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Abstract The idea of using geometry in learning and inference has a long history

going back to canonical ideas such as Fisher information, Discriminant analysis,

and Principal component analysis. The related area of Topological Data Analysis

(TDA) has been developing in the last decade. The idea is to extract robust topologi-

cal features from data and use these summaries for modeling the data. A topological

summary generates a coordinate-free, deformation invariant and highly compressed

description of the geometry of an arbitrary data set. Topological techniques are well-

suited to extend our understanding of Big Data. These tools do not supplant existing

techniques, but rather provide a complementary viewpoint to existing techniques.

The qualitative nature of topological features do not give particular importance to

individual samples, and the coordinate-free nature of topology generates algorithms

and viewpoints well suited to highly complex datasets. With the introduction of per-

sistence and other geometric-topological ideas we can find and quantify local-to-

global properties as well as quantifying qualitative changes in data.

Keywords Applied topology ⋅ Persistent homology ⋅Mapper ⋅ Euler characteristic

curve ⋅ Topological Data Analysis

1 Introduction

All data is geometric.

Every data set is characterized by the way individual observations compare to

each other. Statistics of data sets tend to describe location (mean, median, mode) or

shape of the data. The shape is intrinsically encoded in the mutual distances between
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data points, and analyses of data sets extract geometric invariants: statistical descrip-

tors that are stable with respect to similarities in data. A statistic that describes a data

set needs to stay similar if applied to another data set describing the same entity.

In most mainstream big data, computationally lean statistics are computed for data

sets that exceed the capacity of more traditional methods in volume, variety, velocity

or complexity. Methods that update approximations of location measures, or of fits

of simple geometric models—probability distributions or linear regressions—to tall

data, with high volume or velocity, are commonplace in the field.

We will focus instead on a family of methods that pick up the geometric aspects

of big data, and produce invariants that describe far more of the complexity in wide

data: invariants that extract a far more detailed description of the data set that goes

beyond the location and simplified shapes of linear or classical probabilistic models.

For the more detailed geometric description, computational complexity increases. In

particular worst case complexities tend to be far too high to scale to large data sets;

but even for this, a linear complexity is often observed in practice.

Whereas geometric methods have emerged for big data, such as information

geometry [7] and geometric data analysis [67], our focus is on topological meth-

ods. Topology focuses on an underlying concept of closeness, replacing distance.

With this switch of focus, the influence of noise is dampened, and invariants emerge

that are coordinate-free, invariant under deformation and produce compressed rep-

resentations of the data. The coordinate-free nature of topological methods means,

inter alia, that the ambient space for data—the width of the data set—is less relevant

for computational complexities and analysis techniques than the intrinsic complex-

ity of the data set itself. Deformation invariance is the aspect that produces stability

and robustness for the invariants, and dampens out the effects of noise. Finally, com-
pressed representations of data enables far quicker further analyses and easily visible

features in visualizations.

One first fundamental example of a topological class of algorithms is clustering.

We will develop homology, a higher-dimensional extension of clustering, with per-

sistent homology taking over the role of hierarchical clustering for more complex

shape features. From these topological tools then flow coordinatization techniques

for dimensionality reduction, feature generation and localization, all with underlying

stability results guaranteeing and quantifying the fidelity of invariants to the original

data.

Once you are done with this book chapter, we recommend two further articles to

boost your understanding of the emerging field of topological data analysis: Topol-

ogy and Data by Carlsson [24] and Barcodes: the persistent topology of data by

Ghrist [57].

We will start out laying down the fundamentals of topology in Sect. 2. After the

classical field of topology, we introduce the adaptation from pure mathematics to

data analysis tools in Sect. 3. An important technique that has taken off significantly

in recent years is Mapper, producing an intrinsic network description of a data set. We

describe and discuss Mapper in Sect. 4. In Sect. 5 we explore connections between

topology and optimization: both how optimization tools play a large importance in
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our topological techniques, and how topological invariants and partitions of features

help setup and constrain classes of optimization problems. Next in Sect. 6, we go

through several classes of applications of the techniques seen earlier in the chapter.

We investigate how topology provides the tools to glue local information into global

descriptors, various approaches to nonlinear dimensionality reduction with topolog-

ical tools, and emerging uses in visualization.

2 Topology

Topology can be viewed as geometry where closeness takes over the role of size
from classical geometry. The fundamental notion is closeness expressed through

connectedness. This focus on connections rather than sizes means that invariants

focus on qualitative features rather than quantitative: features that do not change

with the change of units of measurement, and that stay stable in the face of small per-

turbations or deformations. For an introductory primer, we recommend the highly

accessible textbook by Hatcher [61]. Most of what follows are standard definitions

and arguments, slightly adapted to our particular needs in this chapter.

In topological data analysis the focus is on compressed combinatorial represen-

tations of shapes. The fundamental building block is the cell complex, most often

the special case of a simplicial complex—though for specific applications cubical
complexes or more general constructions are relevant.

Definition 1 A convex polytope (or convex polyhedron) is the convex hull of some

collection of points in ℝd
. The dimension of the polytope P is the largest n such

that the intersection of P with some n-dimensional linear subspace of ℝd
contains

an n-dimensional open ball.

For an n-dimensional polytope, its boundary decomposes into a union of

n − 1-dimensional polytopes. These are called the facets of the polytope. Decompos-

ing facets into their facets produces lower dimensional building blocks—this process

continues all the way down to vertices. The set of facets of facets etc. are called the

faces of the polytope. We write Pn for the set of n-dimensional faces of P.

A cell complex is a collection of convex polytopes where the intersection of any

two polytopes is a face of each of the polytopes.

We illustrate these geometric conditions in Fig. 1.

