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Preface

The increased capacity of contemporary computers allows the gathering, storage
and analysis of large amounts of data which only a few years ago would have been
impossible. These new data are providing large quantities of information, and
enabling its interconnection using new computing methods and databases. There
are many issues arising from the emergence of big data, from computational
capacity to data manipulation techniques, all of which present challenging oppor-
tunities. Researchers and industries working in various different fields are dedi-
cating efforts to resolve these issues. At the same time, scholars are excited by the
scientific possibilities offered by big data, and especially the opportunities to
investigate major societal problems related to health, privacy, economics, business
dynamics and many more. These large amounts of data present various challenges,
one of the most intriguing of which deals with knowledge discovery and large-scale
data mining. Although these vast amounts of digital data are extremely informative,
and their enormous possibilities have been highlighted on several occasions, issues
related to optimization remain to be addressed. For example, formulation of opti-
mization problems of unprecedented sizes (millions or billions of variables) is
inevitable.

The main objective of this book is to provide the necessary background to work
with big data by introducing some novel optimization algorithms and codes capable
of working in the big data setting as well as introducing some applications in big
data optimization for interested academics and practitioners, and to benefit society,
industry, academia and government.

To facilitate this goal, chapter “Big Data: Who, What and Where? Social,
Cognitive and Journals Map of Big Data Publications with Focus on Optimization”
provides a literature review and summary of the current research in big data and
large-scale optimization. In this chapter, Emrouznejad and Marra investigate
research areas that are the most influenced by big data availability, and on which
aspects of large data handling different scientific communities are working. They
employ scientometric mapping techniques to identify who works on what in the
area of big data and large-scale optimization problems. This chapter highlights a
major effort involved in handling big data optimization and large-scale data mining
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which has led to several algorithms that have proven to be more efficient, faster and
more accurate than earlier solutions.

This is followed by a comprehensive discussion on setting up a big data project
in chapter “Setting Up a Big Data Project: Challenges, Opportunities, Technologies
and Optimization” as discussed by Zicari, Rosselli, Ivanov, Korfiatis, Tolle,
Niemann and Reichenbach. The chapter explains the general value of big data
analytics for the enterprise and how value can be derived by analysing big data.
Then it introduces the characteristics of big data projects and how such projects can
be set up, optimized and managed. To be able to choose the optimal big data tools
for given requirements, the relevant technologies for handling big data, such as
NoSQL and NewSQL systems, in-memory databases, analytical platforms and
Hadoop-based solutions, are also outlined in this chapter.

In chapter “Optimizing Intelligent Reduction Techniques for Big Data”, Pop,
Negru, Ciolofan, Mocanu, and Cristea analyse existing techniques for data
reduction, at scale to facilitate big data processing optimization. The chapter covers
various areas in big data including: data manipulation, analytics and big data
reduction techniques considering descriptive analytics, predictive analytics and
prescriptive analytics. Cyber-Water cast study is also presented by referring to:
optimization process, monitoring, analysis and control of natural resources, espe-
cially water resources to preserve the water quality.

Li, Guo and Chen in the chapter “Performance Tools for Big Data Optimization”
focus on performance tools for big data optimization. The chapter explains that many
big data optimizations have critical performance requirements (e.g., real-time big
data analytics), as indicated by the velocity dimension of 4Vs of big data. To
accelerate the big data optimization, users typically rely on detailed performance
analysis to identify potential performance bottlenecks. To alleviate the challenges of
performance analysis, various performance tools have been proposed to understand
the runtime behaviours of big data optimization for performance tuning.

Further to this, Valkonen, in chapter “Optimising Big Images”, presents a very
good application of big data optimization that is used for analysing big images.
Real-life photographs and other images, such as those from medical imaging
modalities, consist of tens of million data points. Mathematically based models for
their improvement—due to noise, camera shake, physical and technical limitations,
etc.—are moreover often highly non-smooth and increasingly often non-convex.
This creates significant optimization challenges for application of the models in
quasi-real-time software packages, as opposed to more ad hoc approaches whose
reliability is not as easily proven as that of mathematically based variational
models. After introducing a general framework for mathematical image processing,
this chapter presents the current state-of-the-art in optimization methods for solving
such problems, and discuss future possibilities and challenges.

As another novel application Rajabi and Beheshti, in chapter “Interlinking Big
Data to Web of Data”, explain interlinking big data to web of data. The big data
problem can be seen as a massive number of data islands, ranging from personal,
shared, social to business data. The data in these islands are becoming large-scale,
never ending and ever changing, arriving in batches at irregular time intervals. In
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this context, it is important to investigate how the linked data approach can enable
big data optimization. In particular, the linked data approach has recently facilitated
accessibility, sharing and enrichment of data on the web. This chapter discusses the
advantages of applying the linked data approach, toward optimization of big data in
the linked open data (LOD) cloud by: (i) describing the impact of linking big data to
LOD cloud; (ii) representing various interlinking tools for linking big data; and
(iii) providing a practical case study: linking a big data repository to DBpedia.

Topology of big data is the subject of chapter “Topology, Big Data and
Optimization” as discussed by Vejdemo-Johansson and Skraba. The idea of
using geometry in learning and inference has a long history going back to canonical
ideas such as Fisher information, discriminant analysis and principal component
analysis. The related area of topological data analysis (TDA) has been developing
in the past decade, which aims to extract robust topological features from data and
use these summaries for modelling the data. A topological summary generates a
coordinate-free, deformation invariant and a highly compressed description of the
geometry of an arbitrary data set. This chapter explains how the topological tech-
niques are well suited to extend our understanding of big data.

In chapter “Applications of Big Data Analytics Tools for Data Management”,
Jamshidi, Tannahill, Ezell, Yetis and Kaplan present some applications of big
data analytics tools for data management. Our interconnected world of today and
the advent of cyber-physical or system of systems (SoS) are a key source of data
accumulation—be it numerical, image, text or texture, etc. SoS is basically defined
as an integration of independently operating, non-homogeneous systems for a
certain duration to achieve a higher goal than the sum of the parts. Recent efforts
have developed a promising approach, called “data analytics”, which uses statistical
and computational intelligence (CI) tools such as principal component analysis
(PCA), clustering, fuzzy logic, neuro-computing, evolutionary computation,
Bayesian networks, data mining, pattern recognition, etc., to reduce the size of “big
data” to a manageable size. This chapter illustrates several case studies and attempts
to construct a bridge between SoS and data analytics to develop reliable models for
such systems.

Optimizing access policies for big data repositories is the subject discussed by
Contreras in chapter “Optimizing Access Policies for Big Data Repositories:
Latency Variables and the Genome Commons”. The design of access policies for
large aggregations of scientific data has become increasingly important in today’s
data-rich research environment. Planners routinely consider and weigh different
policy variables when deciding how and when to release data to the public. This
chapter proposes a methodology in which the timing of data release can be used to
balance policy variables and thereby optimize data release policies. The global
aggregation of publicly-available genomic data, or the “genome commons” is used
as an illustration of this methodology.

Achieving the full transformative potential of big data in this increasingly digital
and interconnected world requires both new data analysis algorithms and a new
class of systems to handle the dramatic data growth, the demand to integrate
structured and unstructured data analytics, and the increasing computing needs of
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massive-scale analytics. Li, in chapter “Big Data Optimization via Next Generation
Data Center Architecture”, elaborates big data optimization via next-generation data
centre architecture. This chapter discusses the hardware and software features of
High Throughput Computing Data Centre architecture (HTC-DC) for big data
optimization with a case study at Huawei.

In the same area, big data optimization techniques can enable designers and
engineers to realize large-scale monitoring systems in real life, by allowing these
systems to comply with real-world constrains in the area of performance, reliability
and reliability. In chapter “Big Data Optimization Within Real World Monitoring
Constraints”, Helmholt and der Waaij give details of big data optimization using
several examples of real-world monitoring systems.

Handling big data poses a huge challenge in the computer science community.
Some of the most appealing research domains such as machine learning, compu-
tational biology and social networks are now overwhelmed with large-scale data-
bases that need computationally demanding manipulation. Smart sampling and
optimal dimensionality reduction of big data using compressed sensing is the main
subject in chapter “Smart Sampling and Optimal Dimensionality Reduction of Big
Data Using Compressed Sensing” as elaborated by Maronidis, Chatzilari, Niko-
lopoulos and Kompatsiaris. This chapter proposes several techniques for opti-
mizing big data processing including computational efficient implementations like
parallel and distributed architectures. Although Compressed Sensing (CS) is
renowned for its capability of providing succinct representations of the data, this
chapter investigates its potential as a dimensionality reduction technique in the
domain of image annotation.

Another novel application of big data optimization in brain disorder rehabilita-
tion is presented by Brezany, Štěpánková, Janatoá, Uller and Lenart in chapter
“Optimized Management of BIG Data Produced in Brain Disorder Rehabilitation”.
This chapter introduces the concept of scientific dataspace that involves and stores
numerous and often complex types of data, e.g. primary data captured from the
application, data derived by curation and analytics processes, background data
including ontology and workflow specifications, semantic relationships between
dataspace items based on ontologies, and available published data. The main
contribution in this chapter is applying big data and cloud technologies to ensure
efficient exploitation of this dataspace, namely novel software architectures, algo-
rithms and methodology for its optimized management and utilization.

This is followed by another application of big data optimization in maritime
logistics presented by Berit Dangaard Brouer, Christian Vad Karsten and
David Pisinge in chapter “Big data Optimization in Maritime Logistics”.
Large-scale maritime problems are found particularly within liner shipping due to
the vast size of the network that global carriers operate. This chapter introduces a
selection of large-scale planning problems within the liner shipping industry. It is
also shown how large-scale optimization methods can utilize special problem
structures such as separable/independent sub-problems and give examples of
advanced heuristics using divide-and-conquer paradigms, decomposition and
mathematical programming within a large-scale search framework.
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On more complex use of big data optimization, chapter “Big Network Analytics
Based on Nonconvex Optimization” focuses on the use of network analytics which
can contribute to networked big data processing. Many network issues can be
modelled as non-convex optimization problems and consequently they can be
addressed by optimization techniques. Gong, Cai, Ma and Jiao, in this chapter,
discuss the big network analytics based on non-convex optimization. In the pipeline
of non-convex optimization techniques, evolutionary computation gives an outlet to
handle these problems efficiently. Since network community discovery is a critical
research agenda of network analytics, this chapter focuses on the evolutionary
computation-based non-convex optimization for network community discovery.
Several experimental studies are shown to demonstrate the effectiveness of
optimization-based approach for big network community analytics.

Large-scale and big data optimization based on Hadoop is the subject of chapter
“Large-Scale and Big Optimization Based on Hadoop” presented by Cao and Sun.
As explained in this chapter, integer linear programming (ILP) is among the most
popular optimization techniques found in practical applications, however, it often
faces computational issues in modelling real-world problems. Computation can
easily outgrow the computing power of standalone computers as the size of problem
increases. The modern distributed computing releases the computing power con-
straints by providing scalable computing resources to match application needs,
which boosts large-scale optimization. This chapter presents a paradigm that
leverages Hadoop, an open-source distributed computing framework, to solve a
large-scale ILP problem that is abstracted from real-world air traffic flow man-
agement. The ILP involves millions of decision variables, which is intractable even
with the existing state-of-the-art optimization software package.

Further theoretical development and computational approaches in large-scale
unconstrained optimization is presented by Babaie-Kafaki in chapter
“Computational Approaches in Large–Scale Unconstrained Optimization”. As a
topic of great significance in nonlinear analysis and mathematical programming,
unconstrained optimization is widely and increasingly used in engineering, eco-
nomics, management, industry and other areas. In many big data applications,
solving an unconstrained optimization problem with thousands or millions of
variables is indispensable. In such situations, methods with the important feature of
low memory requirement are helpful tools. This chapter explores two families of
methods for solving large-scale unconstrained optimization problems: conjugate
gradient methods and limited-memory quasi-Newton methods, both of them are
structured based on the line search.

This is followed by explaining numerical methods for large-scale non-smooth
optimization (NSO) as discussed by Karmitsa in chapter “Numerical Methods for
Large-Scale Nonsmooth Optimization”. NSO refers to the general problem of
minimizing (or maximizing) functions that are typically not differentiable at their
minimizers (maximizers). NSO problems are in general difficult to solve even when
the size of the problem is small and the problem is convex. This chapter recalls two
numerical methods, the limited memory bundle algorithm (LMBM) and the
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diagonal bundle method (D-BUNDLE), for solving large-scale non-convex NSO
problems.

Chapter “Metaheuristics for Continuous Optimization of High-Dimensional
Problems: State of the Art and Perspectives” presents a state-of-the-art discussion of
metaheuristics for continuous optimization of high-dimensional problems. In this
chapter, Trunfio shows that the age of big data brings new opportunities in many
relevant fields, as well as new research challenges. Among the latter, there is the
need for more effective and efficient optimization techniques, able to address
problems with hundreds, thousands and even millions of continuous variables. In
order to provide a picture of the state of the art in the field of high-dimensional
continuous optimization, this chapter describes the most successful algorithms
presented in the recent literature, also outlining relevant trends and identifying
possible future research directions.

Finally, Sagratella discusses convergent parallel algorithms for big data opti-
mization problems in chapter “Convergent Parallel Algorithms for Big Data
Optimization Problems”. When dealing with big data problems it is crucial to
design methods able to decompose the original problem into smaller and more
manageable pieces. Parallel methods lead to a solution by concurrently working on
different pieces that are distributed among available agents, so as to exploit the
computational power of multi-core processors and therefore efficiently solve the
problem. Beyond gradient-type methods, which can of course be easily parallelized
but suffer from practical drawbacks, recently a convergent decomposition frame-
work for the parallel optimization of (possibly non-convex) big data problems was
proposed. Such framework is very flexible and includes both fully parallel and fully
sequential schemes, as well as virtually all possibilities in between. This chapter
illustrates the versatility of this parallel decomposition framework by specializing it
to different well-studied big data optimization problems such as LASSO, logistic
regression and support vector machines training.

January 2016 Ali Emrouznejad
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Big Data: Who, What and Where? Social,
Cognitive and Journals Map of Big Data
Publications with Focus on Optimization

Ali Emrouznejad and Marianna Marra

Abstract Contemporary research in various disciplines from social science to
computer science, mathematics and physics, is characterized by the availability of
large amounts of data. These large amounts of data present various challenges, one
of the most intriguing of which deals with knowledge discovery and large-scale
data-mining. This chapter investigates the research areas that are the most influ-
enced by big data availability, and on which aspects of large data handling different
scientific communities are working. We employ scientometric mapping techniques
to identify who works on what in the area of big data and large scale optimization
problems.

1 Introduction

The increased capacity of contemporary computers allows the gathering, storage
and analysis of large amounts of data which only a few years ago would have been
impossible. These new data are providing large quantities of information, and
enabling its interconnection using new computing methods and databases. There
are many issues arising from the emergence of big data, from computational
capacity to data manipulation techniques, all of which present challenging oppor-
tunities. Researchers and industries working in various different fields are dedi-
cating efforts to resolve these issues. At the same time, scholars are excited by the
scientific possibilities offered by big data, and especially the opportunities to
investigate major societal problems related to health [19], privacy [21], economics
[38] and business dynamics [10]. Although these vast amounts of digital data are
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extremely informative, and their enormous possibilities have been highlighted on
several occasions, issues related to their measurement, validity and reliability
remain to be addressed [22].

Schönberger and Cukier [28] point out that ‘there is no rigorous definition of big
data’. The term big data appeared or the first time in a paper by Cox and Ellsworth
[11] describing the challenges facing computer systems when data are too large to
be easily stored in the main memory, or local or remote disks.

Big data is a label that indicates a large dataset that cannot be stored conve-
niently in a traditional Structured Query Language (SQL) database and requires a
NoSQL (not only SQL) database which is able to handle large amounts of data [38].
Open-source tools such as Hadoop, Bigtable, MapReduce have been made avail-
able by several companies including Google which is among the most active in this
respect. These tools have been shown to be efficient for both storing large amounts
of data and querying and manipulating them.

This chapter discusses some fundamental issues related to big data analysis
which have emerged in publications produced by the scientific communities active
in this area of research. We retrieved 4,308 published works from the ISI Web of
Science (WoS) academic database which we analysed using scientometrics map-
ping techniques. We identified the cognitive, social and journal maps of publica-
tions dealing with big data and large scale optimization methods.

The study reported by [1] highlights the following five areas requiring scholarly
attention: (1) scalable big/fast data infrastructures; (2) the problem of diversity in
the management of data; (3) end-to-end processing and understanding of data;
(4) cloud services; and (5) managing the diverse roles of people in the data life
cycle. Dealing with large quantities of new data involves optimization problems
that often are difficult to resolve in reasonable computing time. In this chapter we
describe some of the efforts and solutions proposed by authors working in this field,
to improve these processes.

2 Methodology

Studying paper citations networks using a scientometric approach and Social Net-
work Analysis (SNA) has become popular in recent years and provides an under-
standing of various dynamics such as collaboration among researchers [14, 24],
knowledge patterns [9] and emerging knowledge trends within disciplines [15, 20].

In this chapter, we combine insights from scientometric mapping techniques to
study the journals, and the cognitive and social maps within studies of big data and
large scale optimization. We use a scientometric mapping technique known as
overlay mapping, which has been presented as a strategic intelligence tool for the
governance of emerging technologies [34], to investigate different dimensions of
the emergence process. The idea underpinning overlay mapping is to project data
representing a focal subject area, over a basemap, which represents the totality of
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contemporary activity in scientific outputs. In the present study, we use basemap to
trace the emergence across cognitive space, which provides a cognitive mapping of
the data on publications referring to big data and its large scale optimization. The
basemap represents the totality of research areas, grouped according to 19 factors
ranging from social studies, to mathematical methods and computer science. The 19
factors are: mathematical methods; computer science; physics; mechanical engi-
neering; chemistry, environment science and technology; materials science; geo-
science; ecology; agriculture; biomed science; infectious diseases; psychological
science; health and social issues; clinical psychology; clinical medicine; social
studies; business and management; economics politics; and geography. Each factor
is represented by a node in the map and is assumed to proxy for a scientific
discipline. The areas are detected using the 225 WoS subject categories, which
classify journals included in the Science Citation Index (SCI) into disciplinary and
sub-disciplinary structures. This allows a visualization of how the publications in a
particular field (in our case ‘Big Data’) relate to different scientific disciplines. The
term cognitive map refers to the projection of data on published works, onto an
overlay showing the cognitive space that is the universe of contemporary research
areas. On the resulting cognitive map, the node size is proportional to the number of
publications related to the given topic, published in the given discipline represented
by the node [25, 34]. Different colours are used to represent the 19 factors and to
enable an immediate visual understanding. The cognitive map provides a classifi-
cation of publications into research areas [40]. Although the classification of articles
and journals into disciplinary categories using the ISI classification has been
questioned [31], Rafols et al. [32] show that the resulting map is relatively robust to
classification errors, and several studies have applied this approach to show its
usefulness [25, 32, 34]. As Rotolo et al. [34] highlight, mapping emergence in the
cognitive space can reveal a number of features. These include the directions of
diffusion of a given topic across the key knowledge areas involved in its emergence,
how these areas interact, and in which domain actors’ knowledge production
processes are positioned.

The cognitive map is integrated with the mapping of the journals publishing
research on big data, and with the social map, that is, the co-authorship network
resulting from our sample. In these co-authorship networks, the connections among
authors are the channels through which they gain access to knowledge and generate
innovative research outcomes. Co-authorship networks depict direct and intentional
forms of knowledge exchange in which authors engage in real collaborative
activities [24, 30], thus, we use co-author data to depict the emergence of scientific
communities [12, 16].
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3 Data and Basic Statistics

The ISI WoS is the data source for this study. Using the keywords ‘big data’ and
‘large scale optimization’ we obtained a sample of 4,308 published works com-
prising 1,826 proceedings, 1,793 published articles, 335 editorial pieces, 125
reviews, 16 book reviews and 213 documents (Table 1). Figure 1 depicts the yearly

Table 1 Document type Document type Number of documents

Proceedings 1,826
Published articles 1,793
Editorial materials 335
Reviews 125
Book reviews 17
Other documents 213

Fig. 1 Distribution of
publications per year

Table 2 Top 10 institutions ranked by number of documents published

Institution Number of documents

1 Chinese Academy of Science 85
2 Massachusetts Institute of Technology (MIT) 52
3 Harvard University 50
4 Stanford University 46
5 University of California Los Angeles (UCLA) 45
6 Carnegie Mellon University 41
7 Northwestern University 40
8 University of South California 36
9 Tsinghua University 35
10 University of Illinois 34
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distribution of publications, showing that the majority were published between
2012 and May 2014. These pieces 1990s publications focus mainly on optimization
problems and solutions. Tables 2 and 3 present the ranking for the top 10 institu-
tions for number of documents owned (Table 2) and number of citations received
within the sample (Table 3), based on the Total Local Citations Score (TLCS). This
refers to how many times the papers in the sample have been cited by other papers
in the same sample. In both cases, the ranking is based on the institution of the first
author. The Chinese Academy of Science owns the highest number of documents
(85), followed by the Massachusetts Institute of Technology (52 documents),
Harvard University (50 documents), Stanford University (46), and University of
California Los Angeles (45 documents). The most cited documents are owned by
Northwestern University with a TLCS equal to 198, followed by Stanford
University (TLCS = 109), Harvard University (TLCS = 99), Massachusetts Insti-
tute of Technology and University of Colorado (TLCS = 73).

4 Results

4.1 Mapping the Cognitive Space

Different dynamics can be traced across the cognitive space by creating an overlay
of publications on basemaps of science. The projection (overlay) across the (base)
map of science defined by the 225 WoS categories results in the cognitive map
displayed in Fig. 2 where each node is a WoS category and proxies for a scientific
discipline (labels). The node size is proportional to the number of publication in the
given scientific discipline. Links among disciplines are represented by lines whose
thickness is proportional to the extent to which the two disciplines cite each other.
The cognitive map (Fig. 2) shows the diffusion of big data studies and large scale
optimizations across many disciplines. The biggest shape, of computer science and

Table 3 Top 10 institutions ranked by TLCS

Institution Total Local Citations Score (TLCS)

1 Northwestern University 198
2 Stanford University 109
3 Harvard University 99
4 Massachusetts Institute of Technology (MIT) 73
5 University of Colorado 73
6 Rice University 56
7 Catholic University of Nijmegen 47
8 University of Maryland 24
9 University of California Berkeley 42
10 Georgia State University 41
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mathematical methods, indicates that these are the most active research areas. Most
interesting is the contamination of a great number of disciplines, although with a
lower number of publications, such as health, physics, biomedical science and
material science. We can interpret this as the interest from researchers in biomedical
science in opportunity provided by analysis of big data (i.e. mapping the human
genome) and the challenges associated with the treatment and optimization of big
data.

We can also make inferences based on the mapping of academic journals in
Figs. 3 and 4 which provide two different visualizations of most active journals.
Figure 3 shows journals aggregated by density. The colour of each item (journal) in
the map is related to the density of the items at the point. The red area indicates
local high density of journals, and blue area indicates low density. The most dense
area is at the top right side of the Fig. 3. It refers to the area occupied by journals
dealing with operational research and mathematical methods. The most frequent are
European Journal of Operational Research (60), Future Generation Computer
Systems—The International journal of Grid Computing and Escience (29) and
SIAM Journal of Optimization (28). From Fig. 3 we can identify the second most
dense area of research, which is coloured yellow and includes Nature (26), Plos
One (21) and Science (17).

Fig. 2 Cognitive map
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4.2 Mapping the Social Space

Analysis of the co-author networks shows the strong (number of co-authored
works) and successful (highly cited works) connections among collaborating

Fig. 3 Journal map (density)

Fig. 4 Journal map (titles)
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researchers. The links across the networks in Figs. 5, 6, 7, 8, 9 and 10 are channels
of knowledge, and the networks highlight the scientific communities engaged in
research on big data and large scale optimization. We describe the emergence of
collaborations among researchers from different fields and discuss their work on big
data and large scale optimization.

The largest network (Fig. 5) shows the scientific communities of scholars
working on different aspects and applications of optimization methods and big data

Fig. 5 Scientific community (co-author) working on optimization methods and big data

Fig. 6 Scientific community (co-authors) working on analytic chemistry and chemometrics
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analysis. Most of the authors on the left-hand side of the figure are from North-
western University, which owns the papers receiving the highest number of cita-
tions within our sample. The left side of the figure includes leading authors such as
Biegler, Nocedal and Byrd, who in the 1990s were working on large nonlinear
optimization problems [6–8] and proposed solutions such as the reduced Hessian
algorithm for large scale equality constrained optimization [2, 6]. More recent
works were co-authored with Curtis on the topic of an algorithm for large scale

Fig. 7 Scientific community (co-authors) working on health, prevention and epidemiology

Fig. 8 Scientific community (co-authors) working on

Fig. 9 Scientific community (co-authors) working on optimization solutions
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equality constrained optimization [4] and its improvement for non-convex prob-
lems. They use a method that allows for the presence of negative curvature without
requiring information on the inertia of the primal-dual iteration matrix [5]. They
also work on problems with (near) rank-deficient Jacobian matrices where inexact
step computations are allowed and inertia information is not required to solve
non-convex problems [13].

Curtis’s work links to Wang, working at the North Carolina A&T State
University. They collaborated to solve an issue that arises when dealing with
large-scale optimization problems related to solving exact penalty sub-problems on
product sets [3]. Curtis and Wang proposed a two matrix-free method, one an
Iterative Reweighting Algorithm (IRWA), and the other based on Alternating
Direction Augmented Lagrangian (ADAL) technology applied to the given setting.
They proved the efficiency of both algorithm, although in some cases the IRWA is
more efficient than ADAL.

Wang et al. [41] propose a Generalized Opposition-Based Learning (GOBL)
algorithm to improve the performance of Differential Evolution (DE) to solve high

Fig. 10 Scientific community working on network science
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dimensional optimizations problems efficiently. The new algorithm, GODE, has
been proven to outperform traditional DE on 19 high-dimensional problems with
D = 50, 100, 200, 500, 1,000.

Another improved algorithm proposed by the community working with Wang is
a genetic algorithm known as the Multi-Stage Composite Genetic Algorithm
(MSC-GA) [26]. Its advantages are: (i) the gradual reduction of the
optimization-search range, (ii) better convergence and less chance of being trapped
into premature states.

The left side of Fig. 5 to which Wang is linked through Li, presents scholars
working on big data. For example, the paper by Zhong et al. [47] proposes a
practical application of big data handling in the context of water environment
monitoring. They propose a new big data processing algorithm, which is based on a
fast fuzzy C-means clustering algorithm to analyze water monitoring data. The
advantage of fast clustering is that it allows rapid assessment of water quality from
the samples.

Nepal, Zhang, Liu, Chen are also part of this network. Their bigger shapes and
thicker lines indicate that they co-authored a large number of the papers in our
sample and received a large number of citations relative to their publication dates.
Two main features characterize the work of this scientific community: data handling
in the cloud, and privacy. They address the problem of data handling in cloud
computing, focusing on the detection of errors in processing sensor data in the
cloud [42]. Error detection is based on a scale-free network topology; most oper-
ations are conducted in limited temporal or spatial data blocks rather than on the
whole big data set, to enable faster error detection.

These authors also address the problem of privacy, one of the most discussed
aspect of big data analysis. Zhang et al. [46] propose a scalable and cost-effective
framework related to preserving privacy in relation to big data stored in the cloud.
Zhang et al. [45] investigate the scalability of sub-tree anonymization of big data in
the cloud. They try to resolve a major shortcoming in previous approaches to
sub-tree anonymization—that of parallelization capability, which leads to lack of
scalability when handling big data in the cloud. They combine two existing
approaches, Top–Down Specialization (TDS) and Bottom–Up Generalization
(BUG), and design MapReduce algorithms for each to achieve greater scalability.

The cloud has proven an ideal platform for big data processing, Yang et al. [43]
propose a new multi-filter strategy for querying streaming XML big data on the
cloud. This multi-filter strategy effectively shares and reduces the filtering space and
the amount of time needed by exploiting the scalability of the cloud.

Figure 6 refers to the scientific community working in the area of analytic
chemistry and chemometrics and focusing on Genetic Algorithms (GAs). GAs
belong to the class of global optimization algorithms [17, 18]. Buydens is one of the
main authors who collaborates with other researchers. She is currently Professor at
Radboud University working in the Faculty of Analytic Chemistry. Chemometrics
research has been affected by the explosion of big data, leading to the need to
extract as much information as possible from the newly available biological data.
The scientific community depicted in Fig. 6 is characterized by the application of
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GAs to solve complex optimization problems such as the construction of phylo-
genetic trees to find the optimal tree [33].

Figure 7 refers to the scientific community working in health care and medicine.
Authors in this network work on epidemiology and disease prevention. The
opportunity to analyse big data on population health characteristics and diseases is
attractive to many scholars; it provides an understanding of the hidden dynamics of
how diseases spread, and helps in the design of prevention measures. Ioannidis,
who works in the Department of Medicine at the Stanford Prevention Research
Centre, is in the centre between two networks. The one on the left includes
researchers working on cancer epidemiology [19]; the one on the right includes
researchers working on the opportunities provided by the recently available Elec-
tronic Medical Records (EMR) which generate huge datasets of rich information on
patients with non-communicable chronic disease (NCD) [27]. The results of these
bodies of work have no practical application at present, but constitute propositions
for future work.

The work of the scientific community depicted in Fig. 8 is characterized by the
use of complex public data, such as open data, and analytic models from com-
plexity science that positively influence societal wellbeing. Researchers in this
community have proposed a new techno-social ecosystem—the Planetary Nervous
System (PNS)—to compute and monitor new indices of social well-being.

Figure 9 is comprised of two social networks. B. Jaumard is the most prolific
author in the left-hand side network and is a co-author of many of the papers in our
sample. She works on large scale optimization at Concordia University. Her work
deals with methods of protection in survivable Wavelength Division Multiplexing
(WDM) networks [35] and Protected Working Capacity Envelope (PWCE) using
Column Generation (CG) techniques to design survivable WDM networks based
on p-cycle PWCE [36, 37].

The right-hand side network includes authors working on data mining and
knowledge discovery, and proposing parallel large-scale rough set based methods
for knowledge acquisition using MapReduce. These methods have been shown to
be efficient on different platforms, Hadoop, Phoenix and Twister [44].

The scientific community or ‘network science’ (Fig. 10) includes authors
working on social modelling, and large scale analysis of digital data such as
microblogging posts [29]. Researchers in this community are trying to understand
human and social dynamics using a quantitative approach to the analysis of large
amounts of data [23]. They emphasize the opportunities associated with access to
new data on human interactions such as e-mail, Twitter, Facebook content, Global
Positioning System traffic and mobile telephony for modelling complex networks
[39] and studying the behaviour of large-scale aggregates. They emphasize the
terrific potential impact of these analyses, from simulations of pandemics to
accurate epidemiological forecasting and insights into the management of catas-
trophic events such as hurricanes.
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5 Conclusion

In this chapter we offer some informed perspectives on the emergence of big data
and large scale optimization studies across social and cognitive spaces.

We analysed different types of informed perspectives: (i) the main scientific
disciplines involved in the emergence of big data and large scale optimization
studies; (ii) topics of interest in the scientific communities; (iii) interdisciplinary
collaboration among researchers; and (iv) the distribution of publications across
journals.

The literature highlights a major effort involved in handling large-scale data
mining. This has led to several algorithms that have proven to be more efficient,
faster and more accurate than earlier solutions. Their application is useful in the
chemometrics, cloud computing, environment and privacy protection fields.

We showed that many publications point to the enormous terrific potential of big
data, but that a lot remains to be done to achieve various health sector objectives
including epidemiology issues.

Concerns remain over the use of big data in relation to the high risks for
governments associated with potential incorrect predictions, which might lead to
unnecessary costs and unethical social controls over citizens’ privacy and access to
their private data.

References

1. Abadi, D., Agrawal, R., Ailamaki, A., Balazinska, M., Bernstein, P. A.: The Beckman report
on database research. Sigmod Rec. 43, 61–70 (2014). doi:10.1145/2694428.2694441

2. Biegler, L.T., Nocedal, J., Schmid, C., Ternet, D.: Numerical experience with a reduced
Hessian method for large scale constrained optimization. Comput. Optim. Appl. 15, 45–67
(2000). doi:10.1023/A:1008723031056

3. Burke, J.V., Curtis, F.E., Wang, H., Wang, J.: Iterative reweighted linear least squares for
exact penalty subproblems on product sets. SIAM J. Optim. (2015)

4. Byrd, R.H., Curtis, F.E., Nocedal, J.: An inexact SQP method for equality constrained
optimization. SIAM J. Optim. 19, 351–369 (2008)

5. Byrd, R. H., Curtis, F., E.Nocedal, J.: An inexact Newton method for nonconvex equality
constrained optimization. Math Program 122(2), 273-299 (2008). doi:10.1007/s10107-008-
0248-3

6. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995). doi:10.1137/0916069

7. Byrd, R.H., Nocedal, J., Zhu, C.: Towards a discrete Newton method with memory for
large-scale optimization. Nonlinear Optim. Appl. 1–13 (1996a)

8. Byrd, R.H., Nocedal, J., Zhu. C.: Nonlinear Optimization and Applications. Springer, Boston
(1996b)

9. Calero-Medina, C., Noyons, E.C.M.: Combining mapping and citation network analysis for a
better understanding of the scientific development: the case of the absorptive capacity field.
J. Informetr. 2, 272–279 (2008). doi:10.1016/j.joi.2008.09.005

10. Chen, H., Chiang, R.H.L., Storey, V.C.: Business intelligence and analytics: from big data to
big impact. MIS Q. 36, 1165–1188 (2012)

Big Data: Who, What and Where? … 13

http://dx.doi.org/10.1145/2694428.2694441
http://dx.doi.org/10.1023/A:1008723031056
http://dx.doi.org/10.1007/s10107-008-0248-3
http://dx.doi.org/10.1007/s10107-008-0248-3
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1016/j.joi.2008.09.005


11. Cox, M., Ellsworth, D.: Application-controlled demand paging for out-of-core visualization,
pp. 235–ff (1997)

12. Crane, D.: Invisible Colleges: Diffusion of Knowledge in Scientific Communities. The
University of Chicago Press, Chicago (1972)

13. Curtis, F.E., Nocedal, J., Wächter, A.: A matrix-free algorithm for equality constrained
optimization problems with rank-deficient Jacobians. SIAM J. Optim. 20, 1224–1249 (2010).
doi:10.1137/08072471X

14. De Stefano, D., Giordano, G., Vitale, M.P.: Issues in the analysis of co-authorship networks.
Qual. Quant. 45, 1091–1107 (2011). doi:10.1007/s11135-011-9493-2

15. Emrouznejad, A., Marra, M.: Ordered weighted averaging operators 1988−2014: a
citation-based literature survey. Int. J. Intell. Syst. 29, 994–1014 (2014). doi:10.1002/int.
21673

16. Glänzel, W., Schubert, A.: Analyzing scientific networks through co-authorship. Handbook of
Quantitative Science and Technology Research, pp. 257–276. Kluwer Academic Publishers,
Dordrech (2004)

17. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc, Boston, MA (1989)

18. Holland, J.H.: Adaptation in Natural and Artificial Systems. The MIT Press, Cambridge, MA
(1975)

19. Khoury, M.J., Lam, T.K., Ioannidis, J.P.A., Hartge, P., Spitz, M.R., Buring, J.E., Chanock, S.
J., Croyle, R.T., Goddard, K.A., Ginsburg, G.S., Herceg, Z., Hiatt, R.A., Hoover, R.N.,
Hunter, D.J., Kramer, B.S., Lauer, M.S., Meyerhardt, J.A., Olopade, O.I., Palmer, J.R., Sellers,
T.A., Seminara, D., Ransohoff, D.F., Rebbeck, T.R., Tourassi, G., Winn, D.M., Zauber, A.,
Schully, S.D.: Transforming epidemiology for 21st century medicine and public health.
Cancer Epidemiol. Biomarkers Prev. 22, 508–516 (2013). doi:10.1158/1055-9965.EPI-13-
0146

20. Lampe, H.W., Hilgers, D.: Trajectories of efficiency measurement: a bibliometric analysis of
DEA and SFA. Eur. J. Oper. Res. 240, 1–21 (2014). doi:10.1016/j.ejor.2014.04.041

21. Lane, J., Stodden, V., Bender, S., Nissenbaum, H.: Privacy, Big Data, and the Public Good.
Cambridge University Press, New York (2014). doi:http://dx.doi.org/10.1017/
CBO9781107590205

22. Lazer, D., Kennedy, R., King, G., Vespignani, A.: The parable of Google flu: traps in big data
analysis. Science (80-.). 343, 1203–1205 (2014). doi:10.1126/science.1248506

23. Lazer, D., Kennedy, R., King, G., Vespignani, A.: Twitter: Big data opportunities response.
Science 345(6193), 148–149 (2014). doi:10.1126/science.345.6193

24. Lee, J.-D., Baek, C., Kim, H.-S., Lee, J.-S.: Development pattern of the DEA research field: a
social network analysis approach. J. Product. Anal. 41, 175–186 (2014). doi:10.1007/s11123-
012-0293-z

25. Leydesdorff, L., Carley, S., Rafols, I.: Global maps of science based on the new
Web-of-Science categories. Scientometrics 94, 589–593 (2013). doi:10.1007/s11192-012-
0784-8

26. Li, F., Xu, L.Da, Jin, C., Wang, H.: Structure of multi-stage composite genetic algorithm
(MSC-GA) and its performance. Expert Syst. Appl. 38, 8929–8937 (2011). doi:10.1016/j.
eswa.2011.01.110

27. Matheson, G.O., Klügl, M., Engebretsen, L., Bendiksen, F., Blair, S.N., Börjesson, M.,
Budgett, R., Derman, W., Erdener, U., Ioannidis, J.P.A., Khan, K.M., Martinez, R., Mechelen,
W. Van, Mountjoy, M., Sallis, R.E., Sundberg, C.J., Weiler, R., Ljungqvist, A.: Prevention
and management of non-communicable disease: the IOC consensus statement. Clin. J. Sport
Med. 1003–1011 (2013). doi:10.1136/bjsports-2013-093034

28. Mayer-Schönberger, V., Cukier, K.: Big Data: A Revolution That Will Transform How We
Live, Work, and Think. Houghton Mifflin Harcourt (2013)

29. Mocanu, D., Baronchelli, A., Perra, N., Gonçalves, B., Zhang, Q., Vespignani, A: The Twitter
of Babel: mappingworld languages through microblogging platforms. PloS one 8, (2013).
doi:10.1371/journal.pone.0061981

14 A. Emrouznejad and M. Marra

http://dx.doi.org/10.1137/08072471X
http://dx.doi.org/10.1007/s11135-011-9493-2
http://dx.doi.org/10.1002/int.21673
http://dx.doi.org/10.1002/int.21673
http://dx.doi.org/10.1158/1055-9965.EPI-13-0146
http://dx.doi.org/10.1158/1055-9965.EPI-13-0146
http://dx.doi.org/10.1016/j.ejor.2014.04.041
http://dx.doi.org/10.1017/CBO9781107590205
http://dx.doi.org/10.1017/CBO9781107590205
http://dx.doi.org/10.1126/science.1248506
http://dx.doi.org/10.1126/science.345.6193
http://dx.doi.org/10.1007/s11123-012-0293-z
http://dx.doi.org/10.1007/s11123-012-0293-z
http://dx.doi.org/10.1007/s11192-012-0784-8
http://dx.doi.org/10.1007/s11192-012-0784-8
http://dx.doi.org/10.1016/j.eswa.2011.01.110
http://dx.doi.org/10.1016/j.eswa.2011.01.110
http://dx.doi.org/10.1136/bjsports-2013-093034
http://dx.doi.org/10.1371/journal.pone.0061981


30. Oh, W., Choi, J.N., Kim, K.: Coauthorship dynamics and knowledge capital: the patterns of
cross-disciplinary collaboration in Information Systems research. J. Manag. Inf. Syst. 22,
266–292 (2006). doi:10.2753/MIS0742-1222220309

31. Pudovkin, A.I., Garfield, E.: Algorithmic procedure for finding semantically related journals.
J. Am. Soc. Inf. Sci. Technol. 53, 1113–1119 (2002). doi:10.1002/asi.10153

32. Rafols, I., Porter, A.L., Leydesdorff, L.: Science overlay maps: a new tool for research policy
and library management. J. Am. Soc. Inf. Sci. Technol. 61, 1871–1887 (2010). doi:10.1002/
asi.21368

33. Reijmers, T., Wehrens, R., Daeyaert, F., Lewi, P., Buydens, L.M.: Using genetic algorithms
for the construction of phylogenetic trees: application to G-protein coupled receptor
sequences. Biosystems 49, 31–43 (1999). doi:10.1016/S0303-2647(98)00033-1

34. Rotolo, D., Rafols, I., Hopkins, M., Leydesdorff, L.: Scientometric mapping as a strategic
intelligence tool for the governance of emerging technologies (Digital Libraries) (2013)

35. Sebbah, S., Jaumard, B.: Differentiated quality-of-recovery in survivable optical mesh
networks using p-structures. IEEE/ACM Trans. Netw. 20, 798–810 (2012). doi:10.1109/
TNET.2011.2166560

36. Sebbah, S., Jaumard, B.: An efficient column generation design method of p-cycle-based
protected working capacity envelope. Photonic Netw. Commun. 24, 167–176 (2012). doi:10.
1007/s11107-012-0377-8

37. Sebbah, S., Jaumard, B.: PWCE design in survivablem networks using unrestricted shape
p-structure patterns. In: 2009 Canadian Conference on Electrical and Computer Engineering,
pp. 279–282. IEEE (2009). doi:10.1109/CCECE.2009.5090137

38. Varian, H.R.: Big data: new tricks for econometrics. J. Econ. Perspect. 28, 3–28 (2014).
doi:10.1257/jep.28.2.3

39. Vespignani, A.: Predicting the behaviour of techno-social systems. Science 325(5939),
425–428 (2009). doi:10.1126/science.1171990

40. Waltman, L., van Eck, N.J.: A new methodology for constructing a publication-level
classification system of science. J. Am. Soc. Inf. Sci. Technol. 63, 2378–2392 (2012). doi:10.
1002/asi.22748

41. Wang, H., Wu, Z., Rahnamayan, S.: Enhanced opposition-based differential evolution for
solving high-dimensional continuous optimization problems. Soft. Comput. 15, 2127–2140
(2010). doi:10.1007/s00500-010-0642-7

42. Yang, C., Liu, C., Zhang, X., Nepal, S., Chen, J.: A time efficient approach for detecting errors
in big sensor data on cloud. IEEE Trans. Parallel Distrib. Syst. 26, 329–339 (2015). doi:10.
1109/TPDS.2013.2295810

43. Yang, C., Liu, C., Zhang, X., Nepal, S., Chen, J.: Querying streaming XML big data with
multiple filters on cloud. In: 2013 IEEE 16th International Conference on Computational
Science and Engineering, pp. 1121–1127. IEEE (2013). doi:10.1109/CSE.2013.163

44. Zhang, J., Wong, J.-S., Li, T., Pan, Y.: A comparison of parallel large-scale knowledge
acquisition using rough set theory on different MapReduce runtime systems. Int. J. Approx.
Reason. 55, 896–907 (2014). doi:10.1016/j.ijar.2013.08.003

45. Zhang, X., Liu, C., Nepal, S., Yang, C., Dou, W., Chen, J.: A hybrid approach for scalable
sub-tree anonymization over big data using MapReduce on cloud. J. Comput. Syst. Sci. 80,
1008–1020 (2014). doi:10.1016/j.jcss.2014.02.007

46. Zhang, X., Liu, C., Nepal, S., Yang, C., Dou, W., Chen, J.: SaC-FRAPP: a scalable and
cost-effective framework for privacy preservation over big data on cloud. Concurr. Comput.
Pract. Exp. 25, 2561–2576 (2013). doi:10.1002/cpe.3083

47. Zhong, Y., Zhang, L., Xing, S., Li, F., Wan, B.: The big data processing algorithm for water
environment monitoring of the three Gorges reservoir area. Abstr. Appl. Anal. 1–7 (2014)

Big Data: Who, What and Where? … 15

http://dx.doi.org/10.2753/MIS0742-1222220309
http://dx.doi.org/10.1002/asi.10153
http://dx.doi.org/10.1002/asi.21368
http://dx.doi.org/10.1002/asi.21368
http://dx.doi.org/10.1016/S0303-2647(98)00033-1
http://dx.doi.org/10.1109/TNET.2011.2166560
http://dx.doi.org/10.1109/TNET.2011.2166560
http://dx.doi.org/10.1007/s11107-012-0377-8
http://dx.doi.org/10.1007/s11107-012-0377-8
http://dx.doi.org/10.1109/CCECE.2009.5090137
http://dx.doi.org/10.1257/jep.28.2.3
http://dx.doi.org/10.1126/science.1171990
http://dx.doi.org/10.1002/asi.22748
http://dx.doi.org/10.1002/asi.22748
http://dx.doi.org/10.1007/s00500-010-0642-7
http://dx.doi.org/10.1109/TPDS.2013.2295810
http://dx.doi.org/10.1109/TPDS.2013.2295810
http://dx.doi.org/10.1109/CSE.2013.163
http://dx.doi.org/10.1016/j.ijar.2013.08.003
http://dx.doi.org/10.1016/j.jcss.2014.02.007
http://dx.doi.org/10.1002/cpe.3083


Author Biographies

Ali Emrouznejad is a Professor and Chair in Business Analytics
at Aston Business School, UK. His areas of research interest
include performance measurement and management, efficiency
and productivity analysis as well as data mining. Dr Emrouznejad
is Editor of Annals of Operations Research, Associate Editor of
Socio-Economic Planning Sciences, Associate Editor of IMA
journal of Management Mathematics, Associate Editor of RAIRO
—Operations Research, Senior Editor of Data Envelopment
Analysis journal, and member of editorial boards or guest editor
in several other scientific journals. He has published over 100
articles in top ranked journals; he is author of the book on
“Applied Operational Research with SAS”, editor of the books on
“Performance Measurement with Fuzzy Data Envelopment
Analysis” (Springer), “Managing Service Productivity”
(Springer), and “Handbook of Research on Strategic Performance

Management and Measurement” (IGI Global). He is also co-founder of Performance Improvement
Management Software (PIM-DEA), see http://www.Emrouznejad.com.

Marianna Marra is Lecturer in Management Science at Essex
Business School, UK. She earned her PhD in Operations
Management at Aston Business School. Her research focuses
on social network analysis, networks, innovation and knowledge
transfer processes. She has published papers on Expert Systems
with Applications, Information Sciences and the International
Journal of Intelligent Systems.

16 A. Emrouznejad and M. Marra

http://www.Emrouznejad.com


Setting Up a Big Data Project: Challenges,
Opportunities, Technologies
and Optimization

Roberto V. Zicari, Marten Rosselli, Todor Ivanov, Nikolaos Korfiatis,
Karsten Tolle, Raik Niemann and Christoph Reichenbach

Abstract In the first part of this chapter we illustrate how a big data project can be
set up and optimized. We explain the general value of big data analytics for the
enterprise and how value can be derived by analyzing big data. We go on to
introduce the characteristics of big data projects and how such projects can be set up,
optimized and managed. Two exemplary real word use cases of big data projects are
described at the end of the first part. To be able to choose the optimal big data tools
for given requirements, the relevant technologies for handling big data are outlined
in the second part of this chapter. This part includes technologies such as NoSQL
and NewSQL systems, in-memory databases, analytical platforms and Hadoop
based solutions. Finally, the chapter is concluded with an overview over big data
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benchmarks that allow for performance optimization and evaluation of big data
technologies. Especially with the new big data applications, there are requirements
that make the platforms more complex and more heterogeneous. The relevant
benchmarks designed for big data technologies are categorized in the last part.

1 HOW to Set Up a Big Data Project

Data is becoming viewed as a corporate weapon [1].

How to set up and optimize a big data project?
How to set up and optimize a big data project is a challenging task that requires

understanding the value of big data, the various processes and steps involved on
running the project as well as the big data technologies that can be used to store and
process the data. This chapter addresses these questions in three separate parts. The
possible value of big data for an organization and the steps of a big data project are
described in the first part. In the subsequent part the various big data technologies
are classified and described according to their data model and typical use cases
allowing for an easy selection of the optimal technologies given the requirements.
The chapter concludes introducing big data benchmarking as a way to optimize and
fine-tune the performance of the big data technologies.

Why run a big data project in the enterprise?
The most straightforward, perhaps too straightforward answer is that a big data

project can offer valuable insights obtained from analyzing data, which in turn may
offer a quantifiable competitive advantage to the enterprise or organization. However,
beyond this high-level insight, things are less straightforward: big data projects have no
single canonic use case or structure. Instead, the applications that could benefit from
analyzing big data cut across industries and involve a wide variety of data sources.

As James Kobielus states [2], results from big data projects may be materialize
either as revenue gains, cost reductions, or risk mitigation which have an easy and
measurable Return on Investment (ROI). Often big data projects are in support of
Customer RelationshipManagement (CRM) initiatives inmarketing, customer service,
sales, and brand monitoring. But of course, these are only a few examples out of many.

Big data for social good
On another approach, a different, but equally important opportunity for big data

is serving the people who are in need globally, helping the society in which we live.
When big data is used to improve our society and people’s conditions within it, we
cannot use the standard “ROI” as an impact measure but perhaps a new term such
as: “SROI” or Social Return of Investments for big data?

What is big data?
Understanding and optimizing “big data” projects requires definition of what the

term means. One definition that has gained considerable attention considers three
distinctive characteristics of big data, namely Volume, Variety and Velocity, first
introduced by Laney [3]. Zikopoulos and Eaton [4] summarized the dynamics and
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interconnection between these characteristics as a case of interconnected stages,
known as the 3 Vs of big data. On the 3V model in Fig. 1, each stage is inter-
connected and runs as an input to the subsequent one.

The Volume represents the ever growing amount of data in petabytes, exabytes
or zettabytes that is generated in today’s “Internet of things” (IoT), and challenges
the current state of storage systems. At the same time the Variety of data produced
by a multitude of sources like sensors, smart devices and social media in raw,
semi-structured, unstructured and rich media formats is further complicating the
processing and storage of data. Finally, the Velocity aspect describes how quickly
the data is retrieved, stored and processed.

From an information processing perspective, these three characteristics describe
accurately what big data is and the new challenges that it presents to the current
infrastructure. While data Variability and Veracity are also discussed as additional
dimensions on this initial model [3, 4], the core Vs represent the basics for a more
complete and systematic big data framework.

The emergence of new analytical applications and big data open new challenges
[7] which will be addressed later in this chapter.

Why Big Data Analytics?
So what is so special about Big Data Analytics? Werner Vogels, CTO of Ama-

zon.com Inc., once said in an interview [8] that “one of the core concepts of big data is
being able to evolve analytics over time” and that “in the new world of data analysis
your questions are going to evolve and change over time and as such you need to be
able to collect, store and analyze data without being constrained by resources”.

This is the fundamental difference with respect to traditional ways in Business
Intelligence (BI), for example. Basically, someone discovers patterns from ana-
lyzing data, and then receives the answers to questions that in fact he/she did not
ask. This sounds bizarre, but it opens up wider opportunities than simply asking the
questions against structured predefined data sets, as was done before.

Fig. 1 IBM big data
characteristics—3 V. Adopted
from [4]
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Jochen L. Leidner, Data Scientist at Thomson Reuters, UK explains that [9]:
“Usually analytics projects happen as an afterthought to leverage existing data created
in a legacy process, which means not a lot of change of process is needed at the
beginning. This situation changes once there is resulting analytics output, and then the
analytics-generating process needs to be integrated with the previous processes”.

How good is the “value” that can be derived by analyzing big data?
First of all, to justify a big data project in an enterprise, in most cases there is a

need to identify a quantitative ROI.
James Kobielus of IBM suggests [2] the use of Customer Lifetime Value

(CLV) as a standard metric to evaluate, through big data analytics, the impact on
customer acquisition, onboarding, retention, upsell, cross-sell and other indicators,
as well as from corresponding improvements in operational efficiency. This is
certainly a possibility.

Cynthia M. Saracco, also of IBM, provides the following scenario [10]: “For
example, if a telecommunications firm is able to reduce customer churn by 10 % as
a result of a big data project, what’s that worth? If an organization can improve the
effectiveness of an email marketing campaign by 20 %, what’s that worth? If an
organization can respond to business requests twice as quickly, what’s that worth?
Many clients have these kinds of metrics in mind as they seek to quantify the value
they have derived—or hope to derive—from their investment in a big data project.”

Table 1 CRISP-DM and SEMMA process overview

CRISP-DM processes SEMMA processes

Business Understanding: The process
involves an understanding of the business
problem and a consultation with domain
experts on explaining what the overall goal of
the project is and how it is expected to help the
business function

Sample: The process starts with data
sampling, e.g., selecting the data set for
modeling. The data set should be large enough
to contain sufficient information to retrieve,
yet small enough to be used efficiently. This
phase also deals with data partitioning

Data Understanding: This stage involves
collection of initial data and exploratory
analysis of the data properties such as
separating data into subsets in order to form
and evaluate hypotheses

Explore: This phase covers data
understanding through the use of exploratory
analytics with the help of data visualization

Data Preparation: This process concerns the
preparation of data to be used for the analysis
concerning the project goals

Modify: This stage concerns the extraction,
transformation and loading (ETL) of the data
to a specialized dataset

Modeling: In this stage for both models the focus is on applying various modeling (data
mining) techniques on the prepared dataset in order to create models that possibly provide the
desired outcome. These can, for example, be predictive or classification models targeted at
predicting an output variable (e.g. forecasting sales) or classifying a composite variable (e.g.
client profiling) using various features (e.g. client age, region etc.)
Evaluation/Assessment: This process involves the evaluation of the reliability, usefulness and
the impact of the models created on the business function
Deployment: The deployment stage considers the assimilation of the project’s output on the
production site. This stage is not part of the SEMMA model
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How best to get started with a big data project?
Running a big data project demands an understanding of how the project differs

from a typical business intelligence project that might be running concurrently
within the same organization. One needs to provide an understanding of the context
of the classification of such a project as “big data” using a standard definition. On
the other hand, theoretical definitions of what “big data” is and how organizations
and enterprises can use it has been a subject of debate [11].

The industry has identified two major methodologies for running a data oriented
project, namely SEMMA (Sample, Explore, Modify, Model and Assess) and
CRISP-DM (Cross Industry Standard Process for Data Mining). SEMMA considers
in total five separate stages where in the initial stage no assistance from domain
experts is required. CRISP-DM, on the other hand, considers six different stages
where assistance from domain experts is expected in the initial understanding of the
data. Table 1 lists the steps of the CRISP-DM and SEMMA processes respectively.

However, big data projects pose new challenges that are not covered by existing
methodologies. Specifically, if we look at the business decisions that need to be
made in order to successfully support a big data project in enterprise, Cynthia M.
Saracco [10] and James Kobielus [2] both identify the following critical aspects:

Project’s business objectives: “Begin with a clear definition of the project’s
business objectives and timeline, and be sure that you have appropriate executive
sponsorship. The key stakeholders need to agree on a minimal set of compelling
results that will impact your business; furthermore, technical leaders need to buy
into the overall feasibility of the project and bring design and implementation ideas
to the table.”

Project scope: “Scope the project well to deliver near-term business benefit.
Using the nucleus project as the foundation for accelerating future big data
projects.”

Since big data projects can get pretty complex, it is helpful to segment the work
into broad categories and then drill down into each to create a solid plan.

Relevant stakeholders: “The involvement of the relevant stakeholders. It is
important that the big data initiative be aligned with key stakeholder requirements.
If stakeholders haven’t clearly specified their requirements or expectations for your
big data initiative, it’s not production-ready.”

Infrastructure: “In order to successfully support a big data project in the
enterprise, you have to make the infrastructure and applications production-ready in
your operations.” In order to be able to analyze big data (i.e. data is structured
and/or not structured at all) you need specific data management technology. One
popular big data storage and processing technology is the Hadoop ecosystems of
open software tools (see the second part of this chapter).

Skillsets: “The staff needs to have the right skillsets: e.g. database, integration and
analytics skills”. This point is not trivial and James Kobielus adds [2]: “Data-driven
organizations succeed when all personnel—both technical and business—have a
common understanding of the core big data best skills, tools and practices. You need
all the skills of data management, integration, modeling, and so forth that you already
have running your data marts, warehouses, OLAP cubes, and the like.”
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What are the problems and challenges that need to be faced in many big
data projects?

The list of challenges in a big data projects include a combination of the fol-
lowing issues:

• Lack of appropriately scoped objectives,
• lack of required skills,
• the size of big data,
• the non-clearly defined structure of much of the big data,
• the difficulty of enforcing data consistency,
• privacy,
• data management/integration,
• rights management,
• ETL,
• data discovery (how to find high-quality data from the web?),
• data veracity (how can we cope with uncertainty, imprecision, missing details?),
• data verification,
• technical challenges for big data analytics when data is in motion rather than at

rest.

Some aspects have been identified as major challenges from industry experts.
Paul C. Zikopoulos of IBM comments on data velocity [12]: “It’s not just how fast
data is produced or changes, but the speed at which it must be understood, acted
upon, turned into something useful.”

Scott Jarr [1] of VoltDB, a NewSQL data store company, also explains: “There
is only so much static data in the world as of today. The vast majority of new data,
the data that is said to explode in volume over the next 5 years, is arriving from a
high velocity source. It’s funny how obvious it is when you think about it. The only
way to get big data in the future is to have it arrive in a high velocity rate… We
think of big data velocity as data that is coming into the organization at a rate that
can’t be managed in the traditional database. However, companies want to extract
the most value they can from that data as it arrives. We see them doing three
specific things: Ingesting relentless feed(s) of data, making decisions on each piece
of data as it arrives and using real-time analytics to derive immediate insights into
what is happening with this velocity data.”

All of these are requirements for choosing a suitable Big Data Analytical
Platform.

Choosing the right data platform technology
Which technology can best scale to petabytes? Choosing the right analytics

and/or data management platform for a big data project is not a trivial task. In the
rest of the chapter we will outline the available data management technologies.
A subsequent session on big data benchmarking will be provided as a way to
measure the capacity of these technologies. Due to space limitations, we will not
cover the analytics aspect in detail.

For a Data Management Platform, the key requirement is the ability to scale.
Scalability has three aspects: data volume, hardware size and concurrency.
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It is important to note that scale and performance requirements for big data strain
conventional relational databases. As a result, new generations of NoSQL database
systems, new implementation of relational databases (also called NewSQL),
in-memory databases, and graph databases have emerged. In addition to this, there
is of course the entire eco-system of open source software related to Hadoop.

Why Hadoop?
John Schroeder, CEO and co-founder of MapR Technologies, explains [13]:

“One of the benefits of Hadoop is that you don’t need to understand the questions
you are going to ask ahead of time, you can combine many different data types and
determine required analysis you need after the data is in place.”

Daniel Abadi, Co-founder of Hadapt, further explains [14]: “A lot of people are
using Hadoop as a sort of data refinery. Data starts off unstructured, and Hadoop
jobs are run to clean, transform, and structure the data. Once the data is structured, it
is shipped to SQL databases where it can be subsequently analyzed. This leads to
the raw data being left in Hadoop and the refined data in the SQL databases.”

But it’s basically the same data—one is just a cleaned (and potentially aggregated) version
of the other. Having multiple copies of the data can lead to all kinds of problems. For
example, let’s say you want to update the data in one of the two locations—it does not get
automatically propagated to the copy in the other silo. Furthermore, let’s say you are doing
some analysis in the SQL database and you see something interesting and want to drill
down to the raw data—if the raw data is located on a different system, such a drill down
becomes highly nontrivial. Furthermore, data provenance is a total nightmare. It’s just a
really ugly architecture to have these two systems with a connector between them.

Hybrid architectures
This result is, as James Kobielus comments [2]: “In the larger evolutionary

perspective, big data is evolving into a hybridized paradigm under which Hadoop,
massively parallel processing (MPP) enterprise data warehouses (EDW),
in-memory columnar, stream computing, NoSQL, document databases, and other
approaches support extreme analytics in the cloud. Hybrid architectures address the
heterogeneous reality of big data environments and respond to the need to incor-
porate both established and new analytic database approaches into a common
architecture. The fundamental principle of hybrid architectures is that each con-
stituent big data platform is fit-for-purpose to the role for which it’s best suited.”

The “big data platform” that is to be used needs to meet the availability, security
and robustness requirements expected of the enterprise infrastructure. This affects
the entire big data technology stack: databases, middleware, applications, and tools.
The environment has to be designed for modular scaling in order to cope with the
growth in data volumes, velocities and varieties.

Is Open Source the answer?
A lot of the software for handling big data is open source, but of course not only.

Cynthia M. Saracco of IBM mentions that [10]: “Even if your big data solution uses
open source software, there are still expenses involved for designing, developing,
deploying, and maintaining your solution. So what did your business gain from that
investment? The answer to that question is going to be specific to your application
and your business”.
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Elastic computing in the cloud? How does it relate to Big Data Analytics?
Cloud computing and virtualization of resources are directly related to big data.

Paul C. Zikopoulos [12] comments: “This is pretty important because I need the
utility-like nature of a Hadoop cluster, without the capital investment. Time to
analytics is the benefit here.

“After all, if you’re a start-up analytics firm seeking venture capital funding, do
you really walk into to your investor and ask for millions to set up a cluster; you’ll
get kicked out the door. No, you go to Rackspace or Amazon, swipe a card, and get
going. IBM is there with its Hadoop clusters (private and public) and you’re
looking at clusters that cost as low as $0.60 US an hour.

I think at one time I costed out a 100 node Hadoop cluster for an hour and it was like
$34US—and the price has likely gone down. What’s more, your cluster will be up and
running in 30 min.

Use cases from big data projects
To end the first part of this chapter, we will illustrate two use cases as examples

of how big data is used to create value for a company:
Use Case 1: NBCUniversal International
Dr. Bassett, Director of Data Science for NBCUniversal International, UK,

explains the process by which they “dig into” data [15]:

I’m the Director of Data Science for NBCUniversal International. I lead a small but highly
effective predictive analytics team. I’m also a “data evangelist”; I spend quite a bit of my
time helping other business units realize they can find business value from sharing and
analyzing their data sources.
We predict key metrics for the different businesses—everything from television ratings, to
how an audience will respond to marketing campaigns, to the value of a particular opening
weekend for the box office. To do this, we use machine learning regression and classifi-
cation algorithms, semantic analysis, monte-carlo methods, and simulations.
We start with the insight in mind: What blind-spots do our businesses have, what questions
are they trying to answer and how should that answer be presented? Our process begins
with the key business leaders and figuring out what problems they have—often when they
don’t yet know there’s a problem. Then we start our feature selection, and identify which
sources of data will help achieve our end goal—sometimes a different business unit has it
sitting in a silo and we need to convince them to share, sometimes we have to build a
system to crawl the web to find and collect it.
Once we have some idea of what we want, we start brainstorming about the right methods
and algorithms we should use to reveal useful information: Should we cluster across a
multi-variate time series of market response per demographic and use that as an input for a
regression model? Can we reliably get a quantitative measure of a demographics engage-
ment from sentiment analysis on comments? This is an iterative process, and we spend
quite a bit of time in the “capturing data/transforming the data” step.
We predict key metrics for the different businesses—everything from television ratings, to
how an audience will respond to marketing campaigns, to the value of a particular opening
weekend for the box office. To do this, we use machine learning regression and classifi-
cation algorithms, semantic analysis, monte-carlo methods, and simulations. For instance,
our cinema distribution company operates in dozens of countries. For each day in each one,
we need to know how much money was spent and by whom -and feed this information into
our machine-learning simulations for future predictions. Each country might have dozens
more cinema operators, all sending data in different formats and at different qualities. One
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territory may neglect demographics, another might mis-report gross revenue. In order for us
to use it, we have to find missing or incorrect data and set the appropriate flags in our
models and reports for later. Automating this process is the bulk of our big data operation.
Big data helps everything from marketing, to distribution, to planning. In marketing, we
know we’re wasting half our money. The problem is that we don’t know which half. Big
data is helping us solve that age-old marketing problem. We’re able to track how the market
is responding to our advertising campaigns over time, and compare it to past campaigns and
products, and use that information to more precisely reach our audience (a bit how the
Obama campaign was able to use big data to optimize its strategy). In cinema alone, the
opening weekend of a film can affect gross revenue by seven figures (or more), so any
insight we can provide into the most optimal time can directly generate thousands or
millions of dollars in revenue.
Being able to distill big data from historical information, audiences responses in social
media, data from commercial operators, et cetera, into a useable and interactive simulation
completely changes how we plan our strategy for the next 6–15 months.

Use Case 2: Thomson Reuters
Dr. Jochen L. Leidner, Lead Scientist of the London R&D at Thomson Reuters,

UK explains [9]:

For the most part, I carry out applied research in information access, and that’s what I have
been doing for quite a while. I am currently a Lead Scientist with Thomson Reuters, where I
am building up a newly-established London site part of our Corporate Research &
Development group.
Let me say a few words about Thomson Reuters before I go more into my own activities,
just for background. Thomson Reuters has around 50,000 employees in over 100 countries
and sells information to professionals in many verticals, including finance & risk, legal,
intellectual property & scientific, tax & accounting. Our headquarters are located at 3 Time
Square in the city of New York, NY, USA. Most people know our REUTERS brand from
reading their newspapers (thanks to our highly regarded 3,000 + journalists at news desks
in about 100 countries, often putting their lives at risk to give us reliable reports of the
world’s events) or receiving share price information on the radio or TV, but as a company,
we are also involved in as diverse areas as weather prediction (as the weather influences
commodity prices) and determining citation impact of academic journals (which helps
publishers sell their academic journals to librarians), or predicting Nobel prize winners.
My research colleagues and I study information access and especially means to improve it,
using including natural language processing, information extraction, machine learning,
search engine ranking, recommendation system and similar areas of investigations. We
carry out a lot of contract research for internal business units (especially if external vendors
do not offer what we need, or if we believe we can build something internally that is lower
cost and/or better suited to our needs), feasibility studies to de-risk potential future products
that are considered, and also more strategic, blue-sky research that anticipates future needs.
As you would expect, we protect our findings and publish them in the usual scientific
venues.
Thomson Reuters is selling information services, often under a subscription model, and for
that it is important to have metrics available that indicate usage, in order to inform our
strategy. So another example for data analytics is that we study how document usage can
inform personalization and ranking, of from where documents are accessed, and we use this
to plan network bandwidth and to determine caching server locations.
For most definitions of “big”, yes we do have big data. Consider that we operate a news
organization, which daily generates in the tens of thousands of news reports (if we count all
languages together). Then we have photo journalists who create large numbers of
high-quality, professional photographs to document current events visually, and videos
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comprising audio-visual storytelling and interviews. We further collect all major laws,
statutes, regulations and legal cases around in major jurisdictions around the world, enrich
the data with our own meta-data using both manual expertise and automatic classification
and tagging tools to enhance findability. We hold collections of scientific articles and
patents in full text and abstracts. We gather, consolidate and distribute price information for
financial instruments from hundreds of exchanges around the world. We sell real-time live
feeds as well as access to decades of these time series for the purpose of back-testing
trading strategies.
Big data analytics lead to cost savings as well as generate new revenues in a very real,
monetary sense of the word “value”. Because our solutions provide what we call
“knowledge to act” to our customers, i.e., information that lets them make better decisions,
we provide them with value as well: we literally help our customers save the cost of making
a wrong decision.
Even with new projects, product managers still don’t think of analytics as the first thing to
build into a product for a first bare-bones version, and we need to change that; instru-
mentation is key for data gathering so that analytics functionality can build on it later on.
In general, analytics projects follow a process of (1) capturing data, (2) aligning data from
different sources (e.g., resolving when two objects are the same), (3) pre-processing or
transforming the data into a form suitable for analysis, (4) building some model and
(5) understanding the output (e.g. visualizing and sharing the results). This five-step process
is followed by an integration phase into the production process to make the analytics
repeatable.

Where are we now?
The IBM Institute for Business Value did a joint study [16] with Said Business

School (University of Oxford) on the adoption of big data technologies in enter-
prise. They found that 28 % were in the pilot phase, 24 % haven’t started anything,
and 47 % are planning.

The rest of this chapter is organized as follows. Section (2) provides an overview
of big data storage technologies. Section (3) provides an overview of big data
benchmarking and its use in assessing different platforms. Section (4) provides
conclusions and key points with respect to the contributions of this chapter.

2 Big Data Management Technologies

Given the high volume, velocity and variety of big data, the traditional Data
Warehouse (DWH) and Business Intelligence (BI) architectures already existing in
companies need to be enhanced in order to meet the new requirements of storing
and processing big data. To optimize the performance of the Big Data Analytics
pipeline, it is important to select the appropriate big data technology for given
requirements. This section contains an overview of the various big data technolo-
gies and gives recommendations when to use them.

A survey by Forrester Research [17] indicated that most companies are relying
on a mix of different technologies to enable the storage and processing of big data.
Besides traditional relational data warehouse and business intelligence technologies
that already exist in most companies, a big data architecture often includes
non-relational technologies, new-relational technologies, in-memory databases,
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analytical platforms, Hadoop based solutions as well as big data streaming
technologies.

In this section we focus on the technologies for storing and handling big data
(the big data storage layer in Fig. 2) that analytical algorithms will subsequently use
to generate meaningful insights.

There are a lot of different technologies and database systems to choose from
when setting up a big data infrastructure. Figure 3 depicts a rough categorization of
the high variety of different existing systems. The biggest categories and the core
technologies for big data are covered in this chapter.

Fig. 2 The big data stack divided into three different layers

Fig. 3 Landscape and categorization of the high variety of existing database systems [18]
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Particularly, we will outline the following types of technologies:

• Non-relational technologies (NoSQL)
• New-relational technologies (NewSQL)
• In-memory Databases
• Analytical platforms
• Hadoop based solutions
• Streaming technologies

2.1 NoSQL Systems

According to Cattell [19], the term NoSQL (“Not only SQL”) describes a new type
of data stores that are specifically designed to meet the requirements that come with
applications usually running in a distributed environment with many thousands of
concurrent users, e.g. Web 2.0 applications.

Cattell [19] states that these NoSQL systems are designed to deal with updating
and reading heavy OLTP workloads, and generally have six distinct properties:

• Ability to scale horizontally
• Distribution and replication of data over many servers
• Simple interfaces, not necessary SQL
• Weaker concurrency models than ACID
• Utilization of distributed indexes and memory
• Flexible schemata

As stated in the so called CAP theorem [20], it is not possible for a distributed
system to archive the three properties of consistency (C), availability (A) and
partition tolerance (P) at the same time. It is only possible to fully achieve two of
those properties at once. Hence in practice a tradeoff between the properties has to
be made.

As aforementioned, NoSQL systems usually run in a distributed environment
and thus need to be partition tolerant. At the same time they need to be highly
available for thousands of users. Those two properties can fully be achieved only by
using a weaker consistency model. For this reason, most NoSQL systems do not
support ACID transactions [21], but instead use a weaker consistency model such
as eventual consistency [22, 23], also called BASE (Basically Available, Soft State,
Eventual Consistency). This consistency model guarantees that if no new updates
are made on a data record, all reads on this record will eventually return the last
updated value [24]. The BASE consistency model is used in most modern NoSQL
systems. Nevertheless, there are systems that still use an ACID consistency model,
but at the price of a lower availability or partition tolerance.

The various NoSQL systems are widely categorized into four groups according
to their data model: key-value stores, document-oriented stores, wide column stores
and graph databases [25]. An overview is provided below:
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Key-value stores: Key-value stores come along with a very simple data model.
Each record consists of a key and a value (Fig. 4). The key and the value can be any
value depending on the implementation of a specific database, for example a string
or an integer value.

Famous examples of key-value stores are Cassandra, Riak, Amazon Dynamo,
Voldemort, Redis and BarkelyDB [25].

Cassandra is one of the most prominent key-value stores and is used by com-
panies like Digg and Reddit. This system is able to process big data workloads
across multiple nodes with no single point of failure. Cassandra addresses the
problem of failures by employing a peer-to-peer distributed system where all nodes
are the same and data is distributed among all nodes in the cluster. Each node
exchanges information across the cluster every second. A commit log on each node
captures write activity to ensure data durability [26]. This high level of distribution
is possible due to the use of a simple data model. Cassandra uses a very unique
tunable consistency model with different consistency levels where the database
administrator can set the number of replica and favor consistency over availability,
or vice versa. In practice this results in a tradeoff between data accuracy and
response times. Cassandra has a flexible schema and comes with its own query
language called Cassandra Query Language (CQL) [27].

The simple key-value data model allows for a very fast read/write performance
and good scalability over various servers. Key-value stores are a good choice for
very fast and highly scalable retrieval of values, and when a high availability is
needed, for example for tasks such as managing user profiles or retrieving product
names. Amazon have developed their own key-value store Dynamo for their
shopping cart for these reasons [25].

Document-oriented databases: As the name implies, a document-oriented
database or document store deals with documents as its smallest aggregation unit.
A document in such a data store can have for example a JSON, BSON or XML
format depending on the database implementation. Every document consists of
various attributes without a fixed schema. Figure 5 depicts how the structure of a
document could look like.

The open source database MongoDB is a popular example of a document store.
Documents in MongoDB have a JSON format and are stored physically in a binary
version (BSON). Indexes are supported for all attributes in any document created in
the database and documents can be loaded into the database without first defining a
schema. The data is automatically replicated over different nodes thus giving it a
high availability. The database follows an eventual consistency data model with

Fig. 4 Key-value data model
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MongoDB providing different interfaces such as JavaScript, HTTP or REST [28].
Similar well-known document stores are CouchDB, MarkLogic and RavenDB.

Document stores in general are useful for storing large collections of documents
or semi-structured data like text documents, XML/JSON documents or email
messages. The documents stored in the database do not have to share the same
structure and thus empty values can be avoided in contrast to a RDBMS [25].

Wide column stores: In a wide column or column family data store, the data is
stored in a gigantic sparse table that can easily be split and distributed over various
servers. Such a table can have millions of columns containing many empty entries
for various columns of a data record. The data is saved in a column-oriented fashion
with multiple attributes per key. The most prominent examples of this type of data
model are BigTable from Google and its open source equivalent Apache HBase [25].

Figure 6 depicts the data structure of HBase. Each row can be addressed by its
unique row key. The columns are grouped in column families where the first
column (“data”) forms its own column family “data”, while the last two columns
(“mimetype” and “size”) form the column family “meta”. Additionally each data
record is time-versioned and has a timestamp. Originally this data structure was
used by Google in their BigTable implementation to store all website information
from their crawling operations (including time-versioned data and the history of a
website) needed for their search engine [29].

The data structure shown in Fig. 6 is physically saved in a sparse table in a
column-oriented fashion. The column-oriented way of storing the data avoids large

“{“name“,“John“,
t
3“{“name“,“John“,

t
6“{“name“,“John“,

“address“, … t
9

“application:json“
t
8

“2323“
t
3

“row1“

Time

“data:“ “meta:mimetype“ “meta:size“

Fig. 6 Apache HBase data structure. Adopted from [30]

Fig. 5 Document structure in
JSON
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numbers of empty entries (null values), which would occur for all the missing
timestamp entries, or any missing entries in general. HBase uses a strong consistency
model avoiding the problems relating to an eventual consistency model. The data is
distributed automatically over different servers with linear scalability and including
automatic failover. Being based on HDFS and being part of the Hadoop ecosystem
from the beginning, Hadoop/HDFS and MapReduce are supported natively. HBase
can be accessed programmatically with Java or via a REST API [31].

Wide column stores are ideal for distributed data storage with or without ver-
sioned data, as well as large scale and batch-oriented data processing such as
sorting, parsing and transformation of data. They are also suitable for purposes of
exploratory and predictive analytics [25].

Graph databases: Even for a NoSQL database, graph databases have a very
unique data model and are special in terms of scalability and their use cases.
A graph consists of nodes connected by edges forming a network. Graph databases
are useful for very complex queries traversing the network for which you would
otherwise need to join multiple tables in a traditional relational database. Examples
of graph databases are AllegroGraph, Neo4 J, DEX, Sones and HyperGraphDB
[32].

To be precise, it is necessary to state that the data model behind the different
graph databases might differ from system to system, depending on the supported
graph structure. This ranges from allowing attributions to nodes or edges, to the
support of hypergraphs (where an edge not only can connect one node with another
but can interconnect groups of nodes with each other) [33].

For various applications a graph is the native underlying data structure. In the
context of big data, one automatically thinks of social networks where persons are
represented by nodes connected to their friends, or the structure of the Web where
the links between them are the edges (used for example to calculate page rank)
[34]. The more someone starts thinking about graphs and their expressive power,
the more he/she realizes that there are many more applications where graphs can be
used. In fact, the object-oriented world with objects as nodes and their associations
building edges suggests that graphs could be used for nearly any modern appli-
cation. This provides there is a very high potential, nevertheless merging to a graph
database involves some effort and it depends on the queries you plan to run on your
system whether this pays off or not.

On the level of querying graph databases, there are a number of existing query
languages available, including SPARQL [35], Cypher, Gremlin [36].

2.2 NewSQL Systems

NewSQL systems form another category of modern database systems. Databases in
this category support the ACID features known from traditional relational data-
bases, but unlike them they are designed with the goal of running in distributed
environments with a good horizontal scalability.
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VoltDB is a typical example of a NewSQL system. In VoltDB the data and the
processing associated with it are distributed over the nodes in a cluster. Each node
holds a subset of the data and the corresponding stored procedures to process the
data. This makes VoltDB a good choice for OLTP style workloads, which require
good scalability, high availability and high throughput. However, VoltDB is not
optimized for OLAP workloads and analytical queries where a lot of data has to be
called up from the database. This system is thus not a good choice as a database for
business intelligence or similar applications [37]. Note that VoltDB also contains
in-memory technologies and can thus be labeled as an in-memory database (see the
next section) as well.

Other prominent examples of NewSQL databases are FoundationDB and
NuoDB.

2.3 In-Memory Databases

The extreme performance potentials of in-memory database management system
technologies are very attractive to organizations when it comes to real-time or near
real-time processing of large amounts of data. In a report by Gartner [38],
in-memory infrastructures are defined as follows: “In-memory-enabling application
infrastructure technologies consist of in-memory database management systems,
in-memory data grids, high-performance messaging infrastructures, complex-event
processing platforms, in-memory analytics and in-memory application servers.
These technologies are being used to address a wide variety of application sce-
narios requiring a combination of speed of execution, scalability and insightful
analytics.”

A good example of an in-memory database is SAP HANA. All data in HANA
resides in the memory, which allows for faster query execution compared to tra-
ditional disk-based technologies. In HANA disks are only used for backup and
recovery purposes.

Other famous examples of in-memory databases are VoltDB and Aerospike.

2.4 Analytical Platforms

Analytical platforms are solutions specifically designed to meet the requirements of
advanced analytics and OLAP workloads for huge amounts of data. Gartner defines
advanced analytics as “the analysis of all kinds of data using sophisticated quan-
titative methods (for example, statistics, descriptive and predictive data mining,
simulation and optimization) to produce insights that traditional approaches to
Business Intelligence (BI) - such as query and reporting - are unlikely to discover”
[39]. Gartner further states that”predictive analytics and other categories of
advanced analytics are becoming a major factor in the analytics market” [39].
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Commercial analytical platforms, which are also called appliances, usually
consist of a predefined combination of hardware and software components that can
be used in an out of the box deployment. Equivalent open source implementations
mostly consist only of software components that can run on any hardware but need
further configuration. Examples of analytical platforms are Teradata Aster, IBM
Netezza or HP Vertica.

2.5 Hadoop Based Solutions

The core components of Apache Hadoop are the Hadoop Distributed File System
(HDFS) [40], inspired by the Google File System (GFS) [41], and the MapReduce
programming framework, based on Googles MapReduce algorithm [42]. Additional
Hadoop components such as HBase [30] (a wide column store on top of HDFS),
Hive [43] (support for SQL queries) and Pig [44] (support for writing MapReduce
programs) have been developed on top of Hadoop and make up the so-called
Hadoop ecosystem.

A study by Yahoo [45] describes the architecture of Hadoop as follows: “Every
HDFS cluster consists of a single master node (NameNode) and multiple, up to
thousands, DataNodes who store the data.”

The data is stored in files divided in large blocks (typically 128 MB) which are
replicated over multiple DataNodes. The replication factor (usually three) is
adjustable and can be specified by the user. User interaction with the file system is
done using a HDFS code library. Via this library a user can read, write or delete
files and directories within the Hadoop file system without being concerned with the
different data locations within the cluster [45].

The MapReduce framework allows for parallel processing of the data in HDFS.
The processing of the data is broken down into the map and the reduce phases,
which in turn allows parallelization. In the map phase the input data is distributed
over the map processes, which are also called tasks. A single map task can process
its part of the data independently of the other. The purpose of the reduce tasks is to
combine the results from all the map tasks and calculate the overall result [46].

In Hadoop it is possible to store and process petabytes of unstructured data in a
batch mode. Since the data is stored in the HDFS blocks, no schema definition is
required and new nodes can be added at any time for linear increase of the storage
space. This makes Hadoop a good choice for a distributed data hub, for example.
When the data arrives it can be stored in the HDFS as a first landing zone, then it
can be refined by MapReduce jobs in order to eventually transfer parts of the
refined data to the traditional Data Warehousing (DWH) systems for analysis with
existing BI tools. Recent developments like Apache Spark [47] enhance Hadoop to
allow not only pure batch processing, but also interactive data exploration [48].
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2.6 Big Data Streaming Systems

Many big data tasks require access not only to static, rarely-changing data, but also
to continuous streams of data that represent live events, such as RSS feeds,
microblogging feeds, sensor data, or other bus or network events. When off-line
batch processing is not an option, systems with explicit support for stream pro-
cessing can provide numerous benefits:

• reduced computational overhead [49],
• automatic resource re-use through shared processing [50],
• decreased latency, permitting near-real-time notification delivery to human

observers (e.g. via dashboards) or automated actors, and
• query language support for streaming.

The principal differentiating factor and challenge for such streaming big data
systems is time: new input tuples are continuously coming in through a family of
streams, placing different requirements on semantics and evaluation strategies to
those for off-line databases. On the other hand, output may also never finish, so that
the output of a streaming big data system is another family of streams. The query
processor provides plumbing to connect these streams with operators and functions,
and may provide facilities to add and remove computations in flight [51], i.e.
without disturbing ongoing processing.

As streams may continue to be processed without interruption for arbitrary
lengths of time, stream processing cannot retain a full history of all past input tuples.
This limits the available operations; while stream-based systems can easily support,
for example, UNION operators or other stream merges, arbitrary joins over the entire
history are not necessarily feasible. However, many important queries over input
streams do not require full historical knowledge, only knowledge of data from the
last hour or day. Contemporary querying approaches exploit this insight through
sliding windows [50, 52, 53] into data streams, which capture all data from a given
stream within a specified time frame relative to the current point in time. As time
progresses, the window slides forward and the computation is updated to reflect the
new contents of the window. Analogously, aggregation can be interpreted as a
rolling aggregate, reflecting the status of aggregation at a given point in time.

Such stream processing requires continuous computations. If these begin to
overwhelm an individual node, the management process may launch additional
processing nodes to increase processing bandwidth. As with off-line queries, such
parallel processing can be realized effectively for associative operators. Further-
more, the system may overlap the computation of multiple sliding windows into the
same data stream, but at different timestamps, scheduling the windows on different
nodes [54]. Alternatively, some application domains may be amenable to dropping
input tuples that are not strictly required for the system to function correctly,
deliberately degrading output quality according to Quality-of-Service rules [55].

Several streaming big data systems are available today, among them Open
Source solutions such as Apache Spark [56] and Storm [57]. Commercial
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service-based solutions include Amazon Kinesis [58], which is designed to run as
part of the Amazon Web Services framework and Google BigQuery. Forrester
Research [59] lists several additional commercial platforms, including offerings
from IBM, SAP, Software AG, and Tibco [60].

3 Big Data Benchmarking

In this section we focus on the question of how big data technologies can be
optimized and evaluated in terms of the performance requirements of big data
applications.

3.1 Why Do We Need Big Data Benchmarking?

Choosing the right big data platform and configuring it properly to provide the best
performance for a hosted application is not a trivial task.

Especially with the new big data applications, there are requirements that make
the platforms more complex, more heterogeneous, and hard to monitor and main-
tain. The role of benchmarking becomes even more relevant as a method for
evaluating and understanding better the internals of a particular platform. Fur-
thermore, benchmarks are used to compare different systems using both technical
and economic metrics that can guide the user in the process of finding the right
platform that fits their needs.

Nevertheless, the user has to first identify his needs and then choose the ideal big
data benchmark. Big Data Benchmarks are a good way to optimize and fine-tune
the performance in terms of processing speed, execution time or throughput of the
big data system. A benchmark can also be used to evaluate the availability and
fault-tolerance of a big data system. Especially for distributed big data systems a
high availability is an important requirement.

While some benchmarks are developed to test particular software platforms,
others are technology independent and can be implemented for multiple platforms.
Usually the technology specific benchmarks are used to simulate specific types of
applications, which will be hosted on the platform and should run in an optimal way.

At the Frankfurt Big Data Lab we use benchmarks to not only evaluate the
performance of big data platforms [61, 62], but also to evaluate the availability and
fault-tolerance [63].

3.2 Big Data Benchmarking Challenges

For many years the benchmarks specified by the Transaction Processing Perfor-
mance Council (TPC) [64] have been successfully used as a standard for comparing
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OLTP and OLAP systems. Just recently the TPC have formed a new group for the
standardization of a big data benchmark [65] along with other similar initiatives like
the Big Data Top 100 [66] and the Big Data Benchmarking Community [67].
However, the existing and emerging big data applications and platforms have very
different characteristics (“3Vs”) compared to the traditional transactional and ana-
lytical systems. These new platforms can store various types of data (structured,
unstructured or semi-structured) with the schema (schema-on-read) defined just
before accessing the data. They also support different types of data processing: batch,
real-time or near real-time. The large data volumes force its distribution among
multiple nodes and the use of additional fault tolerance techniques to guarantee data
reliability. At the same time, many new applications that deal with the data are
employed, leading to increased workload diversity on the big data systems.

All these big data challenges can make the systems very complex and difficult to
standardize, which is a major objective when defining a benchmark. Furthermore it
is still not clear if the benchmark should target single system components by using
micro-benchmarks, or, on the contrary, it should include an end-to-end benchmark
suite which stress tests the entire platform with all types of workloads. Moreover,
the metrics provided by big data benchmarks should be extensive and comparable
among the multiple systems under test. Chen et al. [68] outline four unique chal-
lenges of systems that hinder the development of big data benchmarks: (i) system
complexity; (ii) use case diversity; (iii) data scale, which makes reproducing
behavior challenging; and (iv) rapid system evolution, which requires the bench-
mark to keep pace with changes in the underlying system. Similarly, Xiong et al.
[69] identify three key considerations that a big data benchmark should meet: (i) a
benchmark suite should have workloads that are representative of a wide range of
application domains; (ii) workloads in a benchmark suite should have diversity of
data characteristics; and (iii) a benchmark suite should not have redundant
workloads in itself.

3.3 Big Data Benchmarking Comparison

There are numerous projects that identify and compare the main components of a
big data benchmark. In their paper presenting the CloudRank-D benchmark, Luo
et al. [70] consider a number of workload characteristics which a benchmark suite
should meet. These characteristics are listed in Table 2 and compared with similar
benchmark suites.

However, as the CloudRank-D covers various representative applications it
cannot really be compared with function-specific benchmarks like WL suite (also
called SWIM), which analyzes the workload characteristics based on the number of
jobs, arrival pattern and computation using synthesized representative data from
real MapReduce traces.

Other important arguments discussed in the paper are the accuracy of the
reported benchmark metrics and the target platforms that it can evaluate. In Table 3,
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the authors compare CloudRank-D with the listed benchmarks. This comparison is
also not accurate, because the other benchmarks target only a specific technology
such as Hadoop, or have no general metric as in the case of WL suites, MineBench
and CloudSuite.

Chen et al. [71, 72] present their Statistical Workload Injector for MapReduce
(SWIM), while investigating a number of important characteristics of MapReduce
workloads, as part of which they compare the most popular Hadoop benchmarks.
Based on this investigation, they identify two design goals used in SWIM:

(i) the workload synthesis and execution framework should be agnostic to
hardware/software/configuration choices, cluster size, specific MapReduce
implementation, and the underlying system; and

(ii) the framework should synthesize representative workloads with short duration
of execution.

However, the proposed benchmark is specifically focused on analyzing the
internal dynamics of pure MapReduce applications and how to generate repre-
sentative synthetic data from real workloads. Apart from that, it does not perform
other data and computational tasks typical for big data applications which bench-
marks like HiBench and PigMix address. Also it does not report any metrics which
can be used to compare the different systems under test.

A recent survey on benchmarks for big data [73] extensively reviews the current
big data benchmarks and discusses some of the characteristics and challenges they
should address. Table 4 summarizes this set of benchmarks. The benchmarks are
compared only by reference to targeted platforms and main application character-
istics. The list includes benchmarks such as TPC-C/H/W/DS and SSB, which target
only a specific set of workload characteristics. The table looks more like a listing of
benchmarks than a real comparison based on specific criteria. An important point
that the authors make is the need of a more complete, end-to-end benchmarking
suite, including both component-based and application-oriented benchmarks along
with critical metrics such as energy consumption.

The paper presenting the BigDataBench suite by Wang et al. [74] also discusses
extensively the challenges of developing a real big data benchmark and compares

Table 3 Different targets and metrics among benchmark suites; adopted from [70]

Targets Metrics

MineBench Data mining algorithm on
single-node computers

No

GridMix Hadoop framework Number of jobs and running time
HiBench Hadoop framework Job running time, the number of tasks

completed per minute
WL suite Hadoop framework No
CloudSuite Architecture research No
CloudRank-D Evaluating cloud systems

at the whole system level
Data processed per second and data
processed per joule
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Table 4 Comparison of existing works on big data benchmarks; Adopted from [73]

Work Target Characteristics Comment

TPC-C RDBMS Transaction processing, simple query and update OLTP

TPC-H RDBMS,
Hadoop Hive

Reporting, decision OLAP

TPC-W RDBMS,
NoSQL

Web applications Web OLTP

SSB RDBMS,
Hadoop Hive

Reporting, decision OLAP

TPC-DS RDBMS,
Hadoop Hive

Reporting query, ad hoc query, iterative query, data
mining query

OLAP

TeraSort RDBMS,
Hadoop

Data sorting Sorting only

YCSB NoSQL
database

Cloud-based data serving Web OLTP

REF 11 Unstructured
data
management
system

Unstructured data only
edge detection, proximity search, data scanning,
data fusion

Not
representative
enough

GRAPH 500 Graph
NoSQL
database

Graph data processing only Not
representative
enough

LinkBench RDBMS,
graph
NoSQL
database

Modeling Facebook real life application
graph data processing only

Not
representative
enough

DFSIO Hadoop File system level benchmark Not
representative
enough

Hive
performance
benchmark

Hadoop Hive GREP, selection, aggregation, join and UDF
aggregation only

Not
representative
enough

GridMix Hadoop Mix of Hadoop jobs Not
representative
enough

PUMA MapReduce Term-vector, inverted-index, self-join, adjacency-list,
k-means, classification, histogram-movies,
histogram-ratings, sequence-count, ranked inverted
index, Tera-sort, GREP, word-count

Comprehensive
workload

MRBench MapReduce TPC-H queries OLAP

HiBench MapReduce Micro-benchmarks (sort, word count and TeraSort);
Web search (Nutch Indexing and page rank) machine
learning (Bayesian classification and k-means
clustering); HDFS benchmark (file system level
benchmark)

Comprehensive
workload

CloudRank-D RDBMS,
Hadoop

Basic operations for data analysis, classification,
clustering, recommendation, sequence learning,
association rule mining, and data warehouse queries

Comprehensive
workload

BigBench RDBMS,
Hadoop

Covers data models of structured, semi-structured and
unstructured data; addresses variety, velocity and
volume aspects of big data systems

Comprehensive
workload
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the BigDataBench with other existing suites. The resulting list, depicted in Table 5,
compares them according to data sets included, data scalability, workload variety,
software stack and status. Clearly, BigDataBench leads in all of the characteristics
as its goal is to be an end-to-end benchmark, but the other benchmarks included,
like AMP Benchmarks [75], YCSB [76] and LinkBench [77], have different
functionalities and are platform specific.

In short, none of the above reviewed benchmark comparisons evaluates and
categorizes the existing benchmarks suites in an objective way. In order for this to
be done, an independent classification, targeting the entire spectrum of big data
benchmark types and based on clearly set criteria, should be constructed.

4 Conclusions

In this chapter, we aimed to outline some of the main issues that are relevant when
setting up and optimizing a big data project. We concentrated our attention first on
the managerial task of setting up a big data project using insights from industry
leaders, then we looked in some detail at the available data management and
processing technologies for big data, and concluded by looking at the task of
defining effective benchmarks for big data. Effective benchmarks for big data help
the customers pick the optimal technology, help the vendors improve their products,
and finally help researchers understand the differences of big data technologies on
their path to optimize organizational and technical processes.
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Abstract Working with big volume of data collected through many applications in
multiple storage locations is both challenging and rewarding. Extracting valuable
information from data means to combine qualitative and quantitative analysis
techniques. One of the main promises of analytics is data reduction with the primary
function to support decision-making. The motivation of this chapter comes from the
new age of applications (social media, smart cities, cyber-infrastructures, envi-
ronment monitoring and control, healthcare, etc.), which produce big data and many
new mechanisms for data creation rather than a new mechanism for data storage.
The goal of this chapter is to analyze existing techniques for data reduction, at scale
to facilitate Big Data processing optimization and understanding. The chapter will
cover the following subjects: data manipulation, analytics and Big Data reduction
techniques considering descriptive analytics, predictive analytics and prescriptive
analytics. The CyberWater case study will be presented by referring to: optimiza-
tion process, monitoring, analysis and control of natural resources, especially water
resources to preserve the water quality.

Keywords Big data ⋅ Descriptive analytics ⋅ Predictive analytics ⋅ Prospective
analytics ⋅ Cyber-Infrastructures

F. Pop (✉) ⋅ C. Negru ⋅ S.N. Ciolofan ⋅ M. Mocanu ⋅ V. Cristea
Faculty of Automatic Control and Computers, Computer Science Department,
University Politehnica of Bucharest, Bucharest, Romania
e-mail: florin.pop@cs.pub.ro

C. Negru
e-mail: catalin.negru@cs.pub.ro

S.N. Ciolofan
e-mail: sorin.ciolofan@cs.pub.ro

M. Mocanu
e-mail: mariana.mocanu@cs.pub.ro

V. Cristea
e-mail: valentin.cristea@cs.pub.ro

© Springer International Publishing Switzerland 2016
A. Emrouznejad (ed.), Big Data Optimization: Recent Developments
and Challenges, Studies in Big Data 18, DOI 10.1007/978-3-319-30265-2_3

49



1 Introduction

There are a lot of applications that generate Big Data, like: social networking profiles,
social influence, SaaS (Software as a Service) and Cloud Apps, public web infor-
mation, MapReduce scientific experiments and simulations, data warehouse, moni-
toring technologies, e-government services, etc. Data grow rapidly, since applications
produce continuously increasing volumes of both unstructured and structured data.
Decision-making is critical in real-time systems and also in mobile systems [1] and
has an important role in business [2]. Decision-making uses tailored data as input,
obtained after a reduction process applied to the whole data. So, a representative and
relevant data set must to be extracted from data. This is the subject of data reduction.
On the other hand, recognize crowd-data signifi-cance is another challenges with
respect to making sense of Big Data: it means to determine “wrong” information from
“disagreeing” information and find metrics to determine certainty [3].

Thomas H. Davenport, Jill Dych in their report “Big Data in Big Companies” [2]
name “Analytics 3.0” the new approach that well established big companies had to
do in order to integrate Big Data infrastructure into their existing IT infrastructure
(for example Hadoop clusters that have to coexist with IBM mainframes). The
“variety” aspect of Big Data is the main concern for companies (ability to analyze
new types of data, eventually unstructured, and not necessary focus on large
volumes).

The most evident benefits of switching to Big Data are the cost reductions. Big
data currently represents a research frontier, having impact in many areas, such as
business, the scientific research, public administration, and so on. Large datasets are
produced by multiple and diverse sources like: www, sensor networks, scientific
experiments, high throughput instruments, increase at exponential rate [4, 5] as
shown in Fig. 1. UPS stores over 16 petabytes of data, tracking 16 millions packages
per day for 9 millions customers. Due to an innovative optimization of navigation on
roads they saved in 2011, 8.4 millions of gallons of fuel. A bank saved an order of
magnitude by buying a Hadoop cluster with 50 servers and 800 processors compared
with a traditional warehouse. The second motivation for companies to use Big Data
is time reduction. Macy’s was able to optimize pricing for 73 million items on sale

Fig. 1 Data deluge: the increase of data size has surpassed the capabilities of computation in Big
Data platforms [4, 5]
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from 27 to 1 h. Also, companies can run a lot more (100.000) analytics models than
before (10, 20 or 100). Time reduction allows also to real time react to customer
habits. The third objective is to create new Big Data specific offerings. LinkedIn
launched a set of new services and features such as Groups You May Like, Jobs You
May Be Interested In, and Who’s Viewed My Profile etc. Google developed Google
Plus, Google Apps. Verizon, Sprint and T-Mobile deliver services based on location
data provided by mobiles. The fourth advantage offered by Big Data to business is
the support in taking internal decision, considering that lot of data coming from
customer’s interaction is unstructured or semi-structured (web site clicks, voice
recording from call center calls, notes, video, emails, web logs etc.). With the aid of
natural language processing tools voice can be translated into text and calls can be
analyzed.

The Big Data stack is composed of storage, infrastructure (e.g. Hadoop), data
(e.g. human genome), applications, views (e.g. Hive) and visualization. The
majority of big companies already have in place a warehouse and analytics solution,
which needs to be integrated now with the Big Data solution. The challenge is to
integrate the legacy ERP, CRM, 3rd party apps, the data warehouse with Hadoop
and new types of data (social media, images, videos, web logs, pdfs, etc.) in a way
that allows efficient modeling and reporting.

Since we face a large variety of solutions for specific applications and platforms,
a thorough and systematic analysis of existing solutions for data reduction models,
methods and algorithms used in Big Data is needed [6, 7]. This chapter presents the
art of existing solutions and creates an overview of current and near-future trends; it
uses a case study as proof of concept for presented techniques.

The chapter is organized as follow. Section 2 presents the data manipulation
challenges being focused on spatial and temporal databases, key-value stores and
no-SQL, data handling and data cleaning, Big Data processing stack and processing
techniques. Section 3 describes the reduction techniques: descriptive analytics,
predictive analytics and prescriptive analytics. In Sect. 4 we present a case study
focused on CyberWater, which is a research project aiming to create a prototype
platform using advanced computational and communications technology for
implementation of new frameworks for managing water and land resources in a
sustainable and integrative manner. The chapter ends with Sect. 5 presenting
conclusions.

2 Data Manipulation Challenges

This section describes the data manipulation challenges: spatial and temporal
databases [8], parallel queries processing, key-value stores and no-SQL, Data
Cleaning, MapReduce, Hadoop and HDFS [9]. The processing techniques used in
data manipulation together with Big Data stack are presented in this section
[10–12]. This part also fixes the most important aspects of data handling used in
analytics.
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2.1 Spatial and Temporal Databases

Spatial and temporal database systems are in close collaborative relation with other
research area of information technology. These systems integrate with other dis-
ciplines such as medicine, CAD/CAM, GIS, environmental science, molecular
biology or genomics/bioinformatics. Also, they use large, real databases to store
and handle large amount of data [13]. Spatial databases are designed to store and
process spatial information systems efficiently. Temporal databases represent
attribute of objects that are changing with respect to time. There are different
models for spatial/temporal and spatio-temporal systems [14]:

• Snapshot Model—temporal aspects of data time-stamped layers;
• Space-Time composite—every line in space and time is projected onto a Spatial

plane and intersected with each other;
• Simple Time Stamping—each object consists of a pair of time stamps repre-

senting creation and deletion time of the object;
• Event-Oriented model—a log of events and changes made to the objects are

logged into a transaction log;
• History Graph Model—each object version is identified by two timestamp

describing the interval of time;
• Object-Relationship (O-R) Model—a conceptual level representation of

spatio-temporal DB;
• Spatio-temporal object-oriented data model—is based on object oriented

technology;
• Moving Object Data Model—objects are viewed as 3D elements.

The systems designed considering these models manage both space and time
information for several classes of applications, like: tracking of moving people or
objects, management of wireless communication networks, GIS applications, traffic
jam preventions, whether prediction, electronic services (e.g. e-commerce), etc.

