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Abstract Large scale monitoring systems can provide information to decision
makers. As the available measurement data grows, the need for available and
reliable interpretation also grows. To this, as decision makers require the timely
arrival of information, the need for high performance interpretation of measurement
data also grows. Big Data optimization techniques can enable designers and
engineers to realize large scale monitoring systems in real life, by allowing these
systems to comply to real world constrains in the area of performance, reliability
and reliability. Using several examples of real world monitoring systems this
chapter discusses different approaches in optimization: data, analysis, system
architecture and goal oriented optimization.

Keywords Measurement -« Decision -+ Monitoring - Constraint-based
optimization

1 Introduction

Monitoring systems enable people to respond adequately to changes in their
environment. Big Data optimization techniques can play an important role in
realization of large scale monitoring systems. This chapter describes the relation-
ship between Big Data optimization techniques and real world monitoring in terms
of optimization approaches that enable monitoring systems to satisfy real world
deployment constraints.
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This chapter starts with a high level overview of the concept of monitoring in
Sect. 2. After that the relationship between large scale monitoring systems and Big
Data is described in Sect. 3. This is done using constraints on monitoring systems
with respect to performance, availability and reliability, which are critical success
factors for monitoring systems in general and also have a strong relationship with
Big Data. Then, in Sect. 4, several solution approaches from the field of Big Data
optimization are presented for designers and engineers that need to stay within
constraints as set forward by the context of the deployment of a monitoring system.
Also, the impact on several other constraints is taken into account. This chapter
ends with Sect. 5 presenting conclusions.

2  Monitoring

A thorough understanding of the relationship between Big Data optimization and
monitoring, starts with a global understanding of the concept of monitoring. This
understanding provides a means to comprehend the Big Data related constraints put
upon monitoring by the real world, which will be described in the next section. In
this section an understanding of monitoring systems will be provided by describing
a real world example.

2.1 General Definition

The word ‘monitor’ is supposed to be derived from the Latin monitor (“warner”),
related to the Latin verb monere (“to warn, admonish, remind”). A monitoring
system could therefore be defined as a collection of components that interact in
order to provide people and/or other systems with a warning with respect to the
state of another object or system. A (very) small scale example of a monitoring
system is a smoke detector: it continuously measures the visibility of the sur-
rounding air. Once a threshold level with respect to that visibility has been crossed,
an alarm is sounded. In this chapter, the definition of a monitoring system is
extended to systems that are not primarily targeted at warning, but possibly also at
learning. This is because modern day monitoring systems can and need to adapt to
changes in the environment they monitor. This means that modern monitoring
systems can—for example—also be used to find the relationship between behavior
of different objects and/or parameters in the system they observe. So, in turn the
definition of a monitoring system in this chapter becomes:

“a collection of components that interact in order to provide people and/or other systems
with information with respect to the state of a system of other objects, based on (real-time)
measurement data on that system (of objects).”
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In this chapter the scope is limited to large scale monitoring systems. In the
remainder of this chapter the abbreviation LSMS is used. These systems collect vast
amounts of (measurement) data—using sensors—on the real world and process it to
information, which could then be used to decide upon or to learn from. As will
become clear in the next paragraphs, LSMSs can be used for many different sys-
tems. For example, a dike LSMS can be used to monitor dikes for failure (which
would result in flooding). Another example is an LSMS that monitors the health and
wellbeing of hundreds of thousands of cows throughout their lifetime.

In order to structure the material in this chapter, a simple but effective moni-
toring framework is used to position functions of a monitoring system. This
framework—depicted in Fig. 1—enables describing the relationship with Big Data
optimization later on in this chapter. The basic idea of this framework is that in all
monitoring systems three generic steps can be distinguished. Using the relatively
simple example of a radar the following three steps can be described:

1. Measurement: mapping a certain aspect of reality to a unit of measurement of
a physical magnitude (or quantity) using a sensor. For example a radar that
sends out radio waves and receives reflections which tells something about
distances from the object to the radar antenna.

2. Interpretation: interpretation of sensor data into information—using expert
models—about an object or system to be monitored. For example interpretation
of radar data into information about an object that is flying towards a radar.

3. Decision to inform: applying some kind of rule set to determine if a human or
other system should be informed (e.g. warned). For example, based on the speed
of an object flying towards the radar, a warning could be produced if an object is
coming into fast or too close.