From a cell complex, we can produce a chain complex. This is a collection of

vector spaces with linear maps connecting them. CnP is the vector space spanned

by the n-dimensional faces of P: CnP has one basis vector for each n-dimensional

face. The connecting linear maps are called boundary maps: the boundary map

𝜕n ∶ CnP → Cn−1P maps the basis vector v
𝜎

corresponding to a face 𝜎 to a linear

combination of the vectors that correspond to facets of 𝜎. The coefficients of this

linear combination depends on the precise way that the polytopes are connected—if
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Fig. 1 Left a valid polyhedral complex in ℝ2
. Right an invalid polyhedral complex in ℝ2

. There

are invalid intersections where the triangle and the pentagon overlap

we work with vector spaces over ℤ2 these coefficients reduce to 0 and 1 and the

boundary of v
𝜎

is

𝜕v
𝜎
=

∑

𝜏 facet of 𝜎

v
𝜏

These coefficients need to ensure that 𝜕n𝜕n+1 = 0.

The cell complex can be represented in full abstraction as the boundary maps,

abstracting away the geometry of this definition completely.

Most commonly, we use simplicial complexes—complexes where the polyhedra

are all simplices. Simplices are the same shapes that show up in the simplex method

in optimization. Geometrically, an n-dimensional simplex is the convex hull of n + 1
points in general position: where no k + 1 points lie on the same k-dimensional plane.

More interesting for our applications is the idea of an abstract simplicial complex.

Definition 2 An abstract simplicial complex 𝛴 on a set of (totally ordered) ver-

tices V is a collection of subsets of vertices (simplices) such that whenever some set

{v0,… , vk} is in 𝛴, so is every subset of that set.

We usually represent a simplex as a sorted list of its constituent vertices.

The boundary map assigns to the facet [v0,… , vi−1, vi+1,… , vk] the coefficient

(−1)i so that the full expression of the boundary map is

𝜕[v0,… , vk] =
k∑

i=0
(−1)i[v0,… , v̂i,… , vk]

where v̂ means to leave v out of the simplex.

We illustrate this definition in Fig. 2.

Now consider a closed chain of edges, such as a − b − c − d − a in Fig. 3. The

boundary of the sum of these edges includes each vertex twice: once from each edge
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Fig. 2 Left a valid simplicial complex in ℝ2
. Right an invalid simplicial complex in ℝ2

. There are

invalid intersections where two triangles overlap

Fig. 3 An illustration of

cycles and boundaries.

a − b − c − d − a is an

essential cycle, while

b − c − d − f − b is a

non-essential cycle, filled in

by higher-dimensional cells

that includes the vertex. The coefficients of these vertices cancel out to 0, so that

the closed chain is in ker 𝜕1. This generalizes: an element of ker 𝜕n is a collection

of n-cells that enclose an n + 1-dimensional hypervolume of some sort, in the same

way that a closed chain of edges can be seen as enclosing some surface.

Some of these closed chains in a given complex end up being filled in, such as

the sequence b − c − d − f − b in Fig. 3, while others have an empty void enclosed.

The cells that fill in a closed cycle are part of Cn+1𝛴, and the boundary map applied

to those cells precisely hits the enclosing cell collection. Thus, img 𝜕n+1 is the col-

lection of closed cycles that are filled in. This means that the vector space quotient

ker 𝜕n∕img 𝜕n+1 is precisely the essential enclosures: those that detect a void of some

sort.

Definition 3 The n-dimensional homology Hn(𝛴) of a cell complex 𝛴 is the vector

space ker 𝜕n∕img 𝜕n+1.
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Later in the text we will also need the concept of cohomology. This is the homol-

ogy of the vector space dual of the chain complex: we write Cn
𝛴 = Cn𝛴, and 𝛿

n =
𝜕
T
n ; the transposed matrix. Elements ofCn

𝛴 correspond toℝ-valued maps defined on

the n-dimensional cells. The n-dimensional cohomology Hn(𝛴) is ker 𝛿n∕img 𝛿
n−1

.

3 Persistence

The tools and definitions in Sect. 2 all are most relevant when we have a detailed

description of the topological shape under study. In any data-driven situation, such

as when facing big or complex data, the data accessible tends to take the shape of

a discrete point cloud: observations with some similarity measure, but no intrinsic

connection between them.

Persistence is the toolbox, introduced in [51] and developed as the foundation of

topological data analysis that connects discrete data to topological tools acting on

combinatorial or continuous shapes.

At the heart of persistence is the idea of sweeping a parameter across a range of

values and studying the ways that a shape derived from data changes with the para-

meter change. For most applications, the shape is constructed by “decreasing focus”:

each data point is smeared out over a larger and larger part of the ambient space until

the smears start intersecting. We can sometimes define these shapes using only dis-

similarity between points, removing the role of an ambient space completely so that

data studied can have arbitrary representations as long as a dissimilarity measure is

available. These intersection patterns can be used to build cell complexes that then

can be studied using homology, cohomology, and other topological tools.

The most commonly used construction for this smearing process is the Vietoris-
Rips complex. For a data set 𝕏, the vertex set is the set of data points. We introduce

a simplex [x0,… , xk] to the complex VR
𝜀
(𝕏) precisely when all pairwise dissimi-

larities are small enough: d(xi, xj) < 𝜀. An illustration can be found in Fig. 4.

At each parameter value 𝜀, there is a simplicial complex VR
𝜀
(𝕏). As the parame-

ter grows, no intersections vanish—so no existing simplices vanish with a growing

parameter. By functoriality—a feature of the homology construction—there is a kind

of continuity for topological features: the inclusion maps of simplicial complexes

generate linear maps between the corresponding homology (or cohomology) vector

spaces. For a growing sequence 𝜀0 < 𝜀1 < 𝜀2 < 𝜀3, there are maps

VR
𝜀0
(𝕏) ↪ VR

𝜀1
(𝕏) ↪ VR

𝜀2
(𝕏) ↪ VR

𝜀3
(𝕏)

HkVR
𝜀0
(𝕏) → HkVR

𝜀1
(𝕏) → HkVR

𝜀2
(𝕏) → HkVR

𝜀3
(𝕏)

Hk
VR

𝜀0
(𝕏) ← Hk

VR
𝜀1
(𝕏) ← Hk

VR
𝜀2
(𝕏) ← Hk

VR
𝜀3
(𝕏)

For a diagram of vector spaces like these, there is a consistent basis choice across

the entire diagram. This basis choice is, dependent on the precise argument made,

either a direct consequence of the structure theorem for modules over a Principal

Ideal Domain (result available in most commutative algebra textbooks, e.g. [53])
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Fig. 4 The growth of a Vietoris-Rips complex as points are smeared out. Top row is the view

of the data with each data point surrounded by a 𝜀∕2 radius ball, while the bottom row shows the

corresponding abstract complex as it grows. At the very end, the circle-like nature of the point cloud

can be detected in the Vietoris-Rips complex. This will stick around until 𝜀 is large enough that the

hole in the middle of the top right figure is filled in

or a direct consequence of Gabriel’s theorem [56] on decomposing modules over

tame quivers. The whole diagram splits into components of one-dimensional vector

spaces with a well defined start and endpoint along the diagram. These components

correspond precisely to topological features, and tell us at what parameter value a

particular feature shows up, and at what value it is filled in and vanishes. The com-

ponents are often visualized as a barcode, as can be seen in Fig. 5.

