxi ), for
α = β = 1, c = 2.7 and
d = 0.44

Fig. 24 The phase portraits
of x2 versus x1 and y2 versus
y1, for α = 2, β = 1,
c = 2.7 and d = 0.44

Fig. 25 The phase portrait
of y1 versus x1, for α = 2,
β = 1, c = 2.7 and d = 0.44
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Fig. 26 The time-series of
x1, y1, for α = 2, β = 1,
c = 2.7 and d = 0.44

Fig. 27 The time-series of
x2, y2, for α = 2, β = 1,
c = 2.7 and d = 0.44

of the values of the error’s parameters α, β. The error plot ei = yi − 2xi (i = 1, 2,
3, 4) in Fig. 28 shows the exponential convergence to zero that confirms the realization
of system’s complete synchronization state.

3.1.3 The Case α = −1, β = 2

By choosing the parameters of the error functions as α = −1 and β = 2, the attractor
of the first coupled system has been enlarged by factor two, while the attractor
of the second coupled system has been inverted in regard to the first one, as it is
shown in Fig. 29. In this case the systems’ parameters are chosen again as c = 2.7
and d = 0.44 so as both of the coupled systems are in hyperchaotic state. This
process is shown more clearly in the plots of the time-series of x1, y1 and x2, y2
(Figs. 31 and 32). The phase portrait of y1 versus x1 in Fig. 30 indicates that the
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Fig. 28 The plot of errors
ei (=βyi − αxi ), for α = 2,
β = 1, c = 2.7 and d = 0.44

Fig. 29 The phase portraits
of x2 versus x1 and y2 versus
y1, for α = −1, β = 2,
c = 2.7 and d = 0.44

Fig. 30 The phase portrait
of y1 versus x1, for α = −1,
β = 2, c = 2.7 and d = 0.44
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Fig. 31 The time-series of
x1, y1, for α = −1, β = 2,
c = 2.7 and d = 0.44

Fig. 32 The time-series of
x2, y2, for α = −1, β = 2,
c = 2.7 and d = 0.44

coupled system is in anti-synchronization state, which is also confirmed by the error
plot ei = 2y1 + x1 (i = 1, 2, 3, 4) in Fig. 33.

3.2 Unidirectional Coupling

In this section, the unidirectional coupling scheme, UX = 0, for β = 1, given by
Eq. (1), is presented.

Master System: ⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2 − x1
ẋ2 = −x1x3 + x4
ẋ3 = x1x2 − c
ẋ4 = −dx2

(12)
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Fig. 33 The plot of errors
ei (=βyi − αxi ), for
α = −1, β = 2, c = 2.7 and
d = 0.44

Slave System: ⎧
⎪⎪⎨

⎪⎪⎩

ẏ1 = y2 − y1 + UY1

ẏ2 = −y1y3 + y4 + UY2

ẏ3 = y1y2 − c + UY3

ẏ4 = −dy2 + UY4

(13)

where UY = [UY1, UY2, UY3, UY4]T are the Nonlinear Open Loop Controller
(NOLC). The error function is defined by e = β y − αx, with e = [e1, e2, e3, e4]T,
x = [x1, x2, x3, x4]T and y = [y1, y2, y3, y4]T. So, the error dynamics, by taking the
difference of Eqs. (12) and (13), are written as:

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = e2 − e1 + βUY1

ė2 = αx1x3 − βy1y3 + e4 + βUY2

ė3 = −αx1x2 + βy1y2 + c(α − β) + βUY3

ė4 = −de2 + βUY4

(14)

For stable synchronization e → 0 with t → ∞. By substituting the conditions in
Eq. (14) and taking the time derivative of Lyapunov function

V̇ (e) = e1ė1 + e2ė2 + e3ė3 + e4ė4
= e1 (e2 − e1 + βUY1) + e2 (αx1x3 − βy1y3 + e4 + βUY2)

+ e3 [−αx1x2 + βy1y2 + c (α − β) + βUY3] + e4 (−de2 + βUY4)

(15)



Synchronization Phenomena in Coupled Hyperchaotic Oscillators … 21

we consider the following NOLC controllers
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

UY1 = − 1
β

e2
UY2 = − 1

β
(e2 + αx1x3 − βy1y3 + e4)

UY3 = − 1
β
[e3 − αx1x2 + βy1y2 + c(α − β)]

UY4 = − 1
β

(e4 − de2)

(16)

such that
V̇ (e) = −e21 − e22 − e23 − e24 < 0 (17)

Equation (17) ensures the asymptotic global stability of synchronization.

3.2.1 The Case α = β = 1

In this case, as it occurs in the mutual coupling, the phenomenon of complete syn-
chronization is achieved for every value of α = β. Especially, for α = β = 1, the
two coupled systems are in the same hyperchaotic state, due to the chosen values of
system’s parameters (c = 2.7 and d = 0.44). The goal of complete synchronization
is achieved as it is shown from the plots of y1 versus x1, the time-series of x2, y2 and
the errors ei in Figs. 34, 35 and 36.