Current research focuses on the dimension reduction, which targets
spatio-temporal data and processes and is achieved in terms of parameters, grouping
or state.1 Guhaniyogi et al. [15] address the dimension reduction in both parameters
and data space. Johnson et al. [16] create clusters of sites based upon their temporal
variability. Leininger et al. [17] propose methods to model extensive classification
data (land-use, census, and topography). Wu et al. [18] considering the problem of
predicting migratory bird settling, propose a threshold vector-autoregressive model
for the Conway-Maxwell Poisson (CMP) intensity parameter that allows for regime
switching based on climate conditions. Dunstan et al. [19] goal is to study how
communities of species respond to environmental changes. In this respect they o
classify species into one of a few archetypal forms of environmental response using

1These solution were grouped in the Special Issue on “Modern Dimension Reduction Methods for
Big Data Problems in Ecology” edited by Wikle, Holan and Hooten, in Journal of Agricultural,
Biological, and Environmental Statistics.
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regression models. Hooten et al. [20] are concerned with ecological diffusion partial
differential equations (PDE’s) and propose an optimal approximation of the PDE
solver that dramatically improves efficiency. Yang et al. [21] are concerned with
prediction in ecological studies based on high-frequency time signals (from sensing
devices) and in this respect they develop nonlinear multivariate time-frequency
functional models.

2.2 Key-Value Stores and NoSQL

NoSQL term may refer two different things, like the data management system is not
an SQL-compliant one or accepted one means “Not only SQL”, and refers to
environments that combine SQL query language with other types of querying and
access. Due to the fact that NoSQL databases does not have a fix schema model,
they come with a big advantage for developers and data analysts in the process of
development and analysis, as is not need to cast every query as a relational table
database. Moreover there are different NoSQL frameworks specific to different
types of analysis such as key-value stores, document stores, tabular stores, object
data stores, and graph databases [22].

Key-value stores represents schema less NoSQL data stores, where values are
associated with keys represented by character strings. There are four basic opera-
tions when dealing with this type of data stores:

1. Put(key; value)—associate a value with the corresponding key;
2. Delete(key)—removes all the associated values with supplied key;
3. Get(key)—returns the values for the provided key;
4. MultiGet(key1; key2;. . .; keyn)—returns the list of values for the provided keys.

In this type of data stores can be stored a large amount of data values that are
indexed and can be appended at same key due to the simplicity of representation.
Moreover tables can be distributed across storage nodes [22].

Although key-value stores can be used efficiently to store data resulted from
algorithms such as phrase counts, these have some drawbacks. First it is hard to
maintain unique values as keys, being more and more difficult to generate unique
characters string for keys. Second, this model does not provide capacities such as
consistency for multiple transactions executed simultaneously, those must be pro-
vided by the application level.

Document stores are data stores similar to key-values stores, main difference
being that values are represented by “documents” that have some structure and
encoding models (e.g. XML, JSON, BSON, etc.) of managed data. Also document
stores provide usually and API for retrieving the data.

Tabular stores represent stores for management of structured data based on
tables, descending from BigTable design from Google. HBase form Hadoop rep-
resents such type on NoSQL data management system. In this type of data store
data is stored in a three-dimensional table that is indexed by a row key (that is used
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in a fashion that is similar to the key-value and document stores), a column key that
indicates the specific attribute for which a data value is stored, and a timestamp that
may refer to the time at which the row’s column value was stored.

Madden defines in [23] Big Data as being data which is “too big (e.g. petabyte
order), too fast (must be quickly analyzed, e.g. fraud detection), too hard (requires
analysis software to be understood)” to be processed by tools in the context of
relational databases. Relational databases, especially commercial ones (Teradata,
Netezza, Vertica, etc.) can handle the “too big” problem but fail to address the other
two. “Too fast” means handling streaming data that cannot be done efficiently by
relational engines. In-database statistics and analytics that are implemented for
relational databases does not parallelize efficiently for large amount of data (the
“too hard” problem). MapReduce or Hadoop based databases (Hive, HBase) are not
solving the Big Data problems but seem to recreate DBMS’s. They do not provide
data management and show poor results for the “too fast” problem since they work
with big blocks of replicated data over a distributed storage thus making difficult to
achieve low-latency.

Currently we face with a gap between analytics tools (R, SAS, Matlab) and
Hadoop or RDBMS’s that can scale. The challenge is to build a bridge either by
extending relational model (Oracle Data Mining [24] and Greenplum MadSkills
[25] efforts to include data mining, machine learning, statistical algorithms) or
extend the MapReduce model (ongoing efforts of Apache Mahout to implement
machine learning on top of MapReduce) or creating something new and different
from these two (GraphLab from Carnegie Mellon [26] which is a new model
tailored for machine learning or SciDB which aims to integrate R and Python with
large data sets on disks but these are not enough mature products). All these have
problems from the usability perspective [23].

2.3 Data Handling and Data Cleaning

Traditional technologies and techniques for data storage and analysis are not effi-
cient anymore as the data is produced in high-volumes, come with high-velocity,
has high-variety and there is an imperative need for discovering valuable knowl-
edge in order to help in decision making process.

There are many challenges when dealing with big data handling, starting from
data capture to data visualization. Regarding the process of data capture, sources of
data are heterogeneous, geographically distributed, and unreliable, being suscepti-
ble to errors. Current real-world storage solutions such as databases are populated in
consequence with inconsistent, incomplete and noisy data. Therefore, several data
preprocessing techniques, such as data reduction, data cleaning, data integration,
and data transformation, must be applied to remove noise and correct inconsis-
tencies and to help in decision-making process [27].

The design of NoSQL databases systems highlights a series of advantages for
data handling compared with relational database systems [28]. First data storage
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and management are independent one from another. The data storage part, called
also key-value storage, focus on the scalability and high-performance. For the
management part, NoSQL provides low-level access mechanism, which gives
the possibility that tasks related to data management can be implemented in the
application layer, contrary to relational databases which spread management logic
in SQL or stored procedures [29].

So, NoSQL systems provide flexible mechanisms for data handling, and appli-
cation developments and deployments can be easily updated [28]. Another
important design advantage of NoSQL databases is represented by the facts that are
schema-free, which permits to modify structure of data in applications; moreover
the management layer has policies to enforce data integration and validation.

Data quality is very important, especially in enterprise systems. Data mining
techniques are directly affected by data quality. Poor data quality means no relevant
results. Data cleaning in a DBMS means record matching, data deduplication, and
column segmentation. Three operators are defined for data cleaning tasks: fuzzy
lookup that it is used to perform record matching, fuzzy grouping that is used for
deduplication and column segmentation that uses regular expressions to segment
input strings [30–32].

Big Data can offer benefits in many fields from businesses through scientific
field, but with condition to overcome the challenges, which arise in data, capture,
data storage, data cleaning, data analysis and visualization.

2.4 Big Data Processing Stack

Finding the best method for a particular processing request behind a particular use
remains a significant challenge. We can see the Big Data processing as a big batch
process that runs on an HPC cluster by splitting a job into smaller tasks and dis-
tributing the work to the cluster nodes. The new types of applications, like social
networking, graph analytics, complex business workflows, require data movement
and data storage. In [33] is proposed a general view of a four-layer big-data processing
stack (see Fig. 2). Storage Engine provides storage solutions (hardware/software) for
big data applications: HDFS, S3, Lustre, NFS, etc. Execution Engine provides the
reliable and efficient use of computational resources to execute. This layers aggregate
YARN-based processing solutions. Programming Model offers support for applica-
tion development and deployment. High-Level Language allows modeling of queries
and general data-processing tasks in easy and flexible languages (especially for
non-experts).

The processing models must be aware about data locality and fairness when
decide to move date on the computation node or to create new computation nodes
neat to data. The workload optimization strategies are the key for a guaranteed
profit for resource providers, by using the resource to maximum capacity. For

Optimizing Intelligent Reduction Techniques for Big Data 55



applications that are both computational and data intensive the processing models
combine different techniques like in-memory Big Data or CPU + GPU processing.
Figure 3 describes in a general stack used to define a Big Data processing platform.

Moreover, Big Data platforms face with heterogeneous environments where
different systems, like Custer, Grid, Cloud, and Peer-to-Peer can offer support for
advance processing. At the confluence of Big Data with heterogeneity, scheduling
solutions for Big Data platforms consider distributed applications designed for
efficient problem solving and parallel data transfers (hide transfer latency) together
with techniques for failure management in high heterogeneous computing systems.
Handling of heterogeneous data sets becomes a challenge for interoperability
through various software systems.

Fig. 3 Big Data platforms stack: an extended view

Fig. 2 Big Data processing
stack
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2.5 Processing in Big Data Platforms

A general Big Data architecture basically consists of two parts: a job manager that
coordinates processing nodes and a storage manager that coordinates storage nodes
[34]. Apache Hadoop is a set of open source applications that are used together in
order to provide a Big Data solution. The two main components mentioned above
in Hadoop are, HDFS and YARN. In Fig. 4 is presented the general architecture of
a computing platform for Big Data platforms. HDFS Hadoop Distributed File
System is organized in clusters where each cluster consists of a name node and
several storage nodes. A large file is split into blocks and name node takes care of
persisting the parts on data nodes. The name node maintains metadata about the
files and commits updates to a file from a temporary cache to the permanent data
node. The data node does not have knowledge about the full logical HDFS file; it
handles locally each block as a separate file. Fault tolerance is achieved through
replication; optimizing the communication by considering the location of the data
nodes (the ones located on the same rack are preferred). A high degree of reliability
is realized using heartbeat technique (for monitoring), snapshots, metadata repli-
cation, checksums (for data integrity), and rebalancing (for performance).

YARN is a name for MapReduce v2.0. This implements a master/slave exe-
cution of processes with a JobTracker master node and a pool of Task-Trackers that
do the work. The two main responsibilities of the JobTracker, management of
resources and job scheduling/monitoring are split. There is a global resource
manager (RM) per application, and an Application Master (AM). The slave is a per
node entity named Node Manager (NM) which is doing the computations. The AM
negotiates with the RM for resources and monitors task progress. Other components

Fig. 4 Typical organization of resources in a big-data platform
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are added on top of Hadoop in order to create a Big Data ecosystem capable of
configuration management (Zookeeper [35]), columnar organization (HBase [36]),
data warehouse querying (Hive [37]), easier development of MapReduce programs
(Pig [38]), and machine learning algorithms (Mahout) [39].

3 Big Data Reduction Techniques

This section highlights the analytics for Big Data focusing on reduction techniques.
The main reduction techniques are based on: statistical models used in data analysis
(e.g. kernel estimation) [40, 41]; machine learning techniques: supervised and
un-supervised learning, classification and clustering, k-means [42],
multi-dimensional scaling [43]; ranking techniques: PageRank, recursive queries,
etc. [44]; latent semantic analysis; filtering techniques: collaborative filtering,
multi-objective filtering; self-* techniques (self-tuning, self-configuring, self
adaptive, etc.) [45], and data mining techniques [46]. All these techniques are used
for descriptive analytics, predictive analytics and prescriptive analytics.

According with [2], we can see three important stages in evolution of analytics
methods:

• Analytics 1.0 (1954–2009)—data sources small and data was mostly internal,
analytics was a batch process that took months;

• Analytics 2.0 (2005–2012)—the most important actors are Internet based
companies Google, eBay, Yahoo. Data is mostly external, unstructured, huge
volume, and it required parallel processing with Hadoop. It is what was named
Big Data. The tow of data is much faster than in Analytics 1.0. A new category
of skilled employees called data scientists emerged;

• Analytics 3.0 (2012 present)—the best of traditional analytics and Big Data
techniques are mixed together in order to tackle large volumes of data, both
internal and external, both structured and unstructured, obtained in a continu-
ously increasing number of different formats (new sensors are added). Hadoop
and Cloud technologies are intensively used not only by online forms but by
various companies such as Banks, Retail, HealthCare providers, etc.

3.1 Intelligent Reduction Techniques

In Data Analysis as part of the Qualitative Research for large datasets, in past
decades there were proposed Content Analysis (counting the number of occurrences
of a word in a text but without considering the context) and Thematic Analysis
(themes are patterns that occurs repeatedly in data sets and which are important to
the research question). The first form of data reduction is to decide which data from
the initial set of data is going to be analyzed (since not all data could be relevant,
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some of it can be eliminated). In this respect there should be defined some method
for categorizing data [47].

Structural coding—code related to questions is then applied to responses to that
question in the text. Data can be then sorted using these codes (structural coding
acting as labeling).

Frequencies—word counting can be a good method to determine repeated ideas
in text. It requires prior knowledge about the text since one should know before the
keywords that will be searched. An improvement is to count not words but codes
applications (themes).

Co-occurrence—more codes exist inside a segment of text. This allows Boolean
queries (and segment with code A AND code B).

Hierarchical Clustering—using co-occurrence matrices (or code similarity
matrices) as input. The goal is to derive natural groupings (clusters) in large
datasets. A value matrix element v(i, j) = n means that code i and code j co-occurs
in n participant files.

Multidimensional Scaling—the input is also similarity matrix and ideas that are
considered to be close each to the other are represented as points with a small
distance between them. This way is intuitive to visualize graphically the clusters.

Big Data does not raise only engineering concerns (how to manage effectively
the large volume of data) but also semantic concerns (how to get meaning infor-
mation regardless implementation or application specific aspects).

Meaningful data integration process requires following stages, not necessarily in
this order [7]:

• Define the problem to be resolved;
• Search the data to find the candidate datasets that meet the problem criteria;
• ETL (Extract, Transform and Load) of the appropriate parts of the candidate

data for future processing;
• Entity Resolution checks if data is unique, comprehensive and relevant;
• Answer the problem performs computations to give a solution to the initial

problem.

Using the Web of Data, which according to some statistics contains 31 billion
RDF triples, is possible to find all data about people and their creations (books,
films, musical creations, etc.), translate the data into a single target vocabulary,
discover all resources about a specific entity and then integrate this data into a
single coherent representation. RDF and Linked Data (such as pre-crawled web data
sets BTC 2011 with 2 billion RDF triples or Sindice 2011 with 11 billion RDF
triples extracted from 280 million web pages an- notated with RDF) are schema less
models that suits Big Data, considering that less than 10 % is genuinely relational
data. The challenge is to combine DBMS’s with reasoning (the next smart data-
bases) that goes beyond OWL, RIF or SPARQL and for this reason use cases are
needed from the community in order to determine exactly what requirements the
future DB must satisfy. A web portal should allow people to search keywords in
ontologies, data itself and mappings created by users [7].
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3.2 Descriptive Analytics

Descriptive analytics is oriented on descriptive statistics (counts, sums, averages,
percentages, min, max and simple arithmetic) that summarizes certain groupings or
filtered type of the data, which are typically simple counts of some functions,
criteria or events. For example, number of post on a forum, number of likes on
Facebook or number of sensors in a specific area, etc. The techniques behind
descriptive analytics are: standard aggregation in databases, filtering techniques and
basic statistics. Descriptive analytics use filters on the date before applying specific
statistical functions. We can use geo-filters to get metrics for a geographic region (a
country) or temporal filter, to extract date only for a specific period of time (a
week). More complex descriptive analytics are dimensional reduction or stochastic
variation.

Dimensionality reduction represents an important tool in information analysis.
Also scaling down data dimensions is important in process of recognition and
classification. Is important to notice that, sparse local operators, which imply less
quadratic complexity and faithful multi-scale models make the de sign of dimension
reduction procedure a delicate balance between modeling accuracy and efficiency.
Moreover the efficiency of dimension reduction tools is measured in terms of
memory and computational complexity. The authors provide a theoretical support
and demonstrate that working in the natural Eigen-space of the data one could
reduce the process complexity while maintaining the model fidelity [48].

A stochastic variation inference is used for Gaussian process models in order to
enable the application of Gaussian process (GP) models to data sets containing
millions of data points. The key finding in this chapter is that GPs can be
decomposed to depend on a set of globally relevant inducing variables, which
factorize the model in the necessary manner to perform variation inference. These
expressions allow for the transfer of a multitude of Gaussian process techniques to
big data [41].

3.3 Predictive Analytics

Predictive analytics, which are probabilistic techniques, refers to: (i) temporal
predictive models that can be used to summarize existing data, and then to
extrapolate to the future where data doesn’t exist; (ii) non-temporal predictive
models (e.g. a model that based on someone’s existing social media activity data
will predict his/her potential to influence [49]; or sentimental analysis). The most
challenging aspect here is to validate the model in the context of Big Data analysis.
One example of this model, based on clustering, is presented in the following.

A novel technique for effectively processing big graph data on cloud surpasses
the raising challenges when data is processed in heterogeneous environments, such
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as parallel memory bottlenecks, deadlocks and inefficiency. The data is compressed
based on spatial-temporal features, exploring correlations that exist in spatial data.
Taking into consideration those correlations graph data is partitioned into clusters
where, the workload can be shared by the inference based on time series similarity.
The clustering algorithm compares the data streams according to the topology of the
streaming data graph topologies from the real world. Furthermore, because the data
items in streaming big data sets are heterogeneous and carry very rich order
information themselves, an order compression algorithm to further reduce the size
of big data sets is developed. The clustering algorithm is developed on the
cluster-head. It takes time series set X and similarity threshold as inputs. The output
is a clustering result which specifying each cluster-head node and its related leaf
nodes [50].

The prediction models used by predictive analytics should have the following
properties: simplicity (a simple mathematical model for a time series), flexibility
(possibility to configure and extend the model), visualization (the evolution of the
predicted values can be seen in parallel with real measured values) and the com-
putation speed (considering full vectorization techniques for array operations). Let’s
consider a data series V1; V2; …; Vn extracted by a descriptive analytics technique.
We consider for the prediction problem P(Vt+1) that denotes the predicted value for
the moment t + 1 (next value). This value is:

PVt+1 =P Vt+1ð Þ= f Vt,Vt− 1, . . . ,Vt−windowð Þ,

where: window represents a specific interval with window + 1 values and f can be a
linear function such as mean, median, standard deviation or a complex function that
uses a bio-inspired techniques (an adaptive one or a method based on neural
networks).

The linear prediction can be expressed as follow:

PVt+1 = fw =
1

window+1
∑

window

i=0
wiVt− i,

where w= wi½ �0≤ i≤window is a vector with weights. If ∀i,wi =1 then we have the
mean function. It is possible to consider specific distribution of weights as follow:
wi = t− i.

The predictive analytics are very useful to make estimation for future behaviors
especially when the date is no accessible (it is not possible to obtain or to predict) or
is too expensive (e.g. money, time) to measure or to compute the data. The main
challenge is to validate the predicted data. One solution is to wait for the real value
(in the future) to measure the error, then to propagate it in the system in order to
improve the future behavior. Other solution is to measure the impact of the pre-
dicted date in the applications that use the data.
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3.4 Prescriptive Analytics

Prescriptive analytics predicts multiple futures based on the decision maker’s
actions. A predictive model of the data is created with two components: actionable
(decision making support) and feedback system (tracks the outcome of made
decisions). Prescriptive analytics can be used for recommendation systems because
it is possible to predict the consequences based on predictive models used.
A self-tuning database system is an example that we will present in the following.

Starfish is a self-tuning system for big data analytics, build on Hadoop. This
system is designed according to self-tuning database systems [45]. Cohen et al.
proposed the acronym MAD (Magnetism, Agility, and Depth) in order to express
the features that users expect from a system for big data analytics [51]. Magnetism
represents the propriety of a system that attracts all sources of data regardless of
different issues (e.g. possible presence of outliers, unknown schema, lack of
structure, missing values) keeping many data sources out of conventional data
warehouses. Agility represents the propriety of adaptation of systems in sync with
rapid data evolution. Depth represents the propriety of a system, which supports
analytics needs that go far beyond conventional rollups and drilldowns to complex
statistical and machine-learning analysis. Hadoop represents a MAD system that is
very popular for big data analytics. This type of systems poses new challenges in
the path to self-tuning such as: data opacity until processing, file based processing,
and heavy use of programming languages.

Furthermore three more features in addition to MAD are becoming important in
analytics systems: data-lifecycle awareness, elasticity, and robustness.
Data-lifecycle-awareness means optimization of the movement, storage, and pro-
cessing of big data during its entire lifecycle by going beyond query execution.
Elasticity means adjustment of resource usage and operational costs to the workload
and user requirements. Robustness means that this type of system continues to
provide service, possibly with graceful degradation, in the face of undesired events
like hardware failures, software bugs, and data corruption.

The Starfish system has four levels of tuning: Job-level tuning, Workflow-level
tuning, and Workload-level tuning. The novelty in Starfish’s approach comes from
how it focuses simultaneously on different workload granularities overall workload,
workflows, and jobs (procedural and declarative) as well as across various decision
points provisioning, optimization, scheduling, and data layout. This approach
enables Starfish to handle the significant interactions arising among choices made at
different levels [45].

To evaluate a prescriptive analytics model we need a feedback system (to tracks
the adjusted outcome based on the action taken) and a model for tacking actions
(take actions based on the predicted outcome and based on feedback). We define
several metrics for evaluating the performance of prescriptive analytics. Precision is
the fraction of the data retrieved that are relevant to the user’s information need.
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Recall is the fraction of the data that are relevant to the query that are successfully
retrieved. Fall-Out is the proportion of non-relevant data that are retrieved, out of
all non-relevant documents available. Fmeasure is the weighted harmonic mean of
precision and recall:

Fmeasure =
2 *Precision *Recall
Precision + Recall

.

The general formula for this metric is:

Fβ =
1+ β2
� �

*Precision *Recall

β2 * Precision + Recallð Þ .

This metric measures the effectiveness of retrieval with respect to a user who
attaches β times as much importance to recall as precision. As a general conclusion
we can summarize the actions performed by three types of analytics as follow:
descriptive analytics summarize the data (data reduction, sum, count, aggregation,
etc.), predictive analytics predict data that we don’t have (influence scoring, trends,
social analysis, etc.) and prescriptive analytics guide the decision making to a
specific outcome.

4 CyberWater Case Study

In this section we present the case study on CyberWater [52], which is a research
project aiming to create a prototype platform using advanced computational and
communications technology for implementation of new frameworks for managing
water and land resources in a sustainable and integrative manner. The main focus of
this effort is on acquiring diverse data from various data sources in a common
digital platform, which is a lose subject to Big Data, and is subsequently used for
routine decision making in normal conditions and for providing assistance in
critical situations related to water, such as accidental pollution flooding, which is an
analytics subject.

CyberWater system monitors natural resources and water related events, shares
data compliant to the INSPIRE Directive, and alerts relevant stakeholders about
critical situations. In the area where we conduct the measurements (Someș and
Dâmbovița rivers from Romania) certain types of chemical and physical indicators
are of interest: pH, Turbidity, Alkalinity, Conductivity, Total Phenols, dissolved
Oxygen, N–NH4, N–NO2, N–NO3, Total N, P–PO4, and Magnesium.

The multi-tier system presented in Fig. 5 is composed of: data layer, processing
layer, visualization layer. Water resources management requires the processing of a
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huge amount of information with different levels of accessibility and availability
and in various formats. The data collected in CyberWater is derived from various
sources: (i) Measured data (from sensors) gathered through the Sensor Observation
Service (SOS) standard. The schema is predefined by the OGC standard. Infor-
mation about sensors is transmitted in the XML based format SensorML and the
actual observational data is sent in O&M format; (ii) Predicted data; (iii) Modeled
data from the propagation module; (iv) Subscribers data which holds information
about subscribers and their associated notification services.

Figure 6 describes the reduction data in the CyberWater system. Data collected
from various sources are used to describe the model of propagation of the pol-
lutants (geo-processing tool based on the river bed profile and fluids dynamics
equations). This is the Descriptive Analytics phase, were only relevant date are
used from the system repository. Phase (2)—Predictive Analytics is represented by
the prediction of the next value of a monitored chemical/physical indicator. Then,
decision support that triggers alerts to relevant actors of the system is the subject
of Perspective Analytics. The main application that generates alerts is a typical
Publish/Subscribe application and is the place where the alert services are defined
and implemented.

Fig. 5 Multi-tier architecture of CyberWater system

64 F. Pop et al.



5 Conclusion

Qualitative data used to produce relevant information are obtained by reducing the
big amount of data collected and aggregated over the time, in different locations.
Reduction techniques have the main role to extract as much as possible relevant
data that characterize the all analyzed data. In this chapter we made an overview on
data manipulation challenges, on reduction techniques: descriptive analytics, pre-
dictive analytics and prescriptive analytics. We presented a case study on water
resources management that explains the use of reduction techniques for Big Data.
As recommendation about the use of reduction techniques for Big Data, we can
draw the following line: collect and clean data, extract the relevant information
using descriptive analytics, estimate the future using predictive analytics and take
decisions to move on using perspective analytics; the loop closes by adding
valuable information in the system.

Acknowledgments The research presented in this paper is supported by projects:CyberWater grant
of the Romanian National Authority for Scientific Research, CNDI-UEFISCDI, project number
47/2012; CLUeFARM: Information system based on cloud services accessible through mobile devi-
ces, to increase product quality and business development farms—PN-II-PT-PCCA-2013-4-0870;

Fig. 6 CyberWater: from descriptive analytics to perspective analytics

Optimizing Intelligent Reduction Techniques for Big Data 65



DataWay: Real-time Data Processing Platform for Smart Cities: Making sense of Big Data -
PN-II-RU-TE-2014-4-2731; MobiWay: Mobility Beyond Individualism: an Integrated Platform for
Intelligent Transportation Systems of Tomorrow—PN-II-PT-PCCA-2013-4-0321.

References

1. Laurila, J.K., Gatica-Perez, D., Aad, I., Bornet, O., Do, T.M.T., Dousse, O., Eberle, J.,
Miettinen, M.: The mobile data challenge: Big data for mobile computing research. In: Mobile
Data Challenge by Nokia Workshop (2012)

2. Davenport, T.H., Dyche, J.: Big data in big companies. Int. Inst. Anal. (2013)
3. Ho, D., Snow, C., Obel, B., Dissing Srensen, P., Kallehave, P.: Unleashing the potential of big

data. Technical report, Organizational Design Community (2013)
4. Lynch, C.: Big data: How do your data grow? Nature 455(7209), pp. 28–29 (2008)
5. Szala, A.: Science in an exponential world. Nature 440, 2020 (2006)
6. Birney, E.: The making of encode: lessons for big-data projects. Nature 489(7414), pp. 49–51

(2012)
7. Bizer, C., Boncz, P., Brodie, M.L., Erling, O.: The meaningful use of big data: Four

perspectives-four challenges. SIGMOD Rec. 40(4), pp. 56–60 (2012)
8. Madden, S.: From databases to big data. IEEE Internet Comput. 16(3), pp. 4–6 (2012)
9. Chen, Y., Alspaugh, S., Katz, R.: Interactive analytical processing in big data systems: a

cross-industry study of mapreduce workloads. Proc. VLDB Endow. 5(12), pp. 1802–1813
(2012)

10. Cuzzocrea, A., Song, I.Y. Davis, K.C.: Analytics over large-scale multidimensional data: the
big data revolution! In: Proceedings of the ACM 14th International Workshop on Data
Warehousing and OLAP, DOLAP’11, pp. 101–104. ACM, New York, NY, USA (2011)

11. Negru, C., Pop, F., Cristea, V., Bessisy, N., Li, J.: Energy efficient cloud storage service: key
issues and challenges. In: Proceedings of the 2013 Fourth International Conference on
Emerging Intelligent Data and Web Technologies, EIDWT’13, pp. 763–766. IEEE Computer
Society, Washington, DC, USA (2013)

12. Rao, S., Ramakrishnan, R., Silberstein, A., Ovsiannikov, M., Reeves, D.: Sailfish: a
framework for large scale data processing. In: Proceedings of the Third ACM Symposium on
Cloud Computing, SoCC’12, pp. 4:1–4:14. ACM, New York, NY, USA (2012)

13. Roddick, J.F., Hoel, E., Egenhofer, M.J., Papadias, D., Salzberg, B.: Spatial, temporal and
spatio-temporal databases—hot issues and directions for Ph.D. research. SIGMOD Rec. 33(2),
pp. 126–131 (2004)

14. Chen, C.X.: Spatio-temporal databases. In: Shekhar, S., Xiong, H. (eds.) Encyclopedia of GIS,
pp. 1121–1121. Springer, USA (2008)

15. Guhaniyogi, R., Finley, A., Banerjee, S., Kobe, R.: Modeling complex spatial dependencies:
low-rank spatially varying cross-covariances with application to soil nutrient data. J. Agric.
Biol. Environ. Stat. 18(3), pp. 274–298 (2013)

16. Johnson, D.S., Ream, R.R., Towell, R.G., Williams, M.T., Guerrero, J.D.L.: Bayesian
clustering of animal abundance trends for inference and dimension reduction. J. Agric. Biol.
Environ. Stat. 18(3), pp. 299–313 (2013)

17. Leininger, T.J., Gelfand, A.E., Allen, J.M., Silander Jr, J.A.: Spatial regression modeling for
compositional data with many zeros. J. Agric. Biol. Environ. Stat. 18(3), pp. 314–334 (2013)

18. Wu, G., Holan, S.H., Wikle, C.K.: Hierarchical Bayesian spatio-temporal conwaymaxwell
poisson models with dynamic dispersion. J. Agric. Biol. Environ. Stat. 18(3), pp. 335–356
(2013)

19. Dunstan, P.K., Foster, S.D., Hui, F.K., Warton, D.I.: Finite mixture of regression modeling for
high-dimensional count and biomass data in ecology. J. Agric. Biol. Environ. Stat. 18(3),
pp. 357–375 (2013)

66 F. Pop et al.



20. Hooten, M.B., Garlick, M.J., Powell, J.A.: Computationally efficient statistical differential
equation modeling using homogenization. J. Agric. Biol. Environ. Stat. 18(3), pp. 405–428
(2013)

21. Yang, W.-H., Wikle, C.K., Holan, S.H., Wildhaber, M.L.: Ecological prediction with
nonlinear multivariate time-frequency functional data models. J. Agric. Biol. Environ. Stat. 18
(3), pp. 450–474 (2013)

22. Loshin, D.: Nosql data management for big data. In: Loshin, D. (ed.) Big Data Analytics,
pp. 83–90. Morgan Kaufmann, Boston (2013)

23. Madden, S.: Query processing for streaming sensor data. Comput. Sci. Div. (2002)
24. Hamm, C., Burleson, D.K.: Oracle Data Mining: Mining Gold from Your Warehouse. Oracle

In-Focus Series. Rampant TechPress (2006)
25. Hellerstein, J.M., Ré, C., Schoppmann, F., Wang, D.Z., Fratkin, E., Gorajek, A., Ng, K.S.,

Welton, C., Feng, X., Li, K., Kumar, A.: The MADlib analytics library: or MAD skills, the
SQL. Proc. VLDB Endow. 5(12), pp. 1700–1711 (2012)

26. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.: Distributed
graphlab: a framework for machine learning and data mining in the cloud. Proc. VLDB
Endow. 5(8), pp. 716–727 (2012)

27. Han, J., Kamber, M.: Data Mining, Southeast Asia Edition: Concepts and Techniques. Morgan
kaufmann (2006)

28. Hilbert, M., Lopez, P.: The worlds technological capacity to store, communicate, and compute
information. Science 332(6025), pp. 60–65 (2011)

29. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM Trans.
Comput. Syst. (TOCS) 26(2), 4 (2008)

30. Agrawal, P., Arasu, A., Kaushik, R.: On indexing error-tolerant set containment. In:
Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD’10, pp. 927–938. ACM, New York, NY, USA (2010)

31. Arasu, A., Gotz, M., Kaushik, R.: On active learning of record matching packages. In:
Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD’10, pp. 783–794. ACM, New York, NY, USA (2010)

32. Arasu, A., Re, C., Suciu, D.: Large-scale deduplication with constraints using dedupalog. In:
Proceedings of the 2009 IEEE International Conference on Data Engineering, ICDE’09,
pp. 952–963. IEEE Computer Society, Washington, DC, USA (2009)

33. Varbanescu, A.L., Iosup, A.: On many-task big data processing: from GPUs to clouds. In:
MTAGS Workshop, held in conjunction with ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pp. 1–8. ACM (2013)

34. Loshin, D.: Big data tools and techniques. In: Loshin, D. (ed.) Big Data Analytics, pp. 61–72.
Morgan Kaufmann, Boston (2013)

35. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: Wait-free coordination for
internet-scale systems. In: Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference, USENIXATC’10, pp. 11–11. USENIX Association, Berkeley, CA,
USA (2010)

36. Jiang, Y.: HBase Administration Cookbook. Packt Publishing, Birmingham (2012)
37. Huai, Y., Chauhan, A., Gates, A., Hagleitner, G., Hanson, E.N., O’Malley, O., Pandey, J.,

Yuan, Y., Lee, R., Zhang, X.: Major technical advancements in apache hive. In: Proceedings
of the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD’14,
pp. 1235–1246. ACM, New York, NY, USA (2014)

38. Shang, W., Adams, B., Hassan, A.E.: Using pig as a data preparation language for large-scale
mining software repositories studies: an experience report. J. Syst. Softw. 85(10),
pp. 2195–2204 (2012)

39. Owen, S., Anil, R., Dunning, T., Friedman, E.: Mahout in Action. Manning Publications Co.,
Greenwich, CT, USA (2011)

40. Banerjee, S., Gelfand, A.E., Finley, A.O., Sang, H.: Gaussian predictive process models for
large spatial data sets. J. R. Stat. Soc. Series B (Stat. Methodol.) 70(4), pp. 825–848 (2008)

Optimizing Intelligent Reduction Techniques for Big Data 67



41. Hensman, J., Fusi, N., Lawrence, N.D.: Gaussian processes for big data (2013). arXiv:1309.
6835

42. Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data: constant-size coresets
for k-means, pca and projective clustering. In: Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA’13, pp. 1434–1453. SIAM (2013)

43. Aflalo, Y., Kimmel, R.: Spectral multidimensional scaling. Proc. Natl. Acad. Sci. 110(45),
pp. 18052–18057 (2013)

44. Pop, F., Ciobanu, R.-I., Dobre, C.: Adaptive method to support social-based mobile networks
using a pagerank approach. In: Concurrency and Computation: Practice and Experience (2013)

45. Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F.B., Babu, S.: Starfish: a
self-tuning system for big data analytics. In: CIDR, vol. 11, pp. 261–272 (2011)

46. Kantardzic, M.: Data Mining: Concepts, Models, Methods, and Algorithms, 2nd edn.
Wiley-IEEE Press, Hoboken (2011)

47. Namey, E., Guest, G., Thairu, L., Johnson, L.: Data reduction techniques for large qualitative
data sets. In: Guest, G., MacQueen, K.M. (eds.) Handbook for Team-Based Qualitative
Research, pp. 137–162. AltaMira Press, USA (2007)

48. Aflalo, Y., Kimmel, R., Raviv, D.: Scale invariant geometry for nonrigid shapes.
SIAM J. Imaging Sci. 6(3), pp. 1579–1597 (2013)

49. Cambria, E., Rajagopal, D., Olsher, D., Das, D.: Big social data analysis. In: R. Akerkar (ed.)
Big Data Computing, pp. 401–414. Taylor & Francis, New York (2013)

50. Yang, C., Zhang, X., Zhong, C., Liu, C., Pei, J., Ramamohanarao, K., Chen, J.: A
spatiotemporal compression based approach for efficient big data processing on cloud.
J. Comput. Syst. Sci. 80(8), pp. 1563–1583 (2014)

51. Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J.M., Welton, C.: Mad skills: new analysis
practices for big data. Proc. VLDB Endow. 2(2), pp. 1481–1492 (2009)

52. Ciolofan, S.N., Mocanu, M., Ionita, A.: Distributed cyberinfrastructure for decision support in
risk related environments. In: 2013 IEEE 12th International Symposium on Parallel and
Distributed Computing (ISPDC), pp. 109–115 (2013)

Author Biographies

Florin Pop received his Ph.D. in Computer Science at the
University POLITEHNICA of Bucharest in 2008. He is
Associate Professor within the Computer Science Department
and also an active member of Distributed System Laboratory.
His research interests are in scheduling and resource manage-
ment, multi-criteria optimization methods, Grid middleware
tools and applications development, prediction methods,
self-organizing systems, contextualized services in distributed
systems. He is the author or co-author of more than 150
publications. He was awarded with “Magna cum laude”
distinction his Ph.D. results, one IBM Faculty Award in 2012,
two Prizes for Excellence from IBM and Oracle (2008 and
2009), Best young researcher in software services Award in
2011 and two Best Paper Awards. He worked in several
international and national research projects in the distributed
systems field as coordinator and member as well. He is a senior
member of the IEEE and ACM.

68 F. Pop et al.

http://arxiv.org/abs/1309.6835
http://arxiv.org/abs/1309.6835


Catalin Negru Computer Science diplomat engineer, finished
his master studies in 2011 on Advance Computing Architectures
program at University Politehnica of Bucharest, Faculty of
Automatic Control and Computers, Computer Science Depart-
ment. He is a Ph.D. candidate and an active member of
Distributed Systems Laboratory. His research interests are in
Storage in Distributed Systems Cloud System and Resource
Management, especially in cost optimization, SLA assurance,
multi-criteria optimization, Cloud middleware tools, complex
applications design and implementation. He worked in several
international and national research projects in the distributed
systems field as young researcher.

Sorin N. Ciolofan is currently Teaching Assistant and Ph.D.
candidate at the Computer Science Department, University
Politehnica of Bucharest. He finished his MSc at the same
university in 2004 and after that participated in over 10
international and national projects for research and private
clients (finance, tourism, oil and gas). As a software engineer,
consultant and senior software engineer in various
companies/institutions (including IBM Dublin Software Labo-
ratory, FORTH Greece—Institute of Computer Science Infor-
mation Systems Laboratory etc.) he was involved in all stages of
software development process working mainly with Java/J2EE,
portal and semantic web technologies. His research interests are
interdisciplinary, being placed at the intersection of Big Data,
Data Mining, Environmental Sciences, GIS, Cloud Computing,
Cyber Physical Systems and Semantic Technologies.

Mariana Mocanu is a professor of the Computer Science
Department, University Politehnica of Bucharest, and has a long
experience in developing information systems for industrial and
economic processes, and in project management. She performs
teaching for both undergraduate and master’s degree in software
engineering, systems integration, software services and logic
design. At the University of Regensburg, as visiting professor,
she thought Process Computers. She worked for ten years in a
multidisciplinary research team for vehicles, being co-author of
two patents. She participated in numerous research projects,
implementing information systems for control/optimization of
processes in various areas (transport, environment, medicine,
natural resources management). Her results are reflected in
articles published in journals, in papers presented at national and
international conferences, and books. She is a member of the
University Senate, at the faculty she is responsible for quality
assurance and is a board member of the department.

Optimizing Intelligent Reduction Techniques for Big Data 69



Valentin Cristea is a professor of the Computer Science
Department of the University Politehnica of Bucharest, and Ph.
D. supervisor in the domain of Distributed Systems. His main
fields of expertise are large scale distributed systems, cloud
computing and e-services. He is co-Founder and Director of the
National Center for Information Technology of UPB. He led the
UPB team in COOPER (FP6), datagrid@work (INRIA “Asso-
ciate Teams” project), CoLaborator project for building a Center
and collaborative environment for HPC, distributed dependable
systems project DEPSYS, etc. He co-supervised the UPB Team
in European projects SEE-GRID-SCI (FP7) and EGEE (FP7).
The research results have been published in more than 230
papers in international journals or peer-reviewed proceedings,
and more than 30 books and chapters. In 2003 and 2011 he
received the IBM faculty award for research contributions in
e-Service and Smart City domains. He is a member of the
Romanian Academy of Technical Sciences.

70 F. Pop et al.



Performance Tools for Big Data Optimization

Yan Li, Qi Guo and Guancheng Chen

Abstract Many big data optimizations have critical performance requirements (e.g.,

real-time big data analytics), as indicated by the Velocity dimension of 4Vs of big

data. To accelerate the big data optimization, users typically rely on detailed perfor-

mance analysis to identify potential performance bottlenecks. However, due to the

large scale and high abstraction of existing big data optimization frameworks (e.g.,

Apache Hadoop MapReduce), it remains a major challenge to tune the massively

distributed systems in a fine granularity. To alleviate the challenges of performance

analysis, various performance tools have been proposed to understand the run-

time behaviors of big data optimization for performance tuning. In this chapter, we

introduce several performance tools for big data optimization from various aspects,

including the requirements of ideal performance tools, the challenges of performance

tools, and state-of-the-art performance tool examples.

Keywords MapReduce ⋅ Performance analysis ⋅ Performance optimization ⋅Auto-

tuning

1 What Performance Tool the Users Really Need for Big
Data Optimization?

Many big data applications have critical performance requirements, for example,

detecting fraud while someone is swiping a credit card, or placing an ad on the web-

site while someone is browsing a specific good. All such scenarios advance that big

data analytics to be completed within limited time interval. Therefore, optimizing

the performance of big data applications is a major concern for various big data
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practitioners, such as application developers, system administrators, platform devel-

opers and system architects, etc. Currently, to improve the performance of big data

optimization, users typically have to conduct detailed performance analysis to find

potential performance bottlenecks, and then eliminate such bottlenecks through dif-

ferent ways such as expanding the memory capacity if the processing data cannot fit

into current memory, or adjusting the parameters of big data platforms to occupy the

CPU if the CPU is not fully utilized, etc.

Nevertheless, conducting accurate and efficient performance analysis is a very

challenging task for big data optimization. The first challenge is that a big data sys-

tem may consist of thousands of distributed computing nodes, which indicates that

performance problems may exist in a large number of subsystems, such as proces-

sors, memory, disks and network, of different nodes. The second challenge is that

the entire software/hardware stack is very complicated for big data applications.

As shown in Fig. 1, the whole software/hardware stack of an IBM’s big data solu-

tion contains the hardware server (IBM POWER
∗

Servers [1]), the operating system

(IBM PowerLinux
∗

[2]), the JVM (IBM Optimized JVM [3]), the big data platform

(IBM BigInsights
∗

[4] or IBM Platform Symphony
∗

[5]), and big data workloads

(e.g., predictive/content analytics), from the bottom to the top. Thus, it is relatively

hard to accurately identify which layers have severe performance issues compared

with traditional applications (e.g., applications that are written in C language) that

are running directly on the operating system. The third challenge is that even we

can collect enough performance data from different sources, the analysis process is

tedious, time-consuming and error-prone without proper performance tools.

Moreover, even we have a performance tool to facilitate the performance data col-

lection, visualization, analysis and optimization process, different kinds of users may

have different requirements on such performance tools. The first kind of users should

be big data application developers. They pay more attentions on the performance

Fig. 1 The whole

software/hardware stack of

an IBM’s big data solution

contains the hardware server

(IBM POWER
∗

Servers [1]),

the operating system (IBM

PowerLinux
∗

[2]), the JVM

(IBM Optimized JVM [3]),

the big data platform (IBM

BigInsights
∗

[4] or IBM

Platform Symphony
∗

[5]),

and big data workloads (e.g.,

predictive/content analytics)
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bottlenecks of developed applications, more specifically, whether there exists inef-

ficient codes in the hand-written big data applications. The second kind of users

should be the developers of big data platforms (e.g., contributors of Apache Hadoop

source codes). In addition to determining whether or not newly updates or patches

of the big data platform is efficient, they also want to propose potential new opti-

mizations for current design. The third kind of users should be the big data system

architects. They focus on the optimization of different hardware subsystems, such as

CPU, memory, disk and network, to construct a balanced system. Moreover, from

another perspective, all the above users can be further grouped into two categories,

that is, experienced users and inexperienced users. For the experienced users, they

could optimize the performance according to the key insights extracted from the

big data execution behaviors. For the inexperienced users, they prefer to achieve the

optimal performance gain without too much human investment.

2 Challenges of Ideal Performance Tool

An ideal performance tool should meet all the above requirements of different tar-

get users. There exists several challenges to design and implement such an ideal

performance tool. We elaborate the difficulties from various aspects, including data

collection, data presentation, and data analysis.

2.1 Data Collection

In order to satisfy the requirements of different users, the performance tool should

at first collect sufficient information. From our perspective, at least the following

information should be collected. For the big data application developers, the execu-

tion details of the developed codes (e.g., MapReduce applications) should be col-

lected for further optimization. The basic execution details may include but not

limited to the job/task identifier, the total execution time, the begin/end timestamp

of interested codes, etc. For the big data platform designers, the execution details

of subphases (e.g., map/shuffle/reduce phase of MapReduce paradigm) of big data

applications should be tracked and recorded. In addition to the timing information,

several engine-specific information should also be collected. For example, the read

bytes from HDFS (Hadoop Distributed File System), the input records of the reduce

phase, and the compression ratio of the compression phase, etc. Since the inter-

ested execution details may vary between platforms and users, the performance tool

should also provide API (Application Programming Interface) for the end-users to

collect the information of interested code sections. For the big data system architects,

the hardware system behaviors, such as CPU/memory utilization, disk and network

bandwidth, should be collected as the basic information for conducting system-level

analysis and optimization.
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Fig. 2 The overall architecture of a distributed scalable log collector, called Chukwa (Original
source [6])

Since a large amount of information data should be collected for different users,

an efficient information collection mechanism is very critical, especially for dis-

tributed large-scale clusters. The distributed log collection brings several perfor-

mance, scalability and reliability challenges. Chukwa is a scalable log collector built

upon HDFS and MapReduce, which can be used to reliably collect the execution

details for big data performance analysis [6]. Actually, Chukwa has already been

used in HiTune [7], which is a dataflow-based performance analysis tool for Hadoop.

The basic framework of Chukwa is shown in Fig. 2. In order to cleanly incorporate

existing log files as well as communication protocols, the agents on each node are

designed to be highly configurable. In more detail, they use adaptors, which are

dynamically loadable and configurable modules, to read data from the log file and

applications. In addition to periodically querying the status of each adaptor, the agent

also sends data across the network. To avoid directly writing data to HDFS by agents,

which results in a large number of small files, Chukwa uses several collectors to mul-

tiplex the data coming from a large number of agents (e.g., 100). The output file of

each collector is stored in the data sink directory. Chukwa also supports fast-path
clients for latency-sensitive applications. These fast-path clients send data via TCP

(Transmission Control Protocol) sockets to the requesting process. For the regular
path, collectors outputs data as the standard Hadoop sequence files. To reduce the

number of files and to ease later analysis as well, Chukwa includes an archiving
MapReduce job to group data by the cluster, date and type.

2.2 Data Presentation

Even we can efficiently collect enough information from different nodes and tasks,

it is still very challenging to present this information to users to facilitate the perfor-

mance analysis. For big data application developers, they want to see the compar-

ison between different applications to efficiently identify the most time-consuming

ones (e.g., the longest query of several Hive applications). For platform designers,

they want to see the comparison between different phases of the runtime engine to
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Fig. 3 An example of the visualized view of MapReduce tasks provided by HiTune. The x-axis

is the elapse of wall clock time, and each horizontal line represents a map or reduce task. It also

visualizes the duration of subphases, such as shuffle and sort (Original source [7])

propose potential optimization plans. For system architects, in addition to the basic

time-varying resource utilization, they also want to see how the resource utilization

correlates with different phases, tasks and nodes.

HiTune is a dataflow-based performance analysis tool specifically designed for

Hadoop [7]. It can provide visualized view of the Map/Reduce tasks and resource

utilization (including CPU, disk, and network utilization). As shown in Fig. 3, which

is the dataflow execution of TeraSort application,
1

where the x-axis is the elapse of

wall clock time, and each horizontal line represents a map or reduce task. We can

clearly see that there exists a gap between the completion of map phase and that of

the shuffle phase. Ideally, the shuffle phase can complete as soon as the map tasks

complete. Therefore, with such visualization tools we can easily identify the potential

performance issues.

2.3 Data Analysis

As shown in Fig. 3, after the visualized execution details of big data applications are

presented, only experience experts could efficiently identify the performance issues

for optimization. Apparently, the analysis and tuning process is indeed a tedious and

iterative process. For example, during the tuning of TeraSort on IBM BigInsights
∗

with IBM POWER7+
∗

system, the performance bottlenecks vary in different tuning

cycles, since the change of one parameter may have significant impacts on the others.

Actually, such analysis process requires deep understanding of the whole system, and

it is not applicable for the inexperienced users. The inexperienced users prefer to get

the optimal performance without manual analysis process, which calls for analysis

tools that can automatically optimize the performance based on the collected data.

To address this problem, several tools have been proposed. Starfish is one of the

most well-known tools, which can automatically tune the vast number of parameters

1
The application sorts 1TB bytes data consisting of 10 billion 100-byte records.
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Fig. 4 The overall

architecture of Starfish. It

consists of three levels

tuning, including

job-level tuning,

workflow-level tuning,

and the workload-level

tuning (Original source [8])

of Hadoop runtime engine to achieve optimal performance [8]. Figure 4 is the over-

all architecture of Starfish, which contains job-level tuning, workflow-level tuning,

and workload-level tuning. In job-level tuning, to find the optimal parameter com-

binations of the MapReduce job, the Just-in-Time Optimizer takes the Profiler and

Sampler as the inputs. The Profiler uses instrumentation to construct performance

models for the MapReduce job, and the Sampler collects the statistics about the

input, intermediate, and output key-value spaces of the MapReduce job. Based on

the information provided by Profiler and Sampler, the What-if engine predicts the

performance of new jobs. Then, the Just-in-Time Optimizer efficiently searches for

the (near)-optimal Hadoop parameters. In the workflow-level tuning, a Workflow-
aware Scheduler is provided to schedule tasks in a “data-local” fashion by moving

the computation to the underlying distributed filesystems (e.g., HDFS). To achieve

this goal, the scheduler closely works with the What-if Engine and the Data Man-
ager, which manages the metadata, intermediate data, and the data layout and stor-

age. In the workload-level tuning, given a workload containing several workflows,

the Workload Optimizer produces an equivalent, but optimized workflows. Then, the

Workflow-aware Scheduler is in charge of scheduling of these optimized workflows.

In summary, due to the above challenges, it is very hard to build a one-size-fit-all

performance tool to meet all the requirements of different users. Hence, researchers

have proposed several different tools to tackle different challenges. In the following

parts, we will introduce two performance tools targeting experienced experts and

inexperienced users, respectively.
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3 A Performance Tool for Tuning Experts: SONATA

In this section, we introduce a performance tool called as SONATA [9, 10], which has

already been integrated into IBM’s big data product, i.e., IBM Platform Symphony
∗
.

SONATA is mainly designed for facilitating the experienced experts to efficiently

tune the performance of big data optimization, which is built upon the MapReduce

paradigm.

3.1 Target Users

The main target users of SONATA include the application developers, runtime engine

designers, and system architects. The application developers can easily identify

whether the user-defined codes (e.g., user-defined map or reduce functions) are effi-

cient. The runtime engine designers mainly focus on the execution efficiency of inter-

nal phases (e.g., the shuffle process from map tasks to reduce tasks) of the runtime

engine. The system architects primarily pay attentions to the resource utilization of

the whole system to determine potential optimization on current system design. A

simple example is that once the architects notice that the available memory is very

low for running big data applications, expanding the memory capacity has the poten-

tial to significantly improve the performance.

3.2 Design Considerations

To meet all the above requirements of different users, SONATA provides four different

analysis views to present more insights of the execution of big data applications.

The first view is shown in Fig. 5, which is the overall view to present the execution

timelines of all map and reduce tasks. The overall view reveals execution information

of all tasks, for example, how many tasks were running at a given time point and the

number of map task waves. The second view is called as resource view as shown

in Fig. 6, which presents the usage of CPU and memory, the bandwidth of disk and

network of each node. From the resource view, abnormal usage of specific nodes

can be easily identified. The third view is breakdown view to show the execution

breakdown of map and reduce tasks, as shown in Fig. 7. The critical phases of one

(map/reduce) task can be identified from this view. Moreover, the above three views

can be correlated to facilitate identifying the performance bottlenecks. For instance,

the user can first select a task in the overall view, and then the tasks running on the

same node and the resource usage information in the overall view and resource view,

respectively, are highlighted. Also, the execution breakdown of the selected task is
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Fig. 5 The overall view of SONATA to present the execution timelines of all map and reduce tasks.

The overall view reveals execution information of all tasks, for example, how many tasks were

running at a given time point and the number of map task waves

Fig. 6 The resource view of

SONATA to present the usage

of CPU and memory, the

bandwidth of disk and

network of each node. From

the resource view, abnormal

usage of specific nodes can

be easily identified

also shown in the breakdown view. The fourth view is the Statistical Data as shown

in Fig. 8, which lists the detailed statistical information of the entire job, such as,

the job status, the average execution time of all reduce tasks, the written bytes of

HDFS, etc.
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Fig. 7 The breakdown view
of SONATA to show the

execution breakdown of map

and reduce tasks, where

critical phases of one

(map/reduce) task can be

easily identified

Fig. 8 The Statistical Data
of SONATA that lists the

detailed statistical

information of the entire job,

such as, the job status, the

average execution time of all

reduce tasks, the written

bytes of HDFS, etc.

3.3 Overall Architecture

The overall architecture of SONATA is shown in Fig. 9. SONATA contains four phase,

that is, data collection, data loading, performance visualization and optimization
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Fig. 9 The overall

architecture of SONATA

(Original source [9])

recommendation. In the data collection phase, the execution details and resource

usage at each node are collected, and then such information is aggregated at the mas-

ter node. In the data loading phase, the aggregated statistics are periodically retrieved

by the so-called data loader at the master node. The data loader then write such sta-

tistics into the database. In the performance visualization phase, first collected run-

time statistics are retrieved from the database, and then such information is displayed

in a correlated mode through web-based performance visualizer. In the optimization
recommendation phase, the potential critical outliers can also be recognized. In addi-

tion, the corresponding optimization suggestions will also be generated.

3.4 Implementation Details

3.4.1 Data Collection

The Data Collection consists of two main components, i.e., monitor and aggregator,
as shown in Fig. 10.

Each node has a monitor for gathering both the execution details of MapReduce

applications and the hardware resource usage information. The collection of exe-

cution details relies on MapReduce’s built-incounters, and they are useful mecha-

nism to gather execution statistics and supported by many MapReduce implemen-

tations such as Apache Hadoop and IBM Platform Symphony
∗
. More specifically,

we first define several new counters for interested execution phases, for instance,

the potential critical execution phases, of the MapReduce engine. Then, correspond-

ing codes are instrumented to the source codes of the runtime engine to update the

counters at runtime. On the other hand, the hardware resource usage information,

e.g., CPU/Memory usage, disk and network bandwidth, is collected by utilizing a

lightweight performance monitoring tool called as Ganglia [11]. The original infor-

mation collected by Ganglia are processed by the monitor to generate organized data

for processing by the aggregator.

On the master node, the aggregator collects the data generated from monitors at

all slave nodes. The data are organized in the XML format and then stored into a

history file sequentially. Figure 11 shows an XML entry of the collected execution
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Fig. 10 The components for

data collection (Original
source [9])

Fig. 11 The

REDUCE_COMPLETE_

TIME counter is stored in

XML format for task 2 in job

10001

details in the history file. Moreover, as the size of history file increases along with

execution time, the aggregator periodically flushed the data in current history files

into out-of-date files to reduce the size of the history files.

3.4.2 Data Loading

As the filesystem is not scalable to handle a large amount of data for performance

analysis, SONATA further stores the collected data in the history file to the underlying

database by using data loader. The data loader runs as a daemon on the master

node, and it periodically retrieves XML items from the history file and then writes

the corresponding records into the database. The data loader starts reading from the

last accessed offset of the history file when it is invoked, avoiding writing duplicate

records to the database.

In addition, the data loader also collects the data on-the-fly from the aggregator,
and writes them into the database. In more detail, the collected data is appended with

the current timestamp to generate a new record, and the new record is written into

the database. As a result, such dynamically updated information can facilitate the

on-the-fly visualization and performance monitoring.
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3.4.3 Performance Visualization

As stated in Sect. 3.2, in performance visualization, four analysis views can be gen-

erated to present more insights of the execution of programs, that is, overall view,

resource view, breakdown view, and statistical data.

3.4.4 Optimization Recommendation

Although expert users can only rely on the performance visualization to efficiently

conduct performance analysis, it still would be very helpful to automatically identify

the performance outliers and thus offer optimization recommendations for inexpe-

rienced users. To achieve this goal, we embedded several empirical rules into the

optimization engine to automatically recommend tuning guidelines. An illustrative

example is shown in Fig. 12. By correlated different tasks, we can easily find that

only the tasks on the node JUNO2 (e.g., task 2584) are performance outliers, and

it implies that there are performance issues on node JUNO2. To determine the root

cause of this performance problem, the tasks on JUNO2 can be correlated with its

resource usage. As a result, we observe that the CPU usage on JUNO2 is overuti-

lized (i.e.,>99 %) while the network access is underutilized (i.e., maximal disk band-

width is 170 MB/s) compared against other nodes. The observation implies that the

CPU of JUNO2 is the bottleneck of the entire execution. Therefore, SONATA offers

recommendation that the CPU-related configurations, e.g., the SMT (Simultaneous

Multithreading) setting, hardware prefetching, and CPU frequency, etc., on JUNO2

should be checked. By checking such configurations, eventually we determine that

this performance problem is caused by setting the number of hardware threads (i.e.,

SMT) as 2 on JUNO2 while on other nodes the number of hardware threads is set

as 4. Figure 13 shows the corresponding empirical rules that are derived from such

domain knowledge.

3.5 User Cases of Performance Analysis

In this subsection, we introduce several user cases when deploying the performance

tool on a production environment. The employed cluster is listed in Table 1. In more

detail, the cluster consists of up to 10 POWER7R2 servers (the name of each node

begins with JUNO, i.e., from JUNO0 to JUNO9), each contains 2 IBM POWER7
∗

chips, and each chip has 32 hardware threads.

3.5.1 Diagnosing System Problems

In addition to the example in Fig. 12 that shows how SONATA help find misconfigu-

rations of SMT setting, we also present an example that SONATA can also facilitate
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Fig. 12 An illustrative example to diagnosis the hardware configuration problem (Original
source [9])

Fig. 13 The example in Fig. 12 can be summarized as an empirical rule for automatic optimization

recommendation (Original source [9])
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Table 1 Evaluated IBM POWER7
∗

cluster

Components Configuration

Cluster 10 PowerLinux 7R2 Servers

CPU 16 processor cores per server (160 in total)

Memory 128 GB per server (1280 GB in total)

Internal storage 6 * 600 GB internal SAS drives per server (36TB in total)

Expansion storage 24 * 600 GB SAS drives in IBM EXP24S SFF Gen2-bay Drawer per

server (144TB in total)

Network 2 10Gbe connections per server

Switch BNT BLADE RackSwitch G8264

detecting an abnormal disk behavior. As shown in Fig. 14, from the overall view,

we observe that several reduce tasks on node JUNO1 are outliers that determine the

overall execution time. Then, we correlate the tasks with the disk usage of different

nodes, and we found that the total disk bandwidth on JUNO1 (i.e., <1.72 GB/s) is

much larger than that of other nodes (e.g., <864 MB/s on node JUNO9).

By investigating the execution status of the cluster, we finally identify that some

other users had run a disk benchmark on node JUNO1 at the same time, as the entire

cluster is shared by multiple teams. Then, we obtain exclusive access to this cluster

to obtain accurate performance benchmark results.

3.5.2 Tuning Runtime Configurations

Traditionally, there exists many adjustable configurations in MapReduce platforms

such as Apache Hadoop and IBM Platform Symphony
∗
. Here we show an example

that SONATA can help optimize the buffer usage of map tasks, as shown in Fig. 15.

One of the critical tasks, task 402, can be easily identified by correlating different

tasks. During the execution of task 402, there exists 2 sorts an spills, and the resultant

overhead is more than 49 % of the overall map time. Since the overhead of sorts and

spills is larger than a predefined threshold (e.g., 20 %), SONATA offers recommen-

dation that the buffer-related parameters (e.g., io.sort.mb), should be increased to

reduce the sorts and spills. Thus, by increasing this parameter, we completely elim-

inate sorts and spills during the map execution, and the overall performance is also

significantly improved.

3.5.3 Improving Runtime Efficiency

SONATA is also used for optimizing the implementation of MapReduce runtime

engines. In traditional Apache Hadoop runtime engine, the map and reduce slots

are only used for running the map and reduce tasks, respectively. Similar to Apache
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Fig. 14 SONATA can be used to diagnose disk problem. In this example, the disk bandwidth of

node JUNO1 is much higher than that of other nodes such as node JUNO9 (Original source [9])

Fig. 15 SONATA can be used for optimizing runtime parameters. In this example, multiple costly

sorts and spills occur in the outlier map task (i.e., task 402). Such sorts and spills are eliminated by

enlarging the runtime parameters such as io.sort.mb (Original source [9])
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Fig. 16 Terasort running with separate and shared slots, respectively (Original source [9])

Hadoop, IBM Platform Symphony
∗

also does not allow slots shared between the map

and reduce tasks by default. Under this circumstance, we set the number of map and

reduce slots as 32 for each node with 64 hardware threads, and the corresponding

execution behaviors of Terasort are shown in the left part of Fig. 16. During the first

wave of map tasks, we observe that the CPU utilization is relatively low, for example,

the CPU utilization of node JUNO0 is less than 37 %.

To improve the CPU utilization, in addition to default separate slot setting, IBM

Platform Symphony
∗

also provides the generic slot that can be shared between the

map and reduce tasks. By setting all the slots as generic slots, the CPU utilization

can be improved to more than 50 % for node JUNO0, as shown in the right part of

Fig. 16. Overall, the generic slots reduce the execution time of this job by 12.99 %

than the separate slots (422s vs. 485s).

3.6 Other Performance Analysis Tools

In this subsection, we introduce several other performance analysis tools and

systems.

Mantri can monitor MapReduce tasks and cull outliers by using cause- and

resource-aware techniques [12]. Mantri classifies the root causes for MapReduce out-

liers into three categories, that is, machine characteristics, network characteristics,
and work imbalance. After identifying the root causes, Mantri can efficiently handle

outliers by evaluating the costs of specific actions such as restart and placement. By

deploying Mantri on Microsoft Bing’s production clusters, Mantri can reduce job

completion time by 32 %.

As stated before, HiTune is a scalable, lightweight and extensible performance

analyzer for Hadoop [7]. HiTune is built upon distributed instrumentations and
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dataflow-driven performance analysis. More specifically, HiTune correlates concur-

rent performance activities of different tasks and computation nodes, reconstructs

the dataflow-based process of the MapReduce application, and relates the resource

usage to the dataflow model. HiTune is mainly used for post-execution performance

analysis and optimization.

Theia is a visualization tool to present the performance of MapReduce jobs in a

compact representation [13]. More specifically, Theia provides visual signatures that

contain the task durations, task status, and data consumption of jobs, and they can

be used to facilitate troubleshooting performance problems such as hardware failure,

data skew, and software bugs.

Hadoop Vaidya is a rule-based performance diagnostic tool for MapReduce

jobs [14]. Vaidya analyzes the collected execution statistics from the job history and

configuration files by using several predefined test rules. Such rules can not only

identify root causes of performance problems, but also provide optimization sugges-

tions to the end-users.

PerfXPlain is a system that enables end-users to ask performance-related ques-

tions such as the relative performances (in terms of execution time) of pairs of

MapReduce jobs [15]. Given a specific performance question, PerfXPlain automat-

ically produces an corresponding explanation. PerfXPlain works by using a new

query language to form the performance-related query and an algorithm to gener-

ate explanations from logs of past MapReduce executions.

4 An Easy-of-Use Full-System Auto-Tuning Tool: Turbo

In this section, we discuss a performance tool, called Turbo, that can automatically
conduct performance optimization without human intervention, which mainly tar-

gets to the inexperienced users.

4.1 Target Users

In contrast to SONATA targeting to tuning experts, Turbo is designed for the users that

do not have a deep understanding of the detailed mechanism of deployed big data

platforms. For example, programmers of big data query may not know the imple-

mentation details of different big data platforms, even such platforms provide the

same application-programming interfaces (API) for compatible purpose. Moreover,

even for the experienced tuning experts, the performance tuning process is also very

tedious and time-consuming, which also calls for an automatic tool to speedup the

tuning process, especially in the early tuning stages. Actually, with the help of Turbo,

near-optimal performance can be achieved efficiently without human intervention.
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4.2 Design Considerations

There are two design considerations for this tool. First, compared with the perfor-

mance analysis tool introduced in the previous sections, inexperienced users may

expect a tool to automatically tune the performance of big data optimization without

detailed analysis on the execution behaviors. Second, the performance gain should

be notable enough compared with baseline after the deployment of this tool. From

our perspective, the performance of big data optimization is determined by configu-

rations at various levels, including, MapReduce runtime engine, JVM (Java Virtual

Machine), operating system, virtual machine and underlying hardware. Therefore, it

is expected that a performance tool, which can automatically optimize the adjustable

parameters at different levels, would be well received for the users.

4.3 Overall Architecture

The overall architecture of the proposed full-system performance auto-tuning tool

is shown in Fig. 17. The tool receives the profiling data from previously executed

jobs as inputs. Then, it automatically optimizes the whole system at different levels.

The first level is the system-level performance tuning, where the system tuner opti-

mizes the underlying hardware (e.g., SMT/hardware prefetcher/frequency/network

adaptor, etc.) and operating system (e.g., scheduling policy, huge page, etc.). The

second level is the JVM-level performance tuning, where the JVM tuner automati-

cally appends the optimal JVM configurations (e.g., garbage collection policy, JIT

policy, and lock contention, etc.) to the JVM of MapReduce jobs. The third level is

the runtime engine level, which consists of a performance model and an optimizer.

Fig. 17 The overall architecture of a full-system performance auto-tuning tool, which is called as

Turbo
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The performance model is to mimic the behavior of MapReduce execution in real

clusters, and the optimizer is to efficiently find the optimal configurations based on

the predicted results of the performance model.

4.4 Implementation Details

We introduce the detailed implementation of the tuning policy for different levels,

including the system level, the JVM level and the runtime level. The basic idea is

that the profiled data of previous jobs can be utilized to determine the optimal con-

figurations for later execution of jobs.

4.4.1 System Level

At the system level, Turbo focuses on tuning the adjustable parameters of hard-

ware and operating systems. The underlying hardware always provides different

configurations for advanced users. For example, existing processors employ hard-

ware prefetching to hide the memory access latency, which would be critical to the

performance of big data applications. Hardware prefetchers have different perfect-

ing policies, e.g., IBM POWER7
∗

processor provides a user-programmable register

to configure more than 10 different prefetching configurations.
2

According to Vic-

tor et al. [16], dynamically changing the prefetching policy of the IBM POWER7
∗

processor can result in as much as 2.7x performance speedup. To exploit the advan-

tage of configurable hardware prefetching, in the profiling run, the execution sta-

tistics (e.g., cache miss rate, memory accesses, instruction-per-cycle, etc.) are col-

lected by using system-provided performance counters. Then, some empirical rules

are employed to determine the optimal prefetching setting based on execution statis-

tics. After that, in the later executions, the optimal prefetching setting can be applied

to improve the execution performance.

There also exists some other hardware settings, such as SMT, which provides mul-

tiple independent threads to improve the resource utilization of modern superscalar

processors. However, sometimes SMT could be detrimental when performance is

limited by application scalability or when there is significant contention for proces-

sor resources [17]. In other words, the performance gains from SMT vary greatly for

different applications.
3

Therefore, it is very necessary to determine the optimal SMT

setting for different applications. Actually, the above methodology used for find-

ing the optimal configuration for hardware prefetching can also be applied to SMT

optimization.

2
Intel processors also provide different prefetching policies such as DPL (Data Prefetch Logic

prefetcher) and ACL (Adjacent Cache Line prefetcher).

3
The performance gains from SMT vary from 0.5x to 2.5x for evaluated applications in [17].
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At the operating system level, the page-based virtual memory has significant

impacts on the performance of big data applications. Some big data applications

spend 51 % of the execution cycles to service the TLB (Translation Lookaside

Buffer) misses with a small size of page [18]. To improve the performance, Turbo

selects the large size of page for big data applications, and automatically determines

the total amount of memory configured with large page mode according to the size

of input data.

4.4.2 JVM Level

It is non-trivial to tune the Java runtime system due to a large number of settings of

JVM. Actually, the settings related with the the memory management and garbage

collection, such as the size of Java Heap, GC algorithm, and GC generation etc.,

are most important to the performance of JVM. In order to find the optimal JVM

settings, Turbo employs iterative optimization techniques [19] to search for the best

possible combination of JVM setting for a given workload. Traditionally, iterative

optimization always requires a larger number of training runs for finding the best

combination. To reduce the training overheads, Turbo distributes tasks with differ-

ent JVM settings to different computing nodes, collects the runtime statistics at the

master, and then evolves to the optimal combination of JVM setting. Therefore, the

optimal JVM setting can be found with a small number profiling runs, which makes

the Turbo practical in industrial usage.

4.4.3 Runtime Level

At the runtime level, Turbo considers to optimize the MapReduce runtime engine,

which typically contains more than 70 performance-critical parameters [20]. In order

to efficiently explore the huge parameter space, Turbo is built upon a cost-based

optimization to automatically determine the optimal configurations [21]. To achieve

this, Turbo consists of three main components, that is, statistic profiler, performance

model, and optimizer.

The statistic profiler collects the job profiles, and a job profile consists of two

parts, as dataflow and cost statistics. The dataflow statistics include the information

regarding the number of bytes and key-value pairs flowing throw different tasks and

phases of a MapReduce job execution, e.g., the number of map output bytes. The cost

statistics contain the execution timing, e.g., the average time to read a record from

file systems. Such statistic information is served as the inputs of the performance

model, which is specifically designed for IBM Platform Symphony
∗
. The overall

process of the performance model is shown in Fig. 18, which uses the profiling infor-

mation of job j to estimate the performance of a new job j′. At first, both the profiling

information of job j and the information (i.e., input data, resources and configura-

tions information) are treated as inputs. The basic intuition is that the dataflow of the

job’s phases is proportional to the input data size, which indicates that the dataflow
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Fig. 18 The overall process to predict the performance of virtual jobs

statistics of job j′ can be scaled from that of job j according to their input data. Once

the costs of job j′ are obtained, the task- and phase-level timing information can

also be derived. To obtain the overall execution time, a task scheduler simulator is

employed to simulate the scheduling and execution of map and reduce tasks of j′.
Based on the predicted performance of jobs under different configurations, the

optimal configuration could be found by searching the entire parameter space. How-

ever, since the space is exponentially large, Turbo employs some heuristics searching

algorithms, e.g., recursive random search (RSS), to efficiently find the optimal con-

figuration.

4.5 Industrial Use Cases

Here we present a real industrial case to demonstrate the advantage of the autotuning

performance tool. In this case, the hardware information is listed in Table 2. The test-

ing application is a real application from the telecommunication companies, which

is used for analyzing the web access behaviors of mobile devices.

In this cluster, the proposed tool can automatically achieve 2.4x performance

speedup compared with native execution, as shown in Fig. 19. The baseline perfor-

mance of the job is 845 s. After running the autotuning tool, the performance is

Table 2 Hardware configuration of a real industrial case

Components Configuration

Cluster 4 PowerLinux 7R1 Servers

CPU 8 processor cores per server (32 in total)

Memory 64 GB per server (256 GB in total)

Storage 24 * 600 GB SAS drives in IBM EXP24S SFF Gen2-bay Drawer per server

(144TB in total)

Network 2 10Gbe connections per server
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Fig. 19 The tuning results of Turbo. The baseline performance of the job is 845 s, and the auto-

matically tuned performance is 347 s. Turbo achieves 2.3x performance speedup, and this result is

about 91 % of the expert’s tuning

Table 3 Optimal configurations found at different levels

System level

SMT setting SMT4

Prefetching setting 0x1D

MTU 9000

Hugh page 50 GB per Node

JVM level

-server -Xnoclassgc -Xgcpolicy:gencon -Xjit:optLevel=hot

-Xjit:disableProfiling -Xgcthreads4 -XlockReservation

Runtime engine level

pmr.ondemand.2nd.sort.mb true

mapred.reduce.slowstart.completed.maps 0.84

io.sort.mb 268

mapred.reduce.tasks 768

compression codec LZ4

improved to 347 s. Actually, the tuning results with expert’s help is 317 s. Therefore,

the tunning tool can achieve about 91 % of expert’s tuning.

In addition, Table 3 shows the optimal configurations found at different levels. At

the system level, the SMT and hardware prefetching should be set as 4 and 0x1D,

respectively. The MTU of network adaptor should be set as 9000 and the huge page

of OS should be configured with 50 GB to match the size of input data. At the JVM

level, most configurations that are closely related to garbage collection should be

set. At the runtime engine level, Turbo also automatically find the optimal configu-

rations for different parameters. For example, the size of io.sort.mb4
should be set as

268 MB, the number of reduce tasks should be set as 768, and LZ4 [22] should be

used for compressing the intermediate data.

4
The total amount of buffer memory to use while sorting files, in megabytes.
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4.6 Other Auto-Tuning Tools

Autotuning tool for the performance optimization of big data applications have

received increasing attentions from both academic and industrial practitioners. Here

we briefly introduce some other autotuning tools.

Babu proposed a competition-based approach to automate the setting of tuning

parameters for MapReduce applications. This basic idea of this approach is to start

multiple instances of the same task with different setting of parameters, and then the

configurations of the best instance will be identified [23].

Starfish is a self-tuning system that allows Hadoop users to obtain good perfor-

mance without deep understanding of many tuning parameters. Starfish features the

automatic setting of near-optimal parameters for Hadoop jobs. Actually, the engine-

level tuning of Turbo extends Starfish’s optimization framework for IBM Platform

Symphony
∗
, since Starfish mainly focuses on the tuning of the parameters of Apache

Hadoop runtime framework [8]. In addition to the job-level autotuning, as stated

before, Starfish also contains workflow-level tuning and workload-level tuning. The

workflow-level tuning focuses on how to schedule tasks in a data-local fashion by

moving the computation to the underlying distributed filesystems (e.g., HDFS). The

workload-level tuning produces an equivalent, but optimized workflows, and passes

them to the workflow-aware scheduler for execution, given a workload consisting of

a collection of workflow.

Intel has proposed a machine-learning based auto-tunning tool for MapReduce

applications [24]. This approach leverages support vector regression model (SVR)

to learn the relationship between the job parameters and job execution time, and then

uses smart search algorithm to explore the parameter space. The proposed autotun-

ing flow involves two phases: building and parameter optimization. In the first phase,

training data are used to learn the black-box performance model. By evaluating var-

ious machine learning techniques (e.g., linear regression, artificial neural networks,

model trees, etc.), the authors claim that support vector regression model (SVR), has

both good accuracy and computational performance. To reduce the number of train-

ing samples to build the model, smart sampling is employed. In the second phase,

since the performance model has already been built, the auto-tuner generates a para-

meter search space and explores it using smart search techniques, and it uses the

performance model to find the parameter configuration that has the best predicted

performance.

Zhang et al. have proposed an approach, called AutoTune, to optimize the work-

flow performance through adjusting the number of reduce tasks [25]. AutoTune con-

tains two key components: the ensemble of performance models to estimate the dura-

tion of a MapReduce program for processing different datasets, and optimization
strategies that are used for determining the numbers of reduce tasks of jobs in the

MapReduce workflow to achieve specific performance objective. According to the

experiments conducted on realistic MapReduce applications as TPC-H queries and

programs mining a collection of enterprise web proxy logs, AutoTune can signif-

icantly improve the performance compared with rules of thumb of the setting of

reducer numbers.
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5 Conclusion

Many performance tools have been proposed to accelerate big data optimization. In

this chapter, we first introduce the requirements of ideal performance tools. Then,

we present the challenges of design and deployment of performance tools in prac-

tice. Finally, we show two examples of state-of-the-art performance tools for big

data optimization. The first performance tool is called as SONATA that targets at tun-

ing experts. The second performance tool is called as Turbo that can automatically

optimize MapReduce applications without human intervention. Both tools can sig-

nificantly improve the runtime efficiency of big data optimization applications.

*Trademark, service mark, or registered trademark of International Business Machines Corpo-

ration in the United States, other countries, or both.
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Optimising Big Images

Tuomo Valkonen

Abstract We take a look at big data challenges in image processing. Real-life

photographs and other images, such ones from medical imaging modalities, consist

of tens of million data points. Mathematically based models for their improvement—

due to noise, camera shake, physical and technical limitations, etc.—are moreover

often highly non-smooth and increasingly often non-convex. This creates significant

optimisation challenges for the application of the models in quasi-real-time software

packages, as opposed to more ad hoc approaches whose reliability is not as eas-

ily proven as that of mathematically based variational models. After introducing a

general framework for mathematical image processing, we take a look at the cur-

rent state-of-the-art in optimisation methods for solving such problems, and discuss

future possibilities and challenges.

1 Introduction: Big Image Processing Tasks

A photograph taken with current state-of-the-art digital cameras has between 10 and

20 million pixels. Some cameras, such as the semi-prototypical Nokia 808 PureView

have up to 41 million sensor pixels. Despite advances in sensor and optical tech-

nology, technically perfect photographs are still elusive in demanding conditions—

although some of the more artistic inclination might say that current cameras are

already too perfect, and opt for the vintage. With this in mind, in low light even

the best cameras however produce noisy images. Casual photographers also cannot

always hold the camera steady, and the photograph becomes blurry despite advanced

shake reduction technologies. We are thus presented with the challenge of improving

the photographs in post-processing. This would desirably be an automated process,

based on mathematically well understood models that can be relied upon to not intro-

duce undesired artefacts, and to restore desired features as well as possible.
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The difficulty with real photographs of tens of millions of pixels is that the

resulting optimisation problems are huge, and computationally very intensive. More-

over, state-of-the-art image processing techniques generally involve non-smooth reg-
ularisers for the modelling of our prior assumptions of what a good photograph or

image looks like. This causes further difficulties in the application of conventional

optimisation methods. State-of-the-art image processing techniques based on mathe-

matical principles are only up to processing tiny images in real time. Further, choos-

ing the right parameters for simple Tikhonov regularisation models can be difficult.

Parametrisation can be facilitated by computationally more difficult iterative regular-

isation models [70] with easier parametrisation, or through parameter learning [39,

41, 57, 77]. These processes are computationally very intensive, requiring process-

ing the data for multiple parameters in order to find the optimal one. The question

now is, can we design fast optimisation algorithms that would make this and other

image processing tasks tractable for real high-resolution photographs?

Besides photography, big image processing problems can be found in various

scientific and medical areas, such magnetic resonance imaging (MRI). An example

is full three-dimensional diffusion tensor MRI, and the discovery of neural path-

ways, as illustrated in Fig. 1. I will not go into physical details about MRI here, as

the focus of the chapter is in general-purpose image processing algorithms, not in

particular applications and modelling. It suffices to say that diffusion tensor imag-

ing [127] combines multiple diffusion weighted MRI images (DWI) into a single

tensor image u. At each point, the tensor u(x) is the 3 × 3 covariance matrix of a

Gaussian probability distribution for the diffusion direction of water molecules at x.

Fig. 1 Illustration of diffusion tensor imaging and tractography process. Multiple diffusion-

weighted MRI images with different diffusion-sensitising gradients are first taken (left). After

processing a tensor field that can be produced from these, neural pathways can be discovered

through the tractography process (right). (The author would like to thank Karl Koschutnig for the
raw data, and Kristian Bredies for producing with DSI Studio the tractography image with from the
diffusion tensor image computed by the author)
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Current MRI technology does not have nearly as high resolution as digital cameras;

a 256 × 256 × 64 volume would be considered to have high resolution by today’s

standards. However, each tensor u(x) has six elements. Combined this gives 25 mil-

lion variables. Moreover, higher-order regularisers such asTGV2
[19], which we will

discuss in detail in Sect. 3, demand additional variables for their realisation; using

the PDHGM (Chambolle-Pock) method, one requires 42 variables per voxel x [135],

bringing the total count to 176 million variables. Considering that a double precision

floating point number takes eight bytes of computer memory, this means 1.4 GB of

variables. If the resolution of MRI technology can be improved, as would be desir-

able from a compressed sensing point of view [1], the computational challenges will

grow even greater.

Due to sparsity, modelled by the geometric regularisers, imaging problems have

structure that sets them apart from general big data problems. This is especially the

case in a compressed sensing setting. Looking to reconstruct an image from, let’s

say, partial Fourier samples, there is actually very little source data. But the solution

that we are looking for is big, yet, in a sense, sparse. This, and the poor separability

of the problems, create a demand for specialised algorithms and approaches. Further

big data challenges in imaging are created by convex relaxation approaches that seek

to find global solutions to non-convex problems by solving a relaxed convex problem

in a bigger space [34, 79, 107, 109, 110, 112]. We discuss such approaches in more

detail in Sect. 7.1.

Overall, in this chapter, we review the state of the art of optimisation methods

applicable to typical image processing tasks. The latter we will discuss shortly. In

the following two sections, Sects. 2 and 3, we then review the typical mathemati-

cal regularisation of inverse problems approach to solving such imaging problems.

After this, we look at optimisation methods amenable to solving the resulting com-

putational models. More specifically, in Sect. 4 we take a look at first-order methods

popular in the mathematical imaging community. In Sect. 5 we look at suggested

second-order methods, and in Sect. 6 we discuss approaches for the two related topics

of problems non-linear forward operators, and iterative regularisation. We finish the

chapter in Sect. 7 with a look at early research into handling larger pictures through

decomposition and preconditioning techniques, as well as the big data challenges

posed by turning small problems into big ones through convex relaxation.

1.1 Types of Image Processing Tasks

What kind of image processing tasks there are? At least mathematically the most

basic one is the one we began with, denoising, or removing noise from an image. For

an example, see Fig. 2. In photography, noise is typically the result of low light con-

ditions, which in modern digital cameras causes the CCD (charge-coupled device)

sensor array of the camera to not be excited enough. As a result the sensor images

the electric current passing through it. Within the context of photography, another
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Fig. 2 Denoising of a noisy photograph (top-left) by the geometric regularisers TV (top-right) and

TGV2
(bottom-left). Observe the stair-casing effect exhibited by TV. (Freely available Kodak stock

photo)

important task is deblurring or deconvolution, see Fig. 3. Here one seeks to create a

sharp image out of an unsharp image, which might be the result of camera shake—

something that can also be avoided to some extent in sufficient light conditions by

mechanical shake reduction technologies. In dehazing one seeks to remove translu-

cent objects—clouds, haze—that obscure parts of an image and make it unsharp; see

[49] for an approach fitting our variational image processing framework and further

references. Another basic task is regularised inversion. This involves the compu-

tation of an image from data in a different domain, such as the frequency domain.

When only partial data is available, we need to add additional information into the

problem in terms of the aforementioned regularisers. Problems of this form can be

found in many medical imaging modalities such as magnetic resonance imaging

(MRI, [11, 72, 73, 135]), positron emission tomography (PET, [119, 141]), elec-

trical impedance tomography (EIT, [92]), computed tomography (CT, [101]), and

diffuse optical tomography (DOT, [5, 74])—the references providing merely a few

starting points. Related imaging modalities can be found in the earth and planetary

sciences, for example seismic tomography [86] and synthetic aperture radar (SAR,
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Fig. 3 Deblurring example. Could we do better, and faster? (top) Lousy photograph. (middle)

TGV2
deblurring. minu

1
2
‖f − 𝜌

𝜀
∗ u‖ + TGV2(u) for blur kernel 𝜌

𝜀
. (bottom) Ideal photograph.

(Author’s own photograph. All rights withheld. Reprinted with permission)
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[32]). In image fusion one seeks to combine the data from many such modalities in

order to obtain a better overall picture [15, 45, 71, 123]. In many computer vision

tasks, including the automated understanding of medical imaging data, a task of

paramount importance is segmentation [4, 34, 93, 109, 138]. Here, we seek to dif-

ferentiate or detect objects in an image in order understand its content by higher-level

algorithms. This may also involve tracking of the objects [90, 143], and in turn pro-

vides a connection to video processing, and tasks such as optical flow computation

[6, 30, 33, 68, 134].

2 Regularisation of Inverse Problems

We consider image processing tasks as inverse problems whose basic setup is as

follows. We are presented with data or measurements f , and a forward operator A
that produced the data f , possibly corrupted by noise 𝜈, from an unknown û that we

wish to recover. Formally f = Aû + 𝜈. In imaging problems û is the uncorrupted

ideal image that we want, and f the corrupted, transformed, or partial image that we

have. The operator A would be the identity for denoising, a convolution operator for

deblurring, and a (sub-sampled) Fourier, Radon, or other transform operator for reg-

ularised inversion. Besides the noise 𝜈, the difficulty in recovering û is that the oper-

ator A is ill-conditioned, or simply not invertible. The overall problem is ill-posed.

We therefore seek to add some prior information to the problem, to make the it well-

posed. This comes in terms of a regularisation functional R, which should model

our domain-specific prior assumptions of what the solution should look like. Mod-

elling the noise and the operator equation by a fidelity functional G, the Tikhonov
regularisation approach then seeks to solve

min
u

G(u) + 𝛼R(u) (P
𝛼
)

for some regularisation parameter 𝛼 > 0 that needs to be determined. Its role is to

balance between regularity and good fit to data. If the noise 𝜈 is Gaussian, as is often

assumed, we take

G(u) ∶= 1
2
‖f − Au‖22. (1)

The choice of the regulariser R depends heavily on the problem in question; we will

shortly discuss typical and emerging choices of R for imaging problems.

A major difficulty with the Tikhonov approach (P
𝛼
) is that the regularisation para-

meter 𝛼 is difficult to choose. Moreover, with the L2
-squared fidelity (1), the scheme

suffers from loss of contrast, as illustrated in [11]. If the noise level �̄� is known, an

alternative approach is to solve the constrained problem

min
u

R(u) subject to G(u) ≤ �̄�. (P�̄�)
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Computationally this problem tends to be much more difficult than (P
𝛼
). An approach

to estimate solutions to this is provided by iterative regularisation [46, 70, 120],

which we discuss in more detail in Sect. 6.2. The basic idea is to take a suitably

chosen sequence 𝛼k ↘ 0. Letting k → ∞, one solves (P
𝛼
) for 𝛼 = 𝛼k to obtain uk

, and

stops when F(uk) ≤ �̄�. This stopping criterion is known as Morozov’s discrepancy
principle [91]. Various other a priori and a posteriori heuristics also exist. Besides

iterative regularisation and heuristic stopping rules, another option for facilitating

the choice of 𝛼 is computationally intensive parameter learning strategies [39, 41,

57, 77], which can deal with more complicated noise models as well.

3 Non-smooth Geometric Regularisers for Imaging

The regulariser R should try to restore and enhance desired image features without

introducing artefacts. Typical images feature smooth parts as well as non-smooth

geometric features such as edges. The first “geometric regularisation” models in this

context have been proposed in the pioneering works of Rudin-Osher-Fatemi [118]

and Perona-Malik [106]. In the former, total variation (TV) has been proposed as a

regulariser for image denoising, that is R(u) = TV(u). Slightly cutting corners around

distributional intricacies, this can be defined as the one-norm of the gradient. The

interested reader may delve into all the details by grabbing a copy of [3]. In the typical

case of isotropic TV that does not favour any particular directions, the pointwise or

pixelwise base norm is the two-norm, so that

TV(u) ∶= ‖∇u‖2,1 ∶=
∫
𝛺

‖∇u(x)‖2dx

The Rudin-Osher-Fatemi (ROF) model is then

min
u

1
2
‖f − u‖22 + 𝛼TV(u), (2)

where u ∈ L1(𝛺) is our unknown image, represented by a function from the domain

𝛺 ⊂ ℝn
into intensities in ℝ. Typically 𝛺 is a rectangle in ℝ2

or a cube in ℝ3
, and

its elements represent different points or coordinates x = (x1,… , xn) within the n-

dimensional image. For simplicity we limit ourselves in this introductory exposition

to greyscale images with intensities in ℝ. With D ∶= C∞
c (𝛺;ℝn), the total variation

may also be written

TV(u) = sup

{

∫
𝛺

∇∗
𝜙(x)u(x)dx

|
|
|
|
|

𝜙 ∈ D , sup
x∈𝛺

‖𝜙(x)‖2 ≤ 1

}

, (3)

which is useful for primal-dual and predual algorithms. Here ∇∗ = −div is the

conjugate of the gradient operator.



104 T. Valkonen

The ROF model (2) successfully eliminates Gaussian noise and at the same time

preserves characteristic image features like edges and cartoon-like parts. It however

has several shortcomings. A major one is the staircasing effect, resulting in blocky

images; cf. Fig. 2. It also does not deal with texture very well. Something better is

therefore needed. In parts of the image processing community coming more from

the engineering side, the BM3D block-matching filter [36] is often seen as the state-

of-the-art method for image denoising specifically. From the visual point of view, it

indeed performs very well with regard to texture under low noise levels. Not based

on a compact mathematical model, such as those considered here, it is however very

challenging to analyse, to prove its reliability. It, in fact, appears to completely break

down under high noise, introducing very intrusive artefacts [48]. In other parts of the

image and signal processing community, particularly in the context of compressed

sensing, promoting sparsity in a wavelet basis is popular. This would correspond to a

regulariser like R(u) = ‖Wu‖1, for W a wavelet transform. The simplest approaches

in this category also suffer from serious artefacts, cf. [124, p. 229] and [11].

To overcome some of these issues, second- (and higher-) order geometric regu-

larisers have been proposed in the last few years. The idea is to intelligently balance

between features at different scales or orders, correctly restoring all three, smooth

features, geometric features such as edges, and finer details. Starting with [87], pro-

posed variants include total generalised variation (TGV, [19]), infimal convolution

TV (ICTV, [25]), and many others [22, 28, 37, 42, 104]. Curvature based regularis-

ers such as Euler’s elastica [27, 122] and [12] have also recently received attention

for the better modelling of curvature in images. Further, non-convex total variation

schemes have been studied in the last few years for their better modelling of real

image gradient distributions [62, 65, 66, 69, 99], see Fig. 4. In the other direction,

in order to model texture in images, “lower-order schemes” have recently been pro-

posed, including Meyer’s G-norm [88, 139] and the Kantorovich-Rubinstein dis-

crepancy [78]. (Other ways to model texture include non-local filtering schemes
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Fig. 4 Illustration of image gradient statistics. (left) Original image. (right) Log-probability (ver-
tical axis) of gradient magnitude (horizontal axis) and optimal t ↦ 𝛼tq

model fit. The optimal

q = 0.5 causes R(u) = ∫
𝛺
‖∇u(x)‖qdx to become non-convex. (Author’s own photograph. All

rights withheld. Reprinted with permission)
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such as BM3D and NL-means [21, 36].) These models have in common that they

are generally non-smooth, and increasingly often non-convex, creating various opti-

misation challenges. The Mumford-Shah functional [93] in particular, useful as a

choice of R for segmentation, is computationally extremely difficult. As a result,

either various approximations [4, 109, 138] or convex relaxation techniques are usu-

ally employed. We will take a brief look at the latter in Sect. 7.1.

Due to its increasing popularity, simplicity, and reasonably good visual perfor-

mance, we concentrate here on second-order total generalised variation (TGV [19],

pun intended) as our example higher-order regulariser. In the differentiation cascade
form [18, 20], it may be written for two parameters (𝛽, 𝛼) > 0 as

TGV2
(𝛽,𝛼)(u) ∶= min

w∈L1(𝛺;ℝn)
𝛼‖∇u − w‖2,1 + 𝛽‖Ew‖F,1.

Here Ew is the symmetrised gradient, defined as

Ew(x) ∶= 1
2
(∇u(x) + [∇u(x)]T ) ∈ ℝn×n

.

The norm in

‖Ew‖F,1 ∶=
∫
𝛺

‖Ew(x)‖Fdx,

is based on the pointwise Frobenius norm, which makes the regulariser rotationally

invariant [135]. Again we slightly cut corners with distributional intricacies.

The idea in TGV2
is that the extra variable w, over which we minimise, extracts

features from u that are rather seen as second-order features. The division between

first-order and second-order features is decided by the ratio 𝛽∕𝛼. If 𝛽 is very large,

TGV2
essentially becomes TV, i.e., a first-order regulariser, while if 𝛽 is small, all

features of order larger than zero are gratis. In other words, only singularities, such as

edges, are penalised. The use of the symmetrised gradient demands an explanation.

A rationale is that if w = ∇v is already the gradient of a smooth function v, then

∇w = ∇2v is symmetric. This connects TGV2
to ICTV, which can be formulated as

ICTV(𝛽,𝛼)(u) ∶= min
v∈L1(𝛺)

𝛼‖∇u − ∇v‖2,1 + 𝛽‖∇2v‖F,1.

Indeed,

TGV2
(𝛽,𝛼)(u) ≤ ICTV(𝛽,𝛼)(u) ≤ 𝛼TV(u),

so that TGV2
penalises higher-order features less than ICTV or TV.

A simple comparison of TGV2
versus TV, showing how it avoids the stair-casing

effect of TV, can be found in Fig. 2. While quite a bit is known analytically about the

artefacts introduced and features restored by TV [23, 29, 44, 114], a similar study

of TGV2
and other advanced regularisers is a challenging ongoing effort [20, 40,

102, 103, 132, 133]. A more complete analytical understanding would be desirable

towards the reliability of any regularisation method in critical real-life applications.
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4 First-Order Optimisation Methods for Imaging

Popular, well-performing, optimisation methods in the imaging community tend to

be based on variations of operator splitting and proximal (backward) steps. These

include the primal-dual method of Chambolle-Pock(-Bischof-Cremers) [26, 109],

the alternating directions method of multipliers (ADMM) and other Augmented

Lagrangian schemes [53], as well as FISTA [9, 10, 84]. While asymptotic conver-

gence properties of these methods are, in general, comparable to the gradient descent

method, in special cases they reach the O(1∕N2) rate of Nesterov’s optimal gradient

method [94]. Folklore also tells us that they tend to reach a visually acceptable solu-

tion in fewer iterations. The performance of the methods unfortunately decreases as

the problems become increasingly ill-conditioned [85].

In all of the methods of this section, it is crucial to be able to calculate a proximal

map, which we will shortly introduce. We gradually move from methods potentially

involving difficult proximal maps to ones that ease or partially eliminate their com-

putation. Generally the ones with difficult proximal maps are more efficient, if the

map can be computed efficiently. We first look at primal methods, especially FISTA

and its application to TV denoising in Sect. 4.2. We then study primal-dual meth-

ods in Sect. 4.3, concentrating on the PDHGM, and Sect. 4.4, where we concentrate

on the GIST. First we begin with a few remarks about notation and discretisation,

however.

4.1 Remarks About Notation and Discretisation

Remark 1 (Discretisation) The methods considered in this section are in principle

for finite-dimensional problems, and stated in this way. We therefore have to discre-

tise our ideal infinite-dimensional models in Sect. 3. We take a cell width h > 0,

and set

𝛺h ∶= hℤn ∩𝛺.

Then, if u ∶ 𝛺h → ℝ, we define

TV(u) ∶=
∑

x∈𝛺h

hn‖∇hu(x)‖2,

for ∇h a suitable discrete gradient operator on 𝛺h, e.g., a forward-differences oper-

ator. Similarly to the dual form (3), we also have

TV(u) = sup

{
∑

x∈𝛺h

hn∇∗
𝜙(x)u(x)

|
|
|
|
|

𝜙 ∈ Dh, sup
x∈𝛺h

‖𝜙(x)‖2 ≤ 1

}

,
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where Dh denotes the set of all functions 𝜙 ∶ 𝛺h → ℝ. Likewise, we replace the

operator A ∶ L1(𝛺) → Z in (1), for any given space Z ∋ f , by a discretisation

Ah, discretising Z if necessary. Often in regularised inversion, Z is already discrete,

however, as we have a finite number of measurements f = (f1,… , fm).
In the following, we generally drop the subscript h and, working on an abstract

level, making no distinction between the finite-dimensional discretisations, and the

ideal infinite-dimensional formulations. The algorithms will always be applied to the

discretisations.

Remark 2 (Notation) In the literature more on the optimisation than imaging side,

often the primal unknown that we denote by u is denoted x, and the dual unknown

that we denote by p is denoted by y. We have chosen to use u for the unknown image,

common in the imaging literature, with x standing for a coordinate, i.e., the location

of a pixel within an image. Likewise, sometimes the role of the operators A and K are

interchanged, as is the role of the functionals F and G. With regard to these, we use

the convention in [26]. K is then always an operator occurring in the saddle-point

problem (P
saddle

), and A occurs within the functional G, as in (1). These notations

are exactly the opposite in [84].

The spaces X and Y are always suitable finite-dimensional Hilbert spaces (iso-

morphic to ℝk
for some k), usually resulting from discretisations of our ideal infinite-

dimensional image space and its predual.

4.2 Primal: FISTA, NESTA, etc.

Perhaps the best-known primal method for imaging problems is FISTA, or the

Fast Iterative Shrinkage-Thresholding Algorithm [10]. It is based on the forward-
backward splitting algorithm [82, 105]. A special case of this method has been

derived in the literature multiple times through various different means—we refer to

[38] for just one such derivation—and called the Iterative Shrinkage-Thresholding

Algorithm or ISTA. FISTA adds to this an acceleration scheme similar to Nesterov’s

optimal gradient method [94]. The method solves a general problem of the form

min
u∈X

G(u) + F(u), (P
primal

)

where X is a finite-dimensional Hilbert space, e.g., a discretisation of our image

space L1(𝛺). The functional F ∶ X → (−∞,∞] is convex but possibly non-smooth,

and G ∶ X → ℝ is continuous with a Lipschitz continuous gradient. It is naturally

assumed that the problem (P
primal

) has a solution.

We describe FISTA in Algorithm 1. A basic ingredient of the method is the prox-
imal map or resolvent PF,𝜏 of F. This may for a parameter 𝜏 > 0, be written as

PF,𝜏(u′) ∶= argmin
u

{

F(u) + 1
2𝜏

‖u − u′‖22
}

.
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Algorithm 1 FISTA [10] for (P
primal

)
Require: Lf Lipschitz constant of ∇f .

1: Initialise v1 = u0 ∈ X, t1 ∶= 1, and 𝜏 ∶= 1∕Lf . Set k ∶= 1.

2: repeat
3: Compute uk ∶= PF,𝜏 (vk − 𝜏∇G(vk)),

4: tk+1 ∶=
1 +

√

1 + 4t2k
2

,

5: vk+1 ∶= uk +
tk − 1
tk+1

(uk − uk−1).

6: Update k ∶= k + 1.

7: until A stopping criterion is fulfilled.

Alternatively

PF,𝜏(u′) = (I + 𝜏𝜕F)−1(u′),

for 𝜕F the subgradient of F in terms of convex analysis; for details we refer to [67,

116]. More information about proximal maps may be found, in particular, in [115].

The update

uk+1 ∶= PF,𝜏(uk)

with step length 𝜏 is known as the backward or proximal step. Roughly, the idea in

FISTA is to take a gradient step with respect to G, and a proximal step with respect to

F. This is done in Step 3 of Algorithm 1. However, the gradient step does not use the

main iterate sequence {uk}∞k=1, but an alternative sequence {vk}∞k=1, which is needed

for the fast convergence. Steps 4 and 5 are about acceleration. Step 4 changes the step

length parameter for the additional sequence {vk}, while Step 5 updates it such that

it stays close to the main sequence; indeed vk+1
is an over-relaxed or inertia version

of uk
—a physical interpretation is a heavy ball rolling down a hill not getting stuck

in local plateaus thanks to its inertia. The sequence tk → ∞, so that eventually

vk+1 ≈ 2uk − uk−1
.

In this way, by using two different sequences, some level of second order information

can be seen to be encoded into the first-order algorithm.

FISTA is very similar to Nesterov’s optimal gradient method [94, 95], however

somewhat simplified and in principle applicable to a wider class of functions. Step

3 is exactly the same, and the only difference is in the construction of the sequence

{vk+1}∞k=1. In Nesterov’s method a more general scheme that depends on a longer

history is used. NESTA [8], based on Nesterov’s method, is effective for some com-

pressed sensing problems, and can also be applied to constrained total variation min-

imisation, that is the problem (P�̄�) with R = TV and G(u) = ‖f − Au‖22.

In principle, we could apply FISTA to the total variation denoising problem (2).

We would set G(u) = 1
2
‖f − u‖22, and F(u) = ‖∇u‖1. However, there is a problem.

In order for FISTA to be practical, the proximal map P
𝜏,F has to be computationally
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cheap. This is not the case for the total variation seminorm. This direct approach to

using FISTA is therefore not practical. The trick here is to solve the predual problem
of (2). (In the discretised setting, it is just the dual problem.) This may be written

min
𝜙∈D

1
2
‖f − ∇∗

𝜙‖22 subject to ‖𝜙(x)‖2 ≤ 𝛼 for all x ∈ 𝛺. (4)

We set

G(𝜙) ∶= 1
2
‖f − ∇∗

𝜙‖22, and F(𝜙) ∶= 𝛿B∞
𝛼

(𝜙),

for

B∞
𝛼
(𝜙) ∶= {𝜙 ∈ D ∣ supx∈𝛺 ‖𝜙(x)‖2 ≤ 𝛼}.

(We recall that for a convex set B, the indicator function 𝛿B(𝜙) is zero if 𝜙 ∈ B,

and +∞ otherwise.) Now, the proximal map PF,𝜏 is easy to calculate—it is just the

pixelwise projection onto the ball B(0, 𝛼) in ℝn
. We may therefore apply FISTA to

total variation denoising [9].

One might think of using the same predual approach to solving the more difficult

TGV2
denoising problem

min
u

1
2
‖f − u‖22 + TGV2

(𝛽,𝛼)(u). (5)

The predual of this problem however has a difficult non-pointwise constraint set, and

the resulting algorithm is not efficient [19]. Therefore, other approaches are needed.