Features that exist only along a very short range of parameter values can be con-

sidered noisy: probably the result of sampling errors or inherent noise in the pro-

duction of the data. These show up along the diagonal of the persistence diagram.

Features that exist along a longer range of parameter values are more likely to be

Fig. 5 To the left, a point cloud. In the middle, the corresponding persistence barcode for dimen-

sion 1 homology. To the right, the persistence diagram for dimension 0 (diamonds along the y-axis)

and dimension 1. We see a large amount of very short intervals, and then one significantly larger

interval corresponding to the circle-like shape of the data
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features inherent in the source of the data—and the length of the corresponding bar

is a measure of the size of the feature.

These barcode descriptors are stable in the sense that a bound on a perturbation of

a data set produces a bound on the difference between barcodes. This stability goes

further: data points can vanish or appear in addition to moving around, and there still

are bounds on the difference of barcodes.

In particular, this means that with guarantees on sampling density and noise lev-

els, large enough bars form a certificate for the existence of particular topological

features in the source of a data set.

Additional expositions of these structures can be found in the survey articles by

Carlsson [24] and by Ghrist [57]. For the algebraic and algorithmic focused aspects,

there are good surveys available from the first author [113], and by Edelsbrunner and

Harer [47, 48].

3.1 Persistence Diagrams as Features

Homology serves as a rough descriptor of a space. It is naturally invariant to many

different different types of transformations and deformations. Unfortunately, homol-

ogy groups of a single space (for example, data viewed at a single scale) are highly

unstable and lose too much of the underlying geometry. This is where persistence

enters the picture. Persistence captures information in a stable way through the filtra-

tion. For example, the Vietoris-Rips filtration encodes information about the under-

lying metric space.

Therefore, by choosing an appropriate filtration, we can encode information about

the space. The first such instance was referred to as topological inference. The inten-

sity levels of brain activity in fMRI scans was investigated using Euler characteristic

curves [6].

These curves have a long history in the probabilistic literature [5, 116–118], are

topological in nature and can be inferred from persistence diagrams. The Euler char-

acteristic can be computed by taking the alternating sum of the ranks of homology

groups (or equivalently Betti numbers),

𝜒(X) = (−1)krk(Hk(X))

If X is parameterized by t, we obtain an Euler characteristic curve. Surprisingly,

the expectation of this quantity can be computed analytically in a wide range of

settings. This makes it amenable for machine learning applications. Another notable

application of this approach can be found in distinguishing stone tools from different

archaeological sites [93].

These methods work best in the functional setting where the underlying space is

fixed (usually some triangulated low dimensional manifold).



Topology, Big Data and Optimization 155

Fig. 6 The relation between an Euler characteristic curve and the corresponding persistence dia-

gram. To the left, a persistence diagram, with the quadrant anchored at some (t, t) marked out. To

the right, the Euler characteristic curve from the corresponding data set, with the corresponding t
marked

The persistence diagram encodes more information—the Euler characteristic

curve can easily be computed from a persistence diagram by taking the alternating

sum over different dimensions for each quadrant anchored at (t, t) as in Fig. 6.

There are several different approaches to using persistence diagrams as features.

Initially, it was observed that the space of persistence diagrams can be transformed

into a metric space [112]. A natural metric for persistence diagrams is the bottleneck
matching distance. Given two diagrams Dgm(F) and Dgm(G) (corresponding to two

filtrations F and G), the bottleneck distance is defined as

dB(Dgm(F),Dgm(G) = inf
𝜙∈bi jections

sup
p∈F

d∞(p, 𝜙(p))

This has the benefit of always being well-defined, but also has been shown to be not

as informative as other distances—namely, Wasserstein distances.

The most commonly used Wasserstein distances used are:

1. 1-Wasserstein distance—W1
2. 2-Wasserstein distance—W2

Under some reasonable conditions, persistence diagrams satisfy stability under these

metric as well [40] (albeit with a worse constant in front).

While first order moments exist in this space in the form of Frechet means, this

space is generally quite complicated. For example, while means exist, there are no

guarantees they are unique [112]. Below, we have an example of this phenomenon.

This presents numerous algorithmic challenges both for computing the means them-

selves, as well as for interpretation. This can be made Hölder continuous by consid-

ering the distribution of persistence diagrams [81].

Ultimately, the problem with viewing the space of persistence diagrams as a met-

ric space is that the space is insufficiently nice to allow for standard machine learning

techniques. Furthermore, the standard algorithmic solution for computing bottleneck

distance is the Hungarian algorithm for computing the maximum weight bipartite

matching between the two diagrams. This computes an explicit matching between

points and has at worst an O(n3) complexity where n is the number of points in the
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Fig. 7 The construction of a persistence landscape from a persistence diagram. We rotate the

diagram by 45◦. Each point in the persistence diagram creates a region in the persistent landscape

by considering the 45◦ lines from the point. These correspond to vertical and horizontal lines from

the point to diagonal. To each region in the landscape, we assign the number which corresponds

to how many times it is covered. Distances between landscapes are computed by integrating the

absolute difference point-wise

persistence diagrams. This is often expensive, which led to the development of the

following algorithms.

The key insight came with the development of the persistence landscape. This

is a functional on the space of the persistence diagrams in line with the kernel trick

in machine learning. The main idea is to raise the diagram into a functional space

(usually a Hilbert space), where the space behaves fundamentally like Euclidean

space, making techniques like support vector machines feasible.

