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Abstract As a topic of great significance in nonlinear analysis and mathematical

programming, unconstrained optimization is widely and increasingly used in engi-

neering, economics, management, industry and other areas. Unconstrained optimiza-

tion also arises in reformulation of the constrained optimization problems in which

the constraints are replaced by some penalty terms in the objective function. In many

big data applications, solving an unconstrained optimization problem with thousands

or millions of variables is indispensable. In such situations, methods with the impor-

tant feature of low memory requirement are helpful tools. Here, we study two fami-

lies of methods for solving large-scale unconstrained optimization problems: conju-

gate gradient methods and limited-memory quasi-Newton methods, both of them are

structured based on the line search. Convergence properties and numerical behaviors

of the methods are discussed. Also, recent advances of the methods are reviewed.

Thus, new helpful computational tools are supplied for engineers and mathemati-

cians engaged in solving large-scale unconstrained optimization problems.

Keywords Unconstrained optimization ⋅ Large-scale optimization ⋅ Line search ⋅
Memoryless quasi-Newton method ⋅ Conjugate gradient method

1 Introduction

We consider the minimization of a smooth nonlinear function f ∶ ℝn → ℝ, that is,

min
x∈ℝn

f (x), (1)

in the case where the number of variables n is large and analytic expressions for the

function f and its gradient ∇f are available. Although the minimizer of f is a solution
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of the system ∇f (x) = 0, solving this generally nonlinear and complicated system is

not practical.

Among the most useful tools for solving large-scale cases of (1) there are the con-

jugate gradient methods and the limited-memory quasi-Newton methods, because

the amount of memory storage required by the methods is low. In addition, the

methods possess the attractive features of simple iterative formula and strong global

convergence as well as applying the Hessian information. The methods can also be

straightly employed in penalty function methods, a class of efficient methods for

solving constrained optimization problems.

Generally, iterations of the above-mentioned methods are in the following form:

x0 ∈ ℝn
, xk+1 = xk + sk, sk = 𝛼kdk, k = 0, 1,… , (2)

where dk is a search direction to be computed by a few inner products and 𝛼k is a step

length to be determined by a line search procedure. The search direction dk should

be a descent direction, i.e.,

gT
k dk < 0, (3)

where gk = ∇f (xk), to ensure that the function f can be reduced along the search

direction dk. The most reduction is achieved when the exact (optimal) line search is

used in which

𝛼k = argmin
𝛼≥0

f (xk + 𝛼dk).

Hence, in the exact line search the step length 𝛼k can be considered as a solution of

the following equation:

∇f (xk + 𝛼dk)Tdk = 0. (4)

Since the exact line search is not computationally tractable, inexact line search

techniques have been developed [74, 86], most of them structured based on quadratic

or cubic polynomial interpolations of the one-dimensional function 𝜑(𝛼) = f (xk +
𝛼dk). Finding minimizers of the polynomial approximations of 𝜑(𝛼), inexact line

search procedures try out a sequence of candidate values for the step length, stopping

to accept one of these values when certain conditions are satisfied.

Among the stopping conditions for the inexact line search procedures, the so-

called Wolfe conditions [91, 92] have attracted especial attention in convergence

analyses and implementations of the unconstrained optimization algorithms, requir-

ing that

f (xk + 𝛼kdk) − f (xk) ≤ 𝛿𝛼kgT
k dk, (5)

∇f (xk + 𝛼kdk)Tdk ≥ 𝜎gT
k dk, (6)
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where 0 < 𝛿 < 𝜎 < 1. The first condition, called the Armijo condition, ensures ade-

quate reduction of the objective function value while the second condition, called

the curvature condition, ensures unacceptably of the short step lengths. However,

a step length may fulfill the Wolfe conditions without being sufficiently close to a

minimizer of𝜑(𝛼). To overcome this problem, the strong Wolfe conditions have been

proposed which consist of (5) and the following strengthened version of (6):

|∇f (xk + 𝛼kdk)Tdk| ≤ −𝜎gT
k dk. (7)

Considering (4), if 𝜎 → 0, then the step length which satisfies the strong Wolfe con-

ditions (5) and (7) tends to the optimal step length.

In practical computations, the Wolfe condition (5) may never be satisfied due to

the existence of numerical errors. This computational drawback of the Wolfe condi-

tions was carefully analyzed in [59] on a one-dimensional quadratic function. Based

on the insight gained by the numerical example of [59], one of the most accurate

and efficient inexact line search algorithms has been proposed in [59, 60], using a

quadratic interpolation scheme and the following approximate Wolfe conditions:

𝜎gT
k dk ≤ ∇f (xk + 𝛼kdk)Tdk ≤ (2𝛿 − 1)gT

k dk, (8)

where 0 < 𝛿 <

1
2

and 𝛿 ≤ 𝜎 < 1. The line search algorithm of [60] has been further

improved in [42].

In what follows, at first we discuss several basic choices for the search direction

dk in (2) corresponding to the steepest descent method, Newton method, conjugate

direction methods and quasi-Newton methods, together with their advantages and

disadvantages as well as their relationships. Then, we focus on the conjugate gradi-

ent methods and the limited-memory quasi-Newton methods which are proper algo-

rithms for large-scale unconstrained optimization problems. For all of these methods,

the line search procedure of [60] can be applied efficiently. Also, a popular stopping

criterion for the iterative method (2) is given by

||gk|| < 𝜀,

in which 𝜀 is a small positive constant and ||.|| stands for the Euclidean norm.

2 Basic Unconstrained Optimization Algorithms

Here, we briefly study basic algorithms in the field of unconstrained optimization, all

of them are iterative in the form of (2) with especial choices for the search direction

dk. A detailed discussion can be found in [86].
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2.1 Steepest Descent Method

One of the simplest and most fundamental methods for solving the unconstrained

optimization problem (1) is the steepest descent (or the gradient) method [39] in

which the search direction is computed by

dk = −gk,

that is trivially a descent direction. Although the steepest descent method is globally

convergent under a variety of inexact line search conditions, the method performs

poorly, converges linearly and is badly affected by ill conditioning [1, 55].

