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Abstract Seaborne trade constitutes nearly 80 % of the world trade by volume and is

linked into almost every international supply chain. Efficient and competitive logis-

tic solutions obtained through advanced planning will not only benefit the shipping

companies, but will trickle down the supply chain to producers and consumers alike.

Large scale maritime problems are found particularly within liner shipping due to

the vast size of the network that global carriers operate. This chapter will introduce

a selection of large scale planning problems within the liner shipping industry. We

will focus on the solution techniques applied and show how strategic, tactical and

operational problems can be addressed. We will discuss how large scale optimization

methods can utilize special problem structures such as separable/independent sub-

problems and give examples of advanced heuristics using divide-and-conquer par-

adigms, decomposition and mathematical programming within a large scale search

framework. We conclude the chapter by discussing future challenges of large scale

optimization within maritime shipping and the integration of predictive big data

analysis combined with prescriptive optimization techniques.

Keywords Large-scale optimization ⋅ Decision support tools ⋅ Prescriptive

analytics ⋅ Maritime logistics

1 Introduction

Modern container vessels can handle up to 20,000 twenty-foot equivalent units

(TEU) as seen on Fig. 1. The leading companies may operate a fleet of more than

500 vessels and transport more than 10,000,000 full containers annually that need

B.D. Brouer ⋅ C.V. Karsten ⋅ D. Pisinger (✉)

Department of Management Engineering, Technical University of Denmark,

Produktionstorvet, Building 426, 2800 Kgs Lyngby, Denmark

e-mail: dapi@dtu.dk

B.D. Brouer

e-mail: berit@brouer.com

C.V. Karsten

e-mail: cvadkarsten@gmail.com

© Springer International Publishing Switzerland 2016

A. Emrouznejad (ed.), Big Data Optimization: Recent Developments
and Challenges, Studies in Big Data 18, DOI 10.1007/978-3-319-30265-2_14

319



320 B.D. Brouer et al.

Fig. 1 Seaborne trade constitutes nearly 80 % of the world trade by volume, and calls for the

solution of several large scale optimization problems involving big data. Picture: Maersk Line

to be scheduled through the network. There is a huge pressure to fill this capacity

and utilize the efficiency benefits of the larger vessels but at the same time markets

are volatile leading to ever changing conditions. Operating a liner shipping network

is truly a big-data problem, demanding advanced decisions based on state-of-the art

solution techniques. The digital footprint from all levels in the supply chain pro-

vides opportunities to use data that drive a new generation of faster, safer, cleaner,

and more agile means of transportation. Efficient and competitive logistic solutions

obtained through advanced planning will not only benefit the shipping companies,

but will trickle down the supply chain to producers and consumers.

Maritime logistics companies encounter large scale planning problems at both

the strategic, tactical, and operational level. These problems are usually treated sep-

arately due to complexity and practical considerations, but as will be seen in this

chapter the decisions are not always independent and should not be treated as such.

Large scale maritime problems are found both within transportation of bulk cargo,

liquefied gasses and particularly within liner shipping due to the vast size of the

network that global carriers operate. In 2014 the busiest container terminal in the

world, Port of Shanghai, had a throughput of more than 35,000,000 TEU according

to Seatrade Global, which is also approximately the estimated number of containers

in circulation globally. This chapter will focus on the planning problems faced by a

global carrier operating a network of container vessels and show how decision sup-

port tools based on mathematical optimization techniques can guide the process of

adapting a network to the current market.

At the strategic level carriers determine their fleet size and mix along with which

markets to serve thus deciding the layout of their network. The network spanning

the globe serving tens of thousands of customers leads to a gazillion possible con-

figurations for operating a particular network. At the tactical level schedules for the

individual services and the corresponding fleet deployment is determined, while the

routing of containers through the physical transportation network, stowage of con-

tainers on the vessels, berthing of the vessels in ports, and disruption management

due to e.g. bad weather or port delays is handled at the operational level. In general
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these problems can be treated separately, but as the layout of the network will affect

e.g. the routing of the containers the problems are far from independent.

Operational data can lead to better predictions of what will happen in the future

and carriers are constantly receiving sensor data from vessels that can help predict

e.g. disruptions or required maintenance and similarly, data received from terminals

can be used to predict delays and help vessels adjust sailing speed to save fuel. But

given a predicted future scenario it may still not be obvious what the best actions

are neither at the strategic, tactical or operational level. A large shipping company

may be capable of producing good estimates of future demand and oil price fluctua-

tions, or predicting possible disruptions. Under certain circumstances these predic-

tions may require simple independent actions to adjust the network, but it is more

likely that the actions will be dependent on other factors in the network. In that case

difficult and complex here-and-now decisions must be made to adjust the transporta-

tion network optimally to the new situation. When there is a large number of deci-

sions to be made and when the decisions influence each other prescriptive models

based on optimization can help make the best choice. Predictive and prescriptive

methods combined can serve as decision support tools and help select the best strat-

egy, where the predictions made by machine learning algorithms, can be fed into

large scale optimization algorithms to guide the decision process faced by carriers.

Most data in liner shipping are associated with some degree of uncertainty. First

of all, demands are fluctuating over the year, and even if customers have booked a

time slot for their containers these data are affected by significant uncertainty. In liner

shipping no fees are paid if the customer is not delivering the booked number of con-

tainers, so customers may at any time choose to use another shipping company, or

to postpone the delivery. This stimulates overbooking which adds uncertainty to the

models. Port availabilities are also highly uncertain. If a vessel sticks to the normal

time table, it can generally be assumed that the time slot is available, but if a vessel

is delayed or the company wants to change the route, all port calls must be negoti-

ated with the port authorities. This substantially complicates planning, and makes it

necessary to use a trial and force method to find a good solution.

There are several different approaches for solving large scale optimization prob-

lems. If a problem exhibit a special separable structure it can be decomposed

and solved more efficiently by using either column generation if the complication

involves the number of variables or row generation if the number of constraints is

too large [5, 8, 18, 20], by dynamic programming [17], or constraint programming

[36]. For less structured or extremely large problems it can be advantageous to use

(meta)-heuristics to obtain solutions quickly, but often of unknown quality [15, 22].

Finally it is frequently possible, with a good modeling of a problem, to rely solely

on Linear Programming, LP, or Mixed Integer Programming, MIP, solvers, see e.g.

[42] for a discussion of modeling techniques and the trade-off between stronger ver-

sus smaller models. Algorithmic and hardware improvements have over the last three

decades resulted in an estimated speed-up for commercial MIP solvers of a 200 bil-

lion factor [7], making it feasible not only to solve large linear models but also more
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advanced integer decision models of realistic size. In practice a combination of the

different techniques is often seen and maritime logistics gives an illustrative case of

the importance of all of these large scale optimization methods.