There have been several approaches to constructing functionals on persistence

diagrams. The most developed is the persistence landscape [19]. This assigns to

each point in the plane a support on how many points lie above it. We illustrate the

process in Fig. 7, but it assigns to each point in the plane a number which corresponds

to how many points in the persistence diagram cover it. In addition to being useful for

machine learning algorithms, it is also much faster to compute that distances directly

on persistence diagrams (which are based on bipartite matching problems).

The algebraic structure connecting persistence diagrams to functionals was par-

tially addressed in [3]. In this work, Adcock et al. show that the algebraic structure

in persistence diagram has a family of functionals which can be used to parameter-

ize the family. This was used to train a SVM classifier on the MINST handwriting

dataset. The performance of the classifier is near state-of-the-art, where it is impor-

tant to mention this the case for generic features rather than the specially chosen

ones in current state-of-the-art techniques for handwriting recognition. The same

techniques were also used to classify hepatic lesions [4].

3.1.1 Applications

Here we recount some successful applications of the above techniques to real-world

data.
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The first is on a study of the effects of psilocybin (e.g. magic mushrooms) on the

brain using fMRI [86]. In this case, persistence diagram based features are shown to

clearly divide the brain activity under the effects of psilocybin from normal brain

activity. The authors found that while normal brain activity is highly structured,

brain activity under psilocybin is much more chaotic, connecting parts of the brain

which are usually not connected.

The second application we highlight the use of topological features to distinguish

stone tools coming from different archaeological sites [93]. In this work, the authors

began with three dimensional models of the tools obtained from scans. Then they

computed the Euler characteristic curves given by curvature, e.g. they used curvature

as the filtering function. They found that training a classifier using these curves, they

were able to obtain a high classification accuracy (∼80%).

The final application we highlight is for detecting and classifying periodicity in

gene expression time series [84]. Gene expressions are a product of the cell cycle

and in this work, the authors recognize that in sufficiently high dimensional space,

periodicity is characterized by closed one forms (i.e. circles). The work in the fol-

lowing section makes a similar observation, but parametrizes the circle rather than

compute a feature. Circles are characterized by one-dimensional homology and so

the authors use the 1-dimensional persistence diagram in order to compare the peri-

odicity of different gene expressions. To obtain, the persistence diagram, the authors

embed the time series in high dimension using a sliding window embedding (also

known as a Takens’ embedding or a delay embedding). The idea is, given a time

series x(1), x(2),…, take a sliding window over a time series and map each point to

the vector of the window. For example, for a window size of three, a data point at

time 1, x(1) would be mapped to the vector [x(1), x(2), x(3)] which is in ℝ3
. After

some normalization, the authors computed the persistence diagram of the embedded

time series which they used to compare different gene expressions.

3.2 Cohomology and Circular Coordinates

One particular derived technique from the persistent homology described here is

using persistent cohomology to compute coordinate functions with values on the cir-

cle. We have already mentioned cohomology, and it plays a strong role in the devel-

opment of fast algorithms. For the applications to coordinatization, we use results

from homotopy theory—another and far less computable part of algebraic topology.

This approach was developed by the first author joint with de Silva and Morozov

[78, 101, 102].

An equivalence class element in H1(X,ℤ)—an equivalence class of functions

X → ℤ—corresponds to an equivalence class of functions X → S1 to the circle. The

correspondence is algorithmic in nature, and efficient to compute. In particular, for

any specific functionX → ℤ in a cohomology equivalence class The drawback at this

stage is that applied to complexes like the Vietoris-Rips complex produces maps that

send all data points to a single point on the circle.
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We can work around this particular problem by changing the target domain of the

function from ℤ to ℝ. As long as we started out with a ℤ-valued function, and stay in

the same equivalence class of functions, the translation to circle-valued coefficient

maps remains valid. So we can optimize for as smooth as possible a circle-valued

map. This turns out to be, essentially, a LSQR optimization problem: the circle val-

ued function related to a cocycle 𝜁 with the coboundary matrix B is

arg min
z

‖𝜁 − Bz‖2

reduced modulo 1.0. The cocycle is a 1-dimensional cocycle, and B is the cobound-

ary map from 0-cochains to 1-cochains. This makes the correspondingly computed z
a 0-cochain—a circle-valued function on the vertices and hence on the data set itself.

4 Mapper

Mapper is a different approach to topological data analysis. Proposed in 2008, it is

much faster than persistent homology, and produces an intrinsic shape of an arbitrary

data set as a small simplicial complex. This complex can be used for visualization or

for further analysis. Applications of this method have been widespread: from medical

research through financial applications to politics and sports analyses. This section

is based on several articles by Singh et al. [71, 104].

At the core of the Mapper algorithm is the idea that data can be viewed through

“lenses”—coordinate functions displaying interesting characteristics of the data set.

For any such lens, the data can be stratified according to values of that lens, and local

summaries within each stratum can be related to each other to form a global picture

of the data set. We see the process illustrated in Fig. 8.

To be precise, given a dataset 𝕏 and some function 𝓁 ∶ 𝕏 → ℝk
and a cover of ℝk

by overlapping open subsets Ui (for instance open balls or open axis-aligned hyper-

cubes), we compute all inverse images 𝓁−1(Ui). Each such inverse image might con-

tain data points separated from each other—using a clustering algorithm of the user’s

choice, each inverse image is broken down into its component clusters. Finally, since

the sets Ui cover ℝn
, some of them will overlap. These overlaps may contain data

points: when they do, a data point contained in clusters from several inverse images

𝓁−1(Ui0 ),𝓁
−1(Ui1 ),… ,𝓁−1(Uik ) gives rise to a k-simplex spanned by the correspond-

ing clusters. The collection of clusters from the various layers with these connecting

simplices forms a simplicial complex describing the inherent shape of the data set.