4.3 Primal-Dual: PDHGM, ADMM, and Other Variants
on a Theme

Both (2) and (5), as well as many more problems of the form

min
u

1
2
‖f − Au‖22 + R(u), (6)

for R = 𝛼TV or R = TGV2
(𝛽,𝛼) can in their finite-dimensional discrete forms be

written as saddle-point problems

min
u∈X

max
p∈Y

G(u) + ⟨Ku, p⟩ − F∗(p). (P
saddle

)

Here G ∶ X → (−∞,∞] and F∗ ∶ Y → (−∞,∞] are convex, proper, and lower

semicontinuous, and K ∶ X → Y is a linear operator. The functional F∗
is moreover

assumed to be the convex conjugate of some F satisfying the same assumptions.

Here the spaces X and Y are again finite-dimensional Hilbert spaces. If PG0,𝜏
is easy
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to calculate for G0(u) ∶=
1
2
‖f − Au‖22, then for R = 𝛼TV, we simply transform (6)

into the form (P
saddle

) by setting

G = G0, K = ∇, and F∗(p) = 𝛿B∞
𝛼

(p). (7)

For R = TGV2
(𝛽,𝛼), we write u = (v,w), p = (𝜙, 𝜓), and set

G(u) = G0(v), Ku = (∇v − w,Ew), and F(p) = 𝛿B∞
𝛼

(𝜙) + 𝛿B∞
𝛽

(𝜓). (8)

Observe that G in (7) for TV is strongly convex if the nullspace N (K) = {0}, but

G in (8) is never strongly convex. This has important implications.

Namely, problems of the form (P
saddle

) can be solved by the Chambolle-Pock

(-Bischof-Cremers) algorithm [26, 109], also called the modified primal dual hybrid-
gradient method (PDHGM) in [47]. In the presence of strong convexity of either

F∗
or G, a Nesterov acceleration scheme as in FISTA can be employed to speed

up the convergence to O(1∕N2). The unaccelerated variant has rate O(1∕N). There-

fore the performance of the method for TGV2
denoising is theoretically significantly

worse than for TV. We describe the two variants of the algorithm, accelerated and

unaccelerated, in detail in Algorithm 2 and Algorithm 3, respectively.

Algorithm 2 PDHGM [26] for (P
saddle

)
Require: L a bound on ‖K‖, over-relaxation parameter 𝜃 (𝜃 = 1 usually, for convergence proofs

to hold), primal and dual step lengths 𝜏, 𝜎 > 0 such that 𝜏𝜎L2
< 1.

1: Initialise primal and dual iterate u1 ∈ X and p1 ∈ Y . Set k ∶= 1.

2: repeat
3: Compute uk+1 ∶= PG,𝜏

(uk − 𝜏K∗pk),
4: ūk+1 ∶= uk+1 + 𝜃(uk+1 − uk),
5: pk+1 ∶= PF∗ ,𝜎(pk + 𝜎Kūk+1).
6: Update k ∶= k + 1.

7: until A stopping criterion is fulfilled.

Algorithm 3 Accelerated PDHGM [26] for (P
saddle

)
Require: L a bound on ‖K‖, 𝛾 > 0 factor of strong convexity of G or F∗

, initial primal and dual

step lengths 𝜏1, 𝜎1 > 0 such that 𝜏1𝜎1L2
< 1.

1: Initialise primal and dual iterate u1 ∈ X and p1 ∈ Y . Set k ∶= 1.

2: repeat
3: Compute uk+1 ∶= PG,𝜏k

(uk − 𝜏kK∗pk),

4: 𝜃k ∶= 1∕
√
1 + 2𝛾𝜏k, 𝜏k+1 ∶= 𝜃k𝜏k, and 𝜎k+1 ∶= 𝜎k∕𝜃k,

5: ūk+1 ∶= uk+1∫ + 𝜃k(uk+1 − uk),
6: pk+1 ∶= PF∗ ,𝜎k+1

(pk∫ + 𝜎k+1Kūk+1).
7: Update k ∶= k + 1.

8: until A stopping criterion is fulfilled.
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The method is based on proximal or backward steps for both the primal and dual

variables. Essentially one holds u and p alternatingly fixed in (P
saddle

), and takes a

proximal step for the other. However, this scheme, known as PDHG (primal-dual

hybrid gradient method, [147]), is generally not convergent. That is why the over-
relaxation or inertia step ūk+1 ∶= uk+1 + 𝜃(uk+1 − uk) for the primal variable is

crucial. We also need to take 𝜃 = 1 for the convergence results to hold [26]. Naturally

inertia step on the primal variables u could be replaced by a corresponding step on

the dual variable p.

It can be shown that the PDHGM is actually a preconditioned proximal point

method [59], see also [117, 131]. (This reformulation is the reason why the ordering

of the steps in Algorithm 2 is different from the original one in [26].) Proximal point

methods apply to general monotone inclusions, not just convex optimisation, and the

inertial and splitting ideas of Algorithm 2 have been generalised to those [83].

The PDHGM is very closely related to a variety other algorithms popular in image

processing. For K = I, the unaccelerated version of the method reduces [26] to the

earlier alternating direction method of multipliers (ADMM, [53]), which itself is a

variant of the classical Douglas-Rachford splitting algorithm (DRS, [43]), and an

approximation of the Augmented Lagrangian method. The idea here is to consider

the primal problem corresponding to (P
saddle

), that is

min
u

G(u) + F(Ku).

Then we write this as

min
u,p

G(u) + F(p) subject to Ku = p.

The form of the Augmented Lagrangian method in Algorithm 4 may be applied to

this. If, in the method, we perform Step 3 first with respect to u and then respect to

p, keeping the other fixed, and keep the penalty parameter 𝜇
k

constant, we obtain

the ADMM. For K = I, this will be just the PDHGM. For K ≠ I, the PDHGM can

be seen as a preconditioned ADMM [47].

The ADMM is further related to the split inexact Uzawa method, and equals on

specific problems the alternating split Bregman method. This is again based on a

proximal point method employing in PG,𝜏
, instead of the standard L2

-squared dis-

tance, alternative so-called Bregman distances related to the problem at hand; see

[121] for an overview. We refer to [26, 47, 121] for even further connections.

Generalising, it can be said that FISTA performs better than PDHGM when the

computation of the proximal mappings it requires can be done fast [26]. The PDHGM

is however often one of the best performers, and often very easy to implement thanks

to the straightforward linear operations and often easy proximal maps. It can be

applied to TGV2
regularisation problems, and generally outperforms FISTA, which

was still used for TGV2
minimisation in the original TGV paper [19]. The problem

is that the proximal map required by FISTA for the predual formulation of TGV2

denoising is too difficult to compute. The primal formulation would be even more
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Algorithm 4 Augmented Lagrangian method for minu F(u) subject to Au = f
Require: A sequence of penalty parameters 𝜇k ↘ 0, initial iterate u0 ∈ X, and initial Lagrange

multiplier 𝜆
1 ∈ Y .

1: Define the Augmented Lagrangian

L (u, 𝜆, 𝜇) ∶= F(u) + ⟨𝜆,Au − f ⟩ + 1
2𝜇

‖Au − f‖22.

2: repeat
3: Compute uk ∶= argmin

u
L (u, 𝜆k;𝜇k) starting from uk−1

, and

4: 𝜆
k+1 ∶= 𝜆

k − (Auk − b)∕𝜇k
.

5: Update k ∶= k + 1.

6: until A stopping criterion is fulfilled.

difficult, being of same form as the original problem. This limits the applicability of

FISTA. But the PDHGM is also not completely without these limitations.

4.4 When the Proximal Mapping is Difficult

In typical imaging applications, with R = TV or R = TGV2
, the proximal map

PF∗,𝜎 corresponding to the regulariser is easy to calculate for PDHGM—it consists

of simple pointwise projections to unit balls. But there are many situations, when

the proximal map PG0,𝜏
corresponding to the data term is unfeasible to calculate on

every iteration of Algorithm 2. Of course, if the operator A = I is the identity, this is a

trivial linear operation. Even when A = SF is a sub-sampled Fourier transform, the

proximal map reduces to a simple linear operation thanks to the unitarity F ∗F =
FF ∗ = I of the Fourier transform. But what if the operator is more complicated,

or, let’s say

G0(v) =
1
2
‖f − Av‖22 + 𝛿C(v),

for some difficult constraint set C? In a few important seemingly difficult cases, cal-

culating the proximal map is still very feasible. This includes a pointwise positive

semi-definiteness constraint on a diffusion tensor field when A = I [135]. Here also

a form of unitary invariance of the constraint set is crucial [81]. If A ≠ I with the

positivity constraint, the proximal mapping can become very difficult. If A is a point-

wise (pixelwise) operator, this can still be marginally feasible if special small data
interior point algorithms are used for its pointwise computation [130, 136]. Never-

theless, even in this case [136], a reformulation tends to be more efficient. Namely,

we can rewrite

G0(v) = sup
𝜆

⟨Av − f , 𝜆⟩ − 1
2
‖𝜆‖22 + 𝛿C(v).
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Then, in case of TV regularisation, we set p = (𝜙, 𝜆), and

G(u) ∶= 𝛿C(u), Ku ∶= (∇u,Au), and F∗(p) ∶= 𝛿B∞
𝛼

(𝜙) + ⟨f , 𝜆⟩ + 1
2
‖𝜆‖22.

The modifications for TGV2
regularisation are analogous. Now, if the projection

into C is easy, and A and A∗
can be calculated easily, as is typically the case, applica-

tion of Algorithm 2 becomes feasible. The accelerated version is usually no longer

applicable, as the reformulated G is not strongly convex, and F∗
usually isn’t.

However, there may be better approaches. One is the GIST or Generalised Itera-
tive Soft Thresholding algorithm of [84], whose steps are laid out in detail in Algo-

rithm 5. As the name implies, it is also based on the ISTA algorithm as was FISTA,

and is a type of forward-backward splitting approach. It is applicable to saddle-point

problems (P
saddle

) with

G(u) = 1
2
‖f − Au‖2. (9)

In essence, the algorithm first takes a forward (gradient) step for u in the saddle-point

formulation (P
saddle

), keeping p fixed. This is only used to calculate the point where

to next take a proximal step for p keeping u fixed. Then it takes a forward step for u
at the new p to actually update u. In this way, also GIST has a second over-relaxation

type sequence for obtaining convergence. If ‖A‖ <

√
2 and ‖K‖ < 1, then GIST

converges with rate O(1∕N). We recall that forward-backward splitting generally has

rather stronger requirements for convergence, see [128] as well as [61, 121] for an

overview and relevance to image processing. Also, in comparison to the PDHGM,

the calculation of the proximal map of G is avoided, and the algorithm requires less

variables and memory than PDHGM with the aforementioned “dual transportation”

reformulation of the problem.

Algorithm 5 GIST [84] for (P
saddle

) with (9)

1: Initialise primal and dual iterate u1 ∈ X and p1 ∈ Y . Set k ∶= 1.

2: repeat
3: Compute ūk+1 ∶= uk + AT (f − Auk) − KT pk

,

4: pk+1 ∶= PF∗ ,1(pk + Kūk+1),
5: uk+1 ∶= uk + AT (f − Auk) − KT pk+1

.

6: Update k ∶= k + 1.

7: until A stopping criterion is fulfilled.

5 Second-Order Optimisation Methods for Imaging

Although second-order methods are more difficult to scale to large images, and the

non-smoothness of typical regularisers R causes complications, there has been a

good amount of work into second-order methods for total variation regularisation,
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in particular for the ROF problem (2). Typically some smoothing of the problem is

required. The first work in this category is [140]. There, the total variation seminorm

‖∇u‖2,1 is replaced by the smoothed version

T̃V
𝜀
(u) ∶=

∫
𝛺

√

‖∇u(x)‖2 + 𝜀dx. (10)

Then the Newton method is applied—after discretisation, which is needed for u to

live in and T̃V
𝜀

to have gradients in a “nice” space. In the following, we will dis-

cuss one further development, primarily to illustrate the issues in the application of

second order method to imaging problems, not just from the point of view of big

data, but also from the point of view of imaging problems. Moreover, second-order

methods generally find high-precision solutions faster than first-order methods when

it is feasible to apply one, and are in principle more capable of finding actual local

minimisers to non-convex problems. These include non-convex total variation regu-

larisation or inversion with non-linear forward operators.

5.1 Huber-Regularisation

In recent works on second order methods, Huber-regularisation, also sometimes

called Nesterov-regularisation, is more common than the smoothing of (10). This

has the advantage of only distorting the one-norm of TV locally for small gradients,

and has a particularly attractive form in primal-dual or (pre)dual methods. Moreover,

Huber-regularisation tends to ameliorate the stair-casing effect of TV. The Huber-

regularisation of the two-norm on ℝn
may for a parameter 𝛾 > 0 be written as

|g|
𝛾
∶=

{
‖g‖2 −

1
2𝛾
, ‖g‖2 ≥ 1∕𝛾,

𝛾

2
‖g‖22, ‖g‖2 < 1∕𝛾.

(11)

Alternatively, in terms of convex conjugates, we have the dual formulation

|g|
𝛾
= max

{

⟨g, 𝜉⟩ − 1
2𝛾

‖𝜉‖22

|
|
|
|
|

𝜉 ∈ ℝn
, ‖𝜉‖2 ≤ 1

}

. (12)

In other words, the sharp corner of the graph of the two-norm is smoothed around

zero—the more the smaller the parameter 𝛾 is. (Sometimes in the literature, our 𝛾 is

replaced by 1∕𝛾 , and so smaller value is less regularisation.) In the dual formulation,

we just regularise the dual variable. This helps to avoid its oscillation. With (11), we

may then define the (isotropic) Huber-regularised total variation as

TV
𝛾
(u) ∶=

∫
𝛺

|∇u(x)|
𝛾
dx.
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5.2 A Primal-Dual Semi-smooth Newton Approach

In the infinite-dimensional setting, we add for a small parameter 𝜀 > 0 the penalty

𝜀‖∇u‖22 to (2), to pose it in a Hilbert space. This will cause the corresponding func-

tional to have “easy” subdifferentials without the measure-theoretic complications

of working in the Banach space of functions of bounded variation. With Huber-

regularisation, (2) then becomes differentiable, or “semismooth” [31, 111]. A gen-

eralised Newton’s method can be applied. We follow here the “infeasible active set”

approach on the predual problem (4), developed in [64], but see also [76]. In fact,

we describe here the extension in [39] for solving the more general problem

min
u∈H1(𝛺;ℝN )

𝜀‖∇u‖22 +
1
2
‖f − Au‖22 +

N∑

j=1
𝛼j
∫
𝛺

|[Kju](x)|𝛾dx, (P
SSN

)

where A ∶ H1(𝛺;ℝm) → L2(𝛺), and Kj ∶ H1(𝛺;ℝm) → L1(𝛺;ℝmj ), (j = 1,… ,N),

are linear operators with corresponding weights 𝛼j > 0. This formulation is applica-

ble to the TGV denoising problem (5) by setting u = (v,w), Au = v, K1u = ∇v −w,

and K2u = Ew. The first-order optimality conditions for (P
SSN

) may be derived as

−𝜀𝛥u + A∗Au +
N∑

i=1
K∗

j pj = A∗f , (13a)

max{1∕𝛾, |[Kju](x)|2}pj(x) − 𝛼j[Kju](x) = 0, (j = 1,… ,N; x ∈ 𝛺). (13b)

Here (13b) corresponds pointwise for the optimality of 𝜉 = pj(x)∕𝛼j for g =
𝛼[Kju](x) and 𝛾

′ = 𝛾∕𝛼j in (12). To see why this is right, it is important to observe

that 𝛼|g|
𝛾
= |𝛼g|

𝛾∕𝛼 . Even in a finite-dimensional setting, although we are naturally

in a Hilbert space, the further regularisation by 𝜀‖∇u‖22 is generally required to make

the system matrix invertible. If we linearise (13b), solve the resulting linear system

and update each variable accordingly, momentarily allowing each dual variable pj
to become infeasible, and then project back into the respective dual ball, we obtain

Algorithm 6. For details of the derivation we refer to [39, 64]. Following [125], it

can be shown that the method converges locally superlinearly near a point where

the subdifferentials of the operator on (u, p1,… pN) corresponding to (13) are non-

singular. Further dampening as in [64] guarantees local superlinear convergence at

any point.

Remark 3 If one wants to use a straightforward Matlab implementation of Algo-

rithm 6 with TGV2
and expect anything besides a computer become a lifeless brick,

the system (14) has to be simplified. Indeed B is invertible, so we may solve 𝛿u from

B𝛿u = R1 −
N∑

j=1
K∗

j 𝛿pj. (15)
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Algorithm 6 An infeasible semi-smooth Newton method for (P
SSN

) [39, 64]

Require: Step length 𝜏 > 0.

1: Define the helper functions

𝔪j(u)(x) ∶= max{1∕𝛾, |[Kju](x)|2}, [𝔇(p)q](x) ∶= p(x)q(x),

𝔑(z)(x) ∶=

{
0, |z(x)|2 < 1∕𝛾,

z(x)
|z(x)|2

, |z(x)|2 > 1∕𝛾, (x ∈ 𝛺).

2: Initialise primal iterate u1 and dual iterates (p1
,… , pN ). Set k ∶= 1.

3: repeat
4: Solve (𝛿u, 𝛿p1,… , 𝛿pN) from the system

⎛
⎜
⎜
⎜
⎝

B, K∗
1 … K∗

N
−𝛼1K1 +𝔑(K1uk)∗𝔇(p1)K1 𝔇(𝔪j(uk)) 0 0

⋮ 0 ⋱ 0
−𝛼NKN +𝔑(KNuk)∗𝔇(pN )KN 0 0 𝔇(𝔪N (u))

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

𝛿u
𝛿p1
⋮

𝛿pN

⎞
⎟
⎟
⎟
⎠

= R (14)

where

R ∶=
⎛
⎜
⎜
⎜
⎝

−Buk −
∑N

i=1 K∗
j pk

j + A∗f
𝛼1K1uk −𝔇(𝔪1(u))pk

1
⋮

𝛼NKNuk −𝔇(𝔪N (uk))pk
N

⎞
⎟
⎟
⎟
⎠

,

and

B ∶= −𝜀𝛥 + A∗A.

5: Update

(uk+1
, p̃k+1

1 ,… p̃k+1
N ) ∶= (uk + 𝜏𝛿u, pk

1 + 𝜏𝛿p1, pk
N + 𝜏𝛿pN),

6: Project

pk+1
j ∶= 𝔓(p̃k+1

j ; 𝛼j), where 𝔓(p; 𝛼)(x) ∶= sgn(p(x))min{𝛼, |p(x)|},

7: Update k ∶= k + 1.

8: until A stopping criterion is satisfied.

Thus we may simplify 𝛿u out of (14), and only solve for 𝛿p1,… , 𝛿pN using a reduced

system matrix. Finally we calculate 𝛿u from (15).

In [39], the algorithm is compared against the PDHGM (Algorithm 2) both forTV
and TGV2

denoising, (2) and (5), respectively. It is observed that the performance

can be comparable to PDHGM for TV with images up to size about 256 × 256.

In case of TGV2
the method performs significantly worse due to the SSN system

(14) being worse-conditioned, and the data size of TGV2
being far larger through

the additional variables w and p2. For images in the range 512 × 512 the method is

no longer practical on current desktop computers, so definitely not for multi-million

megapixel real-life photographs.
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5.3 A Note on Interior Point Methods

Application of interior point methods to (2)—which can be very easily done with

CVX [55, 56]—has similar scalability problems as Algorithm 6. This is mainly due

to excessive memory demands. For small problem sizes the performance can be good

when high accuracy is desired—especially the commercial MOSEK solver performs

very well. However, as is to be expected, the performance deteriorates quickly as

problem sizes increase and the interior point formulations become too large to fit in

memory [80, 108].

A way forward for second-order methods is to use preconditioning to make the

system matrix better conditioned, or to split the problem into smaller pieces using

domain decomposition techniques. We will discuss what early progress has been

made in this area in Sect. 7.2.

5.4 Methods for Non-convex Regularisers

One reason for us introducing Algorithm 6, despite being evidently not up to the

processing of big images at this stage, is that the same ideas can be used derive

methods for solving non-convex total variation problems [62, 65, 66]

min
u

1
2
‖f − Au‖22 + 𝛼

∫
𝛺

𝜓(‖∇u(x)‖)dx. (16)

Here 𝜓 ∶ [0,∞) → [0,∞) is a concave energy that attempts to model real gradient

distributions in images, recall Fig. 4. Usually 𝜓(t) = tq
for q ∈ (0, 1) although

this has significant theoretical problems [62]. Alternative, first-order, approaches

include the iPiano of [98], which looks a lot like FISTA, allowing F in (P
primal

) to be

non-convex and modifying the updates a little. The PDHGM has also recently been

extended to “semiconvex” F [89]; this includes (16) when the energies 𝜓(t) = tq
are

linearised for small t. No comparisons between the methods are known to the author.

6 Non-linear Operators and Methods for Iterative
Regularisation

We now discuss typical and novel approaches for two closely related topics: inverse

problems with non-linear forward operators A, and iterative regularisation. Overall,

the workhorse algorithms in this category are much less developed than for Tikhonov

regularisation with linear forward operators, in which case both data and convex

terms are convex.
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6.1 Inverse Problems with Non-linear Operators

We now let A be a non-linear operator and set

G(u) ∶= 1
2
‖f − A(u)‖22. (17)

Although second-order methods in particular could in principle be applied to

smoothed versions of the resulting Tikhonov problem (P
𝛼
), in inverse problems

research, a classical approach in this case is the Gauss-Newton method, described

in Algorithm 7. It is based on linearising A at an iterate uk
and solving the resulting

convex problem at each iteration until hopeful eventual convergence. This can be

very expensive, and convergence is not generally guaranteed [97], as experiments

in [131] numerically confirm. However, for the realisation of the algorithm, it is not

necessary that R is (semi-)smooth as with Newton type methods.

Algorithm 7 Gauss-Newton method for (P
𝛼
) with (17)

1: Initialise primal iterate u1 ∈ X. Set k ∶= 1.

2: repeat
3: Solve for uk+1 ∶= u the convex problem

min
u

1
2
‖f − A(uk) − ∇A(uk)(u − uk)‖22 + 𝛼R(u). (18)

4: Update k ∶= k + 1.

5: until A stopping criterion is fulfilled.

A more recent related development is the primal-dual hybrid gradient method for
non-linear operators (NL-PDHGM, [131]), which we describe in Algorithm 8. It

extends the iterations of the PDHGM (Algorithm 2) to non-linear K in the saddle-

point problem (P
saddle

). That is, it looks for critical points of the problem

min
u∈X

max
p∈Y

G(u) + ⟨K(u), p⟩ − F∗(p), (P
nl-saddle

)

where now K ∈ C2(X;Y), but G ∶ X → (−∞,∞] and F∗ ∶ Y → (−∞,∞] are still

convex, proper, and lower semicontinuous. Through the reformulations we discussed

in Sect. 4.4, it can also be applied when G is as in (17) with nonlinear A. Accord-

ing to the experiments in [131], the NL-PDHGM by far outperforms Gauss-Newton

on example problems from magnetic resonance imaging. Moreover, the non-linear

models considered improve upon the visual and PSNR performance of earlier lin-

ear models in [135, 136] for diffusion tensor imaging, and in [11] for MR velocity

imaging, cf. also [146]. The method can be proved to converge locally on rather strict

conditions. For one, Huber-regularisation of TV or TGV2
is required. The second

peculiar condition is that the regularisation parameter 𝛼 and the noise level �̄� have
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to be “small”. An approximate linearity condition, as with the is common with the

combination of the Gauss-Newton method with iterative regularisation, discussed

next, is however not required.

Algorithm 8 NL-PDHGM [131] for (P
nl-saddle

)
Require: L a local bound on ‖∇K(u)‖ in a neighbourhood of a solution (u∗, p∗), over-relaxation

parameter 𝜃 (usually 𝜃 = 1 for convergence results to hold), primal and dual step lengths

𝜏, 𝜎 > 0 such that 𝜏𝜎L2
< 1.

1: Initialise primal and dual iterate u1 ∈ X and p1 ∈ Y . Set k ∶= 1.

2: repeat
3: Compute uk+1 ∶= PG,𝜏

(uk − 𝜏[∇K(uk)]∗pk),
4: ūk+1 ∶= uk+1 + 𝜃(uk+1 − uk),
5: pk+1 ∶= PF∗ ,𝜎(pk + 𝜎K(ūk+1)).
6: Update k ∶= k + 1.

7: until A stopping criterion is fulfilled.

6.2 Iterative Regularisation

We now briefly consider solution approaches for the constrained problem (P�̄�), which

tends to be much more difficult than the Tikhonov problem (P
𝛼
). In some special

cases, as we’ve already mentioned, NESTA [8] can be applied. One can also apply

the classical Augmented Lagrangian method [97]. If one minimises R subject to the

exact constraint Au = f , the method has the form in Algorithm 4 with a suitable rule

of decreasing the penalty parameter 𝜇
k
. The latter has roughly the same role here

as 𝛼 in the Tikhonov problem (P
𝛼
). Thus the Augmented Lagrangian method forms

a way of iterative regularisation, if we actually stop the iterations when Morozov’s

discrepancy principle is violated. (In this case, we do not expect Au = f to have a

solution, but require ‖Au−f‖ ≤ �̄� to have a solution.) If we fix 𝜇
k ≡ 1 the Augmented

Lagrangian method then corresponds [144] to so-called Bregman iterations [54, 100]

on (P
𝛼
). Another way to view this is that one keeps 𝛼 in (P

𝛼
) fixed, but, iterating its

solution, replaces on each iteration the distance
1
2
‖Au− f‖22 by the Bregman distance

D𝜆

G(u, u
k−1) ∶= G(u) − G(uk−1) − ⟨𝜆, u − uk−1⟩,

for G(u) = 1
2
‖Au − f‖22, and 𝜆 ∈ 𝜕G(uk−1). This scheme has a marked contrast-

enhancing effect compared to the basic Tikhonov approach.

But how about just letting 𝛼 ↘ 0 in (P
𝛼
), as we discussed in Sect. 2, and stop-

ping when Morozov’s discrepancy principle is violated? This is equally feasible for

linear A as the Augmented Lagrangian approach. But what if A is non-linear? The

Gauss-Newton approach for solving each of the inner Tikhonov problems results in

this case in three nested optimisation loops: one for 𝛼k ↘ 0, one for solving the



120 T. Valkonen

non-convex problem for 𝛼 = 𝛼k, and one for solving (18). Aside from toy problems,

this start to be computationally unfeasible. There is some light at the end of the tun-

nel however: the Levenberg-Marquardt, and iteratively regularised Landweber and
Gauss-Newton (IRGN) methods [14, 70]. Similar approaches can also be devised

for Bregman iterations when A is nonlinear [7].

The iteratively regularised Levenberg-Marquardt scheme [46, 58, 70] is the one

most straightforward for general regularisers, including the non-smooth ones we are

interested in. In the general case, a convergence theory is however lacking to the

best of our knowledge, unless the scheme is Bregmanised as in [7]. Bregman dis-

tances have indeed been generally found useful for the transfer of various results

from Hilbert spaces to Banach spaces [120]. Nevertheless, the Levenberg-Marquardt

scheme combines the Gauss-Newton step (18) with the parameter reduction scheme

𝛼k ↘ 0 into a single step. It then remains to solve (18) for 𝛼 = 𝛼k with another

method, such as those discussed in Sect. 4. For the simple, smooth, regulariser

R(u) = ‖u − u0‖2, not generally relevant to imaging problems, the iteratively regu-

larised Landweber and Gauss-Newton methods can combine even this into a single

overall loop. Convergence requires, in general, a degree of approximate linearity
from A. In the worst case, this involves the existence of 𝜂, 𝜌 > 0 and a solution u∗ of

A(u∗) = f such that

‖A(ũ) − A(u) − ∇A(u)(ũ − u)‖ ≤ 𝜂‖u − ũ‖‖A(u) − A(ũ)‖, (19)

whenever u and ũ satisfy ‖u − u∗‖, ‖ũ − u∗‖ ≤ 𝜌. Although (19) and related condi-

tions can be shown to hold for certain non-linear parameter identification problems,

in general it is rarely satisfied [46, 70]. For example, (19) is not satisfied by the oper-

ators considered for magnetic resonance imaging (MRI) in [131], where Algorithm

8 was developed.

7 Emerging Topics

We finish this chapter with a brief overlook at a couple of topics that have the

potential to improve image optimisation performance, and turn other challenges into

big data challenges. The latter, discussed first, is convex relaxation, which trans-

forms difficult non-convex problems into large-scale convex problems. The former

is decomposition and preconditioning techniques, which seek to turn large problems

into smaller ones.

7.1 Convex Relaxation

The basic idea behind convex relaxation approaches is to lift a non-convex problem

into a higher-dimensional space, where it becomes convex. This kind of approaches
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are becoming popular in image processing, especially in the context of the difficult

problem of segmentation, and the Mumford-Shah problem [93]. This may be written

min
u

1
2
‖f − u‖22 + 𝛼

∫
𝛺

‖∇u(x)‖22dx + 𝛽H n−1(Ju). (20)

Here u is a function of bounded variation, which may have discontinuities Ju, corre-

sponding to boundaries of different objects in the scene f . The final term measures

their length, and the middle term forces u to be smooth outside the discontinuities;

for details we refer to [3]. The connected components of 𝛺, as split by Ju, allow us

to divide the scene into different segments.

Let us consider trying to solve for u ∈ L1(𝛺) and a general non-convex G the

problem

min
u∈L1(𝛺)

G(u). (21)

Any global solution of this problem is a solution of

min
u∈L1(𝛺)

G(u),

where G is the convex lower semicontinuous envelope of G, or the greatest lower

semicontinuous convex function such that G ≤ G. The minimum values of the func-

tionals agree, and under some conditions, the minimisers of G and G agree.

But how to compute G? It turns out that in some cases [24], it is significantly

easier to calculate the convex lower semicontinuous envelope of

G (v) ∶=

{
G(v), v = 𝜒

𝛤u
,

∞, otherwise,

Here

𝛤u = {(x, t) ∈ 𝛺 ×ℝ ∣ t < u(x)}

is the lower graph of u, while v ∈ L1(𝛺 ×ℝ; [0, 1]). Then

G(u) = G (𝜒
𝛤u
),

and instead of solving (21), one attempts to solve the convex problem

min
v∈L1(𝛺×ℝ;[0,1])

G (v).

Observe that v lives in a larger space than u. Although the problem has become con-

vex and more feasible to solve globally than the original one, it has become bigger.



122 T. Valkonen

Often [24], one can write

G (v) = sup
𝜙∈K ∫

𝛺×ℝ
∇∗

𝜙(x, t)v(x, t)d(x, t)

for some closed convex set K ⊂ C0(𝛺 × ℝ;ℝn+1). In some cases, the set K has a

numerically realisable analytical expression, although the dimensions of K make the

problem even bigger.

A particularly important case when K has a simple analytical expression is the

for the Mumford-Shah problem (20) [2]. Other problems that can, at least roughly,

be handled this way include regularisation by Euler’s elastica [16] and multi-label

segmentation [107]. Although not exactly fitting this framework, total variation reg-

ularisation of discretised manifold-valued data, such as normal fields or direction

vectors, can also be performed through convex relaxation in a higher-dimensional

space [79]. This approach also covers something as useless, but of utmost mathe-

matical satisfaction, as the smoothing of the path of an ant lost on the Möbius band.

7.2 Decomposition and Preconditioning Techniques

The idea in domain decomposition is to divide a big problem into small sub-

problems, solve them, and then combine the solutions. This area is still in its infancy

within image processing, although well researched in the context of finite element

methods for partial differential equations. The current approaches within the field

[51, 52, 60, 63] are still proof-of-concept meta-algorithms that have not replaced

the more conventional algorithms discussed in Sects. 4 and 5. They pose difficult

(but smaller) problems on each sub-domain. These then have to be solved by one of

the conventional algorithms multiple times within the meta-algorithm, which within

each of its iterations performs subspace correction to glue the solutions together. In

case of second-order methods, i.e., if high accuracy is desired, even current domain

decomposition techniques may however make problems of previously untractable

size tractable.

Depending on the operator A, the first-order methods discussed in Sect. 4 are how-

ever usually easily parallelised within each iteration on multiple CPU cores or on a

graphics processing unit (GPU), cf. e.g., [137]. Any advantages of domain decompo-

sition meta-algorithms are therefore doubtful. Intelligent decomposition techniques

could however help to reduce the workload within each iteration. This is, roughly,

the idea behind stochastic coordinate descent methods, popular in general big data

optimisation. We point in particular to [50] for an approach related to FISTA, to [13,

126] for ones related to the ADMM, and to [35, 75, 96, 113, 129, 142, 145] for

just a small selection of other approaches. These methods update on each of their

iterations only small subsets of unknown variables, even single variables or pixels,

and obtain acceleration from local adaptation of step lengths. All of this is done in

a random fashion to guarantee fast expected convergence on massive data sets. This

type of methods form an interesting possibility for image processing.
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Stochastic coordinate descent methods generally, however, demand a degree of

separability from the problem, limiting the degree of dependence of each variable

from other variables. This is necessary both for parallelisation and to prevent lock-

up—to guarantee, statistically, that the randomly chosen variable can be updated

without other variables restricting this. This is generally a problem for imaging appli-

cations that often lack this level of separability. However, the “coordinate-descent

FISTA” of [50], for example, is applicable to the predual formulation (4) of TV
denoising. In our preliminary experiments (with Olivier Fercoq and Peter Richtárik),

we did not however obtain any acceleration compared to standard FISTA. The prob-

lem is that the matrix for the divergence operator in (4) is very uniform. The acceler-

ation features of the current line-up of stochastic gradient descent methods however

depend on varying “local curvature” of the problem in terms of local features of the

Hessian of the objective. In (4) the Hessian only involves the “uniformly curved”

divergence operator, and not the data itself. Therefore, no significant acceleration

is obtained, aside from possibly better parallelisation performance, for example on

a GPU.

Another alternative to typical domain decomposition techniques is

preconditioning—something that has been studied for a long time for general numer-

ical linear algebra, but is still making its inroads into mathematical image processing.

Domain decomposition in its per-iteration form can also seen as an approach to pre-

conditioning, of course. Here the idea is to make each iteration cheaper, or, in a sense,

to adapt the step sizes spatially. This can be done in the context of the PDHGM,

exploiting the proximal point formulation; see [108], where spatial adaptation of

the step lengths reportedly significantly improved the performance of the PDHGM.

Another recent alternative for which promising performance has been reported, is

the use of the conventional Douglas-Rachford splitting method with Gauss-Seidel

preconditioning in [17].

8 Conclusions

In this chapter, we have taken a look into the state-of-the-art of optimisation algo-

rithms suitable for solving mathematical image processing models. Our focus has

been on relatively simple first-order splitting methods, as these generally provide

the best performance on large-scale images. Moving from FISTA and PDHGM to

GIST, we have gradually changed the types of proximal mappings that need to be

computed, at the cost of expanding the problem size or reducing theoretical con-

vergence rate. We have also taken a brief look at stochastic gradient descent meth-

ods, popular for more general big data problems. At the present stage, such methods

are, however, unsuitable for imaging problems. There is thus still significant work

to be done in this area—can we come up with an optimisation method that would

put mathematically-based state-of-the-art image enhancement models on a pocket

camera?
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Interlinking Big Data to Web of Data
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Abstract The big data problem can be seen as a massive number of data islands,
ranging from personal, shared, social to business data. The data in these islands is
getting large scale, never ending, and ever changing, arriving in batches at irregular
time intervals. Examples of these are social and business data. Linking and ana-
lyzing of this potentially connected data is of high and valuable interest. In this
context, it will be important to investigate how the Linked Data approach can
enable the Big Data optimization. In particular, the Linked Data approach has
recently facilitated the accessibility, sharing, and enrichment of data on the Web.
Scientists believe that Linked Data reduces Big Data variability by some of the
scientifically less interesting dimensions. In particular, by applying the Linked Data
techniques for exposing structured data and eventually interlinking them to useful
knowledge on the Web, many syntactic issues vanish. Generally speaking, this
approach improves data optimization by providing some solutions for intelligent
and automatic linking among datasets. In this chapter, we aim to discuss the
advantages of applying the Linked Data approach, towards the optimization of Big
Data in the Linked Open Data (LOD) cloud by: (i) describing the impact of linking
Big Data to LOD cloud; (ii) representing various interlinking tools for linking Big
Data; and (iii) providing a practical case study: linking a very large dataset to
DBpedia.
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1 Introduction

The big data problem can be seen as a massive number of data islands, ranging from
personal, shared, social to business data. The data in these islands are increasingly
becoming large-scale, never-ending, and ever changing; they may also arrive in
batches at irregular time intervals. Examples of these are social (the streams of
3,000−6,000 tweets per second in Twitter) and business data. The adoption of
social media, the digitalisation of business artefacts (e.g. files, documents, reports,
and receipts), using sensors (to measure and track everything), and more impor-
tantly generating huge metadata (e.g. versioning, provenance, security, and pri-
vacy), for imbuing the business data with additional semantics, generate part of this
big data. Wide physical distribution, diversity of formats, non-standard data models,
independently-managed and heterogeneous semantics are characteristics of this big
data. Linking and analysing of this potentially connected data is of high and
valuable interest. In this context, it will be important to investigate how the Linked
Data approach can enable the Big Data optimization.

In recent years, the Linked Data approach [1] has facilitated the availability of
different kinds of information on the Web and in some senses; it has been part of the
Big Data [2]. The view that data objects are linked and shared is very much in line
with the goals of Big Data and it is fair to mention that Linked Data could be an
ideal pilot place in Big Data research. Linked Data reduces Big Data variability by
some of the scientifically less interesting dimensions. Connecting and exploring
data using RDF [3], a general way to describe structured information in Linked
Data, may lead to creation of new information, which in turn may enable data
publishers to formulate better solutions and identify new opportunities. Moreover,
the Linked Data approach applies vocabularies which are created using a few
formally well-defined languages (e.g., OWL [4]). From searching and accessibility
perspective, a lot of compatible free and open source tools and systems have been
developed on the Linked Data context to facilitate the loading, querying and
interlinking of open data islands. These techniques can be largely applied in the
context of Big Data.

In this context, optimization approaches to interlinking Big Data to the Web of
Data can play a critical role in scaling and understanding the potentially connected
resources scattered over the Web. For example, Open Government establishes a
modern cooperation among politicians, public administration, industry and private
citizens by enabling more transparency, democracy, participation and collaboration.
Using and optimizing the links between Open Government Data (OGD) and useful
knowledge on the Web, OGD stakeholders can contribute to provide collections of
enriched data. For instance, US government data1 including around 111,154
datasets, at the time of writing this book, that was launched on May 2009 having

1http://data.gov/.
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only 76 datasets from 11 government agencies. This dataset, as a US government
Web portal provides the public with access to federal government-created datasets
and increases efficiency among government agencies. Most US government
agencies already work on the codified information dissemination requirements, and
‘data.gov’ being conceived as a tool to aid their mission delivery. Another notable
example, in the context of e-learning, provides linking of educational resources
from different repositories to other datasets on the Web.

Optimizing approaches to interconnecting e-Learning resources may enable
sharing, navigation and reusing of learning objects. As a motivating scenario,
consider a researcher who might explore the contents of a big data repository in
order to find a specific resource. In one of the resources, a video on the subject of
his interests may catch the researcher’s attention and thus follows the provided
description, which has been provided in another language. Assuming that the
resources in the repository have been previously interlinked with knowledge bases
such as DBpedia,2 the user will be enabled to find more information on the topic
including different translations.

Obviously, the core of data accessibility throughout the Web can provide the
links between items, as this idea is prominent in literature on Linked Data principles
[1]. Indeed, establishing links between objects in a big dataset is based on the
assumption that the Web is migrating from a model of isolated data repositories to a
Web of interlinked data. One advantage of data connectivity in a big dataset [5] is
the possibility of connecting a resource to valuable collections on the Web. In this
chapter, we discuss how optimization approaches to interlinking Web of data to Big
Data can enrich a Big Dataset. After a brief discussing on different interlinking tools
in the Linked Data context, we explain how an interlinking process can be applied
for linking a dataset to Web of Data. Later, we experiments an interlinking
approach over a sample of Big Dataset in eLearning literature and conclude the
chapter by reporting on the results.

2 Interlinking Tools

There exist several approaches for interlinking data in the context of LD. Simperl
et al. [6] provided a comparison of interlinking tools based upon some criteria such
as use cases, annotation, input and output. Likewise, we explain some of the related
tools, by focusing on their need to human contribution (to what extent users have to
contribute in interlinking), their automation (to what extent the tool needs human
input), and the area (in which environment the tool can be applied).

From a human contribution perspective, User Contributed Interlinking (UCI) [7]
creates different types of semantic links such as owl:sameas and rdf:seeAlso

2http://dbpedia.org.
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between two datasets relying on user contributions. In this Wiki-style approach,
users can add, view or delete links between data items in a dataset by making use of
a UCI interface. Games With A Purpose (GWAP) [8] is another software which
provides incentives for users to interlink datasets using game and pictures by dis-
tinguishing different pictures with the same name. Linkage Query Writer (LinQuer)
[9] is also another tool for semantic link discovery [10] between different datasets
which allows users to write their queries in an interface using some APIs.

Automatic Interlinking (AI) is another linking approach for interconnecting of
data sources applied for identifying semantic links between data sources.
Semi-automatic interlinking [11], as an example, is a kind of analyzing technique to
assign multimedia data to users using multimedia metadata. Interlinking multimedia
(iM) [11] is also a pragmatic way in this context for applying the LD to fragments
of multimedia items and presents methods for enabling a widespread use of
interlinking multimedia. RDF-IA [12] is another linking tool that carries out
matching and fusion of RDF datasets according to the user configuration, and
generates several outputs including owl:sameAs statements between the data items.

Another semi-automatic approach for interlinking is the Silk Link Discovery
Framework [13], which finds the similarities within different LD sources by
specifying the types of RDF links via SPARQL endpoints or data dumps. LIMES
[14] is also a link discovery software in the LOD that presents a tool in
command-line and GUI for finding similarities between two datasets and suggests
the results to users based on the metrics automatically. LODRefine [15] is another
tool for cleaning, transforming, and interlinking any kinds of data with a web user
interface. It has the benefit of reconciling data to the LOD datasets (e.g., Freebase or
DBpedia) [15]. The following table briefly summarizes the described tools and
mentions the area of application for each one (Table 1).

Table 1 Existing interlinking tools description

Tool Area

UCI General data source
GWAP Web pages, e-commerce offerings, Flickr images, and YouTube
LinQuer LOD datasets
IM Multimedia
RDF-IA LOD datasets
Silk LOD datasets
LIMES LOD datasets
LODRefine General data, LOD datasets
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To discuss the most used tools in Linked Data context we have selected three
software and explain their characteristics and the way that they interlink datasets.

2.1 Silk

Silk [13] is an interlinking software that matches two datasets using string matching
techniques. It applies some similarity metrics to discover similarities between two
concepts. By specifying two datasets as input (SPARQL endpoints or RDF dumps),
Silk provides as an output e.g., “sameAs” triples between the matched entities. Silk
Workbench, is the web application variant of Silk which allows users to interlink
datasets through the process of interlinking different data sources by offering a
graphical editor to create link specifications (consider Fig. 1). After performing the
interlinking process, the user can evaluate the generated links. A number of projects
including DataLift [16] have employed the Silk engine to carry out their inter-
linking purposes.

2.2 LIMES

Link Discovery Framework for Metric Spaces (LIMES) is another interlinking tool
which presents a linking approach for discovering relationships between entities
contained in Linked Data sources [14]. LIMES leverages several mathematical
characteristics of metric spaces to compute pessimistic approximations of the
similarity of instances. It processes the strings by making use of suffix-, prefix- and
position filtering in a string mapper by specifying a source dataset, a target dataset,

Fig. 1 Silk work-bench interface
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and a link specification. LIMES applies either a SPARQL Endpoint or a RDF dump
from both targets. A user can also set a threshold for various matching metrics by
which two instances are considered as matched, when the similarity between the
terms exceeds the defined value. A recent study [14] evaluated LIMES as a
time-efficient approach, particularly when it is applied to link large data collections.
Figure 2 depicts the web interface of LIMES (called SAIM3) was recently provided
by AKSW group.4

2.3 LODRefine

LODRefine [15] is another tool in this area that allows data to be loaded, refined,
and reconciled. It also provides additional functionalities for dealing with the
Linked Open Data cloud. This software discovers similarities between datasets by
linking the data items to the target datasets. LODRefine matches similar concepts
automatically and suggests the results to users for review. Users also can expand
their contents with concepts from the LOD datasets (e.g., DBpedia) once the data
has been reconciled. They can also specify the condition for the interlinking.
Eventually, LODRefine reports the interlinking results and provides several func-
tionalities for filtering the results. LODRefine also allows users to refine and
manage data before starting the interlinking process, which is very useful when the
user dataset includes several messy content (e.g., null, unrelated contents) and
facilitates the process by reducing the number of source concepts. Figure 3 depicts a
snapshot of this tool.

Fig. 2 LIMES web interface

3http://saim.aksw.org/.
4http://www.aksw.org.
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3 Interlinking Process

In an ideal scenario, a data island can be linked to a diverse collection of sources on
the Web of Data. However, connecting each entity, available in the data island, to
an appropriate source is very time-consuming. Particularly when we face a big
number of data items, the domain expert needs to explore the target dataset in order
to be able to apply queries. As mentioned earlier and to minimize the human
contribution, interlinking tools have facilitated the interlinking process by imple-
menting a number of matching techniques. While using an interlinking tool, several
issues such as defining the configuration for the linking process, specifying the
criteria, and post-processing the output need to be addressed. In particular, the user
sets a configuration file in order to specify the criteria under which items are linked
in the datasets. Eventually, the tool generates links between concepts under the
specified criteria and provides output in order to be reviewed and verified by users.
Once the linking process has finished, the user can evaluate the accuracy of the
generated links that are close to the similarity threshold. Specifically, the user can
verify or reject each link recommended by the tool as the two matching concepts
(see Fig. 4).

Fig. 3 LODRefine interface
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4 A Case Study for Interlinking

There exist a wide variety of data sources on the Web of Data that can be con-
sidered as part of the Big Data. With respect to authors’ experiences on eLearning
context and given that around 1,362 datasets have been registered in datahub5 and
tagged as “eLearning datasets”, we selected the GLOBE repository,6 a large dataset
with almost 1.2 million learning resources and more than 10 million concepts [5].
The GLOBE is a federated repository that consists of several other repositories,
such as OER Commons [17] which includes manually created metadata as well as
aggregated metadata from different sources, we selected GLOBE for our case study
to assess the possibility of interlinking. The metadata of learning resources in
GLOBE are based upon the IEEE LOM schema [18] which is a de facto standard
for describing learning objects on the Web. Title, keywords, taxonomies, language,
and description of a learning resource are some of the metadata elements in an
IEEE LOM schema which includes more than 50 elements. Current research on the
use of GLOBE learning resource metadata [19] shows that 20 metadata elements
are used consistently in the repository.

To analyze the GLOBE resource metadata, we collected more than 800,000
metadata files via OAI-PMH7 protocol from the GLOBE repository. Some GLOBE
metadata could not be harvested due to validation errors (e.g., LOM extension
errors). Particularly, several repositories in GLOBE extended the IEEE LOM by
adding new elements without using namespaces, which caused a number of errors

Fig. 4 The interlinking process

5http://datahub.io/.
6http://globe-info.org/.
7Open Archives Initiative Protocol for Metadata Harvesting.” [Online]. Available: http://www.
openarchives.org/pmh. [Accessed: 22-February-2014].
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detected by the ARIADNE validation service.8 Later, we converted the harvested
XML files into a relational database using a JAVA program in order to examine
those elements that are more useful for the interlinking purpose. Figure 5 illustrates
the metadata elements those used by more than 50 % of learning resources in
GLOBE of which title of learning resource, as an example, has been applied by
more than 97 % of the GLOBE resources. More than half (around 55 %) of the
resources were in English and 99 % of the learning objects were open and free to
use. English is the most prominent language in GLOBE [5] and thus the linking
elements used as a source in our data scope were limited to English terms of the
selected elements, which were represented in more than one language.

Several metadata elements such as General.Identifier or Technical.Location are
mostly included local values provided by each repository (e.g., “ed091288” or
“http://www.maa.org/”) and thus could not be considered for interlinking. Addi-
tionally, constant values (e.g., dates and times) or controlled vocabularies (e.g.,
“Contribute.Role” and “Lifecycle.Status”) were not suitable for interlinking, as the
user could not obtain useful information by linking these elements. Finally, the
following metadata elements were selected for the case study, as they were iden-
tified as the most appropriate elements for interlinking [20]:

• Title a learning resource (General.Title)
• The taxonomy given to a learning resource (Classification.Taxon)
• A Keyword or phrase describing the topic of learning objects (General.

Keyword).

Fig. 5 The usage of metadata elements by GLOBE resources

8http://ariadne.cs.kuleuven.be/validationService/.
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As the GLOBE resources were not available as RDF, we exposed the GLOBE
metadata via a SPARQL endpoint.9 We exposed the harvested metadata, which were
converted into a relational database, asRDFusing amappingservice (e.g.,D2RQ10) and
set up a SPARQLEndpoint in order to complete the interlinking process.As a result, the
GLOBEdatawas accessible through a local SPARQLendpoint in order to be interlinked
to a target dataset. There were 434,112 resources with title, 306,949 resources with
Keyword, and 176,439 resources with taxon element all in English language.

To find an appropriate target in the Web of Data, we studies a set of datasets in
datahub of which we selected DBpedia,11 one of the most used datasets [21] and
Linked Data version of Wikipedia that makes it possible to link data items to general
information on the Web. In particular, the advantage of linking of contents to
DBpedia is to make public information usable for other datasets and to enrich datasets
by linking to valuable resources on theWeb of Data.The full DBpedia dataset features
labels and abstracts for 10.3 million unique topics in 111 different languages12 about
persons, places, and organizations. All DBpedia contents have been classified into
900,000 English concepts, and are provided according to SKOS 13, as a common data
model for linking knowledge organization systems on the Web of Data. Hence, this
dataset was selected for linking keywords and taxonomies of metadata.

When running an interlinking tool like LIMES, the user sets a configuration file in
order to specify the criteria under which items are linked in the two datasets. The tool
generates links between items under the specified criteria and provides output which
defines whether there was a match or a similar term in order to be verified by users.
Once the linking process has finished, the user can evaluate the accuracy of the gen-
erated links that are close to the similarity threshold. Specifically, the user can verify or
reject each record recommended by the tool as two matching concepts. Eventually, we
ran LIMES over three elements of GLOBE (title, Keyword, and Taxon) and DBpedia
subjects. Table 2 illustrates the interlinking results in which more than 217,000
GLOBE resources linked to 10,676 DBpedia subjects through keywords. In respect to
Taxonomy interlinking, around 132,000 resources in GLOBEwere connected to 1,203
resources of the DBpedia dataset, while only 443 GLOBE resources matched to 118
DBpedia resources. The low number of matched links for the title element refers to this
fact that interlinking long strings does not lead many matched resources, as most of the
GLOBE metadata contained titles with more than two or three words.

The following table (Table 3) illustrates some sample results show those
GLOBE resources connected to the DBpedia subjects (two results per element).
Having the results and reviewing the matched links by data providers, GLOBE can
be enriched with new information so that each resource is connected to DBpedia
using e.g., owl:sameAs relationship.

9http://www.w3.org/wiki/SparqlEndpoints.
10http://d2rq.org/
11http://dbpedia.org.
12http://blog.dbpedia.org.
13https://www.w3.org/2004/02/skos/
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5 Conclusions and Future Directions

In this chapter we explained the interlinking approach as a way of optimizing and
enriching different kinds of data. We have described the impact of linking Big Data
to the LOD cloud. Afterward, we explained various interlinking tools used in
Linked Data for interconnecting datasets, along with a discussion about the inter-
linking process and how a dataset can be interlinked to Web of Data. Finally, we
have represented a case study where a interlinking tools (LIMES) used for linking
the GLOBE repository to DBpedia. Running the tool and examining the results,
many GLOBE resources could connect to DBpedia and after an optimization and
enrichment step the new information can be added to the source datasets. This
process makes the dataset more valuable and the dataset’ users can get more
knowledge about the learning resources. The enrichment process over one of large
datasets in eLearning context have been presented and it was shown that this
process can be extend to other types of data: the process does not depend to a
specific context. The quality of a dataset is also optimized when it is connected to
other related information on the Web. The previous study on our selected inter-
linking tool (LIMES) [14] is also showed that it is a promising software when it is
applied to a large amount of data.

In conclusion, we believe that enabling the optimization of Big Data and the
open data is an important research area, which will attract a lot of attention in the
research community. It is important as the explosion of unstructured data has
created an information challenge for many organizations. Significant research
directions in this area includes: (i) Enhancing linked data approaches with semantic
information gathered from a wide variety of sources. Prominent examples include
the Google Knowledge Graph [22] and the IBMWatson question answering system
[23]; (ii) Integration of existing machine learning and natural language processing

Table 2 Interlinking results between GLOBE and DBpedia

Element Globe resources# DBpedia resources# Total links

Title 443 118 443
Keyword 217,026 10,676 623,390
Taxon 132,693 1,203 268,302

Table 3 Sample interlinking results

Phrase Element DBpedia resources URI

Bibliography Title http://dbpedia.org/resource/Category:Bibliography
Analysis Title http://dbpedia.org/resource/Category:Analysis
Plutoniu Keyword http://dbpedia.org/resource/Category:Plutonium
Biology Keyword http://dbpedia.org/resource/Category:Biology
Transportation Taxon http://dbpedia.org/resource/Category:Transportation
Trigonometry Taxon http://dbpedia.org/resource/Category:Trigonometry
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algorithms into Big Data platforms [24]; and (iii) High-level declarative approaches
to assist users in interlinking Big data to open data. A good example of this can be
something similar to OpenRefine [25] which can be specialized for the optimization
and enrichment of interlinking big data to different types of open source data; e.g.
social data such as Twitter. Summarization approaches such as [26] can be also
used to interlinking big data to different sources.
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Topology, Big Data and Optimization

Mikael Vejdemo-Johansson and Primoz Skraba

Abstract The idea of using geometry in learning and inference has a long history

going back to canonical ideas such as Fisher information, Discriminant analysis,

and Principal component analysis. The related area of Topological Data Analysis

(TDA) has been developing in the last decade. The idea is to extract robust topologi-

cal features from data and use these summaries for modeling the data. A topological

summary generates a coordinate-free, deformation invariant and highly compressed

description of the geometry of an arbitrary data set. Topological techniques are well-

suited to extend our understanding of Big Data. These tools do not supplant existing

techniques, but rather provide a complementary viewpoint to existing techniques.

The qualitative nature of topological features do not give particular importance to

individual samples, and the coordinate-free nature of topology generates algorithms

and viewpoints well suited to highly complex datasets. With the introduction of per-

sistence and other geometric-topological ideas we can find and quantify local-to-

global properties as well as quantifying qualitative changes in data.

Keywords Applied topology ⋅ Persistent homology ⋅Mapper ⋅ Euler characteristic

curve ⋅ Topological Data Analysis

1 Introduction

All data is geometric.

Every data set is characterized by the way individual observations compare to

each other. Statistics of data sets tend to describe location (mean, median, mode) or

shape of the data. The shape is intrinsically encoded in the mutual distances between
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data points, and analyses of data sets extract geometric invariants: statistical descrip-

tors that are stable with respect to similarities in data. A statistic that describes a data

set needs to stay similar if applied to another data set describing the same entity.

In most mainstream big data, computationally lean statistics are computed for data

sets that exceed the capacity of more traditional methods in volume, variety, velocity

or complexity. Methods that update approximations of location measures, or of fits

of simple geometric models—probability distributions or linear regressions—to tall

data, with high volume or velocity, are commonplace in the field.

We will focus instead on a family of methods that pick up the geometric aspects

of big data, and produce invariants that describe far more of the complexity in wide

data: invariants that extract a far more detailed description of the data set that goes

beyond the location and simplified shapes of linear or classical probabilistic models.

For the more detailed geometric description, computational complexity increases. In

particular worst case complexities tend to be far too high to scale to large data sets;

but even for this, a linear complexity is often observed in practice.

Whereas geometric methods have emerged for big data, such as information

geometry [7] and geometric data analysis [67], our focus is on topological meth-

ods. Topology focuses on an underlying concept of closeness, replacing distance.

With this switch of focus, the influence of noise is dampened, and invariants emerge

that are coordinate-free, invariant under deformation and produce compressed rep-

resentations of the data. The coordinate-free nature of topological methods means,

inter alia, that the ambient space for data—the width of the data set—is less relevant

for computational complexities and analysis techniques than the intrinsic complex-

ity of the data set itself. Deformation invariance is the aspect that produces stability

and robustness for the invariants, and dampens out the effects of noise. Finally, com-
pressed representations of data enables far quicker further analyses and easily visible

features in visualizations.

One first fundamental example of a topological class of algorithms is clustering.

We will develop homology, a higher-dimensional extension of clustering, with per-

sistent homology taking over the role of hierarchical clustering for more complex

shape features. From these topological tools then flow coordinatization techniques

for dimensionality reduction, feature generation and localization, all with underlying

stability results guaranteeing and quantifying the fidelity of invariants to the original

data.

Once you are done with this book chapter, we recommend two further articles to

boost your understanding of the emerging field of topological data analysis: Topol-

ogy and Data by Carlsson [24] and Barcodes: the persistent topology of data by

Ghrist [57].

We will start out laying down the fundamentals of topology in Sect. 2. After the

classical field of topology, we introduce the adaptation from pure mathematics to

data analysis tools in Sect. 3. An important technique that has taken off significantly

in recent years is Mapper, producing an intrinsic network description of a data set. We

describe and discuss Mapper in Sect. 4. In Sect. 5 we explore connections between

topology and optimization: both how optimization tools play a large importance in
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our topological techniques, and how topological invariants and partitions of features

help setup and constrain classes of optimization problems. Next in Sect. 6, we go

through several classes of applications of the techniques seen earlier in the chapter.

We investigate how topology provides the tools to glue local information into global

descriptors, various approaches to nonlinear dimensionality reduction with topolog-

ical tools, and emerging uses in visualization.

2 Topology

Topology can be viewed as geometry where closeness takes over the role of size
from classical geometry. The fundamental notion is closeness expressed through

connectedness. This focus on connections rather than sizes means that invariants

focus on qualitative features rather than quantitative: features that do not change

with the change of units of measurement, and that stay stable in the face of small per-

turbations or deformations. For an introductory primer, we recommend the highly

accessible textbook by Hatcher [61]. Most of what follows are standard definitions

and arguments, slightly adapted to our particular needs in this chapter.

In topological data analysis the focus is on compressed combinatorial represen-

tations of shapes. The fundamental building block is the cell complex, most often

the special case of a simplicial complex—though for specific applications cubical
complexes or more general constructions are relevant.

Definition 1 A convex polytope (or convex polyhedron) is the convex hull of some

collection of points in ℝd
. The dimension of the polytope P is the largest n such

that the intersection of P with some n-dimensional linear subspace of ℝd
contains

an n-dimensional open ball.

For an n-dimensional polytope, its boundary decomposes into a union of

n − 1-dimensional polytopes. These are called the facets of the polytope. Decompos-

ing facets into their facets produces lower dimensional building blocks—this process

continues all the way down to vertices. The set of facets of facets etc. are called the

faces of the polytope. We write Pn for the set of n-dimensional faces of P.

A cell complex is a collection of convex polytopes where the intersection of any

two polytopes is a face of each of the polytopes.

We illustrate these geometric conditions in Fig. 1.

From a cell complex, we can produce a chain complex. This is a collection of

vector spaces with linear maps connecting them. CnP is the vector space spanned

by the n-dimensional faces of P: CnP has one basis vector for each n-dimensional

face. The connecting linear maps are called boundary maps: the boundary map

𝜕n ∶ CnP → Cn−1P maps the basis vector v
𝜎

corresponding to a face 𝜎 to a linear

combination of the vectors that correspond to facets of 𝜎. The coefficients of this

linear combination depends on the precise way that the polytopes are connected—if
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Fig. 1 Left a valid polyhedral complex in ℝ2
. Right an invalid polyhedral complex in ℝ2

. There

are invalid intersections where the triangle and the pentagon overlap

we work with vector spaces over ℤ2 these coefficients reduce to 0 and 1 and the

boundary of v
𝜎

is

𝜕v
𝜎
=

∑

𝜏 facet of 𝜎

v
𝜏

These coefficients need to ensure that 𝜕n𝜕n+1 = 0.

The cell complex can be represented in full abstraction as the boundary maps,

abstracting away the geometry of this definition completely.

Most commonly, we use simplicial complexes—complexes where the polyhedra

are all simplices. Simplices are the same shapes that show up in the simplex method

in optimization. Geometrically, an n-dimensional simplex is the convex hull of n + 1
points in general position: where no k + 1 points lie on the same k-dimensional plane.

More interesting for our applications is the idea of an abstract simplicial complex.

Definition 2 An abstract simplicial complex 𝛴 on a set of (totally ordered) ver-

tices V is a collection of subsets of vertices (simplices) such that whenever some set

{v0,… , vk} is in 𝛴, so is every subset of that set.

We usually represent a simplex as a sorted list of its constituent vertices.

The boundary map assigns to the facet [v0,… , vi−1, vi+1,… , vk] the coefficient

(−1)i so that the full expression of the boundary map is

𝜕[v0,… , vk] =
k∑

i=0
(−1)i[v0,… , v̂i,… , vk]

where v̂ means to leave v out of the simplex.

We illustrate this definition in Fig. 2.

Now consider a closed chain of edges, such as a − b − c − d − a in Fig. 3. The

boundary of the sum of these edges includes each vertex twice: once from each edge
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Fig. 2 Left a valid simplicial complex in ℝ2
. Right an invalid simplicial complex in ℝ2

. There are

invalid intersections where two triangles overlap

Fig. 3 An illustration of

cycles and boundaries.

a − b − c − d − a is an

essential cycle, while

b − c − d − f − b is a

non-essential cycle, filled in

by higher-dimensional cells

that includes the vertex. The coefficients of these vertices cancel out to 0, so that

the closed chain is in ker 𝜕1. This generalizes: an element of ker 𝜕n is a collection

of n-cells that enclose an n + 1-dimensional hypervolume of some sort, in the same

way that a closed chain of edges can be seen as enclosing some surface.

Some of these closed chains in a given complex end up being filled in, such as

the sequence b − c − d − f − b in Fig. 3, while others have an empty void enclosed.

The cells that fill in a closed cycle are part of Cn+1𝛴, and the boundary map applied

to those cells precisely hits the enclosing cell collection. Thus, img 𝜕n+1 is the col-

lection of closed cycles that are filled in. This means that the vector space quotient

ker 𝜕n∕img 𝜕n+1 is precisely the essential enclosures: those that detect a void of some

sort.

Definition 3 The n-dimensional homology Hn(𝛴) of a cell complex 𝛴 is the vector

space ker 𝜕n∕img 𝜕n+1.
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Later in the text we will also need the concept of cohomology. This is the homol-

ogy of the vector space dual of the chain complex: we write Cn
𝛴 = Cn𝛴, and 𝛿

n =
𝜕
T
n ; the transposed matrix. Elements ofCn

𝛴 correspond toℝ-valued maps defined on

the n-dimensional cells. The n-dimensional cohomology Hn(𝛴) is ker 𝛿n∕img 𝛿
n−1

.

3 Persistence

The tools and definitions in Sect. 2 all are most relevant when we have a detailed

description of the topological shape under study. In any data-driven situation, such

as when facing big or complex data, the data accessible tends to take the shape of

a discrete point cloud: observations with some similarity measure, but no intrinsic

connection between them.

Persistence is the toolbox, introduced in [51] and developed as the foundation of

topological data analysis that connects discrete data to topological tools acting on

combinatorial or continuous shapes.

At the heart of persistence is the idea of sweeping a parameter across a range of

values and studying the ways that a shape derived from data changes with the para-

meter change. For most applications, the shape is constructed by “decreasing focus”:

each data point is smeared out over a larger and larger part of the ambient space until

the smears start intersecting. We can sometimes define these shapes using only dis-

similarity between points, removing the role of an ambient space completely so that

data studied can have arbitrary representations as long as a dissimilarity measure is

available. These intersection patterns can be used to build cell complexes that then

can be studied using homology, cohomology, and other topological tools.

The most commonly used construction for this smearing process is the Vietoris-
Rips complex. For a data set 𝕏, the vertex set is the set of data points. We introduce

a simplex [x0,… , xk] to the complex VR
𝜀
(𝕏) precisely when all pairwise dissimi-

larities are small enough: d(xi, xj) < 𝜀. An illustration can be found in Fig. 4.

At each parameter value 𝜀, there is a simplicial complex VR
𝜀
(𝕏). As the parame-

ter grows, no intersections vanish—so no existing simplices vanish with a growing

parameter. By functoriality—a feature of the homology construction—there is a kind

of continuity for topological features: the inclusion maps of simplicial complexes

generate linear maps between the corresponding homology (or cohomology) vector

spaces. For a growing sequence 𝜀0 < 𝜀1 < 𝜀2 < 𝜀3, there are maps

VR
𝜀0
(𝕏) ↪ VR

𝜀1
(𝕏) ↪ VR

𝜀2
(𝕏) ↪ VR

𝜀3
(𝕏)

HkVR
𝜀0
(𝕏) → HkVR

𝜀1
(𝕏) → HkVR

𝜀2
(𝕏) → HkVR

𝜀3
(𝕏)

Hk
VR

𝜀0
(𝕏) ← Hk

VR
𝜀1
(𝕏) ← Hk

VR
𝜀2
(𝕏) ← Hk

VR
𝜀3
(𝕏)

For a diagram of vector spaces like these, there is a consistent basis choice across

the entire diagram. This basis choice is, dependent on the precise argument made,

either a direct consequence of the structure theorem for modules over a Principal

Ideal Domain (result available in most commutative algebra textbooks, e.g. [53])
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Fig. 4 The growth of a Vietoris-Rips complex as points are smeared out. Top row is the view

of the data with each data point surrounded by a 𝜀∕2 radius ball, while the bottom row shows the

corresponding abstract complex as it grows. At the very end, the circle-like nature of the point cloud

can be detected in the Vietoris-Rips complex. This will stick around until 𝜀 is large enough that the

hole in the middle of the top right figure is filled in

or a direct consequence of Gabriel’s theorem [56] on decomposing modules over

tame quivers. The whole diagram splits into components of one-dimensional vector

spaces with a well defined start and endpoint along the diagram. These components

correspond precisely to topological features, and tell us at what parameter value a

particular feature shows up, and at what value it is filled in and vanishes. The com-

ponents are often visualized as a barcode, as can be seen in Fig. 5.

Features that exist only along a very short range of parameter values can be con-

sidered noisy: probably the result of sampling errors or inherent noise in the pro-

duction of the data. These show up along the diagonal of the persistence diagram.

Features that exist along a longer range of parameter values are more likely to be

Fig. 5 To the left, a point cloud. In the middle, the corresponding persistence barcode for dimen-

sion 1 homology. To the right, the persistence diagram for dimension 0 (diamonds along the y-axis)

and dimension 1. We see a large amount of very short intervals, and then one significantly larger

interval corresponding to the circle-like shape of the data
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features inherent in the source of the data—and the length of the corresponding bar

is a measure of the size of the feature.

These barcode descriptors are stable in the sense that a bound on a perturbation of

a data set produces a bound on the difference between barcodes. This stability goes

further: data points can vanish or appear in addition to moving around, and there still

are bounds on the difference of barcodes.

In particular, this means that with guarantees on sampling density and noise lev-

els, large enough bars form a certificate for the existence of particular topological

features in the source of a data set.

Additional expositions of these structures can be found in the survey articles by

Carlsson [24] and by Ghrist [57]. For the algebraic and algorithmic focused aspects,

there are good surveys available from the first author [113], and by Edelsbrunner and

Harer [47, 48].

3.1 Persistence Diagrams as Features

Homology serves as a rough descriptor of a space. It is naturally invariant to many

different different types of transformations and deformations. Unfortunately, homol-

ogy groups of a single space (for example, data viewed at a single scale) are highly

unstable and lose too much of the underlying geometry. This is where persistence

enters the picture. Persistence captures information in a stable way through the filtra-

tion. For example, the Vietoris-Rips filtration encodes information about the under-

lying metric space.

Therefore, by choosing an appropriate filtration, we can encode information about

the space. The first such instance was referred to as topological inference. The inten-

sity levels of brain activity in fMRI scans was investigated using Euler characteristic

curves [6].

These curves have a long history in the probabilistic literature [5, 116–118], are

topological in nature and can be inferred from persistence diagrams. The Euler char-

acteristic can be computed by taking the alternating sum of the ranks of homology

groups (or equivalently Betti numbers),

𝜒(X) = (−1)krk(Hk(X))

If X is parameterized by t, we obtain an Euler characteristic curve. Surprisingly,

the expectation of this quantity can be computed analytically in a wide range of

settings. This makes it amenable for machine learning applications. Another notable

application of this approach can be found in distinguishing stone tools from different

archaeological sites [93].

These methods work best in the functional setting where the underlying space is

fixed (usually some triangulated low dimensional manifold).
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Fig. 6 The relation between an Euler characteristic curve and the corresponding persistence dia-

gram. To the left, a persistence diagram, with the quadrant anchored at some (t, t) marked out. To

the right, the Euler characteristic curve from the corresponding data set, with the corresponding t
marked

The persistence diagram encodes more information—the Euler characteristic

curve can easily be computed from a persistence diagram by taking the alternating

sum over different dimensions for each quadrant anchored at (t, t) as in Fig. 6.

There are several different approaches to using persistence diagrams as features.

Initially, it was observed that the space of persistence diagrams can be transformed

into a metric space [112]. A natural metric for persistence diagrams is the bottleneck
matching distance. Given two diagrams Dgm(F) and Dgm(G) (corresponding to two

filtrations F and G), the bottleneck distance is defined as

dB(Dgm(F),Dgm(G) = inf
𝜙∈bi jections

sup
p∈F

d∞(p, 𝜙(p))

This has the benefit of always being well-defined, but also has been shown to be not

as informative as other distances—namely, Wasserstein distances.

The most commonly used Wasserstein distances used are:

1. 1-Wasserstein distance—W1
2. 2-Wasserstein distance—W2

Under some reasonable conditions, persistence diagrams satisfy stability under these

metric as well [40] (albeit with a worse constant in front).

While first order moments exist in this space in the form of Frechet means, this

space is generally quite complicated. For example, while means exist, there are no

guarantees they are unique [112]. Below, we have an example of this phenomenon.

This presents numerous algorithmic challenges both for computing the means them-

selves, as well as for interpretation. This can be made Hölder continuous by consid-

ering the distribution of persistence diagrams [81].

Ultimately, the problem with viewing the space of persistence diagrams as a met-

ric space is that the space is insufficiently nice to allow for standard machine learning

techniques. Furthermore, the standard algorithmic solution for computing bottleneck

distance is the Hungarian algorithm for computing the maximum weight bipartite

matching between the two diagrams. This computes an explicit matching between

points and has at worst an O(n3) complexity where n is the number of points in the
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Fig. 7 The construction of a persistence landscape from a persistence diagram. We rotate the

diagram by 45◦. Each point in the persistence diagram creates a region in the persistent landscape

by considering the 45◦ lines from the point. These correspond to vertical and horizontal lines from

the point to diagonal. To each region in the landscape, we assign the number which corresponds

to how many times it is covered. Distances between landscapes are computed by integrating the

absolute difference point-wise

persistence diagrams. This is often expensive, which led to the development of the

following algorithms.

The key insight came with the development of the persistence landscape. This

is a functional on the space of the persistence diagrams in line with the kernel trick

in machine learning. The main idea is to raise the diagram into a functional space

(usually a Hilbert space), where the space behaves fundamentally like Euclidean

space, making techniques like support vector machines feasible.

There have been several approaches to constructing functionals on persistence

diagrams. The most developed is the persistence landscape [19]. This assigns to

each point in the plane a support on how many points lie above it. We illustrate the

process in Fig. 7, but it assigns to each point in the plane a number which corresponds

to how many points in the persistence diagram cover it. In addition to being useful for

machine learning algorithms, it is also much faster to compute that distances directly

on persistence diagrams (which are based on bipartite matching problems).

The algebraic structure connecting persistence diagrams to functionals was par-

tially addressed in [3]. In this work, Adcock et al. show that the algebraic structure

in persistence diagram has a family of functionals which can be used to parameter-

ize the family. This was used to train a SVM classifier on the MINST handwriting

dataset. The performance of the classifier is near state-of-the-art, where it is impor-

tant to mention this the case for generic features rather than the specially chosen

ones in current state-of-the-art techniques for handwriting recognition. The same

techniques were also used to classify hepatic lesions [4].

3.1.1 Applications

Here we recount some successful applications of the above techniques to real-world

data.
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The first is on a study of the effects of psilocybin (e.g. magic mushrooms) on the

brain using fMRI [86]. In this case, persistence diagram based features are shown to

clearly divide the brain activity under the effects of psilocybin from normal brain

activity. The authors found that while normal brain activity is highly structured,

brain activity under psilocybin is much more chaotic, connecting parts of the brain

which are usually not connected.

The second application we highlight the use of topological features to distinguish

stone tools coming from different archaeological sites [93]. In this work, the authors

began with three dimensional models of the tools obtained from scans. Then they

computed the Euler characteristic curves given by curvature, e.g. they used curvature

as the filtering function. They found that training a classifier using these curves, they

were able to obtain a high classification accuracy (∼80%).

The final application we highlight is for detecting and classifying periodicity in

gene expression time series [84]. Gene expressions are a product of the cell cycle

and in this work, the authors recognize that in sufficiently high dimensional space,

periodicity is characterized by closed one forms (i.e. circles). The work in the fol-

lowing section makes a similar observation, but parametrizes the circle rather than

compute a feature. Circles are characterized by one-dimensional homology and so

the authors use the 1-dimensional persistence diagram in order to compare the peri-

odicity of different gene expressions. To obtain, the persistence diagram, the authors

embed the time series in high dimension using a sliding window embedding (also

known as a Takens’ embedding or a delay embedding). The idea is, given a time

series x(1), x(2),…, take a sliding window over a time series and map each point to

the vector of the window. For example, for a window size of three, a data point at

time 1, x(1) would be mapped to the vector [x(1), x(2), x(3)] which is in ℝ3
. After

some normalization, the authors computed the persistence diagram of the embedded

time series which they used to compare different gene expressions.

3.2 Cohomology and Circular Coordinates

One particular derived technique from the persistent homology described here is

using persistent cohomology to compute coordinate functions with values on the cir-

cle. We have already mentioned cohomology, and it plays a strong role in the devel-

opment of fast algorithms. For the applications to coordinatization, we use results

from homotopy theory—another and far less computable part of algebraic topology.

This approach was developed by the first author joint with de Silva and Morozov

[78, 101, 102].

An equivalence class element in H1(X,ℤ)—an equivalence class of functions

X → ℤ—corresponds to an equivalence class of functions X → S1 to the circle. The

correspondence is algorithmic in nature, and efficient to compute. In particular, for

any specific functionX → ℤ in a cohomology equivalence class The drawback at this

stage is that applied to complexes like the Vietoris-Rips complex produces maps that

send all data points to a single point on the circle.
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We can work around this particular problem by changing the target domain of the

function from ℤ to ℝ. As long as we started out with a ℤ-valued function, and stay in

the same equivalence class of functions, the translation to circle-valued coefficient

maps remains valid. So we can optimize for as smooth as possible a circle-valued

map. This turns out to be, essentially, a LSQR optimization problem: the circle val-

ued function related to a cocycle 𝜁 with the coboundary matrix B is

arg min
z

‖𝜁 − Bz‖2

reduced modulo 1.0. The cocycle is a 1-dimensional cocycle, and B is the cobound-

ary map from 0-cochains to 1-cochains. This makes the correspondingly computed z
a 0-cochain—a circle-valued function on the vertices and hence on the data set itself.

4 Mapper

Mapper is a different approach to topological data analysis. Proposed in 2008, it is

much faster than persistent homology, and produces an intrinsic shape of an arbitrary

data set as a small simplicial complex. This complex can be used for visualization or

for further analysis. Applications of this method have been widespread: from medical

research through financial applications to politics and sports analyses. This section

is based on several articles by Singh et al. [71, 104].

At the core of the Mapper algorithm is the idea that data can be viewed through

“lenses”—coordinate functions displaying interesting characteristics of the data set.

For any such lens, the data can be stratified according to values of that lens, and local

summaries within each stratum can be related to each other to form a global picture

of the data set. We see the process illustrated in Fig. 8.

To be precise, given a dataset 𝕏 and some function 𝓁 ∶ 𝕏 → ℝk
and a cover of ℝk

by overlapping open subsets Ui (for instance open balls or open axis-aligned hyper-

cubes), we compute all inverse images 𝓁−1(Ui). Each such inverse image might con-

tain data points separated from each other—using a clustering algorithm of the user’s

choice, each inverse image is broken down into its component clusters. Finally, since

the sets Ui cover ℝn
, some of them will overlap. These overlaps may contain data

points: when they do, a data point contained in clusters from several inverse images

𝓁−1(Ui0 ),𝓁
−1(Ui1 ),… ,𝓁−1(Uik ) gives rise to a k-simplex spanned by the correspond-

ing clusters. The collection of clusters from the various layers with these connecting

simplices forms a simplicial complex describing the inherent shape of the data set.

For any given data point, its corresponding location in the simplicial complex can

easily be found.
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Fig. 8 The entire Mapper pipeline applied to random samples from a mixture of Gaussians, as

viewed through the lens of Gaussian density estimation. In the left two columns are: the original

data set; a graph of the density function on the data set; this same graph split up according to

the Mapper method; computed clusters within each section of the split; the corresponding mapper

graph in 3D; the resulting Mapper graph in 2D. In the right two columns, we see the split and cluster

process in more detail: the left of these two has the points as split into sections while the right has

these same points as well as their cluster centers

5 Optimization

Topological tools group objects by qualitative behaviors, in ways that can be

deformed to each other within each group. Finding good representatives for qual-

itative features often turn out to be a case of searching within such a class for an

optimal member.

Computing a representative circle-valued coordinate from a cohomology class [𝜁 ]
is a matter of computing argminx𝜙(𝜁 − Bx) for some penalty function 𝜙 defining

the optimality of the coordinate function, where B is the coboundary matrix of the

triangulation. In [102], the penalty function chosen was 𝜙(w) = ‖w‖2, whereas for

other applications, other penalty functions can be used.

The work of computing optimal homology cycles has gotten a lot of attention in

the field, using growing neighborhoods, total unimodularity or computational geom-

etry and matroid theory [21, 34, 35, 43, 54]. Unimodularity in particular turns out to

have a concrete geometric interpretation: simplifying the optimization significantly,

it requires all subspaces to be torsion free. An interesting current direction of research

is the identification of problems which become tractable when the equivalence class



160 M. Vejdemo-Johansson and P. Skraba

is fixed. There are many examples of fixed-parameter tractable algorithms—where

there is an exponential dependence on a certain parameter (such as dimension). In

such instances, it would be beneficial to identify the global structure of the data and

optimize within each (co)homology class. This has been used indirectly in network

and other shortest path routing [23, 62].

Another area where homology shows up as a tool for optimization is in evaluating

coverage for sensor agents—such as ensembles of robots, or antenna configurations.

Here, for a collection of agents with known coverage radii and a known set of bound-

ary agents, degree 2 homology of the Vietoris-Rips complex of the agents relative to

the boundary reveals whether there are holes in the coverage, and degree 1 homology

of the Vietoris-Rips complex reveals where holes are located [59, 99, 100]. This has

given rise to a wealth of applications, some of which can be found in [2, 42, 46, 80,

108, 115].

In other parts of topological data analysis, optimization formulations or criteria

form the foundations of results or constructions—in ways that turn out unfeasible and

require approximations or simplifications for practical use. The main example is for

the various stability results that have shown up for persistent homology. The metrics

we use for persistence diagrams, bottleneck and Wasserstein distances, take the form

of optimization problems over spaces of bijections between potentially large finite

sets [20, 27, 28, 31, 32, 38, 39, 41, 44, 69].

6 Applications

6.1 Local to Global

Topological techniques are designed to extract global structure from local informa-

tion. This local information may be in the form of a metric or more generally a

similarity function. Often a topological viewpoint can yield new insights into exist-

ing techniques. An example of this persistence-based clustering [30]. This work is

closely related with mode-seeking clustering techniques [36]. This class of meth-

ods assumes the points are sampled from some underlying density function and

defines the clusters as the modes of the density function (e.g. the basins of attraction

of the peaks of the density function). There are generally two steps involved:

1. Estimation of the underlying density function

2. Estimation of the peaks

These techniques have the advantage that the number of clusters is not required as

input. Rather the main problem is to determine which peaks are “real” versus which

peaks are noise. For example, in mean-shift clustering, points are flowed to local

maxima incrementally, but require a stopping parameter (as we never exactly hit

the peak). There are many other criteria which have been proposed—however, it

turns out that persistence provides an important insight. Due to the stability of the
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Fig. 9 A persistence diagram with a gap of 𝜀. The topological noise and the “true” features are

separated by an empty region of size 𝜀. Note that under mild assumptions on the underlying sam-

ple, the noise goes to 0 as the number of points goes to infinity, therefore the gap increases with

increasing amounts of data

persistence diagram, if we the first step (i.e. estimation of the density function) is

done correctly, then the persistence diagram is provably close. Furthermore, if there

is a separation of noise and the peaks (i.e. a gap as shown in Fig. 9), then we can

estimate the number of clusters as well. It can also be shown that the noise goes

to zero as the number of points increases, ensuring that the gap exists if we have

sufficiently many points.

This approach also allows for the identification of stable and unstable parts of the

clustering. The main idea is that since the persistence diagram is stable, the number

of clusters is also stable. Furthermore, persistent clusters can be uniquely identified

in the presence of resampling, added noise, etc. The idea is illustrated in Fig. 10.

This can be useful when determining unstable regions for tasks such as segmenta-

tion [105]. Here unstable regions are themselves considered separate segments.

Fig. 10 Persistence based clustering is based on the idea that the basins of attraction of the peaks

of a density function are clusters. Here we show the negative of a density function (so we look for

valleys rather than peaks), with two clusters. For clustering, there also exists a spatial stability for

persistent clusters, since if we consider a point before two clusters meet, they are disjoint—shown

here by the dashed line
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In addition to clustering based on density (or a metric—in which case we obtain

single-linkage clustering), topological methods can find clusters which have similar

local structure. Often we consider data as living in Euclidean space or a Riemannian

manifold. While this may be extrinsically true, i.e. the data is embedded in such a

space, the intrinsic structure of data is rarely this nice. A natural generalization of

a manifold is the notion of a stratified space. This can be thought of as a mixture

of manifolds (potentially of different dimensions) which are glued together in a nice

way. Specifically, the intersection of two manifold pieces is itself be a manifold.

The collection of manifolds of a given dimension is called a stratum. We omit the

technical definition, but refer the reader to the excellent technical notes [74].

The problem of stratified manifold learning is to identify the manifold pieces

directly from the data. The one dimensional version of this problem is the graph con-

struction problem, which has been considered for reconstruction of road networks

from GPS traces [1]. In this setting, zero dimensional strata are intersections, forks

and merges (i.e. vertices in the graph) while one dimensional strata are the connect-

ing roads (i.e. edges in the graph). Some examples are shown in Fig. 11.

Fig. 11 Three examples of stratified spaces (top row) and their corresponding strata (bottom row).

On the left, we have part of a graph with three edges (1-strata) coming from a vertex (0-strata). The

intersection of two 1-strata, must be a 0-strata. In the middle, we have two planes intersecting along

a line. This gives four 2 strata, which meet together at a 1-strata. On the right we have a line through

a plane. The plane is a 2-strata, the line is divided into two pieces and the intersection is a 1 and

0-strata. The intersection is a point, however to ensure it is a valid stratification we must consider

the loop around the point
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Fig. 12 The intuition behind local homology. We consider the local neighborhood around a point,

in this case an intersection between the ball of radius r at point p and the space 𝕏. The boundary is

two points which are collapsed together to make a circle
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Fig. 13 A higher dimensional example for local homology. In this case an intersection between the

ball of radius r at point p and the space 𝕏 is a disc and the boundary is a circle. When we collapse

the boundary (i.e. circle) to a point we obtain a sphere

The problem has been considered in more generality in [14]. Intuitively, the prob-

lem can be thought of as determining the local structure of a space and then clustering

together points which share the same structure. The topological tool for determining

the local structure is called local homology. The idea is to consider the structure of

the local neighborhood. An important technical point is that we consider the quo-

tient of the neighborhood modulo its boundary. By collapsing the boundary to a

point (as shown in Figs. 12 and 13), we can distinguish different dimensions. In the

case of a k-dimensional manifold, each point will have the same structure—that of

a k-dimensional sphere. In the cases shown in Fig. 11, we obtain a different answer.

On the left we obtain a wedge of two circles, in the middle a wedge of three spheres

and on right we obtain a wedge of a sphere and two circles.

While preliminary results have been promising, this is currently an active area of

research.

6.2 Nonlinear Dimensionality Reduction

Dimensionality reduction is well rooted in data analysis, as a way to reduce an

unmanageably wide data set to a far more narrow and thus more easily analyzed

derived data set. Classical techniques often work by linear projections, as is done by

principal component analysis or by random projection methods. While some tech-

niques for non-linear dimensionality reduction have been known since the 1960s

[63–65], a more significant boost in the development of new reduction methods

showed up in the late 1990s.
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van der Maaten et al. [72] distinguish between three types of nonlinear dimension-

ality reduction techniques: those that try to preserve global features; those that try to

preserve local features; and those that globally align mixtures of linear techniques.

Where some methods are focused on retaining most or all distances in the

dataset—such as multidimensional scaling [63], many nonlinear techniques focus

on retaining closeness.
Isomap [111] generates approximations to the geodesic distance of a dataset as

computed on a neighborhood graph. As compared to MDS, it puts more emphasis

on retaining closeness by first focusing the scaling on local connectivity before gen-

erating a coordinate set globally approximating these geodesic distances.

Local techniques fit a linear local dimensionality reduction to small neighbor-

hoods in the data and then gluing the local coordinates to a global description. First

out was Local Linear Embeddings (LLE): fitting a local tangent plane through each

data points, and then minimizes the distortion of these local tangents [95]. This min-

imization reduces to an eigenvector computation.

Several improvements on LLE have been constructed as eigenvector computa-

tions of the Laplacian operator, or through enriched representations of the local

tangent descriptions [13, 45, 70]. The Laplacian or Laplace operator is a classical

operator in algebraic topology. The coboundary operator 𝛿 has a dual operator 𝛿
∗
—

represented by the same matrix as the boundary operator. The Laplacian is defined

as the composition 𝛿
∗
𝛿. The operator smooths out a function along the connectivity

of the underlying space, and its eigenmaps form smooth—in the sense of keeping

nearby points close together—and produces globally defined functions that retain

closeness of data points.

Isomap and LLE both suffer from weaknesses when constructing coordinate func-

tions on data sets with holes. One possible solution was offered by Lee and Verley-

sen [68], who give a graph algorithm approach to cutting the data set to remove the

non-trivial topology. They give a complexity of O(n log2 n) for their cutting proce-

dure, based on using Dijkstra’s algorithm for spanning trees. Such a cut can also

be produced based on persistent cohomology, with a representative cocycle demon-

strating a required cut to reduce topological complexity [9, 26, 58]. While the worst

case complexity for this computation is matrix-multiplication time, for many data

sets, linear complexity has been observed [12, 121].

Some shapes require more linear coordinates to represent accurately than the

intrinsical dimension would indicate. A first example is the circle: while a one-

dimensional curve, any one-dimensional projection will have to collapse distant

points to similar representations. With the techniques we describe in Sect. 3.2, we

can generate circle-valued coordinates for the data points. This has been used in

finding cyclic structures [10, 37] and for analyzing quasiperiodic or noisily recur-

rent signals in arbitrary dimension [94, 114].

Mapper provides an approach to dimensionality reduction with intrinsic coordi-

nate spaces: instead of providing features on a line or a circle, the Mapper output is

a small, finite model space capturing the intrinsic shape of the original data set.

The often large reduction in representation size with a Mapper reduction enables

speedups in large classes of problems. Classic dimensionality reduction such as done
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by MDS, Isomap or LLE can be done on the Mapper model, and with coordinate

values pulled back and interpolated onto the original data points themselves, while

optimization problems could be solved on the Mapper model to produce seed values

or approximate solutions when pulled up to the original data points. As long as all

functions involved are continuous, and the Mapper analysis sufficiently fine grained,

each vertex of the Mapper model corresponds to a compact set of data points with

trivial topology and each higher dimensional simplex corresponds to a connection

between sets of data points.

6.3 Dynamics

Topological methods have a long history of use in simplifying, approximating and

analyzing dynamical systems. For this approach, the Conley index—a homology

group computed in a small neighborhood in a dynamical system—gives a measure

of the local behavior of the dynamical system, stable and useful for nonlinear and

multiparameter cases. This approach has found extensive use [22, 75, 79].

Computing persistence on point clouds from dynamical systems, and then using

clustering to extract features from the resulting invariants has found some use. In

[15], bifurcation detection for dynamical systems using persistent cohomology was

explored, while in [66] clustered persistence diagrams helped classify gait patterns

to detect whether and what people were carrying from video sequences.

The idea of using the Takens delay embedding [109] to create point clouds rep-

resentative of dynamic behavior from timeseries data has emerged simultaneous

from several groups of researchers in topological data analysis. Harer and Perea [85]

used 1-dimensional persistent homology to pick out appropriate parameters for a

delay embedding to improve accuracy for the embedded representation of the origi-

nal dynamical system. The same idea of picking parameters for a delay embedding,

but with different approaches for subsequent analyses were described by Skraba et

al. [103], and later used as the conceptual basis for the analysis of the dynamics of

motion capture generated gait traces by Vejdemo-Johansson et al. [114]. The work

in [114] uses persistent cohomology to detect intrinsic phase angle coordinates, and

then use these either to create an average gait cycle from a sequence of samples, or

to generate gait cycle classifiers functions, indicating similarity of a new sequence

of gait samples to the sequences already seen.

From the same group of researchers, persistent homology and cohomology has

been used for motion planning in robotics. Moduli spaces for grasping procedures

give geometric and topological ways of analyzing and optimizing potential grasp

plans [87, 88, 90], and 1-dimensional persistent homology provides suggestions for

grasp sites for arbitrary classes of objects with handles [92, 106, 107]. Topology

also generates constraints for motion planning optimization schemes, and produces

approaches for caging grasps of wide classes of objects [89, 91, 119, 120].
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6.4 Visualization

Topological techniques are common in visualization, particularly so-called scien-

tific visualization. Perhaps the most prominent of these applications are topological

skeleta and the visualization and simplification of two or three dimensional scalar

and vector fields.

6.4.1 Topological Skeleta

There has been a large amount of work on topological skeleta extraction. Here we

highlight two types of constructions (without exhaustively describing all related

work)

∙ Reeb graphs

∙ Contour trees

Though there are many variations the main idea behind both constructions is that

given a space 𝕏 and a real-valued function, i.e.

f ∶ 𝕏 → ℝ

a topological summary can be computed by taking every possible function value a ∈
ℝ, and considering its preimage, f −1(a) ∈ 𝕏. For each preimage, we can count the

number of connected components.
1

If we consider very small intervals rather than

just points, we see that we can connect these components if they overlap. Connecting

these connected components together using this criteria, we obtain a graph (again

under reasonable assumptions). The resulting graph is called a Reeb graph.

By only considering the connected components, a potentially high-dimensional

structure can be visualized as a graph. However, the input need not be high-

dimensional, as these constructions have are useful as shape descriptors for

2-dimensional shapes. In addition, they are a crucial part of understanding

3-dimensional data sets, where direct visualization is impossible.

When the underlying space is contractible, there is additional structure, which

allows for more efficient computation of the structure, interestingly in any dimen-

sion [25]. This is mainly due to the observation that if the underlying space is con-

tractible (such as on a convex subset of Euclidean space), then the Reeb graph has

the structure of a tree, and is therefore called a contour tree.

Mapper can be thought of as a “fuzzy” Reeb graph, where connectivity is scale-

dependent and is computed via clustering rather than as an intrinsic property of the

space.

1
Technically, these are path-connected components. However, this distinction is a mathematical

formality, as the two are indistinguishable in any form of sampled data.
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6.4.2 Features and Simplification

In addition to visualizing a scalar function, the presence of noise, or more gener-

ally multi-scale structure, makes the ability to perform simplification desirable. By

simplifying a function, larger structures become clearer as they are no longer over-

whelmed by large numbers of smaller features.

There has been a substantial amount of work done on simplifying functions on

topological spaces. Initially, the work was done on two dimensional manifolds (sur-

faces) using the Morse-Smale complex [50] and has been extended to three dimen-

sions [49, 60]. Morse theory connects the topological and geometric properties of a

space in terms of the critical points of a function on that space. For example, con-

sider the height function on a sphere. This has two critical points, the global mini-

mum (the bottom of the sphere) and maximum (the top of the sphere). If we distort

the function to add another maxima, we also add a saddle. Simplification in this set-

ting proceeds by considering the reverse of this process. By combining minima and

saddles (or maxima and saddles), it simplifies the underlying function. The order of

simplification can be done in a number of different ways, such as distance based (i.e.

distance between critical points). The persistence ordering is given if it is done by

relative heights (e.g. small relative heights first) and the methods are closely tied to

Morse theory [17].

The natural extension from scalar fields is to vector fields, that is each point is

assigned a vector. These are often used to model flows in simulations of fluids or

combustion. Simplifying these is much more difficult than simplifying vector fields.

However, the notion of fixed point naturally generalizes critical points of a scalar

function. These are studied in topological dynamics. We highlight two topological

approaches which are based on Conley index theory and degree theory respectively.

The Conley index [96] is a topological invariant based on homology, which is an

extension of Morse theory. The main problem in this approach is the requirement to

find a neighborhood which isolates the fixed points from the rest of the flow. This

neighborhood (called an isolating neighborhood), must be nice with the respect to

the flow, in particular, the flow must not be internally tangent to the boundary of the

neighborhood.

The second approach is based on a variant of persistence called robustness [52]. A

vector field in Euclidean space can be thought of as a map from ℝn → ℝn
and we can

compute its robustness diagram [33]. This carries similar information and and shares

similar stability properties as the persistence diagram. Furthermore, this can be con-

nected to degree theory, which is yet another invariant developed to describe maps.

Famously, the existence of Nash equilibrium in game theory is the consequence of a

fixed point theorem (i.e. Brouwer fixed point theorem). Using a classical result from

differential topology, which states that if a part of the flow has has degree zero, then

is can be deformed to a fixed point free vector field, a general vector field can be

simplified using the robustness order in the same way as persistence order gives an

ordering in the case of scalar fields.
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This is only a brief glimpse at topology and visualization as this is a large field of

research. The main motivation for using topological methods for large complex data

sets is that they ensure consistency, whereas ad-hoc methods may introduce artifacts

during simplification.

7 Software and Limitations

These methods are implemented in a range of software packages. There is a good sur-

vey of the current state of computation and computational timings written by Otter

et al. [83]. We will walk through a selection of these packages and their strengths

and weaknesses here.

The available software can be roughly divided by expected platform. Some pack-

ages are specifically adapted to work with the statistics and data analysis platform

R, some for interacting well with Matlab, and some for standalone use or to work as

libraries for software development.

In R, the two main packages are pHom and R-TDA. pHom is currently abandoned,

but still can be found and included. R-TDA [55] is active, with a userbase and main-

tenance. Both are built specifically to be easy to use from R and integrate into an R

data analysis workflow.

When working in Matlab, or in any other java-based computational platform—

such as Maple or Mathematica—the main software choice is JavaPlex [110] or

JPlex [97]. JPlex is the predecessor to JavaPlex, built specifically for maximal com-

putational efficiency on a Java platform, while JavaPlex was built specifically to make

extension of functionality easy. Both of them are also built to make the user expe-

rience as transparent and accessible as possible: requiring minimal knowledge in

topological data analysis to be usable. While less efficient than many of the more spe-

cialized libraries, JavaPlex has one of the most accessible computational pipelines.

The survey by Otter et al. [83] writes “However, for small data sets (less than a mil-

lion simplices) the software Perseus and javaPlex are best suited because they are

the easiest to use[. . . ]”.

Several other packages have been constructed that are not tied to any one host plat-

form: either as completely standalone processing software packages, or as libraries

with example applications that perform many significant topological data analysis

tasks. Oldest among these is ChomP [76]. ChomP contains a C++ library and a cou-

ple of command line applications to compute persistent homology of cubical sets,

and has been used in dynamical systems research [8]. Perseus [82] works on Vietoris-

Rips complexes generated from data sets, as well as from cubical and simplicial com-

plexes. Perseus needs its input data on a particular format, with meta data about the

data points at the head of the input file, which means many use cases may need to

adjust input data to fit with Perseus expectations. DIPHA [11] is the first topological

data analysis program with built in support for distributed computing: building on

the library PHAT [12], DIPHA works with MPI for parallelization or distribution of

computation tasks. DIPHA takes in data, and produces a persistence diagram, both in
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their own file format—the software distribution includes Matlab functions to convert

to and from the internal file format. Last among the standalone applications, Diony-

sus [77] is a library for topological data analysis algorithm development in C++ and

Python. The package comes with example application for persistent homology and

cohomology, construction of Vietoris-Rips complexes and a range of further tech-

niques from computational topology.

Two more libraries are focused on use for software developers. Gudhi [73] is

a library that focuses on the exploration of different data structures for efficient

computations of persistent homology or with simplicial complexes. CTL
2

is a very

recent library maintained by Ryan Lewis. The library is still under development, and

currently supports persistent homology and complex construction, and has plans to

support persistent cohomology, visualizations and bindings to other languages and

platforms.

Complex construction the current computational bottleneck in topological data

analysis. Simplicial complexes are built up dimension by dimension and in higher

dimensions, a small number of points can result in a large number of simplices. For

example in 2000 points in dimension 6 can easily yield overall billion simplicies.

We do have the option of limiting our analysis to low dimension (e.g. clustering only

requires the graph to be built), and there are techniques which yield an approximate

filtration while maintaining a linear size [98]. Current research is finding further

speedups as well as modifying this to a streaming model. The second problem is that

although the volume of data is getting larger, the data itself does not cover the entire

space uniformly and preforming a global analysis where we have insufficient data in

some regions is impossible. One approach that is currently being explored is how to

construct “likely” analysis to fill in regions where data is sparse (e.g. anomalies).

8 Conclusions

At the state of the field today, topological data analysis has proven itself to produce

descriptors and invariants for topological and geometric features of data sets. These

descriptors are

COORDINATE-FREE so that the descriptors are ultimately dependent only on a mea-

sure of similarity or dissimilarity between observations. Ambient space, even

data representation and their features are not components of the analysis methods,

leading to a set of tools with very general applicability.

STABLE UNDER PERTURBATIONS making the descriptors stable against noise. This

stability forms the basis for a topological inference.

COMPRESSED so that even large data sets can be reduced to small representations

while retaining topological and geometric features in the data.

2
http://ctl.appliedtopology.org/.

http://ctl.appliedtopology.org/


170 M. Vejdemo-Johansson and P. Skraba

Looking ahead, the adaptation and introduction of classical statistical and infer-

ential techniques into topological data analysis is underway [16, 18, 29, 112].

The problem of efficient constructions of simplicial complexes encoding data

geometry remains both under-explored and one of the most significant bottlenecks

for topological data analysis.

Over the last few years, big data techniques have been developed which perform

well for specific tasks: building classifiers, linear approaches or high speed com-

putations of simple invariants of large volume data sets. As data and complexity

grows, the need emerges for methods that support interpretation and transparency—

where the data is made accessible and generalizable without getting held back by the

simplicity of the chosen models. These more qualitative approaches need to include

both visualization and structure discovery: nonlinear parametrization makes compar-

ison and correlation with existing models easier. The problems we encounter both

in non-standard optimization problems and in high complexity and large volume

data analysis are often NP-hard in generality. Often, however, restricting the prob-

lem to a single equivalence class under some equivalence relation—often the kinds

found in topological methods—transforms the problem to a tractable one: examples

are maximizing a function over only one persistent cluster, or finding optimal cuts

using cohomology classes to isolate qualitatively different potential cuts. The entire

area around these directions is unexplored, wide open for research. We have begun

to see duality, statistical approaches and geometric features of specific optimization

problems show up, but there is a wealth of future directions for research.

As for data, the current state of software has problems both with handling stream-

ing data sources and data of varying quality. The representations available are depen-

dent on all seen data points, which means that in a streaming or online setting, the

computational problem is constantly growing with the data stream. Data quality has

a direct impact on the computational results. Like with many other techniques, topo-

logical data analysis cannot describe what is not present in the data but rather will

produce a description of the density indicated by the data points themselves. If the

data quality suffers from variations in the sampling density, the current software is

not equipped to deal with the variations. There is research [30] into how to modify

the Vietoris-Rips construction to handle well-described sampling density variations,

but most of the major software packages have yet to include these modifications.