3.2.2 The Case for α = −β = −1

By using opposing values for the parameters α = −β = −1 the phenomenon of anti-
synchronization is achieved, as it is shown inFig. 37. Initially, the coupled systems are
in different hyperchaotic states but the unidirectional coupling leads the slave system
to an opposite hyperchaotic attractor in regard to the master system. This conclusion
is derived from the phase portrait of y1 versus x1 (Fig. 37), as well as from the

Fig. 34 The phase portrait
of y1 versus x1, for
α = β = 1, c = 2.7 and
d = 0.44
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Fig. 35 The time-series of
y2, x2, for α = β = 1,
c = 2.7 and d = 0.44

Fig. 36 The plot of errors
ei (=βyi − αxi ), for
α = β = 1, c = 2.7 and
d = 0.44

Fig. 37 The phase portrait
of y1 versus x1, for
α = −β = −1, c = 2.7 and
d = 0.44
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Fig. 38 The time-series of
y2, x2, for α = −β = −1,
c = 2.7 and d = 0.44

Fig. 39 The plot of errors
ei (=βyi – αxi ), for
α = −β = −1, c = 2.7 and
d = 0.44

time-series of x2, y2 (Fig. 38). Also, the plot of errors ei = yi + xi in Fig. 39 confirms
the anti-synchronization of the coupled system.

3.2.3 The Case α = 2, β = 1

In this case, the parameters of the error functions are chosen as α = 2 and β = 1.
By choosing the systems’ parameters as c = 2.7, d = 0.44 and for α = 2 the chaotic
attractor of the second system is enlarged by two times, as it is shown with red color
in Fig. 40, as well as by the time-series of signals y1 and y2 in regard to the signals x1
and x2 respectively (Figs. 42 and 43). The y1 versus x1 plot in Fig. 41 confirms that
the coupled system is in complete synchronization state independently of the values
of the error’s parameters α, β. The error plot ei = y1 − 2x1 (i = 1, 2, 3, 4) in Fig. 44
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Fig. 40 The phase portraits
of x2 versus x1 and y2 versus
y1, for α = 2, β = 1,
c = 2.7 and d = 0.44

Fig. 41 The phase portrait
of y1 versus x1, for α = 2,
β = 1, c = 2.7 and d = 0.44

Fig. 42 The time-series of
x1, y1, for α = 2, β = 1,
c = 2.7 and d = 0.44
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Fig. 43 The time-series of
x2, y2, for α = 2, β = 1,
c = 2.7 and d = 0.44

Fig. 44 The plot of errors
ei (=βyi − αxi ), for α = 2,
β = 1, c = 2.7 and d = 0.44

shows the exponential convergence to zero that confirms the realization of system’s
complete synchronization state.

3.2.4 The Case α = −2, β = 1

In the last case the parameters of the error function are chosen as α = −2 and β = 1.
So, the attractor of the first coupled system has been enlarged again by factor two,
while the attractor of the second coupled system has been inverted in regard to the
first one, as it is shown in Fig. 45. In this case the systems’ parameters are chosen as
c = 2.7 and d = 0.44 so as both of the coupled systems are in hyperchaotic state.
This process is shown more clearly in the plots of the time series of x1, y1 and x2, y2
of Figs. 47 and 48. The phase portrait of y1 versus x1 in Fig. 46 indicates that the
coupled system is in anti-synchronization state, which is also confirmed by the error
plot ei = 2yi + xi (i = 1, 2, 3, 4) in Fig. 49.
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Fig. 45 The phase portrait
of x2 versus x1, for α = −2,
β = 1, c = 2.7 and d = 0.44

Fig. 46 The phase portrait
of y1 versus x1, for α = −2,
β = 1, c = 2.7 and d = 0.44

Fig. 47 The time-series of
x1, y1, for α = −2, β = 1,
c = 2.7 and d = 0.44
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Fig. 48 The time-series of
x2, y2, for α = −2, β = 1,
c = 2.7 and d = 0.44

Fig. 49 The plot of errors
ei (=βyi − αxi ), for
α = −2, β = 1, c = 2.7 and
d = 0.44

4 Circuit’s Implementation of the Proposed Scheme

In this section the circuit implementation of the proposed scheme, with the electronic
simulation package Cadence OrCAD, in the case of unidirectional coupling systems
with a = β is presented, in order to prove the feasibility of this method. The coupling
system is realized by common electronic components. The system’s circuit consists
of three sub-circuits, which are the master circuit, the slave circuit and the coupling
circuit.