For any given data point, its corresponding location in the simplicial complex can

easily be found.
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Fig. 8 The entire Mapper pipeline applied to random samples from a mixture of Gaussians, as

viewed through the lens of Gaussian density estimation. In the left two columns are: the original

data set; a graph of the density function on the data set; this same graph split up according to

the Mapper method; computed clusters within each section of the split; the corresponding mapper

graph in 3D; the resulting Mapper graph in 2D. In the right two columns, we see the split and cluster

process in more detail: the left of these two has the points as split into sections while the right has

these same points as well as their cluster centers

5 Optimization

Topological tools group objects by qualitative behaviors, in ways that can be

deformed to each other within each group. Finding good representatives for qual-

itative features often turn out to be a case of searching within such a class for an

optimal member.

Computing a representative circle-valued coordinate from a cohomology class [𝜁 ]
is a matter of computing argminx𝜙(𝜁 − Bx) for some penalty function 𝜙 defining

the optimality of the coordinate function, where B is the coboundary matrix of the

triangulation. In [102], the penalty function chosen was 𝜙(w) = ‖w‖2, whereas for

other applications, other penalty functions can be used.

The work of computing optimal homology cycles has gotten a lot of attention in

the field, using growing neighborhoods, total unimodularity or computational geom-

etry and matroid theory [21, 34, 35, 43, 54]. Unimodularity in particular turns out to

have a concrete geometric interpretation: simplifying the optimization significantly,

it requires all subspaces to be torsion free. An interesting current direction of research

is the identification of problems which become tractable when the equivalence class
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is fixed. There are many examples of fixed-parameter tractable algorithms—where

there is an exponential dependence on a certain parameter (such as dimension). In

such instances, it would be beneficial to identify the global structure of the data and

optimize within each (co)homology class. This has been used indirectly in network

and other shortest path routing [23, 62].

Another area where homology shows up as a tool for optimization is in evaluating

coverage for sensor agents—such as ensembles of robots, or antenna configurations.

Here, for a collection of agents with known coverage radii and a known set of bound-

ary agents, degree 2 homology of the Vietoris-Rips complex of the agents relative to

the boundary reveals whether there are holes in the coverage, and degree 1 homology

of the Vietoris-Rips complex reveals where holes are located [59, 99, 100]. This has

given rise to a wealth of applications, some of which can be found in [2, 42, 46, 80,

108, 115].

In other parts of topological data analysis, optimization formulations or criteria

form the foundations of results or constructions—in ways that turn out unfeasible and

require approximations or simplifications for practical use. The main example is for

the various stability results that have shown up for persistent homology. The metrics

we use for persistence diagrams, bottleneck and Wasserstein distances, take the form

of optimization problems over spaces of bijections between potentially large finite

sets [20, 27, 28, 31, 32, 38, 39, 41, 44, 69].

6 Applications

6.1 Local to Global

Topological techniques are designed to extract global structure from local informa-

tion. This local information may be in the form of a metric or more generally a

similarity function. Often a topological viewpoint can yield new insights into exist-

ing techniques. An example of this persistence-based clustering [30]. This work is

closely related with mode-seeking clustering techniques [36]. This class of meth-

ods assumes the points are sampled from some underlying density function and

defines the clusters as the modes of the density function (e.g. the basins of attraction

of the peaks of the density function). There are generally two steps involved:

1. Estimation of the underlying density function

2. Estimation of the peaks

These techniques have the advantage that the number of clusters is not required as

input. Rather the main problem is to determine which peaks are “real” versus which

peaks are noise. For example, in mean-shift clustering, points are flowed to local

maxima incrementally, but require a stopping parameter (as we never exactly hit

the peak). There are many other criteria which have been proposed—however, it

turns out that persistence provides an important insight. Due to the stability of the
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Fig. 9 A persistence diagram with a gap of 𝜀. The topological noise and the “true” features are

separated by an empty region of size 𝜀. Note that under mild assumptions on the underlying sam-

ple, the noise goes to 0 as the number of points goes to infinity, therefore the gap increases with

increasing amounts of data

persistence diagram, if we the first step (i.e. estimation of the density function) is

done correctly, then the persistence diagram is provably close. Furthermore, if there

is a separation of noise and the peaks (i.e. a gap as shown in Fig. 9), then we can

estimate the number of clusters as well. It can also be shown that the noise goes

to zero as the number of points increases, ensuring that the gap exists if we have

sufficiently many points.

This approach also allows for the identification of stable and unstable parts of the

clustering. The main idea is that since the persistence diagram is stable, the number

of clusters is also stable. Furthermore, persistent clusters can be uniquely identified

in the presence of resampling, added noise, etc. The idea is illustrated in Fig. 10.

This can be useful when determining unstable regions for tasks such as segmenta-

tion [105]. Here unstable regions are themselves considered separate segments.

Fig. 10 Persistence based clustering is based on the idea that the basins of attraction of the peaks

of a density function are clusters. Here we show the negative of a density function (so we look for

valleys rather than peaks), with two clusters. For clustering, there also exists a spatial stability for

persistent clusters, since if we consider a point before two clusters meet, they are disjoint—shown

here by the dashed line
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In addition to clustering based on density (or a metric—in which case we obtain

single-linkage clustering), topological methods can find clusters which have similar

local structure. Often we consider data as living in Euclidean space or a Riemannian

manifold. While this may be extrinsically true, i.e. the data is embedded in such a

space, the intrinsic structure of data is rarely this nice. A natural generalization of

a manifold is the notion of a stratified space. This can be thought of as a mixture

of manifolds (potentially of different dimensions) which are glued together in a nice

way. Specifically, the intersection of two manifold pieces is itself be a manifold.

The collection of manifolds of a given dimension is called a stratum. We omit the

technical definition, but refer the reader to the excellent technical notes [74].

The problem of stratified manifold learning is to identify the manifold pieces

directly from the data. The one dimensional version of this problem is the graph con-

struction problem, which has been considered for reconstruction of road networks

from GPS traces [1]. In this setting, zero dimensional strata are intersections, forks

and merges (i.e. vertices in the graph) while one dimensional strata are the connect-

ing roads (i.e. edges in the graph). Some examples are shown in Fig. 11.

Fig. 11 Three examples of stratified spaces (top row) and their corresponding strata (bottom row).