Note that there are other generic and more elaborate descriptions of monitoring
(& control) systems, like the famous Observe, Orient, Decide, and Act (often
abbreviated as OODA) loop [1] or the ‘Knowledge Discovery’ as described in [2].
These shall not be discussed in this chapter, since this simple decomposition in
Measurement, Interpretation and Decision (MID) is only needed as a means to
position monitoring constraints from a Big Data optimization perspective later on.
Also, control systems are beyond the scope of this chapter.

Interpretation m

Measurement

5ensor

Observed
System

Fig. 1 Measurement, interpretation, decision framework
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This concludes the very high level description of monitoring in general. With
this in mind, an example of an LSMS is presented in the next section. This example
will be used to describe specific Big Data related aspects in the section on Big Data
related constraints.

2.2 Dike Monitoring Example

In the Netherlands dikes prevent more than half of the population of 17 million
people from losing their houses, losing their livelihood and ultimately drowning.
Construction and maintenance of dikes is relatively expensive, because other than
safety, dikes provide no direct financial output, like a factory that produces products
that can be sold. Note that the Netherlands there is more than 3500 km of primary
dikes and more than 10,000 km of secondary dikes. From both a safety as well as
economic point of view, it is valuable to both know how and when a dike could fail.
From a socio-economic point of view dikes should be safe enough, but too much
over dimensioning is a waste of money. Since this could be spent elsewhere, for
example in healthcare where lives are also at stake.

Several years ago, it seemed appropriate to a consortium of water boards (i.e.
local/regional governments targeted at water management), research organizations
and industrial partners to start working on an LSMS for dikes [3, 4]. Advances in
computer science, geotechnical sciences and the decline of costs of computation,
communication and storage hardware, made it seem as if there could be a business
case for dike monitoring. In other words the expected costs of the LSMS seemed to
be less than the avoided costs in case of inefficient dike maintenance (too little or

Fig. 2 Dike being monitored with an large scale monitoring system
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too much). The result of the collaboration was the creation of a test facility for the
monitoring of dikes (Fig. 2). Several experimental dikes have been constructed
there, which contained many different types of sensors [3].

Measurement. A type of sensor used that produced large amounts of data is
fiberglass cloth, which can be used to measure the shape of a dike, by wrapping it
onto the dike. When the dike changes shape, the fiberglass cloth bends resulting in
different measurement data. Another type of sensor is the ShapeAccelArray/Field
(SAAF), a string of sensors that provides (relative) position, acceleration and ori-
entation information. Like fiberglass sensors, a SAAF can provide a vast amount of
data in a short amount of time. For example a 3 m SAAF can contain 10 mea-
surement points, that each can provide 9 measurement values. Providing 10 * 9
values in total every 5 s. A final example for determining the shape of a dike is to
use remote sensing such as satellite data [5].

Interpretation. The end-users of the dike LSMS are interested in the stability of
the dike: what is the chance that it will fail. There is no physical instrument that
measures this abstract ‘unit of measurement’, it has to be calculated according to a
computational model that all LSMS involved parties agree upon. This model must
take into account significantly contributing to the dike stability. For example the
geotechnical make-up of the dike and the (expected) forces acting upon the dike,
like water levels on both sides. This can be done without using sensor data and by
assuming possible (extreme) parameter values for the models involved and calcu-
late the likelihood of failure. However, while progress has been made in the last
decennia with theoretical models for dike behavior, uncertainty remained. For this
test facility dike stability models have therefor been adapted to use measurements
from sensors inside or targeted at the dike. During the experiments at the facility,
sensor developers could find out if the data from their (new) sensors contributed to
reducing uncertainty about dike failure. Geotechnical model builders could find out
if their models were using data from sensor efficiently. Hence the name of the test
facility, which was ‘IJkdijk’, as ‘ijjk’ means ‘to calibrate’ in Dutch.

Decision. A dike LSMS is an excellent example of the need for a monitoring
system that produces information on which people can rely. When an LSMS warns
that a dike will fail within the next two days, people are almost forced to start
evacuating if there is no possibility to strength the dike anymore. If it turns out the
LSMS was wrong (i.e. the dike would not have failed), the impact of this false
alarm is huge from a socio-economic point of view. When an LSMS does not warn,
while the dike is about to fail, resulting in a flood nobody was warned about, the
socio-economic impact is also very huge. So in short: if society wants to trust
LSMSs for dikes there must be no error or failure in the chain of components that
transform sensor data into decision information.

