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Abstract The scientific problems that Big Data faces may be network scientific

problems. Network analytics contributes a great deal to networked Big Data process-

ing. Many network issues can be modeled as nonconvex optimization problems and

consequently they can be addressed by optimization techniques. In the pipeline of

nonconvex optimization techniques, evolutionary computation gives an outlet to han-

dle these problems efficiently. Because, network community discovery is a critical

research agenda of network analytics, in this chapter we focus on the evolution-

ary computation based nonconvex optimization for network community discovery.

The single and multiple objective optimization models for the community discov-

ery problem are thoroughly investigated. Several experimental studies are shown to

demonstrate the effectiveness of optimization based approach for big network com-

munity analytics.

Keywords Big data ⋅ Complex networks ⋅Nonconvex optimization ⋅ Evolutionary

computation ⋅ Multiobjective optimization

1 Introduction

Recent years have witnessed the growing enthusiasm for the concept of “Big Data”

[86]. Big Data has been an active topic and has attracted great attention from every

walk of life [18, 64, 89]. It should be noted that the scientific problems that Big

Data faces may be that of network scientific problems, and complex network analyt-

ics should be an important cornerstone of data science [1, 71, 114, 125]. Network

analytics undoubtedly can contribute a great deal to networked Big Data processing.

Network analytics contains many issues, to name a few, community structure

discovery, network structural balance, network robustness, link prediction, network
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resource allocation, anomaly detection, network security, network recommendation,

network propagation, and network ranking, etc. Most if not all of these issues can be

modeled as nonconvex optimization problems and consequently they can be com-

puted by optimization techniques. Because, those optimization models for network

issues are nonconvex from mathematical view, thus, canonical mathematical opti-

mization methods can hardly solve these problems. In the pipeline of optimization

techniques, evolutionary computation gives an outlet to handle these nonconvex opti-

mization problems efficiently.

Because network community discovery may be the cornerstone to the analytics

of many other network issues, consequently this chapter focuses on the optimiza-

tion based community structure discovery from networks. The rest of this chapter

is organized as follows. Section 2 briefly talks about the issues that network ana-

lytics concerns and several eminent properties of networks. Section 3 discusses the

basic definitions of optimization and evolutionary computation. Section 4 presents

the related work of network community structure analytics, including the defini-

tion of a network community and the research progress of community discovery.

Section 5 surveys the optimization models for network community discovery. The

network data sets commonly used for community discovery benchmarking are listed

in Sect. 6. Section 7 exhibits some experiments on network community discovery,

and the conclusions are finally drawn in Sect. 8.

2 Network Issues, Properties and Notations

2.1 Issues Concerning Network Analytics

Network analytics is an essential research agenda of network and networked big

data mining. Figure 1 shows the importance of network analytics to network and

networked data mining. Network analysis not only may very likely result in the dis-

covery of important patterns hidden beneath the networks, but also can potentially

shed light on important properties that may control the growth of the networks. Net-

work analytics involves many issues. To move forward, we show 12 critical issues

that concern network analytics in Fig. 2.

Very often, to analyze a network issue one should consider the properties of the

corresponding network. In the following, we are going to discuss several eminent

properties of networks.

2.2 Eminent Properties of Network

Because structure always affects function, consequently, a substantial volume of

work has been done to analyze the structural properties of complex networks



Big Network Analytics Based on Nonconvex Optimization 347

Fig. 1 Network analytics plays an important role in network and networked data mining. Reprinted

figure with permission from Ref. [74]

(a) (b)

Fig. 2 Twelve critical issues that concern network analytics. a The first six issues and b the latter

six issues

[16, 41, 94, 96, 97]. Networks have many notable properties, such as the small-

world property [126], the scale-free property [14], the community structure property

[45], etc.

The analysis of network properties is dispensable to network analytics. It is an

essential part of network science. Figure 3 shows some representative properties of

networks in the language of graph.

A scale-free network is a network whose degree distribution follows a power law,

at least asymptotically. That is, the fraction P(k) of nodes in the network having k
connections to other nodes goes for large values of k as

P(k) ∼ k−𝛾 (1)

where 𝛾 is a parameter whose value is typically in the range 2 < 𝛾 < 3, although

occasionally it may lie outside these bounds.
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(a)

(b)

(c)

Fig. 3 a An example of a scale-free network. b An example of a small-world network. c An exam-

ple of a network with two communities. Reprinted figure with permission from Ref. [74]

A small-world network is a type of mathematical graph in which most nodes are

not neighbors of one another, but most nodes can be reached from every other by a

small number of hops or steps.

A network with community structure means that the network can be separated

into clusters with different sizes, and the similarities between nodes coming from

the same cluster are large while from different clusters they are small.