2 Liner Shipping Network Design

The Liner Shipping Network Design Problem, LSNDP, is a core planning problem

facing carriers. Given an estimate of the demands to be transported and a set of pos-

sible ports to serve, a carrier wants to design routes for its fleet of vessels and select

which demands of containers to satisfy. A route, or service, is a set of similarly sized

vessels sailing on a non-simple cyclic itinerary of ports according to a fixed, usu-

ally weekly, schedule. Hence the round trip duration for a vessel is assumed to be a

multiple of a week and to ensure weekly frequency in the serviced ports a sufficient

number of vessels is assigned. If a round trip of the vessel takes e.g. 6 weeks, then

6 vessels are deployed on the same route. To make schedules more robust buffer

time is included to account for delays. However, delays may still lead to local speed

increases which increases the overall energy consumption. An example of a service

can be seen in Fig. 2 which shows the Oceania-Americas Service with a round trip

time of 10 weeks. The weekly departures may in some cases simplify the mathe-

matical formulation of the problem, since customer demands and vessel capacities

follow a weekly cycle. Trunk services serve central main ports and can be both inter

and intra regional whereas feeder services serve a distinct market and typically visit

one single main port and several smaller ports. When the network has been deter-

mined the containers can be routed according to a fixed schedule with a predeter-

mined trip duration. A given demand is loaded on to a service at its departure port,

which may bring the demand directly to the destination port or the container can

be unloaded at one or several intermediate ports for transshipment to another ser-

vice before finally reaching its final destination. Therefore, the design of the set of

services is complex, as they interact through transshipments and the majority of con-

tainers are transshipped at least once during transport. A carrier aims for a network

with high utilization, a low number of transshipments, and competitive transit times.

Services are divided into a head- and a back-haul direction. The head haul direction

is the most cargo intensive and vessels are almost full. Hence, the head haul gener-

ates the majority of the revenue and due to customer demand for fast delivery the

head haul operates at increased speeds with nearly no buffer time for delays. The

back haul operates at slower speeds with additional buffer time assigned. A delay

incurred on the head haul is often recovered during the back-haul.

In practice a carrier will never re-design a network from scratch as there are

significant costs associated with the reconfiguration [40]. Rather, the planners or

network design algorithms will take the existing network and suggest incremental

changes to adjust the network to the current economic environment. Most network

changes requires evaluation of the full cargo routing problem to evaluate the quality



Big Data Optimization in Maritime Logistics 323

Fig. 2 The Oceania-Americas Service (OC1) from the 2014 Maersk Line Network. Picture:
Maersk Line

of the network since regional changes can have unintended consequences in the entire

network.

Routing of both vessels and containers are in most state-of-the-art methods con-

sidered simultaneously [1, 2, 11, 12, 35, 38], as these problems are completely

interrelated. However, several of the before mentioned approaches exploit the fact

that the problems are separable into two tiers and design algorithms utilizing this

structure. The cargo routing reduces to a multicommodity flow problem, MCF, and

serves as the lower tier where the revenue of the network is determined. The ves-

sel routing problem reduces to a (more complex) problem of cycle generation and

corresponds to the upper tier, where the cost of the network is determined. The fol-

lowing section gives insight to the container routing problem and its relation to the

multicommodity flow problem.

2.1 Container Routing

We define G = (N,A) to be a directed graph with nodes N and edges A. The node

set N represents the geographical locations in the model i.e. ports and the arc set

A connects the ports. The arcs are determined by the scheduled itineraries and the

cargo capacity is determined by the assignment of vessels to the schedule. Let K be

the set of commodities to transport, qk be the amount of commodity k ∈ K that is

available for transport, and uij be the capacity of edge (i, j). We assume that each

commodity has a single origin node, Ok, and a single destination node, Dk.

There are two commonly used formulations of the MCF based on either arc or path

flow variables. The arc flow formulation can be stated as follows. For each node i ∈ N
and commodity k ∈ K we define q(i, k) = qk if i = Ok, q(i, k) = −qk if i = Dk, and
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q(i, k) = 0 otherwise. For each node i ∈ N we define the set of edges with tail in node

i as 𝛿
+(i) = {(j, j′) ∈ A ∶ j = i} and head in node i as 𝛿

−(i) = {(j, j′) ∈ A ∶ j′ = i}.

With this notation the MCF problem can be stated as the following LP

min

∑

(i,j)∈A

∑

k∈K
ckijx

k
ij (1)

s.t.

∑

(j,j′)∈𝛿+(i)
xkjj′ −

∑

(j,j′)∈𝛿−(i)
xkjj′ = q(i, k) i ∈ N, k ∈ K (2)

∑

k∈K
xkij ≤ uij (i, j) ∈ A (3)

xkij ≥ 0 (i, j) ∈ A, k ∈ K (4)

The objective function (1) minimizes the cost of the flow. The flow conservation

constraint (2) ensures that commodities originates and terminates in the right nodes.

The capacity constraint (3) ensures that the capacity of each edge is respected. The

formulation has |K||A| variables and |A| + |K||N| constraints. The number of vari-

ables is hence polynomially bounded, but for large graphs like the ones seen in global

liner shipping networks this formulation requires excessive computation time and

may even be too large for standard LP-solvers (see e.g. [14]).

The block-angular structure of the constraint matrix in the arc-flow formulation

can be exploited and by Dantzig-Wolfe decomposition it is possible to get a reformu-

lation with a master problem considering paths for all commodities, and a subprob-

lem defining the possible paths for each commodity k ∈ K. We note that in general

any arc flow can be obtained as a convex combination of path flows. In the path-

flow formulation each variable, f p, in the model corresponds to a path, p, through

the graph for a specific commodity. The variable states how many units of a specific

commodity that is routed through the given path, the cost of each variable is given

by the parameter cp. Let Pk
be the set of all feasible paths for commodity k, Pk(a) be

the set of paths for commodity k that uses edge a and P(a) = ∪k∈KPk(a) is the set of

all paths that use edge a. The model then becomes:

min

∑

k∈K

∑

p∈Pk

cpf p (5)

s.t.

∑

p∈Pk

f p = qk k ∈ K (6)

∑

p∈P(a)
f p ≤ uij (i, j) ∈ A (7)

f p ≥ 0 k ∈ K, p ∈ Pk
(8)

The objective function (5) again minimizes the cost of the flow. Constraint (6)

ensures that the demand of each commodity is met and constraint (7) ensures that

the capacity limit of each edge is obeyed. The path-flow model has |A| + |K| con-

straints, but the number of variables is, in general, growing exponentially with the
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size of the graph. However, using column generation the necessary variables can be

generated dynamically and in practice the path-flow model can often be solved faster

than the arc-flow model for large scale instances of the LSND problem [14].

Column generation operates with a reduced version of the LP (5)–(8), which is

called the master problem. The master problem is defined by a reduced set of columns

Qk
⊆ Pk

for each commodity k such that a feasible solution to the LP (5)–(8) can

be found using variables from ∪k∈KQk
. Solving this LP gives rise to dual variables

𝜋k and 𝜆ij corresponding to constraint (6) and (7), respectively. For a variable j ∈
∪k∈KPk

we let 𝜅(j) denote the commodity that a variable serves and let p(j) represent

the path corresponding to the variable j, represented as the set of edges traversed by

the path. Then we can calculate the reduced cost c̄j of each column j ∈ ∪k∈KPk
as

follows

c̄j =
∑

(i,j)∈p(j)
(c𝜅(j)ij − 𝜆ij) − 𝜋

𝜅(j).