As shown by the dike LSMS, there can be strong requirements to an LSMS
system that act as heavy constraints, which are also related to Big Data optimiza-
tion, as this can influence the extent to which an LSMS can meet the requirements.
These will be covered in the next section.
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3 Big Data Related Constraints to Monitoring

In order to be economically sustainably deployed in the real world there are certain
requirements a LSMS must meet. Designers and engineers of an LSMS that have to
come up with a technical solution, consider these requirements as constraints to
their solution. An obvious constraint is that the financial value of the information
produced by the LSMS should not exceed the costs of the LSMS itself. This
includes costs of hardware, energy, labor, etc. In this chapter the focus is on three
types of constraints (performance, availability and reliability) that are both strongly
related to the added value of a monitoring system to society, as well as Big Data
optimization. It could be argued that there are other such constraints, but for reasons
of scope and size of this chapter it has been decided not to include those.

In order to describe the relationship between Big Data and LSMSs from the
viewpoint of constraints in an efficient way, this relationship will first be described
from the viewpoint of data collection and interpretation. After describing the
relationship from constraints, solution approaches for keeping within the constraints
will be presented in the next section.

3.1 The Big Data in Monitoring

The relevance of Big Data optimization to LSMS depends—to a large extent—on
the way data is collected and interpreted. In this subsection this relationship will be
explored by looking at different aspects of data collection and interpretation in
LSMSs.

3.1.1 Abstraction Level of Interpreted Information

In the dike LSMS example the LSMS has to provide information on ‘dike stability’.
This is an abstract concept and cannot directly be measured and has to be inter-
preted. The value of this interpreted ‘unit of measurement’ can only be produced by
using a computational model that computes it, based on sensor measurements and a
model of the dike. This can result in much computational effort, even if there are
relatively few sensors installed.

The higher the abstraction level of a interpreted ‘unit of measurement’ is the
more (sub)models tend to be required. This is illustrated by an example of an
LSMSs for underground pipelines illustrates this [6]. This LSMS determines the
chance of failure of a segment of underground pipeline and is depicted in Fig. 3.
The interpretation uses based on:

1. Actual soil movements, measured by underground position sensors.
2. Expected soil movements, based on soil behavior models, where (expected)
external forces onto the soil are also taken into account.
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Fig. 3 Example of interpretation using model with a high level of abstraction

3. Estimated underground geometry of pipeline structures, based on construction
and maintenance plans.

4. Estimated mechanical properties of pipeline segments and structures, based on
physics and analysis of similar pipeline segments elsewhere.

The LSMS uses to the actual ground movements and the assumed model of the
underground to create a better estimate of the actual underground. It then computes
forces on the pipe structure and uses those in combination with estimated
mechanical properties to determine an estimate of the structural reliability. Note that
it does also take into account possible variations of parameters involved, due to the
uncertainty.

Each of these different aspects (e.g. soil movement, structural behavior of pipe
geometry based on ground forces) requires a model of its own. Next to sensor data,
it also requires data on the ground buildup and geometries of pipelines. Because the
ground buildup tends to vary, just as the pipeline geometries, estimating the chance
of failure for all segments of—for example a country like—the Netherlands results
in an explosion of computations to be carried out on a large dataset.
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3.1.2 Temporal Issues

The way data has to be collected and interpreted (also) depends on what LSMS
(end-)users expect the LSMS to do, from a temporal point of view:

1. assessment of the current state of the system under observation
2. an estimation of possible future states of that system

As was shown above in the case of the LSMS for underground pipelines,
assessing the current state of a system under observation can already require many
computations because of the need to evaluate different models involved. When
information on possible future states is also required, there is need for even more
computation and possibly extra storage. This is due to the fact that the interpretation
part of the monitoring system needs a model of the system under observation, that
allows to predict or estimate future states of the system. Roughly said, two types of
models can be distinguished.

Descriptive model: the inner workings of a system are understood to a certain
extent, and based on the application of the model to the measurement data it can be
predicted how the system will behave next (within a certain band of uncertainty).
For example: if you measure the time, you can use models of the earth’s rotation
around the sun to determine your position in space, relative to the sun.

Phenomenological model: the inner workings of a system are not known, but
based on trends and/or other relationships between data segments in past observed
measurements, it can be predicted—within a (known) band of uncertainty—how
the system under observation will behave in the nearby future. Such a model can be
built on observing the system and looking at the relationship between different
measurement values throughout time. See [7] for an example of a monitoring
system that observes (patterns in behavior) of elderly people.