2.3 Graph Based Network Notation

Data sets collected from many different realms can be represented in the form of

interaction big networks in a very natural, concise and meaningful fashion. In order

to better analyze a big network, one direct way is to represent a network with a graph

denoted as G = {V ,E}, where V representing the network objects is the aggregation

of vertices, and E representing the relations between the objects is the aggregation

of edges. Graph G can be denoted by an adjacency matrix An×n whose element aij is

defined as: {
aij = 𝜔ij if ∃L < i, j >
aij = 0 if ∄L < i, j > (2)

where L < i, j > represents the link between nodes i and j and 𝜔ij denotes the weight

of L < i, j >.
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In the field of social science, the networks that include both positive and nega-

tive edges are called signed social networks [37] or signed networks for short. In

signed networks, the so called positive links (L+) denote positive relationships such

as friendship, common interests, and negative links (L−) may denote negative rela-

tionships such as hostility, different interests, and so forth. A signed graph is nor-

mally denoted as G = {V ,PE,NE}, where PE and NE represent the aggregations of

positive and negative edges, respectively, and the element aij of the corresponding

adjacency matrix An×n is defined as:

⎧⎪⎨⎪⎩

aij = 𝜔ij if ∃L+ < i, j >
aij = −𝜔ij if ∃L− < i, j >
aij = 0 if ∄L < i, j >

(3)

Matrix A is symmetric with the diagonal elements 0, but, if the corresponding

network is directed, like the e-mail network, A is asymmetric.

3 Introduction to Nonconvex Optimization
and Evolutionary Computation

3.1 What is Optimization

Optimization has long been an active research topic. Mathematically, a single objec-

tive optimization problem (assuming minimization) can be expressed as:

min f (x), x = [x1, x2, ..., xd] ∈ Φ
s.t. gi(x) ≤ 0, i = 1, ...,m (4)

where x is called the decision vector, d is the number of parameters to be optimized,

Φ is the feasible region in decision space, and gi(x) is the constraint function.

Given that Φ is a convex set, f (x) is said to be convex if ∀x1, x2 ∈ Φ,∀𝛼 ∈ [0, 1],
and the following condition holds:

f
(
𝛼x1 + (1 − 𝛼)x2

)
≤ 𝛼f (x1) + (1 − 𝛼)f (x2) (5)

Particularly, f (x) is strictly convex if ∀x1 ≠ x2 ∈ Φ,∀𝛼 ∈ (0, 1), and the following

condition holds:

f
(
𝛼x1 + (1 − 𝛼)x2

)
< 𝛼f (x1) + (1 − 𝛼)f (x2) (6)

If f (x) and gi(x) are all convex, then we call Eq. 4 as a convex optimization prob-

lem. For a strictly convex optimization problem, there is at most one minimal solu-

tion which is also the global one. In real applications, the functions f (x) and gi(x)
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may be nonconvex and there may exist many local and/or global minimum. In this

respect, we call Eq. 4 as a nonconvex optimization problem. As a matter of fact, many

real-world optimization problems are nonconvex [56, 92].

In reality, many optimization problems involve multiple objectives, i.e., there are

more than one f (x) to be optimized. A multiobjective optimization problem can be

mathematically formulated as:

min F(x) = (f1(x), f2(x), ..., fk(x))T (7)

The objectives in Eq. 7 often conflict with each other. Improvement of one objec-

tive may lead to deterioration of another. Thus, a single solution, which can optimize

all objectives simultaneously, does not exist. For multi-objective optimization prob-

lems, the aim is to find good compromises (trade-offs) which are also called Pareto

optimal solutions. The Pareto optimality concept was first proposed by Edgeworth

and Pareto. To understand the concept, here are some related definitions.

∙ Definition 1 (Pareto Optimality) A point x∗ ∈ Φ is Pareto optimal if for every

x ∈ Φ and I = {1, 2, ..., k} either ∀i ∈ I, fi(x) = fi(x∗) or, there is at least one i ∈ I
such that fi(x) > fi(x∗).

∙ Definition 2 (Pareto Dominance) Given two vectors x, y ∈ Φ, where x =
(x1, x2, ..., xn) and y = (y1, y2, ..., yn), we say that x dominates y (denoted as x ≺ y),

if xi ≦ yi for i = 1, 2, ..., n, and x ≠ y. x is nondominated with respect to Φ, if there

does not exist another x′ ∈ Φ such that F(x′) ≺ F(x).
∙ Definition 3 (Pareto Optimal Set) The set of all Pareto optimal solutions is called

Pareto Optimal Set which is defined as:

PS = {x ∈ Φ|¬∃x∗ ∈ Φ, F(x∗) ≺ F(x)} (8)

∙ Definition 4 (Pareto Front) The image of the Pareto set (PS) in the objective space

is called the Pareto front (PF) which is defined as:

PF = {F(x)|x ∈ PS} (9)

Figure 4 gives an example of the above mentioned definitions. Each dot except

that labeled by C in the figure represents a nondominated solution to the optimization

problem. The aim of a multiobjective optimization algorithm is to find the set of those

nondominated solutions approximating the true PF.