If we can find a variable j ∈ ∪k∈K(Pk⧵Qk) such that c̄j < 0 then this variable has

the potential to improve the current LP solution and should be added to the mas-

ter problem, which is resolved to give new dual values. If, on the other hand, we

have that c̄j ≥ 0 for all j ∈ ∪k∈K(Pk⧵Qk) then we know the master problem defined

by Qk
provides the optimal solution to the complete problem (for more details see

[24]). In order to find a variable with negative reduced cost or prove that no such

variable exists we solve a sub-problem for each commodity. The sub-problem seeks

the feasible path for commodity k with minimum reduced cost given the current dual

values. Solving this problem amounts to solving a shortest path problem from source

to destination of the commodity with edge costs given by cij − 𝜆ij and subtracting 𝜋k
from this cost in order to get the reduced cost. As will be seen later we can extend

the model to reject demands by including additional variables with an appropriate

penalty. When solving the shortest path problem additional industry constraints such

as number of transshipments, trade policies, or time limits on cargo trip duration

can be included. Including such constraints will increase the complexity of the sub-

problem as the resulting problem becomes a resource constrained shortest path prob-

lem. Karsten et al. [24] has made a tailored algorithm for a cargo routing problem

considering lead times and show that it does not necessarily increase the solution

time to include transit time constraints, mainly because the size of solution space

is reduced. Additionally, Karsten et al. [24] give an overview of graph topologies

accounting for transshipment operations when considering transit times.

To construct routes used in the upper tier of the network design problem we will

go through a more recent approach in the next section which use an advanced mathe-

matical programming based heuristic to solve the problem within a large scale search

framework. In general, when a generic network has been designed it is transformed

into a physical sailing network by determining a specific schedule, deploying ves-

sels from the available fleet and deciding on the speed and actual flow of containers.
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Some aspects of the tactical and operational decisions can of course be integrated

in the network design process at the cost of computational tractability, but with the

potential benefit of higher quality networks.

3 Mat-Heuristic for Liner Shipping Network Design

Mathematical programming models of the LSNDP are closely related to the capaci-

tated fixed charge network design problem [23] in installing a discrete set of capac-

ities for the set of commodities K. However, the capacity installed must reflect the

routing of container vessels according to the specification of a service as defined

in the beginning of this section. Therefore, it is also related to pick-up and deliv-

ery vehicle routing problems [41], however being significantly harder to solve as a

consequence both of the non-simple cyclic routes, the multiple commodities and the

vast size of real life networks. As a consequence optimal methods can only solve

very insignificant instances of the LSNDP [2, 35] or provide lower bounds [33].

Several algorithms for solving larger instances of the LSNDP can be categorized as

matheuristics combining mathematical programming with meta heuristics exploit-

ing the two tier structure, where the variables of the upper tier describe a service and

variables of the lower tier describe the container routing (for a reference model of

the LSNDP see [10]). Agarwal and Ergun [1] apply a heuristic Benders’ decompo-

sition algorithm as well as a Branch and Bound algorithm for heuristicly generated

routing variables, Alvarez [2] applies a tabu search scheme, where the routing vari-

ables are generated by a mathematical program based on the dual values of the lower

tier MCF problem in each iteration. [10] use a heuristic column generation scheme,

where the routing columns are generated by an integer program based on informa-

tion from both tiers of the LSNDP along with a set of business rules. The integer

program in [10] constructs a single, (possibly non-simple) cyclic route for a given

service configuration of vessel class and speed. Route construction is based on the

Miller-Tucker-Zemlin subtour elimination constraints known from the CVRP to enu-

merate the port calls in a non-decreasing sequence. This makes high quality routings

for smaller instances of the LSNDP, but for large scale instances it becomes neces-

sary to select a small cluster of related ports in order to efficiently solve the integer

program used in the heuristic. A different matheuristic approach is seen in [11, 12],

where the core component in a large scale neighborhood search is an integer program

designed to capture the complex interaction of the cargo allocation between routes.

The solution of the integer program provides a set of moves in the composition of

port calls and fleet deployment. Meta-heuristics for the LSNDP are challenged by

the difficulty of predicting the changes in the multicommodity flow problem for a

given move in the solution space without reevaluating the MCF at the lower tier.

The approach of [12] relies on estimation functions of changes in the flow and the

fleet deployment related to inserting or removing a port call from a given service

and network configuration. Flow changes and the resulting change in the revenue

are estimated by solving a series of shortest path problems on the residual graph of



Big Data Optimization in Maritime Logistics 327

(a) (b)

Fig. 3 Illustration of the estimation functions for insertion and removal of port calls. a Blue nodes

are evaluated for insertion corresponding to variables 𝛾i for the set of ports in the neighborhood

Ns
of service s. b Red nodes are evaluated for removal corresponding to variables 𝜆i for the set of

current port calls Fs
on service s

the current network for relevant commodities to the insertion/removal of a port call

along with an estimation of the change in the vessel related cost with the current fleet

deployment.

Given a total estimated change in revenue of revi and port call cost of Cp
i Fig. 3a

illustrate estimation functions for the change in revenue (𝛩
s
i ) and duration (𝛥

s
i )

increase for inserting port i into service s controlled by the binary variable 𝛾i. The

duration controls the number of vessels needed to maintain a weekly frequency of

service. Figure 3b illustrate the estimation functions for the change in revenue (𝛶
s
i )

and decrease in duration (𝛤
s
i ) for removing port i from service s controlled by the

binary variable 𝜆i. Insertions/removals will affect the duration of the service in ques-

tion and hence the needed fleet deployment modeled by the integer variable 𝜔s repre-

senting the change in the number of vessels deployed. The integer program (9)–(16)

expresses the neighborhood of a single service, s.

max

∑

i∈Ns

𝛩i𝛾i +
∑

i∈𝐅𝐬

𝛶i𝜆i − Ce(s)
V 𝜔s (9)

s.t. Ts +
∑

i∈Ns

𝛥

s
i𝛾i −

∑

i∈𝐅𝐬

𝛤

s
i 𝜆i ≤ 24 ⋅ 7 ⋅ (ne(s)s + 𝜔s) (10)

𝜔s ≤ Me(s) (11)
∑

i∈Ns

𝛾i ≤ Is (12)

∑

i∈𝐅𝐬

𝜆i ≤ Rs (13)

∑

j∈Li

𝜆j ≤ |Li|(1 − 𝛾i) i ∈ Ns
(14)

∑

j∈Li

𝜆j ≤ |Li|(1 − 𝜆i) i ∈ Fs
(15)