The establishment of phenomenological prediction models requires learning or
‘knowledge discovery’, a process that is described in [2]. This can require analyzing
large amounts of historical sensor data. This is because—especially when little to
knowledge is available on the system to be monitored—many sensor data needs to
be taken into account, as well as long historical time series of sensor data. Also
these models tend to be intertwined during their development phase with humans.
During the learning phase, researchers and engineers will tend to look at different
parameters by adding more (or less) sensors, apply different ways of interpretation
(change algorithms), etc. In the case of dike LSMSs it turned out during research
that it is sometimes very difficult to create a descriptive model, since dikes some-
times are from medieval times and no construction schematics are present. Little is
known about the inner structure of these dikes, in this case the use of phe-
nomenological models might be needed to determine structural behavior in the
future, based on passed measurements.

While the establishment of a phenomenological model might require analysis of
large amounts of data, once it has been established and the behavior of an observed
system does no longer change, this is analysis is no longer needed. However, in
practice the issue remains how to be sure that the behavior of the system under
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observation does not change. Not surprisingly, (end-)users of an LSMS tend to
prefer to have a understanding of the systems for which they are responsible and
thus prefer a descriptive model. A phenomenological model can sometimes help to
deduce a descriptive model, by trying to build such a model that explains cause and
effect relationships found in measured sensor data during the establishment of a
phenomenological model. A detailed description of this kind of system modelling
and learning is beyond the scope of this chapter.

3.1.3 Growth of Available Data

Next to the abstraction level of information and temporal issues, there is another
Big Data aspect to monitoring, which is the growth of available data [8, 9]. Due to
the advances in microelectronics, sensors can produce more data in a faster way.
Data can be transported using more bandwidth and be stored in much larger
quantities. While processing power also has increased, the growth of data remains
an issue. Especially in the case of the establishment of phenomenological models—
as described above—it is, in the beginning, often unknown what data should be
measured and processed by the LSMS and what data is not relevant for producing
the desired information. This results in the acquirement of a large amount of data,
which all has to be processed.

Based on this general high level overview of several aspects of the relationship
between Big Data and monitoring, it is possible to look at the relationship from
three different constraint-based points of view.

3.2 Performance

The ability to act upon information (e.g. a warning) is key in the successful
deployment of a LSMS. In this chapter the speed at which an LSMS can produce
the desired information is defined as its performance. The amount of time between
the moment a warning is issued and the last point in time the warning can be acted
upon is defined in this chapter as the ‘time window’. The larger the time window,
the better the performance of an LSMS. For example, if it will take a year to carry
out maintenance, than the monitoring system will have to warn at least a year ahead
when it predicts failure ‘in about a year’.

The size of a time window can be influenced by several factors. The MID
decomposition is used to describe the relationship with Big Data from the perfor-
mance constraint point of view.

Measurement. The amount of time involved in measurement is roughly
determined by three things. First, the amount of time needed for measuring a
physical aspect of the real world. Secondly, the amount of time needed for trans-
porting the measurement to a location where interpretation of the data can take
place. And finally, the amount of time needed for storing the information at a
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location, so it can be accessed by a data processing component. The total time
involved largely depends on the amount of data measured and available bandwidth.

Note that the needed bandwidth and type of sensor are often closely intertwined.
This relationship between a (visual) sensor and transport bandwidth is clearly
shown by the example of a camera. Does it—for example—provide an HD movie
stream of 25 images per second or does it act as an hourly snapshot camera? Or
does the camera only send a new snapshot when something changes in the image?

Interpretation. The amount of time involved in interpretation roughly depends
on three things. First, the amount of time needed for retrieving data from storage for
processing. Then, the amount of time needed for processing data into information
using (a) model(s) and finally the amount of time needed for storing information
after processing. Note that if the data is processed in a streaming fashion instead of
batch wise, less time might be needed.

Decision. The amount of time needed for making a decision to inform/warn
(end-)users of an LSMS is roughly determined by two factors. First, the amount of
time it takes for a rule set to be applied on the produced information. The amount of
time it takes for a issued warning to reach the people or systems that can act on the
information. Simply stated: the more time is needed for each of these steps, the less
time remains for the warning time window.

3.3 Availability

Besides performance constraints, there are also availability constraints. A LSMS
that is not available and does not provide a warning when it is needed is rather
useless. It does not matter if the unavailability is due to expected monitoring
systems maintenance or due to unexpected other causes. Note that the level of
availability depends on the specific context of an LSMS. For example, if a system
under observation can quickly change its behavior, the LSMS obviously needs a
high level of availability, since else this change would be missed. However, in the
case of slow changing systems, temporal non availability is allowed, because the
time window (as described in the performance constraint viewpoint above) is rel-
atively large.