3.2 How to Tackle Optimization Problems

In the field of optimization, evolutionary computation, a class of intelligent opti-

mization techniques, has been proved to be an efficient tool for solving nonconvex
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Fig. 4 Graphical illustration

of Pareto optimal solution

and Pareto front

optimization problems. In the last several decades, many evolutionary algorithms

(EAs) originated from the evolution principles and behavior of living things, have

sprung out and have found nationwide applications in the optimization domain

[31, 34]. Most if not all of the EAs share the following commom properties:

1. They are population based stochastic searching methods. A population consists

of a set of individuals, each individual represents a solution to the optimization

problem. An evolutionary algorithm optimizes the problem by having a popu-

lation of initialized solutions and then apply stochastic components to generate

new solutions in the decision space.

2. They are recursively iterative methods. These methods iteratively search for opti-

mal solutions in the search space. The search process will not stop until the max-

imum iteration number or a prescribed threshold is reached.

Algorithm 1 General framework of evolutionary algorithms.

Input: algorithm parameters, problem instance

Output: optimal solutions to the optimization problem

1. Begin
2. population initialization

3. store optimal solutions

4. for i=1 to max_iteration do

(a) for each individual in the population, do
i. generate a new individual through stochastic components

ii. evaluate the fitness of the new individual

(b) end for
(c) update optimal solutions

5. end for
6. End
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3. They have some inherent parameters, like the population size and the maximum

iteration number, etc. These parameters are normally set empirically.

A general framework of EAs is shown in Algorithm 1. In the last few years, many

efforts have been devoted to the application of EAs to the development of multiob-

jective optimization. A lot of multiobjective evolutionary algorithms (MOEAs) have

been proposed, e.g., [11, 13, 30, 35, 53, 66, 131, 133, 135].

4 Community Structure Analytics

Community structure discovery is one of the cornerstones of network analytics. It

can provide useful patterns and knowledge for further network analysis. This section

is dedicated to summarizing the related works for community structure analytics.

4.1 Description of Community Discovery

Network community discovery plays an important role in the networked data mining

field. Community discovery helps to discover latent patterns in networked data and

it affects the ultimate knowledge presentation.

As illustrated above, a complex network can be expressed with a graph that is

composed of nodes and edges. The task for network community discovery is to sep-

arate the whole network into small parts which are also called communities. There

is no uniform definition for community in the literature, but in academic domain, a

community, also called a cluster or a module, is normally regarded as a groups of ver-

tices which probably share common properties and/or play similar roles within the

graph. Figure 5 exhibits the community discovery problem under different network

scenarios.

From Fig. 5 we can notice that community discovery under dynamic context is

quite different from the others. In a dynamic network, the community structure is

temporally changed. How to design algorithms to uncover time-varying communities

is challenging.

4.2 Qualitative Community Definition

In order to formalize the qualitative community in unsigned network, Radicchi et

al. in [107] gave a definition based on node degree. Given a network represented

as G = (V ,E), where V is the set of nodes and E is the set of edges. Let ki be the

degree (the number of links that have connections with node i) of node i and A be

the adjacency matrix of G. Given that S ⊂ G is a subgraph, let kini =
∑

i,j∈S Aij and
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(a) (b)

(c) (d)

(e)

Fig. 5 Graphical illustration of community discovery. a Common model, b directed model,

c signed model, d overlapping model and e dynamic model

kouti =
∑

i∈S,j∉S Aij be the internal and external degree of node i, then S is a community

in a strong sense if

∀i ∈ S, kini > kouti (10)

S is a community in a weak sense if

∑
i∈Sk

in
i >

∑
i∈Sk

out
i (11)

The above community definition only fits for unsigned networks. In [48] the

authors give a definition under signed context. Given a signed network modeled

as G = (V ,PE,NE), where PE and NE are the set of positive and negative links,

respectively. Given that S ⊂ G is a subgraph, let (k+i )
in =

∑
j∈S,Lij∈PE Aij and (k−i )

in =∑
j∈S,Lij∈NE |Aij| be the positive and negative internal degree of node i, respectively.

Then S is a community in a strong sense if

∀i ∈ S, (k+i )
in
> (k−i )

in
(12)

Let (k−i )
out =

∑
j∉S,Lij∈NE |Aij| and (k+i )

out =
∑

j∉S,Lij∈PE Aij be the negative and pos-

itive external degree of node i, respectively. Then S is a community in a weak sense if

{∑
i∈S(k

+
i )

in
>
∑

i∈S(k
+
i )

out

∑
i∈S(k−i )

out
>
∑

i∈S(k−i )
in (13)
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Table 1 Representative non-optimization based methods for big network community discovery

Method Ref. Key technique Network scale

CNM [29] Greedy optimization + sophisticated data structure Medium

LPA [12] Mark each node with a label and then let them propagate Very large

Infomod [111] Information compression, transmission, and decoding Large

FEC [130] Random walk + cutoff function Very large

BGLL [15] Fast hierarchical modularity optimization Medium

Infomap [112] Clustering + information compression + random walks Large

The above definitions only give the conditions that a community should satisfy,

but they have not told how good on earth a community is. Therefore, there should

have quantitative indexes that can measure the quality of a community. These indexes

will be illustrated in Sect. 5.