2.2 Newton Method

Based on a quadratic interpolation of the objective function at the kth iteration, search

direction of the Newton method can be computed by

dk = −∇2f (xk)−1gk,

where ∇2f is the Hessian matrix of the objective function f . If ∇2f (xk) is a positive

definite matrix, then the Newton search direction is a descent direction and in such

situation, it can be effectively computed by solving the following linear system using

Cholesky decomposition [88]:

∇2f (xk)dk = −gk.

In the Newton method, the Hessian information is employed in addition to the

gradient information. Also, if the starting point x0 is adequately close to the optimal

point x∗, then the sequence {xk}k≥0 generated by the Newton method converges to

x∗ with a quadratic rate. However, since in the Newton method it is necessary to

compute and save the Hessian matrix ∇2f (xk) ∈ ℝn×n
, the method is not proper for

large-scale problems. Moreover, far from the solution, the Hessian ∇2f (xk) may not

be a positive definite matrix and consequently, the Newton search direction may not

be a descent direction. To overcome this problem, a variant of modified Newton

methods have been proposed in the literature [86].

2.3 Conjugate Direction Methods

Consider the problem of minimizing a strictly convex quadratic function, i.e.,

min
x∈ℝn

q(x), (9)
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in which

q(x) = 1
2

xTAx − bTx, (10)

where the Hessian A ∈ ℝn×n
is a symmetric positive definite matrix and b ∈ ℝn

. To

find the optimal solution x∗, the following system of linear equations can be solved:

∇q(x) = Ax − b = 0, (11)

or equivalently,

Ax = b.

Although the problem can be solved by Cholesky decomposition, conjugate direction

methods are a class of efficient algorithms for finding the minimizer of a strictly

convex quadratic function in large-scale cases.

Definition 1 Let A ∈ ℝn×n
be a symmetric positive definite matrix and {dk}m

k=1, m ≤

n, be a set of nonzero vectors in ℝn
. If

dT
i Adj = 0, ∀i ≠ j,

then the vectors {dk}m
k=1 are called A-conjugate, or simply called conjugate.

Exercise 1 (i) Show that a set of conjugate vectors are linearly independent.
(ii) Assume that a symmetric positive definite matrix A ∈ ℝn×n and a set of lin-

early independent vectors {d′
k}

m
k=1 ⊆ ℝn are available. Describe how a set of

A-conjugate vectors {dk}m
k=1 can be constructed from {d′

k}
m
k=1.

(Hint: Use the Gram-Schmidt orthogonalization scheme [88].)

In each iteration of a conjugate direction method for solving (9), the function q(x)
given by (10) is minimized along the search direction dk for which we have

dT
k Adi = 0, ∀i < k.

Here, since the objective function is quadratic, the exact line search can be used.

The following theorem shows that under the exact line search, the conjugate direc-

tion methods have quadratic termination property which means that the methods

terminate in at most n steps when they are applied to a strictly convex quadratic

function.

Theorem 1 For a quadratic function with the positive definite Hessian A, the con-
jugate direction method terminates in at most n exact line searches. Also, each xk+1
is the minimizer in subspace Sk generated by x0 and the directions {di}k

i=0, that is,
Sk = x0 + span{d0,… , dk}.

Exercise 2 Prove Theorem 1.
(Hint: By induction show that ∇q(xk+1)⊥ di, i = 0, 1,… , k.)
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2.4 Quasi-Newton Methods

As known, quasi-Newton methods are of particular performance for solving uncon-

strained optimization problems since they do not require explicit expressions of the

second derivatives and their convergence rate is often superlinear [86]. The methods

are sometimes referred to variable metric methods.

In the quasi-Newton methods, the search direction is often calculated by

dk = −Hkgk, (12)

in which Hk ∈ ℝn×n
is an approximation of the inverse Hessian; more precisely, Hk ≈

∇2f (xk)−1. The methods are characterized by the fact that Hk is effectively updated

to achieve a new matrix Hk+1 as an approximation of ∇2f (xk+1)−1, in the following

general form:

Hk+1 = Hk + 𝛥Hk,

where 𝛥Hk is a correction matrix. The matrix Hk+1 is imposed with the scope of satis-

fying a particular equation, namely secant (quasi-Newton) equation, which includes

the second order information. The most popular equation is the standard secant equa-

tion, that is,

Hk+1yk = sk, (13)

in which yk = gk+1 − gk. Note that the standard secant equation is obtained based on

the mean-value theorem, or equivalently, the following approximation:

∇2f (xk+1)sk ≈ yk,

which holds exactly for the quadratic objective functions.

Among the well-known quasi-Newton update formulas there are the BFGS

(Broyden-Fletcher-Goldfarb-Shanno) and DFP (Davidon-Fletcher-Powell) updates

[86] given by

HBFGS
k+1 = Hk −

skyT
k Hk + HkyksT

k

sT
k yk

+

(

1 +
yT

k Hkyk

sT
k yk

)
sksT

k

sT
k yk

, (14)

and

HDFP
k+1 = Hk +

sksT
k

sT
k yk

−
HkykyT

k Hk

yT
k Hkyk

,

in which the initial approximation H0 can be considered as an arbitrary positive defi-

nite matrix. In a generalization scheme, the BFGS and DFP updates have been com-

bined linearly and the Broyden class of quasi-Newton update formulas [86] has been

proposed as follows:
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H𝜙

k+1 = (1 − 𝜙)HDFP
k+1 + 𝜙HBFGS

k+1

= Hk +
sksT

k

sT
k yk

−
HkykyT

k Hk

yT
k Hkyk

+ 𝜙vkvT
k , (15)

in which 𝜙 is a real parameter and

vk =
√

yT
k Hkyk

(
sk

sT
k yk

−
Hkyk

yT
k Hkyk

)