The availability of an LSMS can be influenced by several factors. The MID
decomposition is used to describe the relationship with Big Data from the avail-
ability constraint point of view.

Measurement. The availability of an LSMS with respect to measurement
depends on the availability of the sensors, transport and storage. Especially storage
is important from a Big Data point of view: this is where techniques for fast storage
and retrieval of data come into play, as will be shown in the solution approach
section later on.

Interpretation and Decision. The availability of the interpretation and decision
parts depends on the availability of storage and computational facilities. Designers
and engineers of an LSMS must take into account that these facilities can fail and be



Big Data Optimization Within Real World Monitoring Constraints 241

temporarily unavailable. This is where Big Data techniques can come into play with
respect to redundancy, as will be shown later on.

3.4 Reliability

Even if the performance and availability of an LSMS are within the constraints set
forward by the end-users in their context, an LSMS might still not be deployable
because of reliability constraints. As described in the dike LSMS example in the
monitoring section: not issuing a warning on structural dike failure is not accept-
able. Also, sending out false alarms is not acceptable as people will no longer
respond to alarms, even if this system is right at the time. In practice, reliability is
closely related to availability, because the temporarily unavailability of components
of a monitoring system can make the entire system less reliable.

The reliability of an LSMS can be influenced by several factors. The MID
decomposition is used to describe the relationship with Big Data from the reliability
constraint point of view.

Measurement. Reliability can be influenced by measurement errors, transport
and storage errors. This means that data might get corrupted somehow.

Interpretation and decision. The reliability of the information produced by the
LSMS directly relies on the data processing algorithms used. At the same time, the
reliability is also influenced by the reliability of the computational and storage
facilities (i.e. protection against corruption of data and information).

4 Solutions Within Constraints

In the previous sections monitoring systems have been generically described from a
Big Data optimization point of view. Specific Big Data related requirements have
been identified that have to be met in order for a monitoring system to be useful. In
this section different solution approaches for meeting these constraints will be
described.

For reasons of scope and size of this chapter, solution approaches concerning faster
and bigger hardware will not be described, even though they help in certain situations.
The focus will be on the data, algorithms and system architecture/design.

4.1 Approaches in Optimization

In the previous sections three types of constraints have been listed with respect to
Big Data (optimization). First, the maximum size of the warning time window.
Secondly, the availability of a monitoring system and finally the reliability of the
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warning itself. The relation with Big Data lies within the fact that the amount or
availability of data involved can cause constraint violation. Optimization techniques
can help avoid these violations.

In this section optimization techniques are categorized using several approaches
in design and implementation of monitoring systems:

1. Data oriented. Deal with the amount of data by somehow reducing the volume,
before it is processed by the data interpretation algorithms.

2. Analysis oriented. Enhance data interpretation algorithms, enabling them to
deal with large amounts of data.

3. System/architecture oriented. Instead of reducing the amount of data or
altering the data to information algorithms, the system as a whole is set up in
such a way it can deal with large(r) amounts of data and/or in less time.

Note that designers can also try to resort to a fourth approach:

4. Goal oriented. Loosen the constraints. Only possible if there is still a business
case for the system after loosening constraints.

Often, design and/or engineering solutions for keeping a monitoring system
within constraints, cannot be positioned on a specific axis of orientation. For
example, a solution might be data and algorithm oriented at the same time. In this
chapter however, the distinction is made in order to position different types of
solutions. Note that solution approaches will be described. Not the solutions
themselves, since they require more detailed explanation.

4.1.1 Data Oriented Optimization

In general the amount of data to be processed can prevent a LSMS from having a
small enough time window. A relatively simple optimization step is to reduce the
volume of the (monitoring) data, resulting in a reduction of time needed in all
process steps. In the case of the IJkdijk LSMS, it was learned that well maintained
dikes—not being in a critical structural health condition—‘change’ relatively slow.
A warning dike LSMS could therefor suffice with a sample rate of 5 min. Reduction
of data involved can be performed in a number of different ways. Since this book is
about Big Data optimization, increasing the speed of transport, retrieval and storage
is not covered.