𝜆i ∈ {0, 1}, i ∈ Fs
, 𝛾i ∈ {0, 1}, i ∈ Ns

, 𝜔s ∈ ℤ. (16)
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The objective function (9) accounts for the expected change in revenue of the

considered insertions and removals along with the weekly vessel cost Ce(s)
V of the ves-

sel class e(s) deployed to service s. Constraint (10) considers the expected change in

the duration of the service, where Ts is the current duration and ne(s)s is the number of

vessels currently deployed to service s. The possible addition of vessels is bounded

by the number of vessels available Me(s) of type e in constraint (11). A limit on the

number of insertions/removals respectively are introduced in constraints (12)–(13)

to reduce the error of the estimation functions for multiple insertions/removals. The

estimation functions also depend on the existing port calls for unloading the com-

modities introduced by the insertions as well as the ports used for rerouting com-

modities when removing ports. This is handled by introducing a lockset Li for each

insertion/removal expressed in constraints (14)–(15). The integer program is solved

iteratively for each service in the current network and the resulting set of moves are

evaluated for acceptance in a simulated annealing framework. The procedure is an

improvement heuristic [3] fine tuning a given network configuration. The algorithm

in its entirety constructs an initial network using a simple greedy construction heuris-

tic. The improvement heuristic is applied as a move operator for intensification of

the constructed solution. To diversify the solution a perturbation step is performed

at every tenth loop through the entire set of services. The perturbation step alters

the service composition in the network by removing entire services with low utiliza-

tion and introducing a set of new services based on the greedy construction heuristic

for undeployed vessels. To evaluate the matheuristic the public benchmark suite,

LINER-LIB, for liner shipping network design problems is used.

4 Computational Results Using LINER-LIB

LINER-LIB 2012 is a public benchmark suite for the LSNDP presented by [10].

The data instances of the benchmark suite are constructed from real-life data from

the largest global liner-shipping company, Maersk Line, along with several industry

and public stakeholders. LINER-LIB consists of seven benchmark instances avail-

able at http://www.linerlib.org/ (see [10] for details on the construction of the data

instances). Each instance can be used in a low, medium, and high capacity case

depending on the fleet of the instance. Table 1 presents some statistics on each

instance ranging from smaller networks suitable for optimal methods to large scale

instances spanning the globe. Currently published results are available for 6 of the 7

instances, leaving the WorldLarge instance unsolved.

LINER-LIB contains data on ports including port call cost, cargo handling cost

and draft restrictions, distances between ports considering draft and canal traver-

sal, vessel related data for capacity, cost, speed interval and bunker consumptions,

and finally a commodity set with quantities, revenue, and maximal transit time. The

commodity data reflects the current imbalance of world trade and the associated dif-

ferentiated revenue. It is tailored for models of the LSNDP, but may provide useful

data for related maritime transportation problems.

http://www.linerlib.org/
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Table 1 The instances of the benchmark suite with indication of the number of ports (|P|), the

number of origin-destination pairs (|K|), the number of vessel classes (|E|), the minimum (min v)

and maximum number of vessels (max v)

Category Instance and description |𝐏| |𝐊| |𝐄| min v max v
Single-hub instances Baltic Baltic sea, Bremerhaven as

hub

12 22 2 5 7

WAF West Africa, Algeciras as hub 19 38 2 33 51

Multi-hub instance Mediterranean Mediterranean,

Algeciras, Tangier, Gioia Tauro as

hubs

39 369 3 15 25

Trade-lane instances Pacific (Asia-US West) 45 722 4 81 119

AsiaEurope Europe, Middle East,

and Far east regions

111 4000 6 140 212

World instance Small 47 Main ports worldwide

identified by Maersk Line

47 1764 6 209 317

Large 197 ports worldwide

identified by Maersk Line

197 9630 6 401 601

Computational results for LINER-LIB are presented in [10, 12, 33].

Brouer et al. [10] presented the first results for the benchmark suite using the refer-

ence model [10] with biweekly frequencies for the feeder vessel classes and weekly

frequencies for remaining classes. The heuristic column generation algorithm is

used to solve all instances but the Large world instance with promising results. [12]

present computational results using the reference model with weekly frequencies for

all vessel classes which has a more restricted solution space than [10]. As a con-

sequence the solutions from [12] are feasible for the model used in [10], but not

vice-versa. However, the computational results of [12] indicate that the matheuris-

tic using an improvement heuristic based on integer programming scales well for

large instances and holds the current best known results for the Pacific, World Small

and AsiaEurope instances. [33] present a service flow model for the LSNDP using a

commercial MIP solver presenting results for the two Baltic and WAF instances of

LINER-LIB. For details on the results the reader is referred to the respective papers.

LINER-LIB is currently used by researchers at a handful of different universities

worldwide and may provide data for future results on models and algorithms for

LSNDP.

5 Empty Container Repositioning

In extension of the network design process a liner shipping company must also con-

sider revenue management at a more operational level. Requests for cargo can be

rejected if it is not profitable to carry the containers, or if bottlenecks in the net-

work make it infeasible. Moreover, empty containers tend to accumulate at importing
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regions due to a significant imbalance in world trade. Therefore, repositioning empty

containers to exporting regions impose a large cost on liner shippers, and these costs

need to be incorporated in the revenue model. Since larger shipping companies at any

time have several millions of containers in circulation, these decisions are extremely

complex and require advanced solution methods.

Alvarez [2] presented a study of large scale instances of the liner service network

design problem. The cargo allocation problem is solved as a subproblem of the tabu

search algorithm solving the network design problem. Meng and Wang [26] study

a network design problem selecting among a set of candidate shipping lines while

considering the container routing problem along with the repositioning of empty

containers. The model is formulated as a minimum cost problem and as [21] the

model handle loaded end empty containers simultaneously, however it does not allow

load rejection and only seek to minimize the cost of transport. Song and Dong [39]

consider a problem of joint cargo routing and empty container repositioning at the

operational level accounting for the demurrage and inventory cost of empty contain-

ers. Like most other works on empty repositioning it is a cost minimizing problem

where load rejection is not allowed.

Brouer et al. [14] present a revenue management model for strategic planning

within a liner shipping company. A mathematical model is presented for maximizing

the profit of cargo transportation while considering the possible cost of repositioning

empty containers.

The booking decision of a liner shipper considering empty container reposition-

ing can be described as a specialized multi-commodity flow problem with inter-

balancing constraints to control the flow of empty containers.

Similarly to the pure cargo routing problem we can define a commodity as the

tuple (Ok,Dk, qk, rk) representing a demand of qk in number of containers from node

Ok to node Dk with a sales price per unit of rk. The unit cost of arc (i, j) for commod-

ity k is denoted ckij. The non-negative integer variable xkij is the flow of commodity k
on arc (i, j). The capacity of arc (i, j) is uij. To model the empty containers an empty

super commodity ke is introduced. The flow of the empty super commodity is defined

for all (i, j) ∈ A as the integer variables xkeij . The unit cost of arc (i, j) for commodity ke
is denoted ckeij . The empty super commodity has no flow conservation constraints and

appear in the objective with a cost and in the bundled capacity and inter-balancing

constraints. For convenience the commodity set is split into the loaded commodi-

ties and the empty super commodity: Let KF be the set of loaded commodities. Let

Ke be the set of the single empty super commodity. Finally, let K = KF ∪ Ke. The

inter-balancing constraints also introduce a new set of variables representing leased

containers at a node. The cost of leasing is modeled in the objective. Let cil be the

cost of leasing a container at port i, while li is the integer leasing variable at port i.
Demand may be rejected, due to capacity constraints and unprofitability from empty

repositioning cost. The slack variable 𝛾k represents the amount of rejected demand

for commodity k.
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5.1 Path Flow Formulation

In the following we introduce a path flow model which is an extension of model

(5)–(8). Again, let p be a path connecting Ok and Dk and Pk be the set of all paths

belonging to commodity k. The flow on path p is denoted by the variable f p. The

binary coefficient apij is one if and only if arc (i, j) is on the path p. Finally, ckp =∑
(i,j)∈A a

p
ijc

k
ij is the cost of path p for commodity k. The master problem is:

max

∑

k∈KF

∑

p∈Pk

(rk − ckp)f
p −

∑

(i,j)∈A
ckeij x

ke
ij −

∑

i∈N
cill

i
(17)

s.t.