4.3 Existing Approaches for Community Discovery

In the literature, a large amount of methods have been proposed to discover commu-

nities in big networks. Roughly, these methods can be divided into two categories:

optimization based class and non-optimization based class.

For the non-optimization based avenues, in Table 1 we list several outstanding

methods that can handle big networks. For more information about the existing com-

munity discovery methods developed before 2012, please refer to [41, 129].

As for the optimization based methods, most of them are nonconvex. The essence

of them is to model the network community discovery task as different optimization

problems and then design suitable nonconvex optimization methods such as EAs to

deal with them. As what follows we will summarize the optimization models for

community structure analytics.

5 Optimization Models for Community Structure Analytics

5.1 Single Objective Optimization Model

5.1.1 Modularity Based Model

The most popular evaluation criterion for community detection is the modularity

(normally denoted as Q) proposed by Newman and Girvan in [98]. The modularity

index can be given in the following form:
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Q = 1
2m

n∑
i,j

(
Aij −

ki ⋅ kj
2m

)
𝛿(i, j) (14)

where n and m are the number of nodes and edges of a network, respectively. 𝛿(i, j) =
1, if node i and j are in the same group, otherwise, 0. By assumption, higher values

of Q indicate better partitions.

Q is very popular, a lof of bio-inspired metaheuristics have been utilized to opti-

mize Q to find the community structure with biggest Q value [22, 43, 46, 60–63,

75–78, 82, 85, 88, 115, 119, 123, 124, 128]. However, Q has several drawbacks.

First, to maximize Q is proved to be NP-hard [19]. Second, large Q value does not

always make sense. Random networks with no community structures can also pos-

sess high Q values [59, 110]. Third, which is also the most important, Q has the

resolution limitation [42], i.e., maximizing Q cannot discover communities whose

sizes are smaller than a scale which depends on the total size of the network and on

the degree of inter connectedness of the modules, even in the case scenario where

modules are unambiguously defined.

To overcome these demerits, many researchers have devoted themselves to design-

ing efficient operators for the optimization algorithms to enhance the exploration

and exploitation; some scholars make efforts to design new evaluation criteria, such

as extended modularity [10, 106, 110], multi-resolution index [80], and so forth.

Because Q is originally designed for unsigned, unweighted, undirected, nonover-

lapped and static networks, thus, many creative jobs have been done to extend Q to

handle other types of networks.

Gómez et al. in [47] presented a reformulation of Q that allows the analysis

of weighted, signed, and networks that have self-loops. The presented Q is for-

mulized as:

Qsw = 1
2(w+ + w−)

∑
i,j

[
wij −

(w+
i w

+
j

2w+ −
w−
i w

−
j

2w−

)]
𝛿(i, j) (15)

where wij is the weight of the signed adjacency matrix, w+
i (w

−
i ) denotes the sum of

all positive (negative) weights of node i. Based on the Qsw metric, the authors in

[23] suggested a discrete particle swarm optimization (DPSO) algorithm to detect

communities from signed networks.

Qsw can be easily changed to handle directed, weighted graphs [8, 72, 113], and

the expression of directed and weighted Q reads:

Qdw = 1
w
∑
i,j

(
Aij −

wout
i ⋅ win

j

w

)
𝛿(i, j) (16)

where wout
i (win

i ) denotes the out-degrees (in-degrees) of node i. It can be noticed that

the factor 2 is removed because the sum of the in-degrees (outdegrees), the number

of non-vanishing elements of the asymmetric adjacency matrix, all equal w.
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In the case when a node may belong to more than one community, Q has been

modified to fit overlapping communities [99, 117, 134], and a general expression

reads:

Qov(Uk) =
k∑

c=1

⎡⎢⎢⎣
A(Vc,Vc)
A(V ,V)

−

(
A(Vc,V)
A(V ,V)

)2⎤⎥⎥⎦
(17)

where Uk = [u1, u2,… , uk] is a fuzzy parition of the nodes of the network into k
clusters. A(Vc,Vc) =

∑
i∈Vc

∑
j∈Vc

((uic + ujc)∕2)wij, where Vc is the set of vertices

in community c, A(Vc,V) = A(Vc,Vc) +
∑

i∈Vc

∑
j∈V−Vc

((uic + (1 − ujc))∕2)wij and

A(V ,V) =
∑

i∈V
∑

j∈V wij. uic is the membership value that node i belongs to com-

munity c.

The existing overlapping community detection methods can be roughly divided

into two categories, the node-based (directly cluster nodes) and the link-based (clus-

ter links and then map link communities to node communities) ones, but the main-

stream for single solution based overlapping community detection is to first utilize

soft clustering technique such as fuzzy K-means to find a fuzzy partition of the nodes

of a network into k clusters, and then apply a criterion to choose the best overlapping

network partition [68, 70, 109, 134]. The key technique lies in the evaluation of an

overlapped community. As long as an evaluation criterion is decided, bio-inspired

metaheuristics can be easily utilized to solve this problem [24, 81, 84, 104]. For

more information about the fitness evaluation for overlapping communities, please

refer to [28, 129].