On the left, we have part of a graph with three edges (1-strata) coming from a vertex (0-strata). The

intersection of two 1-strata, must be a 0-strata. In the middle, we have two planes intersecting along

a line. This gives four 2 strata, which meet together at a 1-strata. On the right we have a line through

a plane. The plane is a 2-strata, the line is divided into two pieces and the intersection is a 1 and

0-strata. The intersection is a point, however to ensure it is a valid stratification we must consider

the loop around the point
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Fig. 12 The intuition behind local homology. We consider the local neighborhood around a point,

in this case an intersection between the ball of radius r at point p and the space 𝕏. The boundary is

two points which are collapsed together to make a circle

Br(p)
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X

∂Br(p)
p
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Fig. 13 A higher dimensional example for local homology. In this case an intersection between the

ball of radius r at point p and the space 𝕏 is a disc and the boundary is a circle. When we collapse

the boundary (i.e. circle) to a point we obtain a sphere

The problem has been considered in more generality in [14]. Intuitively, the prob-

lem can be thought of as determining the local structure of a space and then clustering

together points which share the same structure. The topological tool for determining

the local structure is called local homology. The idea is to consider the structure of

the local neighborhood. An important technical point is that we consider the quo-

tient of the neighborhood modulo its boundary. By collapsing the boundary to a

point (as shown in Figs. 12 and 13), we can distinguish different dimensions. In the

case of a k-dimensional manifold, each point will have the same structure—that of

a k-dimensional sphere. In the cases shown in Fig. 11, we obtain a different answer.

On the left we obtain a wedge of two circles, in the middle a wedge of three spheres

and on right we obtain a wedge of a sphere and two circles.

While preliminary results have been promising, this is currently an active area of

research.

6.2 Nonlinear Dimensionality Reduction

Dimensionality reduction is well rooted in data analysis, as a way to reduce an

unmanageably wide data set to a far more narrow and thus more easily analyzed

derived data set. Classical techniques often work by linear projections, as is done by

principal component analysis or by random projection methods. While some tech-

niques for non-linear dimensionality reduction have been known since the 1960s

[63–65], a more significant boost in the development of new reduction methods

showed up in the late 1990s.
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van der Maaten et al. [72] distinguish between three types of nonlinear dimension-

ality reduction techniques: those that try to preserve global features; those that try to

preserve local features; and those that globally align mixtures of linear techniques.

Where some methods are focused on retaining most or all distances in the

dataset—such as multidimensional scaling [63], many nonlinear techniques focus

on retaining closeness.
Isomap [111] generates approximations to the geodesic distance of a dataset as

computed on a neighborhood graph. As compared to MDS, it puts more emphasis

on retaining closeness by first focusing the scaling on local connectivity before gen-

erating a coordinate set globally approximating these geodesic distances.

Local techniques fit a linear local dimensionality reduction to small neighbor-

hoods in the data and then gluing the local coordinates to a global description. First

out was Local Linear Embeddings (LLE): fitting a local tangent plane through each

data points, and then minimizes the distortion of these local tangents [95]. This min-

imization reduces to an eigenvector computation.

Several improvements on LLE have been constructed as eigenvector computa-

tions of the Laplacian operator, or through enriched representations of the local

tangent descriptions [13, 45, 70]. The Laplacian or Laplace operator is a classical

operator in algebraic topology. The coboundary operator 𝛿 has a dual operator 𝛿
∗
—

represented by the same matrix as the boundary operator. The Laplacian is defined

as the composition 𝛿
∗
𝛿. The operator smooths out a function along the connectivity

of the underlying space, and its eigenmaps form smooth—in the sense of keeping

nearby points close together—and produces globally defined functions that retain

closeness of data points.

Isomap and LLE both suffer from weaknesses when constructing coordinate func-

tions on data sets with holes. One possible solution was offered by Lee and Verley-

sen [68], who give a graph algorithm approach to cutting the data set to remove the

non-trivial topology. They give a complexity of O(n log2 n) for their cutting proce-

dure, based on using Dijkstra’s algorithm for spanning trees. Such a cut can also

be produced based on persistent cohomology, with a representative cocycle demon-

strating a required cut to reduce topological complexity [9, 26, 58]. While the worst

case complexity for this computation is matrix-multiplication time, for many data

sets, linear complexity has been observed [12, 121].

Some shapes require more linear coordinates to represent accurately than the

intrinsical dimension would indicate. A first example is the circle: while a one-

dimensional curve, any one-dimensional projection will have to collapse distant

points to similar representations. With the techniques we describe in Sect. 3.2, we

can generate circle-valued coordinates for the data points. This has been used in

finding cyclic structures [10, 37] and for analyzing quasiperiodic or noisily recur-

rent signals in arbitrary dimension [94, 114].

Mapper provides an approach to dimensionality reduction with intrinsic coordi-

nate spaces: instead of providing features on a line or a circle, the Mapper output is

a small, finite model space capturing the intrinsic shape of the original data set.

The often large reduction in representation size with a Mapper reduction enables

speedups in large classes of problems. Classic dimensionality reduction such as done
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by MDS, Isomap or LLE can be done on the Mapper model, and with coordinate

values pulled back and interpolated onto the original data points themselves, while

optimization problems could be solved on the Mapper model to produce seed values

or approximate solutions when pulled up to the original data points. As long as all

functions involved are continuous, and the Mapper analysis sufficiently fine grained,

each vertex of the Mapper model corresponds to a compact set of data points with

trivial topology and each higher dimensional simplex corresponds to a connection

between sets of data points.

6.3 Dynamics

Topological methods have a long history of use in simplifying, approximating and

analyzing dynamical systems. For this approach, the Conley index—a homology

group computed in a small neighborhood in a dynamical system—gives a measure

of the local behavior of the dynamical system, stable and useful for nonlinear and

multiparameter cases. This approach has found extensive use [22, 75, 79].

Computing persistence on point clouds from dynamical systems, and then using

clustering to extract features from the resulting invariants has found some use. In

[15], bifurcation detection for dynamical systems using persistent cohomology was

explored, while in [66] clustered persistence diagrams helped classify gait patterns

to detect whether and what people were carrying from video sequences.