All in all, topological data analysis creates features and descriptors capturing

topological and geometric aspects of complex and wide data.
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Applications of Big Data Analytics Tools
for Data Management

Mo Jamshidi, Barney Tannahill, Maryam Ezell, Yunus Yetis
and Halid Kaplan

Abstract Data, at a very large scale, has been accumulating in all aspects of our
lives for a long time. Advances in sensor technology, the Internet, social networks,
wireless communication, and inexpensive memory have all contributed to an
explosion of “Big Data”. Our interconnected world of today and the advent of
cyber-physical or system of systems (SoS) are also a key source of data accumu-
lation- be it numerical, image, text or texture, etc. SoS is basically defined as an
integration of independently operating, non-homogeneous systems for certain
duration to achieve a higher goal than the sum of the parts. Recent efforts have
developed a promising approach, called “Data Analytics”, which uses statistical
and computational intelligence (CI) tools such as principal component analysis
(PCA), clustering, fuzzy logic, neuro-computing, evolutionary computation,
Bayesian networks, data mining, pattern recognition, deep learning, etc. to reduce
the size of “Big Data” to a manageable size and apply these tools to (a) extract
information, (b) build a knowledge base using the derived data, (c) optimize val-
idation of clustered knowledge through evolutionary computing and eventually
develop a non-parametric model for the “Big Data”, and (d) Test and verify the
model. This chapter attempts to construct a bridge between SoS and Data Analytics
to develop reliable models for such systems. Four applications of big data analytics
will be presented, i.e. solar, wind, financial and biological data.
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1 Introduction

System of Systems (SoS) are integrated, independently operating systems working
in a cooperative mode to achieve a higher performance. A detailed literature survey
on definitions of SoS and many applications can be found in texts by Jamshidi [1,
2]. Application areas of SoS are vast. They span from software systems like the
Internet to cloud computing, health care, and cyber-physical systems all the way to
such hardware dominated cases like military missions, smart grid of electric energy,
intelligent transportation, etc. Data analytics and its statistical and intelligent tools
including clustering, fuzzy logic, neuro-computing, data mining, pattern recogni-
tion, principle component analysis (PCA), Bayesian networks, independent com-
ponent analysis (ICA), regression analysis and post-processing such as evolutionary
computation have their own applications in forecasting, marketing, politics, and all
domains of SoS. SoS’s are generating “Big Data” which makes modeling of such
complex systems a big challenge.

A typical example of SoS is the future smart grid, destined to replace the
conventional electric grid. The small-scale version of the smart grid is known as a
micro-grid, designed to provide electric power to a home, an office complex or a
small local community. A micro-grid is an aggregation of multiple distributed
generators (DGs) such as renewable energy sources, conventional generators, and
energy storage units which work together as a power supply networked in order to
provide both electric power and thermal energy for small communities which may
vary from one common building to a smart house or even a set of complicated loads
consisting of a mixture of different structures such as buildings, factories, etc. [2].
Typically, a micro-grid operates synchronously in parallel with the main grid.
However, there are cases in which a micro-grid operates in islanded mode, or in a
disconnected state [3, 4]. Accurate predictions of received solar power can reduce
operating costs by influencing decisions regarding buying or selling power from the
main grid or utilizing non-renewable energy generation sources.

In the new era of smart grid and distributed power generation big data is
accumulated in a very large scale.. Another important example is the financial
markets. Nowadays, artificial neural networks (ANNs), as a data analytics tool,
have been applied in order to predict the stock exchange stock market index. ANNs
are one of the data mining techniques that have the learning capability of the human
brain. Due to stochastic nature of financial data several research efforts have been
made to improve computational efficiency of share values [5, 6]. One of the first
financial market prediction projects was by Kimoto et al. [7] have used an ANN for
the prediction of Tokyo stock exchange index. Mizuno et al. [8] applied an ANN to
the Tokyo stock exchange to predict buying and selling signals with an overall
prediction rate of 63 %. Sexton et al. [9] have determined that use of momentum
and start of training in neural networks may solve the problems that may occur in
training process. Langdell [10] has utilized neural networks and decision trees to
model behaviour of financial stock and currency exchange rates data.
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The object of this chapter is to use Big Data Analytics approaches to predict or
forecast the behaviour of three important aspects of our times—Renewable energy
availability, biological white cell behaviour, and stock market prediction. In each
case, large amounts of data are used to achieve these goals.

The remainder of this chapter is as follows: Sect. 2 briefly describes, big data
analytics and five statistical and artificial intelligence-based tools. These are PCA,
fuzzy logic, fuzzy C-Means, Artificial neural networks and genetic algorithms. Four
applications of big data analytics—Solar energy, wind energy, Stock market index
prediction and biological white blood cells behavior are presented. Section 4 pro-
vides some conclusions.

2 Big Data and Big Data Analytics

In this section a brief description of big data and data analytics are first given. Then
five tools of statistics and AI will follow.

2.1 Big Data

Big data is a popular term used to describe the exponential growth and availability
of structured and/or unstructured data. Big data may be as important to business—
and society—as the Internet has become. Big data is defined as a collection of data
so large and complex that it becomes difficult to process using on-hand database
management tools or traditional data processing techniques. These data sets have
several attributes such as volume which is due to social media, advanced sensors,
inexpensive memory, system of systems, (Cyber-physical systems), etc. [2, 11]. Big
data comes with different frequencies such as RFID tags, electric power smart
meters, etc. It has different varieties such as structured and unstructured text, video,
audio, stock ticker data, financial transactions, etc. Big data changes due to special
events and hence has variability such as daily, seasonal, and event-triggered peaks
such as world sports events, etc. [12, 13] They can have multiple sources, rela-
tionships, and linkages, hence they possess complexity. For a more detailed cov-
erage big data, refer to Chapter 1 in this volume.

2.2 Big Data Analytics

Data analytics represents a set of statistical and artificial intelligence (AI) tools that
can be applied to the data on hand to reduce its size, mine it, seek patterns and
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eventually deliver a non-parametric model. These tools are best to be used in a
hybrid mode, where the big data is first pre-processed, mined for patterns, and a
knowledge base is developed based on attained information, and eventually a model
is constructed and evaluated. Figure 1 shows the process just described [14].

2.2.1 Principal Component Analysis

Principal Components Analysis (PCA) is a statistical scheme which uses an
orthogonal transformation to identify patterns in data sets so that its similarities and
differences are highlighted as a set of values of linearly uncorrelated values called
Principal Components. Since patterns in data can be hard to find in data of high
dimensions, PCA can often help reduce the dimension of the data while bringing up
the principal meaning of the information in the data. In other words, PCA can first
find the pattern and then compress the data. PCA can work both with numerical as
well as image data. Principal components will be independent if the data set is
jointly normally distributed. PCA is sensitive to the relative scaling of the original
variables [15, 16]. The following steps cans summarize simple steps to perform
PCA [16].

Algorithm 1 Standard PCA

Step 1 Get a data set
Step 2 Subtract the mean from each data value
Step 3 Calculate the covariance matrix
Step 4 Calculate the eigenvectors and eigenvalues of the covariance matrix
Step 5 Choosing components and forming a feature vector

The principal component of the data will be near to the eigenvector of the
covariance matrix with the largest eigenvalue. It is noted that this algorithm is not
necessarily applicable fro a truly “Big Data” scenarios. In such cases one may
utilize deep belief networks [17].

Fig. 1 A possible paradigm
for big data analytics
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2.2.2 Fuzzy Logic

Fuzzy logic can be defined in two terms. On one hand it refers to multi-level logic
based on fuzzy sets, which was first introduced by Zadeh in 1965 [18]. Fuzzy sets is
the foundation of any logic, regardless of the number of truth levels it assumes.
Fuzzy sets represent a continuum of logical values between 0 (completely false) and
1 (completely true). Hence, fuzzy logic treats many possibilities in reasoning in
truth, i.e. human reasoning. Therefore, the theory of fuzzy logic deals with two
problems (1) the fuzzy set theory, which deals with the vagueness found in
semantics, and (2) the fuzzy measure theory, which deals with the ambiguous
nature of judgments and evaluations [18].

On the other hand, fuzzy logic refers to a collection of techniques based on
approximate reasoning called fuzzy systems, which include fuzzy control, fuzzy
mathematics, fuzzy operations research, fuzzy clustering, etc. The primary moti-
vation and “banner” of fuzzy logic is to exploit tolerance of costly exact precision.,
so if a problem does not require precision, one should not have to pay for it. The
traditional calculus of fuzzy logic is based on fuzzy IF-THEN rules like: IF pressure
is low and temperature is high then throttle is medium.

In this chapter fuzzy clustering, also called C-Means (next section), and fuzzy
reasoning for building a non-parametric fuzzy expert system will be utilized for
Data Analytics. However, its application to “Big Data” is subject to future research
and development in such areas as deep architectures and deep learning.

2.2.3 Fuzzy C-Means Clustering

Cluster analysis, or clustering is a process of observation where the same clusters
share some similar features. This is an unsupervised learning approach that has been
used in various fields including machine learning, data mining, bio-informatics, and
pattern recognition, as well as applications such as medical imaging and image
segmentation.

Fuzzy C-means clustering algorithm is based on minimization of the following
objective function:

Jm = ∑
N

i=1
∑
C

j=1
umij xi − cj

�� ��2, 1≤m<∞

where uij is the degree of membership of xi being in cluster j, xi is the ith of the
d-dimensional measured data, cj is the d-dimension center of the cluster, and *k k is
any norm expressing the similarity between any measured data and the center.
Fuzzy partition is carried out by iterative optimization of the objective function
shown above, with an update in membership uij and cluster centers cj by:
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uij =
1

∑c
k=1

xi − cjk k
xi − ckk k

2
m− 1

where cj =
∑N

i=1 u
m
ij xi

∑N
i=1 u

m
ij

This iteration will stop when maxij uk+1
ij − ukij

n o
< ε where ε is a terminator

criterion between 0 and 1 and k is the iteration step. This procedure converges to a
local minimum or a saddle point of Jm. Application of fuzzy C-Means to biological
white cells will be given in Sect. 3.3.

2.2.4 Traditional Artificial Neural Networks

Traditional artificial neural networks (ANNs) are information processing system
that was first inspired by generalizations of mathematical model of human brain of
human neuron (see Fig. 2).

Each neuron receives signals from other neurons or from outside (input layer).
The Multi-Layer Perceptron (MLP), shown in Fig. 2 has three layers of neurons,
where one input layer is present. Every neuron employs an activation function that
fires when the total input is more than a given threshold. In this chapter, we focus
on MLP networks that are layered feed-forward networks, typically trained with
static backpropagation. These networks are used for application static pattern
classification [19, 20].

One of the learning methods in MLP neural networks selects an example of
training, make a forward and a backward pass. The primary advantage of MLP

Fig. 2 Architecture of a feed forward multi-layer perceptron
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networks is their ease of use and approximation of any input or output map. The
primary disadvantage is that they train very slowly and require a lot of training data.
It should be said that the learning speed will dramatically decrease according to the
increase of the number of neurons and layers of the networks.

However, while traditional ANN have been around for over 30 years, they are
not suitable for big data and deep architectures need to be considered [17]. How-
ever, these algorithm have to be used for real “big” data. But, the full efficiency of
these algorithms have yet to be proven to the best of our knowledge.

2.2.5 Traditional Genetic Algorithms

Genetic algorithm (GA) is a heuristic search approach that mimics the process of
natural selection and survival of the fittest. It belongs to a larger class of compu-
tational techniques called evolutionary computations which also include genetic
programming, where symbolic and text data is optimized. Heuristically, solutions
to optimization problems using techniques inspired by natural evolution, such as
inheritance, mutation, selection, and crossover will be obtained after several
generations.

In GA, an initial population is formed (see Fig. 3), possibly by chromosomes
randomly represented by 0 and 1 bits. Then each pair of the chromosomes are
crossed over or mutated (single bit only) after selection. Once new extended
population is obtained, through comparison of fitness function extra members are
eliminated and the resulting new fitter population replaces the old one. Figure 3
shows the lifecycle of the GA algorithm [21]. GA has been used in Sect. 3.1 to
enhance solar energy forecasting via ANN.

Parents

Children

Population

Initialization

Termination

Recombination

Parent selection

Survivor selection

Fig. 3 GA algorithm’s cycle [21]
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3 Applications of Data Analytics

In this section four different applications of physical, financial and biological data
analytics will be presented.

3.1 Solar Energy Forecasting

This section provides an example showing how Data Analytics can be used to
generate models to forecast produced photovoltaic (or solar) energy to assist in the
optimization of a micro-grid SoS. Tools like fuzzy interference, neural networks,
PCA, and genetic algorithms are used.

The object of this section and next is to use a massive amount of environmental
data in order to derive an unconventional model capable of performing solar and
wind energy predictions, which could be leveraged to control energy trading, power
generation, and energy storage strategies to optimize operating costs. Recent studies
primarily produced by Tannahill [22] have been performed that start looking into
different aspects of this problem.

To ensure that the environmental input data for the different data analytics tools
is comprehensive, data from different sources was combined to form the full
dataset. This was possible because of the solar research projects occurring in
Golden, CO, where the National Renewable Energy Laboratory (NREL) is con-
ducting long term research and data recording to support the growing renewable
energy industry. Data from the Solar Radiation Research Laboratory (SRRL),
SOLPOS data made available by the Measurement and Instrumentation Data Center
(MIDC), and data from the Iowa Environmental Mesonet (IEM) Automated Surface
Observing System (ASOS) station near the Golden, CO site was also included to
have current weather data in the set [22].

Data from the month of October 2012 was combined from the different sources
of data. This final set includes one sample for each minute of the month and
incorporates measured values for approximately 250 different variables at each data
point. The data set was sanitized to only include data points containing valid sensor
data prior to the analysis.

Once the viability of this approach was established, a year’s worth of data from
2013 was retrieved from the online resources and was similarly sanitized in order to
serve as a data set against which the effectiveness of the data analytics techniques
could be evaluated for an entire year.

Since the micro-grid would benefit from predicted values of solar irradiance, it
was decided that the output of the data analytics should be predicted values of three
key irradiance parameters (Global Horizontal Irradiance (GHI), Direct Horizontal
Irradiance (DHI), and Direct Normal Irradiance (DNI)). These values were shifted
by 60 min so that they would serve as output datasets for the training of the fuzzy
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Inference System and Neural Network fitting tools that ultimately provided the
means of non-parametric model generation in this exercise.

Once the objective of the data analytics was determined, relevant inputs to the
data analytics tools needed to be identified. The full dataset contains approximately
250 different variables. Unfortunately, due to the curse of dimensionality, including
all these variables in the data analytics was not practical due to memory and
execution time constraints. If this exercise was to be conducted using distributed
cloud computing, the number of variables to be considered might not need to be
down-selected; however, since this effort took place on a single PC, the number of
variables needed to be reduced. Ideally, a subject matter expert would be available
to optimally identify the best variables to include in the evaluated dataset, or an
adaptive training algorithm could be used to automatically perform the selection
process. For the purposes of this section, several variables were selected based on
intuition, including cloud levels, humidity, temperature, wind speed, and current
irradiance levels.

Next, cleanup of the reduced dimension dataset was started by removing all data
points containing invalid values from the data set. For instance, during night hours,
many solar irradiance parameters contained negative values. Once these invalid data
points were removed, the data set was further reduced by removing data points in
which GHI, DHI, and DNI levels were very low. The primary reason for this second
step was to reduce the amount of time and memory necessary for analysis. Figure 4 is
contains themeasurements of GHI, DHI, and DNI over one day in the cleaned dataset.

After cleaning took place, the data could be fed into either of the two
non-parametric model generating tools, the Fuzzy Inference System Generator and
Back-Propagation Neural Network training tools included in the Matlab’s fuzzy
logic toolbox and the ANN Toolbox.

Fig. 4 Three key irradiance parameter plot for a clear day [22]
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The Matlab Fuzzy Logic Toolbox function used in this step, genfis3 uses Fuzzy
C-Means clustering (Sect. 2.2.3) to cluster values for each variable which produces
fuzzy membership functions for each of the variables in the input matrix and output
matrix. It then determines the rules necessary to map each of the fuzzy inputs to the
outputs to best match the training data set. These membership functions and rules
can be viewed using the Matlab’s FIS GUI tools such as ruleview. Figure 5 shows
the results of running genfis3 on only four different variables in the dataset.

When comparing the predicted values to the actual values of GHI, DHI, and
DNI, differences in the observed and predicted data points could corresponds to the
presence of clouds or other anomalies that could not be predicted an hour in
advance using the variables input to the function. In addition to unpredictable
weather phenomena, such anomalies could include sensor accuracy error, data
acquisition noise or malfunctions, missing data, and other issues associated with the
acquisition of the environmental data.

The second model generating method used was the Matlab’s ANN training
toolbox. By default, this tool uses the Levenberg-Marquardt back propagation
method to train the network to minimize its mean squared error performance.
Figure 6 shows a representation of the feed-forward neural network generated when
training using 13 inputs variables and one hidden layer comprised of 10 neurons.

Fig. 5 Rule view of generated FIS membership functions [22]
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In order to improve the performance of the model generation methods, the
following additional data derived points were included in the training sets: x(t)2, sin
(x(t)), cos(x(t)), slope(x(t−1):x(t)), slope(x(t−60):x(t)), mean(x(t−60):x(t)), and
stdev(x(t−60):x(t)). These functions in some cases made the data more useable and
added memory to the training algorithms, which greatly improved performance.
Where necessary, PCA was used to reduce the dimension of the data while mini-
mizing the amount of useful data lost.

The results of this analysis showed that the best results were achieved with the
Neural Network training tool. The results (mean Square Errors) are discussed in
Table 1. NN10 refers to a standard feed forward neural network consisting of 10
neurons in one hidden layer.

These models performed significantly better than a simple predictor based on the
average solar parameter values observed at different points during the day. The
nftool model training time was noted to be linear with respect to the number of
variables in the training data set, but genfis3’s training time was observed to be
much longer with higher dimensions. Its training time appears to be a function of
the training set dimension squared. The training time with both functions was
linearly related to the number of variable instances in the training dataset, but the
slope of this line was an order of magnitude smaller when using the nftool.

Next, Genetic Algorithms (Sect. 2.2.4) were used to improve the accuracy of the
best performing generated model while minimizing the number of inputs necessary
to implement the system. Each population element was a vector of binary variables
indicating which of the available variables in the training set would be used for
training the model. This is useful because it would reduce the amount of sensors
necessary to implement a system.

Fig. 6 Trained feed-forward neural network representation

Table 1 Performance comparison of GENFIS3 and NFTOOL prediction models

Model
type

Input
params.

PCA? Final
dim

MSE GHI MSE DNI MSE DHI R

FIS 244 Y 50 2.96E + 03 2.08E + 04 1.05E + 03 0.967
NN10 244 Y 150 9.97E + 02 2.95E + 03 4.57E + 02 0.994

Applications of Big Data Analytics … 187



Over time, the genetic algorithm solver within the Matlab’s Global Optimization
Toolbox reduced the training data set from 244 variables to 74 variables. The final
solution had a MSE GHI of 7.42E + 02, a MSE DNI of 2.60E + 03, and a
MSE GHI of 1.78E + 02.

Finally, the methods discussed above were used to evaluate the models against a
larger data set (the entire year of 2013). After some experimentation, it was
apparent that generating a single model to make predictions about the entire year
was not an ideal approach. Instead, a prediction engine was designed to generate a
model for each desired prediction based on recent data. The engine performs the
following:

1. Searches the pre-processed data set in order to find the prediction time index of
interest

2. Fetches the appropriate training data set (10 day window starting an hour before
the prediction time)

3. Performs any additional pre-processing to prepare the training data set for model
generation training.

4. Trains two solar prediction models using the training data.
5. Selects the models with the highest R values and uses them to make the

requested prediction

The prediction engine was used to make a prediction every 6 h throughout the
year. The resulting error statistics are shown in Table 2 below.

Next, the prediction model was used to generate a high time resolution pre-
diction data set over a short period (1 day) in order to illustrate the effectiveness of
the engine with a more easily displayed data set (see Figs. 7, 8 and 9).

3.2 Wind Energy Forecasting

Many of the data analytics techniques discussed in Sect. 3.1 were also evaluated in
their ability to generate models capable of predicting available wind power
capacity. Similar to the solar predictions, knowing the available wind power ahead
of time could be useful in energy trading or control algorithms.

It was decided that the output of the data analytics for this exercise should be
predicted values of wind speed at three different altitudes (19 ft, 22 ft, and 42 ft in

Table 2 Solar prediction engine error statistics

RMSE GHI RMSE DHI RMSE DNI Solar model R value

Mean 4.250 1.491 −0.9052 0.981739
Min −651.4 −707.8 −234.9 0.941555
Max 778.6 809.0 198.3 0.998421
STDEV 90.55 111.3 40.88 0.009399
RMSE 90.62 111.3 40.88 N/A
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altitude). These values were shifted by 60 min so that they would serve as output
datasets for the training of the neural networks investigated in the following neural
network types:

• Standard Feed-Forward Neural Network
• Time Delay Network
• Nonlinear Autoregressive Network with Exogenous Inputs (NARXNET) Neural

Network
• Layer Recurrent Neural Network
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Fig. 7 Prediction engine GHI
results (5 min resolution)
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Fig. 8 Prediction engine DHI
results (5 min resolution)
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Fig. 9 Prediction engine DNI
results (5 min resolution)
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Two different input data sets were used for this investigation. The first was
merely reduced to a dimension of 21 using PCA [16]. The second was first
expanded to include derived, preprocessed values including slope and average
values from the past parameter values. Then, this second dataset was also reduced
to a dimension of 21 using PCA.

A variety of configurations were tested with each network type, but surprisingly,
the best performing neural networks were those using a pre-expanded (via nonlinear
expansion) data set fed into a conventional feed forward neural network with ten
neurons in the hidden layer. The figures below show the results and error generated
using this network to predict wind speed an hour in advance.

With this information in mind, year-long predictions were made using the model
prediction engine discussed in Sect. 2.2. For the purposes of this work, predicted
wind power availability was calculated assuming the wind speed across the entire
wind turbine blade area was the same. It was also assumed that the air density was
1.23 kg/m3 throughout the year, and that the power coefficient Cp was 0.4. These
assumptions were used in conjunction with the wind turbine equation found [23] to
calculate power density availability (W/m2). This quantity can be multiplied by the
cumulative sweep area of a wind turbine farm to calculate total available wind
power; however, this step was left out of this exercise to keep the results more
generalized.

The statistics of the resulting data from the year-long wind power prediction are
included in Table 3.

Figure 10 shows a graph of the regression analysis’s index values for both the
solar and wind prediction model performance over the year-long data set.

A higher resolution prediction loop based is shown in Fig. 11.

3.3 Financial Data Analytics

In this section artificial neural networks (ANN) have been used to predict stock
market index. ANN has long been used as a data mining tool. This section presents
a forecasting scheme of NASDAQ’s stock values using ANN. For that purpose,
actual values for the exchange rate value of the NASDAQ Stock Market index were
used. The generalized feed forward network, used here, was trained with stock
market prices data between 2012 and 2013. Prediction of stock market price is an

Table 3 Wind prediction
engine error statistics

RMSE DNI Wind model R value

Mean −0.01645 0.9113
Min −10.15 0.6670
Max 9.617 0.9700
STDEV 1.614 0.03700
RMSE 1.614 N/A
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important issues in national economies. Many researchers have proposed fore-
casting market price [24, 25].

3.3.1 Training Process

Training process of ANN is through a gradient-based optimization approach
(similar to conjugate gradient approach) through adjusting of inter-layer links
weights between neurons. Celebrated “back propagation” was used here.

The initial values of weights are determined through a random generation. The
network is adjusted based on a comparison of the output and the target during the
training (Fig. 12).

The training process requires a set of examples of proper network behaviour and
target outputs. During training, the network of the weights and biases are repeated
to minimize the network performance function. Mean square error (MSE) perfor-
mance index during training of feed-forward neural network. MSE is the average
squared error between the network outputs and the target outputs [27].

Training is the process of propagating errors back though the system from the
output layer towards. Backpropagation is a common paradigm for the training
process, utilizing errors between layers of the network. Output is the only layer

Fig. 10 Prediction engine model R values (6 h resolution)

Fig. 11 Prediction engine
average wind power density
results (5 min resolution)
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which has a target value. Training occurs until the errors in the weights reduces to a
pre-set minimum value. Training has been kept on until its iterative process reaches
such that the errors in weights are below a threshold. MLP is the most common
feed-forward networks.

With these settings, the input and target vectors will be randomly divided into
three sets as follows: 70 % will be used for training and 15 % will be used to
validate the network in generalizing and to stopping training before overfitting. The
last 15 % will be used as a completely independent test of network generalization.

For simulation purpose, the NASDAQ dataset of daily stock prices has been
used [28, 29]. We used five input variables for ANN such as opening price, the
highest price, the lowest price, volume of stock, and adjusted daily closing price of
the day. Moreover, the architecture and pre-set parameters for ANN were: 10
hidden neurons, 0.4 as learning rate, 0.75 as momentum constant and 1000 was
chosen as maximum epochs. Mean squared error (MSE) is the average squared of
error between outputs and targets. If the test curve had increased significantly
before the validation curve increased, it means it is possible that some over fitting
might have occurred. The result of the simulation were acceptable and reasonable.

Error histogram provided additional verification of network performance. It can
be clearly seen that errors are between −120 and +100 (Fig. 13). Data set repre-
sented hundreds of thousands, so these errors were found negligible considering
that the error was smaller than about 0.02 % of targets.

Each input variable of ANN was preprocessed. Mean value, average of the
training set was small as compared to its standard deviation. Index rage was
between −1 and +1 [30]. We were able to use simple formula which is Index
(x) = (Index(x)—Min (Index))/(Max (Index)—Min (Index)) [30]. It can be clearly
seen the regression plot of the training set (see Figs. 14 and 15). Each of the figures
corresponds to the target from the output array. Regression values (correlation
coefficients) are very close to 1. It indicates that the correlation between the fore-
casted figures and the target is very high.

Regression was used to validate the network performance. For a perfect fit, the
data fell along a 45° degree line, where the network outputs are equal to the targets.
For this problem, the fit is reasonably good for all data sets, with R values in each
case of 0.99 or above (Figs. 13 and 14).

Input
NN including connections 
(weights) between neurons

Output Target

Adjust Weights

Compare 

Fig. 12 A network based on a desired target and output comparison [26]
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3.3.2 Biological Data Analytics

This brief section describes the creation of a server on the University of Texas, San
Antonio (UTSA) Open Cloud Institute’s private cloud and how it was used to run
code on some data that is typically too large to be handled by a personal computer.

A virtual machine on the UTSA private cloud running Ubuntu 12.04 as its
operating system was created. The code and images were securely copied onto the
server. The code was opened in the operating system’s vi editor and was edited to
be used on a batch of images before execution began.

The Fuzzy C-Means algorithm (Sect. 2.2.3) was utilized and the code was
modified to be used on our dataset. The data set was a batch of grey-scale images
and Fuzzy C-Means algorithm has been used to form clusters based on the pixel
values. The code was originally used for clustering one image but it was embedded
in a loop to read 312 images, one at a time, find and print the centroids and
membership values and then show the clustered images.

Each image is the image of a white blood cell on a blood film and we have
chosen to divide the image data (the pixel values) into 4 clusters which are rep-
resented by colors white, black, light gray and dark gray. Each image was first
converted into the form of a vector of pixel values.

It took the same amount of time to run the code for one image on the virtual
machine of the personal laptop as it took on the cloud, but it kept running the code
on the cloud for one image after another without crashing the server, whereas
running it on the laptop would heat up the CPU and crash it. Figure 16 shows the
results, while the centroids of R G B for all 4 clusters are summarized in Table 4.

Fig. 13 Error histogram
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Fig. 14 Regression plot for training

Fig. 15 Target and estimated data of annually NASDAQ data
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4 Conclusions

This chapter describes the use of a few machine learning tools of data analytics
paradigms to assess future estimates of physical, economical and biological vari-
ables. Physical phenomena like the intermittency of renewable energy sources, the
volatility of stock markets or the inconclusiveness of health related issues all cry out
for accurate estimation. Solar and wind energy data were used to forecast avail-
ability of solar and wind energy up to 6 h and can be extended to 24 h.

ANN was used to predict future behavior of stock market indices such as
NASDAQ index in the United States. The stock market index prediction using
artificial neural networks has produced a very efficient results for over a year.
Regression index R was within 2 % of actual value. The final application of data
analytics was the clustering of biological white blood cells utilizing UTSA’s Open
Cloud Institute’s private cloud for extensive computing.

Fig. 16 The results of a
fuzzy C-mean clustering for a
white blood cell

Table 4 Clustering centroids
results for biological data

R G B

Cluster 1 0.72771727 0.65201056 0.67813281
Cluster 2 0.47189973 0.40160155 0.42703744
Cluster 3 0.58333669 0.50191924 0.53275565
Cluster 4 0.29300364 0.22106555 0.24503933
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Future work will include testing much larger data for analytics work and uti-
lization of new tools like “Deep Learning” [31, 32]. Deep learning can also be
combined with tools like Bayesian networks, PCA, GA, GP (genetic programming
g) and fuzzy logic to enhance the final forecast.
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Optimizing Access Policies for Big Data
Repositories: Latency Variables
and the Genome Commons

Jorge L. Contreras

Abstract The design of access policies for large aggregations of scientific data has
become increasingly important in today’s data-rich research environment. Planners
routinely consider and weigh different policy variables when deciding how and
when to release data to the public. This chapter proposes a methodology in which
the timing of data release can be used to balance policy variables and thereby
optimize data release policies. The global aggregation of publicly-available geno-
mic data, or the “genome commons” is used as an illustration of this methodology.

Keywords Commons ⋅ Genome ⋅ Data sharing ⋅ Latency

1 Introduction

Since its beginnings in the 1980s, genomic science has produced an expanding
volume of data about the genetic makeup of humans and other organisms. Yet,
unlike many other forms of scientific data, genomic data is housed primarily in
publicly-funded and managed repositories that are broadly available to the public
(which I have collectively termed the “genome commons” [1]). The availability of
this public data resource is due, in large part, to the data release policies developed
during the Human Genome Project (HGP), which have been carried forward, in
modified form, to the present. These policies developed in response to numerous
design considerations ranging from practical concerns over project coordination to
broader policy goals.

One innovative approach developed by policy designers for the genome com-
mons was the use of timing mechanisms to achieve desired policy outcomes. That
is, by regulating the rate at which information is released to the public (“knowledge
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latency”), and then by imposing time-based restrictions on its use (“rights latency”),
policy designers have addressed the concerns of multiple stakeholders while at the
same time offering significant benefits to the broader research enterprise and to the
public [1, 2].

The lessons learned from the genome commons and its utilization of latency
techniques for achieving policy goals is informative for all repositories of scientific
data. In this chapter, I describe the use of latency variables in designing access and
usage policies for data repositories (also known as “information commons” [3] with
specific reference to the development of the genome commons over the past three
decades.

2 Information Commons and Latency Variables

1. The Dynamic Nature of Information Commons

Information commons, by their nature, are dynamic: the pool of data constituting
the commons may expand and contract over time. The total pool of data consti-
tuting an information commons at any given time its “knowledge base”. The
magnitude of the knowledge base at a given time (Kt), and the rate at which it
changes over time (K(t)) can be adjusted and optimized via policy mechanisms.

Just as the pool of data within an information commons may expand and con-
tract over time, so may the set of rights applicable to the data within the commons.
That is, for a given commons, the nature and duration of the usage restrictions on
each data element may evolve over time, and the aggregate pool of usable data
within the commons will likewise change. For purposes of discussion, I will term
the portion of the knowledge base of an information commons, the use of which is
materially encumbered,1 as its “encumbered knowledge base” (Ke) and the portion
of its knowledge base, the use of which is not materially encumbered, or which is
generally accessible and usable by a relevant public community, as its “unen-
cumbered knowledge base” (Ku). The total pool of data within the commons at any
given time (T) constitutes the sum of its encumbered and unencumbered knowledge
bases (KT = Ke + Ku).

There may be large bodies of publicly-accessible information that are almost
entirely encumbered (Ke ≫ Ku). One such example is the database of
currently-issued U.S. patents. It contains much information, but little freedom to use
it, at least in the near-term. Other information commons may contain less infor-
mation, but few limitations on use (Ku > Ke). Thus, each information commons
may have a different combination of knowledge and rights latency. And, by

1By “materially encumbered” I mean that one or more material restrictions on the use of the data
exist. These might include a contractual or policy embargo on presentation or publication of further
results based on that data. At the extreme end of the spectrum, patent rights that wholly prevent use
of the data can be viewed as another variety of encumbrance.
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extension, as the knowledge and rights aspects of an information commons change
over time, the relationship between these two variables also changes, providing the
basis for the latency analysis described below and the opportunity to optimize
commons design based on adjustment of latency variables as described below.

2. Latency Variables
a. Knowledge Latency. For any given data element, there will be a period of time

between its creation/discovery and the point at which it becomes accessible to
the relevant community through the commons. I term this period “knowledge
latency” (Lk). Knowledge latency defers the introduction of data into the
commons, thus reducing the amount of data that would otherwise reside within
the commons at a given time.2

b. Rights Latency. Just as there may be a delay between the generation of data and
its deposit into an information commons, there may be a delay between the
appearance of data in the commons and its free usability. I term this delay
“rights latency” (Lr).

3 Thus, just as knowledge latency (Lk) affects the total
quantity of knowledge (KT) within an information commons at a given time,
rights latency affects the amount of unencumbered knowledge (KuT) within the
commons at a given time.

Rights latency for a particular information commons may reflect a variety
of factors including policy-imposed embargos on the use of data and, in the
extreme case, patent rights. True public domain commons such as a com-
pendium of Dante’s sonnets, in which no copyright or contractual encumbrances
exist, would have a rights latency of zero (Lr = 0). Commons that include data
covered by patents would have a rights latency equal to the remaining patent
term (Lr = P(t)).4 Most information commons would fall somewhere between
these two extremes.

c. Latency Variables as Policy Design Tools. Knowledge latency and rights
latency can be modulated by policy designers in order to optimize policy out-
comes. For example, policy designers who wish to disseminate information to

2Knowledge latency in a given information commons may be expressed either as a mandated value
(derived from policy requirements), or as an actual value. It goes without saying that the actual
value for knowledge latency may deviate from the mandated value for a number of reasons,
including technical variations in data deposit practices and intentional or inadvertent
non-compliance by data generators. As with any set of policy-imposed timing requirements (e.g.,
time periods for making filings with governmental agencies), it is important to consider the
mandated time delay for the deposit of data to an information commons. Because a mandated
value is also, theoretically, the maximum amount of time that should elapse before a datum is
deposited in the commons, knowledge latency is expressed in this chapter in terms of its maximum
value.
3As with knowledge latency, this term may be applied to an individual datum (i.e., representing the
time before a particular datum becomes freely usable) or to the commons as a whole (i.e.,
representing the maximum time that it will take for data within the commons to become freely
usable).
4In the U.S. and many other countries, the patent term lasts for twenty years from the date of filing.
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the public as quickly as possible, but to limit the ability of users to exploit that
information commercially or otherwise, will likely choose designs that embody
low knowledge latency but high rights latency (Lr > Lk). On the other hand,
those who wish to enable “insiders” to benefit from the use of data for some
period before it is released to the public, but who then wish for the data to be
freely usable, would opt for designs that embody high knowledge latency and
low rights latency (Lk > Lr). In addition, as discussed in Contreras [2], the
effective interplay of latency variables can mediate between the requirements of
competing stakeholder interests and enable the creation of commons where
disagreement might otherwise preclude it.

The following case study of the genome commons illustrates the ways in which
policy designers have utilized latency variables to achieve desired outcomes when
constructing an information commons.

3 Evolution and Design of the Genome Commons

1. The Expanding Genomic Data Landscape

The principal databases for the deposit of genomic sequence data are GenBank,
which is administered by the National Center for Biotechnology Information
(NCBI) a division of the National Library of Medicine at the U.S. National Insti-
tutes of Health (NIH), the European Molecular Biology Library (EMBL), and the
DNA Data Bank of Japan (DDBJ). These publicly-funded and managed repositories
are synchronized on a daily basis and offer open public access to their contents [4].
In addition to sequence data, these databases accept expressed sequence tags
(ESTs), protein sequences, third party annotations and other data. NCBI also
maintains the RefSeq database, which consolidates and annotates much of the
sequence data found in GenBank.

In addition to DNA sequence data, genomic studies generate data relating to the
association between particular genetic markers and disease risk and other physio-
logical traits. This type of data, which is more complex to record, search and
correlate than the raw sequence data deposited in GenBank, is housed in databases
such as the Database of Genotypes and Phenotypes (dbGaP), also operated by the
National Library of Medicine. dbGaP can accommodate phenotypic data, which
includes elements such as de-identified subject age, ethnicity, weight, demo-
graphics, drug exposure, disease state, and behavioral factors, as well as study
documentation and statistical results. Given potential privacy and regulatory con-
cerns regarding phenotypic data, dbGaP allows access to data on two levels: open
and controlled. Open data access is available to the general public via the Internet
and includes non-sensitive summary data, generally in aggregated form. Data from
the controlled portion of the database may be accessed only under conditions
specified by the data supplier, often requiring certification of the user’s identity and
research purpose.
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The sheer size of the genome commons is matched only by the breathtaking rate
at which it is expanding. The genome of simple organisms such as the E. coli
bacterium contains approximately five million base pairs, that of the fruit fly
Drosophila melanogaster contains approximately 160 million, and that of Homo
sapiens contains approximately 3.2 billion base pairs. Over its decade-long exis-
tence, the HGP mapped the 3.2 billion base pairs comprising the human genome.
To do so, it sequenced tens of billions of DNA bases (gigabases), creating what was
then an unprecedented accumulation of genomic data. According to NCBI, between
1982 and 2015 the amount of data in GenBank has doubled every eighteen months
[5]. As of June 2015, the database contained approximately 1.2 trillion nucleotide
bases from more than 425 million different genomic sequences (Ibid.). The rapid
growth of GenBank and other genomic databases is attributable, in part, to the
technological advancement of gene sequencing equipment, computational power
and analytical techniques. According to one report, a single DNA sequencer in
2011 was capable of generating in one day what the HGP took ten years to produce
[6].

2. Bermuda and the Origins of Rapid Genomic Data Release

The HGP began as a joint project of NIH and the U.S. Department of Energy
(DOE), with additional support from international partners such as the Wellcome
Trust in the UK and the Japanese government. From the outset it was anticipated
that the HGP would generate large quantities of valuable data regarding the genetic
make-up of humans and other organisms. Thus, in 1988 the U.S. National Research
Council recommended that all data generated by the project “be provided in an
accessible form to the general research community worldwide” [7]. In 1992, shortly
after the project was launched, NIH and DOE developed formal guidelines for the
sharing of HGP data among project participants [8]. These guidelines required that
all DNA sequence data generated by HGP researchers be deposited in GenBank,
making it available to researchers worldwide. This public release of data was
viewed as necessary to avoid duplication of effort, to coordinate among multiple
research centers across the globe, and to speed the use of DNA data for other
beneficial purposes [9].

At the time, most U.S. federal agencies that funded large-scale scientific research
(e.g., NASA and the DOE) required that data generated using federal funds be
released to the public at the completion of the relevant project, usually after the
principal researchers published their analyses in the scientific literature. This typ-
ically resulted in a release of data one to two years following the completion of
research [10, 11]. Seeking to accelerate this time frame, NIH and DOE agreed that
DNA sequence data arising from the HGP should be released six months after it
was generated, whether or not the principal researchers had yet published their
analyses. HGP’s 6-month data release requirement was considered to be aggressive
and viewed as a victory for open science.
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This perception changed, however, in 1996. Early that year, prior to com-
mencing sequencing the human genome,5 the HGP leadership met in Bermuda to
plan the next phase of the project. Among the things they considered was the rate at
which HGP data should be released to the public, and whether the 6-month
“holding period” approved in 1992 should continue. Several arguments for elimi-
nating the holding period were presented. From a pragmatic standpoint, some
argued that sequencing centers working on the HGP required regularly-updated
data sets in order to avoid duplication of effort and to optimize coordination of the
massive, multi-site project. Waiting six months to obtain data was simply not
practical if the project were to function effectively. But perhaps more importantly,
the concept of rapid data release became endowed with an ideological character: the
early release of data was viewed as necessary to accelerate the progress of science
[12].

After substantial debate, it was agreed that a change was needed, and a document
known as the “Bermuda Principles” emerged [13]. This short document established
that the DNA sequence information generated by the HGP and other large-scale
human genomic sequencing projects should be “freely available and in the public
domain in order to encourage research and development and to maximize its benefit
to society.” Most importantly, it went on to require that all such DNA sequences be
released to the public a mere twenty-four hours after assembly.

The Bermuda Principles were revolutionary in that they established, for the first
time, that data from public genomic projects should be released to the public almost
immediately after their generation, with no opportunity for researchers generating
the data to analyze it in private. This policy was heralded as a major victory for
open science, and soon became the norm for large-scale genomic and related
biomedical research [9, 14].

3. Second Generation Policies and the Ft. Lauderdale Accord

An initial draft of the human genome sequence was published by the HGP in 2001
to much fanfare. In 2003, the Wellcome Trust, a major UK-based funder of
biomedical research, convened a meeting in Ft. Lauderdale, Florida to revisit rapid
data release practices in the “post-genome” world. While the Ft. Lauderdale par-
ticipants “enthusiastically reaffirmed” the 1996 Bermuda Principles, they also
expressed concern over the inability of data generating researchers to study their
results and publish analyses prior to the public release of data [15]. The most
significant outcome of the Ft. Lauderdale meeting was a consensus that the Ber-
muda Principles should apply to each “community resource project” (CRP),
meaning “a research project specifically devised and implemented to create a set of
data, reagents or other material whose primary utility will be as a resource for the
broad scientific community.” Under this definition, the 24-h rapid release rules of
Bermuda would be applicable to large-scale projects generating non-human
sequence data, other basic genomic data maps, and other collections of complex

5Prior work had focused on simple model organisms and technology development.
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biological data such as protein structures and gene expression information. In order
to effectuate this data release requirement, funding agencies were urged to designate
appropriate efforts as CRPs and to require, as a condition of funding, that rapid,
pre-publication data release be required for such projects.

Despite this support, the Ft. Lauderdale participants acknowledged that rapid,
pre-publication data release might not be feasible or desirable in all situations,
particularly for projects other than CRPs. In particular, the notion of a CRP, the
primary goal of which is to generate a particular data set for general scientific use, is
often distinguished from “hypothesis-driven” research, in which the investigators’
primary goal is to solve a particular scientific question, such as the function of a
specific gene or the cause of a disease or condition. In hypothesis-driven research,
success is often measured by the degree to which a scientific question is answered
rather than the assembly of a quantifiable data set. Thus, the early release of data
generated by such projects would generally be resisted by the data generating
scientists who carefully selected their experiments to test as yet unpublished the-
ories. Releasing this data before publication might allow a competing group to
“scoop” the data generating researchers, a persistent fear among highly competitive
scientists.

In the years following the Ft. Lauderdale summit, numerous large-scale genomic
research projects were launched with increasingly sophisticated requirements
regarding data release. Some of these policies utilized contractual mechanisms that
are more tailored and comprehensive than the broad policy statements of the HGP
era [9]. Moreover, increasingly sophisticated database technologies have enabled
the provision of differentiated levels of data access, the screening of user applica-
tions for data access, and improved tracking of data access and users.

4. Third Generation Data Release Policies

Between 2003 and 2006, the technologies available for genomic research continued
to improve in quality and decrease in cost, resulting in the advent of so-called
genome-wide association studies (GWAS). These studies differ from pure
sequencing projects in that their goal is not the generation of large data sets (such as
the genomic sequence of a particular organism), but the discovery of disease
markers or associations hidden within the genome. They thus have greater potential
clinical utility and lie further along the path to ultimate commercialization than raw
sequence data. Moreover, as the types of data involved in large-scale genomics
projects expanded, the community of researchers participating in these projects has
become more diverse. Today, many scientists with backgrounds outside of geno-
mics, including medical researchers, medical geneticists, clinicians and epidemi-
ologists, actively lead and participate in GWAS projects. Yet these researchers do
not necessarily share the norms of rapid pre-publication data release embraced by
the model organism and human genomics communities since the early days of the
HGP. In many cases, particularly when patient data are involved, these researchers
are accustomed to an environment in which data is tightly guarded and released
only after publication of results, and then only in a limited, controlled manner.
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Accordingly, when the federally-backed Genetic Association Information Net-
work (GAIN) was established in 2006 to conduct GWA studies of six common
diseases, its data release policies reflected a compromise among data generators and
data users. Data generators agreed to “immediate” release of data generated by the
project, but for the first time a temporal restriction was placed on users of the data.
That is, in order to secure a period of exclusive use and publication priority for the
data generators, data users were prohibited from submitting abstracts and publi-
cations based on GAIN data for a specified “embargo” period (rights latency),
generally fixed at nine months.

Shortly thereafter, a similar embargo-based approach was adopted by NIH in its
institute-wide policy regarding the generation, protection and sharing of data
generated by federally-funded GWA studies, as well as subsequent genomic studies
[9, 16]. The NIH GWAS Policy states that users of GWAS data should refrain from
submitting their analyses for publication, or otherwise presenting them publicly,
during an “exclusivity” period of up to twelve months from the date that the data set
is first made available. While the agency expresses a “hope” that
“genotype-phenotype associations identified through NIH-supported and main-
tained GWAS datasets and their obvious implications will remain available to all
investigators, unencumbered by intellectual property claims,” it stops short of
prohibiting the patenting of resulting discoveries.

5. Private Sector Initiatives

A noteworthy parallel to the government-sponsored projects discussed above is that
of private-sector initiatives in the genome sciences. The first of these was organized
by pharmaceutical giant Merck in 1994, which established a large public database
of short DNA segments known as expressed sequence tags (ESTs). The stated
purpose of the so-called Merck Gene Index was to increase the availability of basic
knowledge and the likelihood of discovery in support of proprietary therapeutic
innovations and product development [17]. Another important, but less publicized,
motivation for placing the EST data into the public domain was reputedly to
pre-empt the patenting of these genetic sequences by private biotechnology com-
panies [9, 18].

A similar effort known as the SNP Consortium was formed in 1999 by a group
of private firms and the Wellcome Trust to identify and map genetic markers
referred to as “single nucleotide polymorphisms” (SNPs) and to release the
resulting data to the public, unencumbered by patents. The consortium accom-
plished this goal by filing U.S. patent applications covering the SNPs it discovered
and mapped, and then ensuring that these applications were contributed to the
public domain prior to issuance [19]. This approach ensured that the consortium’s
discoveries would act as prior art defeating subsequent third party patent applica-
tions, with a priority date extending back to the initial filings. The SNP Consor-
tium’s innovative “protective” patenting strategy has been cited as a model of
private industry’s potential to contribute to the public genome commons [18].

Since the successful conclusion of the SNP Consortium project, other
privately-funded research collaborations have adopted similar data release models.
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In recent years, however, these efforts have implemented timing mechanisms into
their data release policies. For example, the International SAE Consortium (SAEC)
was formed in 2007 to fund the identification of DNA markers for drug-induced
serious adverse events. SAEC adopted a “defensive” patent filing strategy similar to
that of the SNP Consortium, but secures for data-generating scientists a period of
exclusivity during which they have the sole ability to analyze data and prepare
papers for publication [20]. Like the policies adopted by some government-funded
projects, SAEC imposes a nine-month embargo on publication or presentation of
publicly-released data. But in addition SAEC utilizes a delayed-release principle,
allowing data generating researchers to retain data internally for a period of up to
twelve months while they analyze and prepare publications derived from the data.

6. The Public Domain Genome

In contrast to the governmental and private sector projects described above is the
Harvard-led Personal Genome Project. The PGP, launched in 2008 to significant
press coverage, solicits volunteers to submit tissue samples and accompanying
phenotypic data [21]. Researchers are then authorized to analyze the submitted
samples and publish any resulting genomic information on the PGP web site. All
such data is released without restriction under a “CC0” Creative Commons copy-
right waiver.6 The PGP approach differs markedly from that of the projects
described above in that it dispenses entirely with any attempt to restrict the use of
the genomic data. PGP requires its contributors to waive all privacy-related rights
when contributing their tissue samples to the project, and gives no preference to use
of the data by researchers of any kind. As explained by the PGP, “Privacy, con-
fidentiality and anonymity are impossible to guarantee in a context like the PGP
where public sharing of genetic data is an explicit goal. Therefore, the PGP col-
laborates with participants willing to waive expectations of privacy. This waiver is
not for everyone, but the volunteers who join make a valuable and lasting contri-
bution to science.”

7. NIH’s 2014 Genomic Data Sharing (GDS) Policy

In late 2014, after five years of deliberation, NIH adopted a new institute-wide
Genomic Data Sharing (GDS) policy governing the release of genomic data gen-
erated by NIH-funded studies [22]. Under the GDS policy, human genomic data
must be submitted to NIH promptly following cleaning and quality control (gen-
erally within three months after generation). Once submitted, this data may be
retained by NIH for up to six months prior to public release. Non-human and model
organism data, on the other hand, may be retained by data producers until their
initial analyses of the data are published, representing a much longer lead time (at
least 12–24 months). In both cases, once released, data is not subject to further

6Creative Commons is a non-profit organization that makes available a suite of open access
licenses intended to facilitate the contribution of content and data to the public. See cre-
ativecommons.org.
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embargoes or restrictions on analysis or publication. The GDS policy thus diverges
from the GWAS and similar federal policies in that it (a) permits the withholding of
data from the public for a fixed period of time, and (b) does not utilize embargoes
on data usage following its release [23]. In these respects, the GDS policy
resembles private sector policies such as those adopted by iSAEC more than prior
federal policies.

4 Latency Analysis and the Genome Commons

While data release policies are typically drafted by funding agencies, NIH in par-
ticular has given substantial weight to the views of the scientific community when
developing policy. Thus, the role and influence of other stakeholder groups is not to
be underestimated: the development of data release policies in the genome sciences
has been a process of negotiation and compromise. The evolution of the genome
commons illuminates three principal policy considerations: (1) promoting the
advancement of science by making genomic data as widely available as possible
(scientific advancement, typically espoused by funders and public-interest advo-
cates); (2) addressing the tension between publication priority of data generators
and data users (publication priority, typically espoused by data generators), and
(3) minimizing patent-related encumbrances on genomic data sets (minimizing
encumbrances, espoused by both funders and data users). The interplay of these
design considerations, and the latency-based compromises that were effected to
satisfy competing requirements of relevant stakeholders, resulted in the policies that
are in effect today.

In those NIH genomic data release policies adopted after the Bermuda Principles
and prior to the 2014 GDS policy, data must be released rapidly to public databases.
The motivations underlying this requirement have been discussed above: there is
the explicit desire to accelerate the progress of science, and a less explicit, but
strongly implied, desire to limit patent encumbrances on genomic data. However,
once concerns regarding publication priority between data generators and data users
emerged, a need for policy change became evident.

Most other federal agencies, as well as private initiatives in the genome sciences,
have addressed this conflict by permitting data generators to withhold their data
from the public for a specified time period, generally 9–12 months, after which it is
released without encumbrance (like the “retention” strategy adopted by private
sector initiatives in genomics described in Sect. 5 above). Until the GDS policy,
however, NIH policy makers took the opposite approach. Instead of allowing data
generators to retain their data for a protected period and then releasing it unen-
cumbered, these pre-2014 NIH policies continued to require rapid data release,
while imposing a publication embargo on users (an “embargo strategy”). The GDS
policy, however, signals a change in NIH’s approach. Under GDS, either NIH or
the data generators may withhold data from the public for a period of either
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6 months (for human genomic data) or until the time of publication (for non-human
data). These different policy approaches are compared in Table 1.

Table 1 highlights the differences and similarities among the latency-based
approaches to genomic data release. At one extreme are Bermuda-based policies
(including PGP), in which data must be released without restriction immediately.
Embargo and retention policies attempt to address competing policy considerations
in a manner that outwardly appears similar. That is, under both an embargo and a
retention strategy the data generator has a period of 9–12 months during which it
retains exclusive rights to analyze and publish papers concerning the data. But in
practice there are material differences between the retention strategy (Lk = 12/Lr = 0)
and the embargo strategy (Lk = 0/Lr = 12). These differences are driven by material
externalities that distinguish government-funded projects from privately-funded
projects.

A retention strategy lengthens knowledge latency and, by definition, extends the
time before data is released to the public. NIH has repeatedly stated its position that
genomic data should be released as rapidly as possible for the advancement of
science and the public good. The embargo approach accomplishes this goal by
minimizing knowledge latency while still protecting the data generators’ publica-
tion interests. However, the embargo strategy involves a significant tradeoff in
terms of enforceability. Usage embargos in NIH’s recent data release policies are
embodied in click-wrap agreements7 or online certifications that must be
acknowledged upon making a data request. The enforceability of these mechanisms
is uncertain [24, 25]. However, even the most robust contractual embargo provides
the data generator with less protection than withholding data from the public (i.e., if
a user has no data, it cannot breach its obligation to refrain from publishing).
Moreover, a retention strategy gives the data generator a true “head start” with
respect to the data, during which time no third party may analyze or build upon it,
whereas an embargo strategy enables third parties to analyze and build upon data
during the embargo period, putting them in a position to publish their results the
moment the embargo expires, even if they strictly comply with its terms during the
embargo period.

Table 1 Latency analysis of genomic data release policies

Knowledge latency (Lk) Rights latency (Lr)

Bermuda 0 0
Embargo (GAIN, GWAS) 0 9–12 months
Retention (SAEC) 9–12 months 0+
Public Domain (PGP) 0 0
GDS (Human) 6 months 0
GDS (Non-human) Publication (12–24 months) 0

7A “click-wrap” agreement (alternatively referred to as a “click-through” or “click-to-accept”
agreement or license) is “an electronic form agreement to which [a] party may assent by clicking
an icon or a button or by typing in a set of specified words” [24].
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With all of these comparative disadvantages to the data generator, why did the
NIH policies adopted between 2006 and 2014 adopt an embargo strategy rather
than a retention strategy? The answer may lie in regulatory constraints on NIH’s
ability to control the development of intellectual property. Unlike private sector
groups, NIH must operate within the bounds of the federal Bayh-Dole Act, which
prohibits federal agencies from preventing federally-funded researchers from
patenting their results.8 Thus, while NIH’s post-Bermuda data release policies
acknowledge the requirements of the Bayh-Dole Act, they discourage the patenting
of genomic data. The enforceability, however, of policy provisions that merely
“urge” or “encourage” data generators and users not to seek patents is questionable
[2, 26]. Lacking a strong policy tool with which to prohibit outright the patenting of
genomic data, NIH policy makers employed rapid pre-publication data release as a
surrogate to reach the same result. The Bermuda Principles, in particular, ensured
both that data produced by the HGP and other large-scale sequencing projects
would be made publicly-available before data generators could seek to patent
“inventions” arising from that data, and in a manner that would also make the data
available as prior art against third party patent filings.

In contrast, private sector groups such as SAEC adopted lengthier knowledge
latency periods to protect the publication priority of their researchers, but did so in
conjunction with explicit patent-defeating strategies. These groups, unlike federal
agencies, have the freedom to impose express contractual limitations on patenting
without running afoul of the requirements of the federal Bayh-Dole Act. These
policies may thus be optimized with respect to the policy goals of minimizing
encumbrances and protecting data generators’ publication priority, but are less
optimal than the government-led policies in terms of broad disclosure of knowledge
and scientific advancement.

Why, then, did NIH change course in 2014 by adopting a retention strategy over
an embargo strategy in its GDS policy? In terms of human data, the GDS policy
offers modest protection of producer lead time, while delaying data release by only
six months. In the case of non-human data, however, the GDS policy retreats
further, allowing potentially large data release delays tied to publication of results.
There are several possible reasons that NIH may have softened its rapid data release
requirements as to non-human data, ranging from different norms within the rele-
vant scientific communities to the public perception that non-human data may be
less crucial for human health research. As for the patent-deterring effects that are
promoted by rapid release policies, NIH appears to have concluded that the issue is
less pressing given recent U.S. judicial decisions making it more difficult to obtain
patents on human DNA [23].9 It is not clear, however whether this conclusion is
well-justified [23].

8The Bayh-Dole Act of 1980, P.L. 96-517, codified at 35 U.S.C. §§200-12, rationalized the
previously chaotic rules governing federally-sponsored inventions and strongly encourages
researchers to obtain patents on inventions arising from federally-funded research.
9The GDS policy refers specifically to the U.S. Supreme Court’s decision in Assn. for Molecular
Pathology v. Myriad Genetics, 133 S.Ct. 2107 (2013).
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In summary, policy makers over the years have sought to optimize the principal
policy goals pursued in the genome commons through the modulation of latency
variables:

(1) Scientific Advancement is highest under policies that minimize knowledge
latency. While data is retained by data generators in private, overall scientific
advancement cannot occur. Thus, under a retention strategy, scientific
advancement is lower than it would be under an embargo or public domain
policy.

(2) Minimizing Encumbrances (e.g., patent protection) is achieved by two dif-
ferent means. Private sector groups implementing retention strategies
employed contractual anti-patenting policies coupled with “protective” patent
filings, generally resulting in reliable freedom from patent encumbrances.
Government-funded projects, which cannot avail themselves of these tech-
niques, must rely on early disclosure of information as prior art (low knowl-
edge latency). While the effectiveness of these measures is debatable, they are
likely not as strong as those under a retention strategy. NIH recently cast doubt
on the need for strong patent-deterrence policy measures in light of recent U.S.
judicial decisions.

(3) Publication priority for data generators was explicitly sacrificed under public
projects such as the HGP in the service of scientific advancement and other
policy goals. While embargo policies attempted to improve priority for data
generators, the enforceability of contractual embargo provisions is less certain
than simple withholding of data under a retention policy. Thus, retention
policies, such as those now employed in the NIH GDS policy, yield the
highest priority for data generators.

5 Conclusion

Big data repositories are typically subject to policies regarding the contribution and
use of data. These policies, far from being unimportant legal “boilerplate,” are key
determinants of the scope and value of data within the repository. The designers of
the repositories of genomic data that have been growing since the HGP used a
variety of latency-related techniques to optimize the achievement of policy goals. In
particular, their modulation of knowledge latency and rights latency with respect to
data inputs and outputs achieved, in varying degrees, policy goals directed at
scientific advancement, minimization of intellectual property encumbrances and
securing publication priority for data generators. Understanding and utilizing these
techniques can be useful for the designers of other data repositories in fields as
diverse as earth science, climatology and astronomy who wish to optimize the
achievement of competing policy goals.
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Big Data Optimization via Next
Generation Data Center Architecture

Jian Li

Abstract The use of Big Data underpins critical activities in all sectors of our
society. Achieving the full transformative potential of Big Data in this increas-
ingly digital and interconnected world requires both new data analysis algorithms
and a new class of systems to handle the dramatic data growth, the demand to
integrate structured and unstructured data analytics, and the increasing computing
needs of massive-scale analytics. As a result, massive-scale data analytics of all
forms have started to operate in data centers (DC) across the world. On the other
hand, data center technology has evolved from DC 1.0 (tightly-coupled silos) to
DC 2.0 (computer virtualization) in order to enhance data processing capability. In
the era of big data, highly diversified analytics applications continue to stress data
center capacity. The mounting requirements on throughput, resource utilization,
manageability, and energy efficiency demand seamless integration of heteroge-
neous system resources to adapt to varied big data applications. Unfortunately,
DC 2.0 does not suffice in this context. By rethinking of the challenges of big data
applications, researchers and engineers at Huawei propose the High Throughput
Computing Data Center architecture (HTC-DC) toward the design of DC 3.0.
HTC-DC features resource disaggregation via unified interconnection. It offers
Peta Byte (PB) level data processing capability, intelligent manageability, high
scalability and high energy efficiency, hence a promising candidate for DC 3.0.
This chapter discusses the hardware and software features HTC-DC for Big Data
optimization.
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1 Introduction

1.1 Challenges of Big Data Processing

During the past few years, applications that are based on big data analysis have
emerged, enriching human life with more real-time and intelligent interactions.
Such applications have proven themselves to become the next wave of mainstream
of online services. At the dawn of the big data era, higher and higher demand on
data processing capability has been raised. Given industry trend and being the
major facilities to support highly varied big data processing tasks, future data
centers (DCs) are expected to meet the following big data requirements (Fig. 1)1:

• PB/s-level data processing capability ensuring aggregated high-throughput
computing, storage and networking;

• Adaptability to highly-varied run-time resource demands;
• Continuous availability providing 24 × 7 large-scaled service coverage, and

supporting high-concurrency access;
• Rapid deployment allowing quick deployment and resource configuration for

emerging applications.

1.2 DC Evolution: Limitations and Strategies

DC technologies in the last decade have been evolved (Fig. 2) from DC 1.0 (with
tightly-coupled silos) to current DC 2.0 (with computer virtualization). Although
data processing capability of DCs have been significantly enhanced, due to the
limitations on throughput, resource utilization, manageability and energy efficiency,
current DC 2.0 shows its incompetence to meet the demands of the future:

• Throughput: Compared with technological improvement in computational
capability of processors, improvement in I/O access performance has long been
lagged behind. With the fact that computing within conventional DC architec-
ture largely involves data movement between storage and CPU/memory via I/O
ports, it is challenging for current DC architecture to provide PB-level high
throughput for big data applications. The problem of I/O gap is resulted from
low-speed characteristics of conventional transmission and storage mediums,
and also from inefficient architecture design and data access mechanisms.
To meet the requirement of future high throughput data processing capability,
adopting new transmission technology (e.g. optical interconnects) and new
storage medium can be feasible solutions. But a more fundamental approach is

1This chapter is based on “High Throughput Computing Data Center Architecture—Thinking of
Data Center 3.0”, white paper, Huawei Technologies Co. Ltd., http://www.huawei.com.
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to re-design DC architecture as well as data access mechanisms for computing.
If data access in computing process can avoid using conventional I/O mecha-
nism, but use ultra-high-bandwidth network to serve as the new I/O function-
ality, DC throughput can be significantly improved.

• Resource Utilization: Conventional DCs typically consist of individual servers
which are specifically designed for individual applications with various
pre-determined combinations of processors, memories and peripherals. Such
design makes DC infrastructure very hard to adapt to emergence of various new
applications, so computer virtualization technologies are introduced accord-
ingly. Although virtualization in current DCs help improve hardware utilization,
it cannot make use of the over-fractionalized resource, and thus making the
improvement limited and typically under 30 % [1, 2]. As a cost, high overhead
exists with hypervisor which is used as an essential element when implementing
computer virtualization. In addition, in current DC architecture, logical pooling
of resources is still restricted by the physical coupling of in-rack hardware
devices. Thus, current DC with limited resource utilization cannot support big
data applications in an effective and economical manner.

Fig. 1 Needs brought by big data

Fig. 2 DC evolution
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One of the keystones to cope with such low utilization problem is to introduce
resource disaggregation, i.e., decoupling processor, memory, and I/O from its
original arrangements and organizing resources into shared pools. Based on
disaggregation, on-demand resource allocation and flexible run-time application
deployment can be realized with optimized resource utilization, reducing Total
Cost of Operation (TCO) of infrastructure.

• Manageability: Conventional DCs only provide limited dynamic management
for application deployment, configuration and run-time resource allocation.
When scaling is needed in large-scaled DCs, lots of complex operations still
need to be completed manually.
To avoid complex manual re-structuring and re-configuration, intelligent
self-management with higher level of automation is needed in future DC.
Furthermore, to speed up the application deployment, software defined
approaches to monitor and allocate resources with higher flexibility and
adaptability is needed.

• Energy Efficiency: Nowadays DCs collectively consume about 1.3 % of all
global power supply [3]. As workload of big data drastically grows, future DCs
will become extremely power-hungry. Energy has become a top-line operational
expense, making energy efficiency become a critical issue in green DC design.
However, the current DC architecture fails to achieve high energy efficiency,
with the fact that a large portion of energy is consumed for cooling other than
for IT devices.
With deep insight into the composition of DC power consumption (Fig. 3), design
of each part in a DC can be more energy-efficient. To identify and eliminate
inefficiencies and then radically cut energy costs, energy-saving design of DC
should be top-to-bottom, not only at the system level but also at the level of
individual components, servers and applications.

Fig. 3 DC power
consumption
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1.3 Vision on Future DC

Future DCs should be enabled with the following features to support future big data
applications:

• Big-Data-Oriented: Different from conventional computing-centric DCs,
data-centric should be the key design concept of DC 3.0. Big data analysis based
applications have highly varied characteristics, based on which DC 3.0 should
provide optimized mechanisms for rapid transmission, highly concurrent pro-
cessing of massive data, and also for application-diversified acceleration.

• Adaptation for Task Variation: Big data analysis brings a booming of new
applications, raising different resource demands that vary with time. In addition,
applications have different need for resource usage priority. To meet such
demand variation with high adaptability and efficiency, disaggregation of
hardware devices to eliminate the in-rack coupling can be a key stone. Such a
method enables flexible run-time configuration on resource allocation, ensuring
the satisfactory of varied resource demand of different applications.

• Intelligent Management: DC 3.0 involves massive hardware resource and high
density run-time computation, requiring higher intelligent management with less
need for manual operations. Application deployment and resource
partitioning/allocation, even system diagnosis need to be conducted in auto-
mated approaches based on run-time monitoring and self-learning. Further,
Service Level Agreement (SLA) guaranteeing in complex DC computing also
requires a low-overhead run-time self-manageable solution.

• High Scalability: Big data applications require high throughput low-latency
data access within DCs. At the same time, extremely high concentration of data
will be brought into DC facilities, driving DCs to grow into super-large-scaled
with sufficient processing capability. It is essential to enable DCs to maintain
acceptable performance level when ultra-large-scaling is conducted. Therefore,
high scalability should be a critical feature that makes a DC design competitive
for the big data era.

• Open, Standard based and Flexible Service Layer: With the fact that there
exists no unified enterprise design for dynamical resource management at dif-
ferent architecture or protocol layers, from IO, storage to UI. Resources cannot
be dynamically allocated based on the time and location sensitive characteristics
of the application or tenant workloads. Based on the common principles of
abstraction and layering, open and standard based service-oriented architecture
(SOA) has been proven effective and efficient and has enabled enterprises of all
sizes to design and develop enterprise applications that can be easily integrated
and orchestrated to match their ever-growing business and continuous process
improvement needs, while software defined networking (SDN) has also been
proven in helping industry giants such as Google to improve its DC network
resource utilization with decoupling of control and data forwarding, and cen-
tralized resource optimization and scheduling. To provide competitive big data
related service, an open, standard based service layer should be enabled in future
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DC to perform application driven optimization and dynamic scheduling of the
pooled resources across various platforms.

• Green: For future large-scale DC application in a green and environment
friendly approach, energy efficient components, architectures and intelligent
power management should be included in DC 3.0. The use of new mediums for
computing, memory, storage and interconnects with intelligent on-demand
power supply based on resource disaggregation help achieving fine-grained
energy saving. In addition, essential intelligent energy management strategies
should be included: (1) Tracking the operational energy costs associated with
individual application-related transactions; (2) Figuring out key factors leading
to energy costs and conduct energy-saving scheduling; (3) Tuning energy
allocation according to actual demands; (4) Allowing DCs to dynamically adjust
the power state of servers, and etc.

2 DC3.0: HTC-DC

2.1 HTC-DC Overview

To meet the demands of high throughput in the big data era, current DC architecture
suffers from critical bottlenecks, one of which is the difficulty to bridge the I/O
performance gap between processor and memory/peripherals. To overcome such
problem and enable DCs with full big-data processing capability, we propose a new
high throughput computing DC architecture (HTC-DC), which avoids using con-
ventional I/O mechanism, but uses ultra-high-bandwidth network to serve as the
new I/O functionality. HTC-DC integrates newly-designed infrastructures based on
resource disaggregation, interface-unified interconnects and a top-to-bottom opti-
mized software stack. Big data oriented computing is supported by series of
top-to-bottom accelerated data operations, light weighted management actions and
the separation of data and management.

Figure 4 shows the architecture overview of HTC-DC. Hardware resources are
organized into different pools, which are links up together via interconnects. Man-
agement plane provides DC-level monitoring and coordination via DC Operating
System (OS), while business-related data access operations are mainly conducted in
data plane. In the management plane, a centralized Resource Management Center
(RMC) conducts global resource partitioning/allocation and coordination/scheduling
of the related tasks, with intelligent management functionalities such as load bal-
ancing, SLA guaranteeing, etc. Light-hypervisor provides abstract of pooled
resources, and performs lightweight management that focuses on execution of
hardware partitioning and resource allocation but not get involved in data access.
Different from conventional hypervisor which includes data access functions in
virtualization, light-hypervisor focuses on resource management, reducing com-
plexity and overhead significantly. As a systematical DC 3.0 design, HTC-DC also
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provides a complete software stack to support various DC applications. A pro-
gramming framework with abundant APIs is designed to enable intelligent run-time
self-management.

2.2 Key Features

Figure 5 illustrates the hardware architecture of HTC-DC, which is based on
completely-disaggregated resource pooling. The computing pool is designed with
heterogeneity. Each computing node (i.e. a board) carries multiple processors (e.g.,
x86, Atom, Power and ARM, etc.) for application- diversified data processing.
Nodes in memory pool adopt hybrid memory such as DRAM and non-volatile
memory (NVM) for optimized high- throughput access. In I/O pool,
general-purposed extension (GPU, massive storage, external networking, etc.) can
be supported via different types of ports on each I/O node. Each node in the three
pools is equipped with a cloud controller which can conduct diversified on-board
management for different types of nodes.

2.3 Pooled Resource Access Protocol (PRAP)

To form a complete DC, all nodes in the three pools are interconnected via a
network based on a new designed Pooled Resource Access Protocol (PRAP). To
reduce the complexity of DC computing, HTC-DC introduces PRAP which has

Fig. 4 HTC-DC architecture
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low-overhead packet format, RDMA-enabled simplified protocol stack, unifying
the different interfaces among processor, memory and I/O. PRAP is implemented in
the cloud controller of each node to provide interface-unified interconnects. PRAP
supports hybrid flow/packet switching for inter-pool transmission acceleration, with
near-to-ns latency. QoS can be guaranteed via run-time bandwidth allocation and
priority-based scheduling. With simplified sequencing and data restoring mecha-
nisms, light-weight lossless node-to-node transmission can be achieved.

With resource disaggregation and unified interconnects, on-demand resource
allocation can be supported by hardware with fine-granularity, and intelligent
management can be conducted to achieve high resource utilization (Fig. 6). RMC in
the management plane provides per-minute based monitoring, on-demand coordi-
nation and allocation over hardware resources. Required resources from the pools
can be appropriately allocated according to the characteristics of applications (e.g.
Hadoop). Optimized algorithm assigns and schedules tasks on specific resource
partitions where customized OSs are hosted. Thus, accessibility and bandwidth of
remote memory and peripherals can be ensured within the partition, and hence
end-to-end SLA can be guaranteed. Enabled with self-learning mechanisms,

Resource Disaggregated Hardware System

Fig. 5 Hardware architecture of Huawei HTC-DC
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resource allocation and management in HTC-DC requires minimal manual opera-
tion, bringing intelligence and efficiency.

2.4 Many-Core Data Processing Unit

To increase computing density, uplift data throughput and reduce communication
latency, Data Processing Unit (DPU, Fig. 7) is proposed to adopt lightweight-core
based many-core architecture, heterogeneous 3D stacking and Through-Silicon Vias
(TSV) technologies. In HTC-DC, DPU can be used as the main computing com-
ponent. The basic element of DPU is Processor-On-Die (POD), which consists of
NoC, embedded NVM, clusters with heavy/light cores, and computing accelerators.
With software-defined technologies, DPU supports resource partitioning and
QoS-guaranteed local/remote resource sharing that allow application to directly
access resources within its assigned partition. With decoupled multi-threading
support, DPU executes speculative tasks off the critical path, resulting in enhanced

Fig. 6 On-demand resource allocation based on disaggregation

Fig. 7 Many-core processor
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overall performance. Therefore static power consumptions can be significantly
reduced. Especially, some of the silicon chip area can be saved by using the optimal
combinations of the number of synchronization and execution pipelines, while
maintaining the same performance.

2.5 NVM Based Storage

Emerging NVM (including MRAM or STT-RAM, RRAM and PCM, etc.) has been
demonstrated with superior performance over flash memories. Compared to con-
ventional storage mediums (hard-disk, SSD, etc.), NVM provides more flattened
data hierarchy with simplified layers, being essential to provide sufficient I/O
bandwidth. In HTC-DC, NVMs are employed both as memory and storage. NVM
is a promising candidate for DRAM replacement with competitive performance but
lower power consumption. When used as storage, NVM provides 10 times higher
IOPS than SSD [4], bringing higher data processing capability with enhanced I/O
performance.

Being less hindered by leakage problems with technology scaling and mean-
while having a lower cost of area, NVM is being explored extensively to be the
complementary medium for the conventional SDRAM memory, even in L1 caches.
Appropriately tuning of selective architecture parameters can reduce the perfor-
mance penalty introduced by the NVM to extremely tolerable levels while
obtaining over 30 % of energy gains [5].

2.6 Optical Interconnects

To meet the demand brought by big data applications, DCs are driven to increase the
data rate on links (>10 Gbps) while enlarging the scale of interconnects (>1 m) to
host high-density components with low latency. However due to non-linear power
consumption and signal attenuation, conventional copper based DC interconnects
cannot have competitive performance with optical interconnects on signal integrity,
power consumption, form factor and cost [6]. In particular, optical interconnect has
the advantage of offering large bandwidth density with low attenuation and cross-
talk. Therefore a re-design of DC architecture is needed to fully utilize advantages of
optical interconnects. HTC-DC enables high-throughput low-latency transmission
with the support of interface-unified optical interconnects. The interconnection
network of HTC-DC employs low-cost Tb/s-level throughput optical transceiver and
co-packaged ASIC module, with tens of pJ/bit energy consumption and low bit error
rate for hundred-meter transmission. In addition, with using intra/inter-chip optical
interconnects and balanced space-time-wavelength design, physical layer scalability
and the overall power consumption can be enhanced. Using optical transmission that
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needs no signal synchronization, PRAP-based interconnects provide higher degree
of freedom on topology choosing, and is enabled to host ultra-large-scale nodes.

2.7 DC-Level Efficient Programming Framework

To fully exploit the architectural advantages and provide flexible interface for
service layer to facilitate better utilization of underlying hardware resource,
HTC-DC provides a new programming framework at DC-level. Such a framework
includes abundant APIs, bringing new programming methodologies. Via these
APIs, applications can issue requests for hardware resource based on their demands.
Through this, optimized OS interactions and self-learning-based run-time resource
allocation/scheduling are enabled. In addition, the framework supports automati-
cally moving computing operations to near-data nodes while keeping data trans-
mission locality. DC overhead is minimized by introducing topology-aware
resource scheduler and limiting massive data movement within the memory pool.

As a synergistic part of the framework, Domain Specific Language (HDSL) is
proposed to reduce the complexity of parallel programming in HTC-DC. HDSL
includes a set of optimized data structures with operations (such as Parray, parallel
processing of data array) and a parallel processing library. One of the typical
applications of HDSL is for graph computing. HDSL can enable efficient pro-
gramming with demonstrated competitive performance. Automated generation of
distributed code is also supported.

3 Optimization of Big Data

Optimizing Big Data workloads differ from workloads typically run on more tra-
ditional transactional and data-warehousing systems in fundamental ways. There-
fore, a system optimized for Big Data can be expected to differ from these other
systems. Rather than only studying the performance of representative computa-
tional kernels, and focusing on central-processing-unit performance, practitioners
instead focus on the system as a whole. In a nutshell, one should identify the major
phases in a typical Big Data workload, and these phases typical apply to the data
center in a distributed fashion. Each of these phases should be represented in a
distributed Big Data systems benchmark to guide system optimization.

For example, the MapReduce Terasort benchmark is popular a workload that can
be a “stress test” for multiple dimensions of system performance. Infrastructure
tuning can result in significant performance improvement for such benchmarks.
Further improvements are expected as we continue full-stack optimizations on both
distributed software and hardware across computation, storage and network layers.
Indeed, workloads like Terasort can be very IO (Input-Output) intensive. That said,
it requires drastically higher throughput in data centers to achieve better
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performance. Therefore, HTC-DC, our high-throughput computing data center
architecture works perfectly with such big data workloads.

Finally, we plan to combine this work with a broader perspective on Big Data
workloads and suggest a direction for a future benchmark definition effort.
A number of methods to further improve system performance look promising.

4 Conclusions

With the increasing growth of data consumption, the age of big data brings new
opportunities as well as great challenges for future DCs. DC technology has
evolved from DC 1.0 (tightly-coupled server) to DC 2.0 (software virtualization)
with enhanced data processing capability. However, the limited I/O throughput,
energy inefficiency, low resource utilization and hindered scalability of DC 2.0
have become the bottlenecks to meet the demand of big data applications. As a
result, a new, green and intelligent DC 3.0 architecture capable to adapt to diver-
sified resource demands from various big-data applications is in need.

With the design of ultra-high-bandwidth network to serve as the new I/O
functionality instead of conventional schemes, HTC-DC is promising to serve as a
new generation of DC design for future big data applications. HTC-DC architecture
enables high throughput computing in data centers. With its resource disaggregation
architecture and unified PRAP network interface, HTC-DC is currently under
development to integrate many-core processor, NVM, optical interconnects and
DC-level efficient programming framework. Such a DC will ensure PB-level data
processing capability, support intelligent management, be easy and efficient to
scale, and significantly save energy cost. We believe HTC-DC can be a promising
candidate design for future DCs in the Big Data era.
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Big Data Optimization Within Real World
Monitoring Constraints

Kristian Helmholt and Bram van der Waaij

Abstract Large scale monitoring systems can provide information to decision
makers. As the available measurement data grows, the need for available and
reliable interpretation also grows. To this, as decision makers require the timely
arrival of information, the need for high performance interpretation of measurement
data also grows. Big Data optimization techniques can enable designers and
engineers to realize large scale monitoring systems in real life, by allowing these
systems to comply to real world constrains in the area of performance, reliability
and reliability. Using several examples of real world monitoring systems this
chapter discusses different approaches in optimization: data, analysis, system
architecture and goal oriented optimization.

Keywords Measurement ⋅ Decision ⋅ Monitoring ⋅ Constraint-based
optimization

1 Introduction

Monitoring systems enable people to respond adequately to changes in their
environment. Big Data optimization techniques can play an important role in
realization of large scale monitoring systems. This chapter describes the relation-
ship between Big Data optimization techniques and real world monitoring in terms
of optimization approaches that enable monitoring systems to satisfy real world
deployment constraints.
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This chapter starts with a high level overview of the concept of monitoring in
Sect. 2. After that the relationship between large scale monitoring systems and Big
Data is described in Sect. 3. This is done using constraints on monitoring systems
with respect to performance, availability and reliability, which are critical success
factors for monitoring systems in general and also have a strong relationship with
Big Data. Then, in Sect. 4, several solution approaches from the field of Big Data
optimization are presented for designers and engineers that need to stay within
constraints as set forward by the context of the deployment of a monitoring system.
Also, the impact on several other constraints is taken into account. This chapter
ends with Sect. 5 presenting conclusions.

2 Monitoring

A thorough understanding of the relationship between Big Data optimization and
monitoring, starts with a global understanding of the concept of monitoring. This
understanding provides a means to comprehend the Big Data related constraints put
upon monitoring by the real world, which will be described in the next section. In
this section an understanding of monitoring systems will be provided by describing
a real world example.

2.1 General Definition

The word ‘monitor’ is supposed to be derived from the Latin monitor (“warner”),
related to the Latin verb monere (“to warn, admonish, remind”). A monitoring
system could therefore be defined as a collection of components that interact in
order to provide people and/or other systems with a warning with respect to the
state of another object or system. A (very) small scale example of a monitoring
system is a smoke detector: it continuously measures the visibility of the sur-
rounding air. Once a threshold level with respect to that visibility has been crossed,
an alarm is sounded. In this chapter, the definition of a monitoring system is
extended to systems that are not primarily targeted at warning, but possibly also at
learning. This is because modern day monitoring systems can and need to adapt to
changes in the environment they monitor. This means that modern monitoring
systems can—for example—also be used to find the relationship between behavior
of different objects and/or parameters in the system they observe. So, in turn the
definition of a monitoring system in this chapter becomes:

“a collection of components that interact in order to provide people and/or other systems
with information with respect to the state of a system of other objects, based on (real-time)
measurement data on that system (of objects).”
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In this chapter the scope is limited to large scale monitoring systems. In the
remainder of this chapter the abbreviation LSMS is used. These systems collect vast
amounts of (measurement) data—using sensors—on the real world and process it to
information, which could then be used to decide upon or to learn from. As will
become clear in the next paragraphs, LSMSs can be used for many different sys-
tems. For example, a dike LSMS can be used to monitor dikes for failure (which
would result in flooding). Another example is an LSMS that monitors the health and
wellbeing of hundreds of thousands of cows throughout their lifetime.

In order to structure the material in this chapter, a simple but effective moni-
toring framework is used to position functions of a monitoring system. This
framework—depicted in Fig. 1—enables describing the relationship with Big Data
optimization later on in this chapter. The basic idea of this framework is that in all
monitoring systems three generic steps can be distinguished. Using the relatively
simple example of a radar the following three steps can be described:

1. Measurement: mapping a certain aspect of reality to a unit of measurement of
a physical magnitude (or quantity) using a sensor. For example a radar that
sends out radio waves and receives reflections which tells something about
distances from the object to the radar antenna.

2. Interpretation: interpretation of sensor data into information—using expert
models—about an object or system to be monitored. For example interpretation
of radar data into information about an object that is flying towards a radar.

3. Decision to inform: applying some kind of rule set to determine if a human or
other system should be informed (e.g. warned). For example, based on the speed
of an object flying towards the radar, a warning could be produced if an object is
coming into fast or too close.

Note that there are other generic and more elaborate descriptions of monitoring
(& control) systems, like the famous Observe, Orient, Decide, and Act (often
abbreviated as OODA) loop [1] or the ‘Knowledge Discovery’ as described in [2].
These shall not be discussed in this chapter, since this simple decomposition in
Measurement, Interpretation and Decision (MID) is only needed as a means to
position monitoring constraints from a Big Data optimization perspective later on.
Also, control systems are beyond the scope of this chapter.

Fig. 1 Measurement, interpretation, decision framework
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This concludes the very high level description of monitoring in general. With
this in mind, an example of an LSMS is presented in the next section. This example
will be used to describe specific Big Data related aspects in the section on Big Data
related constraints.

2.2 Dike Monitoring Example

In the Netherlands dikes prevent more than half of the population of 17 million
people from losing their houses, losing their livelihood and ultimately drowning.
Construction and maintenance of dikes is relatively expensive, because other than
safety, dikes provide no direct financial output, like a factory that produces products
that can be sold. Note that the Netherlands there is more than 3500 km of primary
dikes and more than 10,000 km of secondary dikes. From both a safety as well as
economic point of view, it is valuable to both know how and when a dike could fail.
From a socio-economic point of view dikes should be safe enough, but too much
over dimensioning is a waste of money. Since this could be spent elsewhere, for
example in healthcare where lives are also at stake.

Several years ago, it seemed appropriate to a consortium of water boards (i.e.
local/regional governments targeted at water management), research organizations
and industrial partners to start working on an LSMS for dikes [3, 4]. Advances in
computer science, geotechnical sciences and the decline of costs of computation,
communication and storage hardware, made it seem as if there could be a business
case for dike monitoring. In other words the expected costs of the LSMS seemed to
be less than the avoided costs in case of inefficient dike maintenance (too little or

Fig. 2 Dike being monitored with an large scale monitoring system
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too much). The result of the collaboration was the creation of a test facility for the
monitoring of dikes (Fig. 2). Several experimental dikes have been constructed
there, which contained many different types of sensors [3].

Measurement. A type of sensor used that produced large amounts of data is
fiberglass cloth, which can be used to measure the shape of a dike, by wrapping it
onto the dike. When the dike changes shape, the fiberglass cloth bends resulting in
different measurement data. Another type of sensor is the ShapeAccelArray/Field
(SAAF), a string of sensors that provides (relative) position, acceleration and ori-
entation information. Like fiberglass sensors, a SAAF can provide a vast amount of
data in a short amount of time. For example a 3 m SAAF can contain 10 mea-
surement points, that each can provide 9 measurement values. Providing 10 * 9
values in total every 5 s. A final example for determining the shape of a dike is to
use remote sensing such as satellite data [5].

Interpretation. The end-users of the dike LSMS are interested in the stability of
the dike: what is the chance that it will fail. There is no physical instrument that
measures this abstract ‘unit of measurement’, it has to be calculated according to a
computational model that all LSMS involved parties agree upon. This model must
take into account significantly contributing to the dike stability. For example the
geotechnical make-up of the dike and the (expected) forces acting upon the dike,
like water levels on both sides. This can be done without using sensor data and by
assuming possible (extreme) parameter values for the models involved and calcu-
late the likelihood of failure. However, while progress has been made in the last
decennia with theoretical models for dike behavior, uncertainty remained. For this
test facility dike stability models have therefor been adapted to use measurements
from sensors inside or targeted at the dike. During the experiments at the facility,
sensor developers could find out if the data from their (new) sensors contributed to
reducing uncertainty about dike failure. Geotechnical model builders could find out
if their models were using data from sensor efficiently. Hence the name of the test
facility, which was ‘IJkdijk’, as ‘ijk’ means ‘to calibrate’ in Dutch.

Decision. A dike LSMS is an excellent example of the need for a monitoring
system that produces information on which people can rely. When an LSMS warns
that a dike will fail within the next two days, people are almost forced to start
evacuating if there is no possibility to strength the dike anymore. If it turns out the
LSMS was wrong (i.e. the dike would not have failed), the impact of this false
alarm is huge from a socio-economic point of view. When an LSMS does not warn,
while the dike is about to fail, resulting in a flood nobody was warned about, the
socio-economic impact is also very huge. So in short: if society wants to trust
LSMSs for dikes there must be no error or failure in the chain of components that
transform sensor data into decision information.

As shown by the dike LSMS, there can be strong requirements to an LSMS
system that act as heavy constraints, which are also related to Big Data optimiza-
tion, as this can influence the extent to which an LSMS can meet the requirements.
These will be covered in the next section.
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3 Big Data Related Constraints to Monitoring

In order to be economically sustainably deployed in the real world there are certain
requirements a LSMS must meet. Designers and engineers of an LSMS that have to
come up with a technical solution, consider these requirements as constraints to
their solution. An obvious constraint is that the financial value of the information
produced by the LSMS should not exceed the costs of the LSMS itself. This
includes costs of hardware, energy, labor, etc. In this chapter the focus is on three
types of constraints (performance, availability and reliability) that are both strongly
related to the added value of a monitoring system to society, as well as Big Data
optimization. It could be argued that there are other such constraints, but for reasons
of scope and size of this chapter it has been decided not to include those.

In order to describe the relationship between Big Data and LSMSs from the
viewpoint of constraints in an efficient way, this relationship will first be described
from the viewpoint of data collection and interpretation. After describing the
relationship from constraints, solution approaches for keeping within the constraints
will be presented in the next section.

3.1 The Big Data in Monitoring

The relevance of Big Data optimization to LSMS depends—to a large extent—on
the way data is collected and interpreted. In this subsection this relationship will be
explored by looking at different aspects of data collection and interpretation in
LSMSs.

3.1.1 Abstraction Level of Interpreted Information

In the dike LSMS example the LSMS has to provide information on ‘dike stability’.
This is an abstract concept and cannot directly be measured and has to be inter-
preted. The value of this interpreted ‘unit of measurement’ can only be produced by
using a computational model that computes it, based on sensor measurements and a
model of the dike. This can result in much computational effort, even if there are
relatively few sensors installed.

The higher the abstraction level of a interpreted ‘unit of measurement’ is the
more (sub)models tend to be required. This is illustrated by an example of an
LSMSs for underground pipelines illustrates this [6]. This LSMS determines the
chance of failure of a segment of underground pipeline and is depicted in Fig. 3.
The interpretation uses based on:

1. Actual soil movements, measured by underground position sensors.
2. Expected soil movements, based on soil behavior models, where (expected)

external forces onto the soil are also taken into account.
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3. Estimated underground geometry of pipeline structures, based on construction
and maintenance plans.

4. Estimated mechanical properties of pipeline segments and structures, based on
physics and analysis of similar pipeline segments elsewhere.

The LSMS uses to the actual ground movements and the assumed model of the
underground to create a better estimate of the actual underground. It then computes
forces on the pipe structure and uses those in combination with estimated
mechanical properties to determine an estimate of the structural reliability. Note that
it does also take into account possible variations of parameters involved, due to the
uncertainty.

Each of these different aspects (e.g. soil movement, structural behavior of pipe
geometry based on ground forces) requires a model of its own. Next to sensor data,
it also requires data on the ground buildup and geometries of pipelines. Because the
ground buildup tends to vary, just as the pipeline geometries, estimating the chance
of failure for all segments of—for example a country like—the Netherlands results
in an explosion of computations to be carried out on a large dataset.

Fig. 3 Example of interpretation using model with a high level of abstraction
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3.1.2 Temporal Issues

The way data has to be collected and interpreted (also) depends on what LSMS
(end-)users expect the LSMS to do, from a temporal point of view:

1. assessment of the current state of the system under observation
2. an estimation of possible future states of that system

As was shown above in the case of the LSMS for underground pipelines,
assessing the current state of a system under observation can already require many
computations because of the need to evaluate different models involved. When
information on possible future states is also required, there is need for even more
computation and possibly extra storage. This is due to the fact that the interpretation
part of the monitoring system needs a model of the system under observation, that
allows to predict or estimate future states of the system. Roughly said, two types of
models can be distinguished.

Descriptive model: the inner workings of a system are understood to a certain
extent, and based on the application of the model to the measurement data it can be
predicted how the system will behave next (within a certain band of uncertainty).
For example: if you measure the time, you can use models of the earth’s rotation
around the sun to determine your position in space, relative to the sun.

Phenomenological model: the inner workings of a system are not known, but
based on trends and/or other relationships between data segments in past observed
measurements, it can be predicted—within a (known) band of uncertainty—how
the system under observation will behave in the nearby future. Such a model can be
built on observing the system and looking at the relationship between different
measurement values throughout time. See [7] for an example of a monitoring
system that observes (patterns in behavior) of elderly people.

The establishment of phenomenological prediction models requires learning or
‘knowledge discovery’, a process that is described in [2]. This can require analyzing
large amounts of historical sensor data. This is because—especially when little to
knowledge is available on the system to be monitored—many sensor data needs to
be taken into account, as well as long historical time series of sensor data. Also
these models tend to be intertwined during their development phase with humans.
During the learning phase, researchers and engineers will tend to look at different
parameters by adding more (or less) sensors, apply different ways of interpretation
(change algorithms), etc. In the case of dike LSMSs it turned out during research
that it is sometimes very difficult to create a descriptive model, since dikes some-
times are from medieval times and no construction schematics are present. Little is
known about the inner structure of these dikes, in this case the use of phe-
nomenological models might be needed to determine structural behavior in the
future, based on passed measurements.

While the establishment of a phenomenological model might require analysis of
large amounts of data, once it has been established and the behavior of an observed
system does no longer change, this is analysis is no longer needed. However, in
practice the issue remains how to be sure that the behavior of the system under
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observation does not change. Not surprisingly, (end-)users of an LSMS tend to
prefer to have a understanding of the systems for which they are responsible and
thus prefer a descriptive model. A phenomenological model can sometimes help to
deduce a descriptive model, by trying to build such a model that explains cause and
effect relationships found in measured sensor data during the establishment of a
phenomenological model. A detailed description of this kind of system modelling
and learning is beyond the scope of this chapter.

3.1.3 Growth of Available Data

Next to the abstraction level of information and temporal issues, there is another
Big Data aspect to monitoring, which is the growth of available data [8, 9]. Due to
the advances in microelectronics, sensors can produce more data in a faster way.
Data can be transported using more bandwidth and be stored in much larger
quantities. While processing power also has increased, the growth of data remains
an issue. Especially in the case of the establishment of phenomenological models—
as described above—it is, in the beginning, often unknown what data should be
measured and processed by the LSMS and what data is not relevant for producing
the desired information. This results in the acquirement of a large amount of data,
which all has to be processed.

Based on this general high level overview of several aspects of the relationship
between Big Data and monitoring, it is possible to look at the relationship from
three different constraint-based points of view.

3.2 Performance

The ability to act upon information (e.g. a warning) is key in the successful
deployment of a LSMS. In this chapter the speed at which an LSMS can produce
the desired information is defined as its performance. The amount of time between
the moment a warning is issued and the last point in time the warning can be acted
upon is defined in this chapter as the ‘time window’. The larger the time window,
the better the performance of an LSMS. For example, if it will take a year to carry
out maintenance, than the monitoring system will have to warn at least a year ahead
when it predicts failure ‘in about a year’.

The size of a time window can be influenced by several factors. The MID
decomposition is used to describe the relationship with Big Data from the perfor-
mance constraint point of view.

Measurement. The amount of time involved in measurement is roughly
determined by three things. First, the amount of time needed for measuring a
physical aspect of the real world. Secondly, the amount of time needed for trans-
porting the measurement to a location where interpretation of the data can take
place. And finally, the amount of time needed for storing the information at a
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location, so it can be accessed by a data processing component. The total time
involved largely depends on the amount of data measured and available bandwidth.

Note that the needed bandwidth and type of sensor are often closely intertwined.
This relationship between a (visual) sensor and transport bandwidth is clearly
shown by the example of a camera. Does it—for example—provide an HD movie
stream of 25 images per second or does it act as an hourly snapshot camera? Or
does the camera only send a new snapshot when something changes in the image?

Interpretation. The amount of time involved in interpretation roughly depends
on three things. First, the amount of time needed for retrieving data from storage for
processing. Then, the amount of time needed for processing data into information
using (a) model(s) and finally the amount of time needed for storing information
after processing. Note that if the data is processed in a streaming fashion instead of
batch wise, less time might be needed.

Decision. The amount of time needed for making a decision to inform/warn
(end-)users of an LSMS is roughly determined by two factors. First, the amount of
time it takes for a rule set to be applied on the produced information. The amount of
time it takes for a issued warning to reach the people or systems that can act on the
information. Simply stated: the more time is needed for each of these steps, the less
time remains for the warning time window.

3.3 Availability

Besides performance constraints, there are also availability constraints. A LSMS
that is not available and does not provide a warning when it is needed is rather
useless. It does not matter if the unavailability is due to expected monitoring
systems maintenance or due to unexpected other causes. Note that the level of
availability depends on the specific context of an LSMS. For example, if a system
under observation can quickly change its behavior, the LSMS obviously needs a
high level of availability, since else this change would be missed. However, in the
case of slow changing systems, temporal non availability is allowed, because the
time window (as described in the performance constraint viewpoint above) is rel-
atively large.

The availability of an LSMS can be influenced by several factors. The MID
decomposition is used to describe the relationship with Big Data from the avail-
ability constraint point of view.

Measurement. The availability of an LSMS with respect to measurement
depends on the availability of the sensors, transport and storage. Especially storage
is important from a Big Data point of view: this is where techniques for fast storage
and retrieval of data come into play, as will be shown in the solution approach
section later on.

Interpretation and Decision. The availability of the interpretation and decision
parts depends on the availability of storage and computational facilities. Designers
and engineers of an LSMS must take into account that these facilities can fail and be
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temporarily unavailable. This is where Big Data techniques can come into play with
respect to redundancy, as will be shown later on.

3.4 Reliability

Even if the performance and availability of an LSMS are within the constraints set
forward by the end-users in their context, an LSMS might still not be deployable
because of reliability constraints. As described in the dike LSMS example in the
monitoring section: not issuing a warning on structural dike failure is not accept-
able. Also, sending out false alarms is not acceptable as people will no longer
respond to alarms, even if this system is right at the time. In practice, reliability is
closely related to availability, because the temporarily unavailability of components
of a monitoring system can make the entire system less reliable.

The reliability of an LSMS can be influenced by several factors. The MID
decomposition is used to describe the relationship with Big Data from the reliability
constraint point of view.

Measurement. Reliability can be influenced by measurement errors, transport
and storage errors. This means that data might get corrupted somehow.

Interpretation and decision. The reliability of the information produced by the
LSMS directly relies on the data processing algorithms used. At the same time, the
reliability is also influenced by the reliability of the computational and storage
facilities (i.e. protection against corruption of data and information).

4 Solutions Within Constraints

In the previous sections monitoring systems have been generically described from a
Big Data optimization point of view. Specific Big Data related requirements have
been identified that have to be met in order for a monitoring system to be useful. In
this section different solution approaches for meeting these constraints will be
described.

For reasons of scope and size of this chapter, solution approaches concerning faster
and bigger hardware will not be described, even though they help in certain situations.
The focus will be on the data, algorithms and system architecture/design.

4.1 Approaches in Optimization

In the previous sections three types of constraints have been listed with respect to
Big Data (optimization). First, the maximum size of the warning time window.
Secondly, the availability of a monitoring system and finally the reliability of the
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warning itself. The relation with Big Data lies within the fact that the amount or
availability of data involved can cause constraint violation. Optimization techniques
can help avoid these violations.

In this section optimization techniques are categorized using several approaches
in design and implementation of monitoring systems:

1. Data oriented. Deal with the amount of data by somehow reducing the volume,
before it is processed by the data interpretation algorithms.

2. Analysis oriented. Enhance data interpretation algorithms, enabling them to
deal with large amounts of data.

3. System/architecture oriented. Instead of reducing the amount of data or
altering the data to information algorithms, the system as a whole is set up in
such a way it can deal with large(r) amounts of data and/or in less time.

Note that designers can also try to resort to a fourth approach:

4. Goal oriented. Loosen the constraints. Only possible if there is still a business
case for the system after loosening constraints.

Often, design and/or engineering solutions for keeping a monitoring system
within constraints, cannot be positioned on a specific axis of orientation. For
example, a solution might be data and algorithm oriented at the same time. In this
chapter however, the distinction is made in order to position different types of
solutions. Note that solution approaches will be described. Not the solutions
themselves, since they require more detailed explanation.

4.1.1 Data Oriented Optimization

In general the amount of data to be processed can prevent a LSMS from having a
small enough time window. A relatively simple optimization step is to reduce the
volume of the (monitoring) data, resulting in a reduction of time needed in all
process steps. In the case of the IJkdijk LSMS, it was learned that well maintained
dikes—not being in a critical structural health condition—‘change’ relatively slow.
A warning dike LSMS could therefor suffice with a sample rate of 5 min. Reduction
of data involved can be performed in a number of different ways. Since this book is
about Big Data optimization, increasing the speed of transport, retrieval and storage
is not covered.

Reducing the size of the data often results in a reduction of processing time,
since less data for each analysis step tends to take less time for analysis. An often
used approach to reduce data is aggregation. Instead of having a sample each
minute, 60 samples are aggregate—using an average—into a sample each hour.
Note that this may come at a price with respect to the reliability constraint: if it is
important that ‘sudden spikes’ in measurement data are to be analyzed too, using
averaging might result in a loss of spikes in the data set.
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Another way of reducing data for analysis is to convert data to another domain
that can be processed just as efficiently. For example cyclic signals in actual
measurements can sometimes be converted from the time domain into the fre-
quency domain using Fourier transformations. There are also techniques to convert
measurement data graphs automatically into a sequence of symbols. For example:
segmenting the graph into sections of horizontal (A), riser (B) and falling
(C) slopes, the graph can be converted into a sequence of A, B, C symbols. With
non-cyclic signals this can result in a heavy data reduction. Note that again, this
optimization technique can only be applied, if the LSMS as a whole stays within the
reliability constraint: users must still be able to rely on the LSMS. An example of
data reduction technique is called SAX and is described in [10].

A third data oriented optimization technique is to reorder the measurement data
in such a way, that the analysis takes less time. An example case is the design of a
cow LSMS in which the health and wellbeing of hundreds of thousands of cows is
monitored throughout their lifetime [11]. This LSMS provides information on dairy
production, which is needed by farmers to maximize the return on investment in
milk production. At farms weight data is collected device centric, as depicted in
Fig. 4. This means for example that there are a few scales (at each milking robot)
that determine weight and many cows. Every time a scale is tread upon, the weight
is digitally stored with a timestamp. The milking robot knows which cow (i.e. RFID
tag) was being milked (and weighed) at a certain point in time. By combining the
data from the milking robot with the scales, the weight of a cow at a certain point in
time can be deduced. The interpretation part of the cow LSMS is cow-centric. It
provides information per cow through time. By (also) storing weight data in a
cow-centric way, the algorithm for interpretation has to carry out far less data
retrieval, speeding up the analysis.

In general data oriented optimization techniques do not increase availability or
reliability. In fact, it might even decrease reliability because information is lost.
This is where another design and/or engineering degree of freedom comes into play:
optimize the analysis.