. (16)

It can be seen that if Hk is a positive definite matrix and the line search ensures that

sT
k yk > 0, then H𝜙

k+1 with 𝜙 ≥ 0 is also a positive definite matrix [86] and conse-

quently, the search direction dk+1 = −H𝜙

k+1gk+1 is a descent direction. Moreover, for

a strictly convex quadratic objective function, search directions of a quasi-Newton

method with the update formulas of the Broyden class are conjugate directions. So, in

this situation the method possesses the quadratic termination property. Also, under

convexity assumption on the objective function and when 𝜙 ∈ [0, 1], it has been

shown that the method is globally and locally superlinearly convergent [86]. It is

worth noting that among the quasi-Newton update formulas of the Broyden class,

the BFGS update is superior with respect to the computational performance. A nice

survey on the quasi-Newton methods has been provided in [93].

Similar to the quasi-Newton approximations {Hk}k≥0 for the inverse Hessian sat-

isfying (13), quasi-Newton approximations {Bk}k≥0 for the Hessian can be proposed

for which the following equivalent version of the standard secant equation (13)

should be satisfied:

Bk+1sk = yk. (17)

In such situation, considering (12), search directions of the quasi-Newton method

can be computed by solving the following linear system:

Bkdk = −gk. (18)

Exercise 3 (i) Prove that if the search direction dk is a descent direction and the
line search fulfills the Wolfe conditions (5) and (6), then sT

k yk > 0.
(ii) For the Broyden class of update formulas (15), prove that if Hk is a positive

definite matrix, sT
k yk > 0 and 𝜙 ≥ 0, then H𝜙

k+1 is also a positive definite matrix.

Exercise 4 (i) (Sherman-Morrison Theorem) Let A ∈ ℝn×n be a nonsingular
matrix and u, v ∈ ℝn be arbitrary vectors. Prove that if 1 + vTA−1u ≠ 0, then
the rank-one update A + uvT of A is nonsingular, and

(A + uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

(ii) Compute HDFP
k+1

−1 and find its relationship with HBFGS
k+1 .
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2.4.1 Scaled Quasi-Newton Updates

In order to achieve an ideal distribution of the eigenvalues of quasi-Newton updates

of the Broyden class, improving the condition number of successive approximations

of the inverse Hessian and consequently, increasing the numerical stability in the

iterative method (2), the scaled quasi-Newton updates have been developed [86].

In this context, replacing Hk by 𝜃kHk in (15), where 𝜃k > 0 is called the scaling

parameter, the scaled Broyden class of quasi-Newton updates can be achieved as

follows:

H𝜙,𝜃k
k+1 =

(

Hk −
HkykyT

k Hk

yT
k Hkyk

+ 𝜙vkvT
k

)

𝜃k +
sksT

k

sT
k yk

, (19)

where vk is defined by (16). The most effective choices for 𝜃k in (19) have been

proposed by Oren and Spedicato [75, 77],

𝜃k =
sT

k yk

yT
k Hkyk

, (20)

and, Oren and Luenberger [75, 76],

𝜃k =
sT

k H−1
k sk

sT
k yk

. (21)

A scaled quasi-Newton update in the form of (19) with one of the parameters (20)

or (21) is called a self-scaling quasi-Newton update.

Although the self-scaling quasi-Newton methods are numerically efficient, as an

important defect the methods need to save the matrix Hk ∈ ℝn×n
in each iteration,

being improper for solving large-scale problems. Hence, in a simple modification

in the sense of replacing Hk by the identity matrix in (19), self-scaling memoryless

update formulas of the Broyden class have been proposed as follows:

̃H𝜙,𝜃k
k+1 =

(

I −
ykyT

k

yT
k yk

+ 𝜙ṽkṽT
k

)

𝜃k +
sksT

k

sT
k yk

,

where

ṽk =
√

yT
k yk

(
sk

sT
k yk

−
yk

yT
k yk

)

.

Similarly, memoryless version of the scaling parameters (20) and (21) can be respec-

tively written as:

𝜃k =
sT

k yk

||yk||
2 , (22)
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and

𝜃k =
||sk||

2

sT
k yk

. (23)

The scaling parameter (23) can also be determined based on a two-point approxima-

tion of the standard secant equation (13) [35].

Exercise 5 (i) Find all the eigenvalues of the scaled memoryless BFGS update for-
mula with the parameters (22) or (23).

(ii) Assume that ∇f is Lipschitz continuous on a nonempty open convex set N ; that
is, there exists a positive constant L such that

||∇f (x) − ∇f (y)|| ≤ L||x − y||, ∀x, y ∈ N . (24)

Prove that if the objective function f is uniformly convex, then there exists a
positive constant c such that for the sequence {xk}k≥0 generated by the scaled
memoryless BFGS method with the parameter (23) we have

gT
k dk ≤ −c||gk||

2
, ∀k ≥ 0. (25)

(Hint: Note that a differentiable function f is said to be uniformly (or strongly)
convex on a nonempty open convex set S if and only if there exists a positive
constant 𝜇 such that

(∇f (x) − ∇f (y))T (x − y) ≥ 𝜇||x − y||2, ∀x, y ∈ S [86].)

Definition 2 Inequality (25) is called the sufficient descent condition.

2.4.2 Modified Secant Equations

The standard secant equation (13), or its equivalent form (17), only uses the gradient

information and ignores the function values. So, efforts have been made to modify the

Eq. (17) such that more available information be employed and consequently, better

approximations for the (inverse) Hessian be obtained (see [16] and the references

therein).