Reducing the size of the data often results in a reduction of processing time,
since less data for each analysis step tends to take less time for analysis. An often
used approach to reduce data is aggregation. Instead of having a sample each
minute, 60 samples are aggregate—using an average—into a sample each hour.
Note that this may come at a price with respect to the reliability constraint: if it is
important that ‘sudden spikes’ in measurement data are to be analyzed too, using
averaging might result in a loss of spikes in the data set.
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Another way of reducing data for analysis is to convert data to another domain
that can be processed just as efficiently. For example cyclic signals in actual
measurements can sometimes be converted from the time domain into the fre-
quency domain using Fourier transformations. There are also techniques to convert
measurement data graphs automatically into a sequence of symbols. For example:
segmenting the graph into sections of horizontal (A), riser (B) and falling
(C) slopes, the graph can be converted into a sequence of A, B, C symbols. With
non-cyclic signals this can result in a heavy data reduction. Note that again, this
optimization technique can only be applied, if the LSMS as a whole stays within the
reliability constraint: users must still be able to rely on the LSMS. An example of
data reduction technique is called SAX and is described in [10].

A third data oriented optimization technique is to reorder the measurement data
in such a way, that the analysis takes less time. An example case is the design of a
cow LSMS in which the health and wellbeing of hundreds of thousands of cows is
monitored throughout their lifetime [11]. This LSMS provides information on dairy
production, which is needed by farmers to maximize the return on investment in
milk production. At farms weight data is collected device centric, as depicted in
Fig. 4. This means for example that there are a few scales (at each milking robot)
that determine weight and many cows. Every time a scale is tread upon, the weight
is digitally stored with a timestamp. The milking robot knows which cow (i.e. RFID
tag) was being milked (and weighed) at a certain point in time. By combining the
data from the milking robot with the scales, the weight of a cow at a certain point in
time can be deduced. The interpretation part of the cow LSMS is cow-centric. It
provides information per cow through time. By (also) storing weight data in a
cow-centric way, the algorithm for interpretation has to carry out far less data
retrieval, speeding up the analysis.

In general data oriented optimization techniques do not increase availability or
reliability. In fact, it might even decrease reliability because information is lost.
This is where another design and/or engineering degree of freedom comes into play:

optimize the analysis.
S T1,300Kg
T1, A, 300Kg T4,290Kg

A B C A T2, B, 270Kg
__,a_._. T3,310Kg
Scales Device centric storage Cow centric storage

Fig. 4 Device centric and object centric storage
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4.1.2 Analysis Oriented Optimization

During the analysis phase, data is converted into information using processing
algorithms. The type of algorithms determines the reliability of the information and
also the processing speed. So in order to meet time and reliability requirements, an
approach is to focus on the algorithm at hand. Roughly stated, there are two kinds
of analysis oriented approaches. The first approach is to optimize (or change) a
specific algorithm (run on a single computer). This can influence the size of the time
window or the level of reliability. A simple example of this approach—with respect
to time constraints—is sorting a long list of measurement data. When using a
‘bubblesort’ algorithm, it takes for more time in general than using a ‘quicksort’
algorithm. Optimizing and/or designing improved data interpretation algorithms is
very domain specific and outside the scope of this chapter.

Another well-known approach—with respect to the size of the time window—is
to ‘divide-and-conquer’: carry out calculations for an algorithm in parallel. This can
be done by creating a distributed algorithm or by separating data and run the same
algorithm in parallel. Much Big Data optimization techniques revolve around some
kind of ‘Map Reduce’ approach, where a larger problem is reduced into smaller one
that can be handled separately [8, 9, 12, 13]. As stated before, this chapter is not
about explaining these kind of solutions. They are multiple and require detailed
explaining on their own.

4.1.3 System Architecture Oriented Optimization

Data oriented optimization and analysis oriented optimization are targeted at sep-
arate parts of the MID steps. It is also possible to optimize the monitoring system as
a whole, across the ‘Measurement’ and ‘Interpretation’ part. In this section a
number of them are reviewed.

More performance by distributing interpretation

By bringing the analysis towards the collection of data, it is sometimes possible
to reduce the amount of transport, storage, retrieval and/or computation. An
example can be found in [2]. This can be achieved by doing part of the analysis
closer to the measurement points, reducing the need for transportation and central
processing power (and time). Also, it is possible to carry out intelligent forwarding
of information [7], where data or information is only forwarded when needed, by
doing a small amount of interpretation close to the sensor, removing the need for a
central point of interpretation to carry out all interpretation.