Fig. 4 Device centric and object centric storage
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4.1.2 Analysis Oriented Optimization

During the analysis phase, data is converted into information using processing
algorithms. The type of algorithms determines the reliability of the information and
also the processing speed. So in order to meet time and reliability requirements, an
approach is to focus on the algorithm at hand. Roughly stated, there are two kinds
of analysis oriented approaches. The first approach is to optimize (or change) a
specific algorithm (run on a single computer). This can influence the size of the time
window or the level of reliability. A simple example of this approach—with respect
to time constraints—is sorting a long list of measurement data. When using a
‘bubblesort’ algorithm, it takes for more time in general than using a ‘quicksort’
algorithm. Optimizing and/or designing improved data interpretation algorithms is
very domain specific and outside the scope of this chapter.

Another well-known approach—with respect to the size of the time window—is
to ‘divide-and-conquer’: carry out calculations for an algorithm in parallel. This can
be done by creating a distributed algorithm or by separating data and run the same
algorithm in parallel. Much Big Data optimization techniques revolve around some
kind of ‘Map Reduce’ approach, where a larger problem is reduced into smaller one
that can be handled separately [8, 9, 12, 13]. As stated before, this chapter is not
about explaining these kind of solutions. They are multiple and require detailed
explaining on their own.

4.1.3 System Architecture Oriented Optimization

Data oriented optimization and analysis oriented optimization are targeted at sep-
arate parts of the MID steps. It is also possible to optimize the monitoring system as
a whole, across the ‘Measurement’ and ‘Interpretation’ part. In this section a
number of them are reviewed.

More performance by distributing interpretation
By bringing the analysis towards the collection of data, it is sometimes possible

to reduce the amount of transport, storage, retrieval and/or computation. An
example can be found in [2]. This can be achieved by doing part of the analysis
closer to the measurement points, reducing the need for transportation and central
processing power (and time). Also, it is possible to carry out intelligent forwarding
of information [7], where data or information is only forwarded when needed, by
doing a small amount of interpretation close to the sensor, removing the need for a
central point of interpretation to carry out all interpretation.

More performance with enough reliability by combined processing
Combining streaming and batch processing of data can also reduce the amount of

processing time, while keeping reliability at acceptable levels. The idea is to have
two separate and ‘parallel’ lines of processing data. The first processing line is
targeted at speed: data that arrives is immediately processed and calculations are
finished before the next data arrives. In this chapter this is defined as streaming data
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processing. Algorithms used for this type of processing often deal with a small
portion of a time series, close to the most recent point in time (‘sliding window’).
Warnings can be quickly issued, because processing takes place all the time. If the
LSMS for some reason crashed, it can be ‘rebooted’ quickly again, thus increasing
availability. However, because only a small portion of the historical behavior is
taken into account, the monitoring system might miss certain long term trends. This
might reduce the amount of reliability. This is where the second processing line
comes into play. Next to the stream processing line there is also a batch processing
line. It is targeted at processing more (historical) data in a single batch, but it requires
more time. By using the batch processing line as a means to calibrate the stream
processing line (e.g. ‘long term trends’), it is possible to get ‘the best of both worlds’.

The lambda architecture [14] is an example of combining processing lines. It states
that the batch processing should be performed each time over all the data. To be able to
produce also analyses over the latest data, a streaming system must be set up next to
the batch which can processes the data in a streaming manner as long as the batch
processing takes. At the moment the batch processing is finished, the results of the
streaming analyses are overwritten by the batch results. The streaming analyses starts
again, initialized with the newly batch results and the batch also is starting again.

Affordable performance through elasticity of resources
The analysis-oriented divide and conquer approach can require so much com-

putational resources that the costs of storage and computation exceed the value of
the information that the monitoring system produces. An approach to reduce the
costs is to make use of resources in an elastic way.

The idea is to collect data at a relative low sample rate, which requires less storage
and computational power for analysis. Once an unknown anomaly in the measure-
ments is detected, the sample rate is increased and the anomaly can be analyzed using
more sophisticated data processing algorithms, that are (temporarily) hosted on an
elastic computing cloud. This is depicted in Fig. 5. If variation on this theme is doing
a pre-analysis at the source of the data collections, instead of in the interpretation
phase. An example can be found in an LSMS that monitors the impact of earthquakes
in the Netherlands, which is currently under development. It is constructed to
develop a deeper understanding of how vibrations of the underground impact houses.
The quakes are caused by compacting of the subsurface at a depth of approximately
3 km, which in turn is the result of the decreasing of pore pressure in an underlying
gas reservoir [15]. The LSMS design consists of hundreds of vibration sensors at
several hundred houses. The structural health of the building is logged (e.g. ‘cracks
in walls’) and by analyzing the combination of earthquake data, vibrations in houses
and the structural health, researchers try to establish quantifiable cause and effect
relationships between quakes and the resulting damage to a house. Since these types
of quakes and impact on the houses are new, it is not known what for example the
sample rate should be. Research and engineers currently thus want to collect data at a
high sample rate. In order to keep the amount of processing as low as possible, the
idea to reduce is to only forward high sample rate data if it is quake related. Only
then computing power is needed for processing. This could be supplied by a
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computational elastic cloud. After all quake data has been processed, the sample rate
of forwarded data can be reduced again, which results in less computational power.
More information on Big Data and elasticity can be found—for example—in [16].

Increasing availability through redundancy
As a final system architecture oriented optimization approach, the concept of

adding redundancy is discussed. The basic idea is that failure of one of the com-
ponents does not result in failure of the entire system (‘no single point of failure’).
By adding multiple components with the same functionality, some could fail,
without a total failure of the entire LSMS. Describing general techniques for
designing high availability (or sometimes called fault-tolerant systems) by using
redundancy is beyond the scope of this chapter. Big Data computational platforms
like Hadoop [17] and Project Storm [18] can provide—if configured properly—
resilience against failing computational nodes. Also, NoSQL databases like Cas-
sandra can store data with multiple copies of that data distributed over racks and
even data centers if necessary.

An important aspect of increasing availability through redundancy is assuming
everything can (and will) fail. Also, designers should create a system that tries to
continue functioning, even if several components are not available anymore. The
loss of a component should not result in a stop of the entire data to information
processing chain. Instead, data and/or information should be rerouted to redundant
components that still work. If loss of data is unacceptable (e.g. in a learning LSMS)
data should only be allowed to be deleted in the monitoring chain, as long as there
are at least two copies remaining elsewhere in the chain.

Increasing reliability through human error resilience
No matter how well tested data processing algorithms are, it is always possible a

mistake has been made. Resulting in the production of unreliable information. One

Fig. 5 Using elastic resources in monitoring
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of the design goals of the Lambda architecture [14] discussed earlier is to be more
robust against these kinds of human errors. LSMSs that are based on the Lambda
architecture should preserve all original data and that it should be possible to
reproduce al information using that data. Next to the streaming processing, there is
the possibility to start a batch process that could use the entire dataset to reproduce
the information. In this way the effects of a discovered error in a data processing
algorithm can be mitigated to some extent.

4.1.4 Goal Oriented Optimization

As mentioned before, as a means of last resort, designers and engineers might
loosen constraints. In a way, this means slightly altering the goal of the system. In
practice designers and/or engineers sometimes discover not all of the original
constraints from the specification do not have to be as tight as originally specified.
By loosening constraints just a little, it is sometimes still possible to come up with a
LSMS that still provides more value through information, than costs needed for
realization and operation of an LSMS. For example, there are techniques—like the
Early Accurate Result Library (EARL) system—which help determine the sample
rate or the size of data samples, while staying with a specific error bound [19].

4.2 Summary of Optimizations and Constraints

As mentioned earlier on, there is no one-to-one mapping of constraints (time
window, availability and reliability) and optimization techniques. In practice
applying a specific technique often influences the achievement of several con-
straints. In the table below these relationships are once more illustrated and sum-
marized, based on the descriptions above. A ‘+’ means that the chance of staying
within a constraint is increased, a ‘–’ means that the chance is decreased. For
example, aggregation of data can increase the chance of meeting a time window
requirement, while decreasing the chance of meeting a reliability constraint. A ‘0’
means little to no effect. Note that these are very generic scores, provided to show
that improvements in the area of one constraint might result in issues with other
constraints. In practice, the specific case and optimization technique at hand might
lead to other values in the table (Table 1).

4.2.1 Impact on Other Constraints

Applying one or more Big Data optimization techniques as discussed in the previous
paragraphs, can come at a price with respect to other constraints. The relationship
between Big Data related constraints (performance, availability and reliability) have
already been discussed. However, other constraints might be impacted too. This
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chapter would not be complete without mentioning several constraints that are
important in modern day LSMS deployment too. This will be done in these last
subsections.

Energy consumption
LSMS can consume large amounts of energy. Optimization techniques that

require more hardware because of parallelization or redundancy, obviously tend to
use more energy. Depending on the value of the information produced by the
LSMS or the energy available in the deployment area of an LSMS, the energy usage
might be more than allowed. The link between Big Data analytics and energy usage
is covered in more detail in [20].

Maintainability
Intricate Big Data optimization techniques might enable designers and engineers

of an LSMS to stay within the constrains as specified, but they could make it far
more difficult for (other) designers and engineers to understand the LSMS as a
whole. The ability to understand a system is also a constraint in everyday practice:
without people that understand how the LSMS actually works it is difficult to
maintain or improve the system. This understanding is needed, if for example
unexpected errors take place and the LSMS needs some ‘debugging’ or a (partial)
redesign. Even more so, if other people, which have not designed or implemented
the system, have doubts about the reliability of the LSMS, it is very important that
other experts—not involved in the realization of the LSMS—can get an under-
standing of the LSMS and provide the non-experts with a satisfactory answer to their
doubts. In other words: maintainability through auditability is also a constraint,
which can be influenced by Big Data optimization techniques in a negative way.

Table 1 Relationship between optimations and constraints

Performance Reliability Availability
Change data

Aggregation + – 0
Concept conversion + 0/− 0
Reordering + 0 0
Change algorithms

More efficient algorithm + 0 0
Parallelization ++ 0 0
Change architecture

Faster: bring the analysis to the data ++ 0
Faster: combining streaming and batch ++ 0
Deal with many different sensor connections 0 ++
Adapt resources according to need 0 0 –

Add redundant components – + ++
Create resilience against human error 0/− + 0/+
Change goal

Less perfect answers are acceptable ++ – 0
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5 Conclusion

In this chapter the relationship between Big Data optimization and monitoring in
the real world has been explored from different view-points. Several aspects of data
collection and interpretation have been used as a viewpoint, as well as three types of
constraints for large scale monitoring systems (abbreviated as LSMSs) that are
related to Big Data: performance, availability and reliability constraints. Finally,
several solution approaches involving Big Data optimization techniques have been
provided that enable designers and engineers of LSMSs to provide a solution that
stays within performance, availability and reliability constraints.
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Smart Sampling and Optimal Dimensionality
Reduction of Big Data Using Compressed
Sensing

Anastasios Maronidis, Elisavet Chatzilari, Spiros Nikolopoulos
and Ioannis Kompatsiaris

Abstract Handling big data poses as a huge challenge in the computer science com-

munity. Some of the most appealing research domains such as machine learning,

computational biology and social networks are now overwhelmed with large-scale

databases that need computationally demanding manipulation. Several techniques

have been proposed for dealing with big data processing challenges including com-

putational efficient implementations, like parallel and distributed architectures, but

most approaches benefit from a dimensionality reduction and smart sampling step

of the data. In this context, through a series of groundbreaking works, Compressed

Sensing (CS) has emerged as a powerful mathematical framework providing a suite

of conditions and methods that allow for an almost lossless and efficient data com-

pression. The most surprising outcome of CS is the proof that random projections

qualify as a close to optimal selection for transforming high-dimensional data into a

low-dimensional space in a way that allows for their almost perfect reconstruction.

The compression power along with the usage simplicity render CS an appealing

method for optimal dimensionality reduction of big data. Although CS is renowned

for its capability of providing succinct representations of the data, in this chapter

we investigate its potential as a dimensionality reduction technique in the domain

of image annotation. More specifically, our aim is to initially present the challenges

stemming from the nature of big data problems, explain the basic principles, advan-

tages and disadvantages of CS and identify potential ways of exploiting this theory

in the domain of large-scale image annotation. Towards this end, a novel Hierar-

chical Compressed Sensing (HCS) method is proposed. The new method dramat-

ically decreases the computational complexity, while displays robustness equal to
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the typical CS method. Besides, the connection between the sparsity level of the

original dataset and the effectiveness of HCS is established through a series of artifi-

cial experiments. Finally, the proposed method is compared with the state-of-the-art

dimensionality reduction technique of Principal Component Analysis. The perfor-

mance results are encouraging, indicating a promising potential of the new method

in large-scale image annotation.

Keywords Smart sampling ⋅Optimal dimensionality reduction ⋅Compressed Sens-

ing ⋅ Sparse representation ⋅ Scalable image annotation

1 Introduction

Recently, the pattern recognition community has been struggling to develop algo-

rithms for improving the classification accuracy at the expense of additional compu-

tational cost or potential need for extra data storage. Nowadays though, as enormous

volumes of data—originating mainly from the internet and the social networks—are

accumulated, great interest has been placed on the theoretical and practical aspects

of extracting knowledge from massive data sets [2, 21]. In addition, the dimension-

ality of the data descriptors is always increasing, since it leads to better classification

results in large-scale datasets [42]. However, as the volume (i.e., either the number

of dimensions or the number of samples) increases, it becomes more difficult for

classification schemes to handle the data. It is therefore clear that the need to estab-

lish a fair compromise among the three primitive factors, i.e., classification accuracy,

computational efficiency and data storage capacity proves of utmost importance.

Although the analysis intuitions behind big data are pretty much the same as in

small data, having bigger data consequently requires new methods and tools for solv-

ing new problems, or solving the old problems in a more efficient way. Big data

are characterized by their variety (i.e., multimodal nature of data ranging from very

structured ones like ontologies to unstructured ones like sensor signals), their veloc-

ity (i.e., real-time and dynamic aspect of the data) and of course their volume. In

order to deal with these new requirements, a set of technological paradigms that

were not particularly characteristic for small datasets have been brought into the

forefront of interest, including: smart sampling, incremental updating, distributed

programming, storage and indexing, etc.

Among these paradigms, of particular interest we consider the case of smart sam-

pling, where massive datasets are sampled and the analysis algorithms are applied

only on the sampled data. However, in order for smart sampling to be effective we

need to be able to extract conclusions from small parts of the dataset as if we were

working on the entire dataset. Although there are works in the literature claiming

that building a model on sampled data can be as accurate as building a model on the

entire dataset [16], there are still questions that remain unsolved as: What is the right

sample size? How do we increase the quality of samples? How do we ensure that the

selected samples are representative of the entire dataset? Although there have been
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well-known techniques for sampling and dimensionality reduction, including Prin-

cipal Component Analysis (PCA) [32], the recently proposed mathematical theory

of Compressed Sensing (CS) has the potential to answer some of these questions.

Compressed Sensing is a signal processing technique for dimensionality reduc-

tion that can be used as a means to succinctly capture the most important information

of high-dimensional data. It offers a reversible scheme for compressing and recon-

structing pieces of digital data. The effectiveness of CS is based on two conditions:

(a) the sparsity of the initial data and (b) the incoherence between the spaces of

compressed and uncompressed data. Roughly speaking, the sparsity expresses the

extend to which the data contain non-zero values, while incoherence is the property

to transform sparse data into dense and vice versa. The functionality of CS relies

upon some quite interesting mathematical findings, which constitute the outcome

of many scientific fields including Linear Algebra, Optimization Theory, Random

Matrix Theory, Basis Expansions, Inverse Problems and Compression [3].

Within the framework of CS, data are considered as vectors lying in a high-

dimensional space. This space is endowed with a set of basis vectors so that an

arbitrary vector can be represented as a linear combination of these basis vectors.

The goal of CS is firstly to design a transformation matrix that can be used to project

any initial high-dimensional vector to a new space of a much smaller dimensionality

[1] and secondly to ensure all those conditions that the transformation matrix must

obey so as for the compressed vector to be perfectly reconstructable in the initial

high-dimensional space [22].

Regarding the first objective, the great leap of CS is the rather surprising finding

that even a random matrix, i.e., whose values at each position have been generated

for instance by a Gaussian distribution, can serve as an appropriate transformation

matrix under certain circumstances, and that these circumstances are usually met in

real-world situations [13]. The ability to use a random, rather than a complicated and

difficult to generate, transformation matrix for compressing the data, offers a huge

advantage in the context of big data and specifically with respect to velocity- and

memory-related challenges, e.g., real-time processing, live-streaming, etc.

With respect to the second objective, CS achieves solving an ill-posed under-

determined linear system of equations. The reconstruction is achieved through the

optimization of a dedicated objective energy function encoding the sparsity of the

reconstructed vector, subject to the above linear system constraints. The fact that

the use of the l1 norm for encoding the energy of an arbitrary vector reduces the

optimization problem to a standard linear programming problem, makes the com-

plexity properties of CS particularly suited for handling huge volumes of data [3].

The use of CS has already proven beneficial for a multitude of applications

such as Image Processing (Annotation, Denoising, Restoration, etc.), Data Compres-

sion, Data Acquisition, Inverse Problems, Biology, Compressive Radar, Analog-to-

Information Converters and Compressive Imaging [25, 27, 35, 53]. It is this success

that has triggered the scientific interest about its potential to alleviate some of the

big data related problems.
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Our aim in this chapter is to present the challenges stemming from the nature

of big data problems, explain the basic principles, advantages and disadvantages of

CS and identify potential ways for exploiting this theory in the large-scale image

annotation domain. More specifically, the contribution of this chapter is fourfold:

First, we investigate the sensitivity of CS to the randomness of the projections. Sec-

ond, we study the performance of CS as a function of the number of the reduced

dimensions. Third, we propose a novel Hierarchical Compressed Sensing (HCS)

dimensionality reduction method and we show that the proposed method displays

performance equivalent to the typical CS, while exponentially reduces the compu-

tational load required during the dimensionality reduction process. Fourth, we prac-

tically establish a connection between the performance of CS-like methods and the

level of the data sparsity, through a series of artificial experimental sessions. Finally,

apart from the above contributions, we identify the advantages and disadvantages of

the new method through a comparison with the widely used and always state-of-the-

art dimensionality reduction technique of Principal Component Analysis [32].

The remainder of this chapter is organized as follows. A background knowledge

of the CS framework along with the prerequisite notation is provided in Sect. 2. The

proposed methodology for compressing the volume of big data is analytically pre-

sented in Sect. 3. Experimental results are provided in Sect. 4. A number of related

works on data compression, dimensionality reduction as well as a variety of CS appli-

cations are presented in Sect. 5. Finally, conclusions are drawn in Sect. 6.

2 Background

The inception of the CS theory dates back to the valuable works of Candès [13],

Romberg [9], Tao [10] and Donoho [22]. Until that time, the computer science

community was governed by the Shannon–Nyquist sampling theorem and its impli-

cations [38, 43]. This theorem dictates that when acquiring a signal, the sampling

frequency must be at least twice the highest frequency contained within the signal in

order to permit a perfect reconstruction of the sampled signal to the initial space. In

fact, this theorem imposes an inherent limitation to the compression capacity of any

sampling process. However, it has been proven that under a set of certain circum-

stances, it is feasible to use significantly lower sampling rates than the Nyquist rate

and at the same time allow for the signal’s almost perfect reconstruction by exploiting

its sparsity [12].

From that moment on, a huge leap has been realized in digital signal processing,

through a plethora of important works and publications. The principal outcome of

the research in this field is a suite of conditions and methods that allow for effectively

compressing and perfectly reconstructing data under the assumption of the sparsity

of the data and the incoherence of the sampling means, mathematical notions that

will be analytically explained later in this section. Before we proceed further into

the CS methodology, let us first provide the necessary notation along with the fun-

damental knowledge that will be used throughout this manuscript.
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2.1 Notation and Fundamental Knowledge

Two principal domains, the representation and the sensing domain, and three main

mathematical entities, a raw vector, a sensing matrix and a compressed vector are

involved in the bi-directional compression-reconstruction scheme, each playing a

particular role. The two domains are vector-spaces, each endowed with a specific set

of basis vectors. The former offers as a basis for representing raw uncompressed vec-

tors, while the latter offers as a basis for representing compressed vectors. Finally, the

sensing matrix constitutes an intermediary between the two domains by compress-

ing and reconstructing vectors from the one domain to the other. In the remainder

of this chapter, vectors and matrices will be denoted by bold, while scalars by plain

type letters.

2.1.1 Representation Domain

Consider an n-length raw uncompressed vector 𝐱 ∈ ℝn×1
and let {𝐫i}ni=1 with 𝐫i ∈

ℝn×1
, for all i, be an orthonormal basis, which is referred to as the representation

basis, so that

𝐱 =
n∑

i=1
ti𝐫i , (1)

where {ti}ni=1 is the set of coefficients of 𝐱 in the representation basis given by ti =
⟨𝐱, 𝐫i⟩ = 𝐫Ti 𝐱. Equation 1 can be also formulated in matrix notation as

𝐱 = 𝐑𝐭 , (2)

where the representation matrix 𝐑 = [𝐫1, 𝐫2,… , 𝐫n] ∈ ℝn×n
is constructed by con-

catenating the basis vectors of {𝐫i}ni=1 column-wise and 𝐭 ∈ ℝn×1
is a n × 1 vector

containing the coefficients {ti}ni=1.

2.1.2 Sensing Domain

Let also 𝐲 ∈ ℝm×1
denote anm-length vector, withm ≪ n and {𝐬j}mj=1 with 𝐬j ∈ ℝn×1

,

for all j, be a collection of sensing vectors, which from now on will be referred to as

the sensing basis, so that

yj = 𝐬Tj 𝐱 , (3)

where {yj}mj=1 comprises a set of m dimensions in the reduced space, which are also

known in the CS literature as measurements. From now onwards, the terms reduced

dimensions and measurements will be used interchangeably throughout the manu-

script. In similar terms, Eq. 3 can be formulated in matrix notation as

𝐲 = 𝐒𝐱 , (4)
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where the sensing matrix 𝐒 = [𝐬1, 𝐬2,… , 𝐬m]T ∈ ℝm×n
is constructed by concatenat-

ing the basis vectors {𝐬j}mj=1 row-wise and 𝐱 ∈ ℝn×1
is a n × 1 vector containing the

coefficients {xj}nj=1. At this point, it is worth emphasizing that the vector 𝐱 used in

Eq. 4 is the same as the one used in Eq. 2. Also note that

𝐲 =
n∑

j=1
xj𝐒( j) , (5)

where 𝐒(j) is the jth column of matrix 𝐒. Since m ≪ n, the set of vectors {𝐒(j)}nj=1 acts

as an over-complete basis of the sensing domain. Setting 𝐃 = 𝐒𝐑 and combining

Eqs. 2 and 4 we have

𝐲 = 𝐒𝐱 = 𝐒𝐑𝐭 = 𝐃𝐭 . (6)

The matrix 𝐃 ∈ ℝm×n
is a transformation matrix, which reduces the initial dimen-

sionality of vector 𝐱 to a much smaller number of dimensions providing a compressed

vector 𝐲. It is worth mentioning that in the particular case where the representation

basis is the “spikes” basis, i.e., 𝐑 = 𝐈, then 𝐃 becomes equal to the sensing matrix

𝐒. For this reason, conventionally, 𝐃 is also called the sensing matrix.

2.2 Compressed Sensing and Sparse Reconstruction

Compressed Sensing addresses the bi-directional problem of transforming a signal

to a compressed version and reversely perfectly reconstructing the uncompressed

signal from its compressed version. The reverse process is also referred to as Sparse

Reconstruction. Towards the forward direction, CS addresses the problem of com-

pressing a raw signal through the use of a sensing matrix 𝐃. Formally speaking,

given a sparse vector 𝐭 lying in the representation domain, the aim is to measure

a compressed version 𝐲 = 𝐃𝐭 of that vector lying in the sensing domain. Towards

this end, it is of great importance to appropriately design the sensing matrix 𝐃, so

that it enables a subsequent reconstruction of the uncompressed signal. Qualitatively,

this means that the information maintained during the compression process must be

enough to enable the almost lossless recovery of the signal.

On the other hand, towards the reverse direction, Sparse Reconstruction addresses

the problem of recovering the raw signal from the knowledge of its compressed ver-

sion. The recovery is performed using again the matrix𝐃, which in the Sparse Recon-

struction context is often called dictionary. From now on, for the sake of simplicity,

we will consistently use the term dictionary, for both forward and reverse direction.

There is a variety of algorithms that guarantee the perfect reconstruction of the raw

signal, provided that during the compression process all the appropriate conditions

are satisfied by the dictionary and the raw vector. With respect to the former, the

principal property that a dictionary must satisfy is the so-called Restricted Isometry

Property (RIP) [11], as described later in the manuscript. Regarding the latter, two
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properties, namely sparsity and compressibility [19], play a key role in both direc-

tions. These properties are analytically described in the next subsection.

2.2.1 Sparsity and Compressibility

A vector 𝐭 = (ti)ni=1 ∈ ℝn
is called k-sparse, if

‖𝐭‖0 ∶= card{i ∶ ti ≠ 0} ≤ k . (7)

In a few words, sparsity counts the number of non-zero components in a vector. From

now on, we will denote as Σk the set of all k-sparse vectors. As already mentioned,

in reality we rarely meet proper sparse vectors. Usually the case is that the majority

of the vector components are close to zero and only a few of them have significantly

larger values. In this case, another relaxed metric, the compressibility, is preferred

to approximate the vector’s sparsity [19].

Let 1 ≤ p ≤ ∞ and r > 0. A vector 𝐭 = (ti)ni=1 ∈ ℝn
is called p-compressible with

constant C and rate r, if

𝜎k(𝐭)p ∶= min
𝐭∈Σk

‖𝐭 − 𝐭‖p ≤ C ⋅ k−r for any k ∈ {1, 2,… , n} . (8)

Actually, this formula measures the extent to which a vector 𝐭 can be adequately

approximated by a sparse vector. In practice, as long as the above formula is dif-

ficult to calculate, a variety of heuristics have been proposed for estimating vector

compressibility. For instance, in our work, inspired by [19], we propose an approach

based on the growth rate of the vector components. A more detailed description of

our approach is provided in Sect. 3.2.1.

2.2.2 Signal Reconstruction

Given a compressed vector lying in the sensing domain, the aim is to reconstruct it in

the representation domain. Formally speaking, the problem can be stated as recover

𝐭 from the knowledge of 𝐲 = 𝐃𝐭 or equivalently recover 𝐱 from the knowledge of

𝐲 = 𝐒𝐱. Solving 𝐲 = 𝐃𝐭 (or 𝐲 = 𝐒𝐱) for 𝐭 (or 𝐱, respectively) is an ill-posed prob-

lem, since m < n, hence there are infinite many solutions of the linear system. These

solutions lie on a (n − m)-dimensional hyperplane:  =  (𝐃) + 𝐭′, where  (𝐃)
constitutes the null space of 𝐃 and 𝐭′ is an arbitrary solution.

Despite the ill-posedness of the reconstruction problem, various algorithms have

been devised in order to effectively resolve it exploiting the assumption of sparsity

of the signal in the representation domain. In this context, several lp-norm based

objective criteria have been employed using the formulation in Eq. 9.

(lp) ∶ 𝐭′ = argmin‖𝐭‖p s.t. 𝐲 = 𝐃𝐭 . (9)
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Along these lines, the l0-norm (i.e., p = 0) minimization approach has been ini-

tially proposed, which reflects signal sparsity. A severe shortcoming of this approach

though is that trying to solve the l0-norm problem proves to be NP-hard. Neverthe-

less, several greedy algorithms like Matching Pursuit (MP) or Orthogonal Matching

Pursuit (OMP) have been proposed for efficiently solving this optimization problem.

Alternatively, the l2-norm has also been adopted instead in the above formulation

(Eq. 9), for overcoming the limitations that stem from using the l0-norm, leading

to the Least Squares problem. The big advantage using the l2-norm instead of the

l0-norm is that it provides a closed-form solution 𝐭′ = 𝐃T (𝐃𝐃T)−1 𝐲. However, the

l2-norm barely reflects the signal sparsity.

A good compromise between signal sparsity reflexivity and problem solvability

is provided by substituting the l2-norm with the l1-norm in the above formulation

(Eq. 9), leading to the Basis Pursuit (BP) optimization problem. Adopting the l1-

norm reduces the optimization problem to a linear programming one, which after the

advances made by introducing the interior point method [18] proves to be a desir-

able approach, in terms of computational efficiency. Although a variety of alternative

approaches has also been proposed for performing signal reconstruction [17], it is

worth mentioning that the BP and the OMP are the most widely used approaches in

practice. Furthermore, there is no strong evidence that the one is consistently better

than the other. For instance, despite the big advantage of BP in terms of computa-

tional efficiency in most of the cases, in [47] through a direct comparison between

the two, it is clearly asserted that OMP proves faster and easier to implement than

BP when dealing with highly sparse data.

2.2.3 Dictionary Design

In parallel to the development of algorithms that perform sparse signal reconstruc-

tion, much effort has been allocated in designing a dictionary that allows for effec-

tively compressing and perfectly recovering a raw vector. This dictionary could be

either adaptive or non-adaptive depending on different motivations stemming from

either classification or representation problems. The key property that such a dictio-

nary must satisfy is the exact recovery property. In mathematical terms, a dictionary

𝐃 has the exact recovery property of order k, which qualitatively means that it allows

the perfect reconstruction of k-sparse vectors, if for every index set , with || ≤ k
there exists a unique solution 𝐭′ with support  to the minimization problem:

𝐭′ = argmin‖𝐭‖1 s.t. 𝐃𝐭 = 𝐲 . (10)

The exact recovery property is equivalent to another important mathematical

property which is well-known in the literature as the Restricted Isometry Property

(RIP). A dictionary 𝐃 satisfies the RIP of order k if there exists a 𝛿k ∈ (0, 1) such

that

(1 − 𝛿k)‖𝐭‖22 ≤ ‖𝐃𝐭‖22 ≤ (1 + 𝛿k)‖𝐭‖22 for all 𝐭 ∈ Σk . (11)
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In a few words, this condition dictates that𝐃must be almost an isometry, i.e., approx-

imately preserve the distance between any pair of k-sparse vectors in the representa-

tion and the sensing vector spaces. Apart from the RIP, other equivalent properties

like the Null Space Property (NSP) [19] have also been presented in the literature.

Although all these properties constitute important theoretical weapons, in practice it

is difficult to prove that a dictionary has the RIP or the NSP. Alternatively, another

more tractable metric, the Mutual Coherence (MC) has been introduced instead. The

MC of a Dictionary 𝐃 is defined as:

𝜇(𝐃) = max
i≠j

|𝐝Ti 𝐝j|
‖𝐝i‖2‖𝐝j‖2

, (12)

where 𝐝i is the ith column of 𝐃. Intuitively, the MC estimates the affinity among

the basis vectors of the dictionary. A low-rank approximation method, which uses a

column sampling process, has been presented in [37] for estimating the coherence

of a matrix. It has been proven in the literature that if 𝐭 ∈ ℝn∖{𝟎} is a solution of the

(l0) problem (see Eq. 9) satisfying

‖𝐭‖0 <
1
2

(

1 + 1
𝜇(𝐃)

)

, (13)

then 𝐬 is the unique solution of (l0) and (l1) problems, which implies that MP, OMP

and BP are guaranteed to solve both of these problems [24]. This finding infers that

the smaller the mutual coherence of a dictionary is, the better the recovery of the

signal will be.

Along these lines, it has been proven that a matrix containing random values gen-

erated for instance by independent and identically distributed (i.i.d.) Gaussians with

mean zero and variance 1/n, satisfies with extremely high probability the mutual

coherence criteria emanating from the CS theory and qualifies as an appropriate

dictionary [12, 13]. This rather counter-intuitive finding actually renders random

projections suitable for perfectly reconstructing compressed data. The huge advan-

tage of using random projections is the computational ease of constructing a random

matrix. In practice, the rows of the resulting matrix, constituting the dictionary, are

orthonormalized through a Singular Value Decomposition (SVD) step, since work-

ing with orthonormal bases is supposed to provide both practical and intuitive ben-

efits to the whole process. Another advantage of using random projections is that it

offers a non-adaptive way for constructing dictionaries independent of the specific

problem domain and parameters.
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3 Methodology

In this chapter, based on the outcomes of the CS theory, we propose the use of ran-

dom projections for reducing the dimensionality of large-scale datasets for perform-

ing data classification. Our methodology has been substantiated and validated within

the case study of image annotation. In this case study, a number of images annotated

with a predefined set of c high-level concepts ck, for k = 1, 2,… , c is used as the

training set. Given a previously unseen test image, the goal is to recognize which of

these concepts are depicted and hence classify accordingly the image. Towards this

end, given a test image, a set of visual features are extracted providing a correspond-

ing feature vector. The resulting feature vector is subsequently subject to dimension-

ality reduction yielding a compressed vector, which is finally used for classification.

The steps of the above pipeline approach are analytically described in the following

subsections.

3.1 Feature Extraction

A variety of techniques has been proposed for extracting a representative set of fea-

tures from data, including SIFT [33], SURF [5] and MPEG7 [36]. Among these

techniques, for the purpose of our study we choose SIFT, which has been proven

quite robust in classification problems [33]. Given a raw image, 128-dimensional

gray SIFT features are extracted at densely selected key-points at four scales, using

the vl-feat library [49]. Principal Component Analysis (PCA) is then applied on the

SIFT features, decreasing their dimensionality from 128 to 80. The parameters of a

Gaussian Mixture model withK = 256 components are learned by Expectation Max-

imization from a set of descriptors, which are randomly selected from the entire set of

descriptors extracted by an independent set of images. The descriptors are encoded in

a single feature vector using the Fisher vector encoding [40]. Moreover, each image

is divided in 1× 1, 3× 1 and 2× 2 regions, resulting in 8 total regions, also known as

spatial pyramids. A feature vector is extracted for each pyramid by the Fisher vector

encoding and the feature vector corresponding to the whole image (1× 1) is calcu-

lated using sum pooling [15]. Finally, the feature vectors of all 8 spatial pyramids

are concatenated to a single feature vector of 327680 components, which comprise

the overall data dimensionality that is to be reduced by CS in the experiments.

3.2 Smart Sampling

As we have seen in the previous subsection, the feature extraction phase provides us

with data lying in a very high-dimensional space. In an attempt to make these data

more tractable we perform smart sampling by considerably reducing their dimen-
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sionality, while retaining the most important information by exploiting the theo-

retical findings of the CS framework. However, in order to guarantee the correct

functionality of CS, we need to know the optimal number of reduced dimensions. It

has been theoretically proven that this number is strongly associated with the data

sparsity/compressibility [19]. For this purpose, we propose a heuristic approach to

estimate the compressibility of the data.

3.2.1 Optimal Number of Reduced Dimensions and Data
Compressibility

From the presentation of the core theory, the main contribution of CS is the effective

and efficient reduction of the data dimensionality using random projections. As we

have seen, random projections consist of calculating random measurements, where

each measurement is a linear combination of the initial vector components with ran-

dom scalar component-coefficients. Intuitively, by using random projections, every

measurement is given equal significance, an attribute that in [20] has been charac-

terized as “democratic”, in the sense that the signal information is compressed and

uniformly distributed to the random measurements. However, due to this democratic

attribute of random projections, theoretical bounds on the number m of measure-

ments required have been derived [19]. More specifically, it has been proven that

the least number m required to guarantee the perfect reconstruction of k-sparse vec-

tors using the l0 or l1 optimization approaches must be on the order of O(k ⋅ log( n
k
)),

where n is the initial vector dimensionality and k is the number of non-zero features

of the vector.

Apparently, from the above discussion, in order to find the optimal number of

reduced dimensions, we need to estimate k. Towards this direction, for a given vec-

tor, per each feature we calculate its absolute value, i.e., its distance from zero, and

we sort the obtained absolute values in ascending order. Using the sorted values, we

calculate their first order differences and we find the index with the maximum first

order difference. This index, essentially conveys information about the data com-

pressibility, since it is indicating a large step of the features from smaller to larger

absolute values. Hence, the features with indices larger than the above critical index

have noticeably larger absolute values than the remaining features. Therefore, they

could be considered as non-zero’s providing a reasonable estimation of k.

3.2.2 Dimensionality Reduction Using Compressed Sensing

Based on the capability of using random projections, an m × n (m ≪ n) transforma-

tion matrix (i.e., dictionary) 𝐃, whose entries contain random values generated by

a Gaussian distribution with mean zero and variance 1∕n is constructed. The rows

of this matrix are subsequently orthonormalized through an SVD process, so that

𝐃𝐃T = 𝐈. Using the resulting matrix, the initial high-dimensional data are projected
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onto a much lower dimensional space through a matrix multiplication and in this

target space the new data representations are used for classification.

Despite its power, in some practical cases when the number m of the measure-

ments is too high, CS proves inefficient in handling big data, since due to insuffi-

cient memory resources it fails to perform SVD and big matrix multiplications. In

this chapter, in order to alleviate this shortcoming, we propose a novel method based

on a hierarchical implementation of CS as described in the next subsection.

3.2.3 Hierarchical Compressed Sensing

An innovative way to apply CS in big data with computational efficiency, called

Hierarchical Compressed Sensing (HCS) is proposed. HCS is an iterative method

that reduces the dimensionality of an initial n-dimensional feature vector to half at

each iteration. An initialization step, a depth parameter d and an iteration parameter

j in the range 1, 2,… , d are used during the process.

At the initialization step, given an n-dimensional vector 𝐱0 = [x1,… , xn]T , its

components are arbitrarily permuted. To keep the notation as simple as possible, let

us consider the above 𝐱0 as the permuted vector. Subsequently, 𝐱0 is subdivided into

a set {𝐱i0}
𝜔

i=1 of 𝜔 vector-blocks of size q = n
𝜔

each, with 𝐱i0 = [x(i−1)⋅q+1, x(i−1)⋅q+2,
… , x(i−1)⋅q+q]T , for i = 1, 2,… , 𝜔. The previous permutation step is used for the sake

of generality, since no underlying sparsity structure is known in the vector decom-

position phase.

At the first iteration, i.e., j = 1, a random transformation matrix 𝐃1 of size
q
2
× q

is firstly orthonormalized through an SVD step and then used for reducing the data

of each block 𝐱i0 to half its initial dimensionality, producing 𝐱i1, for i = 1, 2,… , 𝜔,

through 𝐱i1 = 𝐃1𝐱i0. The process is then iterated to the obtained blocks, for j =
2, 3,… , d using Eq. 14:

𝐱ij = 𝐃j𝐱ij−1 ∈ 𝔻
q
2j , (14)

where 𝐱ij is the ith block obtained after iteration j and 𝐃j ∈ 𝔻
q
2j
× q

2j−1 is the random

transformation matrix corresponding to the jth iteration. Hence, the new blocks at

iteration j are of half the dimensionality of the blocks at iteration j − 1. The finally

reduced vector consists of the blocks obtained at iteration d concatenated and there-

fore is of
n
2d

dimensions. At this point, it should be added that the random matrices

at each iteration of HCS are not constructed from scratch, but sampled as subma-

trices from 𝐃1, avoiding the considerable extra computational effort that would be

allocated by consecutively calling a random function.

The functionality of HCS relies upon the assumption of the data sparsity. In fact,

when subdividing a sparse vector we expect that, on average, the vector segments are

also supposed to inherit the sparsity of the main vector, therefore permitting the use

of random projections per each segment in a hierarchical manner. However, it must

be emphasized that the disadvantage of HCS is that using a large depth parameter
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(i.e., significantly reducing the dimensionality), there is no guarantee that at each

iteration the data are adequately sparse.

From the above discussion, the computational effort using HCS consists of per-

forming SVD on a random matrix along with a number of matrix multiplications, per

each iteration, during the dimensionality reduction process. The computational com-

plexity of performing SVD on a m × n matrix is on the order of (4m2n + 8mn2 +
9n3). Similarly, the computational complexity of multiplying a m × n matrix by a

n × 1 vector is on the order of (mn). In order to compare HCS with CS, for the

sake of simplicity, let us investigate the case where the number of dimensions in the

reduced space is
n
2

or equivalently, in HCS terms, the depth d is one. Under these

circumstances, using CS requires SVD on a n × n
2

random matrix with computa-

tional complexity (5n3), and a multiplication between the transpose of the resulting

matrix by the initial n × 1 vector, which is ( n
2

2
). On the other hand, using HCS with

𝜔 blocks, requires SVD calculation of a matrix of size
n
𝜔
× n

2𝜔
, which is ( 1

𝜔3 5n3),
that is (𝜔3) times less than using CS. Subsequently, the resulting transformation

matrix is multiplied by the 𝜔 vector-blocks, which is ( 1
𝜔2

n2

2
), that is (𝜔2) times

less than using CS. This result, clearly shows that the computational benefit using

HCS is exponentially associated with the number of blocks used.

3.3 Classification and Evaluation

The vectors obtained after the dimensionality reduction methodology described in

Sect. 3.2 are used in the classification phase. For classifying the data, we use Support

Vector Machines (SVM) [48], because of its popularity and effectiveness. For each

concept ck, k = 1, 2,… , c, a binary linear SVM classifier (𝐰k,𝐛k), where 𝐰k is the

normal vector to the hyperplane and 𝐛k the bias term, is trained using the labelled

training set. The images labelled with ck are chosen as positive examples, while all

the rest are used as negative examples in an one-versus-all fashion. For each test

signal 𝐱i, the distance from the hyperplane (𝐱i, ck) is extracted by applying the

SVM classifier (see Eq. 15).

(𝐱i, ck) = <𝐰k, 𝐱i> + 𝐛k . (15)

The values (𝐱i, ck) obtained from Eq. 15 are used as prediction scores, which indi-

cate the likelihood that a sample 𝐱i depicts the concept ck.
For assessing the ability of the presented methods to correctly predict the set of

concepts depicted on a test sample, the mean Average Precision (mAP) performance

measure has been used. Average Precision (AP) measures the rank quality of the

retrieved images per each concept. For each test image 𝐱i among a collection of N
test samples, using the values (𝐱i, ck), we produce a c × 1 score vector. By concate-

nating these score vectors for all N test samples column-wise, a c × N score matrix



264 A. Maronidis et al.

is obtained. For each concept k, the kth row of this matrix is sorted according to the

scores in descending order providing a ranked list of samples. This ranked list is used

for calculating the Average Precision AP(ck), per each concept ck, with the help of

Eq. 16:

AP(ck) =
∑N

i=1
(
Pck (i) × 𝛿ck (i)

)

Nck
, (16)

where Pck (i) is the precision in the first i retrieved items in the ranked list, 𝛿ck (i)
equals 1 if the ith item is relevant to the ckth concept and zero otherwise, and Nck is

the total number of the items relevant to the ckth concept. The mAP is the mean of

the average precisions over all concepts (see Eq. 17).

mAP =
∑c

k=1 AP(ck)
c

. (17)

3.4 Dependance of Random Projections to Data
Sparsity in Classification Problems

A reasonable question that might arise from the above presentation is why are ran-

dom projections supposed to work in classification problems. One could plausibly

ask why not use a random feature selection (RFS) approach instead of calculating

random linear combinations of the initial features. Furthermore, another question

could be how does the data sparsity affect the performance of random projections.

In an attempt to answer these questions, we propose a methodology for comparing

the performance of HCS with RFS as a function of the sparsity level of the data. The

methodology is based on “sparsifying” the original dataset using different threshold

values and investigating the robustness of the two above methods in the resulting

artificial datasets. From a practical point of view, sparsifying the data is supposed to

deteriorate the classification performance of both methods, as long as it leads to con-

siderable loss of information. However, from this artificial sparse data construction,

we expect that a number of important findings regarding the effect of the sparsity

level of the data on random projections can be derived. The above presented method-

ology has been substantiated on a real-world dataset and the results are presented in

Sect. 4.

4 Experiments

We conducted a series of experiments in order to investigate the potential of CS as

a dimensionality reduction technique in the problem of image annotation in large-

scale datasets. More specifically, the goal of the experiments was fivefold: First, to
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investigate the sensitivity of CS to the specific random values of the dictionary used.

Second, to study the relation between the classification accuracy using CS and the

number of reduced dimensions. Third, to demonstrate the gain in computational effi-

ciency using HCS instead of CS and in parallel to show that HCS exhibits robustness

equivalent to CS. Fourth, to establish a connection between the performance of CS

and the level of the data sparsity and to provide credibility to CS as a smart random

approach over other naive random schemes. Finally, to compare the performance of

HCS with the state-of-the-art dimensionality reduction method of PCA in the image

classification problem. All the experiments were run on a 12 core Intel
®

Xeon (R)

CPU ES-2620 v2 @ 2.10 GHz with 128 GB memory.

4.1 Dataset Description

For the experiments we have used the benchmarking dataset of the PASCAL VOC

2012 competition [26]. The dataset consists of 5717 training and 5823 test images

collected from flickr. The images are annotated with 20 concepts ck, for k = 1, 2,
… , 20 in a multi-label manner (person, bird, cat, cow, dog, horse, sheep, airplane,

bicycle, boat, bus, car, motorbike, train, bottle, chair, dining table, potted plant, sofa

and TV monitor). Performing the feature extraction procedure presented in Sect. 3.1

on the above dataset, we came up with a set of 327680-dimensional feature vec-

tors. The dimensionality of the obtained feature vectors was subsequently reduced

by utilizing CS as well as the novel HCS method.

Motivated by the interesting findings presented in [40], we exhaustively tested a

variety of normalization schemes involved in diverse parts of the whole dimension-

ality reduction procedure, i.e., prior or posterior to the application of CS, in order to

check how the accuracy is affected. We examined two specific normalization types,

the square root and the l2 normalization as in [40]. For each configuration, we per-

formed classification and after evaluating the accuracy results, we concluded that

the optimal configuration is square-rooting followed by l2 normalization followed

by CS. Actually, applying any normalization scheme after CS deteriorates the accu-

racy performance of SVM. So, the above configuration was set and used throughout

the remaining experiments.

4.2 Sensitivity of Compressed Sensing to Randomness

For the remainder of our experimental study, as long as different random matrices

were involved, we needed to ensure that it is not the specific set of random values

used for producing the random matrices that makes it work, but rather the nature of

the randomness per se. Although the above claim constitutes a theoretical finding

regarding representation problems, the purpose of this section is to provide the anal-

ogous guarantee that this finding is valid in terms of classification, too. Towards this
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direction, we performed an experiment for investigating the variation of the classi-

fication accuracy as this is derived by using a number of different matrices. More

specifically, we ran 100 sessions using different random values in the transforma-

tion matrix. These values were generated by a Gaussian distribution with mean zero

and standard deviation 1/n, where n is the data dimensionality (i.e., n = 327680).

At each session, we fixed the number of measurements m to 2000 and after reduc-

ing the initial data to m dimensions, we subsequently performed classification and

calculated the corresponding mAP. The mean mAP across the series of 100 sessions

was 0.4321 and the standard deviation was 0.0034. This standard deviation is quite

small verifying the above claim about the insensitivity to the specific set of random

values used in the transformation matrix.

4.3 Compressibility Estimation and Optimal
Dimensionality Investigation

For estimating the compressibility of the data, we applied the methodology described

in Sect. 3.2.1 to each specific sample of the dataset. For visualization purposes, we

provide an example of the process applied to an arbitrary sample from the dataset.

The sorted distances of the vector features from zero are plotted in Fig. 1. From this

figure, it is clear that the majority of the distances are close to zero, while only a

small portion of them considerably differs. The first order differences of these dis-

tances are illustrated in Fig. 2. The maximum value (peak) of the latter figure is real-

ized at 324,480. According to the proposed methodology, the number k of non-zero
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features of this particular sample can be approximated by counting the number of

feature indices lying on the right side of this peak, which in this case is 3200. Adopt-

ing the above methodology to all samples of the dataset we achieved estimating k for

every sample. As a k-value representative of the whole dataset we set 3220, which

is the maximum k across the samples. As a consequence, on average, only around

1 % of the vector features have non-zero values, hence the data could be considered

as compressible and eligible for the application of CS. In addition, recalling from

Sect. 3.2.1 that the number m of measurements must be on the order of k ⋅ log( n
k
),

in our case this value is approximately 6464, which means that theoretically, at least

on the order of 6464 dimensions are required in order to guarantee the stable perfor-

mance of CS.

Our next concern was to investigate how the classification accuracy varies as a

function of the number m of measurements. For this purpose, a series of consecutive

experiments was carried out, where at each iteration we varied m in the range from

1 to 20,000, while maintaining the remaining settings unchanged. In this context,

using different integers for m, we constructed random matrices of different sizes.

Using these matrices we subsequently projected the initial high-dimensional data

onto the corresponding m-dimensional space.

The mAP results obtained using the SVM classifier are illustrated in Fig. 3. The

reduced number of dimensions is depicted in the horizontal axis, while the mAP is

depicted in the vertical axis. ThemAP obtained as a function of the number of dimen-

sions using CS is depicted with the solid blue curve. For comparison reasons, the

baseline mAP using directly SVM on the initial data, with no dimensionality reduc-

tion is also depicted with the dashed red line. A couple of important remarks could

be drawn from Fig. 3. First, it is clear that the mAP is ever increasing as a function
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of the number of the reduced dimensions and asymptotically converges to a certain

value around 55 %. Moreover, a closer inspection of Fig. 3 interestingly shows that

although the mAP sharply increases in low dimensions, the growth rate becomes

smoother in the neighborhood of the theoretically required number of dimensions

(i.e., 6464), which can be associated with the above compressibility estimation

analysis.

4.4 Investigating the Robustness of Hierarchical
Compressed Sensing

From the presentation of Sect. 3.2.3, although it has been theoretically shown that

increasing 𝜔 benefits the HCS process, however the question how can 𝜔 affect the

classification performance using HCS is still open. In an attempt to answer this

question, we set the depth d = 1 and varied the number of blocks 𝜔 in the range

1, 2, 22,… , 29. For each setting, we counted the time elapsed during the dimension-

ality reduction process and we calculated the classification performance using HCS.

The results are collectively illustrated in Fig. 4. The horizontal axis depicts the num-

ber of blocks used. The left vertical axis depicts the mAP, while the right vertical

axis depicts the computational time required for reducing the dimensionality of the

training data using HCS. The latter includes the time required for both the SVD cal-

culation and the matrix multiplication processes.
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Fig. 4 Mean average precision and training computational time versus number of blocks used in

Hierarchical Compressed Sensing

Observing the “HCS Computational Time” curve in Fig. 4, it is clear that as the

number of blocks increases, the computational complexity decreases exponentially.

Furthermore, interestingly, the robustness of HCS using different numbers of blocks

is evident (see Fig. 4, “Mean Average Precision” curve). These results can be associ-

ated with the theoretical findings, verifying the analysis presented in Sect. 3.2.3. In

addition, Fig. 4 provides an implicit comparison between HCS and CS. More specif-

ically, when using one block (i.e., 𝜔 = 1), HCS actually collapses to CS. It is clear

that HCS displays classification performance equal to CS, which combined with the

computational complexity advantage of HCS shows the superiority of HCS over CS.

4.5 Dependance of Random Projections to Data Sparsity

In this section, we experimentally investigate the relation between the data spar-

sity and the performance of CS-like methods. Since CS and HCS display equivalent

performance, for this experiment we used only the latter. Moreover, for computa-

tional simplicity, for each sample, we used only the spatial pyramid corresponding

to the whole image out of the eight pyramids obtained through the feature extraction

process. Following the methodology presented in Sect. 3.4, we used six different

threshold values leading to six corresponding sparsity levels of the data. Figure 5

depicts the average number of non-zero features of the data per each sparsity level.

For each specific sparsity level and dimensionality we calculated the difference

between the mAP’s obtained by using HCS and RFS and we estimated the percent-

age gain in classification performance obtained by HCS over RFS. The results are
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illustrated in Fig. 6. From Fig. 6, it is evident that as the sparsity level increases, the

percentage of mAP improvement using HCS instead of RFS increases, too. More-

over, independently of the sparsity level, this percentage increases (up to ≃27%) as

the dimensionality decays highlighting the robustness of HCS in contrast to RFS.

Intuitively, at a first glance, seemingly there is nothing special about random pro-

jections (e.g., HCS) against RFS, due to the random nature of both. However, random

projections clearly take into account all the initial data features, while in contrast,

selecting a number of specific features inevitably avoids the rest leading to consider-
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able loss of information. This advantage in conjunction with its democratic nature,

provide credibility to HCS as a smart dimensionality reduction method over other

naive random feature selection schemes under the data sparsity assumption.

4.6 Comparison with Principal Component Analysis

In this section, we compare the performance of HCS with the PCA method [32].

For computational reasons, that will be explained later in this section, in this exper-

iment we used only the spatial pyramid corresponding to the whole image. That is,

the dimensionality of the data was 40,960. The mAP results are plotted in Fig. 7.

From Fig. 7, we observe that although in low dimensions, the superiority of PCA

over HCS is evident, by increasing the number of dimensions, HCS exhibits classi-

fication performance competitive to PCA. The deterioration in performance of HCS

when reducing the number of dimensions can be attributed to the democratic nature

of the CS measurements, which postulates a representative number of dimensions in

order to maintain the important information. On the contrary, PCA shows impressive

robustness in low dimensions, which is well justified by the fact that PCA by defin-

ition attempts to encode the data information into the least possible eigenvectors.

The advantage of PCA in terms of robustness comes at a cost of excessive compu-

tational and memory requirements. More specifically, PCA requires the computation

and eigen-analysis of the data covariance matrix, which is of size n2, where n is the

dimensionality of the original data. This is a considerable computational complex-

ity, which in some cases prohibits the application of PCA at all. On the other hand,

CS requires the construction of an m × n random matrix, where m is much smaller
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than n, and the SVD of this matrix during the basis orthonormalization step. Fur-

thermore, using HCS, the SVD is decomposed into a number of smaller SVD steps,

leading to a computational load orders of magnitude less than the corresponding of

PCA. In summary, despite the weak performance of HCS in low dimensions, it must

be emphasized that the profit in terms of computational complexity using HCS may

prove of utmost importance in real-world problems. As a matter of fact, it is worth

mentioning that in this particular experiment, it was infeasible to apply PCA on the

data consisting of all eight spatial pyramids. For this reason, as stated above, we

used only the one out of the eight spatial pyramids. This limitation accentuates the

disadvantage of PCA in terms of computational complexity.

5 Related Work

In this section, a brief review of the bibliography related to our work is presented.

The review is divided into two subsections. The first subsection includes related

works on dimensionality reduction and data compression, while the second subsec-

tion presents some interesting applications of CS in pattern analysis.

5.1 Dimensionality Reduction and Data Compression

A plethora of methodologies have been proposed for reducing the dimensionality of

big data. In [45], dimensionality reduction methods have been classified into three

main categories. The first category consists of methods based on statistics and infor-

mation theory and among others includes vector quantization methods and Principal

Component Analysis [32]. In the vector quantization context, recently, effort has

been allocated on the optimization of the kernel K-Means. For instance, a clustering

algorithm, which models multiple information sources as kernel matrices is proposed

in [57].

The second category includes methods based on Dictionaries, where a vector is

represented as a linear combination of the dictionary atoms. For instance, an over-

complete dictionary design method that combines both the representation and the

class discrimination power is proposed in [58] for face recognition. The presented

method is an extension of the well-known K-SVD algorithm [1] and is referred to as

the D-KSVD, since a discriminative term is added into the main objective function

of the regular K-SVD.

The third category consists of methods that seek for “interesting” projections lead-

ing to learning transformation matrices. For instance, within this category fall meth-

ods based on random projections. Moreover, advances have been made in manifold

learning through the development of adaptive techniques that address the selection

of the neighborhood size as well as the local geometric structure of the manifold
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[59]. Finally, Linear Discriminant Projections (LDP) have been proposed as a useful

tool for large-scale image recognition and retrieval [8].

The notion of sparsity seems to play a key role in recent advances in the computer

science community. In [7], the authors learn an over-complete dictionary using the

K-SVD algorithm along with a set of predefined image patches. Using this dictionary

they compress facial images by representing them as sparse linear combinations of

the dictionary atoms. The potential of fusing index compression with binary bag of

features representation has been investigated in [29]. The proposed method is based

on an inverted file structure, which is merely concerned with the distances of the

non-zero positions of sparse vectors. A “sparsified” version of Principal Component

Analysis has also been proposed [60]. Using elastic net methods, the principal com-

ponents are represented as sparse linear combinations of the original variables, as

opposed to the typical PCA algorithm. The discriminative nature of sparse repre-

sentations to perform classification has been experimentally proven in [55]. Solving

a dedicated linear programming sparsity-encoding problem, the authors propose a

face recognition algorithm robust to expressions, illumination and occlusions.

Product quantization techniques that decompose a vector space as a Cartesian

product of quantized subspaces have been proposed for constructing short codes rep-

resenting high-dimensional vectors [30]. In this vein, transform coding and product

quantization have been used for approximating nearest neighbor search in large-scale

retrieval, content similarity, feature matching and scene classification [6]. Similarly,

in [31] using the so-called Vector of Locally Aggregated Descriptors (VLAD), the

authors use product quantization for performing nearest neighbor search during the

indexing process for searching the most similar images in a very large image data-

base.

Hashing has also been proven a computationally attractive technique, which

allows one to efficiently approximate kernels for very high-dimensional settings by

means of a sparse projection into a lower dimensional space. For instance, in [44]

hashing has been implemented for handling thousands of classes on large amounts

of data and features. In the same fashion, specialized hash functions with unbiased

inner-products that are directly applicable to a large variety of kernel methods have

also been introduced. Exponential tail bounds that help explain why hash feature vec-

tors have repeatedly led to strong empirical results are provided in [51]. The authors

demonstrate that the interference between independently hashed subspaces is neg-

ligible with high probability, which allows large-scale multi-task learning in a very

compressed space.

Considerable effort has been allocated to associate the Hamming distance between

codewords with semantic similarity leading to hashing techniques. Towards this end,

a spectral graph based method, which uses the Laplacian eigenvectors is proposed

in [52]. Similarly, an unsupervised random projections-based method with compu-

tational requirements equal to spectral hashing is proposed in [41]. The Hamming

distance between the binary codes of two vectors are related to the value of a shift-

invariant kernel between the vectors. Along the same lines, in [46] the authors learn

compact binary codes by employing boosting techniques in conjunction with locality

sensitive hashing and Restricted Boltzmann Machines.
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5.2 Pattern Analysis Using Compressed Sensing

Recently, considerable effort has been allocated in bridging the semantic gap, i.e.,

to assign semantic information to sparse representations, in the fields of computer

vision and pattern recognition [54]. It has been shown through a variety of experi-

mental settings that sparse representations convey important semantic information.

This assertion has been corroborated within diverse challenging application domains

such as face recognition, image reconstruction, image classification, etc.

In this context, semantic issues have been tackled using a sparse image recon-

struction based approach in the challenging object recognition problem [50]. The

images are encoded as super-vectors consisting of patch-specific Mixture Gaussian

Models and reconstructed as linear combinations of a number of training images

containing the objects in question. The reconstruction coefficients are inherited by

the corresponding labels providing annotation to the query image. Towards the same

direction, the problem of accelerating sparse coding based scalable image annota-

tion has also been addressed [27]. The pursuit of an accurate solution is based on

an iterative bilevel method, which achieves reducing the large-scale sparse coding

problem to a series of smaller sub-problems.

The contribution of sparse representations, CS and Dictionary learning to the

object recognition problem has been reviewed in [39]. It is emphasized that recent

studies have shown that the specific choice of features is no longer crucial rather than

the dimensionality and the sparsity of the features. Combining these methods with

the appropriate discriminant criteria may lead to performance superior to the perfor-

mance of the state of the art discriminative algorithms in classification problems.

Unlike most feature extraction algorithms that have been proposed for dimen-

sionality reduction, in [56] the authors propose a CS based method, which com-

bines sparse representation with feature selection. An objective function involving

a matrix that weights the features according to their discriminant power is mini-

mized in a sparse reconstruction fashion by adopting an OMP based algorithm. In

the same work, a two-stage hierarchical architecture using directional and adaptive

filters for feature detection has been implemented. The proposed methodology has

been applied and evaluated in the pedestrian detection problem proving its efficiency

in real-world problems.

Sparsity, Reconstruction error and Discrimination power are combined in a com-

mon objective function in [28]. A hybrid approach that combines the discrimination

power of discriminative methods with the reconstruction capacity of sparse represen-

tation has been proposed in an attempt to handle corrupted signals. However, there is

a trade-off between the two aforementioned aspects, which stems from the potential

noise, the completeness of the data, the number of outliers, etc., that must be effec-

tively handled. Even in the case where the data are noise-free and the discriminative

methods are more robust, it has been experimentally shown that by combining the

two methods superior performance is obtained.

Compressed Sensing has also been utilized for recovering the sparse foreground

of a scene as well as the silhouettes of the foreground objects. In [14], based on the

CS representation of the background image, the authors propose a method devoid
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of any foreground reconstruction for performing background subtraction and object

detection, using convex optimization and greedy methods. The authors also recover

the silhouettes of foreground objects by learning a low-dimensional CS representa-

tion of the background image, robust against background variations.

Sparse representations with over-complete dictionaries have also been applied

on image de-noising [25]. Utilizing the K-SVD technique, the authors train dic-

tionaries based on a set of high-quality image patches or based on the patches of

the noisy image itself. The image is iteratively de-noised through a sparse coding

and a dictionary update stage. Based on a similar approach, K-SVD has been uti-

lized for the restoration of images and video [35]. In this work, the sparse repre-

sentations are obtained via a multi-scale dictionary learned using an example based

approach. Finally, the above de-noising algorithm has also been extended for color

image restoration, demosaicing and inpainting [34].

From the above presentation, CS has already been utilized in a variety of domains

pertaining to semantic pattern analysis. In our work though, we investigate the con-

nection between the CS performance as a dimensionality reduction technique and a

number of factors, including the data sparsity, the number of dimensions and the ran-

domness of the projections in the domain of image annotation. The results obtained

are quite interesting advocating the potential application of our methodology to other

domains as well.

6 Conclusions

Concluding this chapter, we are now at the position to answer some of the questions

posed in the Introduction. Although CS has been initially proposed as a powerful

representational tool, in this chapter, it has been given credibility in the image clas-

sification problem, too. In our study, it has been shown that undoubtedly CS offers

a way to increase the quality of samples obtained by naive random feature selection

schemes. The power of CS relies upon its democratic attribute in handling the data

features, while random feature selection schemes completely avoid some features

leading to considerable loss of information.

Several normalization approaches, proposed in the literature, have been investi-

gated showing that no normalization scheme should be involved in the classification

process posterior to the application of CS. Furthermore, the effectiveness of CS has

been proven independent of the specific set of random values used for constructing

the dictionary and instead has been attributed to the nature of the randomness per

se. The connection between the theoretical and practical boundaries on the optimal

number of reduced dimensions has also been established. The CS performance has

been proven strongly dependent to the data sparsity verifying the corresponding the-

oretical findings. More specifically, it has been verified that the sparser the data are,

the more robust the performance of CS becomes.

The main contribution of this chapter is the novel hierarchical parametric HCS

method for efficiently and effectively implementing CS in big data. The proposed
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method dramatically decreases the computational complexity of CS, while displays

robustness equivalent to the typical CS. Through a comparison with PCA, it has been

shown that HCS displays performance competitive to PCA provided that an appro-

priate number of dimensions is kept. This fact in conjunction with the superiority of

HCS over PCA in terms of computational complexity, provide credibility to HCS as

a smart sampling method in the domain of image classification.

This chapter comprises a preliminary study in smart sampling of big data using

CS-like methods. The early results obtained are very encouraging proving the poten-

tial of this kind of methods in the image annotation case study. In the future, we

intend to extend this study in more datasets. Moreover, apart from the quantitative

estimation of the data sparsity, a qualitative investigation of the nature of sparsity

and its impact on the effectiveness of CS is encompassed in our future plans. In this

context, based on the interesting works presented in [4] and [23], we envisage that the

sparsity structure also plays some crucial role and should be equally considered as

a factor affecting CS in classification problems. Potential findings in this direction

could also be exploited by the proposed HCS method. For instance, in the vector

decomposition phase, there is plenty of space for investigating more sophisticated

ways to divide a vector, based on sparsity patterns contained in the vector rather

than using arbitrary vector-components per each segment.
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Abstract Brain disorders resulting from injury, disease, or health conditions can

influence function of most parts of human body. Necessary medical care and reha-

bilitation is often impossible without close cooperation of several diverse medical

specialists who must work jointly to choose methods that improve and support heal-

ing processes as well as to discover underlying principles. The key to their decisions

are data resulting from careful observation or examination of the patient. We intro-

duce the concept of scientific dataspace that involves and stores numerous and often

complex types of data, e.g., the primary data captured from the application, data

derived by curation and analytic processes, background data including ontology and

workflow specifications, semantic relationships between dataspace items based on

ontologies, and available published data. Our contribution applies big data and cloud

technologies to ensure efficient exploitation of this dataspace, namely, novel soft-

ware architectures, algorithms and methodology for its optimized management and

utilization. We present its service-oriented architecture using a running case study

and results of its data processing that involves mining and visualization of selected

patterns optimized towards big and complex data we are dealing with.
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Fig. 1 View of four paradigms composed of subfigures from [16, 17, 26, 34]

1 Introduction

Brain is the control center of our body. It is a part of a complex neurological system

that includes the spinal cord and a vast network of nerves and neurons that con-

trol and implement the cognitive and motor functions we need for activities of daily

living. Brain disorders occur when our brain is damaged or negatively influenced by

injury, disease, or health conditions. Various professions may be involved in typically

complex processes of medical care and rehabilitation of someone who suffers from

impairment after a brain damage. Researchers continuously conduct studies inves-

tigating the impacts of many factors on the rehabilitation progress with the aim to

improve healing processes. These efforts are incrementally dependent on the appro-

priate data recorded and advances in the utilization of such data resources. When

considering these data-related issues, in the brain disorder research and rehabili-

tation development trajectory, three phases or paradigms can be observed and the

fourth paradigm is specified as a vision for future
1

(Fig. 1):

∙ 1st Paradigm. Information about the patients’ condition was gained by means of

observation, examination, based on individual experience and opinion of the ther-

apist. The Edwin Smith Surgical Papyrus [51], written in the 17th century BC,

contains the earliest recorded reference to the brain, from the neurosurgeon point

of view. The corresponding information was typically manually recorded
2

and has

been subjected to various research efforts (including generalization) resulting in

development of different theories and hypothesis. Analogous developments can

also be observed in other medical branches, e.g. epidemiology.
3

∙ 2nd Paradigm. The patient’s condition was observed by means of (continuously

improved) equipment-based methodologies, like EEG, CT, MRI, fMRI, etc.,
4

that

have been used as a complement to the observational methods applied in the 1st

Paradigm mentioned above and as effective tools for objective evaluation in the

large clinical studies. The resulting (mostly analog) output or an image has been

1
This categorization is analogous to [32] that, however, addresses the generic science development

trajectory.

2
The oldest known medical record was written in 2150 BC in Summeria.

3
http://en.wikipedia.org/wiki/John_Snow_(physician), http://en.wikipedia.org/wiki/Typhoid_

Mary.

4
The diagnostic effect of X-rays, used for medical X-ray and computed tomography was discovered

in 1895. Electrocardiograph was invented in 1903, electroencephalogram later in 1924.

http://en.wikipedia.org/wiki/John_Snow_(physician)
http://en.wikipedia.org/wiki/Typhoid_Mary
http://en.wikipedia.org/wiki/Typhoid_Mary
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stored in paper format and evaluated manually. This innovation brought great

advance in quality of diagnostics and supported design of important abstract con-

cepts and of new solution models resulting in novel therapy methods and theories.

This approach helped to collect sufficient resources for development of evidence-

based medicine during the 1990s, what was considered an important step forward

in medical science supporting transition of scientific results into medical praxis.

∙ 3rd Paradigm. In the last few decades, most of the devices characterizing the 2nd

paradigm started to produce data in digital format what significantly simplified

not only their archiving but first of all their further processing. Application of

novel analytic techniques including data mining and related methods to (typically

large) datasets
5

called attention to new domains of neuroscience research, namely

brain simulations, development and testing of new medical devices, etc., and it

has significantly enhanced our knowledge about the neuroscience domain. The

results achieved so far through this paradigm are promissing and it is believed that

continuing and improving this approach by utilizing new methodologies based on

artificial intelligence, semantic web, and BIG data and Cloud technologies will

remove many existing gaps observed in the current state of the art and will result

in improving research productivity as well as speed-up new discoveries and enable

true individualization of treatment towards the needs of specific patients.

∙ Towards the 4th Paradigm. Recently, ambient-assisted living research started to

provide easy to use means for on-line collection of complex information about

mundane activities, e.g., of the selected inhabitant of a household. One of the

ways towards individualization of care can be based on analysis of such streams

of time-tagged data that are obtained through repeated measurements for an indi-

vidual patient during the course of his/her treatment. The resulting data can reveal

precious information about success or failure of applied therapy or about advance

of the patient’s disease. This information is crucial for making a decision on the

course of further treatment that can be fine-tuned for the specific needs of the

considered patient. This is fully in line with the philosophy of individualized and

personalized health care. Such an approach has to be supported by novel software

solutions that will adapt, extend, and optimize the techniques and technologies

that are being developed for a lot of scientific disciplines (inclusive life-science

domains) in data-intensive science [4] addressing three basic activities: capture,

curation, and analysis of data. This vision is at the heart of our research and

development effort as presented in this book chapter together with its prelimi-

nary results. Moreover, we believe that the full realization of this vision will also

advance other medical and life-science application domains.

New techniques and technologies, like special sensor networks, active RFID-

based equipments, etc. used in brain disorder rehabilitation will produce ever more

data that can reveal hidden knowledge and help to discover and open new perspec-

tives and chances for this science area. This new BIG data-based approach requires

5
In the scientific data management research literature, “dataset” is more commonly used than

“data set”.
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novel systematic solution for preservation and utilization of the treated data. Let us

call this new approach, aligned with data-intensive science developments Brain Dis-
order Rehabilitation Informatics (BDRI). It introduces new methods for organization

and optimization of the entire data life cycle in the process of performing scientific

studies, specifically, aiming at further enhancing reuse and dissemination of studies

resulting from brain disorder detection and rehabilitation research. Besides optimiza-

tion of the creation and management of scientific studies, BRDI also addresses many

aspects of productive and optimized decision making in all the steps of the dynamic

trajectories of rehabilitation processes associated with individual patients. This func-

tionality is not only provided in the context of one research center, but, thanks to the

support of Cloud Computing, it supports safe reuse of relevant data among multi-

ple research centers that can be geographically distributed. This approach effectively

promotes a large-scale, national and international, collaboration of actors involved

in the rehabilitation and research of brain disorders.

This book chapter introduces the research and development work in progress and

discusses the first results of our BDRI research project conducted by teams from

the Czech Republic and Austria. The aim is to leverage state-of-the art digital capa-

bilities for researchers, healthcare professionals, and patients in order to radically

improve rehabilitation processes and make them more productive, accelerate scien-

tific discoveries, and to enhance rehabilitation research altogether.

The kernel part of the chapter presents our novel approach to management and

analysis of data produced by brain stimulation and balance training sensors that

address therapy provided mainly for dementia, stroke, and cerebral palsy patients.

The part of the system, designed for diagnosis and therapy of balance disor-

ders [7], consists of a portable force platform connected to a computer as an alterna-

tive cursor actuator (instead of the standard mouse). Special software is used to lead

the patient through a series of specific balance tests producing valuable data from

four transducers, located in each corner of the force platform. The resulting data

provide unique and precise information related to immediate force and weight dis-

tribution of the patient, who (standing on the force platform) is instructed to move

the item displayed on a computer screen by shifting his/her center of gravity. The

collected data is targeted by analysis during various interactive therapeutic scenes

[56]. Visual and auditory feedback enabling game-like form of training makes the

therapy more effective and provides higher compliance and motivation to exercise.

Difficulty or demands of a training session can be adjusted according to the cur-

rent patient’s state. Regular training has a beneficial effect especially on the balance,

motor skills, spatial orientation, reaction time, memory, attention, confidence and

mental well-being of the user.

Reminiscence therapy can be defined as “the use of life histories—written, oral, or

both—to improve psychological well-being”. The therapy helps to solve a number of

problems associated with aging (gradual loss of short-term memory or

discontinuity caused by the change of environment). One of favorite techniques

reminiscence therapy utilizes is scrapbooking, i.e. making commemorative albums

with photos, clippings and small decorations (scraps). We present eScrapBook [55],

an online platform enabling easy creation and use of multimedia scrapbooks. The



Optimized Management of BIG Data Produced . . . 285

books may contain text, images, audio and video clips that are viewable either online

or exportable as an archive to be used independently of the authoring application.

The primary target group consists of seniors with an onset of Alzheimer disease or

dementia and their family members and caretakers (who prepare the scrapbooks for

their relatives/clients); however, the application is fairly generic so it could be used

to create books for various audiences. All actvities accomplished by the user when

working with a eScrapBook are automatically traced, the produced data is integrated

with other available repositories and finally mined; key methods involve association

analysis and time sequence analysis.

In summary, this chapter makes the following original contributions: (a) It out-

lines a vision and realization strategy for the future scientific research and patient

treatment in the domain called Brain Disorder Rehabilitation Informatics (BRDI);

(b) In details it describes the BRDI dataspace, a key realization paradigm of this

vision; (c) It designs a service oriented architecture for implementation of this

dataspace and its access services-the implementation is based on the current state-of-

the-art of the BIG data and Cloud technologies; and (d) It discusses a novel visualiza-

tion approach for selected data mining models extracted from the BIG and complex

data involving a large number of attributes measured by the application considered.

The rest of the chapter is structured as follows. Section 2 introduces the scien-

tific dataspace model, a novel scientific data management abstraction we developed

[19] to support BDRI and other modern data-intensive e-Science applications dur-

ing the whole scientific research life cycle. In its basic model, a scientific dataspace

consists of a set of participants—datasets involved—and a set of semantically rich

relationships between nodes or participants—the concrete specification of these rela-

tionships is based on an appropriate ontology. The BDRI dataspace (BDS) stores in a

secure way patient’s demographic, diagnostic and therapy data and the data flowing

from a sensor network involving physical sensors, like body sensors, room sensors,

and balance training sensors and special software sensors monitoring activities of

the patient, like brain stimulation sensors (e.g. at her/his work with the eScrapBook,

interactive therapy games, etc.). In response to the needs of conducted scientific stud-

ies, selected data resources are combined, integrated, and preprocessed by appropri-

ate services to provide a high-quality input to data mining and other analytical tasks.

Besides the data discussed above (called primary data), the BDS includes derived

data (products of data mining and other analysis processes) and background data

(information of applied processing workflows, provenance data, supporting knowl-

edge base, etc.). BDS provides advanced searching operations. Searching the BDS

is much more complex compared to a database search, which is typically done with

one-shot queries. That is why, BDS search can be rather described as an itera-

tive interactive process where, e.g., BDRI researchers first submit a keyword-based

query, then retrieve a ranked list of included studies matching the keyword query and

based on further selections made by the user, they may explore selected studies in

more detail with all related datasets and semantic information connected to the study.

The provenance support enables to reproduce the outcomes of treatment attempts

and conclusions based on rehabilitation process data. The inclusion of the scientific

dataspace paradigm in our framework is the key contribution to the optimization
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of the big BRDI data management. Section 3 briefly enumerates use-cases we are

currently focusing on, illustrates the associated dataflows, and discusses their mod-

els and appropriate analytical services considered. Section 4 introduces the BDRI-

Cloud software architecture that is based on the CloudMiner concepts published in

[28]. BDS is a central component of this architecture. BDRI-Cloud provides inter-

faces to the following kernel operations: (a) publishing entire brain disorder rehabil-

itation research studies with all relevant data and (b) submit keyword-based queries

in order to search for studies conducted at a participating research center. There

are several real usage scenarios, each with a brief motivation on how scientists can

benefit from the information infrastructure provided by the BDRI-Cloud. One of

them is automatic reproducibility of brain disorder rehabilitation research studies.

In a dynamic research environment with scientists continuously entering and leav-

ing research groups, it will hardly be possible to retrieve all relevant data of a specific

study once the responsible scientist who conducted the study has left the group. In

fact, all information about the study that is left back at the research group is stored

either within scientific publications, technical reports or other kinds of documenta-

tions written by the corresponding researcher. The information represented in such

documents however does not allow to reproduce the study. Conversely, if the scien-

tists have published the study using the services provided by BDRI-Cloud, all treated

data become accessible in the underlying space of data together with all relevant

datasets such as the input dataset, the analytical methods applied and scientific pub-

lications related to the study. In addition, semantic information is available making

the study better searchable and retrievable. Our preliminary results achieved in data

exploration and visualization activities are presented in Sect. 5. Finally, we briefly

conclude in Sect. 6.

2 Scientific Dataspace Model

In the past ten years. the data engineering and application specialists recognized the

importance of raising the abstraction level at which data is managed in order to pro-

vide a system controlling different data sources, each with its own data

model [24, 25]. The goal has been to manage a dataspace, rather than a single data

resource (file, database, etc.). The initial ideas on managing dataspaces have started

to evoke interests of the data management community, however, the initial effort was

mainly related to the database research and application mainstream. Furthermore,

most of the approaches towards realizing a dataspace system focussed on personal

information management. In our research [18], we have addressed the dataspace par-

adigm in the context of advanced scientific data management. In the following, we

first summarize our previous achievements, as a background information. Then we

move to the BRDI specific issues.

In order to elaborate how dataspace concepts can support e-Science, we have

investigated what happens with data, or better what should ideally happen to them

in e-Science applications. Our effort focused firstly on analysis of modern
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Fig. 2 Life-cycle model for

modern data-intensive

e-Science

scientific research processes and then, in details, on the research activities in our

projects NIGM [20], ABA [21] and, later, especially, on the BDIR needs. The result

of this investigation is an iterative and hierarchical model with five main activities

that are supported by four continuously running activities; the model is represented

in Fig. 2 and we define it in the following way
6
:

The e-Science life cycle—a domain independent ontology-based iterative model,
tracing semantics about procedures in e-Science applications. Iterations of the
model—so called e-Science life cycles—organized as instances of the e-Science life
cycle ontology, are feeding a dataspace, allowing the dataspace to evolve and grow
into a valuable, intelligent, and semantically rich space of scientific data [22].

First, we provide an overview of these activities that is followed by their more

detailed explanation/discussion in Sect. 2.1.

At the beginning of the life cycle targeted goals (e.g., investigation of specific cor-

relations, approvement or disapprovement of a hypothesis) are specified, followed

by a data preparation step including pre-processing and integration tasks; here, the

Hadoop framework that is optimized towards the BIG data processing can be used.

Then appropriate data analysis tasks provided e.g., by the Weka or R-Systems are

selected and applied to the prepared datasets of the previous step. Finally, achieved

results are processed and published, which might provoke further experimentation

and, consequentially, specification of new goals within the next iteration of the

life cycle that can be optimized by the lessons learned within the former cycles.

The outcome of this is a space of primary and derived data with semantically rich

6
We are aware that with this e-Science life cycle definition we cannot stop the development of

scientific research methodology and, therefore, it is assumed that it will be actualized in the future.
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relationships among each other providing (a) easy determining of what data exists

and where it resides, (b) searching the dataspace for answers to specific questions,

(c) discovering interesting new datasets and patterns, and (d) assisted and automated

publishing of primary and derived data.

In addition to the above essential activities, there are four other activities that are

related to the whole e-Science life cycle. The first one is Provenance [38], which

tracks each activity performed during the life cycle to ensure the reproducibility of

the processes. The second one is Optimization, which is applied on each perform-

ing task in order to ensure optimal utilization of available resources. The third one is

Security that is extremely important because sensitive data, e.g. personal related data,

could be involved in the addressed domain. Finally, the fourth one is Productivity.

Productivity issues are an important research topic in the context of the development

of modern scientific analysis infrastructures [43]. These four continuously running

activies are not isolated from each other. For instance, the provenance information

can be used by the optimization and security activities; further, it may improve pro-

ductivity and quality of scientific research.

Each activity in the life cycle shown in Fig. 2 includes a number of tasks that again

can contain a couple of subtasks. For instance, the activity Prepare Data covers, on a

lower level of abstraction, a data integration task gathering data from multiple hetero-

geneous data resources that are participating within an e-Infrastructure (e.g., Grid,

Cloud, etc.). This task consists of several steps that are organized into a workflow,

which again is represented at different levels of abstraction—from a graphical high

level abstraction representation down to a more detailed specific workflow language

representation, which is further used to enact the workflow.

2.1 e-Science Life Cycle Activities

Now, we explain the e-Science lifecycle model in more details. We focus on five

main activities.

1. Specify Goals—Scientists specify their research goals for a concrete experiment,

which is one iteration of the entire life cycle. This is the starting activity in the

life cycle. A textual description of the objectives, user name, corresponding user

group, research domain and other optional fields like a selection of and/or refer-

ences to an ontology representing the concrete domain is organized by this activ-

ity.

2. Prepare Data—Once the objectives for this life cycle are either specified or

selected from a published life cycle that was executed in the past, the life cycle

goes on with the data preparation activity. Here, it is specified which data sources

are used in this life cycle in order to produce the final input dataset, by the data

integration process. For example, the resource URI, name, and a reference to the

Hadoop [58] repository might be recorded in case these technologies are used.

Even information about the applied preprocessing algorithms and their parameter
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settings have to be part of the stored data. The final dataset as well as the input

datasets are acting as participants in the dataspace and are referenced with an

unique id. Additionally, the user specifies a short textual description and option-

ally some keywords of the produced dataset.

3. Select Appropriate Tasks—In this activity the data analysis tasks to be applied on

the prepared dataset are selected. In e-Science applications it is mostly the case

that various analytical tasks, for instance the widely used data mining techniques,

are executed successively. The selected tasks, which are available as web and grid

services, are organized into workflows. For each service, its name and optionally

a reference to an ontology describing the service more precisely is captured. Also

for the created workflow, its name, a short textual description, and a reference to

the document specifying the workflow are recorded.

4. Run Tasks—In this activity the composed workflow will be started, monitored

and executed. A report showing a brief summary of the executed services and

their output is produced. The output of the analytical services used might be repre-

sented in Predictive Model Markup Language (PMML) [29], which is a standard

for representing statistical and data mining models. PMML documents represent

derived datasets, thus they are managed as participants of the scientific dataspace

and considered as resources by this activity.

5. Process and Publish Results—This is the most important activity in order to allow

the underlying dataspace to evolve and grow into a valuable, powerful, semanti-

cally rich space of scientific data. Based on the settings of the user, one, with the

support of appropriate tools, publishes the results of the analysis tasks as well as

all semantic information captured in the previous activities. Different publishing

modes allow to restrict access to selected collaborations, user groups, or research

domains.

Already during one life-cycle run, huge data may be produced in an advanced

scientific application. They are stored as a life cycle resource (LCR); it could range

from some Megabytes up to several Gigabytes. These issues are discussed in the

following subsection.

2.2 The Environment of Dataspaces in e-Science—a BIG
Data Challenge

After introducing the e-Science life-cycle model in the previous subsection, we dis-

cusss the main components of an e-Science dataspace and show that its management

is a big data challenge issue.
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Fig. 3 Environment of a big scientific dataspace. Modification and extension of [18]

Figure 3 shows the environment of Dataspaces in e-Science.
7

In particular, there

is a set of participants involved in one ore more activities of the e-Science life cycle.

Each activity feeds the dataspace with new participants, as for example the activity

Specify Goals adds new domain ontologies (stroke rehabilitation and dementia treat-

ment ontologies) and a goal description in appropriate format, the activity Prepare

Data adds new final input datasets as well as Hadoop resource repositories, and the

activity Select Appropriate Tasks adds new workfow description documents, while

the activity Run Tasks adds new PMML documents describing the data mining and

statistics models produced, and finally the activity Process and Publish Results adds

new documents visualizing the achieved outputs. All these participants belong to

at least one or more e-Science life cycles, expressed as instances of the ontology

describing its relationship and interconnection to a great extend.

7
An additional data flow to the dataspace can originate from the Web considered as “the biggest

database” and information resource. There already exist advanced Web data extraction tools,

e.g. [47].
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Each iteration of the life cycle will produce new instances and properties of the

ontology. Based on the publishing mode, set by the scientist who accomplished the

life cycle, the whole instance will automatically be published into the dataspace

and thus become available to other users of a wider collaboration with respect to

other research areas. We distinguish between four publication modes as listed in the

following: (1) free access—the life cycle resource is publicly available, no access

rights are defined; (2) research domain—the life cycle resource is restricted to mem-

bers of the research domain the scientist who conducted the experiment belongs to;

(3) collaboration—the life cycle resource is restricted to members of a collabora-

tion defined among multiple research groups; and (4) research group—the life cycle

resource is restricted to members of the research group the scientist who conducted

the experiment belongs to.

Users will have access to sets of participants available in the scientific dataspace,

depending on their assigned role. By this, the concept of managing sub-dataspaces

is realized. A sub-dataspace contains a subset of participants and a subset of rela-

tionships of the overall dataspace. There can be sub-dataspaces setup for differ-

ent domains, then for different research collaborations and even for single research

groups. Scientific experiments that were published using the free access mode, will

participate in the overall dataspace, thus its participants and the life cycle instances

are accessible for every one having access to the scientific dataspace. In order to

access data of a specific life cycle iteration, that was published using the research

group mode, it will be necessary to be member of that specific research group, as the

data will be only in the corresponding sub-dataspace.

Once a new iteration has been accomplished using at least some activities from

other life cycle instances, both the new life cycle document and the one containing

activities that were re-used will get an additional relationship. We can conclude from

this, that the dataspace is evolving with an increasing number of life cycles. Cata-

logs and repositories for ontology instances that manage these LCRs organized in the

Resource Description Framework (RDF) [40] trees will provide search and brows-

ing features. The development of an appropriate repository providing rich functions

to insert, update and delete as well as to semantically search LCRs on a multi-

institutional level is also considered in our approach.

2.3 Relationships in the Scientific Dataspace

Scientific dataspaces will be set up to serve a special subject, which is on one hand to

semantically enrich the relationship of primary and derived data in e-Science appli-

cations and on the other hand to integrate e-Science understandings into iterations

of the life cycle model allowing scientists to understand the objectives of applied

e-Science life cycles. Figure 4 illustrates what is considered as dataspace participant

and relationship, respectively by breaking a typical very generic scientific experi-

ment into its major pieces, which we organize into three categories (1) primary data,

(2) background data, and (3) derived data. A typical scientific experiment consists of
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Domain Ontologies

Dementia, Stroke, Parkinson, …

Fig. 4 Semantic relationship in e-Science applications organized be the e-Science life cycle ontol-

ogy. Based on [18]

three types of dataspace participants: (1) an input dataset taken from a source data-

base, datasets extracted from the Web (e.g., current dangerous places in the surround-

ings, weather condition, air quality), etc.; (2) a set of functions (analytical methods)

used to analyze the input dataset (commonly organized into a scientific workflow);

and (3) the derived results, which represent the outputs of the experiment i.e. plots

and histograms, reports, or publications.

Those dataspace participants are stored in corresponding data repositories of

the scientific dataspace. Their interconnection is semantically rich described by

dataspace relationships. They are modeled in RDF as individuals and properties of

the e-Science life cycle ontology and organized in multiple RDF trees within an

RDF store supporting the SPARQL query language for RDF [48]. SPARQL con-

tains capabilities for querying required and optional graph patterns along with their

conjunctions and disjunctions. The results of SPARQL queries can be textual result

sets or RDF graphs. Experiments described by the ontology are referred to as Life

Cycle Resources (LCRs). A LCR in fact represents the semantic relationship among

dataspace participants. In the following section we discuss how such scientific exper-

iments can be described by the e-Science life cycle ontology.
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In Fig. 4, besides the e-Science Life Cycle Ontology, a block of Domain

Ontologies is introduced, in which several BRDI specific ontology examples are

listed. They additionally support BRDI communities in exchanging knowledge by

sharing data and results. More details on this issue are introduced in the following

subsection.

2.4 The e-Science Life Cycle Ontology and Towards
Conceptualization in the Brain Damage Restoration
Domain

The e-Science life cycle ontology aims at providing a common language for sharing

and exchanging scientific studies independent of any application domain. We use this

ontology as a semantic model for the creation, organization, representation and main-

tenance of semantically rich relationships in Life Cycle Resources (LCRs) using the

scientific dataspace model described in Sect. 2.1. The model involves essential con-

cepts of the scientific dataspace paradigm. Thanks to its domain independent applica-

bility it can easily be used in any e-Science application. These concepts are organized

in the e-Science life cycle ontology. It provides the basis for presenting generic sci-

entific studies as LCRs with well defined relationships among their participating

datasets. On the other hand the e-Science life cycle ontology supports the scientific

dataspace paradigm with primitives that can specify concrete relationships among

primary, background, and derived data of these LCRs. The e-Science life cycle ontol-

ogy can be seen as the heart of the underlying dataspace-based support platform. It

is used to share common understanding of the structure of scientific studies among a

research community. For example, suppose several different research centers conduct

brain damage restoration analysis studies. If these research centers share and publish

the same underlying ontology of concepts for conducting brain damage restoration

studies, then software programs can extract and aggregate knowledge from these dif-

ferent research centers. The aggregated information can then be used to answer user

queries or as input data to other applications (e.g. automation based analysis). Prin-

cipally, ontologies are used for communication (between machines and/or humans),

automated reasoning, and representation and re-use of knowledge [14]. To enable

re-use of domain knowledge consolidated within scientific studies exposed as LCRs

was one of the driving forces behind the development of the e-Science life cycle

ontology. In this context domain knowledge is represented in semantic descriptions

about scientific studies. In particular, activities of the e-Science life cycle such as

the data preparation activity (providing descriptions about the input dataset used) or

the select appropriate task activity (providing descriptions about the analytical meth-

ods applied to an input dataset) provide rich semantics about a conducted scientific

study. With the help of the e-Science life cycle ontology we can describe scien-

tific experiments according to the specification and implement a software program

(e.g. a web service) that guides the scientist through the experiment in the way that
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Fig. 5 Balance training research concept taxonomies

is conduction-independent of the e-Science application domain. It is further possi-

ble to analyze domain knowledge since a declarative specification of the process of

conducting studies is available with the e-Science life cycle ontology.

However, the ontology itself is not the goal in itself. It is rather a definition of

a set of concepts and their relations to be used by other software programs. In the

research carried out in our project the ontology represents the concepts to model the

entire life cycle in a scientific study. By this we provide with the e-Science life cycle

ontology a framework for the management of semantically enriched relationships

among datasets that participate in the data life cycle of the conduction of a scientific

study. The software program that uses the ontology and its built knowledge base is

represented by the software components of the scientific dataspace support platform.

In the previous subsection, we briefly mentioned the need of appropriate domain

ontologies (see Fig. 4) dedicated to the BRDI research for productive knowledge

sharing among research communities. The ontologies could be further used in con-

junction with the e-Science life cycle ontology. A first step when developing such

ontologies is the specification of appropriate concept taxonomies; they are knowl-

edge structures organizing frequently used related concepts into a hierarchical index.

Our initial specification of taxonomies involving the key concepts in the balance

training research is depicted in Fig. 5. These concept taxonomies include Instruments,
Probands, Sample, Data Analysis, Purpose, Data Acquisition. They represent a first vocab-

ulary of terms (organized in a hierarchical order) for the balance disorder rehabilita-

tion research domain. The resulting ontology will be presented and discussed in our

subsequent publication.
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2.4.1 Applied Methodology

As the first step in building the e-Science life cycle ontology we have selected a

methodology supporting phases of the development process. Typically such a devel-

opment process is organized in several phases. For the e-Science life cycle ontology

development process we have selected the On-To-Knowledge methodology [52], as

the most appropriate methodology because it provides the most accurate description

of each phase through which an ontology passes during its lifetime.

In Fig. 6 we illustrate identified people who are involved in the e-Science life cycle

ontology and show one usage scenario.

Typically, senior scientists will interact with the ontology in terms of submitting

search and query requests (e.g. asking for stroke rehabilitation research studies from

a particular person, organization, or research field), while Ph.D. and master students

are continuously feeding the semantic repository with new breath research studies

described according to the defined ontologies concepts. On the other hand, there is an

ontology engineer, who is responsible for maintaining ontologies and for their eval-

uation in case changes were applied to the ontologies. A brain rehabilitation research

expert provides domain knowledge in the form of concept taxonomies, defining

a vocabulary of terms used in the brain rehabilitation research domain, as dis-

cussed in the previous subsection. The ontology engineer is also responsible for the

Fig. 6 Semantic relationship in e-Science applications organized by the e-Science life cycle ontol-

ogy. Based on [21]
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development of the brain rehabilitation research domain ontology
8

based on these

defined concept taxonomies.

2.4.2 Searching and Querying Scientific Dataspaces

Based on our unified e-Science life cycle ontology, search and query services can

be provided for all the participants of the scientific dataspace. Hence, it is possible

to forward a keyword query to all participants, such an action has the aim to iden-

tify relevant datasets. However, each query submitted to the scientific dataspace will

receive not only the matching data but also data of its follow-up e-Science activities.

For instance it will be possible to receive information what mining task were applied

on a discovered dataset, the concrete workflow, the workflow report, the results pre-

sented in PMML and its corresponding visualizations.

Using SPARQL query language for RDF and semantically rich described

e-Science life cycles, consolidated within instances of the ontology, keeping relation-

ships among each other, the dataspace is able to provide answers to rather diversed

questions; let us specify wording of just a few typical examples (These queries have

to be expressed in the SPARQL form and passed to a SPARQL Interpreter in the real

application.).

A I have found some interesting data, but I need to know exactly what corrections
were applied before I can trust it.

B I have detected a model error and want to know which derived data products need
to be recomputed.

C I want to apply a sequence pattern mining on balance-therapy data captured in
the Middle European region in the last year. If the results already exist, I’ll save
hours of computation.

D What were the results of the examination of the patients, which didn’t finish the
long term therapeutic intervention and quit before the end of the study?

E If the patient is able to work with at least two different therapeutic games, would
there be an evidence of a positive progress of patient’s stability after the therapy
in that study?

3 Data Capture and Processing Model

In this part we introduce an application model that corresponds to the key use-cases

of the considered application. Then the data capture and processing model and a

high-level abstract view of the supporting software architecture are discussed.

8
Publications [10, 49] deal with the development of an epilepsy and seizure ontology and a data

mining ontology, respectively.
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3.1 Use-Cases

The application use cases that we address can be briefly outlined in the following

way.

∙ Orientation support. The aim is to localize persons through devices with inte-

grated GPS and GPRS functions. However, this localization is not sufficient in

some buildings due to signal loss. Here, Active Radio-Frequency Identification

(aRFID) technology can be used in combination with GPS-tracking.

∙ Preventing dangerous situations. This can be achieved by combining the localiza-

tion device with an alarm, triggered off at the border of a safe area; this is also

based on GPS and aRFID technologies.

∙ Talking key. The aim is to inform the person with the aid of aRFID tags not to

forget the keys when leaving the flat.

∙ Finding things again. The aim is to help find lost objects using aRFID technology

and touch screens.

∙ Brain stimulation. This is our main focus in this project effort stage. We take two

approaches:

– Stimulation based on eScrapBooks. The aim is to create individual’s memory

books and reminders to be operated via touch screens. Individually prepared

brain stimulation with positive memories can: prevent increase in dementia-

process, slow down dementia-process, reactivate cogitation/thinking skills,

increase ability to communicate, improve mental well-being, work against

depressions, etc. [27].

– Stimulation addressing balance disorders. The second part of the system is

aimed for individual therapy of patients with balance and motor skill disorders.

The use of visual feedback increases efficiency of the therapy. The evaluation

of actual balance skills is made in the beginning and during the entire rehabili-

tation process. Data is analyzed in both time and frequency domain.

The treatment, data capturing and processing model that corresponds to these

use-cases is depicted in Fig. 7. It includes an integrated outdoor and indoor treatment

associated with production of potentially large volumes of data that with the appro-

priate linked data, like social networks could be a valuable source of knowledge.

Discovery and further post-processing and usage of this knowledge is a challenging

task pursued in our project. The following subsections are devoted to indoor and out-

door treatments, respectively. In the future other resources like MRI images, EEG

investigation results, and appropriate services will be included into the BRDI-Cloud.
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Fig. 7 Data capture and processing model associated with considered use cases

3.2 Indoor Treatment

This important treatment part is mainly based on utilization of sensor networks

installed at the patients’ homes and producing streams of data, which are analyzed

on the fly. On demand some data can be stored persistently and then analyzed. In the

example home instance depicted in Fig. 7, there are several categories of sensors:

∙ Touch screen. It produces a stream of data describing issued seniors’/patients’

requirements;

∙ Medical body sensors. They continuously produce data about body temperature,

body weight, blood pressure, heart beat rate, etc.
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∙ aRFID tags. They are fixed to things, which are potential targets for searching

(keys, bags, gloves, caps, etc.).

∙ Apartment environment status sensors. Door and window sensors, fridge door sen-

sors, and gas sensors are good examples of this category.

∙ Software sensors monitoring behavior of the patient (e.g. during his/her work with

an eScrapBook).

∙ Balance system sensors. The Wii balance board containing one transducer in each

corner can be is used for diagnosis of balance disorders. It has been proven in [15]

that this accessible and portable platform is a valid tool for assessing standing

balance.

Figure 7 also provides a sketch of software architecture implementing indoor

treatment. The kernel part involves a software module system called WOW that is

aimed at administering and exploring various methods of brain stimulation. In this

particular case, ‘Brain Stimulation’ motivates the test persons to use a touch screen

PC to activate recall from their memory. An individually combined selection of video

clips, songs, music and photos is accessed by touching the screen. Other reminders

concern the test persons’ daily routine. The WOW application is designed to suit

these needs, to provide the users with simple and friendly user interface to access

their uploaded media, browse YouTube videos, view current events, play games or

browse eScrapbooks.

From the technological and architectural point of view, the WOW application

combines HTML/SVG-based web GUI (best viewed by Google Chrome) with

NodeJS server bundled together as a single package. The WOW application has two

main parts: the administration GUI and the collection of user GUI pages. The appli-

cation (framework) is modular and can be extended by developing additional plugins

(containing single or more GUI pages and server logic) and addons (small embed-

dable applications or games).

3.3 Outdoor Treatment

The aim of using GPS for Alzheimer’s patients is to give carers and families of those

affected by Alzheimer’s disease, as well as all the other dementia related conditions,

a service that can, via SMS text message, notify them should their loved one leave

their home. Through a custom website, it enables the carer to remotely manage a

contour boundary that is specifically assigned to the patient as well as the telephone

numbers of the carers. The technique makes liberal use of such as Google Maps.

The cost of keeping patients in nursing homes is considerable and is getting more

substantial as the elderly population increases. On top of this there is often confusion

in the patient’s mind, generated simply through the process of moving to the nursing

home. All of which is highly stressful for patient as well as their family and carers.

To tackle the problem, this research has considered the employment of a virtual

safety border line (fence) from the point of view of care for a dementia patient. By
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using several different technologies the aim has been to enable carers to know when

their patient or loved one has firstly left their house unassisted and secondly when/if

they have traversed further than a geographically selected distance from their start

point. Essentially the aim has been to throw down a virtual fence around the patient’s

known location and for notification to be given when the fence boundary is crossed.

The out-door treatment is based on the tracker XEXUN XT-107. The tracker that

is carried by the patient is regularly determining its position from the GPS (Global

Positioning System). The position data is sent through the GPRS (General Packet

Radio Service) service and GSM (Global System for Mobile Communication) net-

work to the Administration Centre server and Care Services. The whole communi-

cation and coordination is steered by the Care Services clients. The whole technical

implementation of the system is described in deliverables of the project SPES [1].

In daycare centers, an active RFID alarm system is installed. For example, it is

activated when an individual person with dementia leaves his/her personal safety

area (building, garden, terrace, etc.) The respective person concerned is equipped

with the active RFID tag/chip.

3.4 Data Model

All activities of the system actors are observed/registered and traced/recorded as

events passed as data in the JSON format conforming to a specific JSON Schema.

The event-based data model is discussed in the subsequent subsection.

Specifically, in the WOW application introduced in the previous section, for the

purposes of evaluating user experience with the application and gathering feedback

on various media, many events generated by the application may be logged into a

database so the data can be analyzed later. The events can be categorized as follows:

∙ Administration events—events generated by admin (the user who manages con-

tent) of the application. Examples of events: new user created, application started,

application exited, addon imported.

∙ User events—events associated with the user activity in the application. Examples:

user logged in, user logged out, user page viewed.

∙ Addon events—general events generated by miniapplication/addon. Examples:

addon started, addon closed.

∙ Game events—events generated by various games (a specific type of addons).

Examples: game started, game ended, game paused/resumed, level up, score

changed, settings changed.

∙ eScrapBook events—events generated by browsing eScrapBooks. Examples: book

opened, book closed, page turned, video/audio started/stopped.

The events are implemented as class hierarchy (beginning with most abstract

AbstractEvent, containing information about event type and a timestamp). The
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specific events can carry additional information relevant to their domain. For exam-

ple, eScrapBook events like ‘page turned’ reveal and store information about con-

tent of the currently visible pages—how many images/videos are on which page,

tags, word count, as well as the relevant time stamp. This may be useful for tracking

which parts of the book are most interesting for the user or which parts/pages are

only briefly skipped.