The idea of using the Takens delay embedding [109] to create point clouds rep-

resentative of dynamic behavior from timeseries data has emerged simultaneous

from several groups of researchers in topological data analysis. Harer and Perea [85]

used 1-dimensional persistent homology to pick out appropriate parameters for a

delay embedding to improve accuracy for the embedded representation of the origi-

nal dynamical system. The same idea of picking parameters for a delay embedding,

but with different approaches for subsequent analyses were described by Skraba et

al. [103], and later used as the conceptual basis for the analysis of the dynamics of

motion capture generated gait traces by Vejdemo-Johansson et al. [114]. The work

in [114] uses persistent cohomology to detect intrinsic phase angle coordinates, and

then use these either to create an average gait cycle from a sequence of samples, or

to generate gait cycle classifiers functions, indicating similarity of a new sequence

of gait samples to the sequences already seen.

From the same group of researchers, persistent homology and cohomology has

been used for motion planning in robotics. Moduli spaces for grasping procedures

give geometric and topological ways of analyzing and optimizing potential grasp

plans [87, 88, 90], and 1-dimensional persistent homology provides suggestions for

grasp sites for arbitrary classes of objects with handles [92, 106, 107]. Topology

also generates constraints for motion planning optimization schemes, and produces

approaches for caging grasps of wide classes of objects [89, 91, 119, 120].
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6.4 Visualization

Topological techniques are common in visualization, particularly so-called scien-

tific visualization. Perhaps the most prominent of these applications are topological

skeleta and the visualization and simplification of two or three dimensional scalar

and vector fields.

6.4.1 Topological Skeleta

There has been a large amount of work on topological skeleta extraction. Here we

highlight two types of constructions (without exhaustively describing all related

work)

∙ Reeb graphs

∙ Contour trees

Though there are many variations the main idea behind both constructions is that

given a space 𝕏 and a real-valued function, i.e.

f ∶ 𝕏 → ℝ

a topological summary can be computed by taking every possible function value a ∈
ℝ, and considering its preimage, f −1(a) ∈ 𝕏. For each preimage, we can count the

number of connected components.
1

If we consider very small intervals rather than

just points, we see that we can connect these components if they overlap. Connecting

these connected components together using this criteria, we obtain a graph (again

under reasonable assumptions). The resulting graph is called a Reeb graph.

By only considering the connected components, a potentially high-dimensional

structure can be visualized as a graph. However, the input need not be high-

dimensional, as these constructions have are useful as shape descriptors for

2-dimensional shapes. In addition, they are a crucial part of understanding

3-dimensional data sets, where direct visualization is impossible.

When the underlying space is contractible, there is additional structure, which

allows for more efficient computation of the structure, interestingly in any dimen-

sion [25]. This is mainly due to the observation that if the underlying space is con-

tractible (such as on a convex subset of Euclidean space), then the Reeb graph has

the structure of a tree, and is therefore called a contour tree.

Mapper can be thought of as a “fuzzy” Reeb graph, where connectivity is scale-

dependent and is computed via clustering rather than as an intrinsic property of the

space.

1
Technically, these are path-connected components. However, this distinction is a mathematical

formality, as the two are indistinguishable in any form of sampled data.
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6.4.2 Features and Simplification

In addition to visualizing a scalar function, the presence of noise, or more gener-

ally multi-scale structure, makes the ability to perform simplification desirable. By

simplifying a function, larger structures become clearer as they are no longer over-

whelmed by large numbers of smaller features.

There has been a substantial amount of work done on simplifying functions on

topological spaces. Initially, the work was done on two dimensional manifolds (sur-

faces) using the Morse-Smale complex [50] and has been extended to three dimen-

sions [49, 60]. Morse theory connects the topological and geometric properties of a

space in terms of the critical points of a function on that space. For example, con-

sider the height function on a sphere. This has two critical points, the global mini-

mum (the bottom of the sphere) and maximum (the top of the sphere). If we distort

the function to add another maxima, we also add a saddle. Simplification in this set-

ting proceeds by considering the reverse of this process. By combining minima and

saddles (or maxima and saddles), it simplifies the underlying function. The order of

simplification can be done in a number of different ways, such as distance based (i.e.

distance between critical points). The persistence ordering is given if it is done by

relative heights (e.g. small relative heights first) and the methods are closely tied to

Morse theory [17].

The natural extension from scalar fields is to vector fields, that is each point is

assigned a vector. These are often used to model flows in simulations of fluids or

combustion. Simplifying these is much more difficult than simplifying vector fields.

However, the notion of fixed point naturally generalizes critical points of a scalar

function. These are studied in topological dynamics. We highlight two topological

approaches which are based on Conley index theory and degree theory respectively.

The Conley index [96] is a topological invariant based on homology, which is an

extension of Morse theory. The main problem in this approach is the requirement to

find a neighborhood which isolates the fixed points from the rest of the flow. This

neighborhood (called an isolating neighborhood), must be nice with the respect to

the flow, in particular, the flow must not be internally tangent to the boundary of the

neighborhood.

The second approach is based on a variant of persistence called robustness [52]. A

vector field in Euclidean space can be thought of as a map from ℝn → ℝn
and we can

compute its robustness diagram [33]. This carries similar information and and shares

similar stability properties as the persistence diagram. Furthermore, this can be con-

nected to degree theory, which is yet another invariant developed to describe maps.

Famously, the existence of Nash equilibrium in game theory is the consequence of a

fixed point theorem (i.e. Brouwer fixed point theorem). Using a classical result from

differential topology, which states that if a part of the flow has has degree zero, then

is can be deformed to a fixed point free vector field, a general vector field can be

simplified using the robustness order in the same way as persistence order gives an

ordering in the case of scalar fields.
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This is only a brief glimpse at topology and visualization as this is a large field of

research. The main motivation for using topological methods for large complex data

sets is that they ensure consistency, whereas ad-hoc methods may introduce artifacts

during simplification.

7 Software and Limitations

These methods are implemented in a range of software packages. There is a good sur-

vey of the current state of computation and computational timings written by Otter

et al. [83]. We will walk through a selection of these packages and their strengths

and weaknesses here.