Other extended criteria such as the local modularity can be found in [90, 93], the

triangle modularity in [9] and the bipartite modularity in [58].

5.1.2 Multi-resolution Model

To overcome the resolution limitation of modularity, many multi-resolution models

have been developed. Pizzuti in [102] proposed a genetic algorithm for community

detection. The highlight of the work is the suggested community score (CS) evalu-

ation metric. Let 𝜇i =
1
|S|kini be the fraction of edges connecting node i to the other

nodes in S and M(S) =
∑

i∈S(𝜇i)r

|S| be the power mean of S of order r. |S| is the car-

dinality of S, i.e., the number of nodes in S. We further define vS =
1
2
∑

i k
in
i be the

volume of S, i.e., the number of edges connecting vertices inside S, then the score of

S is defined as score(S) = M(S) × vS. Assume that G has a partition of k subgraphs,

i.e., Ω =
{
S1, S2, ..., Sk

}
, then CS can be written as:

CS =
∑k

i=1score(Si) (18)
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The CS metric takes one parameter r which is hard to tune. The author claims

that higher values of the exponent r bias the CS towards matrices containing a low

number of zeroes, i.e., higher values of r help in detecting communities.

Li et al. in [80] put forward the modularity density (D) index. D can break the

resolution limitation brought byQ. For an unsigned network, let us define L(Sa, Sb) =∑
i∈Sa,j∈Sb Aij and L(Sa, Sa) =

∑
i∈Sa,j∈Sa

Aij, where Sa = Ω − Sa. Then D is defined as:

D
𝛼
=

k∑
i=1

2𝛼L(Si, Si) − 2(1 − 𝛼)L(Si, Si)|Si| (19)

where 𝛼[0, 1] is a resolution control parameter.D
𝛼

can be viewed as a combination of

the ratio association and the ratio cut [36]. Generally, optimize the ratio association

algorithm often divides a network into small communities, while optimize the ratio

cut often divides a network into large communities. By tuning the 𝛼 value, we can

use this general function to uncover more detailed and hierarchical organization of

a complex network. Based on modularity density, many algorithms have emerged

[21, 25, 27, 49, 51, 79].

5.2 Multi-objective Optimization Model

Many real-world optimization problems involve multiple objectives. From the state-

ment of the community detection problem discussed earlier we can notice that,

community detection can also be modeled as multiobjective optimization problems.

Many multiobjective optimization based community detection methods have been

developed in this respect. Each run of these methods can yield a set of community

partitions for the decision maker to choose. The most important point for these meth-

ods should own to their abilities for breaking through the resolution limit of modular-

ity. As stated earlier, components used in single objective optimization models, such

as the individual representation, recombination, etc., serve multiobjective optimiza-

tion models as well. This section primarily deals with the multiobjective community

detection models.

5.2.1 General Model

As stated earlier, for an unsigned network, the links within a community should

be dense while the links between communities should be sparse, as for a signed

network, the inter and intra links should all be dense. On the basis of this property,

many multiobjective community models are established.

Pizzuti in [103, 105] proposed a multiobjective genetic algorithm-based method

called MOGA-Net. In this method, the author modeled the community detection

task as a multiobjective optimization problem and then applied the fast elitist
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non-dominated sorting genetic algorithm (NSGA-II) [35] framework to solve it. The

two objectives introduced are the CS and the CF. Thus, the proposed optimization

model is:

max
{

f1 = CS
f2 = −CF

}
(20)

CF (community fitness) is a criterion put forward by Lancichinetti in [68]. CF is

formulated as:

CF =
∑
S∈Ω

∑
i∈S

kini
ki

(21)

From the formulation of CF and CS we may notice that, CF to some extent mea-

sures the link density within communities, while CS can be regarded as an index to

measure the averaged degrees within communities.

An improved version of MOGA-Net can be found in [20]. To optimize the above

model, other metaheuristics, such as the multi–objective enhanced firefly algorithm

[6], hybrid evolutionary algorithm based on HSA (harmony search algorithm [44])

and CLS (chaotic local search) [4, 5, 7], non-dominated neighbor immune algorithm

[52], have all find their niche in community detection.

In [54] the authors presented a multiobjective evolutionary algorithm based on

decomposition (MOEA/D) based method. MOEA/D is proposed by Zhang and Li in

[133]. The highlight of this work is the newly cranked out multiobjective community

optimization model which optimizes two objectives termed as NRA (Negative Ratio

Association) and RC (Ratio Cut). The optimization model is:

min

⎧⎪⎪⎨⎪⎪⎩

NRA = −
k∑

i=1

L(Si, Si)|Si|
RC =

k∑
i=1

L(Si, Si)|Si|

⎫⎪⎪⎬⎪⎪⎭
(22)

It can be noticed that Eq. 22 is the decomposition of Eq. 19. RC measures the

link density between two communities and RA calculates the link density within a

community. To minimize NRA and RC we can ensure that the connections within a

community is dense and the links between communities are sparse. A similar opti-

mization model can be found in [50].