More performance with enough reliability by combined processing

Combining streaming and batch processing of data can also reduce the amount of
processing time, while keeping reliability at acceptable levels. The idea is to have
two separate and ‘parallel’ lines of processing data. The first processing line is
targeted at speed: data that arrives is immediately processed and calculations are
finished before the next data arrives. In this chapter this is defined as streaming data
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processing. Algorithms used for this type of processing often deal with a small
portion of a time series, close to the most recent point in time (‘sliding window”).
Warnings can be quickly issued, because processing takes place all the time. If the
LSMS for some reason crashed, it can be ‘rebooted’ quickly again, thus increasing
availability. However, because only a small portion of the historical behavior is
taken into account, the monitoring system might miss certain long term trends. This
might reduce the amount of reliability. This is where the second processing line
comes into play. Next to the stream processing line there is also a batch processing
line. It is targeted at processing more (historical) data in a single batch, but it requires
more time. By using the batch processing line as a means to calibrate the stream
processing line (e.g. ‘long term trends’), it is possible to get ‘the best of both worlds’.
The lambda architecture [14] is an example of combining processing lines. It states
that the batch processing should be performed each time over all the data. To be able to
produce also analyses over the latest data, a streaming system must be set up next to
the batch which can processes the data in a streaming manner as long as the batch
processing takes. At the moment the batch processing is finished, the results of the
streaming analyses are overwritten by the batch results. The streaming analyses starts
again, initialized with the newly batch results and the batch also is starting again.

Affordable performance through elasticity of resources

The analysis-oriented divide and conquer approach can require so much com-
putational resources that the costs of storage and computation exceed the value of
the information that the monitoring system produces. An approach to reduce the
costs is to make use of resources in an elastic way.

The idea is to collect data at a relative low sample rate, which requires less storage
and computational power for analysis. Once an unknown anomaly in the measure-
ments is detected, the sample rate is increased and the anomaly can be analyzed using
more sophisticated data processing algorithms, that are (temporarily) hosted on an
elastic computing cloud. This is depicted in Fig. 5. If variation on this theme is doing
a pre-analysis at the source of the data collections, instead of in the interpretation
phase. An example can be found in an LSMS that monitors the impact of earthquakes
in the Netherlands, which is currently under development. It is constructed to
develop a deeper understanding of how vibrations of the underground impact houses.
The quakes are caused by compacting of the subsurface at a depth of approximately
3 km, which in turn is the result of the decreasing of pore pressure in an underlying
gas reservoir [15]. The LSMS design consists of hundreds of vibration sensors at
several hundred houses. The structural health of the building is logged (e.g. ‘cracks
in walls’) and by analyzing the combination of earthquake data, vibrations in houses
and the structural health, researchers try to establish quantifiable cause and effect
relationships between quakes and the resulting damage to a house. Since these types
of quakes and impact on the houses are new, it is not known what for example the
sample rate should be. Research and engineers currently thus want to collect data at a
high sample rate. In order to keep the amount of processing as low as possible, the
idea to reduce is to only forward high sample rate data if it is quake related. Only
then computing power is needed for processing. This could be supplied by a
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Fig. 5 Using elastic resources in monitoring

computational elastic cloud. After all quake data has been processed, the sample rate
of forwarded data can be reduced again, which results in less computational power.
More information on Big Data and elasticity can be found—for example—in [16].

Increasing availability through redundancy

As a final system architecture oriented optimization approach, the concept of
adding redundancy is discussed. The basic idea is that failure of one of the com-
ponents does not result in failure of the entire system (‘no single point of failure’).
By adding multiple components with the same functionality, some could fail,
without a total failure of the entire LSMS. Describing general techniques for
designing high availability (or sometimes called fault-tolerant systems) by using
redundancy is beyond the scope of this chapter. Big Data computational platforms
like Hadoop [17] and Project Storm [18] can provide—if configured properly—
resilience against failing computational nodes. Also, NoSQL databases like Cas-
sandra can store data with multiple copies of that data distributed over racks and
even data centers if necessary.

An important aspect of increasing availability through redundancy is assuming
everything can (and will) fail. Also, designers should create a system that tries to
continue functioning, even if several components are not available anymore. The
loss of a component should not result in a stop of the entire data to information
processing chain. Instead, data and/or information should be rerouted to redundant
components that still work. If loss of data is unacceptable (e.g. in a learning LSMS)
data should only be allowed to be deleted in the monitoring chain, as long as there
are at least two copies remaining elsewhere in the chain.