3.5 Event-Based Data

Event-based data are defined as data composed of sequences of ordered events, an

event-sequence. Each event, or element, of an event-sequence has a start time and a

duration and each begins when the previous one ends. The types of event present in

such a sequence all belong to a set of predefined event types, an event alphabet. An

event-based dataset, D, then consists of a set of event-sequences:

D = {S1, S2,… , Sm}

where m is the total number of event-sequences in the dataset; an empty sequence,

denoted by 𝜖, is also considered/allowed. Each sequence, Si for i = 1, 2,… ,m, is

composed of an ordered list of events each of which has a start time, t, and a duration,

dur. Considering the total set of event types E, each event is a triple (e, t, dur), where

e ∈ E is the event type, t ∈ R is the start time in minutes and dur ∈ R (dur > 0)

the duration of the event in minutes. Each event-sequence is then described by a

sequence of such events:

S = < (e1, t1, dur1), (e2, t2, dur2),… , (en, tn, durn) >

where n is the total number of events in the sequence, the length of the sequence,

and

ei ∈ E for i = 1, 2,… , n, and ti + duri = ti+1 for i = 1, 2,… , n − 1

As a motivation let’s take activity diary data addressed by Vrotsou [57]. In the

case of activity diary data, each event-sequence in the dataset represents an individ-

ual’s diary day consisting of a sequence of activities taken from a predefined activ-

ity coding scheme. The total duration of each diary corresponds to the predefined

duration of the observation period and should usually be of the same length for all

participants in the survey. Diaries collected through time-use surveys for everyday

life studies usually include records per 24 h of a day (1440 min), so an additional

restriction applies:

∑n

i=1
duri = 1440.
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Apart from activity diaries, event-based data is found in a wide range of applica-

tion areas, e.g. streams of data produced by sensors, records about web site visits in

the Internet, medical records, etc.

4 Towards the BDRI-Cloud

Our objective is to realize the data capture and processing model discussed in the

previous section by a framework that involves appropriate technologies and method-

ologies. The kernel component of this framework is an advanced infrastructure called

the BRDI-Cloud that is introduced in this section. It is based on the idea of the ABA-

Cloud infrastructure [21] that was proposed for the breath research application we

followed in our previous project.

4.1 Motivation and System Usage

BRDI research and rehabilitation processes generate huge amount of information, as

discussed in Sect. 2.2 and illustrated in Fig. 3. The problem is how to extract knowl-

edge from all this information. Data mining provides means for at least a partial solu-

tion to this problem. However, it would be much too expensive to all areas of human

activity to develop their own data mining solutions, develop software and deploy it

on their private infrastructure. This section presents the BRDI-Cloud that offers a

cloud of computing, data mining, provenance and dataspace management services

(Software as a Service approach) running on a cloud service provider infrastructure.

BRDI-Cloud provides interfaces to (a) publish entire brain research studies with

all relevant data and to (b) submit keyword-based queries in order to search for

studies conducted at a participating research center. Publishing a study can be done

from within a Problem Solving Environment (PSE) such as Matlab [46], R [3], and

Octave [2]; e.g., Matlab provides powerful support for publishing Matlab results to

HTML, PowerPoint or XML.

Searching the underlying space of data that contains all the published breath

research studies can be done either again from within a PSE or via specifically devel-

oped interfaces integrated into the BRDI-portal. The BRDI-portal provides special

tools allowing us to search and browse for studies in the BRDI-Cloud. We develop

the BRDI-Study Visualizer based on our previous work [54] as a handy tool for visu-

alizing the most important semantic information about a single brain research study.

Another novel tool is the BRDI-Study Browser [50], which aims at visually browsing

studies available in the BRDI-Cloud.
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4.2 System Design

The BRDI-Cloud design can be considered as a contribution to the realization of

the data-intensive Sky Computing vision [37]. It is a system that includes multiple

geographically distributed platforms, so called BRDI-platforms.

Each BRDI-platform involves a number of Web services that communicate with

a semantic repository and a data repository. The semantic repository stores semantic

descriptions about brain damage studies such as intended goals of the study, respon-

sible persons, etc., while the data repository stores all its corresponding datasets (e.g.

raw data, processed data, derived results, etc.). The semantic description is the back-

bone of the system enabling others to understand specific processes within a brain

research study. They are represented by the e-Science Lifecycle Ontology, which

formalizes the vocabularies of terms in the process of conducting scientific studies.

The e-Science Lifecycle Ontology can be seen as the heart of the underlying BRDI-

platform. It was discussed in Sect. 2.4.

BRDI-users are enabled to publish their scientific studies from within existing

Problem Solving Environments (PSEs), thus do not have to switch to another tool

in order to take full advantage of BRDI-Cloud. We basically distinguish among

two kinds of BRDI Web-Services, (a) services to document complete BRDI-studies

for the long run making the study repeatable for a period of at least 15 years, and

(b) services to execute BRDI-studies on remote servers either within private or pub-

lic clouds.
9

The possibility to execute BRDI-studies in the cloud can however be seen

as an extension to the BRDI-platform, which might be interesting for complex com-

putations. All services can be accessed from within existing PSEs. The integration of

PSEs is realized by a specific BRDI-Cloud toolbox offering all needed functions to

create, load, execute, search, update, and publish BRDI-Studies. From the research

management point of view, each BRDI-platform represents a brain research group or

lab, typically employing several persons including senior and post-doc researchers,

master students, administrators, and technicians. These persons are acting as local

users on their own platform, while they are guest-users in other platforms. Access

rights can be defined by the research group leader on each platform. A Web-based

portal (the BRDI-portal) represents a Web interface to the world including BRDI-

platform users. The BRDI-portal also provides state-of-the-art social networking

tools, which is the basis for a more intense cooperation among brain researchers from

different BRDI-platforms. Figure 8 illustrates the main components of the BRDI-

Cloud on a high abstraction level.

9
Private cloud services operate solely for a single organization, typically managed and hosted inter-

nally or by a third-party, whereas public clouds services are offered by a service provider, they may

be free or offered on a pay-per-usage model.
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Fig. 8 The BRDI-Cloud illustrating a scenario with three collaborating brain damage research and

rehabilitation centers (two in Prague and one in Vienna). At each research center an instance of the

BRDI-platform and its underlying infrastructure is deployed. It provides services to local users who

work at the corresponding center and preserves semantically enriched brain rehabilitation studies

including all data (raw data, processed data analytical methods used to analyze the raw data, and

derived results) that are gathered at the research center. This results in a distributed data and service

environment for the Cooperating Brain Research Community (CBRC). Members of the community

can (with appropriate access rights defined) get access to these resources through the BRDI Web-

portal

With the BRDI-Portal, a Web-based portal for the entire brain research com-

munity, we would like enable enhanced scientific discourse [5]. The portal inte-

grates state-of-the-art social media tools, a forum, a wiki, as well as chat tools and

user profiles for each registered member. By this, we aim at supporting the collab-

oration among the nationally and internationally distributed communities of brain

researchers.
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4.3 Architecture—a Service-Level View

The basic architecture of the BRDI-Cloud follows the Service Oriented Architec-

ture (SOA), and as such contains three basic components. First, services developed

by service providers and published to a registry. Second, the registry that stores and

manages all information about published services. The third component of the archi-

tecture is a client (end-user).

Concerning knowledge management, we consider two areas: knowledge for the

cloud—using semantic technologies, we describe the availability of cloud services

(this is the semantic registry issue) and knowledge on the cloud—this is the knowl-

edge to be queried by the client.

Normally, a Software as a Service (SaaS) cloud offers hundreds of services offered

by one single service provider [33]. However, we propose here that many research

institutions, and even individual users could offer their services needed for the BRDI

domain. Thus, it is possible that many service providers will contribute their prod-

ucts to the BRDI-Cloud. The registry contains information about published services.

A cloud may have one registry to store that information or could use a number of reg-

istries for reliability and performance reasons. We also assume that with the increase

of amount of data being collected around the world and different areas of applica-

tions of those data, there could be more than one cloud each supported by its registry.

These two cases lead to a solution of multi-registry infrastructure. Usually, a registry

contains basic information about service location and service provider. We propose

to contain more information about each individual published service. The additional

information contains semantics of a mining service. This implies a need for the use

of the concept of a broker offering intelligence, which is not provided by simple

registries. The user, the third basic component of the SOA, should be able to learn

about services offered by the cloud. We propose that the BRDI-Cloud offers through

a portal a possibility to carry out operations on data and to learn about all services

offered by service provider. The user accesses a registry to learn about computing

and data mining services and select a service that could solve her problem. The man-

agement of computation using the selected service on specified data is being carried

out directly by the end-user. The registry, made more intelligent, also could carry

out this task. The BRDI-Cloud architecture offers both options.

Figure 9 illustrates the components of the BRDI-Cloud. The SOA-based architec-

ture involves:

∙ ComputeCloud—it includes all published services involved in analytical tasks,

like data mining, statistics computation, and visualization. These services can

encapsulate established libraries, like those provided by Matlab, or specific codes

written by providers.

∙ DataspaceCloud—it contains collected data and other dataspace components

stored in data and semantic repositories. Cloud technologies enable realization

of elastic large-scale dataspaces.
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Fig. 9 Overview of the BRDI-Cloud service architecture

∙ ProvenanceCloud—it inserts provenance data captured by Provenance Monitors

into the ProvenanceStorage and provides services for extracting required data from

this storage.

∙ BrokerCloud—Service Providers publish services to it e.g., by the means of the

OWL-S language [45].

∙ Access Points—they allow users to firstly access the BrokerCloud to discover and

access needed services and then to steer other component clouds. An appropriate

portal is supporting this functionality.

5 Data Analysis and Visualization Services

In the BRDI-Cloud, we plan to apply data analysis to different data repositories, in

the first phase, to relational databases, flat files, and data streams. Dataflows involv-

ing these resources can be observed in Fig. 7. Data stream is relatively a new kind of
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Fig. 10 Abstraction of the sequential pattern and association rule mining workflow

data. In our application, data captured by sensors is getting transformed to continu-

ous data streams. Mining data streams helps to recognize activities, detect anomalies

in the life of the patients, and enable automatic recognition of emergencies.

The services of the ComputeCloud (Fig. 9) are being developed by porting and

adapting libraries and services developed in our previous projects and published in

[9–13, 23, 31, 35, 39, 42, 44, 53, 60].

Our recent research has focused on services for mining sequence patterns and

association rules in the data managed by the DataspaceCloud [6, 41]. A sketch of

the applied workflow is depicted in Fig. 10. Our approach is based on the Weka data

mining system [59], however enriched by an advanced visualization adapted to the

needs of the end-users. The data captured from various sources are integrated by

converting them to a common representation and by linking the sensor data with

additional data—e.g. in case of eScrapBooks, the data describing which pages of

which books were viewed are coupled with additional eScrapBook metadata and

content stored on a separate server; in case of medical sensors, such as blood pres-

sure, temperature, etc., those data are linked with patient profiles stored in a separate

medical database.

5.1 Sequential Pattern Mining

The datasets of our application to be analyzed have an inherent sequential structure.

Sequential nature means that the events occurring in such data are related to each

other by relationships of the form before or after and together [36]. Sequential pat-

tern mining is the mining of frequently occurring ordered events or subsequences as

patterns [30]. An example of a sequential pattern expressed in a pseudo notation is:
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Patients who primarily observe photos of their family and start to take the
medicament M_code are likely to extend their mental horizont within a month

significantly. [minimum_support = 10%]

This means that the occurrence frequency of this pattern in the set of sequences

is not less than 10 %. Another example comes from the stability training application:

Patients who undergo stability training focussed on wide range of movement have
better results in functional reach test after 6 weeks of therapeutic intervention.

[minimum_support = 20%]

We have done the first data mining experiments with Weka. Very soon we realized

that the native application domain independent Weka presentation is not suitable

for application domain experts. Report [8] gives an overview of other considered

solutions. Based on his work and motivated by the research results of Vrotsou [57],

we developed a novel visualization approach that is briefly introduced by two figures

and the accompanying text; further details can be found in [41].

Figures 11 and 12 show our approach providing the visualization of the end-user

activity paths during their work with sScrapBooks on a higher, domain-oriented

level. Right to the large presentation panel, there is control and information panel. In

both figures, one can see that it is also possibile to gain information by a mouseover

effect. Figure 11 represents a traditional summary activity path representation that

shows the total amount of time spent on different activity categories during one

eScrapBook session. In Fig. 12, the activity path is drawn in two dimensions (time and

Fig. 11 Patient-focused sequence pattern (activity path) visualization
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Fig. 12 Pattern-focused sequence pattern (activity path) extended by an axis labeled by considered

activities

activity axes) as a trajectory showing the generalized ‘movement’ of a group of

patients from one performed activity to the next one. The representation reveals fur-

ther details concerning the type of activities performed by the group and shows how

activities of a certain category are broken up into more specific descriptions. In this

figure, one subsequence is shown for all patients who are in the disease phase 2.

There are 13 events that are coincident for most of the patients. Among them, five

show a partial coincident what is marked by a black color. The coincident strength

(threshold) is specified as an input parameter of the analysis. Further details are

explained in [41]; the document, together with the software prototype implement-

ing the discussed functionality, can be downloaded from http://homepage.univie.ac.

at/a1108558/.

5.2 Association Rule Mining

Association rule mining finds interesting association or correlation relationships

among a large set of data items. The goal is to see if occurrence of certain items

in a transaction can be used to deduce occurrence of other items or in other words to

find associative relationships between items. These associations, or patterns, can be

represented in the form of association rules.

The above challenges arise in the context of the data collected from scientific

experiments or monitoring of physical systems such as telecommunications net-

works or from transactions at a supermarket. The problem was formulated

originally in the context of the transaction data at supermarket. This market basket

http://homepage.univie.ac.at/a1108558/
http://homepage.univie.ac.at/a1108558/
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data as it is popularly known consists of transactions made by each customer. Each

transaction contains items bought by the customer. The goal is to see if occurrence

of certain items in a transaction can be used to deduce occurrence of other items or

in other words to find associative relationships between items. These associations,

or patterns, can be represented in the form of association rules. An example of an

association rule expressed in a pseudo notation
10

is:

If patients received high education and have suffered from dementia less than 10
years, then they primarily view photos of the nature. [support = 35%,

confidence = 70%]

The rule indicates that of the set of the observed patients, 35 % (support) have

received high education, are dementia ill less than 10 years and primarily view pho-

tos of the nature. There is 70 % probability (confidence, or certainty) that a patient

in this education and illness groups will primarily view photos of the nature.

Another example derived from the stability training application:

If a patient is less than 45 years old and more than 1 year after brain
damage, then he∕she particularly chooses type of stability training
combined with cognitive tasks. [support = 25%, confidence = 60%]

Our visualization approach is illustrated in Fig. 13 that shows a coordinate sys-

tem, whose x- and y-axes map the data of the log files that were captured by trac-

ing the patients’ activities during their work with eScrapBooks. More precisely, the

x-axis denotes the antecedent and the y-axis is the consequent of the rule (Remark:

Association rule’s structure is antecedent → consequent.). We see twenty-two asso-

ciation rules, which have different red shade colors and a coloured scale aside the

coordinate system. The scale gives more information about the value of the rec-

tangles and shows the user of the visualization program the importance of each of

them (the darker the more important). As shown above, this program offers one more

additional function: if the user moves a mouse over a rule, he/she will get more infor-

mation about the exact value. In this example ‘0.7’ is the support of the association

rule, but through a change of one parameter, the user can switch between support

and confidence views. By clicking on the rectangle, the user gets a more detailed

information about the whole rule. Example: First the user invokes the visualization

program, then he/she chooses either the support or the confidence view. Through

mouse over he/she gets additional information about the values. In the figure above

the user moves the mouse over the following rule: AGE → BEHAVIOUR and sees

that the support of this rule is 0.7, which means 70 %. But now he/she doesn’t know

the details of the rule. In [6], it is illustrated by several snapshots how to get access to

such details; here we only give a brief description of the applicable activities. If the

10
In a typical, almost standard notation, → is used instead ‘then’.
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Fig. 13 Association rule visualization—base panel

user clicks on the rectangle mentioned above, a small window pops up and presens

the following rule in a graphical form:

Elder senior (age greater than 87) → Behaviour (friendly, forgetful, slow)

[support = 0.3, confidence = 0.7]

Thirty percent of the records obtained by the integration of eScrapbook session

log files and other datasets bring the information that elder seniors have a specified

behaviour—they are friendly, forgetful and slow. But from the record contents, it can

be computed that seventy percents of data about elder seniors support the hypothesis

that such a person is friendly, forgetful and slow.

6 Conclusions

In this chapter, we have introduced Brain Disorder Rehabilitation Informatics (BRDI)

as an emerging field that uses informatics, especially BIG Data and Cloud technolo-

gies to collect and analyze data captured during rehabilitation processes. To fully
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reach the BRDI goals, it is important to provide optimized BIG data management

for BRDI during the whole research life cycles and dealing with the knowledge

extracted from the data. This is realized by means of the BRDI-Cloud, a novel

research infrastructure for advanced management, reproducibility and execution of

brain research studies. The infrastructure is organized into multiple BRDI-platforms.

The kernel part of each BRDI platform enabling optimized BRDI data management

is the BRDI dataspace realizing a novel scientific data management abstraction that

we have developed. Each BRDI-platform is deployed in a single brain research and/or

rehabilitation group (or organization) with its own instruments, data and other related

resources. The designed infrastructure makes it possible to share selected resources

that might include even entire research studies. In this way it enables all types of col-

laborative research studies, coordination of rehabilitation approaches, and exchange

of experience.

It is no doubt that the BRDI-Cloud offers novel means than can significantly influ-

ence and change methodology of collaboration among distributed research groups

and/or communities. The BRDI-Cloud can help to ensure a very important mission

by offering natural and easy to be used tools for close interdisciplinary coopera-

tion. The BRDI-Cloud makes it possible to combine services of data management

and computational processing, two distinctive kinds of services necessary for full

automation of workflows in most scientific studies that can be consequently shared

and easily reproduced. Data management services are based on semantic web tech-

nologies, which enable us to collect, organize and represent semantic descriptions

of conducted brain research studies. These descriptions, maintained within multiple

semantic repositories on each BRDI-platform, can evolve into a large and distributed

knowledge base—that has the potential to become a part of a large knowledge space

envisioned e.g. in [61]—for the entire brain research community. Computing ser-

vices provide the background for performing data-intensive brain research studies.

Design and implementation of our first BRDI infrastructure prototype builds

on results we have gained in some former projects—in the BRDI-Cloud there are

applied some services and libraries resulting from these projects. This chapter presents

our approach to visualization of selected data mining models. A small core of early

adopters is currently conducting their brain research studies and performs brain dis-

order rehabilitation according to methodology relying on the proposed model. Based

on the data captured in these activities and feedback that we are receiving from its

users, we will further improve the first prototype.
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Big Data Optimization in Maritime Logistics

Berit Dangaard Brouer, Christian Vad Karsten and David Pisinger

Abstract Seaborne trade constitutes nearly 80 % of the world trade by volume and is

linked into almost every international supply chain. Efficient and competitive logis-

tic solutions obtained through advanced planning will not only benefit the shipping

companies, but will trickle down the supply chain to producers and consumers alike.

Large scale maritime problems are found particularly within liner shipping due to

the vast size of the network that global carriers operate. This chapter will introduce

a selection of large scale planning problems within the liner shipping industry. We

will focus on the solution techniques applied and show how strategic, tactical and

operational problems can be addressed. We will discuss how large scale optimization

methods can utilize special problem structures such as separable/independent sub-

problems and give examples of advanced heuristics using divide-and-conquer par-

adigms, decomposition and mathematical programming within a large scale search

framework. We conclude the chapter by discussing future challenges of large scale

optimization within maritime shipping and the integration of predictive big data

analysis combined with prescriptive optimization techniques.

Keywords Large-scale optimization ⋅ Decision support tools ⋅ Prescriptive

analytics ⋅ Maritime logistics

1 Introduction

Modern container vessels can handle up to 20,000 twenty-foot equivalent units

(TEU) as seen on Fig. 1. The leading companies may operate a fleet of more than

500 vessels and transport more than 10,000,000 full containers annually that need
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Fig. 1 Seaborne trade constitutes nearly 80 % of the world trade by volume, and calls for the

solution of several large scale optimization problems involving big data. Picture: Maersk Line

to be scheduled through the network. There is a huge pressure to fill this capacity

and utilize the efficiency benefits of the larger vessels but at the same time markets

are volatile leading to ever changing conditions. Operating a liner shipping network

is truly a big-data problem, demanding advanced decisions based on state-of-the art

solution techniques. The digital footprint from all levels in the supply chain pro-

vides opportunities to use data that drive a new generation of faster, safer, cleaner,

and more agile means of transportation. Efficient and competitive logistic solutions

obtained through advanced planning will not only benefit the shipping companies,

but will trickle down the supply chain to producers and consumers.

Maritime logistics companies encounter large scale planning problems at both

the strategic, tactical, and operational level. These problems are usually treated sep-

arately due to complexity and practical considerations, but as will be seen in this

chapter the decisions are not always independent and should not be treated as such.

Large scale maritime problems are found both within transportation of bulk cargo,

liquefied gasses and particularly within liner shipping due to the vast size of the

network that global carriers operate. In 2014 the busiest container terminal in the

world, Port of Shanghai, had a throughput of more than 35,000,000 TEU according

to Seatrade Global, which is also approximately the estimated number of containers

in circulation globally. This chapter will focus on the planning problems faced by a

global carrier operating a network of container vessels and show how decision sup-

port tools based on mathematical optimization techniques can guide the process of

adapting a network to the current market.

At the strategic level carriers determine their fleet size and mix along with which

markets to serve thus deciding the layout of their network. The network spanning

the globe serving tens of thousands of customers leads to a gazillion possible con-

figurations for operating a particular network. At the tactical level schedules for the

individual services and the corresponding fleet deployment is determined, while the

routing of containers through the physical transportation network, stowage of con-

tainers on the vessels, berthing of the vessels in ports, and disruption management

due to e.g. bad weather or port delays is handled at the operational level. In general
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these problems can be treated separately, but as the layout of the network will affect

e.g. the routing of the containers the problems are far from independent.

Operational data can lead to better predictions of what will happen in the future

and carriers are constantly receiving sensor data from vessels that can help predict

e.g. disruptions or required maintenance and similarly, data received from terminals

can be used to predict delays and help vessels adjust sailing speed to save fuel. But

given a predicted future scenario it may still not be obvious what the best actions

are neither at the strategic, tactical or operational level. A large shipping company

may be capable of producing good estimates of future demand and oil price fluctua-

tions, or predicting possible disruptions. Under certain circumstances these predic-

tions may require simple independent actions to adjust the network, but it is more

likely that the actions will be dependent on other factors in the network. In that case

difficult and complex here-and-now decisions must be made to adjust the transporta-

tion network optimally to the new situation. When there is a large number of deci-

sions to be made and when the decisions influence each other prescriptive models

based on optimization can help make the best choice. Predictive and prescriptive

methods combined can serve as decision support tools and help select the best strat-

egy, where the predictions made by machine learning algorithms, can be fed into

large scale optimization algorithms to guide the decision process faced by carriers.

Most data in liner shipping are associated with some degree of uncertainty. First

of all, demands are fluctuating over the year, and even if customers have booked a

time slot for their containers these data are affected by significant uncertainty. In liner

shipping no fees are paid if the customer is not delivering the booked number of con-

tainers, so customers may at any time choose to use another shipping company, or

to postpone the delivery. This stimulates overbooking which adds uncertainty to the

models. Port availabilities are also highly uncertain. If a vessel sticks to the normal

time table, it can generally be assumed that the time slot is available, but if a vessel

is delayed or the company wants to change the route, all port calls must be negoti-

ated with the port authorities. This substantially complicates planning, and makes it

necessary to use a trial and force method to find a good solution.

There are several different approaches for solving large scale optimization prob-

lems. If a problem exhibit a special separable structure it can be decomposed

and solved more efficiently by using either column generation if the complication

involves the number of variables or row generation if the number of constraints is

too large [5, 8, 18, 20], by dynamic programming [17], or constraint programming

[36]. For less structured or extremely large problems it can be advantageous to use

(meta)-heuristics to obtain solutions quickly, but often of unknown quality [15, 22].

Finally it is frequently possible, with a good modeling of a problem, to rely solely

on Linear Programming, LP, or Mixed Integer Programming, MIP, solvers, see e.g.

[42] for a discussion of modeling techniques and the trade-off between stronger ver-

sus smaller models. Algorithmic and hardware improvements have over the last three

decades resulted in an estimated speed-up for commercial MIP solvers of a 200 bil-

lion factor [7], making it feasible not only to solve large linear models but also more
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advanced integer decision models of realistic size. In practice a combination of the

different techniques is often seen and maritime logistics gives an illustrative case of

the importance of all of these large scale optimization methods.

2 Liner Shipping Network Design

The Liner Shipping Network Design Problem, LSNDP, is a core planning problem

facing carriers. Given an estimate of the demands to be transported and a set of pos-

sible ports to serve, a carrier wants to design routes for its fleet of vessels and select

which demands of containers to satisfy. A route, or service, is a set of similarly sized

vessels sailing on a non-simple cyclic itinerary of ports according to a fixed, usu-

ally weekly, schedule. Hence the round trip duration for a vessel is assumed to be a

multiple of a week and to ensure weekly frequency in the serviced ports a sufficient

number of vessels is assigned. If a round trip of the vessel takes e.g. 6 weeks, then

6 vessels are deployed on the same route. To make schedules more robust buffer

time is included to account for delays. However, delays may still lead to local speed

increases which increases the overall energy consumption. An example of a service

can be seen in Fig. 2 which shows the Oceania-Americas Service with a round trip

time of 10 weeks. The weekly departures may in some cases simplify the mathe-

matical formulation of the problem, since customer demands and vessel capacities

follow a weekly cycle. Trunk services serve central main ports and can be both inter

and intra regional whereas feeder services serve a distinct market and typically visit

one single main port and several smaller ports. When the network has been deter-

mined the containers can be routed according to a fixed schedule with a predeter-

mined trip duration. A given demand is loaded on to a service at its departure port,

which may bring the demand directly to the destination port or the container can

be unloaded at one or several intermediate ports for transshipment to another ser-

vice before finally reaching its final destination. Therefore, the design of the set of

services is complex, as they interact through transshipments and the majority of con-

tainers are transshipped at least once during transport. A carrier aims for a network

with high utilization, a low number of transshipments, and competitive transit times.

Services are divided into a head- and a back-haul direction. The head haul direction

is the most cargo intensive and vessels are almost full. Hence, the head haul gener-

ates the majority of the revenue and due to customer demand for fast delivery the

head haul operates at increased speeds with nearly no buffer time for delays. The

back haul operates at slower speeds with additional buffer time assigned. A delay

incurred on the head haul is often recovered during the back-haul.

In practice a carrier will never re-design a network from scratch as there are

significant costs associated with the reconfiguration [40]. Rather, the planners or

network design algorithms will take the existing network and suggest incremental

changes to adjust the network to the current economic environment. Most network

changes requires evaluation of the full cargo routing problem to evaluate the quality
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Fig. 2 The Oceania-Americas Service (OC1) from the 2014 Maersk Line Network. Picture:
Maersk Line

of the network since regional changes can have unintended consequences in the entire

network.

Routing of both vessels and containers are in most state-of-the-art methods con-

sidered simultaneously [1, 2, 11, 12, 35, 38], as these problems are completely

interrelated. However, several of the before mentioned approaches exploit the fact

that the problems are separable into two tiers and design algorithms utilizing this

structure. The cargo routing reduces to a multicommodity flow problem, MCF, and

serves as the lower tier where the revenue of the network is determined. The ves-

sel routing problem reduces to a (more complex) problem of cycle generation and

corresponds to the upper tier, where the cost of the network is determined. The fol-

lowing section gives insight to the container routing problem and its relation to the

multicommodity flow problem.

2.1 Container Routing

We define G = (N,A) to be a directed graph with nodes N and edges A. The node

set N represents the geographical locations in the model i.e. ports and the arc set

A connects the ports. The arcs are determined by the scheduled itineraries and the

cargo capacity is determined by the assignment of vessels to the schedule. Let K be

the set of commodities to transport, qk be the amount of commodity k ∈ K that is

available for transport, and uij be the capacity of edge (i, j). We assume that each

commodity has a single origin node, Ok, and a single destination node, Dk.

There are two commonly used formulations of the MCF based on either arc or path

flow variables. The arc flow formulation can be stated as follows. For each node i ∈ N
and commodity k ∈ K we define q(i, k) = qk if i = Ok, q(i, k) = −qk if i = Dk, and
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q(i, k) = 0 otherwise. For each node i ∈ N we define the set of edges with tail in node

i as 𝛿
+(i) = {(j, j′) ∈ A ∶ j = i} and head in node i as 𝛿

−(i) = {(j, j′) ∈ A ∶ j′ = i}.

With this notation the MCF problem can be stated as the following LP

min

∑

(i,j)∈A

∑

k∈K
ckijx

k
ij (1)

s.t.

∑

(j,j′)∈𝛿+(i)
xkjj′ −

∑

(j,j′)∈𝛿−(i)
xkjj′ = q(i, k) i ∈ N, k ∈ K (2)

∑

k∈K
xkij ≤ uij (i, j) ∈ A (3)

xkij ≥ 0 (i, j) ∈ A, k ∈ K (4)

The objective function (1) minimizes the cost of the flow. The flow conservation

constraint (2) ensures that commodities originates and terminates in the right nodes.

The capacity constraint (3) ensures that the capacity of each edge is respected. The

formulation has |K||A| variables and |A| + |K||N| constraints. The number of vari-

ables is hence polynomially bounded, but for large graphs like the ones seen in global

liner shipping networks this formulation requires excessive computation time and

may even be too large for standard LP-solvers (see e.g. [14]).

The block-angular structure of the constraint matrix in the arc-flow formulation

can be exploited and by Dantzig-Wolfe decomposition it is possible to get a reformu-

lation with a master problem considering paths for all commodities, and a subprob-

lem defining the possible paths for each commodity k ∈ K. We note that in general

any arc flow can be obtained as a convex combination of path flows. In the path-

flow formulation each variable, f p, in the model corresponds to a path, p, through

the graph for a specific commodity. The variable states how many units of a specific

commodity that is routed through the given path, the cost of each variable is given

by the parameter cp. Let Pk
be the set of all feasible paths for commodity k, Pk(a) be

the set of paths for commodity k that uses edge a and P(a) = ∪k∈KPk(a) is the set of

all paths that use edge a. The model then becomes:

min

∑

k∈K

∑

p∈Pk

cpf p (5)

s.t.

∑

p∈Pk

f p = qk k ∈ K (6)

∑

p∈P(a)
f p ≤ uij (i, j) ∈ A (7)

f p ≥ 0 k ∈ K, p ∈ Pk
(8)

The objective function (5) again minimizes the cost of the flow. Constraint (6)

ensures that the demand of each commodity is met and constraint (7) ensures that

the capacity limit of each edge is obeyed. The path-flow model has |A| + |K| con-

straints, but the number of variables is, in general, growing exponentially with the
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size of the graph. However, using column generation the necessary variables can be

generated dynamically and in practice the path-flow model can often be solved faster

than the arc-flow model for large scale instances of the LSND problem [14].

Column generation operates with a reduced version of the LP (5)–(8), which is

called the master problem. The master problem is defined by a reduced set of columns

Qk
⊆ Pk

for each commodity k such that a feasible solution to the LP (5)–(8) can

be found using variables from ∪k∈KQk
. Solving this LP gives rise to dual variables

𝜋k and 𝜆ij corresponding to constraint (6) and (7), respectively. For a variable j ∈
∪k∈KPk

we let 𝜅(j) denote the commodity that a variable serves and let p(j) represent

the path corresponding to the variable j, represented as the set of edges traversed by

the path. Then we can calculate the reduced cost c̄j of each column j ∈ ∪k∈KPk
as

follows

c̄j =
∑

(i,j)∈p(j)
(c𝜅(j)ij − 𝜆ij) − 𝜋

𝜅(j).

If we can find a variable j ∈ ∪k∈K(Pk⧵Qk) such that c̄j < 0 then this variable has

the potential to improve the current LP solution and should be added to the mas-

ter problem, which is resolved to give new dual values. If, on the other hand, we

have that c̄j ≥ 0 for all j ∈ ∪k∈K(Pk⧵Qk) then we know the master problem defined

by Qk
provides the optimal solution to the complete problem (for more details see

[24]). In order to find a variable with negative reduced cost or prove that no such

variable exists we solve a sub-problem for each commodity. The sub-problem seeks

the feasible path for commodity k with minimum reduced cost given the current dual

values. Solving this problem amounts to solving a shortest path problem from source

to destination of the commodity with edge costs given by cij − 𝜆ij and subtracting 𝜋k
from this cost in order to get the reduced cost. As will be seen later we can extend

the model to reject demands by including additional variables with an appropriate

penalty. When solving the shortest path problem additional industry constraints such

as number of transshipments, trade policies, or time limits on cargo trip duration

can be included. Including such constraints will increase the complexity of the sub-

problem as the resulting problem becomes a resource constrained shortest path prob-

lem. Karsten et al. [24] has made a tailored algorithm for a cargo routing problem

considering lead times and show that it does not necessarily increase the solution

time to include transit time constraints, mainly because the size of solution space

is reduced. Additionally, Karsten et al. [24] give an overview of graph topologies

accounting for transshipment operations when considering transit times.

To construct routes used in the upper tier of the network design problem we will

go through a more recent approach in the next section which use an advanced mathe-

matical programming based heuristic to solve the problem within a large scale search

framework. In general, when a generic network has been designed it is transformed

into a physical sailing network by determining a specific schedule, deploying ves-

sels from the available fleet and deciding on the speed and actual flow of containers.
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Some aspects of the tactical and operational decisions can of course be integrated

in the network design process at the cost of computational tractability, but with the

potential benefit of higher quality networks.

3 Mat-Heuristic for Liner Shipping Network Design

Mathematical programming models of the LSNDP are closely related to the capaci-

tated fixed charge network design problem [23] in installing a discrete set of capac-

ities for the set of commodities K. However, the capacity installed must reflect the

routing of container vessels according to the specification of a service as defined

in the beginning of this section. Therefore, it is also related to pick-up and deliv-

ery vehicle routing problems [41], however being significantly harder to solve as a

consequence both of the non-simple cyclic routes, the multiple commodities and the

vast size of real life networks. As a consequence optimal methods can only solve

very insignificant instances of the LSNDP [2, 35] or provide lower bounds [33].

Several algorithms for solving larger instances of the LSNDP can be categorized as

matheuristics combining mathematical programming with meta heuristics exploit-

ing the two tier structure, where the variables of the upper tier describe a service and

variables of the lower tier describe the container routing (for a reference model of

the LSNDP see [10]). Agarwal and Ergun [1] apply a heuristic Benders’ decompo-

sition algorithm as well as a Branch and Bound algorithm for heuristicly generated

routing variables, Alvarez [2] applies a tabu search scheme, where the routing vari-

ables are generated by a mathematical program based on the dual values of the lower

tier MCF problem in each iteration. [10] use a heuristic column generation scheme,

where the routing columns are generated by an integer program based on informa-

tion from both tiers of the LSNDP along with a set of business rules. The integer

program in [10] constructs a single, (possibly non-simple) cyclic route for a given

service configuration of vessel class and speed. Route construction is based on the

Miller-Tucker-Zemlin subtour elimination constraints known from the CVRP to enu-

merate the port calls in a non-decreasing sequence. This makes high quality routings

for smaller instances of the LSNDP, but for large scale instances it becomes neces-

sary to select a small cluster of related ports in order to efficiently solve the integer

program used in the heuristic. A different matheuristic approach is seen in [11, 12],

where the core component in a large scale neighborhood search is an integer program

designed to capture the complex interaction of the cargo allocation between routes.

The solution of the integer program provides a set of moves in the composition of

port calls and fleet deployment. Meta-heuristics for the LSNDP are challenged by

the difficulty of predicting the changes in the multicommodity flow problem for a

given move in the solution space without reevaluating the MCF at the lower tier.

The approach of [12] relies on estimation functions of changes in the flow and the

fleet deployment related to inserting or removing a port call from a given service

and network configuration. Flow changes and the resulting change in the revenue

are estimated by solving a series of shortest path problems on the residual graph of
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(a) (b)

Fig. 3 Illustration of the estimation functions for insertion and removal of port calls. a Blue nodes

are evaluated for insertion corresponding to variables 𝛾i for the set of ports in the neighborhood

Ns
of service s. b Red nodes are evaluated for removal corresponding to variables 𝜆i for the set of

current port calls Fs
on service s

the current network for relevant commodities to the insertion/removal of a port call

along with an estimation of the change in the vessel related cost with the current fleet

deployment.

Given a total estimated change in revenue of revi and port call cost of Cp
i Fig. 3a

illustrate estimation functions for the change in revenue (𝛩
s
i ) and duration (𝛥

s
i )

increase for inserting port i into service s controlled by the binary variable 𝛾i. The

duration controls the number of vessels needed to maintain a weekly frequency of

service. Figure 3b illustrate the estimation functions for the change in revenue (𝛶
s
i )

and decrease in duration (𝛤
s
i ) for removing port i from service s controlled by the

binary variable 𝜆i. Insertions/removals will affect the duration of the service in ques-

tion and hence the needed fleet deployment modeled by the integer variable 𝜔s repre-

senting the change in the number of vessels deployed. The integer program (9)–(16)

expresses the neighborhood of a single service, s.

max

∑

i∈Ns

𝛩i𝛾i +
∑

i∈𝐅𝐬

𝛶i𝜆i − Ce(s)
V 𝜔s (9)

s.t. Ts +
∑

i∈Ns

𝛥
s
i𝛾i −

∑

i∈𝐅𝐬

𝛤
s
i 𝜆i ≤ 24 ⋅ 7 ⋅ (ne(s)s + 𝜔s) (10)

𝜔s ≤ Me(s) (11)

∑

i∈Ns

𝛾i ≤ Is (12)

∑

i∈𝐅𝐬

𝜆i ≤ Rs (13)

∑

j∈Li

𝜆j ≤ |Li|(1 − 𝛾i) i ∈ Ns
(14)

∑

j∈Li

𝜆j ≤ |Li|(1 − 𝜆i) i ∈ Fs
(15)

𝜆i ∈ {0, 1}, i ∈ Fs
, 𝛾i ∈ {0, 1}, i ∈ Ns

, 𝜔s ∈ ℤ. (16)
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The objective function (9) accounts for the expected change in revenue of the

considered insertions and removals along with the weekly vessel cost Ce(s)
V of the ves-

sel class e(s) deployed to service s. Constraint (10) considers the expected change in

the duration of the service, where Ts is the current duration and ne(s)s is the number of

vessels currently deployed to service s. The possible addition of vessels is bounded

by the number of vessels available Me(s) of type e in constraint (11). A limit on the

number of insertions/removals respectively are introduced in constraints (12)–(13)

to reduce the error of the estimation functions for multiple insertions/removals. The

estimation functions also depend on the existing port calls for unloading the com-

modities introduced by the insertions as well as the ports used for rerouting com-

modities when removing ports. This is handled by introducing a lockset Li for each

insertion/removal expressed in constraints (14)–(15). The integer program is solved

iteratively for each service in the current network and the resulting set of moves are

evaluated for acceptance in a simulated annealing framework. The procedure is an

improvement heuristic [3] fine tuning a given network configuration. The algorithm

in its entirety constructs an initial network using a simple greedy construction heuris-

tic. The improvement heuristic is applied as a move operator for intensification of

the constructed solution. To diversify the solution a perturbation step is performed

at every tenth loop through the entire set of services. The perturbation step alters

the service composition in the network by removing entire services with low utiliza-

tion and introducing a set of new services based on the greedy construction heuristic

for undeployed vessels. To evaluate the matheuristic the public benchmark suite,

LINER-LIB, for liner shipping network design problems is used.

4 Computational Results Using LINER-LIB

LINER-LIB 2012 is a public benchmark suite for the LSNDP presented by [10].

The data instances of the benchmark suite are constructed from real-life data from

the largest global liner-shipping company, Maersk Line, along with several industry

and public stakeholders. LINER-LIB consists of seven benchmark instances avail-

able at http://www.linerlib.org/ (see [10] for details on the construction of the data

instances). Each instance can be used in a low, medium, and high capacity case

depending on the fleet of the instance. Table 1 presents some statistics on each

instance ranging from smaller networks suitable for optimal methods to large scale

instances spanning the globe. Currently published results are available for 6 of the 7

instances, leaving the WorldLarge instance unsolved.

LINER-LIB contains data on ports including port call cost, cargo handling cost

and draft restrictions, distances between ports considering draft and canal traver-

sal, vessel related data for capacity, cost, speed interval and bunker consumptions,

and finally a commodity set with quantities, revenue, and maximal transit time. The

commodity data reflects the current imbalance of world trade and the associated dif-

ferentiated revenue. It is tailored for models of the LSNDP, but may provide useful

data for related maritime transportation problems.

http://www.linerlib.org/


Big Data Optimization in Maritime Logistics 329

Table 1 The instances of the benchmark suite with indication of the number of ports (|P|), the

number of origin-destination pairs (|K|), the number of vessel classes (|E|), the minimum (min v)

and maximum number of vessels (max v)

Category Instance and description |𝐏| |𝐊| |𝐄| min v max v
Single-hub instances Baltic Baltic sea, Bremerhaven as

hub

12 22 2 5 7

WAF West Africa, Algeciras as hub 19 38 2 33 51

Multi-hub instance Mediterranean Mediterranean,

Algeciras, Tangier, Gioia Tauro as

hubs

39 369 3 15 25

Trade-lane instances Pacific (Asia-US West) 45 722 4 81 119

AsiaEurope Europe, Middle East,

and Far east regions

111 4000 6 140 212

World instance Small 47 Main ports worldwide

identified by Maersk Line

47 1764 6 209 317

Large 197 ports worldwide

identified by Maersk Line

197 9630 6 401 601

Computational results for LINER-LIB are presented in [10, 12, 33].

Brouer et al. [10] presented the first results for the benchmark suite using the refer-

ence model [10] with biweekly frequencies for the feeder vessel classes and weekly

frequencies for remaining classes. The heuristic column generation algorithm is

used to solve all instances but the Large world instance with promising results. [12]

present computational results using the reference model with weekly frequencies for

all vessel classes which has a more restricted solution space than [10]. As a con-

sequence the solutions from [12] are feasible for the model used in [10], but not

vice-versa. However, the computational results of [12] indicate that the matheuris-

tic using an improvement heuristic based on integer programming scales well for

large instances and holds the current best known results for the Pacific, World Small

and AsiaEurope instances. [33] present a service flow model for the LSNDP using a

commercial MIP solver presenting results for the two Baltic and WAF instances of

LINER-LIB. For details on the results the reader is referred to the respective papers.

LINER-LIB is currently used by researchers at a handful of different universities

worldwide and may provide data for future results on models and algorithms for

LSNDP.

5 Empty Container Repositioning

In extension of the network design process a liner shipping company must also con-

sider revenue management at a more operational level. Requests for cargo can be

rejected if it is not profitable to carry the containers, or if bottlenecks in the net-

work make it infeasible. Moreover, empty containers tend to accumulate at importing
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regions due to a significant imbalance in world trade. Therefore, repositioning empty

containers to exporting regions impose a large cost on liner shippers, and these costs

need to be incorporated in the revenue model. Since larger shipping companies at any

time have several millions of containers in circulation, these decisions are extremely

complex and require advanced solution methods.

Alvarez [2] presented a study of large scale instances of the liner service network

design problem. The cargo allocation problem is solved as a subproblem of the tabu

search algorithm solving the network design problem. Meng and Wang [26] study

a network design problem selecting among a set of candidate shipping lines while

considering the container routing problem along with the repositioning of empty

containers. The model is formulated as a minimum cost problem and as [21] the

model handle loaded end empty containers simultaneously, however it does not allow

load rejection and only seek to minimize the cost of transport. Song and Dong [39]

consider a problem of joint cargo routing and empty container repositioning at the

operational level accounting for the demurrage and inventory cost of empty contain-

ers. Like most other works on empty repositioning it is a cost minimizing problem

where load rejection is not allowed.

Brouer et al. [14] present a revenue management model for strategic planning

within a liner shipping company. A mathematical model is presented for maximizing

the profit of cargo transportation while considering the possible cost of repositioning

empty containers.

The booking decision of a liner shipper considering empty container reposition-

ing can be described as a specialized multi-commodity flow problem with inter-

balancing constraints to control the flow of empty containers.

Similarly to the pure cargo routing problem we can define a commodity as the

tuple (Ok,Dk, qk, rk) representing a demand of qk in number of containers from node

Ok to node Dk with a sales price per unit of rk. The unit cost of arc (i, j) for commod-

ity k is denoted ckij. The non-negative integer variable xkij is the flow of commodity k
on arc (i, j). The capacity of arc (i, j) is uij. To model the empty containers an empty

super commodity ke is introduced. The flow of the empty super commodity is defined

for all (i, j) ∈ A as the integer variables xkeij . The unit cost of arc (i, j) for commodity ke
is denoted ckeij . The empty super commodity has no flow conservation constraints and

appear in the objective with a cost and in the bundled capacity and inter-balancing

constraints. For convenience the commodity set is split into the loaded commodi-

ties and the empty super commodity: Let KF be the set of loaded commodities. Let

Ke be the set of the single empty super commodity. Finally, let K = KF ∪ Ke. The

inter-balancing constraints also introduce a new set of variables representing leased

containers at a node. The cost of leasing is modeled in the objective. Let cil be the

cost of leasing a container at port i, while li is the integer leasing variable at port i.
Demand may be rejected, due to capacity constraints and unprofitability from empty

repositioning cost. The slack variable 𝛾k represents the amount of rejected demand

for commodity k.
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5.1 Path Flow Formulation

In the following we introduce a path flow model which is an extension of model

(5)–(8). Again, let p be a path connecting Ok and Dk and Pk be the set of all paths

belonging to commodity k. The flow on path p is denoted by the variable f p. The

binary coefficient apij is one if and only if arc (i, j) is on the path p. Finally, ckp =∑
(i,j)∈A a

p
ijc

k
ij is the cost of path p for commodity k. The master problem is:

max

∑

k∈KF

∑

p∈Pk

(rk − ckp)f
p −

∑

(i,j)∈A
ckeij x

ke
ij −

∑

i∈N
cill

i
(17)

s.t.

∑

k∈KF

∑

p∈Pk

apijf
p + xkeij ≤ uij (i, j) ∈ A (18)

∑

p∈Pk

f p + 𝛾k = qk k ∈ KF (19)

∑

k∈KF

∑

p∈Pk

∑

j∈N
(apij − apij)f

p + xkeij − xkeji − li ≤ 0 i ∈ N (20)

f p ∈ ℤ+, p ∈ Pk, 𝛾k∈ ℤ+, k∈ KF xkeij ∈ ℤ+, (i, j)∈ A, li ∈ ℤ+, i ∈ N
(21)

where the xkij variables can be replaced by
∑

p∈Pk
apijf

p
for all k ∈ KF. The convexity

constraints for the individual subproblems (19) bound the flow between the (Ok,Dk)
pair from above (a maximal flow of qk is possible).

Paths are generated on the fly using delayed column generation. Brouer et al.

[14] report computational results for eight instances based on real life shipping

networks, showing that the delayed column generation algorithm for the path flow

model clearly outperforms solving the arc flow model with the CPLEX barrier solver.

In order to fairly compare the arc and path flow formulation a basic column genera-

tion algorithm is used for the path flow model versus a standard solver for the arc flow

model. Instances with up to 234 ports and 293 vessels for 9 periods were solved in

less than 35 min with the column generation algorithm. The largest instance solved

for 12 periods contains 151 ports and 222 vessels and was solved in less than 75 min.

The algorithm solves instances with up to 16,000 commodities over a twelve

month planning period within one hour. Integer solutions are found by simply round-

ing the LP solution. The model of Erera et al. [21] is solved to integer optimality

using standard solvers as opposed to the rounded integer solution presented here.

The problem sizes of [14] are significantly larger than those of [21] and the rounded

integer solutions lead to a gap of at most 0.01% from the LP upper bound of the path

flow formulation, which is very acceptable, and far below the level of uncertainty in

the data. The results of [21] confirm the economic rationale in simultaneously con-

sidering loaded and empty containers.
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6 Container Vessel Stowage Plans

With vessels carrying up to 20,000 TEU, stowage of the containers on board is a

non-trivial task demanding fast algorithms as the final load list is known very late.

Stowage planning can be split into a master planning problem and a more detailed

slot planning problem. The master planning problem should decide a proper mixture

of containers, so that constraints on volume, weight, and reefer plugs are respected.

The slot planning problem should assign containers to slots in the vessel so that the

loading and unloading time in ports can be minimized. The vessel must be seaworthy,

meaning that stability and stress constraints must be respected.

Figure 4 illustrates the arrangement of bays in a container vessel. Containers are

loaded bottom-up in each bay up to a given stacking height limited by the line of sight

and other factors. Some containers are loaded below deck, while other containers are

loaded above the hatch cover. The overall weight sum of containers may not exceed

a given limit, and the weight need to be balanced. Moreover, torsions should be

limited, making it illegal to e.g. only load containers at the same front and end of the

vessel. Refrigerated containers (reefers) need to be attached to an electric plug. Only

a limited number of plugs are available, and these plugs are at specific positions.

A good stowage plan should make sure that it is not necessary to rearrange con-

tainers at each port call. All containers for the given port should be directly accessible

when arriving to the port, and there should be sufficient free capacity for loading new

containers. If several cranes are available in a port, it is necessary to ensure that all

cranes can operate at the same time without blocking for each other.

Pacino [28] presents a MIP model for the master problem. The model is based on

Pacino et al. [29, 30]. The model considers both 20’ and 40’ containers, assuming

that two 20’ containers can fit in the slot of a 40’ container provided that the middle

is properly supported. Four types of containers are considered: light, heavy, light

reefer, and heavy reefer. Decision variables are introduced for each slot, indicating

how many of each container type will be loaded in the slot.

Fig. 4 The arrangement of bays in a small container vessel, and stacking heights. The arrows
indicate forces. Picture: Pacino [28]
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The MIP model has a large number of constraints: First of all, a load list and cargo

estimates are used to calculate the number of containers of each type that needs to be

stowed. Moreover, every slot has a capacity of dry containers and reefers. An overall

weight limit given by the capacity of the vessel is also imposed. When calculating

the weight limit, average values for light and heavy containers are used to ease the

calculations.

Trim, draft, buoyancy and stability is calculated as a function of displacement and

center of gravity of the vessel.

Finally, a number of penalties associated with a given loading are calculated.

These include hatch-overstowage, overstowage in slots, time needed for loading, and

excess of reefer containers. The objective of the model minimizes a weighted sum

of the penalties.

Pacino [28] show that the master planning problem is NP-hard. Computational

results are reported for instances with vessel capacity up to around 10,000 TEU,

visiting up to 12 ports involving more than 25,000 lifts (crane moves of a container).

Several of these instances can be solved within 5 min up to a 5 % gap, using a MIP-

solver.

6.1 Mathematical Model

In the slot planning phase, the master plan is refined by assigning the containers to

specific slots on board the vessel [31]. This problem involves handling of a number

of stacking rules, as well as constraints on stack heights and stack weight. Since

several of the containers are already stowed on board the vessel the objective is to

arrange containers with the same destination port in the same stack, free as many

stacks as possible, minimize overstowage, and minimize the number of non-reefer

containers assigned to reefer slots. Due to the large number of logical constraints in

this problem [19] proposed a logical model using the following notation. S is the

set of stacks, Ts is the set of tiers for stack s, P represents the aft (p = 1) and fore

(p = 2) of a cell, C is the set of containers to stow in the location and C P
⊂ C is

the subset of containers in the release, i.e. the set of containers that are already on-

board the vessel. xstp ∈ C ∪ {⟂} is a decision variable indicating the location of a

container c ∈ C or the empty assignment ⟂. A40
stp is a binary variable indicating if the

cell in stack s, tier t, and position p can hold a 40’ foot container and similarly A20
stp

is one if a slot can hold a 20’ container. AR
stp is a binary indicator for the position of

reefer plugs. Ws and Hs is the maximum weight and height of stack s. The attribute

functions use w(c) and h(c) for the weight and height of a container. r(c) is true iff

the container is a reefer, ⟂ (c) is true iff c =⟂, f (c) is true iff the container is 40’, and

t(c) is true iff it is a 20’ container. Then the logical model is:
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|{xstp = c|s ∈ S , t ∈ Ts, p ∈ P}| = 1 c ∈ C (22)

xsctcpc = c c ∈ C P
(23)

¬f (xst1) ∧ (f (xst2) ⟹ ⟂ (xst1)) s ∈ S , t ∈ Ts (24)

t(xstp) ⟹ A20
stp s ∈ S , t ∈ Ts, p ∈ P (25)

f (xst1) ⟹ A40
st s ∈ S , t ∈ Ts (26)

∑

t∈Ts

(w(xst1) + w(xst2)) ≤ Ws s ∈ S (27)

∑

t∈Ts

max(h(xst1), h(xst2)) ≤ Hs s ∈ S (28)

¬ ⟂ (xstp) ⟹ (t(xs(t−1)1) ∧ t(xs(t−1)2)) ∨ f (xs(t−1)1) s ∈ S , t ∈ Ts∖{1}, p ∈ P

(29)

f (xst1) ⟹ ⟂ t(xs(t+1)p) s∈ S , t∈ Ts∖{NT
s }, p ∈ P

(30)

r(xstp) ∧ t(xstp) ⟹ AR
stp s ∈ S , t ∈ Ts, p ∈ P (31)

r(xst1) ∧ f (xst1) ⟹ AR
st1 ∨ AR

st2 s ∈ S , t ∈ Ts (32)

Constraints (22)–(23) ensure that each container is assigned to exactly one slot.

Constraint (24) ensures that a 40’ container occupies both the aft and fore position

of a cell. The assignments need to respect cell capacity (25)–(26), stack height and

stack weight limits (27)–(28). Two 20’ containers can be stowed in a 40’ slot, if

properly supported from below (29). This means that 40’ container can be stacked

on top of two 20’ containers, but not the other way around (30). Reefer containers

need to be assigned to slots with a power plug (31)–(32).

In order to minimize the objective function [19] propose to use Constraint-Based

Local Search. The framework combines local search algorithms with constraint

programming. The constraint satisfaction part of the problem is transformed to an

optimization problem where the objective is to minimize constraint violation. A hill-

climbing method is used to optimize the slot planning. The neighborhood in the

search consists of swapping containers between a pair of cells.

Pacino [28] report computational results for 133 real-life instances, showing that

the local search algorithm actually finds the optimal solution in 86 % of the cases.

The running times are below 1 second.

7 Bunker Purchasing

In a liner shipping network bunker fuel constitutes a very large part of the variable

operating cost for the vessels. Also, the inventory holding costs of the bunker on

board may constitute a significant expense to the liner shipping company.
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Bunker prices are fluctuating and generally correlated with the crude oil price,

but there are significant price differences between ports. This creates the need for

frequent (daily) re-optimization of the bunker plan for a vessel, to ensure the lowest

bunker costs.

Bunker can be purchased on the spot market when arriving to a port, but normally

it is purchased some weeks ahead of arrival. Long-term contracts between a liner

shipping company and a port can result in reduced bunkering costs by committing

the company to purchase a given amount of bunker. Bunkering contracts may cover

several vessels sailing on different services, making the planning quite complex.

The bunker purchasing problem is to satisfy the vessels consumption by purchas-

ing bunkers at the minimum overall cost, while considering reserve requirements,

and other operational constraints. Bunker purchasing problems involve big data.

Real-life instances may involve more than 500 vessels, 40,000 port calls, and 750

contracts.

For a vessel sailing on a given port to port voyage at a given speed, the bunker

consumption can be fairly accurately predicted. This gives an advantage in bunker

purchasing, when a vessel has a stable schedule known for some months ahead. The

regularity in the vessel schedules in liner shipping allows for detailed planning of a

single vessel.

Besbes and Savin [9] consider different re-fueling policies for liner vessels and

present some interesting considerations on the modeling of stochastic bunker prices

using Markov processes. This is used to show that the bunkering problem in liner

shipping can be seen as a stochastic capacitated inventory management problem.

Capacity is the only considered operational constraint. More recently [43] examined

re-fueling under a worst-case bunker consumption scenario.

The work of [34] considers multiple tanks in the vessel and stochasticity of both

prices and consumption, as well as a range of operational constraints. [44] does not

consider stochastic elements nor tanks, but has vessel speed as a variable of the

model. The work of [25] minimizes bunker costs as well as startup costs and inven-

tory costs for a single liner shipping vessel. This is done by choosing bunker ports

and bunker volumes but also having vessel round trip speed (and thus the number of

vessels on the service) as a variable of the model.

In [37] a model is developed which considers the uncertainty of bunker prices and

bunker consumption, modeling their uncertainty by markov processes in a scenario

tree. The work can be seen as an extension of [44], as it considers vessel speed as a

variable within the same time window bounds. Capacity and fixed bunkering costs

is considered, as is the holding / tied capital cost of the bunkers.

The studies described above do not consider bunker contracts, and all model the

bunker purchasing for a single vessel.
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7.1 Bunker Purchasing with Contracts

Plum et al. [32] presented a decomposition algorithm for the Bunker Purchasing

with Contracts Problem, BPCP, and showed that the model is able to solve even very

large real-life instances. The model is based on writing up all bunkering patterns, and

hence may be of exponential size. Let I be the set of ports visited on an itinerary, B be

the set of bunker types, and V be the set of vessels. A contract c ∈ C has a minimal

q
c

and maximal qc quantity that needs to be purchased. A contract c will give rise to

a number of purchase options m ∈ M, i.e. discrete events where a specific vessel v
calls a port within the time interval of a contract c, allowing it to purchase bunker at

the specific price pm. Each time a purchase is done at port i a startup cost sci is paid.

Let Rv be the set of all feasible bunkering patterns for a vessel v. A bunkering

pattern is feasible if a sufficient amount of bunker is available for each itinerary,

including reserves. Bunker is available in various grades, and it is allowed to sub-

stitute a lower grade with a higher grade. In some areas, only low-sulphur bunker

may be used, and this needs to be respected by the bunkering plan. Moreover ini-

tial and terminal criteria for bunker volumes must be met. Finding a legal bunkering

pattern can be formulated as a MIP model [32] and solved by commercial solvers.

Each pattern r ∈ Rv is denoted as a set of bunkerings.

Let ur =
∑

m∈M(pmlm) +
∑

i∈I
∑

v∈V
∑

b∈B(𝛿i,bsci) be the cost for pattern r ∈ Rv.

In this expression, lm is the purchase of bunker for each purchase option m. and pm
is the price of option m. The binary variable 𝛿i,b is set to one iff a purchase of bunker

type b is made at port call i. Let 𝜆r be a binary variable, set to 1 iff the bunkering

pattern r is used. Let or,c be the quantity purchased of contract c by pattern r. The

BPCP can then be formulated as

min

∑

v∈V

∑

r∈Rv

𝜆rur +
∑

c∈C
(scw + scw) (33)

s.t. q
c
− sc ≤

∑

v∈V

∑

r∈Rv

𝜆ror,c ≤ qc + sc c ∈ C (34)

∑

r∈Rv

𝜆r = 1 v ∈ V (35)

𝜆r ∈ {0, 1} r ∈ Rv (36)

The objective minimizes the costs of purchased bunker, startup costs and slack

costs. The parameters w and w denote a penalty for violating the minimal q
c

and

maximal qc quantity imposed by contract c. Constraints (34) ensures that all contracts

are fulfilled. Convexity constraints (35) ensure that exactly one bunker pattern is

chosen for each vessel.
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Due to the large number of columns in the model [32] proposed to solve the

LP relaxed model by Column Generation. Using the generated columns from the

LP-solution, the resulting problem is solved to integer optimality using a MIP solver,

leading to a heuristic solution for the original problem.

Initially all dual variables are set to zero, a subproblem is constructed for each

vessel and solved as a MIP problem. The first master problem is then constructed

with one solution for each vessel as columns. This master is solved and the first

values are found. The subproblems are resolved for all vessels (only the objective

coefficients for the contracts needs updating) and new columns are generated for the

master. This continues until no negative reduced cost columns can be generated, and

the LP optimal solution is achieved.

The subproblems do not need to be solved to optimality since any column with

negative reduced cost will ensure progress of the algorithm. Therefore the solver is

allowed to return solutions to the subproblem having a considerable optimality gaps.

As the algorithm progresses, the allowable subproblem gap is reduced.

A simple form of dual stabilization has been used in the implementation by [32]

to speed up convergence. The Box-step method imposes a box around the dual vari-

ables, which are limited from changing more than 𝜋max per iteration. This has been

motivated by the dual variables only taking on values {−w,w, 0} in the first iteration,

these then stabilize at smaller numerical values in subsequent iterations.

The model is able to solve even very large real-life instances involving more than

500 vessels, 40,000 port calls, and 750 contracts. First, column generation is used to

solve the linearized model, and then a MIP solver is used to find an integer solution

only using the generated columns. This results in a small gap in the optimal solution

compared to if all columns were known. However, computational results show that

the gap is never more than around 0.5 % even for the largest instances. In practice

the resulting gap of the algorithm, can be much smaller since the found solutions are

benchmarked against a lower bound and not against the optimal solution.

An interesting side product of the model is the dual variables 𝜋c and 𝜋c for the

upper and lower contract constraints (34). These values can be used to evaluate the

gain of a given contract, which may be valuable information when (re)negotiating

contracts.

Since bunker prices are stochastic of nature, future research should be focused on

modeling the price fluctuation. However, the models tend to become quite complex

and difficult to solve as observed by [34], while only adding small extra improve-

ments to the results. So a trade-off must be done between model complexity and

gain in bunker costs. The work of [37] shows some promising developments in this

important direction.

Also, instruments from finance (bunker future or forward contracts, fixed price

bunker fuel swaps) could be used to control risk in bunker purchasing, and to increase

the margins on oil trade. Bunker purchasing for liner ships constitutes such a big

market that it deserves a professional trading approach.
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8 The Vessel Schedule Recovery Problem

It is estimated that approximately 70−80% of vessel round trips experience delays in

at least one port. The common causes are bad weather, strikes in ports, congestions

in passageways and ports, and mechanical failures.

Currently when a disruption occur, the operator at the shipping companies man-

ually decides what action to take. For a single delayed vessel a simple approach

could be to speed up. However, the consumption of bunker fuel is close to a cubic

function of speed and vessels’ speeds are limited between a lower and upper limit.

So even though an expensive speed increase strategy is chosen, a vessel can arrive

late for connections, propagating delays to other parts of the network. Having more

than 10,000 containers on board a large vessel, calculating the overall consequences

of re-routing/delaying these containers demands algorithms for big data. Disruption

management is well studied within the airline industry (see [4] or [16] for a review)

and the network design of airlines resemble liner shipping networks inspiring the

few works on disruption management found for liner shipping. Mulder et al. [27]

presents a markov decision model to determine the optimal recovery policy. The

core idea is to reallocate buffer time within a schedule in order to recover from dis-

ruptions. Brouer et al. [13] present the Vessel Schedule Recovery Problem (VSRP)

handling a disruption in a liner shipping network by omitting port calls, swapping

port calls or speeding up vessels in a predefined disruption scenario. The model and

method will be presented in the following section.

8.1 Definitions

A given disruption scenario can mathematically be described by a set of vessels V ,

a set of ports P, and a time horizon consisting of discrete time slots t ∈ T . The time

slots are discretized on port basis as terminal crews handling the cargo operate in

shifts, which are paid for in full, even if arriving in the middle of a shift. Hence we

only allow vessels arriving at the beginning of shifts. Reducing the graph to timeslots

based on these shifts, also has the advantage of reducing the graph size, although this

is a minor simplification of the problem. For each vessel v ∈ V , the current location

and a planned schedule consisting of an ordered set of port calls Hv ⊆ P are known

within the recovery horizon, a port call A can precede a port call B, A < B in Hv. A

set of possible sailings, i.e. directed edges, Lh are said to cover a port call h ∈ Hv.

Each Lh represent a sailing with a different speed.

The recovery horizon, T , is an input to the model given by the user, based on

the disruption in question. Inter continental services will often recover by speeding

during ocean crossing, making the arrival at first port after an ocean crossing a good

horizon, severe disruptions might require two ocean crossings. Feeders recovering

at arrival to their hub port call would save many missed transshipments giving an



Big Data Optimization in Maritime Logistics 339

obvious horizon. In combination with a limited geographical dimension this ensures

that the disruption does not spread to the entire network.

The disruption scenario includes a set of container groups C with planned trans-

portation scenarios on the schedules of V . A feasible solution to an instance of the

VSRP is to find a sailing for each v ∈ V starting at the current position of v and

ending on the planned schedule no later than the time of the recovery horizon. The

solution must respect the minimum and maximum speed of the vessel and the con-

straints defined regarding ports allowed for omission or port call swaps. The opti-

mal solution is the feasible solution of minimum cost, when considering the cost of

sailing in terms of bunker and port fees along with a strategic penalty on container

groups not delivered “on-time” or misconnecting altogether.

8.2 Mathematical Model

Brouer et al. [13] use a time space graph as the underlying network, but reformulate

the model to address the set of available recovery techniques, which are applicable

to the VSRP.

The binary variables xe for each edge e ∈ Es are set to 1 iff the edge is sailed in the

solution. Binary variables zh for each port call h ∈ Hv, v ∈ V are set to 1 iff call h is

omitted. For each container group cwe define binary variables oc ∈ {0, 1} to indicate

whether the container group is delayed or not and yc to account for container groups

misconnecting. The parameter Oc
e ∈ {0, 1} is 1 iff container group c ∈ C is delayed

when arriving by edge e ∈ LTc . Bc ∈ Hv is defined as the origin port for a container

group c ∈ C and the port call where vessel v picks up the container group. Similarly,

we define Tc ∈ Hw as the destination port for container group c ∈ C and the port

call where vesselw delivers the container group. Intermediate planned transshipment

points for each container group c ∈ C are defined by the ordered set Ic = (I1c ,… , Imc ).
Here Iic = (hiv, h

i
w) ∈ (Hv,Hw) is a pair of calls for different vessels (v,w ∈ V|v ≠

w) constituting a transshipment. Each container group c has mc
transshipments. Me

c
is the set of all non-connecting edges of e ∈ Lh that result in miss-connection of

container group c ∈ C. Mc ∈ ℤ+ is an upper bound on the number of transshipments

for container group c ∈ C.

Let the demand of vessels v in a node n be given by Snv = −1 if n = nvs , S
n
v = 1 if

n = nvt , while Snv = 0 for all other nodes. Then we get the following model:

min

∑

v∈V

∑

h∈Hv

∑

e∈Lh

cve xe +
∑

c∈C

(
cmc yc + cdcoc

)
(37)

s.t.

∑

e∈Lh

xe + zh = 1 v ∈ V , h ∈ Hv (38)

∑

e∈n−
xe −

∑

e∈n+
xe = Snv v ∈ V , n ∈ Nv (39)
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yc ≤ oc c ∈ C (40)
∑

e∈LTc

Oc
e xe ≤ oc c ∈ C (41)

zh ≤ yc c ∈ C, h ∈ Bc ∪ Ic ∪ Tc (42)

xe +
∑

𝜆∈Me
c

x
𝜆
≤ 1 + yc c ∈ C, e ∈ {Lh|h ∈ Bc ∪ Ic ∪ Tc} (43)

xe ∈ {0, 1}, e ∈ Es yc, oc ∈ ℝ+, c ∈ C zh ∈ ℝ+, v ∈ V , h ∈ Hv (44)

The objective function (37) minimizes the cost of operating vessels at the given

speeds, the port calls performed along with the penalties incurred from delaying or

misconnecting cargo.

Constraints (38) are set-partitioning constraints ensuring that each scheduled port

call for each vessel is either called by some sailing or omitted. The next constraints

(39) are flow-conservation constraints. Combined with the binary domain of vari-

ables xe and zh they define feasible vessel flows through the time-space network. A

misconnection is by definition also a delay of a container group and hence the mis-

connection penalty is added to the delay penalty, as formulated in (40). Constraints

(41) ensure that oc takes the value 1 iff container group c is delayed when arriving via

the sailing represented by edge e ∈ Es. Constraints (42) ensure that if a port call is

omitted, which had a planned (un)load of container group c ∈ C, the container group

is misconnected. Constraints (43) are coherence constraints ensuring the detection

of container groups’ miss-connections due to late arrivals in transshipment ports. On

the left-hand side the decision variable corresponding to a given sailing, xe, is added

to the sum of all decision variables corresponding to having onward sailing resulting

in miss-connections, 𝜆 ∈ Me
c .

In [13] the model has been tested on a number of real-life cases, including a

delayed vessel, a port closure, a berth prioritization, and expected congestion. An

analysis of the four real life cases, show that a disruption allowing to omit a port call

or swap port calls may ensure timely delivery of cargo without having to increase

speed and hence, a decision support tool based on the VSRP may aid in decreasing

the number of delays in a liner shipping network, while maintaining a slow steaming

policy. To operationalize this the rerouting of the actual flow and adjustment of the

actual schedule must be incorporated in a real time system to enable here-and-now

decisions. This is especially challenging for larger disruption scenarios than the ones

described as the size of the problem grows exponentially.

9 Conclusion and Future Challenges

Maritime logistics companies operate in an environment which requires them to

become more and more analytical. In general there are several insights to be gained

from the data companies has available. Especially when companies start to use

the forward looking analytical techniques rather than only using data for backward
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looking analysis (descriptive and diagnostic models) companies can unlock signif-

icant value from the collected data as shown in this chapter. Forward looking tech-

niques (predictive models) can provide input for the decision making process where

the best possible action is sought (prescriptive models). A pressing challenge in big

data analysis today lies in the integration of predictive and prescriptive methods

which combined can serve as valuable decision support tools. This chapter intro-

duced a selection of large scale planning problems within maritime logistics with a

primary focus on challenges found in the liner shipping industry. Focus has been on

addressing strategic, tactical and operational problems by modern large scale opti-

mization methods. However optimization within maritime logistics is complicated

by the uncertainty and difficult accessibility of data. Most demands are only esti-

mates, and for historic reasons even contracted cargo can be unreliable since there

are no penalties associated with no-show cargo. To limit these uncertainties predic-

tive machine learning techniques is an important tool. In particular, seasonal vari-

ations and similar trends can be predicted quite well and decision support systems

should take such uncertainties into account. This can be done either by develop-

ing models where it is possible to re-optimize the problem quickly in order to meet

new goals and use them interactively for decision support and for evaluating what-

if scenarios suggested by a planner as there are still many decisions that will not

be data-driven. Quantitative data can not always predict the future well in situa-

tions of e.g. one-time events and generally extrapolation is hard. But in situations

where we operate in an environment where data can be interpolated mathematical

models may serve as great decision support tools by integrating the predictive mod-

els directly in the prescriptive model. With the large volume of data generated by

carriers, increased quality of forecasts, and algorithmic improvements it may also

be beneficial and even tractable to include the uncertainties directly in the decision

models. A relatively new way of handling data uncertainty is by introducing uncer-

tainty sets in the definition of the data used for solving large-scale LP’s. The stan-

dard LP found as a subproblem in many of the described problems can generically

be stated as minx{cTx ∶ Ax ≤ b}, where A, b, and c contain the data of the prob-

lem at hand. As described previously in this chapter most of the data is associated

with uncertainties but in Robust Optimization this can be handled by replacing the

original LP with an uncertain LP {minx{cTx ∶ Ax ≤ b} ∶ (A, b, c) ∈ U }. The best

robust solution to the problem can be found by solving the Robust Counterpart of

the problem, which is an semi-infinite LPminx,t{t ∶ cTx ≤ t,Ax ≤ b∀(A, b, c) ∈ U }.

Clearly this LP is larger than the original LP, but with good estimates of the uncer-

tainty sets the size can be manageable, further details can be found in [6]. As the

accuracy of predictive models increase it will be possible to come up with good esti-

mates for the uncertainty sets and thereby actually making it feasible to solve robust

versions of the planning problems. In the MIP case the problems usually become

much harder and often intractable with a few exceptions. An alternative approach to

Robust Optimization is to handle the uncertainties via probability distributions on

the data and use Stochastic Programming and solve the chance constrained program

minx,t{t ∶ Prob(A,b,c)∼P{cTx ≤ t,Ax ≤ b} ≥ 1 − 𝜖} or a two-stage stochastic program

based on a set of scenarios. Again, machine learning algorithms can provide good
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estimates of the actual underlying distributions or expected scenarios and it may

be possible to obtain results that are less conservative than the worst-case results

provided by Robust Optimization, but the process can be more computationally

extensive.
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Big Network Analytics Based on Nonconvex
Optimization

Maoguo Gong, Qing Cai, Lijia Ma and Licheng Jiao

Abstract The scientific problems that Big Data faces may be network scientific

problems. Network analytics contributes a great deal to networked Big Data process-

ing. Many network issues can be modeled as nonconvex optimization problems and

consequently they can be addressed by optimization techniques. In the pipeline of

nonconvex optimization techniques, evolutionary computation gives an outlet to han-

dle these problems efficiently. Because, network community discovery is a critical

research agenda of network analytics, in this chapter we focus on the evolution-

ary computation based nonconvex optimization for network community discovery.

The single and multiple objective optimization models for the community discov-

ery problem are thoroughly investigated. Several experimental studies are shown to

demonstrate the effectiveness of optimization based approach for big network com-

munity analytics.

Keywords Big data ⋅ Complex networks ⋅Nonconvex optimization ⋅ Evolutionary

computation ⋅ Multiobjective optimization

1 Introduction

Recent years have witnessed the growing enthusiasm for the concept of “Big Data”

[86]. Big Data has been an active topic and has attracted great attention from every

walk of life [18, 64, 89]. It should be noted that the scientific problems that Big

Data faces may be that of network scientific problems, and complex network analyt-

ics should be an important cornerstone of data science [1, 71, 114, 125]. Network

analytics undoubtedly can contribute a great deal to networked Big Data processing.

Network analytics contains many issues, to name a few, community structure

discovery, network structural balance, network robustness, link prediction, network

M. Gong (✉) ⋅ Q. Cai ⋅ L. Ma ⋅ L. Jiao

Key Laboratory of Intelligent Perception and Image Understanding of Ministry

of Education, International Research Center for Intelligent Perception and Computation,

Xidian University, Shaanxi Province, Xi’an 710071, China

e-mail: gong@ieee.org

© Springer International Publishing Switzerland 2016

A. Emrouznejad (ed.), Big Data Optimization: Recent Developments
and Challenges, Studies in Big Data 18, DOI 10.1007/978-3-319-30265-2_15

345



346 M. Gong et al.

resource allocation, anomaly detection, network security, network recommendation,

network propagation, and network ranking, etc. Most if not all of these issues can be

modeled as nonconvex optimization problems and consequently they can be com-

puted by optimization techniques. Because, those optimization models for network

issues are nonconvex from mathematical view, thus, canonical mathematical opti-

mization methods can hardly solve these problems. In the pipeline of optimization

techniques, evolutionary computation gives an outlet to handle these nonconvex opti-

mization problems efficiently.

Because network community discovery may be the cornerstone to the analytics

of many other network issues, consequently this chapter focuses on the optimiza-

tion based community structure discovery from networks. The rest of this chapter

is organized as follows. Section 2 briefly talks about the issues that network ana-

lytics concerns and several eminent properties of networks. Section 3 discusses the

basic definitions of optimization and evolutionary computation. Section 4 presents

the related work of network community structure analytics, including the defini-

tion of a network community and the research progress of community discovery.

Section 5 surveys the optimization models for network community discovery. The

network data sets commonly used for community discovery benchmarking are listed

in Sect. 6. Section 7 exhibits some experiments on network community discovery,

and the conclusions are finally drawn in Sect. 8.

2 Network Issues, Properties and Notations

2.1 Issues Concerning Network Analytics

Network analytics is an essential research agenda of network and networked big

data mining. Figure 1 shows the importance of network analytics to network and

networked data mining. Network analysis not only may very likely result in the dis-

covery of important patterns hidden beneath the networks, but also can potentially

shed light on important properties that may control the growth of the networks. Net-

work analytics involves many issues. To move forward, we show 12 critical issues

that concern network analytics in Fig. 2.

Very often, to analyze a network issue one should consider the properties of the

corresponding network. In the following, we are going to discuss several eminent

properties of networks.

2.2 Eminent Properties of Network

Because structure always affects function, consequently, a substantial volume of

work has been done to analyze the structural properties of complex networks
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Fig. 1 Network analytics plays an important role in network and networked data mining. Reprinted

figure with permission from Ref. [74]

(a) (b)

Fig. 2 Twelve critical issues that concern network analytics. a The first six issues and b the latter

six issues

[16, 41, 94, 96, 97]. Networks have many notable properties, such as the small-

world property [126], the scale-free property [14], the community structure property

[45], etc.

The analysis of network properties is dispensable to network analytics. It is an

essential part of network science. Figure 3 shows some representative properties of

networks in the language of graph.

A scale-free network is a network whose degree distribution follows a power law,

at least asymptotically. That is, the fraction P(k) of nodes in the network having k
connections to other nodes goes for large values of k as

P(k) ∼ k−𝛾 (1)

where 𝛾 is a parameter whose value is typically in the range 2 < 𝛾 < 3, although

occasionally it may lie outside these bounds.
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(a)

(b)

(c)

Fig. 3 a An example of a scale-free network. b An example of a small-world network. c An exam-

ple of a network with two communities. Reprinted figure with permission from Ref. [74]

A small-world network is a type of mathematical graph in which most nodes are

not neighbors of one another, but most nodes can be reached from every other by a

small number of hops or steps.

A network with community structure means that the network can be separated

into clusters with different sizes, and the similarities between nodes coming from

the same cluster are large while from different clusters they are small.

2.3 Graph Based Network Notation

Data sets collected from many different realms can be represented in the form of

interaction big networks in a very natural, concise and meaningful fashion. In order

to better analyze a big network, one direct way is to represent a network with a graph

denoted as G = {V ,E}, where V representing the network objects is the aggregation

of vertices, and E representing the relations between the objects is the aggregation

of edges. Graph G can be denoted by an adjacency matrix An×n whose element aij is

defined as:

{
aij = 𝜔ij if ∃L < i, j >
aij = 0 if ∄L < i, j > (2)

where L < i, j > represents the link between nodes i and j and 𝜔ij denotes the weight

of L < i, j >.
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In the field of social science, the networks that include both positive and nega-

tive edges are called signed social networks [37] or signed networks for short. In

signed networks, the so called positive links (L+) denote positive relationships such

as friendship, common interests, and negative links (L−) may denote negative rela-

tionships such as hostility, different interests, and so forth. A signed graph is nor-

mally denoted as G = {V ,PE,NE}, where PE and NE represent the aggregations of

positive and negative edges, respectively, and the element aij of the corresponding

adjacency matrix An×n is defined as:

⎧
⎪
⎨
⎪
⎩

aij = 𝜔ij if ∃L+ < i, j >
aij = −𝜔ij if ∃L− < i, j >
aij = 0 if ∄L < i, j >

(3)

Matrix A is symmetric with the diagonal elements 0, but, if the corresponding

network is directed, like the e-mail network, A is asymmetric.

3 Introduction to Nonconvex Optimization
and Evolutionary Computation

3.1 What is Optimization

Optimization has long been an active research topic. Mathematically, a single objec-

tive optimization problem (assuming minimization) can be expressed as:

min f (x), x = [x1, x2, ..., xd] ∈ Φ
s.t. gi(x) ≤ 0, i = 1, ...,m (4)

where x is called the decision vector, d is the number of parameters to be optimized,

Φ is the feasible region in decision space, and gi(x) is the constraint function.

Given that Φ is a convex set, f (x) is said to be convex if ∀x1, x2 ∈ Φ,∀𝛼 ∈ [0, 1],
and the following condition holds:

f
(
𝛼x1 + (1 − 𝛼)x2

)
≤ 𝛼f (x1) + (1 − 𝛼)f (x2) (5)

Particularly, f (x) is strictly convex if ∀x1 ≠ x2 ∈ Φ,∀𝛼 ∈ (0, 1), and the following

condition holds:

f
(
𝛼x1 + (1 − 𝛼)x2

)
< 𝛼f (x1) + (1 − 𝛼)f (x2) (6)

If f (x) and gi(x) are all convex, then we call Eq. 4 as a convex optimization prob-

lem. For a strictly convex optimization problem, there is at most one minimal solu-

tion which is also the global one. In real applications, the functions f (x) and gi(x)
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may be nonconvex and there may exist many local and/or global minimum. In this

respect, we call Eq. 4 as a nonconvex optimization problem. As a matter of fact, many

real-world optimization problems are nonconvex [56, 92].

In reality, many optimization problems involve multiple objectives, i.e., there are

more than one f (x) to be optimized. A multiobjective optimization problem can be

mathematically formulated as:

min F(x) = (f1(x), f2(x), ..., fk(x))T (7)

The objectives in Eq. 7 often conflict with each other. Improvement of one objec-

tive may lead to deterioration of another. Thus, a single solution, which can optimize

all objectives simultaneously, does not exist. For multi-objective optimization prob-

lems, the aim is to find good compromises (trade-offs) which are also called Pareto

optimal solutions. The Pareto optimality concept was first proposed by Edgeworth

and Pareto. To understand the concept, here are some related definitions.

∙ Definition 1 (Pareto Optimality) A point x∗ ∈ Φ is Pareto optimal if for every

x ∈ Φ and I = {1, 2, ..., k} either ∀i ∈ I, fi(x) = fi(x∗) or, there is at least one i ∈ I
such that fi(x) > fi(x∗).

∙ Definition 2 (Pareto Dominance) Given two vectors x, y ∈ Φ, where x =
(x1, x2, ..., xn) and y = (y1, y2, ..., yn), we say that x dominates y (denoted as x ≺ y),

if xi ≦ yi for i = 1, 2, ..., n, and x ≠ y. x is nondominated with respect to Φ, if there

does not exist another x′ ∈ Φ such that F(x′) ≺ F(x).
∙ Definition 3 (Pareto Optimal Set) The set of all Pareto optimal solutions is called

Pareto Optimal Set which is defined as:

PS = {x ∈ Φ|¬∃x∗ ∈ Φ, F(x∗) ≺ F(x)} (8)

∙ Definition 4 (Pareto Front) The image of the Pareto set (PS) in the objective space

is called the Pareto front (PF) which is defined as:

PF = {F(x)|x ∈ PS} (9)

Figure 4 gives an example of the above mentioned definitions. Each dot except

that labeled by C in the figure represents a nondominated solution to the optimization

problem. The aim of a multiobjective optimization algorithm is to find the set of those

nondominated solutions approximating the true PF.

3.2 How to Tackle Optimization Problems

In the field of optimization, evolutionary computation, a class of intelligent opti-

mization techniques, has been proved to be an efficient tool for solving nonconvex
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Fig. 4 Graphical illustration

of Pareto optimal solution

and Pareto front

optimization problems. In the last several decades, many evolutionary algorithms

(EAs) originated from the evolution principles and behavior of living things, have

sprung out and have found nationwide applications in the optimization domain

[31, 34]. Most if not all of the EAs share the following commom properties:

1. They are population based stochastic searching methods. A population consists

of a set of individuals, each individual represents a solution to the optimization

problem. An evolutionary algorithm optimizes the problem by having a popu-

lation of initialized solutions and then apply stochastic components to generate

new solutions in the decision space.

2. They are recursively iterative methods. These methods iteratively search for opti-

mal solutions in the search space. The search process will not stop until the max-

imum iteration number or a prescribed threshold is reached.

Algorithm 1 General framework of evolutionary algorithms.

Input: algorithm parameters, problem instance

Output: optimal solutions to the optimization problem

1. Begin
2. population initialization

3. store optimal solutions

4. for i=1 to max_iteration do

(a) for each individual in the population, do
i. generate a new individual through stochastic components

ii. evaluate the fitness of the new individual

(b) end for
(c) update optimal solutions

5. end for
6. End
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3. They have some inherent parameters, like the population size and the maximum

iteration number, etc. These parameters are normally set empirically.

A general framework of EAs is shown in Algorithm 1. In the last few years, many

efforts have been devoted to the application of EAs to the development of multiob-

jective optimization. A lot of multiobjective evolutionary algorithms (MOEAs) have

been proposed, e.g., [11, 13, 30, 35, 53, 66, 131, 133, 135].

4 Community Structure Analytics

Community structure discovery is one of the cornerstones of network analytics. It

can provide useful patterns and knowledge for further network analysis. This section

is dedicated to summarizing the related works for community structure analytics.

4.1 Description of Community Discovery

Network community discovery plays an important role in the networked data mining

field. Community discovery helps to discover latent patterns in networked data and

it affects the ultimate knowledge presentation.

As illustrated above, a complex network can be expressed with a graph that is

composed of nodes and edges. The task for network community discovery is to sep-

arate the whole network into small parts which are also called communities. There

is no uniform definition for community in the literature, but in academic domain, a

community, also called a cluster or a module, is normally regarded as a groups of ver-

tices which probably share common properties and/or play similar roles within the

graph. Figure 5 exhibits the community discovery problem under different network

scenarios.

From Fig. 5 we can notice that community discovery under dynamic context is

quite different from the others. In a dynamic network, the community structure is

temporally changed. How to design algorithms to uncover time-varying communities

is challenging.

4.2 Qualitative Community Definition

In order to formalize the qualitative community in unsigned network, Radicchi et

al. in [107] gave a definition based on node degree. Given a network represented

as G = (V ,E), where V is the set of nodes and E is the set of edges. Let ki be the

degree (the number of links that have connections with node i) of node i and A be

the adjacency matrix of G. Given that S ⊂ G is a subgraph, let kini =
∑

i,j∈S Aij and
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(a) (b)

(c) (d)

(e)

Fig. 5 Graphical illustration of community discovery. a Common model, b directed model,

c signed model, d overlapping model and e dynamic model

kouti =
∑

i∈S,j∉S Aij be the internal and external degree of node i, then S is a community

in a strong sense if

∀i ∈ S, kini > kouti (10)

S is a community in a weak sense if

∑
i∈Sk

in
i >

∑
i∈Sk

out
i (11)

The above community definition only fits for unsigned networks. In [48] the

authors give a definition under signed context. Given a signed network modeled

as G = (V ,PE,NE), where PE and NE are the set of positive and negative links,

respectively. Given that S ⊂ G is a subgraph, let (k+i )
in =

∑
j∈S,Lij∈PE Aij and (k−i )

in =
∑

j∈S,Lij∈NE |Aij| be the positive and negative internal degree of node i, respectively.

Then S is a community in a strong sense if

∀i ∈ S, (k+i )
in
> (k−i )

in
(12)

Let (k−i )
out =

∑
j∉S,Lij∈NE |Aij| and (k+i )

out =
∑

j∉S,Lij∈PE Aij be the negative and pos-

itive external degree of node i, respectively. Then S is a community in a weak sense if

{∑
i∈S(k

+
i )

in
>
∑

i∈S(k
+
i )

out

∑
i∈S(k−i )

out
>
∑

i∈S(k−i )
in (13)
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Table 1 Representative non-optimization based methods for big network community discovery

Method Ref. Key technique Network scale

CNM [29] Greedy optimization + sophisticated data structure Medium

LPA [12] Mark each node with a label and then let them propagate Very large

Infomod [111] Information compression, transmission, and decoding Large

FEC [130] Random walk + cutoff function Very large

BGLL [15] Fast hierarchical modularity optimization Medium

Infomap [112] Clustering + information compression + random walks Large

The above definitions only give the conditions that a community should satisfy,

but they have not told how good on earth a community is. Therefore, there should

have quantitative indexes that can measure the quality of a community. These indexes

will be illustrated in Sect. 5.

4.3 Existing Approaches for Community Discovery

In the literature, a large amount of methods have been proposed to discover commu-

nities in big networks. Roughly, these methods can be divided into two categories:

optimization based class and non-optimization based class.

For the non-optimization based avenues, in Table 1 we list several outstanding

methods that can handle big networks. For more information about the existing com-

munity discovery methods developed before 2012, please refer to [41, 129].

As for the optimization based methods, most of them are nonconvex. The essence

of them is to model the network community discovery task as different optimization

problems and then design suitable nonconvex optimization methods such as EAs to

deal with them. As what follows we will summarize the optimization models for

community structure analytics.

5 Optimization Models for Community Structure Analytics

5.1 Single Objective Optimization Model

5.1.1 Modularity Based Model

The most popular evaluation criterion for community detection is the modularity

(normally denoted as Q) proposed by Newman and Girvan in [98]. The modularity

index can be given in the following form:
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Q = 1
2m

n∑

i,j

(

Aij −
ki ⋅ kj
2m

)

𝛿(i, j) (14)

where n and m are the number of nodes and edges of a network, respectively. 𝛿(i, j) =
1, if node i and j are in the same group, otherwise, 0. By assumption, higher values

of Q indicate better partitions.

Q is very popular, a lof of bio-inspired metaheuristics have been utilized to opti-

mize Q to find the community structure with biggest Q value [22, 43, 46, 60–63,

75–78, 82, 85, 88, 115, 119, 123, 124, 128]. However, Q has several drawbacks.

First, to maximize Q is proved to be NP-hard [19]. Second, large Q value does not

always make sense. Random networks with no community structures can also pos-

sess high Q values [59, 110]. Third, which is also the most important, Q has the

resolution limitation [42], i.e., maximizing Q cannot discover communities whose

sizes are smaller than a scale which depends on the total size of the network and on

the degree of inter connectedness of the modules, even in the case scenario where

modules are unambiguously defined.

To overcome these demerits, many researchers have devoted themselves to design-

ing efficient operators for the optimization algorithms to enhance the exploration

and exploitation; some scholars make efforts to design new evaluation criteria, such

as extended modularity [10, 106, 110], multi-resolution index [80], and so forth.

Because Q is originally designed for unsigned, unweighted, undirected, nonover-

lapped and static networks, thus, many creative jobs have been done to extend Q to

handle other types of networks.

Gómez et al. in [47] presented a reformulation of Q that allows the analysis

of weighted, signed, and networks that have self-loops. The presented Q is for-

mulized as:

Qsw = 1
2(w+ + w−)

∑

i,j

[

wij −
(w+

i w
+
j

2w+ −
w−
i w

−
j

2w−

)]

𝛿(i, j) (15)

where wij is the weight of the signed adjacency matrix, w+
i (w

−
i ) denotes the sum of

all positive (negative) weights of node i. Based on the Qsw metric, the authors in

[23] suggested a discrete particle swarm optimization (DPSO) algorithm to detect

communities from signed networks.

Qsw can be easily changed to handle directed, weighted graphs [8, 72, 113], and

the expression of directed and weighted Q reads:

Qdw = 1
w
∑

i,j

(

Aij −
wout
i ⋅ win

j

w

)

𝛿(i, j) (16)

where wout
i (win

i ) denotes the out-degrees (in-degrees) of node i. It can be noticed that

the factor 2 is removed because the sum of the in-degrees (outdegrees), the number

of non-vanishing elements of the asymmetric adjacency matrix, all equal w.
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In the case when a node may belong to more than one community, Q has been

modified to fit overlapping communities [99, 117, 134], and a general expression

reads:

Qov(Uk) =
k∑

c=1

⎡
⎢
⎢
⎣

A(Vc,Vc)
A(V ,V)

−

(
A(Vc,V)
A(V ,V)

)2⎤
⎥
⎥
⎦

(17)

where Uk = [u1, u2,… , uk] is a fuzzy parition of the nodes of the network into k
clusters. A(Vc,Vc) =

∑
i∈Vc

∑
j∈Vc

((uic + ujc)∕2)wij, where Vc is the set of vertices

in community c, A(Vc,V) = A(Vc,Vc) +
∑

i∈Vc

∑
j∈V−Vc

((uic + (1 − ujc))∕2)wij and

A(V ,V) =
∑

i∈V
∑

j∈V wij. uic is the membership value that node i belongs to com-

munity c.

The existing overlapping community detection methods can be roughly divided

into two categories, the node-based (directly cluster nodes) and the link-based (clus-

ter links and then map link communities to node communities) ones, but the main-

stream for single solution based overlapping community detection is to first utilize

soft clustering technique such as fuzzy K-means to find a fuzzy partition of the nodes

of a network into k clusters, and then apply a criterion to choose the best overlapping

network partition [68, 70, 109, 134]. The key technique lies in the evaluation of an

overlapped community. As long as an evaluation criterion is decided, bio-inspired

metaheuristics can be easily utilized to solve this problem [24, 81, 84, 104]. For

more information about the fitness evaluation for overlapping communities, please

refer to [28, 129].

Other extended criteria such as the local modularity can be found in [90, 93], the

triangle modularity in [9] and the bipartite modularity in [58].

5.1.2 Multi-resolution Model

To overcome the resolution limitation of modularity, many multi-resolution models

have been developed. Pizzuti in [102] proposed a genetic algorithm for community

detection. The highlight of the work is the suggested community score (CS) evalu-

ation metric. Let 𝜇i =
1
|S|
kini be the fraction of edges connecting node i to the other

nodes in S and M(S) =
∑

i∈S(𝜇i)r

|S|
be the power mean of S of order r. |S| is the car-

dinality of S, i.e., the number of nodes in S. We further define vS =
1
2
∑

i k
in
i be the

volume of S, i.e., the number of edges connecting vertices inside S, then the score of

S is defined as score(S) = M(S) × vS. Assume that G has a partition of k subgraphs,

i.e., Ω =
{
S1, S2, ..., Sk

}
, then CS can be written as:

CS =
∑k

i=1score(Si) (18)
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The CS metric takes one parameter r which is hard to tune. The author claims

that higher values of the exponent r bias the CS towards matrices containing a low

number of zeroes, i.e., higher values of r help in detecting communities.

Li et al. in [80] put forward the modularity density (D) index. D can break the

resolution limitation brought byQ. For an unsigned network, let us define L(Sa, Sb) =∑
i∈Sa,j∈Sb Aij and L(Sa, Sa) =

∑
i∈Sa,j∈Sa

Aij, where Sa = Ω − Sa. Then D is defined as:

D
𝛼
=

k∑

i=1

2𝛼L(Si, Si) − 2(1 − 𝛼)L(Si, Si)
|Si|

(19)

where 𝛼[0, 1] is a resolution control parameter.D
𝛼

can be viewed as a combination of

the ratio association and the ratio cut [36]. Generally, optimize the ratio association

algorithm often divides a network into small communities, while optimize the ratio

cut often divides a network into large communities. By tuning the 𝛼 value, we can

use this general function to uncover more detailed and hierarchical organization of

a complex network. Based on modularity density, many algorithms have emerged

[21, 25, 27, 49, 51, 79].

5.2 Multi-objective Optimization Model

Many real-world optimization problems involve multiple objectives. From the state-

ment of the community detection problem discussed earlier we can notice that,

community detection can also be modeled as multiobjective optimization problems.

Many multiobjective optimization based community detection methods have been

developed in this respect. Each run of these methods can yield a set of community

partitions for the decision maker to choose. The most important point for these meth-

ods should own to their abilities for breaking through the resolution limit of modular-

ity. As stated earlier, components used in single objective optimization models, such

as the individual representation, recombination, etc., serve multiobjective optimiza-

tion models as well. This section primarily deals with the multiobjective community

detection models.

5.2.1 General Model

As stated earlier, for an unsigned network, the links within a community should

be dense while the links between communities should be sparse, as for a signed

network, the inter and intra links should all be dense. On the basis of this property,

many multiobjective community models are established.

Pizzuti in [103, 105] proposed a multiobjective genetic algorithm-based method

called MOGA-Net. In this method, the author modeled the community detection

task as a multiobjective optimization problem and then applied the fast elitist
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non-dominated sorting genetic algorithm (NSGA-II) [35] framework to solve it. The

two objectives introduced are the CS and the CF. Thus, the proposed optimization

model is:

max
{

f1 = CS
f2 = −CF

}

(20)

CF (community fitness) is a criterion put forward by Lancichinetti in [68]. CF is

formulated as:

CF =
∑

S∈Ω

∑

i∈S

kini
ki

(21)

From the formulation of CF and CS we may notice that, CF to some extent mea-

sures the link density within communities, while CS can be regarded as an index to

measure the averaged degrees within communities.

An improved version of MOGA-Net can be found in [20]. To optimize the above

model, other metaheuristics, such as the multi–objective enhanced firefly algorithm

[6], hybrid evolutionary algorithm based on HSA (harmony search algorithm [44])

and CLS (chaotic local search) [4, 5, 7], non-dominated neighbor immune algorithm

[52], have all find their niche in community detection.

In [54] the authors presented a multiobjective evolutionary algorithm based on

decomposition (MOEA/D) based method. MOEA/D is proposed by Zhang and Li in

[133]. The highlight of this work is the newly cranked out multiobjective community

optimization model which optimizes two objectives termed as NRA (Negative Ratio

Association) and RC (Ratio Cut). The optimization model is:

min

⎧
⎪
⎪
⎨
⎪
⎪
⎩

NRA = −
k∑

i=1

L(Si, Si)
|Si|

RC =
k∑

i=1

L(Si, Si)
|Si|

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(22)

It can be noticed that Eq. 22 is the decomposition of Eq. 19. RC measures the

link density between two communities and RA calculates the link density within a

community. To minimize NRA and RC we can ensure that the connections within a

community is dense and the links between communities are sparse. A similar opti-

mization model can be found in [50].

Other optimization models such as maximizing the combinations ofQ and CS can

be found in [2], and maximizing the two parts of the Q index, i.e., Q is decomposed

into two objectives, can be found in [120]. A three objectives model can be found in

[116]. Small surveys on the selection of objective functions in multiobjective com-

munity detection can be found in [121, 122].
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5.2.2 Signed Model

Many social networks involve friendly and hostile relations between the objects

that compose the networks. These networks are called signed networks. In [48] the

authors put forward a novel discrete multiobjective PSO framework for community

detection. To handle signed networks, the authors have suggested a signed optimiza-

tion model which optimizes two objectives named as SRA (Signed Ratio Association)

and SRC (Signed Ratio Cut). The optimization model reads:

min

⎧
⎪
⎪
⎨
⎪
⎪
⎩

SRA = −
k∑

i=1

L+(Si, Si) − L−(Si, Si)
|Si|

SRC =
k∑

i=1

L+(Si, Si) − L−(Si, Si)
|Si|

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(23)

where L+(Si, Sj) =
∑

i∈Si,j∈Sj Aij, (Aij > 0) and L−(Si, Sj) =
∑

i∈Si,j∈Sj |Aij|, (Aij < 0).
To minimize SRA and SRC we can make sure that the positive links within a commu-

nity are dense while the negative links between communities are also dense, which

is in accordance with the feature of signed community.

In [3] the authors put forward another signed optimization model which uses the

NSGA-II framework to optimize it. The model reads:

min
{

f1 = −Qsw
f2 = frustration

}

(24)

where frustration =
∑n

i,j(A
+
ij (1 − 𝛿(i, j)) − A−

ij 𝛿(i, j)). The first objective Qsw mea-

sures how good a signed community is and to minimize frustration we will ensure

that the sum of the negative links within a community and the positive links between

difference communities are minimum.

Recently, to detect communities from signed networks, the authors in [83] put

forward a signed optimization model based on node similarity. The optimization

model is as follows:

max

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

fpos−in (Ω) =
1
k

k∑

i=1

PSi
in

PSi
in + PSi

out

fneg−out (Ω) =
1
k

k∑

i=1

NSi
out

NSi
in + NSi

out

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

(25)

where PSi
in (or PSi

out) is the internal (or external) positive similarity of community Si,
and NSi

in (or NSi
out) is the internal (or external) negative similarity of community Si.

See reference [83] for more information about the similarity of a community. To
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maximize fpos−in we can ensure high positive similarities within communities, and

to maximize fneg−out we can guarantee high negative similarities between different

communities.

5.2.3 Overlapping Model

In real world, a node of a network may belong to more than one community, just

like the friendship network. From the perspective of finding overlapping communi-

ties, intuitively, the nodes that connect multiple communities with similar strength

are more likely to be overlapping nodes. For instance, if node i has both l links with

community a and b, then we can regard i as an overlapping node. From the view-

point of finding nonoverlapping or separated communities, the less the number of

overlapping nodes, the more the separated communities.

Based on the above principle, the authors in [84] put forward a three objectives

optimization model reads:

max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

f1 = fquality(Ω) =
CF
k

f2 = fseparated(Ω) = − ∣ Voverlap ∣

f3 = foverlapping(Ω) =
∑

i∈Voverlap

min
s∈Ω

{
ksi
ki
}

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(26)

where ksi denotes the number of edges connect node i and community s, Voverlap is the

set of the overlapping nodes. To maximize f2 and f3 one can get a tradeoff between

nonoverlapping and overlapping communities.

5.2.4 Dynamical Model

In reality, networks may evolve with the time, the nodes and the links may disappear

or new nodes may just come out, therefore, the community structures are also chang-

ing according to the time. However, traditional approaches mostly focuse on static

networks for small groups. As the technologies move forward, in the presence of big

data, how to design methods and tools for modeling and analyzing big dynamic net-

works is a challenging research topic in the years to come. To analyze the community

structures of dynamical networks will help to predict the change tendency which may

give support to the analysis of other network or networked scientific issues. Com-

munity detection in dynamic networks is challenging.