Assume that the objective function f is smooth enough and let fk = f (xk), ∀k ≥ 0.

From Taylor’s theorem we get

fk = fk+1 − sT
k gk+1 +

1
2

sT
k ∇

2f (xk+1)sk −
1
6

sT
k (Tk+1sk)sk + O(||sk||

4), (26)

where

sT
k (Tk+1sk)sk =

n∑

i,j,l=1

𝜕

3f (xk+1)
𝜕xi

𝜕xj
𝜕xl si

ksj
ksl

k. (27)
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So, after some algebraic manipulations it can be seen that

sT
k ∇

2f (xk+1)sk = sT
k yk + 2(fk − fk+1) + sT

k (gk + gk+1) +
1
3

sT
k (Tk+1sk)sk + O(||sk||

4).

Hence, the following approximation can be proposed:

sT
k ∇

2f (xk+1)sk ≈ sT
k yk + 𝜗k,

where

𝜗k = 2(fk − fk+1) + sT
k (gk + gk+1), (28)

which leads to the following modified secant equation [89, 90]:

Bk+1sk = zk, zk = yk +
𝜗k

sT
k uk

uk, (29)

where uk ∈ ℝn
is a vector parameter satisfying sT

k uk ≠ 0 (see also [98, 99]).

Again, from Taylor’s theorem we can write:

sT
k gk = sT

k gk+1 − sT
k ∇

2f (xk+1)sk +
1
2

sT
k (Tk+1sk)sk + O(||sk||

4). (30)

Now, considering (26) and (30), by canceling the terms which include tensor we get

sT
k ∇

2f (xk+1)sk = sT
k yk + 3𝜗k + O(||sk||

4),

where 𝜗k is defined by (28). Hence, the following secant equation can be pro-

posed [100]:

Bk+1sk = wk, wk = yk +
3𝜗k

sT
k uk

uk, (31)

where uk ∈ ℝn
is a vector parameter satisfying sT

k uk ≠ 0.

For a quadratic objective function f , we have 𝜗k = 0, and consequently, the mod-

ified secant equations (29) and (31) reduce to the standard secant equation. For the

vector parameter uk, we can simply let uk = sk, or uk = yk provided that the line

search fulfills the Wolfe conditions. To guarantee positive definiteness of the suc-

cessive quasi-Newton approximations for the (inverse) Hessian obtained based on

the modified secant equations (29) and (31) we should respectively have sT
k zk > 0

and sT
k wk > 0 which may not be necessarily satisfied for general functions. To over-

come this problem, in a simple modification we can replace 𝜗k in (29) and (31) by

max{𝜗k, 0}. The modified secant equations (29) and (31) are justified by the follow-

ing theorem [89, 100, 104], demonstrating their accuracy in contrast to the standard

secant equation (17).
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Theorem 1 If f is sufficiently smooth and ||sk|| is small enough, then the following
estimating relations hold:

sT
k (∇

2f (xk+1)sk − yk) =
1
2

sT
k (Tk+1sk)sk + O(||sk||

4),

sT
k (∇

2f (xk+1)sk − zk) =
1
3

sT
k (Tk+1sk)sk + O(||sk||

4),

sT
k (∇

2f (xk+1)sk − wk) = O(||sk||
4),

where Tk+1 is defined by (27).

Convexity assumption on the objective function plays an important role in con-

vergence analysis of the quasi-Newton methods with secant equations (17), (29) and

(31). However, in [64] a modified BFGS method has been proposed which is glob-

ally and locally superlinearly convergent for nonconvex objective functions (see also

[58, 65]). The method has been designed based on the following modified secant

equation:

Bk+1sk = ȳk, ȳk = yk + hk||gk||
rsk, (32)

where r is a positive constant and hk > 0 is defined by

hk = C + max{−
sT

k yk

||sk||
2 , 0}||gk||

−r
,

with some positive constant C. As an interesting property, for the modified secant

equation (32) we have sT
k ȳk > 0, independent of the line search conditions and the

objective function convexity, which guarantees heredity of positive definiteness for

the related BFGS updates. Recently, scaled memoryless BFGS methods have been

proposed based on the modified secant equations (29), (31) and (32) which pos-

sess the sufficient descent property (25) [17–19, 22, 28]. In addition to the modified

secant equations (29), (31) and (32) which apply information of the current iteration,

the multi-step secant equations have been developed by Ford et al. [51–53] based on

the polynomial interpolation using available data from the m recent steps.

3 Conjugate Gradient Methods

Conjugate gradient methods comprise a class of algorithms which are between the

steepest descent method and the Newton method. Utilizing the Hessian information

implicitly, the methods deflect the steepest descent direction by adding to it a multiple

of the direction used in the last step, that is,

dk+1 = −gk+1 + 𝛽kdk, k = 0, 1,… , (33)



402 S. Babaie-Kafaki

with d0 = −g0, where 𝛽k is a scalar called the conjugate gradient (update) parameter.

Although the methods only require the first-order derivatives, they overcome the

slow convergence of the steepest descent method. Also, the methods need not to save

and compute the second-order derivatives which are needed in the Newton method.

Hence, they are widely used to solve large-scale optimization problems.

Different conjugate gradient methods mainly correspond to different choices for

the conjugate gradient parameter [61]. Although the conjugate gradient methods are

equivalent in the linear case, that is, when f is a strictly convex quadratic function and

the line search is exact, their behavior for general functions may be quite different

[3, 45, 82]. It is worth noting that search directions of the linear conjugate gradient

methods are conjugate directions. In what follows, we deal with several essential

conjugate gradient methods.

3.1 The Hestenes-Stiefel Method

Conjugate gradient methods were originally developed in the 1950s by Hestenes and

Stiefel [62] (HS) as an alternative to factorization methods for solving linear systems.