Other optimization models such as maximizing the combinations ofQ and CS can

be found in [2], and maximizing the two parts of the Q index, i.e., Q is decomposed

into two objectives, can be found in [120]. A three objectives model can be found in

[116]. Small surveys on the selection of objective functions in multiobjective com-

munity detection can be found in [121, 122].
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5.2.2 Signed Model

Many social networks involve friendly and hostile relations between the objects

that compose the networks. These networks are called signed networks. In [48] the

authors put forward a novel discrete multiobjective PSO framework for community

detection. To handle signed networks, the authors have suggested a signed optimiza-

tion model which optimizes two objectives named as SRA (Signed Ratio Association)

and SRC (Signed Ratio Cut). The optimization model reads:

min

⎧⎪⎪⎨⎪⎪⎩

SRA = −
k∑

i=1

L+(Si, Si) − L−(Si, Si)|Si|
SRC =

k∑
i=1

L+(Si, Si) − L−(Si, Si)|Si|

⎫⎪⎪⎬⎪⎪⎭
(23)

where L+(Si, Sj) =
∑

i∈Si,j∈Sj Aij, (Aij > 0) and L−(Si, Sj) =
∑

i∈Si,j∈Sj |Aij|, (Aij < 0).
To minimize SRA and SRC we can make sure that the positive links within a commu-

nity are dense while the negative links between communities are also dense, which

is in accordance with the feature of signed community.

In [3] the authors put forward another signed optimization model which uses the

NSGA-II framework to optimize it. The model reads:

min
{

f1 = −Qsw
f2 = frustration

}
(24)

where frustration =
∑n

i,j(A
+
ij (1 − 𝛿(i, j)) − A−

ij 𝛿(i, j)). The first objective Qsw mea-

sures how good a signed community is and to minimize frustration we will ensure

that the sum of the negative links within a community and the positive links between

difference communities are minimum.

Recently, to detect communities from signed networks, the authors in [83] put

forward a signed optimization model based on node similarity. The optimization

model is as follows:

max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

fpos−in (Ω) =
1
k

k∑
i=1

PSi
in

PSi
in + PSi

out

fneg−out (Ω) =
1
k

k∑
i=1

NSi
out

NSi
in + NSi

out

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(25)

where PSi
in (or PSi

out) is the internal (or external) positive similarity of community Si,
and NSi

in (or NSi
out) is the internal (or external) negative similarity of community Si.

See reference [83] for more information about the similarity of a community. To
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maximize fpos−in we can ensure high positive similarities within communities, and

to maximize fneg−out we can guarantee high negative similarities between different

communities.

5.2.3 Overlapping Model

In real world, a node of a network may belong to more than one community, just

like the friendship network. From the perspective of finding overlapping communi-

ties, intuitively, the nodes that connect multiple communities with similar strength

are more likely to be overlapping nodes. For instance, if node i has both l links with

community a and b, then we can regard i as an overlapping node. From the view-

point of finding nonoverlapping or separated communities, the less the number of

overlapping nodes, the more the separated communities.

Based on the above principle, the authors in [84] put forward a three objectives

optimization model reads:

max

⎧⎪⎪⎨⎪⎪⎩

f1 = fquality(Ω) =
CF
k

f2 = fseparated(Ω) = − ∣ Voverlap ∣

f3 = foverlapping(Ω) =
∑

i∈Voverlap

min
s∈Ω

{
ksi
ki
}

⎫⎪⎪⎬⎪⎪⎭
(26)

where ksi denotes the number of edges connect node i and community s, Voverlap is the

set of the overlapping nodes. To maximize f2 and f3 one can get a tradeoff between

nonoverlapping and overlapping communities.

5.2.4 Dynamical Model

In reality, networks may evolve with the time, the nodes and the links may disappear

or new nodes may just come out, therefore, the community structures are also chang-

ing according to the time. However, traditional approaches mostly focuse on static

networks for small groups. As the technologies move forward, in the presence of big

data, how to design methods and tools for modeling and analyzing big dynamic net-

works is a challenging research topic in the years to come. To analyze the community

structures of dynamical networks will help to predict the change tendency which may

give support to the analysis of other network or networked scientific issues. Com-

munity detection in dynamic networks is challenging.

Dynamic community detection is normally based on a temporal smoothness

framework which assumes that the variants of community division in a short time

period are not desirable [39]. According to the temporal smoothness framework, the

community detection in dynamic networks can be naturally modeled as a bi-objective

optimization problem. The optimization of one objective is to reveal a community

structure with high quality at this moment, and the optimization of the other objective
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is to uncover a community structure at the next moment which is highly similar with

that at the previous time [26, 38–40, 55]. The commonly used dynamical optimiza-

tion model can be written as:

max
{

f1 = CS or Q or D
𝛼

f2 = NMI (27)

NMI, Normalized Mutual Information [33], comes from the field of information

theory. NMI can be regarded as a similarity index. For the community detection

problem, given that A and B are two partitions of a network, respectively, C is a

confusion matrix,Cij equals to the number of nodes shared in common by community

i in partition A and by community j in partition B. Then NMI(A,B) is written as:

NMI =
−2

∑CA
i=1

∑CB
j=1 Cijlog(Cij ⋅ n∕Ci.C.j)∑CA

i=1 Ci.log(Ci.∕n) +
∑CB

j=1 C.jlog(C.j∕n)
(28)

where CA (or CB) is the number of clusters in partition A(or B), Ci. (or C
.j) is the

sum of elements of C in row i( or column j). NMI(A,B) = 1 means that A and B are

identical and NMI(A,B) = 0 indicates that A and B are completely different.