Increasing reliability through human error resilience
No matter how well tested data processing algorithms are, it is always possible a
mistake has been made. Resulting in the production of unreliable information. One
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of the design goals of the Lambda architecture [14] discussed eatlier is to be more
robust against these kinds of human errors. LSMSs that are based on the Lambda
architecture should preserve all original data and that it should be possible to
reproduce al information using that data. Next to the streaming processing, there is
the possibility to start a batch process that could use the entire dataset to reproduce
the information. In this way the effects of a discovered error in a data processing
algorithm can be mitigated to some extent.

4.1.4 Goal Oriented Optimization

As mentioned before, as a means of last resort, designers and engineers might
loosen constraints. In a way, this means slightly altering the goal of the system. In
practice designers and/or engineers sometimes discover not all of the original
constraints from the specification do not have to be as tight as originally specified.
By loosening constraints just a little, it is sometimes still possible to come up with a
LSMS that still provides more value through information, than costs needed for
realization and operation of an LSMS. For example, there are techniques—Ilike the
Early Accurate Result Library (EARL) system—which help determine the sample
rate or the size of data samples, while staying with a specific error bound [19].

4.2 Summary of Optimizations and Constraints

As mentioned earlier on, there is no one-to-one mapping of constraints (time
window, availability and reliability) and optimization techniques. In practice
applying a specific technique often influences the achievement of several con-
straints. In the table below these relationships are once more illustrated and sum-
marized, based on the descriptions above. A ‘+’ means that the chance of staying
within a constraint is increased, a ‘-~ means that the chance is decreased. For
example, aggregation of data can increase the chance of meeting a time window
requirement, while decreasing the chance of meeting a reliability constraint. A ‘0’
means little to no effect. Note that these are very generic scores, provided to show
that improvements in the area of one constraint might result in issues with other
constraints. In practice, the specific case and optimization technique at hand might
lead to other values in the table (Table 1).

4.2.1 Impact on Other Constraints

Applying one or more Big Data optimization techniques as discussed in the previous
paragraphs, can come at a price with respect to other constraints. The relationship
between Big Data related constraints (performance, availability and reliability) have
already been discussed. However, other constraints might be impacted too. This
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Table 1 Relationship between optimations and constraints

Performance Reliability Availability

Change data

Aggregation + - 0
Concept conversion + 0/— 0
Reordering + 0 0
Change algorithms

More efficient algorithm + 0 0
Parallelization ++ 0 0
Change architecture

Faster: bring the analysis to the data ++ 0

Faster: combining streaming and batch ++ 0

Deal with many different sensor connections 0 ++
Adapt resources according to need 0 0 -
Add redundant components - + ++
Create resilience against human error 0/— + 0/+
Change goal

Less perfect answers are acceptable | ++ ‘ - | 0

chapter would not be complete without mentioning several constraints that are
important in modern day LSMS deployment too. This will be done in these last
subsections.

Energy consumption

LSMS can consume large amounts of energy. Optimization techniques that
require more hardware because of parallelization or redundancy, obviously tend to
use more energy. Depending on the value of the information produced by the
LSMS or the energy available in the deployment area of an LSMS, the energy usage
might be more than allowed. The link between Big Data analytics and energy usage
is covered in more detail in [20].

Maintainability

Intricate Big Data optimization techniques might enable designers and engineers
of an LSMS to stay within the constrains as specified, but they could make it far
more difficult for (other) designers and engineers to understand the LSMS as a
whole. The ability to understand a system is also a constraint in everyday practice:
without people that understand how the LSMS actually works it is difficult to
maintain or improve the system. This understanding is needed, if for example
unexpected errors take place and the LSMS needs some ‘debugging’ or a (partial)
redesign. Even more so, if other people, which have not designed or implemented
the system, have doubts about the reliability of the LSMS, it is very important that
other experts—not involved in the realization of the LSMS—can get an under-
standing of the LSMS and provide the non-experts with a satisfactory answer to their
doubts. In other words: maintainability through auditability is also a constraint,
which can be influenced by Big Data optimization techniques in a negative way.
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5 Conclusion

In this chapter the relationship between Big Data optimization and monitoring in
the real world has been explored from different view-points. Several aspects of data
collection and interpretation have been used as a viewpoint, as well as three types of
constraints for large scale monitoring systems (abbreviated as LSMSs) that are
related to Big Data: performance, availability and reliability constraints. Finally,
several solution approaches involving Big Data optimization techniques have been
provided that enable designers and engineers of LSMSs to provide a solution that
stays within performance, availability and reliability constraints.
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