Dynamic community detection is normally based on a temporal smoothness

framework which assumes that the variants of community division in a short time

period are not desirable [39]. According to the temporal smoothness framework, the

community detection in dynamic networks can be naturally modeled as a bi-objective

optimization problem. The optimization of one objective is to reveal a community

structure with high quality at this moment, and the optimization of the other objective
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is to uncover a community structure at the next moment which is highly similar with

that at the previous time [26, 38–40, 55]. The commonly used dynamical optimiza-

tion model can be written as:

max
{

f1 = CS or Q or D
𝛼

f2 = NMI (27)

NMI, Normalized Mutual Information [33], comes from the field of information

theory. NMI can be regarded as a similarity index. For the community detection

problem, given that A and B are two partitions of a network, respectively, C is a

confusion matrix,Cij equals to the number of nodes shared in common by community

i in partition A and by community j in partition B. Then NMI(A,B) is written as:

NMI =
−2

∑CA
i=1

∑CB
j=1 Cijlog(Cij ⋅ n∕Ci.C.j)

∑CA
i=1 Ci.log(Ci.∕n) +

∑CB
j=1 C.jlog(C.j∕n)

(28)

where CA (or CB) is the number of clusters in partition A(or B), Ci. (or C
.j) is the

sum of elements of C in row i( or column j). NMI(A,B) = 1 means that A and B are

identical and NMI(A,B) = 0 indicates that A and B are completely different.

The first objective in Eq. 27 is the snapshot cost which measures how well a com-

munity structure A is at time t and the second objective is the temporal cost which

measures how similar the community structure B is at time t + 1 with the previous

community structure A.

Another dynamical model which maximizes the Min-max cut and global silhou-

ette index can be found in [65].

6 Network Data Sets

This section will list the network data sets commonly used in the literature for testing

purpose. The data sets contain two types, artificial benchmark networks and real-

world networks. Benchmark networks have controlled topologies. They are used to

mimic real-world networks. Different real-world networks may have different prop-

erties. Hence, real-world networks are still needed for testing purpose.

6.1 Artificial Generated Benchmark Networks

6.1.1 GN Benchmark and Its Extended Version

Girvan and Newan (GN) in [45] put forward a benchmark network generator which

is normally recognized as the GN benchmark. For a GN benchmark network, it was
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constructed with 128 vertices divided into four communities of 32 vertices each.

Edges were placed between vertex pairs independently at random, with probability

Pin for vertices belonging to the same community and Pout for vertices in different

communities, with Pout < Pin. The probabilities were chosen so as to keep the aver-

age degree z of a vertex equal to 16.

An extended version of the GN model was introduced in [32]. The extended

benchmark network also consists of 128 nodes divided into four communities of

32 nodes each. Every node has an average degree of 16 and shares a fraction 𝛾 of

links with the rest in its community, and 1 − 𝛾 with the other nodes of the network.

Here, 𝛾 is called the mixing parameter. When 𝛾 < 0.5, the neighbours of a vertex

inside its community are more than the neighbors belonging to the rest groups.

6.1.2 LFR Benchmark

Standard benchmarks, like the GN benchmark or its extended version, do not account

for important features in graph representations of real systems, like the fat-tailed dis-

tributions of node degree and community size, since on those benchmark networks,

all vertices have approximately the same degree, moreover, all communities have

exactly the same size by construction.

To overcome these drawbacks, a new class of benchmark graphs have been

proposed by Lancichinetti, Fortunato, and Radicchi (LFR) in [69], in which the dis-

tributions of node degree and community size are both power laws with tunable expo-

nents. They assume that the distributions of degree and community size are power

laws, with exponents 𝜏1 and 𝜏2, respectively. Each vertex shares a fraction 1 − 𝜇 of

its edges with the other vertices of its community and a fraction 𝜇 with the vertices

of the other communities; 0 ≤ 𝜇 ≤ 1 is the mixing parameter. The software to cre-

ate the LFR benchmark graphs can be freely downloaded at http://santo.fortunato.

googlepages.com/inthepress2. In our experiments, we generate 17 networks with the

mixing parameter increasing from 0 to 0.8 with an interval of 0.05.

6.1.3 Signed LFR Benchmark

The LFR network generator is a reliable model for benchmarking. However, this

model is originally designed for unsigned networks. In order to mimic signed social

networks, The LFR model can be extended into signed version. Here we give a fea-

sible way to do so.

A signed LFR model can be depicted by SLFR(n, kavg, kmax, 𝛾, 𝛽, smin, smax, 𝜇,
p−, p+), where n is the number of nodes; kavg and kmax are the averaged and max-

imum degree of a node, respectively; 𝛾 and 𝛽 are the exponents for the power law

distribution of node degree and community size, respectively; smin and smax are the

minimum and maximum community size, respectively.𝜇 is a mixing parameter. Each

node shares a fraction 1 − 𝜇 of its links with the other nodes of its community and a

fraction 𝜇 with the other nodes of the network. p− is the fraction of negative edges

http://santo.fortunato.googlepages.com/inthepress2
http://santo.fortunato.googlepages.com/inthepress2
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within communities, and p+ is the fraction of positive edges between different com-

munities.

6.2 Real-World Networks

Tables 2 and 3 list the parameters of 8 commonly tested unsigned and signed net-

works. In the Tables, m+
and m−

denote the numbers of positive and negative edges,

respectively. k is the averaged node degree.

6.3 Famous Websites

Apart from the above mentioned network data sets, many other network data sets are

available on the Internet. In this part we list several famous websites as follows:

∙ http://www-personal.umich.edu/∼mejn/ (Mark Newman Website)

∙ http://deim.urv.cat/∼aarenas/data/welcome.htm (Alex Arenas Website)

Table 2 Eight commonly tested unsigned networks

Network #Node #Edge #Clusters k Ref.

Karate 34 78 2 4.588 [132]

Dolphin 62 159 2 5.129 [87]

Football 115 613 12 10.661 [45]

SFI 118 200 Unknown 3.390 [45]

E-mail 1133 5451 Unknown 9.622 [57]

Netscience 1589 2742 Unknown 3.451 [95]

Power grid 4941 6594 Unknown 2.669 [126]

PGP 10680 24340 Unknown 4.558 [17]

Table 3 Eight commonly tested signed networks

Network #Node #Edge m+ m− k Ref.

SPP 10 45 18 27 9.000 [67]

GGS 16 58 29 29 7.250 [108]

EGFR 329 779 515 264 4.736 [101]

Macrophage 678 1,425 947 478 4.204 [100]

Yeast 690 1,080 860 220 3.130 [91]

Ecoli 1,461 3,215 1,879 1,336 4.401 [118]

WikiElec 7,114 100,321 78,792 21,529 28.204 [73]

Slashdot 77,357 466,666 352,890 113,776 12.065 [73]

http://www-personal.umich.edu/~mejn/
http://deim.urv.cat/~aarenas/data/welcome.htm
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∙ http://snap.stanford.edu/index.html (Stanford Network Analysis Project. Diverse

kinds of network data and graphical visualization softwares and tools and useful

codes are available.)

∙ http://www.correlatesofwar.org/ (The Correlates of War Project. A large amount

of signed networks mainly related to war are free to access.)

∙ http://www.gmw.rug.nl/∼huisman/sna/software.html (A collection of softwares

for social network analysis.)

∙ http://tuvalu.santafe.edu/∼aaronc/hierarchy/ (Hierarchical Random Graphs)

7 Experimental Exhibition

In [22] we have suggested a greedy discrete particle swarm optimization algorithm

(GDPSO) for big network community discovery. The GDPSO algorithm optimizes

the modularity index. As what follows we will show its performance over several

real-world networks.

Table 4 lists the averaged modularity values obtained by five methods over 30

independent runs on six networks. The GDPSO algorithm is an optimization based

method. GDPSO is competitive to the rest four methods in terms of the modularity

index.

On one hand, it is natural to model network community discovery as a multiob-

jective optimization problem. On the other hand, based on the preliminary shown

in Sect. 3.1, we can get to know that a single run of a MOEA based community

discovery method can output a set of solutions, as shown in Fig. 6.

As can be seen from Fig. 6 that each Pareto solution denotes a certain network

community structure. However, each single run of the methods listed in Table 4 can

only output one solution. There is no doubt that the MOEA based community discov-

ery facilitates intelligent multi-criteria decision making. For more exhibitions about

the MOEA based community discovery please refer to our recent work in [48].

It should be noted that based on the optimization models discussed in Sect. 5,

one can design different single objective EAs or MOEAs to optimize those models.

However, according to the NFL (No Free Lunch) theory [127], there is no one-for-all

Table 4 Averaged modularity values obtained by five methods over 30 independent runs

Network GDPSO CNM BGLL Infomap LPA

Karate 0.4198 0.3800 0.4180 0.4020 0.3264

Dolphin 0.5280 0.4950 0.5188 0.5247 0.4964

Football 0.6041 0.5770 0.6046 0.6005 0.5848

E-mail 0.4783 0.4985 0.5412 0.5355 0.0070

Power grid 0.8368 0.9229 0.7756 0.8140 0.7476

PGP 0.8013 0.8481 0.9604 0.7777 0.7845

http://snap.stanford.edu/index.html
http://www.correlatesofwar.org/
http://www.gmw.rug.nl/~huisman/sna/software.html
http://tuvalu.santafe.edu/~aaronc/hierarchy/
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Fig. 6 An illustration of the Pareto front obtained by an MOEA for community discovery from

the Karate network

method that can deal with all kinds of networks. For one thing, for different network

issues, we can solve them well as long as we can establish a good optimization model

that can well depict the nature of those problems. For another thing, we should make

efforts to enhance the search abilities of the optimization algorithms. Meanwhile,

different networks have different space-time properties. Consequently, we should

take into account the special characters of the networks when designing algorithms

to solve network issues.

8 Concluding Remarks

Network analysis is one of the theoretical underpinnings of big data. Network com-

munity discovery serves as the backbone of network analysis. The past decades have

witnessed the prosperity of the research on community discovery. A large number of

techniques have been cranked out to discover communities in the networks. Among

the extant avenues for solving the network community discovery problem, many of

them are nonconvex optimization based.

This chapter tries to investigate the network community discovery problem from

the optimization view. Single objective and multiobjective optimization models for

network community discovery problems are delineated. Experimental studies are

also shown to demonstrate the promise of the optimization based idea for network

analytics.
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We expect that complex network analysis’s scope will continue to expand and

its applications to multiply. We are positive that methods and theories that work

for community detection are helpful for other network issues. From both theoretical

and technological perspectives, network community discovery technology will move

beyond network analytics toward emphasizing network intelligence. We do hope that

this chapter can benefit scholars who set foot in this field. Our future work will focus

on more in-depth analysis of network issues. Such analysis is expected to shed light

on how networks change the real world.
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Large-Scale and Big Optimization Based
on Hadoop

Yi Cao and Dengfeng Sun

Abstract Integer Linear Programming (ILP) is among the most popular opti-
mization techniques found in practical applications, however, it often faces com-
putational issues in modeling real-world problems. Computation can easily outgrow
the computing power of standalone computers as the size of problem increases. The
modern distributed computing releases the computing power constraints by pro-
viding scalable computing resources to match application needs, which boosts
large-scale optimization. This chapter presents a paradigm that leverages Hadoop,
an open-source distributed computing framework, to solve a large-scale ILP
problem that is abstracted from real-world air traffic flow management. The ILP
involves millions of decision variables, which is intractable even with existing
state-of-the-art optimization software package. Dual decomposition method is used
to separate variables into a set of dual subproblems that are smaller ILPs with lower
dimensions, the computation complexity is downsized. As a result, the subproblems
are solvable with optimization tools. It is shown that the iterative update on
Lagrangian multipliers in dual decomposition method can fit into the Hadoop’s
MapReduce programming model, which is designed to allocate computations to
cluster for parallel processing and collect results from each node to report aggregate
results. Thanks to the scalability of the distributed computing, parallelism can be
improved by assigning more working nodes to the Hadoop cluster. As a result, the
computational efficiency for solving the whole ILP problem is not impacted by the
input size.

Keywords Integer linear programming ⋅ Distributed computing ⋅ Hadoop ⋅
MapReduce

Y. Cao (✉) ⋅ D. Sun
School of Aeronautics and Astronautics, Purdue University, West Lafayette
IN 47906-2045 USA
e-mail: cao20@purdue.edu

D. Sun
e-mail: dsun@purdue.edu

© Springer International Publishing Switzerland 2016
A. Emrouznejad (ed.), Big Data Optimization: Recent Developments
and Challenges, Studies in Big Data 18, DOI 10.1007/978-3-319-30265-2_16

375



1 Introduction

Integer Linear Programing is a subclass of Linear Programming (LP) with integer
constraints. A LP problem can be solved in polynomial-time but an ILP could be
Non-deterministic Polynomial-time hard (NP-hard). It could be computationally
demanding as the input size increases. The famous Traveling Salesman Problem
(TSP) is a classic ILP problem that represents a wide range of optimization
applications in real life, such as logistics, task scheduling, manufacturing. Many of
these problems can be formulated in a similar way and solved by algorithms with
exponential worst-case performance. That means even a small number of variables
could lead to a considerable amount of computations. For many real-world prob-
lems with large number of variables, the computations are drastically beyond the
capacity of general-purpose commodity computers. In the face of large-scale
optimization problems, people often adopt tactic strategies, such as heuristics. But
heuristics are quite problem-specific. It is hard to generalize the approach to benefit
a broader set of ILP problems. Another popular strategy is to relax the integer
constraints so that the LP relaxation can be solved in polynomial time. But such
tactics must be compensated by well-designed rounding off strategies to avoid
constraint violations. Another shortcoming due to relaxation is that optimality is
sacrificed. Therefore, how to solve large-scale optimization posts a serious
challenge.

Today, distributed computing has greatly changed the landscape of big data.
Unlike traditional centralized computing that scales up hardware to escalate com-
puting capacity, distributed computing scales out the hardware with cheaper
hardware. This feature makes it prevalent in industry where cost-efficiency is a big
concern. Hadoop is a paradigm of distributed computing. It is an open-source
framework under Apache Software Foundation.1 The philosophy of Hadoop is to
ship the code to data stored in distributed file system and process the data locally
and concurrently. Hadoop adopts MapReduce programming model that is devised
for list processing. The output from a MapReduce job is a shorter list of values
representing information extracted from a big input dataset. As the complexity of
internal mechanism of job scheduling is transparent to developers, developers need
not to master parallel computing before implementing the algorithms they want to
parallelize. As a result, Hadoop has been leveraged in many computation intensive
tasks since its birth, such as Discrete Fourier Transform used in signal and image
processing [1], K-Means clustering used in cluster analysis [2], and logistic
regression used in machine learning [3].

In optimization, researchers from Google have experimented distributed gradient
optimization based on MapReduce framework [4]. The optimization serves logistic
regression. Boyed et al. are among the first to explore solving large-scale opti-
mization using MapReduce framework [5]. However, it was just a tentative dis-
cussion without proof of numeric results. But their effort has outlined the approach

1http://hadoop.apache.org.
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that would address the massive computations arising from large-scale optimization.
That is, if a large ILP can be decomposed into smaller subproblems, then the
required memory and computing units to solve subproblems are downsized.
Actually this idea is fully supported by dual decomposition method [6]. In this
chapter, we will examine an ILP abstracted from air traffic flow management and
show how to leverage the MapReduce programming model to achieve parallelism.
In the following sections, we will first describe the ILP derived from an air traffic
flow formulation and a dual decomposition method. Then the MapReduce pro-
gramming model is introduced, followed by a discussion on fitting the decomposed
ILP into MapReduce programming model. Finally, the computational efficiency is
examined.

2 Air Traffic Flow Optimization

2.1 Problem Formulation

The National Airspace System (NAS) of United States is among the most complex
aviation systems around the world. Minimizing delays while keeping safe opera-
tions has been the central topic in the air traffic management community. The entire
airspace in the continental United States is vertically partitioned into three layers
based on altitude ranges. In each layer, the airspace is partitioned into small control
sectors, as illustrated in Fig. 1. A flight path can be represented as a sequence of
links that connect origin and destination airports, with each link being an
abstraction of passage through a sector. Flight paths are indexed by k ∈ {0, … K},
and links are indexed by i ∈ {0, … nk}. The length of a link is equal to the amount
of traversal time rounded to the nearest integer minutes, denoted as Tk

i ∈ N. Sta-
tistically, the observed traversal time is Gaussian without interruptions arising from
stochastic factors, like extreme weather, temporary airport or sector closure, and
many other emergencies [7]. We only focus on deterministic scheduling here,
which is the backbone for stochastic models [8].

Consider traffic with a planning time horizon t∈ 0, . . . Tf g. The variable xki tð Þ
represents the number of flights in link i on route k. The dynamics of a path is a
description of flows moving forward from upstream link to the downstream link at
each time step t, and the flows are in compliance with the principle of flow con-
servation. The inflow rate from link i− 1 to link i at time t is denoted by qki tð Þ. The
flow dynamics of a path is given by:

xki t+1ð Þ= xki tð Þ− qki tð Þ+ qki− 1 tð Þ ∀ t∈ 0, ..., Tf g ð1Þ

For the first link, the inflow is scheduled departures qk0 = f kðtÞ. To guarantee rea-
sonable flow rate moving forward along a path, we construct the following
constraints:
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∑
T

t=0
qk0 tð Þ= ∑

T

t=0
qknk ðtÞ= ∑

T

t=0
f kðtÞ ð2Þ

∑
Tk
*

t= Tk
0 + Tk

1 + ...+ Tk
i

qki ðtÞ≤ ∑
Tk
* − Tk

i

t= Tk
0 +Tk

1 + ...+ Tk
i− 1

qki− 1ðtÞ ∀Tk
* > Tk

0 + Tk
1 +⋯+ Tk

i

ð3Þ

qki ð0Þ= qki , xki ð0Þ= xki ð4Þ

Equality (2) states that the total inflow into a path is equal to its total outflow.
Inequality (3) dictates that every flight must dwell in link i for at least Tk

i minutes.
Equalities (4) are initial states for each link, where qki and xki are constants. Besides
the flow dynamics, the most important constraint in flow management is capacity.
For each sector, the Federal Aviation Administration (FAA) establishes a so-called
Monitor Alert Parameter (MAP) that would trigger notification to the air traffic
controllers if the number of flights in a control volume exceeds the MAP value [9].
We denote the value for sector s as MAPs tð Þ. It is a time varying parameters but
could be derived through FAA’s system, so it is an input. The capacity is formu-
lated as:

∑
ði, kÞ∈ s

xki ðtÞ≤MAPsðtÞ ∀t∈ 0, ..., Tf g ð5Þ

Likewise, airports also have arrival capacities CarrðtÞ and departure capacities
CdepðtÞ, formulated as:

∑
ð0, kÞ∈ arr

xk0ðtÞ≤CarrðtÞ ∑
ðnk , kÞ∈ dep

xknk ðtÞ≤CdepðtÞ ∀t∈ 0, ..., Tf g ð6Þ

Fig. 1 Link transmission
model for air traffic flows
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As mentioned above, the goal is to minimize delays. The objective is given by:

Objective min d(xki ðtÞÞ= ∑
t
∑
k
∑
i
cki x

k
i ðtÞ ð7Þ

where cki is a weight associated with link i. This objective function can be inter-
preted as the total flight time of all flights in the planning time horizon. It is
equivalent to minimizing total delays in the NAS. Equality (2) drives the flow
moving forward, and Inequality (3), on the other hand, restricts the flow rate.
A feasible solution is that flights are delayed in upstream sectors if downstream
sectors are full. xki (t) tends to stay at current level for longer when delay happens.
Flights continue to move on once the downstream sectors become available, then
xki (t) begins to decrease. Objective function (7) ensures that xki (t) keeps at low level
as much as possible, which is equivalent to minimizing delays.

By definition, the variables xki (t) and qjiðtÞ are all integers as they are numbers of
flights. Note that all constraints are linear, therefore we obtain an ILP. Also note
that all the coefficients associated with the variables in constraint (1)–(6) are 1 or
−1, hence the constraint matrix preserves total unimodularity. In addition, all the
right hand side parameters, namely f kðtÞ, MAPsðtÞ, CarrðtÞ and, CdepðtÞ, are inte-
gers, it can be proved that an ILP of this kind is equivalent to its relaxation so it can
be solved with polynomial time algorithms like simplex [10]. But even so the
problem is too big to solve as a whole. Objective (7) indicates that the size of vector
xki (t) is proportional to the length of planning time horizon, the number of paths
involved, and the number of links on each path. Strategic air traffic planning usually
plan 2–3 h into the future, and roughly 2400 flight paths were identified during the
peak hours in the NAS, and each path comprises 15 links on average [11]. As a
result, there could be up to 120 × 2400× 15= 4.32 million variables for xki (t) alone.
In addition, the flow rate qki ðtÞ is also considered variable and has the same pop-
ulation as xki (t). The total number of variables could be up to 9 million. The best
know LP algorithm has a runtime complexity of Oðn3.5LÞ [12], where n is the
number of variables and L is the length of the data. The estimate computational
complexity is so huge, thus the original problem is considered intractable.

2.2 Dual Decomposition Method

A feasible solution is to decompose the original problem to derive subproblems that
are smaller in size, which can be done by employing Lagrangian multiplier [13].
Note that constraints (1)–(4) are arranged by path, and constraints (5) and (6) are the
coupling constraints where paths are coupled together. We can introduce Lagran-
gian multipliers and obtain the following Lagrangian:

Large-Scale and Big Optimization Based on Hadoop 379



Lðxki ðtÞ, λki ðtÞ, λarrðtÞ, λdepðtÞÞ= ∑
t
∑
k
∑
i
cki x

k
i ðtÞ+ ∑

t
∑

ði, kÞ∈ s
λki ðtÞðxki ðtÞ−MAPsðtÞÞ

+ ∑
t
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λarrðtÞðxk0ðtÞ−CarrðtÞÞ+ ∑
t
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ðnk , kÞ∈ dep

λdepðtÞðxknk ðtÞ−CdepðtÞÞ.

Reorganize the variables by path:
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i
cki x
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λki ðtÞxki ðtÞ

"

+ ∑
ð0, kÞ∈ arr

λarrðtÞxk0ðtÞ+ ∑
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#
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If we denote:

arg min
λki ðtÞ≥ 0,
λarrðtÞ≥ 0,
λdepðtÞ≥ 0

dkðxki ðtÞÞ= ∑
t

∑
nk − 1

i=1
ðcki + λki ðtÞÞxki ðtÞ+ ðck0 + λarrðtÞÞxk0ðtÞ+ ðck0 + λdepðtÞÞxknk ðtÞ

" #

,

and have the Lagrangian multipliers fixed for some non-negative values, this along
with constraint (1)–(4) forms a set of independent subproblems that are related to
each path only. The number of variables is 120 × 15× 2=3600 for each sub-
problem on average, which is within reach of normal optimization tool. Once
subproblems are solved, the original problem is a function of Lagrangian multi-
pliers only, which can be updated using subgradient method. The global optimum is
approached by updating the subproblems and Lagrangian multipliers iteratively.
The algorithm is summarized in Table 1.

Thanks to the decomposition method, we derive a parallel algorithm that enables
solving subproblems in parallel. The subproblems can be solved using off-the-shelf
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optimization package, such as COIN-OR2 or IBM ILOG CPLEX.3 Efficient
implementation of the parallel algorithms relies on parallel computing technology.

3 Hadoop MapReduce Programming Model

Hadoop has gained popularity in processing big data worldwide. Two most
important components in Hadoop are Hadoop Distributed File System (HDFS) and
Hadoop MapReduce, which are strongly correlated. The HDFS manages data

Table 1 Parallel algorithm for the traffic flow optimization

while Lðxki ðtÞ*, λki ðtÞ, λarrðtÞÞj −Lðxki ðtÞ*, λki ðtÞ, λarrðtÞ, λdepðtÞÞj− 1

Lðxki ðtÞ*, λki ðtÞ, λarrðtÞ, λdepðtÞÞj− 1

���
���> ε:

for path k:
solve the kth ILP:

dkðxki ðtÞÞ* =min∑
t

∑
nk − 1

i=1
ðcki + λki ðtÞÞxki ðtÞ+

"

ðck0 + λarrðtÞÞxk0ðtÞ+ ðck0 + λdepðtÞÞxknk ðtÞ
�

s. t.
xki ðt+1Þ= xki ðtÞ− qki ðtÞ+ xki− 1ðtÞ ∀ t∈ f0, ⇌ Tg
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qki ð0Þ= qki , xki ð0Þ= xki
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Update master problem:

Lðxki ðtÞ*, λki ðtÞ, λarrðtÞ, λdepðtÞÞ= ∑
k
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t
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λki ðtÞMAPsðtÞ+

"

∑
ðnk , kÞ∈ arr

λarrðtÞCarrðtÞ+ ∑
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( )

j = j + 1

2http://www.coin-or.org.
3http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.
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storage and MapReduce governs data processing. Hadoop clusters adopt
master/slave topology, as shown in Fig. 2. In its own terminology, the master is
called NameNode and slave is called DataNode. When files (data) are loaded into a
Hadoop cluster, they are split into chunks with multiple replicas stored on different
DataNodes. This redundancy provides fault tolerance for DataNode failures. The
NameNode keeps track of these data splits and coordinates data transfer when
necessary. Both NameNode and DataNode run daemon processes when the Hadoop
system is up. The one running on NameNode is called Job tracker, and the ones
running on DataNodes are called Task tracker. Job tracker is in charge of allocating
jobs to Task tracker and gathers results, and Task tracker monitors the jobs on its
local DataNode and sends results back. This infrastructure forms the basis for
distributed computing.

Jobs are defined by MapReduce, which is a programming model written in Java
[14]. MapReduce job conceptualizes data processing as list processing and is pri-
marily fulfilled by two interfaces: mapper and reducer [15], as illustrated in Fig. 3.
Input data are splits on DataNodes. Each split is read and parsed as a list of tuples in

Fig. 2 Hadoop cluster topology

Fig. 3 MapReduce process
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a format of <key, value> by the mapper. The key and value can be any data type.
The list undergoes some filtering logic defined by users. This digestion process
takes place on each DataNode in parallel. The intermediate results are sent to
reducer, which aggregates the results and emits another list of <key′, value′> as the
final results.

Essentially, the map step is a process where data are parsed and processed, and
reduce step is a process where information of interest is extracted, aggregated and
summarized. At a high level, the pseudo-code of mapper and reducer can be
expressed as follows:

The outputs from mapper are grouped by key, and each reducer receives a group
of values per key. The processing in mapper and reducer is custom code by users.
Thanks to MapReduce’s standardized data structure for input and output, devel-
opers only need to design the processing logic applied to each <key, value> pair.
The framework automatically handles sorting, data exchange and synchronization
between nodes, which significantly simplifies the development of distributed
computing applications.

The parallel algorithm described in the last section could benefit from this
programming model. In implementation, the mapper is a wrapper of an optimizer.
A mapper handles subproblems and returns sector counts contributed by each path
it handled. A reducer aggregates sector counts and updates the master problem and
Lagrangian multipliers. A <key, value> mapping of the algorithm is shown below.

mapper input key k path ID k
mapper input value v λki ðtÞ, λarrðtÞ, λdepðtÞ, f kðtÞ
mapper output key k′ sector ID s
mapper output value v′ xki ðtÞ
reducer input key k′ sector ID s
reducer input value [v1′, v2′, …] xki ðtÞ

��ði, kÞ∈ s
� �

reducer output key k” sector ID s
reduce output value v” λki ðtÞ, λarrðtÞ, λdepðtÞ

Figure 4 shows the data flow in a MapReduce cycle. Because link information,
such as length of links Tk

i , sector capacities MAPsðtÞ and airport capacities CarrðtÞ
and CdepðtÞ, are constants, these parameters are stored in a relational database and
retrieved when subproblems are set up in each iteration.
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4 Numeric Results

The following analysis is based on real-world air traffic data extracted from Aircraft
Situation Display to Industry (ASDI). The ASDI data are collected by Enhanced
Traffic Management System (ETMS), which receives flight status from Air Traffic
Control System Command Centers [16]. ASDI feed contains planned flight
schedules and routes, 3-dimension position and associated timestamp of flights, and
many other related flight information. The flight schedules and routes are of interest
here, which can be used to parameterize f kðtÞ and Tk

i . We set the planning time
horizon to be 2 h and choose high traffic period in which 2423 flight routes are
involved in the optimization. This is a NAS-wide instance of air traffic flow opti-
mization, which covers 1258 sectors and 3838 general public airports in the United
States. For validation purpose, we purposely decrease the MAP values and airport
capacities to 70 % of their normal operation values to stress the optimization model.

The optimization runs on a Hadoop cluster with six nodes. Each node is a DELL
workstation configured with an Intel i7 CPU and 16 GB of RAM. Ubuntu 10.04
and Hadoop v0.20.2 are deployed on the cluster. We use IBM ILOG CPLEX as the
optimizer. CPLEX provides a Java API library, hence the language is in line with
Hadoop MapReduce framework. In addition, CPLEX supports multi-processing.
With a parallel option license, multiple optimizers can be launched simultaneously.

Figure 5 shows the number of flights in a sector during the 2-h traffic opti-
mization in Cleveland Air Route Traffic Control Center. The optimized traffic
(ASDI data) does not exceed the reduced MAP during the planning time horizon so
the capacity constraints are well respected. But as a trade-off, this results in delays.

Fig. 4 Data flow in a MapReduce cycle
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We can see that the blue line extends beyond the 2-h planning time horizon, which
reflects the delayed traffic. Figure 6 shows the development of traffic during the 2-h
planning time horizon. It compares the ‘uncontrolled’ traffic (ASDI data) and
optimized traffic in high altitude sectors of the NAS. We use different coloring to
represent sector loads. When the flight count in a sector is equal to the reduced
MAP value, the sector load is said to be 1 and shown as red. It can be seen that the
optimization effectively reduces occurrence of capacity violation.

To examine the efficiency of distributed platform, we first set up a baseline
where the optimization runs on a standalone computer. In a monolithic imple-
mentation, the subproblems are solved sequentially, which takes about 135 min to
finish the optimization. In the experiment, we use two cluster configurations to run
the optimization, one with 3 DataNodes and the other with 6 DataNodes. The
running time of the optimization is shown in Fig. 7. As it shows, the larger cluster
gains higher efficiency.

The concurrency is mainly determined by the number of mappers in this specific
algorithm. As a configurable parameter, the maximum number of mappers allowed
on a node can be tuned by users. The running time decreases as more mappers are
launched. But, the efficiency stops increasing when the number of mappers per
node is more than eight. This is due to the fact that an Intel i7 CPU has four
physical cores, with each being capable of handling two threads simultaneously. As
a result, the maximum number of threads a node can run in parallel is eight. In
theory, the Hadoop cluster can have at maximum of 6 × 8 = 48 threads running
concurrently. When more mappers are launched, threads have to share computing
resources on the same node. Concurrency hits the cap unless more DataNodes are
added to the cluster. The trend of the curve also indicates that the speedup is not
linear to the number of mappers. Only 16 times the speedup was achieved. There
are two reasons to account for this. First, the parallel programming model has
inherent overheads such as communication and synchronization between nodes.
Second, unbalanced workloads cause idle time for some nodes. Figure 8 shows the

Fig. 5 Aircraft count in a
sector (ZOB 29) in Cleveland
Air Route Traffic Control
Center
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Fig. 6 Sector payload status during the planning time horizon. Left are ASDI data. Right
optimized traffic. a 5:00 PM. b 6:00 PM. c 7:00 PM
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running time of solving subproblems on each node. Node 3 is about 4.5 s ahead of
node 4 in each iteration. When setting up the optimization, we evenly distributed
subproblems to each node. Although all the nodes have the same configuration, the
complexity of subproblems may have big variations due to the number of con-
straints and variables.

5 Conclusion

In this chapter, we present a model that solves large-scale Integer Linear Pro-
gramming problem by using a combination of parallel algorithm and distributed
platform. We first seek arithmetical approach to decompose the original problem
such that computational complexity is decreased. Then we leverage Hadoop
MapReduce framework to achieve parallel computation. This approach is validated
through tackling a large air traffic flow optimization problem. It is shown that the
parallelism level is scalable.

Leveraging Hadoop MapReduce in parallel algorithm implementation is
cost-efficient. On one hand, the hardware requirement is relatively low. The
framework can be deployed on commodity computer clusters with easy

Fig. 7 Running time
reduction

Fig. 8 Running time for each
iterations
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configuration. On the other hand, programming effort is minimized since the
framework automatically schedules parallel computation tasks across cluster nodes.
With the flexible data model and well-designed interface of MapReduce, many
parallel algorithms can be easily programmed and applied to real-world
applications.

More recently, a Hadoop-derivative framework, Apache Spark, has emerged and
is attracting more and more interests from the big data community. As it holds
intermediate results in memory rather than storing them into disk, multi-pass
MapReduce jobs can be stringed together with minimized Input/Output operations
in the distributed file system. Therefore it achieves higher performance than
MapReduce’s disk-based paradigm. Applications under Apache Spark framework
are reportedly 100 times faster. As a future direction, it is worthwhile to translate
MapReduce-based optimizations into Apache Spark to further reduce the running
time. The overall performance of parallel optimization should greatly benefit from
the streaming functionality of Apache Spark.
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Computational Approaches in Large-Scale
Unconstrained Optimization

Saman Babaie-Kafaki

Abstract As a topic of great significance in nonlinear analysis and mathematical

programming, unconstrained optimization is widely and increasingly used in engi-

neering, economics, management, industry and other areas. Unconstrained optimiza-

tion also arises in reformulation of the constrained optimization problems in which

the constraints are replaced by some penalty terms in the objective function. In many

big data applications, solving an unconstrained optimization problem with thousands

or millions of variables is indispensable. In such situations, methods with the impor-

tant feature of low memory requirement are helpful tools. Here, we study two fami-

lies of methods for solving large-scale unconstrained optimization problems: conju-

gate gradient methods and limited-memory quasi-Newton methods, both of them are

structured based on the line search. Convergence properties and numerical behaviors

of the methods are discussed. Also, recent advances of the methods are reviewed.

Thus, new helpful computational tools are supplied for engineers and mathemati-

cians engaged in solving large-scale unconstrained optimization problems.

Keywords Unconstrained optimization ⋅ Large-scale optimization ⋅ Line search ⋅
Memoryless quasi-Newton method ⋅ Conjugate gradient method

1 Introduction

We consider the minimization of a smooth nonlinear function f ∶ ℝn → ℝ, that is,

min
x∈ℝn

f (x), (1)

in the case where the number of variables n is large and analytic expressions for the

function f and its gradient ∇f are available. Although the minimizer of f is a solution
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of the system ∇f (x) = 0, solving this generally nonlinear and complicated system is

not practical.

Among the most useful tools for solving large-scale cases of (1) there are the con-

jugate gradient methods and the limited-memory quasi-Newton methods, because

the amount of memory storage required by the methods is low. In addition, the

methods possess the attractive features of simple iterative formula and strong global

convergence as well as applying the Hessian information. The methods can also be

straightly employed in penalty function methods, a class of efficient methods for

solving constrained optimization problems.

Generally, iterations of the above-mentioned methods are in the following form:

x0 ∈ ℝn
, xk+1 = xk + sk, sk = 𝛼kdk, k = 0, 1,… , (2)

where dk is a search direction to be computed by a few inner products and 𝛼k is a step

length to be determined by a line search procedure. The search direction dk should

be a descent direction, i.e.,

gT
k dk < 0, (3)

where gk = ∇f (xk), to ensure that the function f can be reduced along the search

direction dk. The most reduction is achieved when the exact (optimal) line search is

used in which

𝛼k = argmin
𝛼≥0

f (xk + 𝛼dk).

Hence, in the exact line search the step length 𝛼k can be considered as a solution of

the following equation:

∇f (xk + 𝛼dk)Tdk = 0. (4)

Since the exact line search is not computationally tractable, inexact line search

techniques have been developed [74, 86], most of them structured based on quadratic

or cubic polynomial interpolations of the one-dimensional function 𝜑(𝛼) = f (xk +
𝛼dk). Finding minimizers of the polynomial approximations of 𝜑(𝛼), inexact line

search procedures try out a sequence of candidate values for the step length, stopping

to accept one of these values when certain conditions are satisfied.

Among the stopping conditions for the inexact line search procedures, the so-

called Wolfe conditions [91, 92] have attracted especial attention in convergence

analyses and implementations of the unconstrained optimization algorithms, requir-

ing that

f (xk + 𝛼kdk) − f (xk) ≤ 𝛿𝛼kgT
k dk, (5)

∇f (xk + 𝛼kdk)Tdk ≥ 𝜎gT
k dk, (6)
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where 0 < 𝛿 < 𝜎 < 1. The first condition, called the Armijo condition, ensures ade-

quate reduction of the objective function value while the second condition, called

the curvature condition, ensures unacceptably of the short step lengths. However,

a step length may fulfill the Wolfe conditions without being sufficiently close to a

minimizer of𝜑(𝛼). To overcome this problem, the strong Wolfe conditions have been

proposed which consist of (5) and the following strengthened version of (6):

|∇f (xk + 𝛼kdk)Tdk| ≤ −𝜎gT
k dk. (7)

Considering (4), if 𝜎 → 0, then the step length which satisfies the strong Wolfe con-

ditions (5) and (7) tends to the optimal step length.

In practical computations, the Wolfe condition (5) may never be satisfied due to

the existence of numerical errors. This computational drawback of the Wolfe condi-

tions was carefully analyzed in [59] on a one-dimensional quadratic function. Based

on the insight gained by the numerical example of [59], one of the most accurate

and efficient inexact line search algorithms has been proposed in [59, 60], using a

quadratic interpolation scheme and the following approximate Wolfe conditions:

𝜎gT
k dk ≤ ∇f (xk + 𝛼kdk)Tdk ≤ (2𝛿 − 1)gT

k dk, (8)

where 0 < 𝛿 <
1
2

and 𝛿 ≤ 𝜎 < 1. The line search algorithm of [60] has been further

improved in [42].

In what follows, at first we discuss several basic choices for the search direction

dk in (2) corresponding to the steepest descent method, Newton method, conjugate

direction methods and quasi-Newton methods, together with their advantages and

disadvantages as well as their relationships. Then, we focus on the conjugate gradi-

ent methods and the limited-memory quasi-Newton methods which are proper algo-

rithms for large-scale unconstrained optimization problems. For all of these methods,

the line search procedure of [60] can be applied efficiently. Also, a popular stopping

criterion for the iterative method (2) is given by

||gk|| < 𝜀,

in which 𝜀 is a small positive constant and ||.|| stands for the Euclidean norm.

2 Basic Unconstrained Optimization Algorithms

Here, we briefly study basic algorithms in the field of unconstrained optimization, all

of them are iterative in the form of (2) with especial choices for the search direction

dk. A detailed discussion can be found in [86].
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2.1 Steepest Descent Method

One of the simplest and most fundamental methods for solving the unconstrained

optimization problem (1) is the steepest descent (or the gradient) method [39] in

which the search direction is computed by

dk = −gk,

that is trivially a descent direction. Although the steepest descent method is globally

convergent under a variety of inexact line search conditions, the method performs

poorly, converges linearly and is badly affected by ill conditioning [1, 55].

2.2 Newton Method

Based on a quadratic interpolation of the objective function at the kth iteration, search

direction of the Newton method can be computed by

dk = −∇2f (xk)−1gk,

where ∇2f is the Hessian matrix of the objective function f . If ∇2f (xk) is a positive

definite matrix, then the Newton search direction is a descent direction and in such

situation, it can be effectively computed by solving the following linear system using

Cholesky decomposition [88]:

∇2f (xk)dk = −gk.

In the Newton method, the Hessian information is employed in addition to the

gradient information. Also, if the starting point x0 is adequately close to the optimal

point x∗, then the sequence {xk}k≥0 generated by the Newton method converges to

x∗ with a quadratic rate. However, since in the Newton method it is necessary to

compute and save the Hessian matrix ∇2f (xk) ∈ ℝn×n
, the method is not proper for

large-scale problems. Moreover, far from the solution, the Hessian ∇2f (xk) may not

be a positive definite matrix and consequently, the Newton search direction may not

be a descent direction. To overcome this problem, a variant of modified Newton

methods have been proposed in the literature [86].

2.3 Conjugate Direction Methods

Consider the problem of minimizing a strictly convex quadratic function, i.e.,

min
x∈ℝn

q(x), (9)
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in which

q(x) = 1
2

xTAx − bTx, (10)

where the Hessian A ∈ ℝn×n
is a symmetric positive definite matrix and b ∈ ℝn

. To

find the optimal solution x∗, the following system of linear equations can be solved:

∇q(x) = Ax − b = 0, (11)

or equivalently,

Ax = b.

Although the problem can be solved by Cholesky decomposition, conjugate direction

methods are a class of efficient algorithms for finding the minimizer of a strictly

convex quadratic function in large-scale cases.

Definition 1 Let A ∈ ℝn×n
be a symmetric positive definite matrix and {dk}m

k=1, m ≤

n, be a set of nonzero vectors in ℝn
. If

dT
i Adj = 0, ∀i ≠ j,

then the vectors {dk}m
k=1 are called A-conjugate, or simply called conjugate.

Exercise 1 (i) Show that a set of conjugate vectors are linearly independent.
(ii) Assume that a symmetric positive definite matrix A ∈ ℝn×n and a set of lin-

early independent vectors {d′
k}

m
k=1 ⊆ ℝn are available. Describe how a set of

A-conjugate vectors {dk}m
k=1 can be constructed from {d′

k}
m
k=1.

(Hint: Use the Gram-Schmidt orthogonalization scheme [88].)

In each iteration of a conjugate direction method for solving (9), the function q(x)
given by (10) is minimized along the search direction dk for which we have

dT
k Adi = 0, ∀i < k.

Here, since the objective function is quadratic, the exact line search can be used.

The following theorem shows that under the exact line search, the conjugate direc-

tion methods have quadratic termination property which means that the methods

terminate in at most n steps when they are applied to a strictly convex quadratic

function.

Theorem 1 For a quadratic function with the positive definite Hessian A, the con-
jugate direction method terminates in at most n exact line searches. Also, each xk+1
is the minimizer in subspace Sk generated by x0 and the directions {di}k

i=0, that is,
Sk = x0 + span{d0,… , dk}.

Exercise 2 Prove Theorem 1.
(Hint: By induction show that ∇q(xk+1)⊥ di, i = 0, 1,… , k.)
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2.4 Quasi-Newton Methods

As known, quasi-Newton methods are of particular performance for solving uncon-

strained optimization problems since they do not require explicit expressions of the

second derivatives and their convergence rate is often superlinear [86]. The methods

are sometimes referred to variable metric methods.

In the quasi-Newton methods, the search direction is often calculated by

dk = −Hkgk, (12)

in which Hk ∈ ℝn×n
is an approximation of the inverse Hessian; more precisely, Hk ≈

∇2f (xk)−1. The methods are characterized by the fact that Hk is effectively updated

to achieve a new matrix Hk+1 as an approximation of ∇2f (xk+1)−1, in the following

general form:

Hk+1 = Hk + 𝛥Hk,

where 𝛥Hk is a correction matrix. The matrix Hk+1 is imposed with the scope of satis-

fying a particular equation, namely secant (quasi-Newton) equation, which includes

the second order information. The most popular equation is the standard secant equa-

tion, that is,

Hk+1yk = sk, (13)

in which yk = gk+1 − gk. Note that the standard secant equation is obtained based on

the mean-value theorem, or equivalently, the following approximation:

∇2f (xk+1)sk ≈ yk,

which holds exactly for the quadratic objective functions.

Among the well-known quasi-Newton update formulas there are the BFGS

(Broyden-Fletcher-Goldfarb-Shanno) and DFP (Davidon-Fletcher-Powell) updates

[86] given by

HBFGS
k+1 = Hk −

skyT
k Hk + HkyksT

k

sT
k yk

+

(

1 +
yT

k Hkyk

sT
k yk

)
sksT

k

sT
k yk

, (14)

and

HDFP
k+1 = Hk +

sksT
k

sT
k yk

−
HkykyT

k Hk

yT
k Hkyk

,

in which the initial approximation H0 can be considered as an arbitrary positive defi-

nite matrix. In a generalization scheme, the BFGS and DFP updates have been com-

bined linearly and the Broyden class of quasi-Newton update formulas [86] has been

proposed as follows:
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H𝜙

k+1 = (1 − 𝜙)HDFP
k+1 + 𝜙HBFGS

k+1

= Hk +
sksT

k

sT
k yk

−
HkykyT

k Hk

yT
k Hkyk

+ 𝜙vkvT
k , (15)

in which 𝜙 is a real parameter and

vk =
√

yT
k Hkyk

(
sk

sT
k yk

−
Hkyk

yT
k Hkyk

)

. (16)

It can be seen that if Hk is a positive definite matrix and the line search ensures that

sT
k yk > 0, then H𝜙

k+1 with 𝜙 ≥ 0 is also a positive definite matrix [86] and conse-

quently, the search direction dk+1 = −H𝜙

k+1gk+1 is a descent direction. Moreover, for

a strictly convex quadratic objective function, search directions of a quasi-Newton

method with the update formulas of the Broyden class are conjugate directions. So, in

this situation the method possesses the quadratic termination property. Also, under

convexity assumption on the objective function and when 𝜙 ∈ [0, 1], it has been

shown that the method is globally and locally superlinearly convergent [86]. It is

worth noting that among the quasi-Newton update formulas of the Broyden class,

the BFGS update is superior with respect to the computational performance. A nice

survey on the quasi-Newton methods has been provided in [93].

Similar to the quasi-Newton approximations {Hk}k≥0 for the inverse Hessian sat-

isfying (13), quasi-Newton approximations {Bk}k≥0 for the Hessian can be proposed

for which the following equivalent version of the standard secant equation (13)

should be satisfied:

Bk+1sk = yk. (17)

In such situation, considering (12), search directions of the quasi-Newton method

can be computed by solving the following linear system:

Bkdk = −gk. (18)

Exercise 3 (i) Prove that if the search direction dk is a descent direction and the
line search fulfills the Wolfe conditions (5) and (6), then sT

k yk > 0.
(ii) For the Broyden class of update formulas (15), prove that if Hk is a positive

definite matrix, sT
k yk > 0 and 𝜙 ≥ 0, then H𝜙

k+1 is also a positive definite matrix.

Exercise 4 (i) (Sherman-Morrison Theorem) Let A ∈ ℝn×n be a nonsingular
matrix and u, v ∈ ℝn be arbitrary vectors. Prove that if 1 + vTA−1u ≠ 0, then
the rank-one update A + uvT of A is nonsingular, and

(A + uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

(ii) Compute HDFP
k+1

−1 and find its relationship with HBFGS
k+1 .
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2.4.1 Scaled Quasi-Newton Updates

In order to achieve an ideal distribution of the eigenvalues of quasi-Newton updates

of the Broyden class, improving the condition number of successive approximations

of the inverse Hessian and consequently, increasing the numerical stability in the

iterative method (2), the scaled quasi-Newton updates have been developed [86].

In this context, replacing Hk by 𝜃kHk in (15), where 𝜃k > 0 is called the scaling

parameter, the scaled Broyden class of quasi-Newton updates can be achieved as

follows:

H𝜙,𝜃k
k+1 =

(

Hk −
HkykyT

k Hk

yT
k Hkyk

+ 𝜙vkvT
k

)

𝜃k +
sksT

k

sT
k yk

, (19)

where vk is defined by (16). The most effective choices for 𝜃k in (19) have been

proposed by Oren and Spedicato [75, 77],

𝜃k =
sT

k yk

yT
k Hkyk

, (20)

and, Oren and Luenberger [75, 76],

𝜃k =
sT

k H−1
k sk

sT
k yk

. (21)

A scaled quasi-Newton update in the form of (19) with one of the parameters (20)

or (21) is called a self-scaling quasi-Newton update.

Although the self-scaling quasi-Newton methods are numerically efficient, as an

important defect the methods need to save the matrix Hk ∈ ℝn×n
in each iteration,

being improper for solving large-scale problems. Hence, in a simple modification

in the sense of replacing Hk by the identity matrix in (19), self-scaling memoryless

update formulas of the Broyden class have been proposed as follows:

H̃𝜙,𝜃k
k+1 =

(

I −
ykyT

k

yT
k yk

+ 𝜙ṽkṽT
k

)

𝜃k +
sksT

k

sT
k yk

,

where

ṽk =
√

yT
k yk

(
sk

sT
k yk

−
yk

yT
k yk

)

.

Similarly, memoryless version of the scaling parameters (20) and (21) can be respec-

tively written as:

𝜃k =
sT

k yk

||yk||
2 , (22)
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and

𝜃k =
||sk||

2

sT
k yk

. (23)

The scaling parameter (23) can also be determined based on a two-point approxima-

tion of the standard secant equation (13) [35].

Exercise 5 (i) Find all the eigenvalues of the scaled memoryless BFGS update for-
mula with the parameters (22) or (23).

(ii) Assume that ∇f is Lipschitz continuous on a nonempty open convex set N ; that
is, there exists a positive constant L such that

||∇f (x) − ∇f (y)|| ≤ L||x − y||, ∀x, y ∈ N . (24)

Prove that if the objective function f is uniformly convex, then there exists a
positive constant c such that for the sequence {xk}k≥0 generated by the scaled
memoryless BFGS method with the parameter (23) we have

gT
k dk ≤ −c||gk||

2
, ∀k ≥ 0. (25)

(Hint: Note that a differentiable function f is said to be uniformly (or strongly)
convex on a nonempty open convex set S if and only if there exists a positive
constant 𝜇 such that

(∇f (x) − ∇f (y))T (x − y) ≥ 𝜇||x − y||2, ∀x, y ∈ S [86].)

Definition 2 Inequality (25) is called the sufficient descent condition.

2.4.2 Modified Secant Equations

The standard secant equation (13), or its equivalent form (17), only uses the gradient

information and ignores the function values. So, efforts have been made to modify the

Eq. (17) such that more available information be employed and consequently, better

approximations for the (inverse) Hessian be obtained (see [16] and the references

therein).

Assume that the objective function f is smooth enough and let fk = f (xk), ∀k ≥ 0.

From Taylor’s theorem we get

fk = fk+1 − sT
k gk+1 +

1
2

sT
k ∇

2f (xk+1)sk −
1
6

sT
k (Tk+1sk)sk + O(||sk||

4), (26)

where

sT
k (Tk+1sk)sk =

n∑

i,j,l=1

𝜕
3f (xk+1)
𝜕xi𝜕xj𝜕xl si

ksj
ksl

k. (27)
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So, after some algebraic manipulations it can be seen that

sT
k ∇

2f (xk+1)sk = sT
k yk + 2(fk − fk+1) + sT

k (gk + gk+1) +
1
3

sT
k (Tk+1sk)sk + O(||sk||

4).

Hence, the following approximation can be proposed:

sT
k ∇

2f (xk+1)sk ≈ sT
k yk + 𝜗k,

where

𝜗k = 2(fk − fk+1) + sT
k (gk + gk+1), (28)

which leads to the following modified secant equation [89, 90]:

Bk+1sk = zk, zk = yk +
𝜗k

sT
k uk

uk, (29)

where uk ∈ ℝn
is a vector parameter satisfying sT

k uk ≠ 0 (see also [98, 99]).

Again, from Taylor’s theorem we can write:

sT
k gk = sT

k gk+1 − sT
k ∇

2f (xk+1)sk +
1
2

sT
k (Tk+1sk)sk + O(||sk||

4). (30)

Now, considering (26) and (30), by canceling the terms which include tensor we get

sT
k ∇

2f (xk+1)sk = sT
k yk + 3𝜗k + O(||sk||

4),

where 𝜗k is defined by (28). Hence, the following secant equation can be pro-

posed [100]:

Bk+1sk = wk, wk = yk +
3𝜗k

sT
k uk

uk, (31)

where uk ∈ ℝn
is a vector parameter satisfying sT

k uk ≠ 0.

For a quadratic objective function f , we have 𝜗k = 0, and consequently, the mod-

ified secant equations (29) and (31) reduce to the standard secant equation. For the

vector parameter uk, we can simply let uk = sk, or uk = yk provided that the line

search fulfills the Wolfe conditions. To guarantee positive definiteness of the suc-

cessive quasi-Newton approximations for the (inverse) Hessian obtained based on

the modified secant equations (29) and (31) we should respectively have sT
k zk > 0

and sT
k wk > 0 which may not be necessarily satisfied for general functions. To over-

come this problem, in a simple modification we can replace 𝜗k in (29) and (31) by

max{𝜗k, 0}. The modified secant equations (29) and (31) are justified by the follow-

ing theorem [89, 100, 104], demonstrating their accuracy in contrast to the standard

secant equation (17).
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Theorem 1 If f is sufficiently smooth and ||sk|| is small enough, then the following
estimating relations hold:

sT
k (∇

2f (xk+1)sk − yk) =
1
2

sT
k (Tk+1sk)sk + O(||sk||

4),

sT
k (∇

2f (xk+1)sk − zk) =
1
3

sT
k (Tk+1sk)sk + O(||sk||

4),

sT
k (∇

2f (xk+1)sk − wk) = O(||sk||
4),

where Tk+1 is defined by (27).

Convexity assumption on the objective function plays an important role in con-

vergence analysis of the quasi-Newton methods with secant equations (17), (29) and

(31). However, in [64] a modified BFGS method has been proposed which is glob-

ally and locally superlinearly convergent for nonconvex objective functions (see also

[58, 65]). The method has been designed based on the following modified secant

equation:

Bk+1sk = ȳk, ȳk = yk + hk||gk||
rsk, (32)

where r is a positive constant and hk > 0 is defined by

hk = C + max{−
sT

k yk

||sk||
2 , 0}||gk||

−r
,

with some positive constant C. As an interesting property, for the modified secant

equation (32) we have sT
k ȳk > 0, independent of the line search conditions and the

objective function convexity, which guarantees heredity of positive definiteness for

the related BFGS updates. Recently, scaled memoryless BFGS methods have been

proposed based on the modified secant equations (29), (31) and (32) which pos-

sess the sufficient descent property (25) [17–19, 22, 28]. In addition to the modified

secant equations (29), (31) and (32) which apply information of the current iteration,

the multi-step secant equations have been developed by Ford et al. [51–53] based on

the polynomial interpolation using available data from the m recent steps.

3 Conjugate Gradient Methods

Conjugate gradient methods comprise a class of algorithms which are between the

steepest descent method and the Newton method. Utilizing the Hessian information

implicitly, the methods deflect the steepest descent direction by adding to it a multiple

of the direction used in the last step, that is,

dk+1 = −gk+1 + 𝛽kdk, k = 0, 1,… , (33)
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with d0 = −g0, where 𝛽k is a scalar called the conjugate gradient (update) parameter.

Although the methods only require the first-order derivatives, they overcome the

slow convergence of the steepest descent method. Also, the methods need not to save

and compute the second-order derivatives which are needed in the Newton method.

Hence, they are widely used to solve large-scale optimization problems.

Different conjugate gradient methods mainly correspond to different choices for

the conjugate gradient parameter [61]. Although the conjugate gradient methods are

equivalent in the linear case, that is, when f is a strictly convex quadratic function and

the line search is exact, their behavior for general functions may be quite different

[3, 45, 82]. It is worth noting that search directions of the linear conjugate gradient

methods are conjugate directions. In what follows, we deal with several essential

conjugate gradient methods.

3.1 The Hestenes-Stiefel Method

Conjugate gradient methods were originally developed in the 1950s by Hestenes and

Stiefel [62] (HS) as an alternative to factorization methods for solving linear systems.

Conjugate gradient parameter of the HS method is given by

𝛽
HS
k =

gT
k+1yk

dT
k yk

.

From the mean-value theorem, there exists some 𝜉 ∈ (0, 1) such that

dT
k+1yk = dT

k+1(gk+1 − gk) = 𝛼kdT
k+1∇

2f (xk + 𝜉𝛼kdk)dk.

Hence, the condition

dT
k+1yk = 0, (34)

can be considered as a conjugacy condition for the nonlinear objective functions

since it shows that search directions dk and dk+1 are conjugate directions. As an

attractive feature, considering (33) it can be seen that search directions of the HS

method satisfy the conjugacy condition (34), independent of the line search and the

objective function convexity.

Perry [78] noted that the search direction dk+1 of the HS method can be written as:

dk+1 = −

(

I −
skyT

k

sT
k yk

)

gk+1. (35)
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Then, he made a modification on the search direction (35) as follows:

dk+1 = −

(

I −
skyT

k

sT
k yk

+
sksT

k

sT
k yk

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Pk+1

gk+1 = −Pk+1gk+1.

Perry justified the addition of the correction term

sksT
k

sT
k yk

by noting that the matrix Pk+1

satisfies the following equation:

yT
k Pk+1 = sT

k ,

which is similar, but not identical, to the standard secant equation (13). To improve

Perry’s approach, Shanno [84] modified the matrix Pk+1 as follows:

PS
k+1 = I −

skyT
k + yksT

k

sT
k yk

+

(

1 +
yT

k yk

sT
k yk

)
sksT

k

sT
k yk

.

Thus, the related conjugate gradient method is precisely the BFGS method in which

the approximation of the inverse Hessian is restarted as the identity matrix at every

step and so, no significant storage is used to develop a better approximation for the

inverse Hessian. Hence, the HS method can be extended to the memoryless BFGS

method. This idea was also discussed by Nazareth [71] and Buckley [38]. A nice sur-

vey concerning the relationship between conjugate gradient methods and the quasi-

Newton methods has been provided in [72].

Although the HS method is numerically efficient, its search directions generally

fail to satisfy the descent condition (3), even for strictly convex objective functions

[40]. It is worth noting that when in an iteration of a conjugate gradient method the

search direction does not satisfy the descent condition (3), i.e., when encountering

with an uphill search direction, the steepest descent direction can be used. This pop-

ular scheme for the conjugate gradient methods is called the restart procedure. In

another approach, Powell [82] suggested to restart the conjugate gradient method if

the following inequality is violated:

gT
k gk−1 ≤ 𝜍||gk||

2
,

where 𝜍 is a small positive constant (see also [56]).

As another defect of the HS method that will be discussed in the next parts of

this section, it can be stated that the method lacks global convergence in certain

circumstances in the sense of cycling infinitely [82].
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3.2 The Fletcher-Reeves Method

Since solving a linear system is equivalent to minimizing a quadratic function, in

the 1960s Fletcher and Reeves [50] (FR) modified the HS method and developed a

conjugate gradient method for unconstrained minimization with the following para-

meter:

𝛽
FR
k =

||gk+1||
2

||gk||
2 .

Although search directions of the FR method generally are not descent directions,

convergence analysis of the method has been appropriately developed. As a brief

review, at first Zoutendijk [105] established a convergence result for the FR method

under the exact line search. Then, Al-Baali [2] dealt with convergence of the FR

method when the line search fulfills the strong Wolfe conditions (5) and (7), with

0 < 𝛿 < 𝜎 < 1∕2. Liu et al. [68] extended the Al-Baali’s result for 𝜎 = 1∕2. A com-

prehensive study on the convergence of the FR method has been made by Gilbert and

Nocedal [56]. Notwithstanding the strong convergence properties, numerical perfor-

mance of the FR method is essentially affected by jamming [56, 81], i.e., generating

many short steps without making significant progress to the solution because the

search directions became nearly orthogonal to the gradient.

3.3 The Polak-Ribière-Polyak Method

One of the efficient conjugate gradient methods has been proposed by Polak et al.

[79, 80] (PRP) where its parameter is computed by

𝛽
PRP
k =

gT
k+1yk

||gk||
2 .

It is important that when the iterations jam, the step sk is small. So, the factor yk in the

numerator of 𝛽
PRP
k tends to zero and consequently, 𝛽

PRP
k becomes small. Therefore,

the search direction dk+1 tends to the steepest descent direction and an automatic

restart occurs. This favorable numerical feature of jamming prevention also occurs

for the HS method.

In spite of numerical efficiency of the PRP method, the method lacks the descent

property. Also, Powell [82] constructed a three-dimensional counter example with

the exact line search, demonstrating the method can cycle infinitely without conver-

gence to a solution. Nevertheless, based on the insight gained by his counter example,

Powell [82] suggested the following truncation of 𝛽
PRP
k :

𝛽
PRP+
k = max{𝛽PRP

k , 0},
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which yields a globally convergent conjugate gradient method [56], being also com-

putationally efficient [3].

Since under the exact line search the PRP and the HS methods are equivalent, the

cycling phenomenon may occur for the HS method. The following truncation of 𝛽
HS
k

has been shown to lead to a globally convergent conjugate gradient method [43, 56]:

𝛽
HS+
k = max{𝛽HS

k , 0},

which is also more efficient than the HS method [3].

3.4 The Dai-Yuan Method

Another essential conjugate gradient method has been proposed by Dai and Yuan

[47] (DY) with the following parameter:

𝛽
DY
k =

||gk+1||
2

dT
k yk

.

It is notable that under mild assumptions on the objective function, the DY method

has been shown to be globally convergent under a variety of inexact line search condi-

tions. Also, in addition to the generation of descent search directions when dT
k yk > 0,

as guaranteed by the Wolfe conditions (5) and (6), the DY method has been proved to

have a certain self-adjusting property, independent of the line search and the objec-

tive function convexity [41]. More exactly, if there exist positive constants 𝛾1 and 𝛾2
such that 𝛾1 ≤ ||gk|| ≤ 𝛾2, for all k ≥ 0, then, for any p ∈ (0, 1), there exists a posi-

tive constant c such that the sufficient descent condition gT
i di ≤ −c||gi||

2
holds for at

least ⌊pk⌋ indices i ∈ [0, k], where ⌊j⌋ denotes the largest integer less than or equal

to j. However, similar to the FR method, in spite of strong theoretical properties the

DY method has a poor computational performance due to the jamming phenomenon.

3.5 The Dai-Liao Method

In order to employ quasi-Newton aspects in the conjugacy condition (34), Dai and

Liao [43] (DL) noted that considering Bk+1 ∈ ℝn×n
as an approximation of ∇2f (xk+1)

given by a quasi-Newton method, from the standard secant equation (17) and the

linear system (18) we can write

dT
k+1yk = dT

k+1(Bk+1sk) = −gT
k+1sk. (36)

If the line search is exact, then gT
k+1sk = 0, and consequently (36) reduces to (34).

However, in practice the algorithms normally adopt inexact line searches. Hence,

the following extension of the conjugacy condition (34) has been proposed in [43]:
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dT
k+1yk = −tgT

k+1sk, (37)

where t is a nonnegative parameter. If t = 0 or the line search is exact, then (37)

reduces to (34), and if t = 1, then (37) reduces to (36) which implicitly contains the

effective standard secant equation (17). Also, for small values of t, the conjugacy

condition (37) tends to the conjugacy condition (34). Thus, the conjugacy condition

(37) can be regarded as a generalization of the conjugacy conditions (34) and (36).

Taking inner product of (33) with yk and using (37), Dai and Liao [43] obtained

the following formula for the conjugate gradient parameter:

𝛽
DL
k =

gT
k+1yk

dT
k yk

− t
gT

k+1sk

dT
k yk

, (38)

shown to be globally convergent for uniformly convex objective functions. Theoret-

ical and numerical features of the DL method is very dependent on the parameter t
for which there is no any optimal choice [15]. It is worth noting that if

t = 2
||yk||

2

sT
k yk

, (39)

then the conjugate gradient parameter proposed by Hager and Zhang [59] is achieved.

Also, the choice

t =
||yk||

2

sT
k yk

, (40)

yields another conjugate gradient parameter suggested by Dai and Kou [42]. The

choices (39) and (40) are effective since they guarantee the sufficient descent con-

dition (25), independent of the line search and the objective function convexity, and

lead to numerically efficient conjugate gradient methods [21, 42, 60]. Recently,

Babaie-Kafaki and Ghanbari [25, 27, 32] dealt with other proper choices for the

parameter t in the DL method.

Based on Powell’s approach of nonnegative restriction of the conjugate gradient

parameters [82], Dai and Liao proposed the following modified version of 𝛽
DL
k :

𝛽
DL+
k = 𝛽

HS+
k − t

gT
k+1sk

dT
k yk

,

and showed that the DL+ method is globally convergent for general objective func-

tions [43]. In several other attempts to make modifications on the DL method, mod-

ified secant equations have been applied in the Dai-Liao approach. In this context, in

order to employ the objective function values in addition to the gradient information,

Yabe and Takano [94] used the modified secant equation (31). Also, Li et al. [66]

used the modified secant equation (29). Babaie-Kafaki et al. [33] applied a revised
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form of the modified secant equation (31), and the modified secant equation proposed

in [98]. Ford et al. [54] employed the multi-step quasi-Newton equations proposed

by Ford and Moghrabi [51]. In another attempt to achieve global convergence with-

out convexity assumption on the objective function, Zhou and Zhang [104] applied

the modified secant equation (32).

Exercise 6 For the DL method, assume that sT
k yk > 0 and t > 0.

(i) Find the matrix Qk+1 for which search directions of the DL method can be writ-
ten as dk+1 = −Qk+1gk+1. The matrix Qk+1 is called the search direction matrix.

(ii) Find all the eigenvalues of the matrix Ak+1 =
QT

k+1 + Qk+1

2
.

(iii) Prove that if

t > 1
4

(
||yk||

2

sT
k yk

−
sT

k yk

||sk||
2

)

,

then search directions of the DL method satisfy the descent condition (3).

Exercise 7 For the DL method, assume that sT
k yk > 0 and t > 0.

(i) Prove that the search direction matrix Qk+1 is nonsingular. Then, find the
inverse of Qk+1.

(ii) Find ||Qk+1||
2
F and ||Q−1

k+1||
2
F, where ||.||F stands for the Frobenius norm.

(iii) Prove that if n → ∞, then t∗ =

√
||yk||(sT

k yk)
||sk||

3 is the minimizer of 𝜅F(Qk+1) =

||Qk+1||F||Q−1
k+1||F.

3.6 The CG-Descent Algorithm

In an attempt to make a modification of the HS method in order to achieve the suf-

ficient descent property, Hager and Zhang [59] proposed the following conjugate

gradient parameter:

𝛽
N
k = 1

dT
k yk

(

yk − 2dk
||yk||

2

dT
k yk

)T

gk+1 = 𝛽
HS
k − 2

||yk||
2

dT
k yk

dT
k gk+1

dT
k yk

,

which can be considered as an adaptive version of 𝛽
DL
k given by (38). The method

has been shown to be globally convergent for uniformly convex objective functions.

In order to achieve the global convergence for general functions, the following trun-

cation of 𝛽
N
k has been proposed in [59]:

𝛽
N
k = max{𝛽N

k , 𝜂k}, 𝜂k =
−1

||dk||min{𝜂, ||gk||}
,
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where 𝜂 is a positive constant. A conjugate gradient method with the parameter 𝛽
N
k in

which the line search fulfills the approximate Wolfe conditions given by (8) is called

the CG-Descent algorithm [60]. Search directions of the CG-Descent algorithm sat-

isfy the sufficient descent condition (25) with c = 7
8

. The CG-Descent algorithm

is one of the most efficient and popular conjugate gradient methods, widely used

by engineers and mathematicians engaged in solving large-scale unconstrained opti-

mization problems.

Based on the Hager-Zhang approach [59], Yu et al. [96] proposed a modified form

of 𝛽
PRP
k as follows:

𝛽
DPRP
k = 𝛽

PRP
k − C

||yk||
2

||gk||
4 gT

k+1dk,

with a constant C >
1
4

, guaranteeing the sufficient descent condition (25) (see also

[20]). Afterwards, several other descent extensions of the PRP method have been

proposed in [26, 97], using the conjugate gradient parameter 𝛽
DPRP
k .

Exercise 8 Prove that if dT
k yk > 0, ∀k ≥ 0, then search directions of a conjugate

gradient method with the following parameter:

𝛽
𝜏

k = 𝛽
HS
k − 𝜏k

||yk||
2(gT

k+1dk)

(dT
k yk)2

,

in which 𝜏k ≥ 𝜏, for some positive constant 𝜏 >
1
4

, satisfy the sufficient descent con-
dition (25).

Exercise 9 Prove that search directions of the DPRP method with C >
1
4

satisfy the
sufficient descent condition (25).

3.7 Hybrid Conjugate Gradient Methods

Essential conjugate gradient methods generally can be divided into two categories. In

the first category, all the conjugate gradient parameters have the common numerator

gT
k+1yk; such as the HS and PRP methods, and also, the conjugate gradient method

proposed by Liu and Storey [69] (LS) with the following parameter:

𝛽
LS
k = −

gT
k+1yk

dT
k gk

.

In the second category, all the conjugate gradient parameters have the common

numerator ||gk+1||
2
; such as the FR and DY methods, and also, the conjugate descent



Computational Approaches in Large-Scale Unconstrained Optimization 409

(CD) method proposed by Fletcher [49] with the following conjugate gradient para-

meter:

𝛽
CD
k = −

||gk+1||
2

dT
k gk

.

There are some advantages and disadvantages for the conjugate gradient meth-

ods in each category. As mentioned before, generally the methods of the first cate-

gory are numerically efficient because of an automatic restart feature which avoids

jamming while the methods of the second category are theoretically strong in the

sense of (often) generating descent search directions and being globally convergent

under a variety of line search conditions and some mild assumptions. To attain good

computational performance and to maintain the attractive feature of strong global

convergence, researchers paid especial attention to hybridize the conjugate gradient

parameters of the two categories. Hybrid conjugate gradient methods are essentially

designed based on an adoptive switch from a conjugate gradient parameter in the

second category to one in the first category when the iterations jam. Well-known

hybrid conjugate gradient parameters can be listed as follows:

∙ 𝛽
HuS
k = max{0,min{𝛽PRP

k , 𝛽
FR
k }}, proposed by Hu and Storey [63];

∙ 𝛽
TaS
k =

⎧
⎪
⎨
⎪
⎩

𝛽
PRP
k , 0 ≤ 𝛽

PRP
k ≤ 𝛽

FR
k ,

𝛽
FR
k , otherwise,

which has been proposed by Touati-Ahmed and

Storey [87];

∙ 𝛽
GN
k = max{−𝛽FR

k ,min{𝛽PRP
k , 𝛽

FR
k }}, proposed by Gilbert and Nocedal [56];

∙ 𝛽
hDYz
k = max{0,min{𝛽HS

k , 𝛽
DY
k }}, proposed by Dai and Yuan [48];

∙ 𝛽
hDY
k = max{−1 − 𝜎

1 + 𝜎
𝛽

DY
k ,min{𝛽HS

k , 𝛽
DY
k }}, with the positive constant 𝜎 used in

the Wolfe condition (6) [48];

∙ 𝛽
LS−CD
k = max{0,min{𝛽LS

k , 𝛽
CD
k }}, proposed by Andrei [7] (see also [95]).

In all of the above hybridization schemes, discrete combinations of the conjugate

gradient parameters of the two categories have been considered. Recently, Andrei

[8, 9, 11, 12] dealt with convex combinations of the conjugate gradient parameters

of the two categories which are continuous hybridizations. More exactly, in [8] the

following hybrid conjugate gradient method has been proposed:

𝛽
C
k = (1 − 𝜇k)𝛽HS

k + 𝜇k𝛽
DY
k ,

in which 𝜇k ∈ [0, 1] is called the hybridization parameter. As known, if the point xk+1
is close enough to a local minimizer x∗, then a good direction to follow is the Newton

direction, that is, dk+1 = −∇2f (xk+1)−1gk+1. So, considering search directions of the

hybrid conjugate gradient method with the parameter 𝛽
C
k we can write:

−∇2f (xk+1)−1gk+1 = −gk+1 + (1 − 𝜇k)
gT

k+1yk

sT
k yk

sk + 𝜇k
gT

k+1gk+1

sT
k yk

sk.
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After some algebraic manipulations we get

𝜇k =
sT

k ∇
2f (xk+1)gk+1 − sT

k gk+1 −
gT

k+1yk

sT
k yk

sT
k ∇

2f (xk+1)sk

gT
k+1gk

sT
k yk

sT
k ∇2f (xk+1)sk

.

Due to the essential property of low memory requirement for the conjugate gradient

methods, Andrei applied the secant equations in order to avoid exact computation of

∇2f (xk+1)sk [8, 9, 12] (see also [24, 34]). In a different approach, recently Babaie-

Kafaki and Ghanbari [30, 31] proposed two other continuous hybrid conjugate gra-

dient methods in which the hybridization parameter is computed in a way to make

the search directions of the hybrid method as closer as possible to the search direc-

tions of the descent three-term conjugate gradient methods proposed by Zhang et al.

[102, 103].

3.8 Spectral Conjugate Gradient Methods

In the stream of overcoming drawbacks of the steepest descent method, Barzilai

and Borwein [35] developed the two-point stepsize gradient algorithms in which

the search directions are computed by

d0 = −g0, dk+1 = −𝜃kgk+1, k = 0, 1,… ,

where the positive parameter 𝜃k, called the scaling parameter, is computed by solving

the following least-squares problem:

min
𝜃≥0

||
1
𝜃

sk − yk||, (41)

being a two-point approximation of the standard secant equation (17). After some

algebraic manipulations, it can be seen that the solution of (41) is exactly the scal-

ing parameter 𝜃k given by (23), used in the scaled memoryless quasi-Newton meth-

ods. Convergence of the two-point stepsize gradient algorithms has been studied in

[44]. Using a nonmonotone line search procedure [57], Raydan [83] showed that the

two-point stepsize gradient algorithms can be regarded as an efficient approach for

solving large-scale unconstrained optimization problems. In [23, 46] the modified

secant equations (29), (31) and (32) have been employed in the two-point stepsize

gradient algorithms.

Combining search directions of the conjugate gradient methods and the two-point

stepsize gradient algorithms, the spectral conjugate gradient methods [37] have been

proposed in which the search directions are given by
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dk+1 = −𝜃kgk+1 + 𝛽kdk, k = 0, 1,… ,

with d0 = −g0 and the scaling parameter 𝜃k often computed by (23) (see also [4–6,

10, 13]).

3.9 Three-Term Conjugate Gradient Methods

Although the concept of three-term conjugate gradient methods has been originally

developed in 1970s [36, 70], recently researchers dealt with them in order to achieve

the sufficient descent property. As known, some of the conjugate gradient methods

such as HS, FR and PRP generally can not guarantee the descent condition (3). To

overcome this problem, three-term versions of the HS, FR and PRP methods have

been proposed respectively with the following search directions [101–103]:

dk+1 = −gk+1 + 𝛽
HS
k dk −

gT
k+1dk

dT
k yk

yk,

dk+1 = −gk+1 + 𝛽
FR
k dk −

gT
k+1dk

||gk||
2 gk+1,

dk+1 = −gk+1 + 𝛽
PRP
k dk −

gT
k+1dk

||gk||
2 yk,

for all k ≥ 0, with d0 = −g0. When the line search is exact, the above three-term con-

jugate gradient methods respectively reduce to the HS, FR and PRP methods. Also,

for all of these methods we have the sufficient descent condition dT
k gk = −||gk||

2
,

∀k ≥ 0, independent of the line search and the objective function convexity. A nice

review of different three-term conjugate gradient methods has been presented in [85]

(see also [14, 29]).

4 Limited-Memory Quasi-Newton Methods

As known, since quasi-Newton methods save an n × n matrix as an approximation of

the inverse Hessian, they are not useful for solving large-scale unconstrained opti-

mization problems. However, limited-memory quasi-Newton methods maintain a

compact approximation of the inverse Hessian, saving only a few vectors of length n
available from a certain number of the most recent iterations, and so, being useful in

large-scale cases [74]. Convergence properties of the methods are often acceptable

[13, 67, 73]. Although various limited-memory quasi-Newton methods have been

proposed in the literature, here we deal with the limited-memory BFGS method,

briefly called the L-BFGS method.
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Note that the BFGS updating formula (14) can be written as:

HBFGS
k+1 = VT

k HkVk + 𝜌ksksT
k , (42)

where

𝜌k =
1

sT
k yk

, and Vk = I − 𝜌kyksT
k .

In the limited-memory approach, a modified version of Hk+1 is implicitly stored,

saving a set of vector pairs {si, yi} available from the m > 1 recent iterations. More

precisely, by repeated application of the formula (42), we get

HL−BFGS
k+1 = (VT

k ⋯VT
k−m+1)Hk−m+1(Vk−m+1 ⋯Vk)

+𝜌k−m+1(VT
k ⋯VT

k−m+2)sk−m+1sT
k−m+1(Vk−m+2 ⋯Vk)

+⋯

+𝜌ksksT
k ,

in which in order to use a low memory storage, Hk−m+1 is computed by

Hk−m+1 = 𝜃kI,

where 𝜃k is often calculated by (22), proved to be practically effective [67]. Also, the

search direction dk+1 = −HL−BFGS
k+1 gk+1 can be effectively computed by the following

recursive procedure [74].

Algorithm 1 (Computing search directions of the L-BFGS method)

q = gk+1;

for i = k, k − 1,… , k − m + 1

𝛾i ← 𝜌isT
i q;

q ← q − 𝛾iyi;

end
r ← 𝜃kq;

for i = k − m + 1, k − m + 2,… , k

𝜉 ← 𝜌iyT
i r;

r ← r + si(𝛾i − 𝜉);

end
dk+1 = −r.

Remark 1 Practical experiences have shown that the values of m between 3 and 20

often produce satisfactory numerical results [74].
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5 Conclusions

Recent line search-based approaches in large-scale unconstrained optimization have

been studied. Especially, the conjugate gradient methods and the memoryless quasi-

Newton methods have been focused on. At first, after introducing the essential

unconstrained optimization algorithms, merits and demerits of the classical con-

jugate gradient methods have been reviewed. Then, their descent extensions, their

hybridizations based on the secant equations, and their three-term versions with suffi-

cient descent property have been discussed. Finally, a limited-memory quasi-Newton

method has been presented. So, recent efficient tools for big data applications have

been provided.
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Numerical Methods for Large-Scale
Nonsmooth Optimization

Napsu Karmitsa

Abstract Nonsmooth optimization refers to the general problem of minimizing (or

maximizing) functions that are typically not differentiable at their minimizers (max-

imizers). NSO problems are encountered in many application areas: for instance, in

economics, mechanics, engineering, control theory, optimal shape design, machine

learning, and data mining including cluster analysis and classification. Most of these

problems are large-scale. In addition, constantly increasing database sizes, for exam-

ple in clustering and classification problems, add even more challenge in solving

these problems. NSO problems are in general difficult to solve even when the size

of the problem is small and problem is convex. In this chapter we recall two numer-

ical methods for solving large-scale nonconvex NSO problems. Namely, the limited

memory bundle algorithm (LMBM) and the diagonal bundle method (D-BUNDLE).

We also recall the convergence properties of these algorithms. The numerical exper-

iments have been made using problems with up to million variables, which indicates

the usability of the methods also in real world applications with big data-sets.

Keywords Nondifferentiable optimization ⋅ Large-scale optimization ⋅ Bundle

methods ⋅ Limited memory methods ⋅ Diagonal variable metric updates

1 Introduction

Nonsmooth optimization (NSO) refers to the general problem of minimizing (or

maximizing) functions that are typically not differentiable at their minimizers (maxi-

mizers) (see e.g., [6]). NSO problems are encountered in many application areas: for

instance, in economics [37], mechanics [35], engineering [34], control theory [13],

optimal shape design [19], machine learning [22], and data mining [3, 9] includ-

ing cluster analysis [14] and classification [1, 2, 7, 11]. Most of these problems are

large-scale. In addition, constantly increasing database sizes, for example in cluster-

ing problems, add even more challenge in solving these problems.
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In this chapter, we are considering of solving the problem of the form

{
minimize f (x)
subject to x ∈ ℝn

,
(P)

where the objective function f ∶ ℝn → ℝ is supposed to be locally Lipschitz con-

tinuous (LLC) and the number of variables n is supposed to be large. Note that no

differentiability or convexity assumptions for problem (P) are made.

NSO problems are in general difficult to solve even when the size of the problem is

small. In addition, besides problematics of nonsmoothness and size of the problem,

nonconvexity adds another challenge; NSO is traditionally based on convex analysis

and most solution methods rely strongly on the convexity of the problem.

In this chapter we recall two numerical methods for solving large-scale nonconvex

NSO problems. Namely, the limited memory bundle algorithm (LMBM) [16–18,

25] and the diagonal bundle method (D-BUNDLE) [23]. The LMBM is a hybrid of

the variable metric bundle methods [29, 38] and the limited memory variable metric

methods (see e.g. [10]), where the first ones have been developed for small- and

medium-scale NSO and the latter ones for smooth large-scale optimization. In its

turn, the basic idea of the D-BUNDLE is to combine the LMBM with sparse matrix

updating. The aim of doing so is to obtain a method for solving problem (P) with large

numbers of variables, where the Hessian of the problem—if it exists—is sparse. The

numerical experiments have been made using problems with up to million variables.

This chapter is organized as follows. In Sect. 2 we introduce our notation and

recall some basic definitions and results from nonsmooth analysis. In Sects. 3 and 4,

we discuss briefly the basic ideas of the LMBM and the D-BUNDLE, respectively,

and remind their convergence properties. The results of the numerical experiments

are presented and discussed in Sect. 5 and, finally, Sect. 6 concludes the chapter.

2 Notations and Background

We denote by ‖ ⋅ ‖ the Euclidean norm in ℝn
and by aTb the inner product of vectors

a and b. In addition, we denote by ‖A‖F the Frobenius norm of matrix A ∈ ℝn×n
. That

is, we define

‖A‖F =

√
√
√
√

n∑

i=1

n∑

j=1
A2

i,j.

The subdifferential 𝜕f (x) [12] of a LLC function f ∶ ℝn → ℝ at any point x ∈ ℝn
is

given by

𝜕f (x) = conv{lim
i→∞

∇f (xi) ∣ xi → x and ∇f (xi) exists},
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where “conv” denotes the convex hull of a set. A vector 𝜉 ∈ 𝜕f (x) is called a subgra-
dient.

The point x∗ ∈ ℝn
is called stationary if 0 ∈ 𝜕f (x∗). Stationarity is a necessary

condition for local optimality and, in the convex case, it is also sufficient for global

optimality. An optimization method is said to be globally convergent if starting from

any arbitrary point x1 it generates a sequence {xk} that converges to a stationary point

x∗, that is, {xk} → x∗ whenever k → ∞.

3 Limited Memory Bundle Method

In this section, we describe the limited memory bundle algorithm (LMBM) by

Karmitsa (née Haarala) et al. [16–18, 25] for solving general, possibly nonconvex,

large-scale NSO problems. We assume that at every point x we can evaluate the value

of the objective function f (x) and one arbitrary subgradient 𝜉 from the subdifferential

𝜕f (x).

3.1 Method

As already said in the introduction, the LMBM is a hybrid of the variable met-

ric bundle methods (VMBM) [29, 38] and the limited memory variable metric

methods (see e.g. [10]), where the first ones have been developed for small- and

medium-scale NSO and the latter ones for smooth large-scale optimization. The

LMBM combines the ideas of the VMBMwith the search direction calculation of

limited memory approach. Therefore, the time-consuming quadratic direction find-

ing problem appearing in the standard bundle methods (see e.g. [21, 26, 31]) does

not need to be solved, nor the number of stored subgradients needs to grow with the

dimension of the problem. Furthermore, the method uses only a few vectors to rep-

resent the variable metric approximation of the Hessian matrix and, thus, it avoids

storing and manipulating large matrices as is the case in the VMBM. These improve-

ments make the LMBM suitable for large-scale optimization. Namely, the number

of operations needed for the calculation of the search direction and the aggregate val-

ues is only linearly dependent on the number of variables while, for example, with

the original VMBMthis dependence is quadratic.

Search Direction.

So, the LMBM exploits the ideas of the variable metric bundle methods, namely

the utilization of null steps, simple aggregation of subgradients, and the subgradient

locality measures, but the search direction dk is calculated using the limited memory

approach. That is,

dk = −Dk
𝜉k,
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where 𝜉k is (an aggregate) subgradient and Dk
is the limited memory variable met-

ric update that, in the smooth case, represents the approximation of the inverse of

the Hessian matrix. The role of matrix Dk
is to accumulate information about previ-

ous subgradients. Note, however, that the matrix Dk
is not formed explicitly but the

search direction dk is calculated using the limited memory approach (to be described

later).

Line Search.

In NSO the search direction is not necessarily a descent one. In order to determine

a new step into the search direction dk, the LMBM uses the so-called line search
procedure (see [18, 38]): a new iteration point xk+1 and a new auxiliary point yk+1
are produced such that

xk+1 = xk + tk
Ldk and (1)

yk+1 = xk + tk
Rdk, for k ≥ 1

with y1 = x1, where tk
R ∈ (0, tmax] and tk

L ∈ [0, tk
R] are step sizes, and tmax > 1 is the

upper bound for the step size. A necessary condition for a serious step to be taken is

to have

tk
R = tk

L > 0 and f (yk+1) ≤ f (xk) − 𝜀
k
Ltk

Rwk, (2)

where 𝜀
k
L ∈ (0, 1∕2) is a line search parameter and wk > 0 represents the desirable

amount of descent of f at xk. If the condition (2) is satisfied, we set xk+1 = yk+1 and

a serious step is taken.

On the other hand, a null step is taken if

tk
R > tk

L = 0 and − 𝛽k+1 + dT
k 𝜉k+1 ≥ −𝜀k

Rwk, (3)

where 𝜀
k
R ∈ (𝜀k

L, 1∕2) is a line search parameter, 𝜉k+1 ∈ 𝜕f (yk+1), and 𝛽k+1 is the sub-

gradient locality measure [27, 33] similar to standard bundle methods. That is,

𝛽k+1 = max{|f (xk) − f (yk+1) + (yk+1 − xk)T𝜉k+1)|, 𝛾‖yk+1 − xk‖
2}. (4)

Here 𝛾 ≥ 0 is a distance measure parameter supplied by the user and it can be set to

zero when f is convex. Using null steps gives more information about the nonsmooth

objective function in the case the current search direction is “not good enough”,

that is, the descent condition (2) is not satisfied. In the case of a null step, we set

xk+1 = xk but information about the objective function is increased because we store

the auxiliary point yk+1 and the corresponding auxiliary subgradient 𝜉k+1 ∈ 𝜕f (yk+1).
Under some semismoothness assumptions the line search procedure used with the

LMBM is guaranteed to find the step sizes tk
L and tk

R such that exactly one of the two

possibilities—a serious step or a null step—occurs [38].
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Aggregation.

The LMBM uses the original subgradient 𝜉k after the serious step and the aggregate

subgradient 𝜉k after the null step for direction finding (i.e. we set 𝜉k = 𝜉k if the previ-

ous step was a serious step). The aggregation procedure used in the LMBM utilizes

only three subgradients and two locality measures. The procedure is carried out by

determining multipliers 𝜆
k
i satisfying 𝜆

k
i ≥ 0 for all i ∈ {1, 2, 3}, and

∑3
i=1 𝜆

k
i = 1

that minimize the function

𝜑(𝜆1, 𝜆2, 𝜆3) = [𝜆1𝜉m + 𝜆2𝜉k+1 + 𝜆3𝜉k ]TDk[𝜆1𝜉m + 𝜆2𝜉k+1 + 𝜆3𝜉k ] (5)

+ 2(𝜆2𝛽k+1 + 𝜆3𝛽k).

Here 𝜉m ∈ 𝜕f (xk) is the current subgradient (m denotes the index of the iteration

after the latest serious step, i.e. xk = xm), 𝜉k+1 ∈ 𝜕f (yk+1) is the auxiliary subgradient,

and 𝜉k is the current aggregate subgradient from the previous iteration (𝜉1 = 𝜉1).

In addition, 𝛽k+1 is the current subgradient locality measure and 𝛽k is the current

aggregate subgradient locality measure (𝛽1 = 0). The optimal values 𝜆
k
i , i ∈ {1, 2, 3}

can be calculated by using simple formulae (see [38]).

The resulting aggregate subgradient 𝜉k+1 and aggregate subgradient locality mea-

sure 𝛽k+1 are computed by the formulae

𝜉k+1 = 𝜆
k
1𝜉m + 𝜆

k
2𝜉k+1 + 𝜆

k
3𝜉k and 𝛽k+1 = 𝜆

k
2𝛽k+1 + 𝜆

k
3𝛽k. (6)

Due to this simple aggregation procedure only one trial point yk+1 and the corre-

sponding subgradient 𝜉k+1 ∈ 𝜕f (yk+1) need to be stored.

The aggregation procedure gives us a possibility to retain the global convergence

without solving the quite complicated quadratic direction finding problem (see e.g.

[6]) appearing in standard bundle methods. Note that the aggregate values are com-

puted only if the last step was a null step. Otherwise, we set 𝜉k+1 = 𝜉k+1 and 𝛽k+1 = 0.

Matrix Updating.

In the LMBM both the limited memory BFGS (L-BFGS) and the limited memory

SR1 (L-SR1) update formulae [10] are used in calculations of the search direction

and the aggregate values. The idea of limited memory matrix updating is that instead

of storing large n × n matrices Dk
, one stores a certain (usually small) number of

vectors sk = yk+1 − xk and uk = 𝜉k+1 − 𝜉m obtained at the previous iterations of the

algorithm, and uses these vectors to implicitly define the variable metric matrices.

Note that, due to fact that the gradient does not need to exist for nonsmooth objective,

these correction vectors are computed using subgradients. Moreover, due to usage

of null steps we may have xk+1 = xk and thus, we use here the auxiliary point yk+1
instead of xk+1.

Let us denote by m̂c the user-specified maximum number of stored correction vec-

tors (3 ≤ m̂c) and by m̂k = min { k − 1, m̂c} the current number of stored correction

vectors. Then the n × m̂k dimensional correction matrices Sk and Uk are defined by
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Sk =
[
sk−m̂k

… sk−1
]

and (7)

Uk =
[
uk−m̂k

… uk−1
]
.

The inverse L-BFGS update is defined by the formula

Dk = 𝜗kI +
[
Sk 𝜗kUk

]
[
(R−1

k )T (Ck + 𝜗kUT
k Uk)R−1

k −(R−1
k )T

−R−1
k 0

] [
ST

k
𝜗kUT

k

]

,

where Rk is an upper triangular matrix of order m̂k given by the form

(Rk)ij =

{
(sk−m̂k−1+i)T (uk−m̂k−1+j), if i ≤ j
0, otherwise,

Ck is a diagonal matrix of order m̂k such that

Ck = diag [sT
k−m̂k

uk−m̂k
,… , sT

k−1uk−1],

and 𝜗k is a positive scaling parameter.

In addition, the inverse L-SR1 update is defined by

Dk = 𝜗kI − (𝜗kUk − Sk)(𝜗kUT
k Uk − Rk − RT

k + Ck)−1(𝜗kUk − Sk)T .

In the case of a null step, the LMBM uses the L-SR1 update formula, since this

formula allows to preserve the boundedness and some other properties of generated

matrices which guarantee the global convergence of the method. Otherwise, since

these properties are not required after a serious step, the more efficient L-BFGS

update is employed. In the LMBM, the individual updates that would violate positive

definiteness are skipped (for more details, see [16–18]).

Stopping Criterion.

For smooth functions, a necessary condition for a local minimum is that the gradient

has to be zero and by continuity it becomes small when we are close to an optimal

point. This is no longer true when we replace the gradient by an arbitrary subgra-

dient. Although, the aggregate subgradient 𝜉k is quite a useful approximation to the

gradient, the direct test ‖𝜉k‖ < 𝜀S, for some 𝜀S > 0, is too uncertain as a stopping

criterion, if the current piecewise linear approximation of the objective function is

too rough. Therefore, we use the term 𝜉
T
k Dk

𝜉k = −𝜉T
k dk and the aggregate subgradi-

ent locality measure 𝛽k to improve the accuracy of ‖𝜉k‖ (see, e.g., [31]). Hence, the

stopping parameter wk at iteration k is defined by

wk = −𝜉T
k dk + 2𝛽k (8)
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and the algorithm stops if wk ≤ 𝜀S for some user specified 𝜀S > 0. The parameter wk
is also used during the line search procedure to represent the desirable amount of

descent.

Algorithm.
The pseudo-code of the LMBM is the following:

PROGRAM LMBM

INITIALIZE x1 ∈ ℝn, 𝜉1 ∈ 𝜕f (x1), m̂c ≥ 3, and 𝜀S > 0;
Set k = 1, m = 1, d1 = −𝜉1, 𝜉1 = 𝜉1, and 𝛽1 = 0;
WHILE the termination condition wk ≤ 𝜀S is not met

Find step sizes tk
L and tk

R, and the subgradient locality
measure 𝛽k+1;

Set xk+1 = xk + tk
Ldk and yk+1 = xk + tk

Rdk;
Evaluate f (xk+1) and 𝜉k+1 ∈ 𝜕f (yk+1);
Store the new correction vectors sk = yk+1 − xk and

uk = 𝜉k+1 − 𝜉m;
Set m̂k = min{k, m̂c};
IF tk

L > 0 THEN

SERIOUS STEP

Compute the search direction dk+1 using 𝜉k+1 and L-BFGS
update with m̂k most recent correction pairs;

Set m = k + 1 and 𝛽k+1 = 0;
END SERIOUS STEP

ELSE

NULL STEP

Compute the aggregate values
𝜉k+1 = 𝜆

k
1𝜉m + 𝜆

k
2𝜉k+1 + 𝜆

k
3𝜉k and

𝛽k+1 = 𝜆
k
2𝛽k+1 + 𝜆

k
3𝛽k;

Compute the search direction dk+1 using 𝜉k+1 and L-SR1
update with m̂k most recent correction pairs;

END NULL STEP

END IF

Set k = k + 1;
END WHILE

RETURN final solution xk;
END PROGRAM LMBM

3.2 Global Convergence

We now recall the convergence properties of the LMBM algorithm. But first, we

give the assumptions needed.

Assumption 1 The objective function f ∶ ℝn → ℝ is LLC,

Assumption 2 The objective function f ∶ ℝn → ℝ is upper semismooth (see e.g.

[8]),
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Assumption 3 The level set { x ∈ ℝn ∣ f (x) ≤ f (x1) } is bounded for every starting

point x1 ∈ ℝn
.

Lemma 1 Each execution of the line search procedure is finite.

Proof See the proof of Lemma 2.2 in [38]. □

Theorem 1 If the LMBM algorithm terminates after a finite number of iterations,
say at iteration k, then the point xk is a stationary point of f .

Proof See the proof of Theorem 4 in [18]. □

Theorem 2 Every accumulation point x̄ generated by the LMBM algorithm is a
stationary point of problem (P).

Proof See the proof of Theorem 9 in [18]. □

Remark 1 If we choose 𝜀S > 0, the LMBM algorithm terminates in a finite number

of steps.

4 Diagonal Bundle Method

The classical variable metric techniques for nonlinear optimization (see, e.g. [15])

construct a dense n × n-matrix that approximates the Hessian of the function. These

techniques require to store and manipulate this dense matrix, which in large-scale

setting becomes unmanageable. In the limited memory variable metric methods (see,

e.g. [10, 36]) the storage of this large matrix can be avoided, but still the formed

approximation of the Hessian is dense. This is also true for the LMBM described

in the previous section. Nevertheless, in many large-scale problems the real Hessian

(if it exists) is sparse. In this section, we describe the diagonal bundle method (D-

BUNDLE) by Karmitsa [23] for sparse nonconvex NSO.

4.1 Method

The idea of the D-BUNDLE method is to combine the LMBM with sparse matrix

updating. As with the LMBM we assume that the objective function f ∶ ℝn → ℝ is

LLC and we can compute f (x) and 𝜉 ∈ 𝜕f (x) at every x ∈ ℝn
.

Matrix Updating and Direction Finding.

Similarly to the LMBM, the D-BUNDLE uses at most m̂c most recent correction

vectors to compute updates for matrices. These vectors and the corrections matri-

ces are defined as in (7). The obvious difference between the D-BUNDLE and the

LMBM is that with the D-BUNDLE we use the diagonal update formula to compute
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the diagonal variable metric update. Although it would be possible to use real spar-

sity pattern of the Hessian, the diagonal update formula introduced in [20] is used,

since for this formula it is easy to check the positive definiteness of generated matri-

ces. Moreover, using diagonal update matrix requires minimum amount of storage

space and computations. Particularly, the approximation of the Hessian Bk+1
is cho-

sen to be a diagonal matrix and the check of positive definiteness is included as a

constraint to problem. Thus, the update matrix Bk+1
is defined by

⎧
⎪
⎨
⎪
⎩

minimize ‖Bk+1Sk − Uk‖
2
F

subject to Bk+1
i,j = 0 for i ≠ j

Bk+1
i,i ≥ 𝜀 for i = 1, 2,… , n and 𝜀 > 0.

(9)

This minimization problem has a solution

Bk+1
i,i =

{
bi∕Qi,i, if bi∕Qi,i > 𝜀

𝜀, otherwise,

where b = 2
∑k−1

i=k−m̂k
diag(si)ui and Qi,i = 2

∑k−1
i=k−m̂k

[diag(si)]2, and diag(v), for v ∈
ℝn

, is a diagonal matrix such that diag(v)i,i = vi.

Now, the search direction is computed by the formula

dk = −Dk
𝜉k, (10)

where 𝜉k is (an aggregate) subgradient and Dk
represents the diagonal update matrix

such that Dk = (Bk)−1 in (9). To ensure the global convergence of the D-BUNDLE,

we have to assume that all the matrices Dk
are bounded. Due to the diagonal update

formula this assumption is trivially satisfied. In addition, the condition

𝜉
T
k Dk

𝜉k ≤ 𝜉
T
k Dk−1

𝜉k (11)

has to be satisfied each time there occurs more than one consecutive null step. In the

D-BUNDLE this is guaranteed simply by skipping the updates. That is, after a null

step we set Dk+1 = Dk
, but the new aggregate values are computed.

Aggregation, Line Search and Stopping Criterion
The D-BUNDLE uses the aggregation procedure similar to the LMBM to guarantee

the convergence of the method and to avoid unbounded storage, that is, the convex

combination of at most three subgradients is used to form a new aggregate subgradi-

ent 𝜉k+1 and a new aggregate subgradient locality measure 𝛽k+1 (cf. (5) and (6)). Of

course, the diagonal update matrix Dk
is used in Eq. (5) instead of limited memory

update.

In addition, the D-BUNDLE uses the line search procedure similar to the LMBM

(cf. (1)–(3)) to determine a new iteration and auxiliary points xk+1 and yk+1. That
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is, the step sizes tk
R ∈ (0, tmax] and tk

L ∈ [0, tk
R] with tmax > 1 are computed such that

either condition (2) for serious steps or condition (3) for null steps is satisfied.

Finally, also the stopping criterion of the D-BUNDLE algorithm is similar to that

of the LMBM (cf. (8)). Similarly to the LMBM, the parameter wk is used also during

the line search procedure to represent the desirable amount of descent (cf. (2) and

(3)).

Algorithm.

The pseudo-code of D-BUNDLE is the following:

PROGRAM D-BUNDLE

INITIALIZE x1 ∈ ℝn, 𝜉1 ∈ 𝜕f (x1), D1 = I, m̂c ≥ 1, and 𝜀S > 0;
Set k = 1, m = 1, m̂k = 0, d1 = −𝜉1, 𝜉1 = 𝜉1, and 𝛽1 = 0;
WHILE the termination condition wk ≤ 𝜀S is not met

Find step sizes tk
L and tk

R, and the subgradient
locality measure 𝛽k+1;

Set xk+1 = xk + tk
Ldk and yk+1 = xk + tk

Rdk;
Evaluate f (xk+1) and 𝜉k+1 ∈ 𝜕f (yk+1);
IF tk

L > 0 THEN

SERIOUS STEP

Store the new correction vectors sk = yk+1 − xk
and uk = 𝜉k+1 − 𝜉m;

Set m̂k = min{k, m̂c};
Compute the new diagonal matrix Dk+1 = (Bk+1)−1

using m̂k most recent correction vectors;
Compute the search direction dk+1 = −Dk+1

𝜉k+1;
Set m = k + 1 and 𝛽k+1 = 0;

END SERIOUS STEP

ELSE

NULL STEP

Compute the aggregate values
𝜉k+1 = 𝜆

k
1𝜉m + 𝜆

k
2𝜉k+1 + 𝜆

k
3𝜉k and

𝛽k+1 = 𝜆
k
2𝛽k+1 + 𝜆

k
3𝛽k;

Set Dk+1 = Dk;
Compute the search direction dk+1 = −Dk+1

𝜉k+1;
END NULL STEP

END IF

Set k = k + 1;
END WHILE

RETURN final solution xk;
END PROGRAM D-BUNDLE
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4.2 Global Convergence

We now recall the convergence properties of D-BUNDLE-algorithm. The assump-

tions needed are the same as with LMBM, that is, Assumptions 1–3. Under these

assumptions, Lemma 1 is also valid.

Theorem 3 If the D-BUNDLE algorithm terminates after a finite number of itera-
tions, say at iteration k, then the point xk is a stationary point of f . On the other
hand, any accumulation point of an infinite sequence of solutions generated by D-

BUNDLE is a stationary point of f.

Proof See the proof of Theorem 3.1 in [23]. □

Thus, similarly to the LMBM, the D-BUNDLE algorithm either terminates at a

stationary point of the objective function f or generates an infinite sequence (xk) for

which accumulation points are stationary for f . Moreover, if we choose 𝜀S > 0, the

D-BUNDLE method terminates in a finite number of steps.