Conjugate gradient parameter of the HS method is given by

𝛽

HS
k =

gT
k+1yk

dT
k yk

.

From the mean-value theorem, there exists some 𝜉 ∈ (0, 1) such that

dT
k+1yk = dT

k+1(gk+1 − gk) = 𝛼kdT
k+1∇

2f (xk + 𝜉𝛼kdk)dk.

Hence, the condition

dT
k+1yk = 0, (34)

can be considered as a conjugacy condition for the nonlinear objective functions

since it shows that search directions dk and dk+1 are conjugate directions. As an

attractive feature, considering (33) it can be seen that search directions of the HS

method satisfy the conjugacy condition (34), independent of the line search and the

objective function convexity.

Perry [78] noted that the search direction dk+1 of the HS method can be written as:

dk+1 = −

(

I −
skyT

k

sT
k yk

)

gk+1. (35)
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Then, he made a modification on the search direction (35) as follows:

dk+1 = −

(

I −
skyT

k

sT
k yk

+
sksT

k

sT
k yk

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Pk+1

gk+1 = −Pk+1gk+1.

Perry justified the addition of the correction term

sksT
k

sT
k yk

by noting that the matrix Pk+1

satisfies the following equation:

yT
k Pk+1 = sT

k ,

which is similar, but not identical, to the standard secant equation (13). To improve

Perry’s approach, Shanno [84] modified the matrix Pk+1 as follows:

PS
k+1 = I −

skyT
k + yksT

k

sT
k yk

+

(

1 +
yT

k yk

sT
k yk

)
sksT

k

sT
k yk

.

Thus, the related conjugate gradient method is precisely the BFGS method in which

the approximation of the inverse Hessian is restarted as the identity matrix at every

step and so, no significant storage is used to develop a better approximation for the

inverse Hessian. Hence, the HS method can be extended to the memoryless BFGS

method. This idea was also discussed by Nazareth [71] and Buckley [38]. A nice sur-

vey concerning the relationship between conjugate gradient methods and the quasi-

Newton methods has been provided in [72].

Although the HS method is numerically efficient, its search directions generally

fail to satisfy the descent condition (3), even for strictly convex objective functions

[40]. It is worth noting that when in an iteration of a conjugate gradient method the

search direction does not satisfy the descent condition (3), i.e., when encountering

with an uphill search direction, the steepest descent direction can be used. This pop-

ular scheme for the conjugate gradient methods is called the restart procedure. In

another approach, Powell [82] suggested to restart the conjugate gradient method if

the following inequality is violated:

gT
k gk−1 ≤ 𝜍||gk||

2
,

where 𝜍 is a small positive constant (see also [56]).

As another defect of the HS method that will be discussed in the next parts of

this section, it can be stated that the method lacks global convergence in certain

circumstances in the sense of cycling infinitely [82].
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3.2 The Fletcher-Reeves Method

Since solving a linear system is equivalent to minimizing a quadratic function, in

the 1960s Fletcher and Reeves [50] (FR) modified the HS method and developed a

conjugate gradient method for unconstrained minimization with the following para-

meter:

𝛽

FR
k =

||gk+1||
2

||gk||
2 .

Although search directions of the FR method generally are not descent directions,

convergence analysis of the method has been appropriately developed. As a brief

review, at first Zoutendijk [105] established a convergence result for the FR method

under the exact line search. Then, Al-Baali [2] dealt with convergence of the FR

method when the line search fulfills the strong Wolfe conditions (5) and (7), with

0 < 𝛿 < 𝜎 < 1∕2. Liu et al. [68] extended the Al-Baali’s result for 𝜎 = 1∕2. A com-

prehensive study on the convergence of the FR method has been made by Gilbert and

Nocedal [56]. Notwithstanding the strong convergence properties, numerical perfor-

mance of the FR method is essentially affected by jamming [56, 81], i.e., generating

many short steps without making significant progress to the solution because the

search directions became nearly orthogonal to the gradient.

3.3 The Polak-Ribière-Polyak Method

One of the efficient conjugate gradient methods has been proposed by Polak et al.

[79, 80] (PRP) where its parameter is computed by

𝛽

PRP
k =

gT
k+1yk

||gk||
2 .

It is important that when the iterations jam, the step sk is small. So, the factor yk in the

numerator of 𝛽
PRP
k tends to zero and consequently, 𝛽

PRP
k becomes small. Therefore,

the search direction dk+1 tends to the steepest descent direction and an automatic

restart occurs. This favorable numerical feature of jamming prevention also occurs

for the HS method.

In spite of numerical efficiency of the PRP method, the method lacks the descent

property. Also, Powell [82] constructed a three-dimensional counter example with

the exact line search, demonstrating the method can cycle infinitely without conver-

gence to a solution. Nevertheless, based on the insight gained by his counter example,

Powell [82] suggested the following truncation of 𝛽
PRP
k :

𝛽

PRP+
k = max{𝛽PRP

k , 0},



Computational Approaches in Large-Scale Unconstrained Optimization 405

which yields a globally convergent conjugate gradient method [56], being also com-

putationally efficient [3].

Since under the exact line search the PRP and the HS methods are equivalent, the

cycling phenomenon may occur for the HS method. The following truncation of 𝛽
HS
k

has been shown to lead to a globally convergent conjugate gradient method [43, 56]:

𝛽

HS+
k = max{𝛽HS

k , 0},

which is also more efficient than the HS method [3].

3.4 The Dai-Yuan Method

Another essential conjugate gradient method has been proposed by Dai and Yuan

[47] (DY) with the following parameter:

𝛽

DY
k =

||gk+1||
2

dT
k yk

.