∑

k∈KF

∑

p∈Pk

apijf
p + xkeij ≤ uij (i, j) ∈ A (18)

∑

p∈Pk

f p + 𝛾k = qk k ∈ KF (19)

∑

k∈KF

∑

p∈Pk

∑

j∈N
(apij − apij)f

p + xkeij − xkeji − li ≤ 0 i ∈ N (20)

f p ∈ ℤ+, p ∈ Pk, 𝛾k∈ ℤ+, k∈ KF xkeij ∈ ℤ+, (i, j)∈ A, li ∈ ℤ+, i ∈ N
(21)

where the xkij variables can be replaced by
∑

p∈Pk
apijf

p
for all k ∈ KF. The convexity

constraints for the individual subproblems (19) bound the flow between the (Ok,Dk)
pair from above (a maximal flow of qk is possible).

Paths are generated on the fly using delayed column generation. Brouer et al.

[14] report computational results for eight instances based on real life shipping

networks, showing that the delayed column generation algorithm for the path flow

model clearly outperforms solving the arc flow model with the CPLEX barrier solver.

In order to fairly compare the arc and path flow formulation a basic column genera-

tion algorithm is used for the path flow model versus a standard solver for the arc flow

model. Instances with up to 234 ports and 293 vessels for 9 periods were solved in

less than 35 min with the column generation algorithm. The largest instance solved

for 12 periods contains 151 ports and 222 vessels and was solved in less than 75 min.

The algorithm solves instances with up to 16,000 commodities over a twelve

month planning period within one hour. Integer solutions are found by simply round-

ing the LP solution. The model of Erera et al. [21] is solved to integer optimality

using standard solvers as opposed to the rounded integer solution presented here.

The problem sizes of [14] are significantly larger than those of [21] and the rounded

integer solutions lead to a gap of at most 0.01% from the LP upper bound of the path

flow formulation, which is very acceptable, and far below the level of uncertainty in

the data. The results of [21] confirm the economic rationale in simultaneously con-

sidering loaded and empty containers.
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6 Container Vessel Stowage Plans

With vessels carrying up to 20,000 TEU, stowage of the containers on board is a

non-trivial task demanding fast algorithms as the final load list is known very late.

Stowage planning can be split into a master planning problem and a more detailed

slot planning problem. The master planning problem should decide a proper mixture

of containers, so that constraints on volume, weight, and reefer plugs are respected.

The slot planning problem should assign containers to slots in the vessel so that the

loading and unloading time in ports can be minimized. The vessel must be seaworthy,

meaning that stability and stress constraints must be respected.

Figure 4 illustrates the arrangement of bays in a container vessel. Containers are

loaded bottom-up in each bay up to a given stacking height limited by the line of sight

and other factors. Some containers are loaded below deck, while other containers are

loaded above the hatch cover. The overall weight sum of containers may not exceed

a given limit, and the weight need to be balanced. Moreover, torsions should be

limited, making it illegal to e.g. only load containers at the same front and end of the

vessel. Refrigerated containers (reefers) need to be attached to an electric plug. Only

a limited number of plugs are available, and these plugs are at specific positions.

A good stowage plan should make sure that it is not necessary to rearrange con-

tainers at each port call. All containers for the given port should be directly accessible

when arriving to the port, and there should be sufficient free capacity for loading new

containers. If several cranes are available in a port, it is necessary to ensure that all

cranes can operate at the same time without blocking for each other.

Pacino [28] presents a MIP model for the master problem. The model is based on

Pacino et al. [29, 30]. The model considers both 20’ and 40’ containers, assuming

that two 20’ containers can fit in the slot of a 40’ container provided that the middle

is properly supported. Four types of containers are considered: light, heavy, light

reefer, and heavy reefer. Decision variables are introduced for each slot, indicating

how many of each container type will be loaded in the slot.

Fig. 4 The arrangement of bays in a small container vessel, and stacking heights. The arrows
indicate forces. Picture: Pacino [28]
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The MIP model has a large number of constraints: First of all, a load list and cargo

estimates are used to calculate the number of containers of each type that needs to be

stowed. Moreover, every slot has a capacity of dry containers and reefers. An overall

weight limit given by the capacity of the vessel is also imposed. When calculating

the weight limit, average values for light and heavy containers are used to ease the

calculations.

Trim, draft, buoyancy and stability is calculated as a function of displacement and

center of gravity of the vessel.

Finally, a number of penalties associated with a given loading are calculated.

These include hatch-overstowage, overstowage in slots, time needed for loading, and

excess of reefer containers. The objective of the model minimizes a weighted sum

of the penalties.

Pacino [28] show that the master planning problem is NP-hard. Computational

results are reported for instances with vessel capacity up to around 10,000 TEU,

visiting up to 12 ports involving more than 25,000 lifts (crane moves of a container).

Several of these instances can be solved within 5 min up to a 5 % gap, using a MIP-

solver.

6.1 Mathematical Model

In the slot planning phase, the master plan is refined by assigning the containers to

specific slots on board the vessel [31]. This problem involves handling of a number

of stacking rules, as well as constraints on stack heights and stack weight. Since

several of the containers are already stowed on board the vessel the objective is to

arrange containers with the same destination port in the same stack, free as many

stacks as possible, minimize overstowage, and minimize the number of non-reefer

containers assigned to reefer slots. Due to the large number of logical constraints in

this problem [19] proposed a logical model using the following notation. S is the

set of stacks, Ts is the set of tiers for stack s, P represents the aft (p = 1) and fore

(p = 2) of a cell, C is the set of containers to stow in the location and C P
⊂ C is

the subset of containers in the release, i.e. the set of containers that are already on-

board the vessel. xstp ∈ C ∪ {⟂} is a decision variable indicating the location of a

container c ∈ C or the empty assignment ⟂. A40
stp is a binary variable indicating if the

cell in stack s, tier t, and position p can hold a 40’ foot container and similarly A20
stp

is one if a slot can hold a 20’ container. AR
stp is a binary indicator for the position of

reefer plugs. Ws and Hs is the maximum weight and height of stack s. The attribute

functions use w(c) and h(c) for the weight and height of a container. r(c) is true iff

the container is a reefer, ⟂ (c) is true iff c =⟂, f (c) is true iff the container is 40’, and

t(c) is true iff it is a 20’ container. Then the logical model is:



334 B.D. Brouer et al.

|{xstp = c|s ∈ S , t ∈ Ts, p ∈ P}| = 1 c ∈ C (22)

xsctcpc = c c ∈ C P
(23)

¬f (xst1) ∧ (f (xst2) ⟹ ⟂ (xst1)) s ∈ S , t ∈ Ts (24)

t(xstp) ⟹ A20
stp s ∈ S , t ∈ Ts, p ∈ P (25)

f (xst1) ⟹ A40
st s ∈ S , t ∈ Ts (26)

∑

t∈Ts

(w(xst1) + w(xst2)) ≤ Ws s ∈ S (27)

∑

t∈Ts

max(h(xst1), h(xst2)) ≤ Hs s ∈ S (28)

¬ ⟂ (xstp) ⟹ (t(xs(t−1)1) ∧ t(xs(t−1)2)) ∨ f (xs(t−1)1) s ∈ S , t ∈ Ts∖{1}, p ∈ P

(29)

f (xst1) ⟹ ⟂ t(xs(t+1)p) s∈ S , t∈ Ts∖{NT
s }, p ∈ P

(30)

r(xstp) ∧ t(xstp) ⟹ AR
stp s ∈ S , t ∈ Ts, p ∈ P (31)

r(xst1) ∧ f (xst1) ⟹ AR
st1 ∨ AR

st2 s ∈ S , t ∈ Ts (32)

Constraints (22)–(23) ensure that each container is assigned to exactly one slot.

Constraint (24) ensures that a 40’ container occupies both the aft and fore position

of a cell. The assignments need to respect cell capacity (25)–(26), stack height and

stack weight limits (27)–(28). Two 20’ containers can be stowed in a 40’ slot, if

properly supported from below (29). This means that 40’ container can be stacked

on top of two 20’ containers, but not the other way around (30). Reefer containers

need to be assigned to slots with a power plug (31)–(32).

In order to minimize the objective function [19] propose to use Constraint-Based

Local Search. The framework combines local search algorithms with constraint

programming. The constraint satisfaction part of the problem is transformed to an

optimization problem where the objective is to minimize constraint violation. A hill-

climbing method is used to optimize the slot planning. The neighborhood in the

search consists of swapping containers between a pair of cells.

Pacino [28] report computational results for 133 real-life instances, showing that

the local search algorithm actually finds the optimal solution in 86 % of the cases.

The running times are below 1 second.

7 Bunker Purchasing

In a liner shipping network bunker fuel constitutes a very large part of the variable

operating cost for the vessels. Also, the inventory holding costs of the bunker on

board may constitute a significant expense to the liner shipping company.
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Bunker prices are fluctuating and generally correlated with the crude oil price,

but there are significant price differences between ports. This creates the need for

frequent (daily) re-optimization of the bunker plan for a vessel, to ensure the lowest

bunker costs.

Bunker can be purchased on the spot market when arriving to a port, but normally

it is purchased some weeks ahead of arrival. Long-term contracts between a liner

shipping company and a port can result in reduced bunkering costs by committing

the company to purchase a given amount of bunker. Bunkering contracts may cover

several vessels sailing on different services, making the planning quite complex.

The bunker purchasing problem is to satisfy the vessels consumption by purchas-

ing bunkers at the minimum overall cost, while considering reserve requirements,

and other operational constraints. Bunker purchasing problems involve big data.

Real-life instances may involve more than 500 vessels, 40,000 port calls, and 750

contracts.

For a vessel sailing on a given port to port voyage at a given speed, the bunker

consumption can be fairly accurately predicted. This gives an advantage in bunker

purchasing, when a vessel has a stable schedule known for some months ahead. The

regularity in the vessel schedules in liner shipping allows for detailed planning of a

single vessel.

Besbes and Savin [9] consider different re-fueling policies for liner vessels and

present some interesting considerations on the modeling of stochastic bunker prices

using Markov processes. This is used to show that the bunkering problem in liner

shipping can be seen as a stochastic capacitated inventory management problem.

Capacity is the only considered operational constraint. More recently [43] examined

re-fueling under a worst-case bunker consumption scenario.

The work of [34] considers multiple tanks in the vessel and stochasticity of both

prices and consumption, as well as a range of operational constraints. [44] does not

consider stochastic elements nor tanks, but has vessel speed as a variable of the

model. The work of [25] minimizes bunker costs as well as startup costs and inven-

tory costs for a single liner shipping vessel. This is done by choosing bunker ports

and bunker volumes but also having vessel round trip speed (and thus the number of

vessels on the service) as a variable of the model.

In [37] a model is developed which considers the uncertainty of bunker prices and

bunker consumption, modeling their uncertainty by markov processes in a scenario

tree. The work can be seen as an extension of [44], as it considers vessel speed as a

variable within the same time window bounds. Capacity and fixed bunkering costs

is considered, as is the holding / tied capital cost of the bunkers.

The studies described above do not consider bunker contracts, and all model the

bunker purchasing for a single vessel.
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7.1 Bunker Purchasing with Contracts

Plum et al. [32] presented a decomposition algorithm for the Bunker Purchasing

with Contracts Problem, BPCP, and showed that the model is able to solve even very

large real-life instances. The model is based on writing up all bunkering patterns, and

hence may be of exponential size. Let I be the set of ports visited on an itinerary, B be

the set of bunker types, and V be the set of vessels. A contract c ∈ C has a minimal

q
c

and maximal qc quantity that needs to be purchased. A contract c will give rise to

a number of purchase options m ∈ M, i.e. discrete events where a specific vessel v
calls a port within the time interval of a contract c, allowing it to purchase bunker at

the specific price pm. Each time a purchase is done at port i a startup cost sci is paid.

Let Rv be the set of all feasible bunkering patterns for a vessel v. A bunkering

pattern is feasible if a sufficient amount of bunker is available for each itinerary,

including reserves. Bunker is available in various grades, and it is allowed to sub-

stitute a lower grade with a higher grade. In some areas, only low-sulphur bunker

may be used, and this needs to be respected by the bunkering plan. Moreover ini-

tial and terminal criteria for bunker volumes must be met. Finding a legal bunkering

pattern can be formulated as a MIP model [32] and solved by commercial solvers.

Each pattern r ∈ Rv is denoted as a set of bunkerings.

Let ur =
∑

m∈M(pmlm) +
∑

i∈I
∑

v∈V
∑

b∈B(𝛿i,bsci) be the cost for pattern r ∈ Rv.