The available software can be roughly divided by expected platform. Some pack-

ages are specifically adapted to work with the statistics and data analysis platform

R, some for interacting well with Matlab, and some for standalone use or to work as

libraries for software development.

In R, the two main packages are pHom and R-TDA. pHom is currently abandoned,

but still can be found and included. R-TDA [55] is active, with a userbase and main-

tenance. Both are built specifically to be easy to use from R and integrate into an R

data analysis workflow.

When working in Matlab, or in any other java-based computational platform—

such as Maple or Mathematica—the main software choice is JavaPlex [110] or

JPlex [97]. JPlex is the predecessor to JavaPlex, built specifically for maximal com-

putational efficiency on a Java platform, while JavaPlex was built specifically to make

extension of functionality easy. Both of them are also built to make the user expe-

rience as transparent and accessible as possible: requiring minimal knowledge in

topological data analysis to be usable. While less efficient than many of the more spe-

cialized libraries, JavaPlex has one of the most accessible computational pipelines.

The survey by Otter et al. [83] writes “However, for small data sets (less than a mil-

lion simplices) the software Perseus and javaPlex are best suited because they are

the easiest to use[. . . ]”.

Several other packages have been constructed that are not tied to any one host plat-

form: either as completely standalone processing software packages, or as libraries

with example applications that perform many significant topological data analysis

tasks. Oldest among these is ChomP [76]. ChomP contains a C++ library and a cou-

ple of command line applications to compute persistent homology of cubical sets,

and has been used in dynamical systems research [8]. Perseus [82] works on Vietoris-

Rips complexes generated from data sets, as well as from cubical and simplicial com-

plexes. Perseus needs its input data on a particular format, with meta data about the

data points at the head of the input file, which means many use cases may need to

adjust input data to fit with Perseus expectations. DIPHA [11] is the first topological

data analysis program with built in support for distributed computing: building on

the library PHAT [12], DIPHA works with MPI for parallelization or distribution of

computation tasks. DIPHA takes in data, and produces a persistence diagram, both in
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their own file format—the software distribution includes Matlab functions to convert

to and from the internal file format. Last among the standalone applications, Diony-

sus [77] is a library for topological data analysis algorithm development in C++ and

Python. The package comes with example application for persistent homology and

cohomology, construction of Vietoris-Rips complexes and a range of further tech-

niques from computational topology.

Two more libraries are focused on use for software developers. Gudhi [73] is

a library that focuses on the exploration of different data structures for efficient

computations of persistent homology or with simplicial complexes. CTL
2

is a very

recent library maintained by Ryan Lewis. The library is still under development, and

currently supports persistent homology and complex construction, and has plans to

support persistent cohomology, visualizations and bindings to other languages and

platforms.

Complex construction the current computational bottleneck in topological data

analysis. Simplicial complexes are built up dimension by dimension and in higher

dimensions, a small number of points can result in a large number of simplices. For

example in 2000 points in dimension 6 can easily yield overall billion simplicies.

We do have the option of limiting our analysis to low dimension (e.g. clustering only

requires the graph to be built), and there are techniques which yield an approximate

filtration while maintaining a linear size [98]. Current research is finding further

speedups as well as modifying this to a streaming model. The second problem is that

although the volume of data is getting larger, the data itself does not cover the entire

space uniformly and preforming a global analysis where we have insufficient data in

some regions is impossible. One approach that is currently being explored is how to

construct “likely” analysis to fill in regions where data is sparse (e.g. anomalies).

8 Conclusions

At the state of the field today, topological data analysis has proven itself to produce

descriptors and invariants for topological and geometric features of data sets. These

descriptors are

COORDINATE-FREE so that the descriptors are ultimately dependent only on a mea-

sure of similarity or dissimilarity between observations. Ambient space, even

data representation and their features are not components of the analysis methods,

leading to a set of tools with very general applicability.

STABLE UNDER PERTURBATIONS making the descriptors stable against noise. This

stability forms the basis for a topological inference.

COMPRESSED so that even large data sets can be reduced to small representations

while retaining topological and geometric features in the data.

2
http://ctl.appliedtopology.org/.

http://ctl.appliedtopology.org/
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Looking ahead, the adaptation and introduction of classical statistical and infer-

ential techniques into topological data analysis is underway [16, 18, 29, 112].

The problem of efficient constructions of simplicial complexes encoding data

geometry remains both under-explored and one of the most significant bottlenecks

for topological data analysis.

Over the last few years, big data techniques have been developed which perform

well for specific tasks: building classifiers, linear approaches or high speed com-

putations of simple invariants of large volume data sets. As data and complexity

grows, the need emerges for methods that support interpretation and transparency—

where the data is made accessible and generalizable without getting held back by the

simplicity of the chosen models. These more qualitative approaches need to include

both visualization and structure discovery: nonlinear parametrization makes compar-

ison and correlation with existing models easier. The problems we encounter both

in non-standard optimization problems and in high complexity and large volume

data analysis are often NP-hard in generality. Often, however, restricting the prob-

lem to a single equivalence class under some equivalence relation—often the kinds

found in topological methods—transforms the problem to a tractable one: examples

are maximizing a function over only one persistent cluster, or finding optimal cuts

using cohomology classes to isolate qualitatively different potential cuts. The entire

area around these directions is unexplored, wide open for research. We have begun

to see duality, statistical approaches and geometric features of specific optimization

problems show up, but there is a wealth of future directions for research.

As for data, the current state of software has problems both with handling stream-

ing data sources and data of varying quality. The representations available are depen-

dent on all seen data points, which means that in a streaming or online setting, the

computational problem is constantly growing with the data stream. Data quality has

a direct impact on the computational results. Like with many other techniques, topo-

logical data analysis cannot describe what is not present in the data but rather will

produce a description of the density indicated by the data points themselves. If the

data quality suffers from variations in the sampling density, the current software is

not equipped to deal with the variations. There is research [30] into how to modify

the Vietoris-Rips construction to handle well-described sampling density variations,

but most of the major software packages have yet to include these modifications.

All in all, topological data analysis creates features and descriptors capturing

topological and geometric aspects of complex and wide data.
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