It is notable that under mild assumptions on the objective function, the DY method

has been shown to be globally convergent under a variety of inexact line search condi-

tions. Also, in addition to the generation of descent search directions when dT
k yk > 0,

as guaranteed by the Wolfe conditions (5) and (6), the DY method has been proved to

have a certain self-adjusting property, independent of the line search and the objec-

tive function convexity [41]. More exactly, if there exist positive constants 𝛾1 and 𝛾2
such that 𝛾1 ≤ ||gk|| ≤ 𝛾2, for all k ≥ 0, then, for any p ∈ (0, 1), there exists a posi-

tive constant c such that the sufficient descent condition gT
i di ≤ −c||gi||

2
holds for at

least ⌊pk⌋ indices i ∈ [0, k], where ⌊j⌋ denotes the largest integer less than or equal

to j. However, similar to the FR method, in spite of strong theoretical properties the

DY method has a poor computational performance due to the jamming phenomenon.

3.5 The Dai-Liao Method

In order to employ quasi-Newton aspects in the conjugacy condition (34), Dai and

Liao [43] (DL) noted that considering Bk+1 ∈ ℝn×n
as an approximation of ∇2f (xk+1)

given by a quasi-Newton method, from the standard secant equation (17) and the

linear system (18) we can write

dT
k+1yk = dT

k+1(Bk+1sk) = −gT
k+1sk. (36)

If the line search is exact, then gT
k+1sk = 0, and consequently (36) reduces to (34).

However, in practice the algorithms normally adopt inexact line searches. Hence,

the following extension of the conjugacy condition (34) has been proposed in [43]:
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dT
k+1yk = −tgT

k+1sk, (37)

where t is a nonnegative parameter. If t = 0 or the line search is exact, then (37)

reduces to (34), and if t = 1, then (37) reduces to (36) which implicitly contains the

effective standard secant equation (17). Also, for small values of t, the conjugacy

condition (37) tends to the conjugacy condition (34). Thus, the conjugacy condition

(37) can be regarded as a generalization of the conjugacy conditions (34) and (36).

Taking inner product of (33) with yk and using (37), Dai and Liao [43] obtained

the following formula for the conjugate gradient parameter:

𝛽

DL
k =

gT
k+1yk

dT
k yk

− t
gT

k+1sk

dT
k yk

, (38)

shown to be globally convergent for uniformly convex objective functions. Theoret-

ical and numerical features of the DL method is very dependent on the parameter t
for which there is no any optimal choice [15]. It is worth noting that if

t = 2
||yk||

2

sT
k yk

, (39)

then the conjugate gradient parameter proposed by Hager and Zhang [59] is achieved.

Also, the choice

t =
||yk||

2

sT
k yk

, (40)

yields another conjugate gradient parameter suggested by Dai and Kou [42]. The

choices (39) and (40) are effective since they guarantee the sufficient descent con-

dition (25), independent of the line search and the objective function convexity, and

lead to numerically efficient conjugate gradient methods [21, 42, 60]. Recently,

Babaie-Kafaki and Ghanbari [25, 27, 32] dealt with other proper choices for the

parameter t in the DL method.

Based on Powell’s approach of nonnegative restriction of the conjugate gradient

parameters [82], Dai and Liao proposed the following modified version of 𝛽
DL
k :

𝛽

DL+
k = 𝛽

HS+
k − t

gT
k+1sk

dT
k yk

,

and showed that the DL+ method is globally convergent for general objective func-

tions [43]. In several other attempts to make modifications on the DL method, mod-

ified secant equations have been applied in the Dai-Liao approach. In this context, in

order to employ the objective function values in addition to the gradient information,

Yabe and Takano [94] used the modified secant equation (31). Also, Li et al. [66]

used the modified secant equation (29). Babaie-Kafaki et al. [33] applied a revised
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form of the modified secant equation (31), and the modified secant equation proposed

in [98]. Ford et al. [54] employed the multi-step quasi-Newton equations proposed

by Ford and Moghrabi [51]. In another attempt to achieve global convergence with-

out convexity assumption on the objective function, Zhou and Zhang [104] applied

the modified secant equation (32).

Exercise 6 For the DL method, assume that sT
k yk > 0 and t > 0.

(i) Find the matrix Qk+1 for which search directions of the DL method can be writ-
ten as dk+1 = −Qk+1gk+1. The matrix Qk+1 is called the search direction matrix.

(ii) Find all the eigenvalues of the matrix Ak+1 =
QT

k+1 + Qk+1

2
.

(iii) Prove that if

t > 1
4

(
||yk||

2

sT
k yk

−
sT

k yk

||sk||
2

)

,

then search directions of the DL method satisfy the descent condition (3).

Exercise 7 For the DL method, assume that sT
k yk > 0 and t > 0.

(i) Prove that the search direction matrix Qk+1 is nonsingular. Then, find the
inverse of Qk+1.

(ii) Find ||Qk+1||
2
F and ||Q−1

k+1||
2
F, where ||.||F stands for the Frobenius norm.

(iii) Prove that if n → ∞, then t∗ =

√
||yk||(sT

k yk)
||sk||

3 is the minimizer of 𝜅F(Qk+1) =

||Qk+1||F||Q−1
k+1||F.

3.6 The CG-Descent Algorithm

In an attempt to make a modification of the HS method in order to achieve the suf-

ficient descent property, Hager and Zhang [59] proposed the following conjugate

gradient parameter:

𝛽

N
k = 1

dT
k yk

(

yk − 2dk
||yk||

2

dT
k yk

)T

gk+1 = 𝛽

HS
k − 2

||yk||
2

dT
k yk

dT
k gk+1

dT
k yk

,

which can be considered as an adaptive version of 𝛽
DL
k given by (38). The method

has been shown to be globally convergent for uniformly convex objective functions.