In this expression, lm is the purchase of bunker for each purchase option m. and pm
is the price of option m. The binary variable 𝛿i,b is set to one iff a purchase of bunker

type b is made at port call i. Let 𝜆r be a binary variable, set to 1 iff the bunkering

pattern r is used. Let or,c be the quantity purchased of contract c by pattern r. The

BPCP can then be formulated as

min

∑

v∈V

∑

r∈Rv

𝜆rur +
∑

c∈C
(scw + scw) (33)

s.t. q
c
− sc ≤

∑

v∈V

∑

r∈Rv

𝜆ror,c ≤ qc + sc c ∈ C (34)

∑

r∈Rv

𝜆r = 1 v ∈ V (35)

𝜆r ∈ {0, 1} r ∈ Rv (36)

The objective minimizes the costs of purchased bunker, startup costs and slack

costs. The parameters w and w denote a penalty for violating the minimal q
c

and

maximal qc quantity imposed by contract c. Constraints (34) ensures that all contracts

are fulfilled. Convexity constraints (35) ensure that exactly one bunker pattern is

chosen for each vessel.
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Due to the large number of columns in the model [32] proposed to solve the

LP relaxed model by Column Generation. Using the generated columns from the

LP-solution, the resulting problem is solved to integer optimality using a MIP solver,

leading to a heuristic solution for the original problem.

Initially all dual variables are set to zero, a subproblem is constructed for each

vessel and solved as a MIP problem. The first master problem is then constructed

with one solution for each vessel as columns. This master is solved and the first

values are found. The subproblems are resolved for all vessels (only the objective

coefficients for the contracts needs updating) and new columns are generated for the

master. This continues until no negative reduced cost columns can be generated, and

the LP optimal solution is achieved.

The subproblems do not need to be solved to optimality since any column with

negative reduced cost will ensure progress of the algorithm. Therefore the solver is

allowed to return solutions to the subproblem having a considerable optimality gaps.

As the algorithm progresses, the allowable subproblem gap is reduced.

A simple form of dual stabilization has been used in the implementation by [32]

to speed up convergence. The Box-step method imposes a box around the dual vari-

ables, which are limited from changing more than 𝜋max per iteration. This has been

motivated by the dual variables only taking on values {−w,w, 0} in the first iteration,

these then stabilize at smaller numerical values in subsequent iterations.

The model is able to solve even very large real-life instances involving more than

500 vessels, 40,000 port calls, and 750 contracts. First, column generation is used to

solve the linearized model, and then a MIP solver is used to find an integer solution

only using the generated columns. This results in a small gap in the optimal solution

compared to if all columns were known. However, computational results show that

the gap is never more than around 0.5 % even for the largest instances. In practice

the resulting gap of the algorithm, can be much smaller since the found solutions are

benchmarked against a lower bound and not against the optimal solution.

An interesting side product of the model is the dual variables 𝜋c and 𝜋c for the

upper and lower contract constraints (34). These values can be used to evaluate the

gain of a given contract, which may be valuable information when (re)negotiating

contracts.

Since bunker prices are stochastic of nature, future research should be focused on

modeling the price fluctuation. However, the models tend to become quite complex

and difficult to solve as observed by [34], while only adding small extra improve-

ments to the results. So a trade-off must be done between model complexity and

gain in bunker costs. The work of [37] shows some promising developments in this

important direction.

Also, instruments from finance (bunker future or forward contracts, fixed price

bunker fuel swaps) could be used to control risk in bunker purchasing, and to increase

the margins on oil trade. Bunker purchasing for liner ships constitutes such a big

market that it deserves a professional trading approach.
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8 The Vessel Schedule Recovery Problem

It is estimated that approximately 70−80% of vessel round trips experience delays in

at least one port. The common causes are bad weather, strikes in ports, congestions

in passageways and ports, and mechanical failures.

Currently when a disruption occur, the operator at the shipping companies man-

ually decides what action to take. For a single delayed vessel a simple approach

could be to speed up. However, the consumption of bunker fuel is close to a cubic

function of speed and vessels’ speeds are limited between a lower and upper limit.

So even though an expensive speed increase strategy is chosen, a vessel can arrive

late for connections, propagating delays to other parts of the network. Having more

than 10,000 containers on board a large vessel, calculating the overall consequences

of re-routing/delaying these containers demands algorithms for big data. Disruption

management is well studied within the airline industry (see [4] or [16] for a review)

and the network design of airlines resemble liner shipping networks inspiring the

few works on disruption management found for liner shipping. Mulder et al. [27]

presents a markov decision model to determine the optimal recovery policy. The

core idea is to reallocate buffer time within a schedule in order to recover from dis-

ruptions. Brouer et al. [13] present the Vessel Schedule Recovery Problem (VSRP)

handling a disruption in a liner shipping network by omitting port calls, swapping

port calls or speeding up vessels in a predefined disruption scenario. The model and

method will be presented in the following section.

8.1 Definitions

A given disruption scenario can mathematically be described by a set of vessels V ,

a set of ports P, and a time horizon consisting of discrete time slots t ∈ T . The time

slots are discretized on port basis as terminal crews handling the cargo operate in

shifts, which are paid for in full, even if arriving in the middle of a shift. Hence we

only allow vessels arriving at the beginning of shifts. Reducing the graph to timeslots

based on these shifts, also has the advantage of reducing the graph size, although this

is a minor simplification of the problem. For each vessel v ∈ V , the current location

and a planned schedule consisting of an ordered set of port calls Hv ⊆ P are known

within the recovery horizon, a port call A can precede a port call B, A < B in Hv. A

set of possible sailings, i.e. directed edges, Lh are said to cover a port call h ∈ Hv.

Each Lh represent a sailing with a different speed.

The recovery horizon, T , is an input to the model given by the user, based on

the disruption in question. Inter continental services will often recover by speeding

during ocean crossing, making the arrival at first port after an ocean crossing a good

horizon, severe disruptions might require two ocean crossings. Feeders recovering

at arrival to their hub port call would save many missed transshipments giving an
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obvious horizon. In combination with a limited geographical dimension this ensures

that the disruption does not spread to the entire network.

The disruption scenario includes a set of container groups C with planned trans-

portation scenarios on the schedules of V . A feasible solution to an instance of the

VSRP is to find a sailing for each v ∈ V starting at the current position of v and

ending on the planned schedule no later than the time of the recovery horizon. The

solution must respect the minimum and maximum speed of the vessel and the con-

straints defined regarding ports allowed for omission or port call swaps. The opti-

mal solution is the feasible solution of minimum cost, when considering the cost of

sailing in terms of bunker and port fees along with a strategic penalty on container

groups not delivered “on-time” or misconnecting altogether.

8.2 Mathematical Model

Brouer et al. [13] use a time space graph as the underlying network, but reformulate

the model to address the set of available recovery techniques, which are applicable

to the VSRP.