The first objective in Eq. 27 is the snapshot cost which measures how well a com-

munity structure A is at time t and the second objective is the temporal cost which

measures how similar the community structure B is at time t + 1 with the previous

community structure A.

Another dynamical model which maximizes the Min-max cut and global silhou-

ette index can be found in [65].

6 Network Data Sets

This section will list the network data sets commonly used in the literature for testing

purpose. The data sets contain two types, artificial benchmark networks and real-

world networks. Benchmark networks have controlled topologies. They are used to

mimic real-world networks. Different real-world networks may have different prop-

erties. Hence, real-world networks are still needed for testing purpose.

6.1 Artificial Generated Benchmark Networks

6.1.1 GN Benchmark and Its Extended Version

Girvan and Newan (GN) in [45] put forward a benchmark network generator which

is normally recognized as the GN benchmark. For a GN benchmark network, it was
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constructed with 128 vertices divided into four communities of 32 vertices each.

Edges were placed between vertex pairs independently at random, with probability

Pin for vertices belonging to the same community and Pout for vertices in different

communities, with Pout < Pin. The probabilities were chosen so as to keep the aver-

age degree z of a vertex equal to 16.

An extended version of the GN model was introduced in [32]. The extended

benchmark network also consists of 128 nodes divided into four communities of

32 nodes each. Every node has an average degree of 16 and shares a fraction 𝛾 of

links with the rest in its community, and 1 − 𝛾 with the other nodes of the network.

Here, 𝛾 is called the mixing parameter. When 𝛾 < 0.5, the neighbours of a vertex

inside its community are more than the neighbors belonging to the rest groups.

6.1.2 LFR Benchmark

Standard benchmarks, like the GN benchmark or its extended version, do not account

for important features in graph representations of real systems, like the fat-tailed dis-

tributions of node degree and community size, since on those benchmark networks,

all vertices have approximately the same degree, moreover, all communities have

exactly the same size by construction.

To overcome these drawbacks, a new class of benchmark graphs have been

proposed by Lancichinetti, Fortunato, and Radicchi (LFR) in [69], in which the dis-

tributions of node degree and community size are both power laws with tunable expo-

nents. They assume that the distributions of degree and community size are power

laws, with exponents 𝜏1 and 𝜏2, respectively. Each vertex shares a fraction 1 − 𝜇 of

its edges with the other vertices of its community and a fraction 𝜇 with the vertices

of the other communities; 0 ≤ 𝜇 ≤ 1 is the mixing parameter. The software to cre-

ate the LFR benchmark graphs can be freely downloaded at http://santo.fortunato.

googlepages.com/inthepress2. In our experiments, we generate 17 networks with the

mixing parameter increasing from 0 to 0.8 with an interval of 0.05.

6.1.3 Signed LFR Benchmark

The LFR network generator is a reliable model for benchmarking. However, this

model is originally designed for unsigned networks. In order to mimic signed social

networks, The LFR model can be extended into signed version. Here we give a fea-

sible way to do so.

A signed LFR model can be depicted by SLFR(n, kavg, kmax, 𝛾, 𝛽, smin, smax, 𝜇,
p−, p+), where n is the number of nodes; kavg and kmax are the averaged and max-

imum degree of a node, respectively; 𝛾 and 𝛽 are the exponents for the power law

distribution of node degree and community size, respectively; smin and smax are the

minimum and maximum community size, respectively.𝜇 is a mixing parameter. Each

node shares a fraction 1 − 𝜇 of its links with the other nodes of its community and a

fraction 𝜇 with the other nodes of the network. p− is the fraction of negative edges

http://santo.fortunato.googlepages.com/inthepress2
http://santo.fortunato.googlepages.com/inthepress2
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within communities, and p+ is the fraction of positive edges between different com-

munities.

6.2 Real-World Networks

Tables 2 and 3 list the parameters of 8 commonly tested unsigned and signed net-

works. In the Tables, m+
and m−

denote the numbers of positive and negative edges,

respectively. k is the averaged node degree.

6.3 Famous Websites

Apart from the above mentioned network data sets, many other network data sets are

available on the Internet. In this part we list several famous websites as follows:

∙ http://www-personal.umich.edu/∼mejn/ (Mark Newman Website)

∙ http://deim.urv.cat/∼aarenas/data/welcome.htm (Alex Arenas Website)

Table 2 Eight commonly tested unsigned networks

Network #Node #Edge #Clusters k Ref.