In order to achieve the global convergence for general functions, the following trun-

cation of 𝛽
N
k has been proposed in [59]:

̄
𝛽

N
k = max{𝛽N

k , 𝜂k}, 𝜂k =
−1

||dk||min{𝜂, ||gk||}
,
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where 𝜂 is a positive constant. A conjugate gradient method with the parameter ̄
𝛽

N
k in

which the line search fulfills the approximate Wolfe conditions given by (8) is called

the CG-Descent algorithm [60]. Search directions of the CG-Descent algorithm sat-

isfy the sufficient descent condition (25) with c = 7
8

. The CG-Descent algorithm

is one of the most efficient and popular conjugate gradient methods, widely used

by engineers and mathematicians engaged in solving large-scale unconstrained opti-

mization problems.

Based on the Hager-Zhang approach [59], Yu et al. [96] proposed a modified form

of 𝛽
PRP
k as follows:

𝛽

DPRP
k = 𝛽

PRP
k − C

||yk||
2

||gk||
4 gT

k+1dk,

with a constant C >

1
4

, guaranteeing the sufficient descent condition (25) (see also

[20]). Afterwards, several other descent extensions of the PRP method have been

proposed in [26, 97], using the conjugate gradient parameter 𝛽
DPRP
k .

Exercise 8 Prove that if dT
k yk > 0, ∀k ≥ 0, then search directions of a conjugate

gradient method with the following parameter:

𝛽

𝜏

k = 𝛽

HS
k − 𝜏k

||yk||
2(gT

k+1dk)

(dT
k yk)2

,

in which 𝜏k ≥ 𝜏, for some positive constant 𝜏 >

1
4

, satisfy the sufficient descent con-
dition (25).

Exercise 9 Prove that search directions of the DPRP method with C >

1
4

satisfy the
sufficient descent condition (25).

3.7 Hybrid Conjugate Gradient Methods

Essential conjugate gradient methods generally can be divided into two categories. In

the first category, all the conjugate gradient parameters have the common numerator

gT
k+1yk; such as the HS and PRP methods, and also, the conjugate gradient method

proposed by Liu and Storey [69] (LS) with the following parameter:

𝛽

LS
k = −

gT
k+1yk

dT
k gk

.

In the second category, all the conjugate gradient parameters have the common

numerator ||gk+1||
2
; such as the FR and DY methods, and also, the conjugate descent
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(CD) method proposed by Fletcher [49] with the following conjugate gradient para-

meter:

𝛽

CD
k = −

||gk+1||
2

dT
k gk

.

There are some advantages and disadvantages for the conjugate gradient meth-

ods in each category. As mentioned before, generally the methods of the first cate-

gory are numerically efficient because of an automatic restart feature which avoids

jamming while the methods of the second category are theoretically strong in the

sense of (often) generating descent search directions and being globally convergent

under a variety of line search conditions and some mild assumptions. To attain good

computational performance and to maintain the attractive feature of strong global

convergence, researchers paid especial attention to hybridize the conjugate gradient

parameters of the two categories. Hybrid conjugate gradient methods are essentially

designed based on an adoptive switch from a conjugate gradient parameter in the

second category to one in the first category when the iterations jam. Well-known

hybrid conjugate gradient parameters can be listed as follows:

∙ 𝛽

HuS
k = max{0,min{𝛽PRP

k , 𝛽

FR
k }}, proposed by Hu and Storey [63];

∙ 𝛽

TaS
k =

⎧
⎪
⎨
⎪
⎩

𝛽

PRP
k , 0 ≤ 𝛽

PRP
k ≤ 𝛽

FR
k ,

𝛽

FR
k , otherwise,

which has been proposed by Touati-Ahmed and

Storey [87];

∙ 𝛽

GN
k = max{−𝛽FR

k ,min{𝛽PRP
k , 𝛽

FR
k }}, proposed by Gilbert and Nocedal [56];

∙ 𝛽

hDYz
k = max{0,min{𝛽HS

k , 𝛽

DY
k }}, proposed by Dai and Yuan [48];

∙ 𝛽

hDY
k = max{−1 − 𝜎

1 + 𝜎

𝛽

DY
k ,min{𝛽HS

k , 𝛽

DY
k }}, with the positive constant 𝜎 used in

the Wolfe condition (6) [48];

∙ 𝛽

LS−CD
k = max{0,min{𝛽LS

k , 𝛽

CD
k }}, proposed by Andrei [7] (see also [95]).

In all of the above hybridization schemes, discrete combinations of the conjugate

gradient parameters of the two categories have been considered. Recently, Andrei

[8, 9, 11, 12] dealt with convex combinations of the conjugate gradient parameters

of the two categories which are continuous hybridizations. More exactly, in [8] the

following hybrid conjugate gradient method has been proposed:

𝛽

C
k = (1 − 𝜇k)𝛽HS

k + 𝜇k𝛽
DY
k ,

in which 𝜇k ∈ [0, 1] is called the hybridization parameter. As known, if the point xk+1
is close enough to a local minimizer x∗, then a good direction to follow is the Newton

direction, that is, dk+1 = −∇2f (xk+1)−1gk+1. So, considering search directions of the

hybrid conjugate gradient method with the parameter 𝛽
C
k we can write:

−∇2f (xk+1)−1gk+1 = −gk+1 + (1 − 𝜇k)
gT

k+1yk

sT
k yk

sk + 𝜇k
gT

k+1gk+1

sT
k yk

sk.
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After some algebraic manipulations we get

𝜇k =
sT

k ∇
2f (xk+1)gk+1 − sT

k gk+1 −
gT

k+1yk

sT
k yk

sT
k ∇

2f (xk+1)sk

gT
k+1gk

sT
k yk

sT
k ∇2f (xk+1)sk

.

Due to the essential property of low memory requirement for the conjugate gradient

methods, Andrei applied the secant equations in order to avoid exact computation of

∇2f (xk+1)sk [8, 9, 12] (see also [24, 34]). In a different approach, recently Babaie-

Kafaki and Ghanbari [30, 31] proposed two other continuous hybrid conjugate gra-

dient methods in which the hybridization parameter is computed in a way to make

the search directions of the hybrid method as closer as possible to the search direc-

tions of the descent three-term conjugate gradient methods proposed by Zhang et al.