5 Numerical Experiments

In this section we compare LMBM, D-BUNDLE and some other existing methods

for NSO. The test set used in our experiments consists of extensions of classical

academic nonsmooth minimization problems [17]. We have tested these problems

up to million variables.

5.1 Solvers

The tested optimization codes with references to more detailed descriptions of the

methods and their implementations are presented in Table 1.

A brief description of each software and the references from where the code can

be downloaded are in order.

Table 1 Tested pieces of software

Software Author(s) Method References

PBNCGC Mäkelä Proximal bundle [30, 31]

QSM Bagirov and Ganjehlou Quasi-secant [4, 5]

LMBM Karmitsa Limited memory

bundle

[17, 18]

D-Bundle Karmitsa Diagonal bundle [23]
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PBNCGC is an implementation of the most frequently used bundle method in NSO;

that is, the proximal bundle method. The code includes constraint handling (bound

constraints, linear constraints, and nonlinear/nonsmooth constraints) and a possi-

bility to optimize multiobjective problems. The quadratic direction finding problem

characteristic for bundle methods is solved by the PLQDF1 subroutine implementing

the dual projected gradient method proposed in [28].

PBNCGC can be used (free for academic purposes) via WWW-NIMBUS-system

(http://nimbus.mit.jyu.fi/) [32]. Furthermore, the Fortran 77 source code is available

for downloading from http://napsu.karmitsa.fi/proxbundle/.

QSM is a quasi-secant solver for nonsmooth possibly nonconvex minimization.

Although originally developed for small- and medium-scale problems, QSM has

shown to be very efficient also in large-scale setting [6, 24].

The user can employ either analytically calculated or approximated subgradients

in his experiments (this can be done automatically by selecting one parameter). We

have used analytically calculated subgradients here.

The Fortran 77 source code is available for downloading from http://napsu.

karmitsa.fi/qsm/.

LMBM is an implementation of the LMBM. In our experiments, we used the adaptive

version of the code with the initial number of stored correction pairs used to form

the variable metric update equal to 7 and the maximum number of stored correction

pairs equal to 15.

The Fortran 77 source code and the mex-driver (for MatLab users) are available

for downloading from http://napsu.karmitsa.fi/lmbm/.

D-Bundle is an implementation of the D-BUNDLE. The Fortran 95 source code

of D-Bundle is available for downloading from http://napsu.karmitsa.fi/dbundle/.

All of the algorithms except forD-Bundlewere implemented in Fortran77 using

double-precision arithmetic. The experiments were performed on an Intel® Core™

2 CPU 1.80 GHz. To compile the codes, we used gfortran, the GNU Fortran

compiler.

5.2 Test Problems and Parameters

As already said the test set used in our experiments consists of extensions of classical

academic nonsmooth minimization problems from the literature. That is problems

1–10 first introduced in [17]. Problems 1–5 are convex while problems 6–10 are

nonconvex. These problems can be formulated with any number of variables. We

have used here 1000, 10 000, 100 000 and 1 000 000 variables.

To obtain comparable results the stopping parameters of the codes were tuned by

the procedure similar to [6]. In addition to the usual stopping criteria of the solvers,

we terminated the experiments if the elapsed CPU time exceeded half an hour for

problems with 1000 variables, an hour with 10 000 variables, and 2 h with 100 000

and million variables.

http://nimbus.mit.jyu.fi/
http://napsu.karmitsa.fi/proxbundle/
http://napsu.karmitsa.fi/qsm/
http://napsu.karmitsa.fi/qsm/
http://napsu.karmitsa.fi/lmbm/
http://napsu.karmitsa.fi/dbundle/
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We say that a solver finds the solution with respect to a tolerance 𝜀 > 0 if

fbest − fopt

1 + |fopt|
≤ 𝜀,

where fbest is a solution obtained with the solver and fopt is the best known (or optimal)

solution. We have accepted the results with respect to the tolerance 𝜀 = 10−3. In

addition, we say that the result is inaccurate, if a solver finds the solution with respect

to a tolerance 𝜀 = 10−2. Otherwise, we say that a solver fails.

For LMBM, PBNCGC and QSM the maximum size of the bundle was set to 100.

With D-Bundle the natural choice for the bundle size is two. For all other parame-

ters we have used the default settings of the codes. In addition, for D-Bundle the

number of stored correction pairs was set to three.

5.3 Results

The results are summarized in Tables 2, 3, 4 and 5. We have compared the efficiency

of the solvers both in terms of the computational time (cpu) and the number of func-

tion and subgradient evaluations (nfg, evaluations for short). We have used bold-face

text to emphasize the best results.

The results for problems with 1000 and 10 000 variables reveal similar trends

(see Tables 2 and 3): In both cases PBNCGC was clearly the most robust solver. In

addition, PBNCGC usually used either the least or the most evaluations, making it

very difficult to say if it is an efficient method or not. The robustnesses of D-Bundle
LMBM and QSM were similar.

Table 2 Summary of the results with 1000 variables

P PBNCGC QSM LMBM D-bundle

nfg/cpu nfg/cpu nfg/cpu nfg/cpu
1 19 738/789.59 18 263/7.19 fail 6 136/0.60
2 46/0.57 4 242/87.67 fail inacc/6.47

3 24 424/1 800.00 2 326/4.60 6 540/0.32 242/0.01
4 16 388/1 800.13 2 036/0.88 558/0.37 6 843/1.12

5 56/0.07 667/0.10 228/0.04 3 643/0.66

6 272/0.05 254/0.03 1 062/0.94 1 126/0.20

7 76/0.22 inacc/0.93 352/0.37 6 119/3.24

8 28 318/1 800.09 2 836/6.83 1 230/0.67 7 974/0.44
9 98/0.10 inacc/0.02 200/0.06 569/0.05
10 398/6.73 inacc/11.74 inacc/0.31 fail
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Table 3 Summary of the results with 10 000 variables

P PBNCGC QSM LMBM D-bundle

nfg/cpu nfg/cpu nfg/cpu nfg/cpu
1 fail 160 910/1 000.62 fail 179 502/214.53
2 54/56.06 fail fail fail

3 13 026/3 600.21 1 868/5.20 796/7.45 2 161/0.99
4 5 960/3 600.83 2086/7.32 882/8.81 fail

5 54/0.53 903/1.41 784/3.00 3 370/5.47

6 74/0.26 inacc/0.35 10 106/143.32 10 102/9.09

7 244/23.36 inacc/15.39 inacc/9.68 fail

8 8 826/3 600.48 2 383/8.53 1 194/6.11 5 311/1.98
9 284/2.20 fail 396/3.20 575/0.34
10 2472/811.77 inacc/164.68 fail inacc/2.45

Table 4 Summary of the results with 100 000 variables

P QSM LMBM D-bundle

nfg/cpu nfg/cpu nfg/cpu
1 fail fail fail

2 fail fail fail

3 1 687/46.39 1 718/184.16 145/0.99
4 2 137/77.20 1 258/147.37 fail

5 1 252/111.28 802/63.27 827/15.44
6 fail fail fail

7 inacc/254.81 fail 3 152/552.43
8 1 237/26.09 2 300/245.10 3 810/38.67

9 inacc/83.64 994/99.41 1 159/15.29
10 inacc/93.09 inacc/157.20 inacc/23.22

D-Bundle usually used more evaluations than LMBM. However, in terms of cpu-

time it was comparable or—especially with larger problem—even better than LMBM.

Furthermore, D–Bundle succeed in solving P1 which has shown to be very difficult

to LMBM due its sparse structure.

A problem with 100 000 variables can be considered as an extremely large NSO

problem. With the problems of this size, the solver PBNCGC could not be compiled

due to the arithmetic overflow. Moreover, the other solvers succeed in solving at most

five problems out of ten (see Table 4). Thus, no very far-reaching conclusions can be

made. As before, the robustnesses of D-Bundle, LMBM, and QSM were similar and

they also used approximately same amount of evaluations. However, D-Bundle
usually used clearly less cpu-time than LMBM and QSM.
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Table 5 Summary of the results with million variables

P LMBM D-bundle

nfg/cpu nfg/cpu
1 fail fail

2 fail fail

3 1 698/168.18 2 431/155.81
4 14 074/2 212.79 7 120/1 397.11
5 1 692/414.81 371/70.72
6 fail fail

7 fail 6 258/2 896.71
8 4 970/924.28 6 872/742.20
9 3 702/869.06 3 319/540.67
10 fail inacc/7201.68

With million variable QSM could not be compiled either. Furthermore, the solver

LMBM with the bundle size equal to 100 could be compiled but not run: the procedure

was killed by the host for using too many resources. Thus, for million variables we

changed the size of the bundle to two also for LMBM.

Now, D-Bundle was the most robust solver. It succeed in solving six problems

out of ten with the desired accuracy while LMBM succeed in solving five problems.

In addition, with D–Bundle some of these failures were inaccurate result: with the

relaxed tolerance 𝜀 = 10−2 it succeed in solving seven problems while with LMBM
the number of failures is still five even if the relaxed tolerance was used. With this

very limited set of test problems we can say that D-Bundle was little bit better that

LMBM with these extremely large problems.

The numerical experiments reported confirm that proximal bundle method is the

most robust method tested. However, it cannot be used with very large problems and

the efficiency of the algorithm is highly volatile. In addition, the quasi-secant method

used was unable to solve extremely large-scale problems. Although not developed

for large-scale problems, it solved the problems quite efficiently.

The LMBM and the D-BUNDLE are efficient for both convex (problems 1–5) and

nonconvex (problems 6–10) NSO problems. We can conclude that the LMBM and

the D-BUNDLE are a good alternative to existing nonsmooth optimization algorithms

and for extremely large-scale problems they might well be the best choices available.

6 Conclusions

In this chapter we have recalled the basic ideas of two numerical methods for solv-

ing large-scale nonconvex NSO problems. Namely, the limited memory bundle algo-

rithm (LMBM) and the diagonal bundle method (D-BUNDLE). The numerical exper-



434 N. Karmitsa

iments have been made using problems with up to million variables, which indicates

the usability of the methods also in real world applications with big data-sets.

Indeed, the main challenges in clustering and classification are big sizes of data-

sets, possible outliers and noise, and missing data. Using NSO approach has been

noticed to prevent the latter ones. In addition, when using NSO the L1—penalization

techniques in possible feature selection are readily usable with classification prob-

lems. One topic of the future research will be the usage of the LMBM and the D-

BUNDLE in solving real world clustering problems with large data-sets, that is, for

example in clustering of biomedical data, with a specific focus on subtype discovery

in Type 1 diabetes and cancer.
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Metaheuristics for Continuous Optimization
of High-Dimensional Problems: State
of the Art and Perspectives

Giuseppe A. Trunfio

Abstract The age of big data brings new opportunities in many relevant fields, as

well as new research challenges. Among the latter, there is the need for more effective

and efficient optimization techniques, able to address problems with hundreds, thou-

sands, and even millions of continuous variables. Over the last decade, researchers

have developed various improvements of existing metaheuristics for tacking high-

dimensional optimization problems, such as hybridizations, local search and parame-

ter adaptation. Another effective strategy is the cooperative coevolutionary approach,

which performs a decomposition of the search space in order to obtain sub-problems

of smaller size. Moreover, in some cases such powerful search algorithms have been

used with high performance computing to address, within reasonable run times,

very high-dimensional optimization problems. Nevertheless, despite the significant

amount of research already carried out, there are still many open research issues and

room for significant improvements. In order to provide a picture of the state of the art

in the field of high-dimensional continuous optimization, this chapter describes the

most successful algorithms presented in the recent literature, also outlining relevant

trends and identifying possible future research directions.

Keywords Large scale global optimization ⋅ Evolutionary optimization ⋅Differen-

tial evolution ⋅ Memetic algorithms ⋅ Cooperative coevolution

1 Introduction

Nowadays, Evolutionary Algorithms (EAs) for global continuous optimization are

used with great success in many relevant applications characterized by lack of

detailed information on the objective function, complex fitness landscapes and con-

straints on computing time.

However, among the new challenges that the research in the field has to face, there

are those raised by real-world problems requiring the optimization of a high number
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of variables. Also fostered by the recent advances in the field of big data, relevant

examples of such optimization problems are becoming increasingly common, such as

in clustering [18, 33], data analytics [12], optimization of networks [16], engineering

optimization [10], gene regulatory networks [65] and simulation of complex systems

[3, 4].

Unfortunately, standard EAs suffer from the so-called curse of dimensionality,

that is, their performance deteriorates rapidly as the number of variables to be opti-

mized increases. For the above reasons, the study of suitable approaches for dealing

with the continuous optimization of high-dimensional problems has been recently

recognized as a relevant field of research, which is often referred to as ‘large scale

global optimization’ (LSGO).

Over the years, various approaches have been proposed to devise algorithms suit-

able to address LSGO problems. On the one hand, many researchers have proposed

various improvements of existing effective metaheuristics. Among the most rele-

vant enhancements is worth mentioning the hybridization of different evolutionary

operators, the use of local search (LS) and several approaches for parameter adap-

tation. On the other hand, there is the cooperative coevolutionary (CC) approach,

based on the divide-and-conquer principle, which performs a decomposition of the

search space in order to obtain sub-problems of smaller size. Another important line

of research consists of using the effective approaches mentioned above together with

High Performance Computing (HPC). In this case, the objective is to address very

high-dimensional optimization problems in reasonable computing times.

Many of the developed strategies have proven really effective in the optimization

of problems with a large number of variables. However, despite the relevant amount

of research already done in the field, there are still many important research issues

and room for significant improvements.

The main aim of this chapter is to describe the most successful algorithms pre-

sented in the LSGO literature. Moreover, it outlines some relevant trends and iden-

tifies possible future research directions in the field.

First, the following section describes some relevant optimization algorithms based

on Differential Evolution (DE) [56], which is one of the most common component

of LSGO metaheuristics. Then, Sect. 3 describes the use of a successful strategy for

dealing with LSGO problems, namely LS. Subsequently, Sect. 4 describes the CC

approach, including the most relevant related research problems. The chapter ends

with Sect. 5, where the most promising approaches and research lines are summa-

rized.

2 Differential Evolution and Applications to LSGO

According to the recent literature, several algorithms that successfully addressed

LSGO problems are based on DE [56]. In brief, DE is an EA for optimizing an

objective function f ∶ ℝd → ℝ in which a population of np real vectors 𝐱 ∈ ℝd
are

evolved using mutation, recombination and selection of best individuals.
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In DE, at each generation and for each individual 𝐱i, a mutant vector 𝐲i is first

produced using a mutation operator. The most typical strategies are as follows [56]:

DE∕rand∕1 ∶ 𝐲i = 𝐱r1 + F ⋅ (𝐱r2 − 𝐱r3 )
DE∕best∕1 ∶ 𝐲i = 𝐱(best) + F ⋅ (𝐱r1 − 𝐱r2 )

DE∕current to best∕1 ∶ 𝐲i = 𝐱i + F ⋅ (𝐱best − 𝐱i) + F ⋅ (𝐱r1 − 𝐱r2 )
DE∕best∕2 ∶ 𝐲i = 𝐱best + F ⋅ (𝐱r1 − 𝐱r2 ) + F ⋅ (𝐱r3 − 𝐱r4 )
DE∕rand∕2 ∶ 𝐲i = 𝐱r1 + F ⋅ (𝐱r2 − 𝐱r3 ) + F ⋅ (𝐱r4 − 𝐱r5 )

where: the indexes rk, k = 1,… , 5, are random and mutually different integers in

the interval [1, np], with rk ≠ i; the parameter F ∈ [0, 2] is a mutation scale factor
and 𝐱best is the current best solution found by the algorithm. In the above notation

‘DE/a/b’, a refers to the vector used to generate the mutant vectors and b is the

number of difference vectors used in the mutation process.

After mutation, for each mutant vector 𝐲i, i = 1,… , np, a trial vector 𝐳i is obtained

through a crossover operator. The typical binary crossover (bin) is defined as:

zij =
{

yij if rand(0, 1) ≤ CR or j = jrand
xij otherwise (1)

where rand(0, 1) is a random number in [0, 1] and CR ∈ [0, 1) is a control parameter

defining the probability of deriving variables from the mutant vector 𝐲i. The random

index jrand ∈ [1, d] ensures that at least one variable of 𝐲i is used (even if CR = 0).

An alternative is represented by the exponential crossover (exp). In this case, starting

from a random position chosen from [1,… , d], the variables are copied from the

mutant to the trial vector in a circular manner. After the copy of each variable, a

random number rand(0, 1) is drawn. The copy process stops either when all variables

are copied or the first time that rand(0, 1) > CR.

As soon as a trial vector 𝐳i is created, the typical greedy selection of DE consists

of replacing 𝐱i with 𝐳i only if the latter has a better fitness.

Including also the crossover scheme, the above ‘DE/a/b’ notation can be extended

to identify the different base variants of DE. For example, ‘DE/rand/1/bin’ denotes

a DE scheme with a mutation based on a random vector and one difference vector

followed by a binary crossover.

Starting from the relatively simple mechanism outlined above, many variations

have been developed to enhance its search efficiency. A major improvement, typi-

cally introduced in DE-based algorithms, consists of some form of adaptive or self-

adaptive mechanisms to dynamically update the control parameters F and CR to the

characteristics of optimization problems [1, 5, 7, 9, 23, 31, 51, 64, 73, 77–79].

As mentioned above, several DE algorithms proved very effective to address the

scalability issue that characterizes LSGO. For example, in the 2011 Special Issue

of Soft Computing journal, on ‘Scalability of Evolutionary Algorithms and other

Meta-heuristics for Large Scale Continuous Optimization Problems’, six articles out
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of thirteen were based on DE. Moreover, in the recent literature on LSGO, DE has

been often used with other techniques, such as Memetic Algorithms (MA) [27] and

CC [41, 45, 75].

In the rest of this section we outline some DE-based approaches that have proved

particularly effective in dealing with the scalability issue.

2.1 The jDElscop Algorithm

The jDElscop algorithm [8] is a self-adaptive DE that was the runner-up on the set

of optimization problems proposed for the above mentioned 2011 special issue of

Soft Computing journal.

Besides being an adaptive DE, jDElscop uses a population size reduction strat-

egy, a sign-change control mechanism for the F parameter and three different DE

strategies, namely ‘DE/rand/1/bin’, ‘DE/rand/1/exp’ and ‘DE/best/1/bin’.

During the search, the latter are selected for each individual as follows. In the

first half of the process (i.e., when the number of fitness evaluations is below the

half of available budget), the ‘DE/best/1/bin’ is used with probability 0.1. Otherwise,

‘DE/rand/1/bin’ and ‘DE/rand/1/exp’ are chosen, the former for the first half of np
individuals and the latter for the remaining individuals.

The sign changing mechanism affects the F parameter at each mutation with a

certain probability (which is equivalent to swapping indexes r2 and r3).
As for the adaptation of parameters, instead of using constant F and CR for the

whole population and optimization process, jDElscop adopts, for each DE strategy,

a couple of dynamic parameters Fi and CRi associated to each individual (i.e., six

additional parameters are encoded into each individual). At each generation, Fi and

CRi are randomly changed, within predefined intervals, according to an heuristic

depending on some fixed parameters. The idea, common to many other adaptive DE

algorithms proposed in literature, is that better values of parameters will generate

better individuals, which will more likely survive and propagate their parameters

through the generations.

A particular feature of jDElscop is a mechanism of population size reduction,

which is performed for a small number of times during the optimization process

(e.g., four times). The new population size is equal to half of the previous one and

the reduction is based on a sequence of pair-wise comparisons between individuals

of the first and second halves of the population. The individual with a better fitness

is placed in the first half of the current population, which represents the population

for the next generation.

In [8], jDElscop was tested on 19 benchmark functions with dimension up to

1000. As mentioned above, the results were quite satisfactory as the algorithm was

outperformed only by the MOS-based approach [27] described later in this chapter.



Metaheuristics for Continuous Optimization of High-Dimensional Problems . . . 441

2.2 The GaDE Algorithm

Another DE algorithm that proved particularly effective on LSGO is the ‘general-

ized adaptive differential evolution for large-scale continuous optimization’ (GaDE),

introduced in [78]. In GaDE, instead of using an heuristic, which introduces new

parameters that may be difficult to set, the adaptation is based on a probability dis-

tribution. Such an approach was also previously used by other adaptive DEs, such

as SaDE [50], SaNSDE [77] and JADE [79]. In particular, as done in JADE, also

in GaDE the scale factors Fi are generated for each individual using a Cauchy dis-

tribution Fi = C(Fm, 0.2), where the parameter Fm is computed using a new learn-

ing mechanism depending on the fitness improvements achieved during the process.

The crossover rate CR adaptation is based on generating a values for each individ-

ual from a Gaussian distribution CRi = N(CRm, 0.1), where the parameter CRm is

updated with the same mechanism of Fm.

Binary crossover and two different mutation schemes are used in GaDE, namely

‘DE/rand/1’ and ‘DE/current to best/1’. The choice of the mutation operator is based

on the same learning mechanism implemented in SaDE [50]. In practice, each type of

mutation has an associated probability of being used. During a fixed learning period

(e.g., the first 50 generations), the successes of each type of mutation are recorded

and the probability of choosing each operator is updated accordingly.

In terms of effectiveness when dealing with LSGO problems, GaDE obtained

the third place among all the algorithms included in the 2011 special issue of Soft
Computing journal mentioned above.

2.3 The jDEsps Algorithm

A further DE algorithm that proved very effective on LSGO is the ‘Self-adaptive

differential evolution algorithm with a small and varying population size’, called

jDEsps [6] and representing an improved version of the jDElscop algorithm outlined

in the above Sect. 2.1.

The jDEsps is still a self-adaptive DE algorithm with multiple strategies and a

mechanism for varying the population size during the optimization. However, com-

pared to jDElscop, in this case the algorithm begins with a small population size,

which is increased later and then reduced. Other relevant differences are: (i) a strat-

egy (called jDEw) that moves the best individual found so far using a large step

movement; (ii) a simple probabilistic LS procedure (called jDELS) applied to the

best individual. The jDELS is obtained as a ‘DE/best/1’ mutation with a very small

and probabilistic parameter F. As discussed in the next section, LS has been widely

adopted for developing optimization algorithms able to affectively address LSGO

problems.

The jDEsps algorithm was the runner-up at the special session on LSGO within

the 2012 IEEE Congress on Evolutionary Computation (CEC).
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3 Memetic Algorithms for LSGO

According to the literature, an effective way to improve the efficiency of EAs consists

of hybridizing the optimization process with LS techniques. The latter are typically

applied to some selected and promising individuals at each generation. In such a

search process, commonly referred to as Memetic Algorithm (MA) [38, 39], the EA

mechanisms help to explore new search zones, while the LS exploits the current best

solutions.

Clearly, since LS can be computationally expensive, a good balance between

exploration (EA) and exploitation (LS) is a key factor for the success of a MA imple-

mentation. This is particularly true in case of problems with high dimensionality. In

fact, in such cases LS concerns much challenging neighbourhoods and a suitable

value of its intensity (i.e., the number of fitness function evaluations assigned to LS)

should be carefully determined in order to achieve a satisfactory search efficiency.

With this in mind, several hybrid EAs, endowed with various types of LS, have been

developed in literature specifically to address LSGO problems. Below, two among

the most effective approaches are briefly outlined.

3.1 The MA with LS Chains Approach

A successful MA, which proved very efficient in LSGO, is the MA with LS chains
(MA-LS-Chains), proposed in [35, 36] and later developed in [37].

In brief, at each EA generation the LS chain method resumes, on some

individuals, the LS exactly from its last state (i.e., that resulting from the LS at the

previous generation). Such an approach allows to effectively adapt LS parameters,

including its intensity, during the search process. A first version of MA-LS-Chains,

namely MA-CMA-Chains [35], was based on the Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) [21] as LS method. However, although very effective,

CMA-ES is also very computationally expensive, especially in case of high dimen-

sional problems (i.e., it is based on many operations with complexity O(d3), being

d the problem dimension). As a results, MA-CMA-Chains was not able to effec-

tively tackle LSGO problems. Later, a new MA-LS-Chains algorithm was devel-

oped in [36] using a more scalable LS method, namely the Solis and Wets’ algorithm

(SW) [55]. Remarkably, the resulting MA-SW-Chains was the winner of the LSGO

special session at CEC 2010.

The MA-SW-Chains algorithm is a steady-state GA, that is, only few new indi-

viduals replace parents in the population at each generation (e.g., only the worst

parent is replaced by a better newly generated individual). It is worth noting that the

resulting long permanence of individuals into the population, through generations,

allows the MA-LS-Chains approach to resume LS on some individuals. The main

characteristics of MA-SW-Chains are outlined below.
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To achieve high population diversity, the search algorithm uses the Blend Alpha

Crossover (BLX-𝛼) as recombination operator, with 𝛼 = 0.5 [17]. The BLX-𝛼

crossover creates new offspring by sampling values for each direction i in the range

[mini − 𝛼 I,maxi + 𝛼 I), where mini and maxi are the smaller and larger values of the

two parents along the ith direction, and I = maxi − mini [59].

Moreover, in MA-SW-Chains the authors adopted the negative assortative mating
strategy [19, 20], where mating between individuals having similar phenotype is less

frequent than what would be expected by chance. According to [19, 20], a way to

implement such a mating scheme is as follows: (i) a first parent is chosen by the

roulette wheel method and further nadd candidate parents are also selected (nadd = 3
in MA-SW-Chains); (ii) then, the similarity between each of the nadd individuals and

the first parent is computed using a suitable metric; (iii) among the nadd individuals,

the less similar is chosen as the second parent.

Another characteristic of MA-SW-Chains is the use of BGA mutation [40]. In the

latter, when a variable xi is selected for mutation, its value is changed into xi ± ri 𝛿,

where ri is the mutation range, the sign + or − is randomly selected with the same

probability and 𝛿 is a small random number in [0, 1].
As mentioned above, the LS in MA-SW-Chains is based on the SW algorithm

[55], which is an adaptive randomized hill-climbing heuristic. The SW process starts

with a solution 𝐱(0) and explores its neighbourhood, through a step-by-step process,

to find a sequence of improved solutions 𝐱(1), 𝐱(2) … 𝐱(q). More in details, in SW two

neighbours are generated at each step by adding and subtracting a random deviate 𝜟,

which is sampled from a normal distribution with mean 𝐦 and standard deviation 𝜌.

If either 𝐱(i) + 𝜟 or 𝐱(i) − 𝜟 is better than 𝐱(i), the latter is updated and a success is

registered. Otherwise, the value of 𝜟 is considered as a failure. On the basis of the

number of successes, and depending on some fixed parameters, the values of 𝜌 and

𝐦 are updated during the process, in order to both increase the convergence speed

and bias the search towards better areas of the neighbourhood. The process continues

up to a certain number of fitness function evaluations (i.e., the LS intensity).

The main aspect of MA-SW-Chain consists of resuming LS through subsequent

generations. In particular, thanks to the fact that the evolutionary process is steady

state, the LS has very often the opportunity to continue LS on the same individuals

and using the same state achieved when the LS was halted (e.g., in terms of 𝜌, 𝐦 and

number of successes and failures).

Another important characteristic of MA-SW-Chain is that, to avoid super exploita-

tion, the total number of fitness function evaluations dedicated to LS is a fixed frac-

tion of the total available budget. In addition, at each generation only one individual

is chosen to be improved by LS using a strategy that allows to activate new promising

chains and to exploit existing ones. However, when LS has been already applied to

all available individuals without achieving adequate fitness improvements, the pop-

ulation is randomly reinitialized retaining only the best individual.

As mentioned above, MA-SW-Chain was very effective on the 20 test problems

proposed for the LSGO special session in the CEC 2010. Such tests, however, were

limited to a dimensionality of 1000.
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Recently, a significant development of MA-SW-Chain was presented in [24],

where a parallel implementation on Graphics Processing Units was applied to opti-

mization problems up to the remarkable dimension of 3,000,000 variables. In this

case, the study aimed at showing the speedup that can be obtained with the GPU-

based MA-SW-Chains optimization technique and how it increases as the dimen-

sionality grows. Interestingly, for dimensionality 3,000,000 the run time is reduced

from 18 days to less than 2.5 h on the used hardware, which was composed of a recent

NVIDIA GPU card and a workstation equipped with a standard CPU.

Considering the results of [24], at the current state of the technology it seems

that the only actual possibility to address optimization problems with millions of

dimensions is to couple highly scalable search algorithms with HPC.

3.2 The MOS-Based Algorithms

Other hybrid algorithms with LS that were very successful in dealing with LSGO

problems are based on the Multiple Offspring Sampling (MOS) approach [25], in

which different mechanism for creating new individuals are used in the optimization.

During the process, the goodness of each involved mechanism is evaluated according

to some suitable metrics. Then, the latter are used to dynamically adapt the partici-

pation, in terms of computational effort, of each technique.

A MOS algorithm that showed the best performance on the test set proposed for

the 2011 SI of Soft Computing journal on LSGO, was based on DE and a LS strategy

[27]. The approach, which is briefly described below, belongs to the so called high-

level relay hybrid (HRH) category [60], where different metaheuristics are executed

in sequence, each of which reusing the output population of the previous one.

The algorithm is composed of a fixed number of steps. At each step, a specific

amount FEs of fitness function evaluations is distributed between the involved tech-

niques T (i)
according to some Participation Ratios 𝛱i.

Initially, all 𝛱i have the same value. At each step of the search process, a Quality
Function (QF) attributes a quality value Q(i)

to each technique T (i)
on the basis of

the individuals produced in the previous step. In [27], the QF is defined in a way

to account both for the achieved average fitness increment and the number of such

improvements. Then, the participation ratios 𝛱i of the involved techniques T (i)
are

updated accounting for the Q(i)
values. In particular, the 𝛱i are computed using the

relative difference between the quality of the best technique and the remaining ones.

However, regardless of its Q(i)
value, a minimum threshold is established, in order

to prevent a technique to exclude the others in case of its much greater efficiency at

the early steps of the search process. As soon as the 𝛱i are computed, they are used

to determine the number of allowed fitness function evaluations in the next step for

all the involved techniques.

An additional strategy included in the algorithm is the population reset, preserv-

ing the best solution, in case of convergence of the whole population to the same

solution.
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As for the adopted LS, referred to as MTS-LS1, it was based on one of the methods

included in the Multiple Trajectory Search (MTS) algorithm [68]. In brief, it searches

separately along each direction using a deterministic search range (SR) initialized to

a suitable value SR0. The value of SR is reduced to one-half if the previous LS does

not lead to improvements. When SR falls below a small threshold, it is reinitialized

to SR0. Along each search direction, the solution’s coordinate is first subtracted by

SR to look for fitness improvements. In case of improvement, the search proceeds to

consider the next dimension. Otherwise, the variable corresponding to the current

direction is restored and then is added by SR/2, again to check if the fitness improves.

If it is, the search proceeds to consider the next dimension. If it is not, the variable is

restored and the search proceeds to consider the next direction. The detailed pseudo-

code can be found in [68].

The MOS algorithm outlined above, was tested on the 19 test functions up to

1000 dimensions, proposed for the above mentioned SI of Soft Computing journal.

The scalability of the algorithm was very satisfactory, as 14 out of the 19 functions

of the benchmark were solved with the maximum precision.

Another MOS-based hybrid algorithm was later presented at the CEC 2012 LSGO

session, where it outperformed all the competitors [28]. In this case, the approach

combined two LS techniques without a population-based algorithm, namely the

MTS-LS1 [68] and the SW algorithm [55] already outlined above. In addition, the

QF was only based on the fitness increment achieved at each generation by each tech-

nique. Such an approach, besides achieving the best result on the CEC 2012 special

session on LSGO, in a comparison combining the results of CEC 2010 and CEC

2012 sessions, also outperformed many other algorithms [62].

Later, in [29] a new MOS-based hybrid algorithm was presented, which com-

bines a GA with two strategies of LS: the SW algorithm [55] and a variation of

MTS-LS1 [68], called MTSLS1-Reduced. The latter operates as the MTS-LS1 out-

lined above. However, it spends more computational effort on the most promising

directions. The GA used a BLX-𝛼 crossover, with 𝛼 = 0.5, and a Gaussian mutation

[22]. Such a MOS-based approach was the best performing algorithm in the test set

proposed for LSGO session at the CEC 2013 (i.e., a set of 15 large-scale benchmark

problems, with dimension up to 1000, devised as an extension to the previous CEC

2010 benchmark suite).

4 Cooperative Coevolution

Cooperative Coevolution (CC), introduced in [48], is another effective approach for

addressing LSGO problems. CC can be classified as a divide-and-conquer tech-

nique, in which the original high-dimensional problem is decomposed into lower-

dimensional subcomponents, which are easier to solve.

Typically, each subcomponent is solved using an ordinary optimization meta-

heuristic. During the process, the only cooperation takes place at the evaluation of
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the fitness through an exchange of information between the search processes operat-

ing on the different subcomponents.

CC was first applied to a GA by Potter and De Jong in [48]. Subsequently, the

approach has been successfully tested with many different search algorithms such

as Ant Colony Optimization [14], Particle Swarm Optimization (PSO) [15, 30, 47,

69], Simulated Annealing [54], DE [75], Firefly Algorithm [66] and many others.

More in details, a CC optimization is based on partitioning the d-dimensional set

of search directions G = {1, 2,… , d} into k sets G1 …Gk. Each group Gi of direc-

tions defines a subcomponent whose dimension can be significantly lower than d. By

construction, a candidate solution found by a subcomponent contains only some ele-

ments of the d-dimensional vector required for computing the corresponding fitness

function f . Thus, to evaluate the latter, a common d-dimensional context vector 𝐛
is built using a representative individual (e.g., the best individual) provided by each

subcomponent. Then, before its evaluation, each candidate solution is complemented

through the appropriate elements of the context vector. In this framework, the coop-

eration between sub-populations emerges because the common vector is used for the

fitness evaluation of all individuals.

In their original paper, Potter and De Jong [48] proposed to decompose a

d-dimensional problem into d sub-populations (i.e., Gi = {i}). The fitness of each

individual was computed by evaluating the d-dimensional vector formed by the indi-

vidual itself and a selected member (e.g., the current best) from each of the other

sub-populations.

Subsequently, the idea was applied to PSO by Van den Bergh and Engelbrecht in

[69], where the authors introduced the decomposition of the original d-dimensional

search space into k subcomponents of the same dimension dk = d∕k. In other words,

in such an approach the groups of dimensions associated to the subcomponents are

defined as:

Gi = {(i − 1) × dk + 1,… , i × dk}

and the context vector is:

𝐛 = (b(1)1 ,… , b(1)dk
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝐛(1)

, b(2)1 ,… , b(2)dk
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝐛(2)

,… , b(k)1 ,… , b(k)dk
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝐛(k)

)T

where 𝐛(i) is the dk-dimensional vector representing the contribution of the ith sub-

component (e.g., its current best position):

𝐛(i) = (b(i)1 , b
(i)
2 ,… , b(i)dk

)T

Given the jth individual 𝐱(i,j) ∈ S(i)
of the ith subcomponent:

𝐱(i,j) = (x(i,j)1 , x(i,j)2 ,… , x(i,j)dk
)T
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its fitness value is given by f (𝐛(i,j)), where 𝐛(i,j) is defined as:

𝐛(i,j) = (b(1)1 ,… , b(1)dk
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝐛(1)

,… , x(i,j)1 ,… , x(i,j)dk
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝐱(i,j)

,… , b(k)1 ,… , b(k)dk
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝐛(k)

)T

In other words, the fitness of 𝐱(i,j) is evaluated on the vector obtained from 𝐛 by sub-

stituting the components provided by the ith sub-population with the corresponding

components of 𝐱(i,j).

Algorithm 1: CC(f , n)

1 G = {G1,… ,Gk} ← grouping(n);

2 pop ← initPopulation();

3 contextVector ← initContextVector(pop);

4 fitnessEvaluations ← 0;

5 while fitnessEvaluations < maxFE do
6 foreach Gi ∈ G do
7 popi ← extractPopulation(pop, Gi);

8 besti ← optimizer(f , popi, contextVector, Gi, maxFESC);

9 pop ← storePopulation(popi, Gi);

10 fitnessEvaluations ← fitnessEvaluations + maxFESC;

11 contextVector ← updateContextVector(besti, Gi);

12 return contextVector and f (contextVector);

Except for the evaluation of individuals, the optimization is carried out using the

standard optimizer in each subspace. Algorithm 1 outlines a possible basic CC opti-

mization process for population-based metaheuristic. First, a decomposition function

creates the k groups of directions. Then the population and the context vector are

randomly initialized. The optimization is organized in cycles. During each cycle, the

optimizer is activated in a round-robin fashion for the different subcomponents and

the context vector is updated using the current best individual of each subcomponent.

A budget of maxFESC fitness evaluations is allocated to each cycle and subcompo-

nent. The CC cycles terminate when the number of fitness evaluations reaches the

value maxFE. Note that several variants to this scheme can be possible. For example,

the context vector could be updated in a synchronous way at the end of each cycle.

The CC framework has attracted a significant amount of research with the aim of

addressing relevant design aspects that typically affect its optimizing performance.

In the following, some of the main results reported in the literature are outlined.

4.1 Random Grouping

A major issue with the CC approach, early recognized in [48, 49], is that when inter-

dependent variables are assigned to different subcomponents the search efficiency

can decline significantly.
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The interdependency between decision variables is usually referred to as non-
separability [53] or epistasis, that is gene interaction. Basically, separability means

that the influence of a variable on the fitness value is independent of any other vari-

ables. More formally, following [2] a function f ∶ ℝd ↦ ℝ is separable iff:

arg min
x1,…, xd

f (x1, … , xd) =
(

argmin
x1

f (x1,…), … , argmin
xd

f (… , xd)
)

(2)

otherwise the function f (𝐱) is non-separable.

The level of separability has long been regarded as one of the measures of dif-

ficulty of an evolutionary optimization algorithm. For example, in [53], Salomon

showed that the performance of a simple GA can decrease significantly in case of

non-separable problems.

In the CC case, it is clear that the simple decomposition method outlined above,

when applied to non-separable problems, can lead to slow convergence. In fact, inter-

dependent variables are likely to be located in different subcomponents during the

whole optimization process.

To cope with this problem, in the Random Grouping (RG) approach, proposed

by Yang et al. in [75, 76], the directions of the original search space are periodically

grouped in a random way to determine the CC subcomponents. Such an approach

was successfully applied to DE, on high dimensional non-separable problems with

up to 1000 dimensions. Subsequently, the RG idea was integrated into several CC

optimizers. For example, in [30] the authors applied RG to PSO to solve optimization

problems up to 2000 variables. Such a cooperative PSO outperformed some state of

the art evolutionary algorithms on complex multi-modal problems. Also, in [47]

the author used the same cooperative approach with RG in a micro-PSO, showing

that even using a small number of individuals per subcomponent the algorithm is

very efficient on high-dimensional problems. Moreover, in [66] the RG approach

was successfully applied to a CC version of the Firefly Algorithm (FA) [74].

Compared with the simple linear decomposition described above, it has been

proved that RG increases the probability of having two interacting variables in the

same sub-population at least for some iteration of the search algorithm [43, 75].

More in details, in the linear decomposition proposed in [32, 48, 69] the ith sub-

population operates on the group of directions Gi defined as the interval:

Gi = [(i − 1) × dk + 1, … , i × dk ]

In addition, the decomposition G = {G1,… ,Gk} of Algorithm 1 is static, in the

sense that it is defined before the beginning of optimization cycles. Instead, a RG

approach assigns to the ith group dk = d∕k directions qj, with j randomly selected

without replacement from the set {1, 2, … , d }.

To motivate their approach, in [75] the authors showed that RG leads to a rela-

tively high probability to optimize in the same subcomponent two interacting vari-

ables for at least some cycles.
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Later, in [43] was shown that the probability of having all the interacting variables

grouped into the same subcomponent for sufficient number of cycles can be very low.

To mitigate this problem, the authors suggested to increase the frequency of RG. A

way to maximize the RG frequency consists of executing only one generation of the

evolutionary optimizer per CC cycle. In [43] a higher frequency of RG provided

significant benefits on some non-separable high dimensional problems.

However, according to the analytical result showed in [43], to group at least once

many interacting variables together the RG approach would require an infeasible

number of cycles. Nevertheless, even when only some of such variables are grouped

together in turns, according to results in the literature, the RG approach can be ben-

eficial.

4.2 Adaptive Decomposition

When using the CC approach on some optimization problems, there exists an opti-

mal value of the chosen size dk = d∕k that maximizes the performance of a given

optimizer [46]. Unfortunately, according to [46, 76] it is not easy to predict such an

optimal size before the optimization, since it strongly depends on both the problem

and the characteristics of the adopted optimizer. Small group sizes can be suitable

for separable problems, making easier the optimization of each subcomponent. On

the other hand, large group sizes may increase the probability of grouping together

interacting variables in non-separable problems.

Among the techniques that have been proposed for the automatic adaptation of

the subcomponent sizes, there is the Multilevel Cooperative Coevolution (MLCC)

framework [76]. The MLCC idea is to operate with a predefined set of decomposers,

that is, with a set of allowed group sizes V = {dk1 , dk2 ,… , dkm
}. At the beginning of

each cycle, MLCC selects a decomposer dki
from V on the basis of its performance

during the past cycles. To such purpose, the algorithm attributes a performance index

ri to each decomposer as follows:

1. initially, all the ri ∈ ℝ are set to 1;

2. then, the ri are updated the basis of the gain of fitness associated to their use

trough the equation ri = (f (prev) − f (cur))∕|f (prev)|, where f (prev)
is the best fitness

at the end of the previous cycle and f (cur)
is the best fitness achieved at the end of

the current cycle in which the decomposer dki
has been used.

At the beginning of each cycle, the performance indexes are converted into proba-

bilities using a Boltzmann soft max distribution [58]:

pi =
eri∕c

∑t
j=1 erj∕c

(3)

where c is a suitable constant. The latter should be set in such a way to associate a high

probability of being selected to the best decomposers (exploitation), still giving some
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chances to all the available decomposers (exploration). The above mechanism allows

to self-adapt the problem decomposition to the particular objective problem and also

to the evolution stages. In [76], the MLCC adaptation method was tested, using a RG

strategy, on a suite of benchmark functions. The authors found that in some cases the

self-adaptive strategy outperformed the corresponding methods based on the static

selection of dk and on the random selection of the group sizes at each cycle.

An improvement of the MLCC approach, named MLSoft, was later introduced in

[46]. The authors noted that MLCC can be seen in a perspective of a reinforcement

learning (RL) approach [58], where the improvement of fitness is the reinforcement

signal and the actions consist in the choice of the decomposer. However, instead of

selecting actions on the basis of its long-term utility, as typically done in RL, in

the MLCC their immediate reward is used. Instead, MLSoft replaced ri with a suit-

able value function Vi, which was intended as an estimate of the long term utility

associated to the use of a decomposer. In [46], Vi was simply defined as the arith-

metic mean of all rewards ri received by the decomposer dki
during the optimization

process. The MLSoft algorithm was tested on eight fully-separable functions using a

rich set of decomposers and different values of the parameter c in Eq. (3). According

to the results, although MLSoft outperformed MLCC, it was not able to outperform

the corresponding CC framework with a fixed and optimal subcomponent size. This

suggests that there is still room for improvement in the way in which the size of

decomposers are determined in the CC approach.

A major issue with the adaptive approach outlined above can be easily recog-

nized. In both the MLCC and MLSoft approaches, a decomposer is randomly drawn

at each cycle according to its current probability, which is computed on the basis of

its value function. The latter reflects the rewards obtained by the decomposer at the

end of the cycles in which it has been used. Unfortunately, in such a learning scheme

the rewards obtained by the different decomposers may be strongly affected by the

state of the environment in which they have operated. This is because of the expected

evolution of the population on the fitness landscape, which can be significantly com-

plex. In other words, an hypothetical agent that has to choose a decomposer operates

on a non-stationary and history-dependent environment, for which RL schemes con-

ceived for Markovian environments are not guaranteed to converge to the optimal

policy (although they can still be used with acceptable results in some cases [58]).

Therefore, an effective automatic decomposition approach should be able to learn on

a dynamic environment.

Such a problem has been recently addressed in [67] using a new approach in

which, during short learning phases, the decomposers of a predefined set are concur-

rently applied starting from the same state of the search, including the same context

vector. In other words, they are concurrently executed on the same initial environ-

ment in order to achieve an unbiased estimate of their value functions. The experi-

mental results on a set of large-scale optimization problems showed that the method

can lead to a reliable estimate of the suitability of each subcomponent size. More-

over, in some cases it outperformed the best static decomposition.
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4.3 Automatic Grouping

Another important line of research, which significantly contributed to the enhance-

ment of the CC approach, concerns the possibility of identifying and grouping

together interacting variables. In contrast to the RG approach, the objective is to dis-

cover the underlying structure of the problem in order to devise and adapt a suitable

decomposition.

The first technique to identify interacting variables in a CC framework was pro-

posed in [72]. The authors observed that if a candidate solution where two directions

have been changed achieves a better fitness than the same solution where only one

of the directions was changed, then this may indicate the presence of an interdepen-

dency. The creations of groups was carried out during the optimization process (i.e.,

online) exploiting some additional fitness evaluations for each individuals. The tech-

nique proved effective, although the approach was tested only on few functions with

dimensionality up to 30.

Following the idea proposed in [72], which basically consists of observing the

changes of the objective function due to a perturbation of variables, more effective

methods have been later developed. In most cases, the decomposition stage is per-

formed offline, that is the groups are created before the optimization starts. Other

approaches presented in the literature for automatically grouping variables in CC

are based on learning statistical models of interdependencies [57] or on the correla-

tion between variables [52]. However, as noted in [44], correlation coefficients are

not a proper measure for separability in the CC optimization context.

An important step in the development of an automatic grouping strategy for CC

optimizations has been the Delta Grouping (DeG) approach proposed in [44]. The

DeG algorithm is based on the concept of improvement interval of a variable, that is

the interval in which the fitness value could be improved while all the other variables

are kept constant [44, 53]. It has been observed that in non-separable functions, when

a variable interacts with other variables, its improvement interval tends to be smaller.

Therefore, in the DeG approach the identification of interacting variables was based

on measuring the amount of change (i.e., the delta value) in each of the decision

variables during the optimization process. In particular, the DeG algorithm sorts the

directions according to the magnitude of their delta values in order to group the vari-

ables with smaller delta values in the same subcomponent. Clearly, as pointed out in

[44], not always a small improvement interval implies a variable interdependency.

However, when tested on both the CEC 2008 [63] and CEC 2010 LSGO [61] bench-

mark functions, the DeG method performed better than other relevant CC methods.

A drawback of DeG is its low performance when there is more than one non-

separable subcomponent in the objective function [44]. On the other hand, being an

online adaptation technique, the DeG approach has the ability to adapt itself to the fit-

ness landscape. Such a property can be valuable when the degree of non-separability

changes depending on the current region of the search space explored by the indi-

viduals in the population.
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A different grouping technique, proposed in [11], is the Cooperative Coevolution

with Variable Interaction Learning (CCVIL), which can be viewed as a development

of the method presented in [72]. In CCVIL, the optimization is carried out trough two

stages, namely learning and optimization, in the first of which the grouping structure

is discovered. According to [11], an interaction between any two variables xi and xj
is taken under consideration if the following condition holds:

∃ 𝐱, x′i , x′j ∶
f (x1, … xi, … , xj, … , xd) < f (x1, … x′i , … , xj, … , xd) ∧
f (x1, … xi, … , x′j , … , xd) > f (x1, … x′i , … , x′j , … , xd) (4)

The learning stage of CCVIL starts by placing each direction in a separate subcompo-

nent, that is by separately optimizing the variables in sequence. During this process,

CCVIL tests if the currently and the previously optimized dimensions interact by

using Eq. 4. The latter can be applied because only two dimensions changed. Before

each learning cycle, the order of optimization of variables is randomly permutated,

so that each two dimensions have the same chance to be processed in sequence. After

the convergence of the learning stage in terms of grouping, CCVIL starts the opti-

mization stage.

In [11], the authors tested the CCVIL approach using the CEC 2010 benchmark

functions on LSGO [61]. According to the results, CCVIL improved the underlying

CC algorithm in most of the benchmark functions. However, a significant issue to

be solved concerns the distribution of computational effort between learning and

optimization stages of CCVIL.

Another recent approach for adaptive grouping, named Differential Grouping
(DG) algorithm, has been proposed in [41] for additively separable (AS) functions

f ∶ ℝd ↦ ℝ, which can be expressed as the sum of k independent nonseparable func-

tions. In this case, there exists an ideal problem decomposition Gid composed of k
groups of variables Gi such that if q ∈ Gi and r ∈ Gj, with i ≠ j, then q and r are

independent. However, it is worth noting that Gid is not necessarily the best decom-

position for a CC optimization algorithm, as can be inferred from the results pre-

sented in [46]. In fact, depending on both the problem and the optimizer, could be

effective to split some groups Gi into sub-groups with lower dimension.

The DGA approach was founded on the formal proof that for AS functions, if the

forward differences along xp:

𝛥fxp
(𝐱, 𝛿)|xp=a, xq=b and 𝛥fxp

(𝐱, 𝛿)|xp=a, xq=c

are not equal, with b ≠ c and 𝛿 ≠ 0, then xp and xq are non-separable. The forward

difference with interval 𝛿, in a point 𝐱 and along the direction xp is defined as:

𝛥fxp
(𝐱, 𝛿) = f (… , xp + 𝛿,…) − f (… , xp,…)
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and requires two function evaluations to be estimated. The DG presented in [41],

exploits the above property to create groups of interacting variables. The algorithm

operates by checking the interactions trough pairwise comparisons among variables.

However, DG does not necessarily require all the comparisons. In fact, when an

interaction is detected between two variables, one of the two is placed on a group

and excluded by further comparisons. For example, for d = 1000, with m = 50 only

21,000 function evaluations are required, while with m = 1 (i.e., fully separable

problem) DG requires 1,001,000 additional fitness evaluations [41]. It is important

to note that such an additional computational effort reduces the budget available for

the subsequent optimization phase.

The DG approach was tested in a CC optimizer using CEC 2010 benchmark func-

tions [61] showing a good grouping capability. Also, DG outperformed the CCVIL

approach in most functions, both in terms of grouping accuracy and computational

cost. However, on some test cases, such as those derived by the Rosenbrock function,

the decomposition accuracy was low. This suggests that the DG approach is not very

effective in case of indirect interactions between variables and that further research

is needed to develop a better method of automatic grouping. Likely, a more accurate

algorithm would require even more function evaluations than DG, which would be

subtracted by the available computational budget.

4.4 Dealing with Unbalanced Subcomponents

Given the ability of automatic decomposition described above, in [45] the authors

noted that there is often an imbalance between the contribution to the fitness of

the different subcomponents. In particular, in CC there are situations in which the

improvements in some of the subcomponents are not apparent simply because they

are negligible in comparison to the fitness variation caused by other subcomponents.

Thus, according to [45], in most cases devoting the same amount of computational

resources to all subcomponents (i.e., the value maxFESC in Algorithm 1) in a round-

robin fashion, can result in a waste of fitness evaluations. In order to mitigate this

issue, in [45] the Contribution Based Cooperative Co-evolution (CBCC) algorithm

was proposed, where:

1. the contribution𝛥Fi of each subcomponent is estimated by measuring the changes

in global fitness when it undergoes optimization. Such contributions are accumu-

lated from the first cycle during the optimization.

2. each cycle is composed of a round-robin testing phase, where the contributions

𝛥Fi are updated, and a subsequent stage in which the subcomponent with the

greatest 𝛥Fi is iteratively selected for further optimization;

3. when there is no improvement in the last phase, the algorithm starts a new cycle

with a new testing phase.
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Clearly, the CBCC algorithm must be integrated with an effective grouping strategy,

which should be able to decompose the problem into independent groups as much

as possible.

The CBCC has proved to be promising when tested on the LSGO benchmark

functions which have been proposed for the CEC 2010 [61]. However, the experi-

ments showed that CBCC is too much influenced by historical information in the

early stages of evolution. For example, it may happen that the subcomponent that is

initially recognized as the major fitness contributor, reaches convergence very soon.

In this case, the CBCC approach presented in [45] does not switch immediately to

the subcomponent with the largest contribution, due to the influence of the initial

assessment of contributions. From this point of view, there is still room for develop-

ing an adaptive procedure that can cope effectively with the problem of imbalance

between the contribution to the fitness of the different subcomponents.

4.5 Successful Algorithms Based on CC

As already noted, the CC approach was adopted in conjunction with a number of

optimization algorithms. Below, we mention the most successful ones at the CEC

special sessions on LSGO.

∙ DECC-G. Originally presented in [75], DECC-G is a CC approach based on

the ‘Self-Adaptive with Neighborhood Search Differential Evolution’ (SaNSDE)

algorithm [77]. The latter is a self-adaptive DE in which the mutation operator

is replaced by a random neighborhood search. The DECC-G algorithm was the

runner-up at the 2013 CEC special session on LSGO.

∙ CC-CMA-ES. The ‘Scaling up Covariance Matrix Adaptation Evolution Strategy

using cooperative coevolution’ (CC-CMA-ES) is a CC approach based on CMA-

ES [21]. This algorithm obtained the third position at the 2013 CEC special session

on LSGO.

∙ 2S-Ensemble. The ‘Two-stage based ensemble optimization for Large-Scale

Global Optimization’ (2S-Ensemble) was proposed in [70, 71]. It divides the

search procedure into two different stages: (i) in the first stage, a search technique

with high convergence speed is used to shrink the search region on a promising

area; (ii) in the second stage, a CC based search technique is used to exploit such a

promising area to get the best possible solution. The CC uses randomly three dif-

ferent optimizers, based on the above mentioned SaDE [50], on a GA and a DE.

Moreover, the size of the decomposition is adaptive. The 2S-Ensemble algorithm

was the runner-up at the 2010 CEC special session on LSGO.
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5 Conclusions

Among the relevant research challenges that characterize the era of big data, there

is the need for optimization techniques able to effectively tackle problems with hun-

dreds, thousands, and even millions of variables. Ideal candidates for dealing with

such complex optimization tasks are EAs, which, however, can suffer form signifi-

cant scalability problems as the dimensionality of the problem increases. For these

reasons, the field of LSGO attracted a great amount of research over the last decade.

Rather than presenting a comprehensive review (which can be found in [26, 34]),

this chapter focused on outlining some relevant trends and important research issues

concerning LSGO, also describing the most successful algorithms presented in liter-

ature. By examining the latter, we can recognize the following recurring components

and promising approaches:

∙ Hybridization. According to the literature, hybridization was often a key factor

for developing highly scalable optimization algorithms [27, 29, 70].

∙ Adaptation. Different forms of adaptation were successfully adopted in all the

most scalable optimization algorithms. For example, adaptation concerned DE

parameters in [8, 75, 78], problem decomposition in [46] and metaheuristic selec-

tion in [27, 29].

∙ Differential Evolution. Several adaptive versions of DE, developed in recent

years, proved very effective and scalable. Many hybrid algorithms with signifi-

cant performance in addressing LSGO problems were based on (or included) DE

variants [6, 8, 78].

∙ Local search. The most relevant algorithms for tackling LSGO problems included

LS strategies [24, 27, 29, 36, 37]. Often, simpler LS algorithms, such as the SW

[55], were also more effective [29, 37].

∙ Diversity promotion. Avoiding premature convergence is another aspect that was

explicitly addressed by some successful algorithms. Typically, this is obtained

trough a diversity control mechanism triggered by suitable indicators (e.g., the

reduction of variance in the population) [13]. For example, the MOS algorithm

used in [27] includes a population reset mechanism, preserving the best solution,

to be activated in case of convergence of the whole population to the same point.

Also in the MA-SW-Chain algorithm, the population is randomly reinitialized,

retaining only the best individual, when LS has been already applied to all avail-

able individuals without achieving fitness improvements [37].

∙ Cooperative Coevolution. The CC approach proved very promising as a frame-

work for optimizing high-dimensional problems. Important research problems in

this case concern the automatic and adaptive decomposition [41, 46] and the issue

of unbalanced subcomponents [45].

∙ High Performance Computing. To address very high-dimensional optimization

problems (e.g., millions of variables) it is mandatory the adoption of HPC, besides

efficient algorithms. However, according to the literature, it seems that the par-

allelization of algorithms specifically designed for LSGO is still in its infancy

[24, 47].
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As a final remark, it should be noted that accurate benchmarking on problems

with a number of variables exceeding 1000 were rarely tackled in the literature. In

addition, the typical approach used so far for evaluating new metaheuristics con-

sisted of using only benchmarks test functions rather than real-world optimization

problems. This suggests that the design of effective benchmarks is another critical

aspect of the research in the field [42].

In conclusion, the LSGO area is rich in research directions which could potentially

result in significant advances of the current state of the art.

References

1. Abbass, H.: The self-adaptive pareto differential evolution algorithm. In: Proceedings of the

2002 Congress on Evolutionary Computation, 2002. CEC’02, vol. 1, pp. 831–836 (2002)

2. Auger, A., Hansen, N., Mauny, N., Ros, R., Schoenauer, M.: Bio-inspired continuous optimiza-

tion: the coming of age. Piscataway, NJ, USA, invited talk at CEC2007 (2007)

3. Blecic, I., Cecchini, A., Trunfio, G.A.: Fast and accurate optimization of a GPU-accelerated

CA urban model through cooperative coevolutionary particle swarms. Proc. Comput. Sci. 29,

1631–1643 (2014)

4. Blecic, I., Cecchini, A., Trunfio, G.A.: How much past to see the future: a computational study

in calibrating urban cellular automata. Int. J. Geogr. Inf. Sci. 29(3), 349–374 (2015)

5. Brest, J., Boskovic, B., Greiner, S., Zumer, V., Maucec, M.S.: Performance comparison of self-

adaptive and adaptive differential evolution algorithms. Soft Comput. 11(7), 617–629 (2007)

6. Brest, J., Boskovic, B., Zamuda, A., Fister, I., Maucec, M.: Self-adaptive differential evolution

algorithm with a small and varying population size. In: 2012 IEEE Congress on Evolutionary

Computation (CEC), pp. 1–8 (2012)

7. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters

in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans.

Evol. Comput. 10(6), 646–657 (2006)

8. Brest, J., Maucec, M.S.: Self-adaptive differential evolution algorithm using population size

reduction and three strategies. Soft Comput. 15(11), 2157–2174 (2011)

9. Brest, J., Zumer, V., Maucec, M.: Self-adaptive differential evolution algorithm in constrained

real-parameter optimization. In: IEEE Congress on Evolutionary Computation, 2006. CEC

2006, pp. 215–222 (2006)

10. Chai, T., Jin, Y., Sendhoff, B.: Evolutionary complex engineering optimization: opportunities

and challenges. IEEE Comput. Intell. Mag. 8(3), 12–15 (2013)

11. Chen, W., Weise, T., Yang, Z., Tang, K.: Large-scale global optimization using cooperative

coevolution with variable interaction learning. In: Parallel Problem Solving from Nature. PPSN

XI, Lecture Notes in Computer Science, vol. 6239, pp. 300–309. Springer, Berlin, Heidelberg

(2010)

12. Cheng, S., Shi, Y., Qin, Q., Bai, R.: Swarm intelligence in big data analytics. In: Yin, H., Tang,

K., Gao, Y., Klawonn, F., Lee, M., Weise, T., Li, B., Yao, X. (eds.) Intelligent Data Engineering

and Automated Learning—IDEAL 2013. Lecture Notes in Computer Science, vol. 8206, pp.

417–426. Springer, Berlin, Heidelberg (2013)

13. Cheng, S., Ting, T., Yang, X.S.: Large-scale global optimization via swarm intelligence. In:

Koziel, S., Leifsson, L., Yang, X.S. (eds.) Solving Computationally Expensive Engineering

Problems, Springer Proceedings in Mathematics & Statistics, vol. 97, pp. 241–253. Springer

International Publishing (2014)

14. Doerner, K., Hartl, R.F., Reimann, M.: Cooperative ant colonies for optimizing resource allo-

cation in transportation. In: Proceedings of the EvoWorkshops on Applications of Evolutionary

Computing, pp. 70–79. Springer-Verlag (2001)



Metaheuristics for Continuous Optimization of High-Dimensional Problems . . . 457

15. El-Abd, M., Kamel, M.S.: A taxonomy of cooperative particle swarm optimizers. Int. J. Com-

put. Intell. Res. 4 (2008)

16. Ergun, H., Van Hertem, D., Belmans, R.: Transmission system topology optimization for large-

scale offshore wind integration. IEEE Trans. Sustain. Energy 3(4), 908–917 (2012)

17. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithm and interval schemata. In: Foun-

dation of Genetic Algorithms, pp. 187–202 (1993)

18. Esmin, A.A., Coelho, R., Matwin, S.: A review on particle swarm optimization algorithm and

its variants to clustering high-dimensional data. Artif. Intell. Rev. 1–23 (2013)

19. Fernandes, C., Rosa, A.: A study on non-random mating and varying population size in genetic

algorithms using a royal road function. In: Proceedings of the 2001 Congress on Evolutionary

Computation, 2001, vol. 1, pp. 60–66 (2001)

20. Fernandes, C., Rosa, A.: Self-adjusting the intensity of assortative mating in genetic algo-

rithms. Soft Comput. 12(10), 955–979 (2008)

21. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies.

Evol. Comput. 9(2), 159–195 (2001)

22. Hinterding, R.: Gaussian mutation and self-adaption for numeric genetic algorithms. In: IEEE

International Conference on Evolutionary Computation, 1995, vol. 1, pp. 384–389 (1995)

23. Huang, V., Qin, A., Suganthan, P.: Self-adaptive differential evolution algorithm for con-

strained real-parameter optimization. In: IEEE Congress on Evolutionary Computation, 2006.

CEC 2006, pp. 17–24 (2006)

24. Lastra, M., Molina, D., Bentez, J.M.: A high performance memetic algorithm for extremely

high-dimensional problems. Inf. Sci. 293, 35–58 (2015)

25. LaTorre, A.: A framework for hybrid dynamic evolutionary algorithms: multiple offspring

sampling (MOS). Ph.D. thesis, Universidad Politecnica de Madrid (2009)

26. LaTorre, A., Muelas, S., Pea, J.M.: A comprehensive comparison of large scale global opti-

mizers. Inf. Sci. (in press) (2015)

27. LaTorre, A., Muelas, S., Peña, J.M.: A mos-based dynamic memetic differential evolution algo-

rithm for continuous optimization: a scalability test. Soft Comput. 15(11), 2187–2199 (2011)

28. LaTorre, A., Muelas, S., Pena, J.M.: Multiple offspring sampling in large scale global opti-

mization. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2012)

29. LaTorre, A., Muelas, S., Pena, J.M.: Large scale global optimization: experimental results with

MOS-based hybrid algorithms. In: 2013 IEEE Congress on Evolutionary Computation (CEC),

pp. 2742–2749 (2013)

30. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE

Trans. Evol. Comput. 16(2), 210–224 (2012)

31. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Comput. 9(6),

448–462 (2005)

32. Liu, Y., Yao, X., Zhao, Q.: Scaling up fast evolutionary programming with cooperative coevo-

lution. In: Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Korea, pp.

1101–1108 (2001)

33. Lu, Y., Wang, S., Li, S., Zhou, C.: Particle swarm optimizer for variable weighting in clustering

high-dimensional data. Mach. Learn. 82(1), 43–70 (2011)

34. Mahdavi, S., Shiri, M.E., Rahnamayan, S.: Metaheuristics in large-scale global continues opti-

mization: a survey. Inf. Sci. 295, 407–428 (2015)

35. Molina, D., Lozano, M., García-Martínez, C., Herrera, F.: Memetic algorithms for continuous

optimisation based on local search chains. Evol. Comput. 18(1), 27–63 (2010)

36. Molina, D., Lozano, M., Herrera, F.: Ma-sw-chains: Memetic algorithm based on local search

chains for large scale continuous global optimization. In: 2010 IEEE Congress on Evolutionary

Computation (CEC), pp. 1–8 (2010)

37. Molina, D., Lozano, M., Sánchez, A.M., Herrera, F.: Memetic algorithms based on local search

chains for large scale continuous optimisation problems: Ma-ssw-chains. Soft Comput. 15(11),

2201–2220 (2011)

38. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: towards

memetic algorithms. Technical Report, Caltech Concurrent Computation Program Report 826,

Caltech, Pasadena, California (1989)



458 G.A. Trunfio

39. Moscato, P.: New ideas in optimization. In: Memetic Algorithms: A Short Introduction, pp.

219–234. McGraw-Hill Ltd., UK, Maidenhead, UK, England (1999)

40. Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic algorithm

I. continuous parameter optimization. Evol. Comput. 1(1), 25–49 (1993)

41. Omidvar, M.N., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential grouping

for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378–393 (2014)

42. Omidvar, M.N., Li, X., Tang, K.: Designing benchmark problems for large-scale continuous

optimization. Inf. Sci. (in press) (2015)

43. Omidvar, M.N., Li, X., Yang, Z., Yao, X.: Cooperative co-evolution for large scale optimization

through more frequent random grouping. In: Proceedings of the IEEE Congress on Evolution-

ary Computation, pp. 1–8. IEEE (2010)

44. Omidvar, M.N., Li, X., Yao, X.: Cooperative co-evolution with delta grouping for large scale

non-separable function optimization. In: IEEE Congress on Evolutionary Computation, pp.

1–8 (2010)

45. Omidvar, M.N., Li, X., Yao, X.: Smart use of computational resources based on contribution

for cooperative co-evolutionary algorithms. Proceedings of the 13th Annual Conference on

Genetic and Evolutionary Computation. GECCO’11, pp. 1115–1122. ACM, New York, NY,

USA (2011)

46. Omidvar, M.N., Mei, Y., Li, X.: Effective decomposition of large-scale separable continuous

functions for cooperative co-evolutionary algorithms. In: Proceedings of the IEEE Congress

on Evolutionary Computation. IEEE (2014)

47. Parsopoulos, K.E.: Parallel cooperative micro-particle swarm optimization: a master-slave

model. Appl. Soft Comput. 12(11), 3552–3579 (2012)

48. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization.

In: Proceedings of the International Conference on Evolutionary Computation. The Third Con-

ference on Parallel Problem Solving from Nature: Parallel Problem Solving from Nature, PPSN

III, pp. 249–257. Springer-Verlag (1994)

49. Potter, M.A., De Jong, K.A.: Cooperative coevolution: an architecture for evolving coadapted

subcomponents. Evol. Comput. 8(1), 1–29 (2000)

50. Qin, A., Huang, V., Suganthan, P.: Differential evolution algorithm with strategy adaptation

for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

51. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical opti-

mization. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005,

2–4 Sept 2005, Edinburgh, UK, pp. 1785–1791. IEEE (2005)

52. Ray, T., Yao, X.: A cooperative coevolutionary algorithm with correlation based adaptive vari-

able partitioning. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp.

983–989. IEEE (2009)

53. Salomon, R.: Reevaluating genetic algorithm performance under coordinate rotation of bench-

mark functions—a survey of some theoretical and practical aspects of genetic algorithms.

BioSystems 39, 263–278 (1995)

54. Snchez-Ante, G., Ramos, F., Frausto, J.: Cooperative simulated annealing for path planning in

multi-robot systems. MICAI 2000: Advances in Artificial Intelligence. LNCS, vol. 1793, pp.

148–157. Springer, Berlin, Heidelberg (2000)

55. Solis, F.J., Wets, R.J.B.: Minimization by Random Search Techniques. Math. Oper. Res. 6(1),

19–30 (1981)

56. Storn, R., Price, K.: Differential evolution a simple and efficient heuristic for global optimiza-

tion over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

57. Sun, L., Yoshida, S., Cheng, X., Liang, Y.: A cooperative particle swarm optimizer with sta-

tistical variable interdependence learning. Inf. Sci. 186(1), 20–39 (2012)

58. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)

59. Takahashi, M., Kita, H.: A crossover operator using independent component analysis for real-

coded genetic algorithms. In: Proceedings of the 2001 Congress on Evolutionary Computation,

2001, vol. 1, pp. 643–649 (2001)

60. Talbi, E.G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–564 (2002)



Metaheuristics for Continuous Optimization of High-Dimensional Problems . . . 459

61. Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark functions for the CEC’2010

special session and competition on large-scale global optimization. http://nical.ustc.edu.cn/

cec10ss.php

62. Tang, K., Yang, Z., Weise, T.: Special session on evolutionary computation for large scale

global optimization at 2012 IEEE World Congress on Computational Intelligence (cec@wcci-

2012). Technical report, Hefei, Anhui, China: University of Science and Technology of China

(USTC), School of Computer Science and Technology, Nature Inspired Computation and

Applications Laboratory (NICAL) (2012)

63. Tang, K., Yao, X., Suganthan, P., MacNish, C., Chen, Y., Chen, C., Yang, Z.: Benchmark

functions for the CEC’2008 special session and competition on large scale global optimization

64. Teo, J.: Exploring dynamic self-adaptive populations in differential evolution. Soft Comput.

10(8), 673–686 (2006)

65. Thomas, S., Jin, Y.: Reconstructing biological gene regulatory networks: where optimization

meets big data. Evol. Intell. 7(1), 29–47 (2014)

66. Trunfio, G.A.: Enhancing the firefly algorithm through a cooperative coevolutionary approach:

an empirical study on benchmark optimisation problems. IJBIC 6(2), 108–125 (2014)

67. Trunfio, G.A.: A cooperative coevolutionary differential evolution algorithm with adaptive

subcomponents. Proc. Comput. Sci. 51, 834–844 (2015)

68. Tseng, L.Y., Chen, C.: Multiple trajectory search for large scale global optimization. In: IEEE

Congress on Evolutionary Computation, 2008. CEC 2008 (IEEE World Congress on Compu-

tational Intelligence), pp. 3052–3059 (2008)

69. van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization.

IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

70. Wang, Y., Huang, J., Dong, W.S., Yan, J.C., Tian, C.H., Li, M., Mo, W.T.: Two-stage based

ensemble optimization framework for large-scale global optimization. Eur. J. Oper. Res.

228(2), 308–320 (2013)

71. Wang, Y., Li, B.: Two-stage based ensemble optimization for large-scale global optimization.

In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2010)

72. Weicker, K., Weicker, N.: On the improvement of coevolutionary optimizers by learning vari-

able interdependencies. In: 1999 Congress on Evolutionary Computation, pp. 1627–1632.

IEEE Service Center, Piscataway, NJ (1999)

73. Xue, F., Sanderson, A., Bonissone, P., Graves, R.: Fuzzy logic controlled multi-objective dif-

ferential evolution. In: The 14th IEEE International Conference on Fuzzy Systems, 2005.

FUZZ’05, pp. 720–725 (2005)

74. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foun-

dations and Applications, 5th International Symposium, SAGA 2009, Sapporo, Japan, 26–28

Oct 2009. Proceedings, LNCS, vol. 5792, pp. 169–178. Springer (2009)

75. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevo-

lution. Inf. Sci. 178(15), 2985–2999 (2008)

76. Yang, Z., Tang, K., Yao, X.: Multilevel cooperative coevolution for large scale optimization.

In: IEEE Congress on Evolutionary Computation, pp. 1663–1670. IEEE (2008)

77. Yang, Z., Tang, K., Yao, X.: Self-adaptive differential evolution with neighborhood search. In:

IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on

Computational Intelligence), pp. 1110–1116 (2008)

78. Yang, Z., Tang, K., Yao, X.: Scalability of generalized adaptive differential evolution for large-

scale continuous optimization. Soft Comput. 15(11), 2141–2155 (2011)

79. Zhang, J., Sanderson, A.: Jade: adaptive differential evolution with optional external archive.

IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

http://nical.ustc.edu.cn/cec10ss.php
http://nical.ustc.edu.cn/cec10ss.php


460 G.A. Trunfio

Author Biography

Giuseppe A. Trunfio works as a researcher in computer sci-

ence at the University of Sassari (Italy). He holds a Ph.D.

degree in computational mechanics from the University of

Calabria (Italy) and has served as a research associate at

the Italian National Research Council. His current research

interests include modelling and simulation, optimization meta-

heuristics and high performance computing. In particular, he

has been involved in several interdisciplinary research projects,

where his contributions mainly concerned the development of

simulation models, the design and implementation of decision

support systems, and advanced applications of computational

methods. Moreover, he is the author of many research studies

published in international journals, conference proceedings and

book chapters.



Convergent Parallel Algorithms for Big
Data Optimization Problems

Simone Sagratella

Abstract When dealing with big data problems it is crucial to design methods able
to decompose the original problem into smaller and more manageable pieces.
Parallel methods lead to a solution by concurrently working on different pieces that
are distributed among available agents, so that exploiting the computational power
of multi-core processors and therefore efficiently solving the problem. Beyond
gradient-type methods, that can of course be easily parallelized but suffer from
practical drawbacks, recently a convergent decomposition framework for the par-
allel optimization of (possibly non-convex) big data problems was proposed. Such
framework is very flexible and includes both fully parallel and fully sequential
schemes, as well as virtually all possibilities in between. We illustrate the versatility
of this parallel decomposition framework by specializing it to different well-studied
big data problems like LASSO, logistic regression and support vector machines
training. We give implementation guidelines and numerical results showing that
proposed parallel algorithms work very well in practice.

Keywords Decomposition algorithm ⋅ Parallel optimization ⋅ LASSO ⋅
Logistic regression ⋅ Support vector machine

1 Introduction

Finding a solution of a big data problem could be a very prohibitive task if we use
standard optimization methods since time and memory consumption could be
unsustainable. Therefore many decomposition methods were proposed in the last
decades. Decomposition methods are able to solve a big data problem by solving a
sequence of smaller sub-problems that, due to their medium sized data, can be

S. Sagratella (✉)
Department of Computer, Control and Management Engineering,
Sapienza University of Rome, Via Ariosto 25, 00185 Rome, Italy
e-mail: sagratella@dis.uniroma1.it

© Springer International Publishing Switzerland 2016
A. Emrouznejad (ed.), Big Data Optimization: Recent Developments
and Challenges, Studies in Big Data 18, DOI 10.1007/978-3-319-30265-2_20

461



processed by using standard optimization methods. Decomposition methods can be
divided into sequential (Gauss-Seidel or Gauss-Southwell) ones, in which
sub-problems are solved sequentially since the input of one is the output of another,
and into parallel (Jacobi) ones, in which some sub-problems can be solved
simultaneously since they do not need as input the output of the others. Of course
parallel decomposition methods are more efficient since they can exploit the
computational power of multi-core processors. Gradient-type methods can be easily
seen as parallel decomposition methods [1], but, in spite of their good theoretical
convergence bounds, they suffer from practical drawbacks since they do not exploit
second order information.

In this chapter we present a parallel decomposition framework for the solution of
many big data problems that is provably convergent, can use second order infor-
mation and works well in practice. Main features of the proposed algorithmic
framework are the following:

• it is parallel, with a degree of parallelism that can be chosen by the user and that,
given a block decomposition of the variables, can go from a complete simul-
taneous update of all blocks at each iteration to the case in which only one block
is updated at each iteration (virtually all possibilities in between are covered);

• it is provably convergent to a solution of smooth and non-smooth convex
problems and it is provably convergent to a stationary point of non-convex
problems;

• it can exploit the original structure of the problem as well as second order
information;

• it allows for inexact solution of the sub-problems, a feature that can be very
useful in practice since the cost of computing the exact solution of all
sub-problems could be high in some applications;

• it appears to be numerically efficient on many big data applications.

Many real big data applications can be tackled by using the parallel methods
described in this chapter. In the following sections, we will discuss on specific
optimization problems arising from big data machine learning applications. In
particular we define parallel algorithms for LASSO, logistic regression and support
vector machine training, that can be effectively used with classification and
regression purposes in many fields such as compressed sensing and sensor
networks.

In Sect. 2 we present the parallel algorithmic framework for smooth problems
with separable feasible sets. In Sect. 3 we specialize it for non-smooth problems by
giving some specific implementations for big data applications. In Sect. 4 we extend
the parallel algorithmic framework to solve big data problems with non-separable
feasible sets. Technical details for topics treated in Sects. 2 and 3 can be found in
[2], while those treated in Sect. 4 can be found in [3].
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2 Smooth Problems with Separable Feasible Sets

In this sectionwe consider optimizationproblems inwhich the feasible set is convex and
separable in blocks of variables. Exploiting the block-separability property, we can
define different agents each controlling one or more of such blocks of variables. In our
parallel framework all agents can act concurrently optimizing over their own blocks of
variables, in a way that will be clarified below, in order to achieve a solution of the
original problem. The key factors yielding effectiveness of the parallel framework are:

1. the structure of the sub-problems solved by each agent;
2. a phase of fitting in which variables from all agents are gathered and the current

point is updated.

Before introducing the parallel algorithmic framework for different types of
optimization problems stemmed from big data applications, we need to formalize
all principal aspects.

Let X : = X1 × . . . ×XN ⊆ℜn be a feasible set defined as a Cartesian product of
lower dimensional non-empty, closed and convex sets Xi ⊆ℜni , and let x∈ℜn be
partitioned accordingly: x : = x1, . . . , xNð Þ. Therefore we obtain N different blocks
of variables and we say that the ith block contains variables xi. All problems
described in this section encompass these features.

Now let us consider a possibly non-convex smooth function F:ℜn →ℜ, and
suppose to minimize it over X:

min
x

FðxÞ, s.t. x∈X. ð1Þ

Clearly if F were separable as X, that is FðxÞ: = ∑N
i= 1 fiðxiÞ, then solution of

Problem (1) would be equivalent to solving N smaller optimization problems:
minxi fiðxiÞ, s.t. xi ∈Xi, i = 1, . . . , N. Such favourable structure is hardly encoun-
tered in real big data problems. Thus here we consider F non-separable, and we
assume that ∇F is Lipschitz continuous on X.

In order to define the sub-problems solved by agents, we have to introduce an
approximating function Piðz;wÞ: Xi ×X→ℜ for each block of variables having the
following properties (we denote by ∇Pi the partial gradient of Pi with respect to the
first argument z):

• Pið∙;wÞ is convex and continuously differentiable on Xi for all w∈X;
• ∇Piðxi; xÞ=∇xi FðxÞ for all x∈X;
• ∇Piðz; ∙Þ is Lipschitz continuous on X for all z∈Xi.

Such function Pi should be regarded as a simple convex approximation of F at
the point x with respect to the block of variables xi that preserves the first order
properties of F with respect to xi. Minimizing the approximating function Pi instead
of the original function F may be preferable when optimizing F is too costly or
difficult (e.g. if F is not convex). Therefore using Pi in some situations can facilitate
the task performed by agents.
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We are ready to reveal the first of the two key factors stated above, that is the
structure of the sub-problems solved by each agent. At any point xk ∈X the
sub-problem related to the ith block of variables is the following:

min
xi

Pi xi; xk
� �

+
τki
2

xi − xki
�� ��2, s.t. xi ∈Xi, ð2Þ

where τki is a non-negative parameter. In each Sub-problem (2) F is replaced by the
corresponding approximating function Pi and a proximal term is added to make the
overall approximation strongly convex. Note that if Pi ∙; xk

� �
is already uniformly

strongly convex, one can avoid the proximal term and set τki = 0. There are two
reasons for which Sub-problems (2) must be strongly convex: on the one hand it is
useful since then Sub-problems (2) has a unique solution and then the tasks of all
agents are well defined, and on the other hand it is necessary in order to produce at
each iteration a direction that is “sufficiently” descent. For the sake of notational
simplicity, we denote by yi xk, τki

� �
the unique solution of Sub-problem (2) at xk

when using a proximal parameter τki .
We are now ready to formally introduce the parallel algorithmic framework.

Algorithm 1 (Parallel Algorithmic Framework for separable sets)

Step 0: (Initialization)

Set X0 ∈x , 00
i ≥τ for all i and 0k = .

Step 1: (Termination test)

If kx is a stationary point of Problem (1) then STOP.
Step 2: (Blocks selection)

Choose a subset of blocks { }N,...,1Jk ⊆ .

Step 3: (Search direction)

For all blocks kJi ∈ compute in parallel k
i

k
i ,τxy (solution of (2)),

set k
i

k
i

k
i

k
i , xxyd −= τ for all blocks kJi ∈ and

set 0d =k
i for all blocks kJi ∉ .

Step 4: (Stepsize)

Choose .0k ≥α
Step 5: (Update)

Set kkk1k dxx α+=+ , set 01k
i ≥+τ for all i, set 1kk += , and

go to Step 1.

)(
( )
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At Step 0 Algorithm 1 starts from a feasible point x0, and if necessary set the
initial proximal parameters.

At Step 1 a check on the stopping criterion is performed. This is typically based
on merit evaluations using first order information.

At Step 2 a subset Jk of the blocks of variables is selected. Note that only blocks
in Jk are used at Step 3 in order to compute the search direction and then at Step 5 to
update the corresponding blocks. This possibility of updating only some blocks has
been observed to be very effective in practice. As stated below, the algorithmic
framework is guaranteed to converge simply if Jk contains at least one block j
whose computed direction satisfies the following condition:

dkj
���

���≥ ρ max
i∈ 1, ..., Nf g

dki
�� �� , ð3Þ

for any ρ>0. It is worth noting that, depending on specific applications, condition
(3) can be guaranteed by using simple heuristics.

At Step 3 one search direction for each block is computed by solving
Sub-problem (2) for those blocks selected at Step 2. This is typically the main
computational burden and, in this algorithmic framework, it can be parallelized by
distributing blocks among the agents.

At Step 4 a stepsize αk is computed. The choice of a suitable stepsize αk is
crucial for the convergence of the method. As explained below, αk can be computed
by using a line-search procedure or a diminishing rule. This is the core of the fitting
phase mentioned above as a key factor for the effectiveness of the method.

At Step 5 current point and proximal parameters are updated.
Algorithm 1 is very flexible since we can always choose Jk ≡ 1, . . . , Nf g

resulting in the simultaneous update of all the blocks and obtaining a full Jacobi
scheme, or we can always update one single block per iteration and obtaining a
Gauss-Southwell kind of method. All possibilities in between and classical
Gauss-Seidel methods can also be derived.

Theorem 1 Let xk
� �

be the sequence generated by Algorithm 1 and let
ρ>0. Assume that Problem (1) has a solution and that the following con-
ditions are satisfied for all k:

(a) Jk contains at least one element satisfying (3);
(b) for all i∈ Jk: τki are such that Sub-problem (2) is strongly convex;
(c) stepsize αk is such that

either F xk + αkdk
� �

≤F xk
� �

+ θ αk∇F xk
� �Tdk, θ∈ 0, 1ð Þ ,

or αk ∈ ð0, 1�, limk→∞ αk = 0 and ∑∞
k= 0 α

k = +∞.

Then either Algorithm 1 converges in a finite number of iterations to a
stationary point of Problem (1) or every limit point of xk

� �
(at least one such

points exists) is a stationary point of Problem (1).

Convergent Parallel Algorithms … 465



Theorem 1 gives simple conditions for the convergence of Algorithm 1 to a
stationary point of Problem 1. Note that in case F is convex all stationary points are
solutions and therefore Algorithm 1 converges to a solution of Problem (1).

While we discussed on conditions (a) and (b) of Theorem 1 above, we must
spend some words on condition (c). We have two possibilities to compute a “good”
stepsize αk: with an Armijo line-search or with a diminishing rule. If we implement
the first strategy we obtain an effective method with a monotone decreasing of the
objective function. This is very often the best choice if the numerical burden needed
to evaluate the objective value is not too heavy. Moreover if F is rather “easy” (e.g.
it is quadratic) then performing an exact line-search is for sure a mandatory task
since the numerical effort done to compute the best stepsize is counterbalanced by
large decreases of the objective value. However in some cases it could be conve-
nient to use the diminishing stepsize rule, since it does not need any objective
function evaluation.

In many big data problems it can be useful to further reduce the computational
effort of the agents by solving Sub-problems (2) with an approximate method that
yields inexact solutions. Without burdening the discussion with further technical
details, it is important to say that convergence of Algorithm 1 can be proved also if
Sub-problems (2) are solved inexactly and this just implies only few additional
technical conditions.

Another important feature of Algorithm 1 is that it can incorporate hybrid
parallel-sequential (Jacobi–Gauss-Seidel) schemes wherein blocks of variables are
updated simultaneously by agents, but blocks assigned to an agent are updated
sequentially in a Gauss-Seidel fashion for its point of view. This procedure seems
particularly well suited when the number of blocks N is greater than the number of
available agents. We denote this hybrid method as Gauss-Jacobi method, whose
convergence can be proved under conditions similar to those of Theorem 1.

3 Non-smooth Problems with Separable Feasible Sets

A type of non-smooth non-convex optimization problem that arises in many big
data applications has the following form:

min
x

FðxÞ+GðxÞ, s.t. x∈X, ð4Þ

where X : = X1 × . . . ×XN ⊆ℜn is a feasible set defined, as in Sect. 2, as a
Cartesian product of lower dimensional non-empty, closed and convex sets
Xi ⊆ℜni , F:ℜn →ℜ is a (possibly non-convex) smooth function, and G:ℜn →ℜ is
a non-smooth continuous and convex function which is block separable according
to X. Therefore letting x∈ℜn be partitioned accordingly, that is x: = x1, . . . , xNð Þ,
we can write: GðxÞ: = ∑N

i= 1 giðxiÞ, where all functions gi are non-smooth, con-
tinuous and convex.
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Problem (4) arises in many fields of engineering, so diverse as compressed
sensing, neuro-electromagnetic imaging, sensor networks, basis pursuit denoising,
machine learning, data mining, genomics, meteorology, tensor factorization and
completion, geophysics, and radio astronomy. Usually the non-smooth term G is
used to promote sparsity of the solution, therefore obtaining a parsimonious rep-
resentation of some phenomenon at hand. Just to mention some examples, we list
typical instances of Problem (4):

• FðxÞ= ð1 ̸2Þ Ax− bk k2, GðxÞ= c xk k1 and X=ℜn, with A∈ℜm×n, b∈ℜm,
c > 0 and m>0 given constants; this is the renowned and much studied LASSO
problem [4] for which we report below an implementation of parallel algorithm;

• FðxÞ= ð1 ̸2Þ Ax− bk k2, GðxÞ=c∑N
i= 1 xik k and X=ℜn, with A∈ℜm×n,

b∈ℜm, c > 0 and m>0 given constants; this is the group LASSO problem [5];

• FðxÞ= ∑m
j=1 log 1+ exp − aj yTj x

� �� �
, GðxÞ=c xk k1 (or GðxÞ=c∑N

i= 1 xik k)
and X=ℜn, with yi ∈ℜn, ai ∈ℜ, c > 0 and m>0 given constants; this is the
sparse logistic regression problem [6, 7] for which we give below implemen-
tation details of a parallel algorithm;

• FðxÞ= ∑m
j=1 max 0, 1− aj yTj x

n o2
, GðxÞ=c xk k1 and X=ℜn, with yi ∈ℜn,

ai ∈ − 1, 1f g, c > 0 and m>0 given constants; this is the L1-regularized
L2-loss Support Vector Machine problem [8];

• other problems that can be cast in the form (4) include the Dictionary Learning
problem for sparse representation [9], the Nuclear Norm Minimization problem,
the Robust Principal Component Analysis problem, the Sparse Inverse
Covariance Selection problem and the Nonnegative Matrix Factorization
problem [10].

The algorithmic framework for the solution of Problem (4) is essentially the same
as Algorithm 1. The only differences are at Step 1 in which iterations must be stopped
if xk is a stationary point of Problem (4) (instead of Problem (1)), and at Step 3 inwhich
agents have to compute (in parallel) yi xk, τki

� �
. In particular, in order to solve Problem

(4), yi xk, τki
� �

must be the solution of a sub-problem slightly different from (2):

min
xi

Pi xi; xk
� �

+gi xið Þ+ τki
2

xi − xki
�� ��2, s.t. xi ∈Xi, ð5Þ

note that the only difference from (2) is the presence of function gi, since all
assumptions and considerations made on Pi in Sect. 2 are still valid.

Convergence conditions are the same as those in Theorem 1, the only one
difference is about condition (c) in case one uses the line-search. In particular
standard line-search methods proposed for smooth functions cannot be applied to
objective function of Problem (4) due to the non-smooth part G, and then we need
to rely on slightly different and well known line-search procedures for non-smooth

functions like this one: F xk + αkdk
� �

+G xk + αkdk
� �

≤F xk
� �

+G xk
� �

− θ αk dk
�� ��2,

with θ∈ 0, 1ð Þ.
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We are now in a position to give specific algorithms for two well-known
L1-regularized big data problems that have been mentioned above: LASSO and
sparse logistic regression. First of all we introduce a valid optimality measure
function Z xð Þk k∞ that is used to obtain an approximate termination test for
L1-regularized problems:

Z xð Þ: =∇F xð Þ− ∏
½− c, c�n

∇F xð Þ− xð Þ, ð6Þ

where ∏ − c, c½ �n zð Þ is the projection of z over the set − c, c½ �n (we recall that c is the
parameter before the L1-norm). Note that such projection can be efficiently com-
puted since it acts component-wise on z, i.e. − c, c½ �n : = − c, c½ �× . . . × − c, c½ �,
and note that Z xð Þ= 0 is equivalent to the standard necessary optimality conditions
for the unconstrained L1-regularized problems.

Algorithm 2 (Parallel Algorithm for LASSO)

Step 0: (Initialization)

Set 0x =0 , 
n2

tr T
0
i

AA=τ for all i, 9.00 =α , 0>ε , ]1,0(∈ρ ,

and set 0k = .
Step 1: (Termination test)

If ( ) ε≤kZ x then STOP.

Step 2-3: (Blocks selection and Search direction)

Send kx and all k
iτ to available agents;

get back from the agents all k
i

k
i ,τxy (solutions of (5));

set ( ) { } ( ) k
i

k
i

k
iN1,...,i

k ,max:M xxyx −= ∈ τ ;

set { } ( ) ( )kk
i

k
i

k
i

k M,:N,...,1i:J xxxy ρτ ≥−∈= ;

set k
i

k
i

k
i

k
i , xxyd −= τ for all blocks kJi ∈ and

set 0d =k
i for all blocks kJi ∉ .

Step 4-5: (Stepsize and Update)

Set kkkk dxz α+= ;

if kkkk GFGF xxzz +<+ then

set k1k zx =+ and k
i

1k
i 9.0 ττ =+ for all i

else

set k1k xx =+ and k
i

1k
i 2ττ =+ for all i;

set k7k1k 101 ααα −+ −= ;

set 1kk += , and go to Step 1.

}

( )

( )

( ) ( ) ( ) ( )

( )

( )

{
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At Step 0 variables and parameters are initialized to some values that proved to
work well in practice: the starting point is set to zero, the proximal parameters are
all initialized to the half of the mean of the eigenvalues of ∇2F, and the initial
stepsize is set to 0.9 (the diminishing rule is used).

At Step 1 the stopping criterion uses the merit value (6) and the tolerance
parameter ε. Typical values for ε are 10− 2 or 10− 3.

Step 2–3 produces the search direction. First of all, current point and proximal
parameters are sent to agents in order to let them properly construct their
sub-problems. Then agents compute in parallel solutions of Sub-problems (5). In
particular in (5) directly function F is used since it is quadratic and an approximating
function P is unnecessary. It is worth mentioning that if blocks contain only one
single variable, then solution of (5) can be computed by using a simple analytical
soft thresholding formula [1]. After all agents send back all solutions yi xk, τki

� �
,

subset Jk is defined according to rule (3). Finally the search direction is computed.
At Step 4–5 current point, proximal parameters and stepsize are updated. In

particular if current iteration produces a decreasing in the objective function then
current point is updated with the new guess and all proximal parameters are
decreased (good iteration), else current point is not updated and proximal param-
eters are increased (bad iteration). Finally stepsize is updated by using a dimin-
ishing rule. These updating procedures are crucial for the good behaviour of the
algorithm (see below for practical guidelines).

Algorithm 2 is essentially the same presented in [11, 2]. Numerical results,
developed on a big cluster with many parallel processes (i.e. many agents), reported
in these references, showed that Algorithm 2 outperforms other existing methods
for LASSO.

Practical guidelines:

• Initializing all variables to zero can be very useful for L1-regularized big data
problems, like LASSO, since a big amount of variables at solution are equal to
zero, and therefore the starting point is quite close to the solution.

• Setting properly the stepsize and the proximal parameters is crucial in order to
let the algorithm work well. In particular these two types of parameters col-
laborate to obtain a decrease of the objective value. If the stepsize is close to 1
then we obtain long steps but we could also obtain disastrous increments of the
objective value, while if the stepsize is close to 0 then we obtain tiny steps but
objective value always decreases. Conversely high values of the proximal
parameters produce small steps with objective value decreasing, while small
values do the contrary. Therefore we have to balance well all these parameters.
The rule is: the bigger N is, the smaller must the stepsize be (or the bigger must
the proximal parameters be). Values proposed here proved to be very good in
practice for many different applications, see [2].

• Different values of ρ can produce different performances of the algorithm. Good
values of ρ proved to be 0.5 or 0.75, since only variables that are sufficiently far
from solution are updated, while other variables that probably are already near
their optimum (typically equal to zero) are not updated.
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• Unconstrained L1-regularized problems, like LASSO, have G and X separable
element-wise. A good practical choice is to set all blocks containing one single
variable in order to solve each sub-problem analytically. However different
settings work as much well.

• Data transmissions with agents can be implemented by using a Message Passing
Interface (MPI) paradigm. Only Send/Receive and Reduce operations are needed.

A specific parallel algorithm for solving sparse logistic regression problems is
not too different from Algorithm 2. The main difference is the use of an approxi-
mating function P in the objective function of the sub-problems solved by the
agents. For example, if we use the second order approximation of F as approxi-
mating function P, then we obtain sub-problems having the same structure of those
of LASSO. This is a very useful issue since all considerations made above on
LASSO problems solvability can be exploited also for logistic regression problems,
see [2] for details.

4 Problems with Non-separable Feasible Sets

In this section we consider Problem (1) with a non-separable convex feasible set X.
If we want to solve this problem we have to enrich Algorithm 1 with some addi-
tional features. In fact if we decomposed the problem in some fixed blocks of
variables (in the same manner as done in Sects. 2 and 3) and then we used
Algorithm 1 as it is, then we would obtain a generalized Nash equilibrium of a
particular potential game, but not a solution of Problem (1) since, here, we are
considering the case in which X is non-separable, see [3]. Details on this issue go
beyond the scope of this book, we refer the interested reader to [12–14] for
background material on generalized Nash equilibria.

The additional key feature, allowing the parallel algorithmic framework to lead to
a solution of the problem (and not to a “weaker” Nash equilibrium), is very simple:
blocks of variables must be not fixed, and they must vary from an iteration to another.
The choice of which variables to insert in each block during iterations is crucial for
the convergence of the algorithm and must be ruled by some optimality measure.

In order to better understand this additional feature, it is useful to introduce the
support vector machine (SVM) training problem, whose dual is a big data problem
with non-separable feasible set [15, 16], and to describe the parallel algorithm for
finding one of its solutions.

The dual SVM training problem is defined as FðxÞ= ð1 ̸2Þ xTQx− eTx and
X= x∈ℜn: 0≤ x≤Ce, yTx=0f g, with Q∈ℜn× n positive semi-definite, C> 0
and y∈ − 1, 1f gn given constants and e∈ℜn vector of all ones. It is easy to see
that constraint yTx=0 makes feasible set X non-separable. Many real SVMs
applications are characterized by so big data that matrix Q cannot be entirely stored
in memory and it is convenient to reconstruct blocks of it when dealing with the
corresponding blocks of variables. For this reason, classical optimization methods

470 S. Sagratella



that use first and second order information cannot be used and decomposition
methods (preferably parallel ones) are the one way.

Given xk feasible and given one block of variables xi, let us define the
sub-problem of Problem (1), with non-separable set X, corresponding to block xi:

min
xi

F xi, xk− i

� �
+

τki
2

xi − xki
�� ��2, s.t. xi, xk− i

� �
∈X, ð7Þ

where xk− i are all elements of xk that are not in block xi, for simplicity we use
directly function F (but we could use the approximating function P as well), and the
feasible set is defined as the projection of xk− i, using the set X, on the space of
variables xi. In the SVM case the feasible set of the sub-problem is simply defined

as xi ∈ℜni : 0≤ xi ≤Cei, ðyki ÞTxi = ðyki ÞTxki
n o

.

Algorithm 3 (Parallel Algorithmic Framework for non-separable sets)

Step 0: (Initialization)

Set X0 ∈x , 00
i ≥τ for all i and 0k = .

Step 1: (Termination test)

If kx is a stationary point of Problem (1) then STOP.
Step 2: (Blocks definition and selection)

Define kN blocks of variables (in order to make a partition),

choose a subset of blocks kk N,...,1J ⊆ .

Step 3: (Search direction)

For all blocks kJi ∈ compute in parallel k
i

k
i ,τxy (solution of (7)),

set k
i

k
i

k
i

k
i , xxyd −= τ for all blocks kJi ∈ and

set 0d =k
i for all blocks kJi ∉ .

Step 4: (Stepsize)

Choose .0k ≥α
Step 5: (Update)

Set kkk1k dxx α+=+ , set 01k
i ≥+τ for all i, set 1kk += , and

go to Step 1.

{ }
( )

( )

It is easy to see that, the only one difference from Algorithm 1 lays in Step 2. In
fact, as said above, when dealing with non-separable feasible sets, decomposition of
variables must be not fixed during iterations. Then, at Step 2, Algorithm 3 redefines
at each iteration Nk blocks of variables. Note that such blocks decomposition must
be a partition and therefore each variable is in one and only one block.

Now we give a convergence result for Algorithm 3 in the SVM training case,
however similar results could be given for other different problems with
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non-separable feasible sets. First of all we have to introduce an optimality measure,
that is the most violating pair step: M xk

� �
: = zk − xk

�� ��, where zk is the new point
after the problem has been optimized over the most violating pair (which is the pair
of variables that violates the most first order conditions at xk). Details on this issue
can be found in [3], however it is worth noting that such optimality measure M can
be computed by using some simple analytical formula.

Theorem 2 (Convergence for SVM training)
Let xk

� �
be the sequence generated by Algorithm 3 and let ρ>0. Assume

that the following conditions are satisfied for all k:

(a) Jk contains at least one element i satisfying dki
�� ��≥ ρM xk

� �
;

(b) for all i∈ Jk: τki are such that Sub-problem (7) is strongly convex;
(c) stepsize αk is such that

either F xk + αkdk
� �

≤F xk
� �

+ θ αk∇F xk
� �Tdk, θ∈ 0, 1ð Þ ,

or αk ∈ ð0, 1�, limk→∞ αk = 0 and ∑∞
k= 0 α

k = +∞.

Then either Algorithm 3 converges in a finite number of iterations to a
solution of the SVM training problem or every limit point of xk

� �
(at least

one such points exists) leads to a solution of the SVM training problem.

Only some words on condition (a) are in order, since other assumptions are very
close to those of Theorem 1. It is important to say that condition (a) can be guaranteed
by simply including in one block the most violating pair or any other pair of variables
that sufficiently violates first order conditions. Therefore we can say that solving
problems with non-separable feasible sets is just a little bit harder than solving those
with separable ones. In fact we could easily give convergence results for other
problems like the ν-SVM training [15] that is characterized by two linear equality
constraints (instead of only one like for SVM training). The only one thing to do is to
find a global optimality measure and to guarantee condition (a) of Theorem 2.

Finally, in order to take a picture of the good behaviour of Algorithm 3 for SVM
training, in Fig. 1 we report numerical results for two problems taken from the
LIBSVM data set (www.csie.ntu.edu.tw/∼cjlin/libsvm): cod-rna (59535 training
data and 8 features) and a9a (32561 training data and 123 features). In particular we
implemented Algorithm 3 with x0 = 0 and τki = 10− 8 for all i and all k, at Step 2 we
constructed the blocks by grouping the most violating pairs (that is the first block
contains the most violating pairs, the second block contains the remaining most
violating pairs, and so on), and at Step 4 we used an exact line-search. In Fig. 1 we
report the relative error (which is equal to (F − F*)/F*, where F* is the optimal
value) versus iterations, and we consider three different cases: the case in which we
put in Jk only the first block (1 block), the case in which we put in Jk only the first
and the second blocks (2 blocks), and the case in which we put in Jk the first, the
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second and the third blocks (3 blocks). Both two problems used a gaussian kernel
with gamma equal to 1 and C= 1, block size for cod-rna is of 10,000 variables,
while for a9a is of 1000 variables.

It is easy to see that usingmore blocks is better since (ideally) CPU-time per iteration
is the same in the three cases, but we obtain faster decreases in the 3 blocks case.

5 Conclusions and Direction for Future Research

We have defined easy-to-implement decomposition methods for several classes of
big data optimization problems. We have shown that these methods can be effi-
ciently parallelized and we have specialized them for important big data machine
learning applications.

Interesting lines for future research, on the one hand, would aim at following the
general guidelines described here to develop new parallel algorithms for solving
other real-world applications in engineering, natural sciences and economics. On
the other hand, they would aim at defining new parallel decomposition schemes for
constrained optimization problems with non-smooth or implicit (non-separable)
feasible sets, such as bilevel and hierarchical optimization problems.
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