Karate 34 78 2 4.588 [132]

Dolphin 62 159 2 5.129 [87]

Football 115 613 12 10.661 [45]

SFI 118 200 Unknown 3.390 [45]

E-mail 1133 5451 Unknown 9.622 [57]

Netscience 1589 2742 Unknown 3.451 [95]

Power grid 4941 6594 Unknown 2.669 [126]

PGP 10680 24340 Unknown 4.558 [17]

Table 3 Eight commonly tested signed networks

Network #Node #Edge m+ m− k Ref.

SPP 10 45 18 27 9.000 [67]

GGS 16 58 29 29 7.250 [108]

EGFR 329 779 515 264 4.736 [101]

Macrophage 678 1,425 947 478 4.204 [100]

Yeast 690 1,080 860 220 3.130 [91]

Ecoli 1,461 3,215 1,879 1,336 4.401 [118]

WikiElec 7,114 100,321 78,792 21,529 28.204 [73]

Slashdot 77,357 466,666 352,890 113,776 12.065 [73]

http://www-personal.umich.edu/~mejn/
http://deim.urv.cat/~aarenas/data/welcome.htm
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∙ http://snap.stanford.edu/index.html (Stanford Network Analysis Project. Diverse

kinds of network data and graphical visualization softwares and tools and useful

codes are available.)

∙ http://www.correlatesofwar.org/ (The Correlates of War Project. A large amount

of signed networks mainly related to war are free to access.)

∙ http://www.gmw.rug.nl/∼huisman/sna/software.html (A collection of softwares

for social network analysis.)

∙ http://tuvalu.santafe.edu/∼aaronc/hierarchy/ (Hierarchical Random Graphs)

7 Experimental Exhibition

In [22] we have suggested a greedy discrete particle swarm optimization algorithm

(GDPSO) for big network community discovery. The GDPSO algorithm optimizes

the modularity index. As what follows we will show its performance over several

real-world networks.

Table 4 lists the averaged modularity values obtained by five methods over 30

independent runs on six networks. The GDPSO algorithm is an optimization based

method. GDPSO is competitive to the rest four methods in terms of the modularity

index.

On one hand, it is natural to model network community discovery as a multiob-

jective optimization problem. On the other hand, based on the preliminary shown

in Sect. 3.1, we can get to know that a single run of a MOEA based community

discovery method can output a set of solutions, as shown in Fig. 6.

As can be seen from Fig. 6 that each Pareto solution denotes a certain network

community structure. However, each single run of the methods listed in Table 4 can

only output one solution. There is no doubt that the MOEA based community discov-

ery facilitates intelligent multi-criteria decision making. For more exhibitions about

the MOEA based community discovery please refer to our recent work in [48].

It should be noted that based on the optimization models discussed in Sect. 5,

one can design different single objective EAs or MOEAs to optimize those models.

However, according to the NFL (No Free Lunch) theory [127], there is no one-for-all

Table 4 Averaged modularity values obtained by five methods over 30 independent runs

Network GDPSO CNM BGLL Infomap LPA

Karate 0.4198 0.3800 0.4180 0.4020 0.3264

Dolphin 0.5280 0.4950 0.5188 0.5247 0.4964

Football 0.6041 0.5770 0.6046 0.6005 0.5848

E-mail 0.4783 0.4985 0.5412 0.5355 0.0070

Power grid 0.8368 0.9229 0.7756 0.8140 0.7476

PGP 0.8013 0.8481 0.9604 0.7777 0.7845

http://snap.stanford.edu/index.html
http://www.correlatesofwar.org/
http://www.gmw.rug.nl/~huisman/sna/software.html
http://tuvalu.santafe.edu/~aaronc/hierarchy/
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Fig. 6 An illustration of the Pareto front obtained by an MOEA for community discovery from

the Karate network

method that can deal with all kinds of networks. For one thing, for different network

issues, we can solve them well as long as we can establish a good optimization model

that can well depict the nature of those problems. For another thing, we should make

efforts to enhance the search abilities of the optimization algorithms. Meanwhile,

different networks have different space-time properties. Consequently, we should

take into account the special characters of the networks when designing algorithms

to solve network issues.

8 Concluding Remarks

Network analysis is one of the theoretical underpinnings of big data. Network com-

munity discovery serves as the backbone of network analysis. The past decades have

witnessed the prosperity of the research on community discovery. A large number of

techniques have been cranked out to discover communities in the networks. Among

the extant avenues for solving the network community discovery problem, many of

them are nonconvex optimization based.

This chapter tries to investigate the network community discovery problem from

the optimization view. Single objective and multiobjective optimization models for

network community discovery problems are delineated. Experimental studies are

also shown to demonstrate the promise of the optimization based idea for network

analytics.
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We expect that complex network analysis’s scope will continue to expand and

its applications to multiply. We are positive that methods and theories that work

for community detection are helpful for other network issues. From both theoretical

and technological perspectives, network community discovery technology will move

beyond network analytics toward emphasizing network intelligence. We do hope that

this chapter can benefit scholars who set foot in this field. Our future work will focus

on more in-depth analysis of network issues. Such analysis is expected to shed light

on how networks change the real world.
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