[102, 103].

3.8 Spectral Conjugate Gradient Methods

In the stream of overcoming drawbacks of the steepest descent method, Barzilai

and Borwein [35] developed the two-point stepsize gradient algorithms in which

the search directions are computed by

d0 = −g0, dk+1 = −𝜃kgk+1, k = 0, 1,… ,

where the positive parameter 𝜃k, called the scaling parameter, is computed by solving

the following least-squares problem:

min
𝜃≥0

||
1
𝜃

sk − yk||, (41)

being a two-point approximation of the standard secant equation (17). After some

algebraic manipulations, it can be seen that the solution of (41) is exactly the scal-

ing parameter 𝜃k given by (23), used in the scaled memoryless quasi-Newton meth-

ods. Convergence of the two-point stepsize gradient algorithms has been studied in

[44]. Using a nonmonotone line search procedure [57], Raydan [83] showed that the

two-point stepsize gradient algorithms can be regarded as an efficient approach for

solving large-scale unconstrained optimization problems. In [23, 46] the modified

secant equations (29), (31) and (32) have been employed in the two-point stepsize

gradient algorithms.

Combining search directions of the conjugate gradient methods and the two-point

stepsize gradient algorithms, the spectral conjugate gradient methods [37] have been

proposed in which the search directions are given by
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dk+1 = −𝜃kgk+1 + 𝛽kdk, k = 0, 1,… ,

with d0 = −g0 and the scaling parameter 𝜃k often computed by (23) (see also [4–6,

10, 13]).

3.9 Three-Term Conjugate Gradient Methods

Although the concept of three-term conjugate gradient methods has been originally

developed in 1970s [36, 70], recently researchers dealt with them in order to achieve

the sufficient descent property. As known, some of the conjugate gradient methods

such as HS, FR and PRP generally can not guarantee the descent condition (3). To

overcome this problem, three-term versions of the HS, FR and PRP methods have

been proposed respectively with the following search directions [101–103]:

dk+1 = −gk+1 + 𝛽

HS
k dk −

gT
k+1dk

dT
k yk

yk,

dk+1 = −gk+1 + 𝛽

FR
k dk −

gT
k+1dk

||gk||
2 gk+1,

dk+1 = −gk+1 + 𝛽

PRP
k dk −

gT
k+1dk

||gk||
2 yk,

for all k ≥ 0, with d0 = −g0. When the line search is exact, the above three-term con-

jugate gradient methods respectively reduce to the HS, FR and PRP methods. Also,

for all of these methods we have the sufficient descent condition dT
k gk = −||gk||

2
,

∀k ≥ 0, independent of the line search and the objective function convexity. A nice

review of different three-term conjugate gradient methods has been presented in [85]

(see also [14, 29]).

4 Limited-Memory Quasi-Newton Methods

As known, since quasi-Newton methods save an n × n matrix as an approximation of

the inverse Hessian, they are not useful for solving large-scale unconstrained opti-

mization problems. However, limited-memory quasi-Newton methods maintain a

compact approximation of the inverse Hessian, saving only a few vectors of length n
available from a certain number of the most recent iterations, and so, being useful in

large-scale cases [74]. Convergence properties of the methods are often acceptable

[13, 67, 73]. Although various limited-memory quasi-Newton methods have been

proposed in the literature, here we deal with the limited-memory BFGS method,

briefly called the L-BFGS method.
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Note that the BFGS updating formula (14) can be written as:

HBFGS
k+1 = VT

k HkVk + 𝜌ksksT
k , (42)

where

𝜌k =
1

sT
k yk

, and Vk = I − 𝜌kyksT
k .

In the limited-memory approach, a modified version of Hk+1 is implicitly stored,

saving a set of vector pairs {si, yi} available from the m > 1 recent iterations. More

precisely, by repeated application of the formula (42), we get

HL−BFGS
k+1 = (VT

k ⋯VT
k−m+1)Hk−m+1(Vk−m+1 ⋯Vk)

+𝜌k−m+1(VT
k ⋯VT

k−m+2)sk−m+1sT
k−m+1(Vk−m+2 ⋯Vk)

+⋯

+𝜌ksksT
k ,

in which in order to use a low memory storage, Hk−m+1 is computed by

Hk−m+1 = 𝜃kI,

where 𝜃k is often calculated by (22), proved to be practically effective [67]. Also, the

search direction dk+1 = −HL−BFGS
k+1 gk+1 can be effectively computed by the following

recursive procedure [74].

Algorithm 1 (Computing search directions of the L-BFGS method)

q = gk+1;

for i = k, k − 1,… , k − m + 1

𝛾i ← 𝜌isT
i q;

q ← q − 𝛾iyi;

end
r ← 𝜃kq;

for i = k − m + 1, k − m + 2,… , k

𝜉 ← 𝜌iyT
i r;

r ← r + si(𝛾i − 𝜉);

end
dk+1 = −r.

Remark 1 Practical experiences have shown that the values of m between 3 and 20

often produce satisfactory numerical results [74].
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5 Conclusions

Recent line search-based approaches in large-scale unconstrained optimization have

been studied. Especially, the conjugate gradient methods and the memoryless quasi-

Newton methods have been focused on. At first, after introducing the essential

unconstrained optimization algorithms, merits and demerits of the classical con-

jugate gradient methods have been reviewed. Then, their descent extensions, their

hybridizations based on the secant equations, and their three-term versions with suffi-

cient descent property have been discussed. Finally, a limited-memory quasi-Newton

method has been presented. So, recent efficient tools for big data applications have

been provided.
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