The binary variables xe for each edge e ∈ Es are set to 1 iff the edge is sailed in the

solution. Binary variables zh for each port call h ∈ Hv, v ∈ V are set to 1 iff call h is

omitted. For each container group cwe define binary variables oc ∈ {0, 1} to indicate

whether the container group is delayed or not and yc to account for container groups

misconnecting. The parameter Oc
e ∈ {0, 1} is 1 iff container group c ∈ C is delayed

when arriving by edge e ∈ LTc . Bc ∈ Hv is defined as the origin port for a container

group c ∈ C and the port call where vessel v picks up the container group. Similarly,

we define Tc ∈ Hw as the destination port for container group c ∈ C and the port

call where vesselw delivers the container group. Intermediate planned transshipment

points for each container group c ∈ C are defined by the ordered set Ic = (I1c ,… , Imc ).
Here Iic = (hiv, h

i
w) ∈ (Hv,Hw) is a pair of calls for different vessels (v,w ∈ V|v ≠

w) constituting a transshipment. Each container group c has mc
transshipments. Me

c
is the set of all non-connecting edges of e ∈ Lh that result in miss-connection of

container group c ∈ C. Mc ∈ ℤ+ is an upper bound on the number of transshipments

for container group c ∈ C.

Let the demand of vessels v in a node n be given by Snv = −1 if n = nvs , S
n
v = 1 if

n = nvt , while Snv = 0 for all other nodes. Then we get the following model:

min

∑

v∈V

∑

h∈Hv

∑

e∈Lh

cve xe +
∑

c∈C

(
cmc yc + cdcoc

)
(37)

s.t.

∑

e∈Lh

xe + zh = 1 v ∈ V , h ∈ Hv (38)

∑

e∈n−
xe −

∑

e∈n+
xe = Snv v ∈ V , n ∈ Nv (39)
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yc ≤ oc c ∈ C (40)
∑

e∈LTc

Oc
e xe ≤ oc c ∈ C (41)

zh ≤ yc c ∈ C, h ∈ Bc ∪ Ic ∪ Tc (42)

xe +
∑

𝜆∈Me
c

x
𝜆

≤ 1 + yc c ∈ C, e ∈ {Lh|h ∈ Bc ∪ Ic ∪ Tc} (43)

xe ∈ {0, 1}, e ∈ Es yc, oc ∈ ℝ+, c ∈ C zh ∈ ℝ+, v ∈ V , h ∈ Hv (44)

The objective function (37) minimizes the cost of operating vessels at the given

speeds, the port calls performed along with the penalties incurred from delaying or

misconnecting cargo.

Constraints (38) are set-partitioning constraints ensuring that each scheduled port

call for each vessel is either called by some sailing or omitted. The next constraints

(39) are flow-conservation constraints. Combined with the binary domain of vari-

ables xe and zh they define feasible vessel flows through the time-space network. A

misconnection is by definition also a delay of a container group and hence the mis-

connection penalty is added to the delay penalty, as formulated in (40). Constraints

(41) ensure that oc takes the value 1 iff container group c is delayed when arriving via

the sailing represented by edge e ∈ Es. Constraints (42) ensure that if a port call is

omitted, which had a planned (un)load of container group c ∈ C, the container group

is misconnected. Constraints (43) are coherence constraints ensuring the detection

of container groups’ miss-connections due to late arrivals in transshipment ports. On

the left-hand side the decision variable corresponding to a given sailing, xe, is added

to the sum of all decision variables corresponding to having onward sailing resulting

in miss-connections, 𝜆 ∈ Me
c .

In [13] the model has been tested on a number of real-life cases, including a

delayed vessel, a port closure, a berth prioritization, and expected congestion. An

analysis of the four real life cases, show that a disruption allowing to omit a port call

or swap port calls may ensure timely delivery of cargo without having to increase

speed and hence, a decision support tool based on the VSRP may aid in decreasing

the number of delays in a liner shipping network, while maintaining a slow steaming

policy. To operationalize this the rerouting of the actual flow and adjustment of the

actual schedule must be incorporated in a real time system to enable here-and-now

decisions. This is especially challenging for larger disruption scenarios than the ones

described as the size of the problem grows exponentially.

9 Conclusion and Future Challenges

Maritime logistics companies operate in an environment which requires them to

become more and more analytical. In general there are several insights to be gained

from the data companies has available. Especially when companies start to use

the forward looking analytical techniques rather than only using data for backward
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looking analysis (descriptive and diagnostic models) companies can unlock signif-

icant value from the collected data as shown in this chapter. Forward looking tech-

niques (predictive models) can provide input for the decision making process where

the best possible action is sought (prescriptive models). A pressing challenge in big

data analysis today lies in the integration of predictive and prescriptive methods

which combined can serve as valuable decision support tools. This chapter intro-

duced a selection of large scale planning problems within maritime logistics with a

primary focus on challenges found in the liner shipping industry. Focus has been on

addressing strategic, tactical and operational problems by modern large scale opti-

mization methods. However optimization within maritime logistics is complicated

by the uncertainty and difficult accessibility of data. Most demands are only esti-

mates, and for historic reasons even contracted cargo can be unreliable since there

are no penalties associated with no-show cargo. To limit these uncertainties predic-

tive machine learning techniques is an important tool. In particular, seasonal vari-

ations and similar trends can be predicted quite well and decision support systems

should take such uncertainties into account. This can be done either by develop-

ing models where it is possible to re-optimize the problem quickly in order to meet

new goals and use them interactively for decision support and for evaluating what-

if scenarios suggested by a planner as there are still many decisions that will not

be data-driven. Quantitative data can not always predict the future well in situa-

tions of e.g. one-time events and generally extrapolation is hard. But in situations

where we operate in an environment where data can be interpolated mathematical

models may serve as great decision support tools by integrating the predictive mod-

els directly in the prescriptive model. With the large volume of data generated by

carriers, increased quality of forecasts, and algorithmic improvements it may also

be beneficial and even tractable to include the uncertainties directly in the decision

models. A relatively new way of handling data uncertainty is by introducing uncer-

tainty sets in the definition of the data used for solving large-scale LP’s. The stan-

dard LP found as a subproblem in many of the described problems can generically

be stated as minx{cTx ∶ Ax ≤ b}, where A, b, and c contain the data of the prob-

lem at hand. As described previously in this chapter most of the data is associated

with uncertainties but in Robust Optimization this can be handled by replacing the

original LP with an uncertain LP {minx{cTx ∶ Ax ≤ b} ∶ (A, b, c) ∈ U }. The best

robust solution to the problem can be found by solving the Robust Counterpart of

the problem, which is an semi-infinite LPminx,t{t ∶ cTx ≤ t,Ax ≤ b∀(A, b, c) ∈ U }.

Clearly this LP is larger than the original LP, but with good estimates of the uncer-

tainty sets the size can be manageable, further details can be found in [6]. As the

accuracy of predictive models increase it will be possible to come up with good esti-

mates for the uncertainty sets and thereby actually making it feasible to solve robust

versions of the planning problems. In the MIP case the problems usually become

much harder and often intractable with a few exceptions. An alternative approach to

Robust Optimization is to handle the uncertainties via probability distributions on

the data and use Stochastic Programming and solve the chance constrained program

minx,t{t ∶ Prob(A,b,c)∼P{cTx ≤ t,Ax ≤ b} ≥ 1 − 𝜖} or a two-stage stochastic program

based on a set of scenarios. Again, machine learning algorithms can provide good
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estimates of the actual underlying distributions or expected scenarios and it may

be possible to obtain results that are less conservative than the worst-case results

provided by Robust Optimization, but the process can be more computationally

extensive.
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