Figure50 depicts the schematic of the master circuit. It has four integrators (U1,
U2, U3 and U4) and two differential amplifiers (U7, U8), which are implemented
with the TL084, as well as two signals multipliers (U5, U6) by using the AD633. By
applying Kirchhoff’s circuit laws, the corresponding circuital equations of designed
master circuit can be written as:



28 Ch.K. Volos et al.

Fig. 50 The schematic of the master circuit

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = 1
RC (x2 − x1)

ẋ2 = 1
RC

(
− R

R110V x1x3 + x4
)

ẋ3 = 1
RC

(
R

R110V x1x2 − c
)

ẋ4 = 1
RC

(
− R

Rd
x2

)

(18)

where xi (i = 1, . . . , 4) are the voltages in the outputs of the operational amplifiers
U1, U2, U3 and U4. Normalizing the differential equations of system (18) by using
τ = t/RC we could see that this system is equivalent to the system (12). The circuit
components have been selected as: R = 10k�, R1 = 1k�, Rd = 22.727k�, C =
10nF,VC = 2.7V,while the power supplies of all active devices are±15VDC. For the
chosen set of components the master system’s parameters are: c = 2.7 and d = 0.44.
In Figs. 51, 52, 53, 54 and 55 the hyperchaotic attractors, which are obtained from
Cadence OrCAD in various phase planes, are proved to be in a very good agreement
with the respective phase portraits from system’s simulation process (Figs. 15, 16,
17, 18 and 19). So, the proposed circuit emulates well the master system.

In Fig. 56 the schematic of the slave circuit, which is similar to the master circuit,
is shown. The difference of this circuit in comparison to the previous one are the
signals mu2, mu3 and mu4, which are the opposites of the signals UY2, UY3 and UY4,
produced by the controllers of Eq. (16). Also, e2 is the difference signal (βy2 − αx2).
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Fig. 51 Hyperchaotic attractor of the designed master circuit obtained from Cadence OrCAD in
the (x1, x2) phase plane

Fig. 52 Hyperchaotic attractor of the designed master circuit obtained from Cadence OrCAD in
the (x1, x3) phase plane
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Fig. 53 Hyperchaotic attractor of the designed master circuit obtained from Cadence OrCAD in
the (x1, x4) phase plane

Fig. 54 Hyperchaotic attractor of the designed master circuit obtained from Cadence OrCAD in
the (x2, x3) phase plane
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Fig. 55 Hyperchaotic attractor of the designed master circuit obtained from Cadence OrCAD in
the (x2, x4) phase plane

Fig. 56 The schematic of the slave circuit
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Next, the design of the coupling circuit as well as the simulation results obtained
from SPICE in the case of α = β is discussed in details.

In the case of α = β = 1 and by considering the achievement of synchronization
between the coupled systems (12) and (13), the NOLCs take the following forms.

⎧
⎪⎪⎨

⎪⎪⎩

UY1 = −e2
UY2 = − (e2 + e4)
UY3 = −e3
UY4 = − (e4 − de2)

(19)

The units fromwhich the coupling circuit is consisted, are shown in the schematic
of Fig. 57. In this schematic u2 and u4 are the control signalsUY2 andUY4 of Eq. (19)

Fig. 57 The schematic of the coupling circuit
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Fig. 58 The phase portrait in the (x1, y1) phase plane, for α = β = 1, c = 2.7 and d = 0.44,
obtained from Cadence OrCAD

Fig. 59 The phase portrait in the (x2, y2) phase plane, for α = β = 1, c = 2.7 and d = 0.44,
obtained from Cadence OrCAD
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Fig. 60 The phase portrait in the (x3, y3) phase plane, for α = β = 1, c = 2.7 and d = 0.44,
obtained from Cadence OrCAD

Fig. 61 The phase portrait in the (x4, y4) phase plane, for α = β = 1, c = 2.7 and d = 0.44,
obtained from Cadence OrCAD
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respectively, while mu2 and mu4 are the opposite of these signals. Also, ei , (i = 2,
3, 4) are the difference signals (βyi − αxi , i = 2, 3, 4) and me2 is the opposite of e2.

Figures58, 59, 60 and 61 depict the phase portraits in (xi , yi ) phase plane, with
i = 1, . . . , 4, for α = β = 1, c = 2.7 and d = 0.44, obtained from Cadence OrCAD.
These figures confirm the achievement of complete synchronization in the case of
unidirectionally coupled circuits with the proposed method.

5 Conclusion

In this chapter, the case of bidirectional and unidirectional coupling scheme of hyper-
chaotic dynamical systems with hidden attractors was studied. The proposed system
is a four-dimensional modified Lorenz system, which is the simplest hyperchaotic
system of this family. Furthermore, the coupling method was based on a recently
new proposed scheme based on the nonlinear open loop controller.

According to the simulation results from system’s numerical integration as well
as the circuital implementation of the proposed system in SPICE, in the case
of unidirectional coupling, the appearance of complete synchronization and anti-
synchronization, depending on the signs of the parameters of the error functions,
was investigated in various cases. So, by choosing an appropriate sign for the error
functions one could drive the coupling system either in complete synchronization or
anti-synchronization behavior.

As it is known, the complex behavior of hyperchaotic systems, like the afore-
mentioned, makes the control difficult in practical applications where a particular
dynamic is desired. So, this chapter presents an interesting research result for the
family of hyperchaotic systems with hidden attractors, because this method could
be very useful in many potential applications of these systems. As a next step in this
direction is the application of the proposed method in non-identical coupling sys-
tems in order to satisfy the goal of control of systems, which are in totally different
dynamical behaviors.
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