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Abstract. Multi-State System (MSS) is mathematical model that is used in
reliability engineering for the representation of initial investigated object (sys-
tem). In a MSS, both the system and its components may experience more than
two states (performance levels). One of possible description of MSS is a
structure function that is defined correlation between a system components states
and system performance level. The investigation of a structure function allows
obtaining different properties, measures and indices for MSS reliability. For
example, boundary system’s states, probabilities of a system performance levels
and other measures are calculated based a structure function. In this paper
mathematical approach of Direct Partial Logical Derivatives is proposed for
calculation of boundary states of MSS.
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1 Introduction

Reliability is considered as an important characteristic of any modern system.
How-ever, modern systems are very complex and, therefore, their reliability analysis is
a challenging task. The complexity of these systems results from the fact that they
consist of a huge amount of elements with various behaviour. Examples of such
systems include electrical transmission systems, gas grids [1, 2] or healthcare systems
[3]. Distribution grids are typical examples of network systems. They represent large
systems consisting of many (not necessarily) hardware elements with different prop-
erties, e.g. generating units, different types of transmission lines, and demand centres in
the case of electrical grids. Similarly, a healthcare system is a typical instance of
socio-technical systems composing of a lot of highly variable elements (components)
that can be classified as hardware, software, organizational, and human [1]. This variety
of components of complex systems causes that such systems can operate at many
different levels of performance and, therefore, their analysis is more difficult than the
analysis of other systems.

One of the principal tasks of reliability engineering is investigation of influence of
individual system components on system activity. Results of such analysis are useful in
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optimization of system availability or in planning system maintenance. This investiga-
tion requires creation of a model of the considered system. Several types of mathematical
models are used in reliability analysis. The first ones are known as Binary-State
Systems (BSSs) because they permit defining only two states in system/components
performance – functioning and failure. BSSs have been widely used in classical
approaches of reliability engineering [4]. However, they are not very suitable for the
analysis of complex systems because their use requires drawing the line between situ-
ations in which the system is functioning and when it is considered to be failure. Very
often, this is impossible and, therefore, other types of mathematical models are used.
According to [1], Multi-State Systems (MSSs) are one of the most prospective
approaches.

MSSs have been introduced in reliability engineering since 1975 [5–7]. Their main
advantage lies in the fact that they allow introducing more than two states in
system/components performance [1, 8], i.e. from perfectly functioning, through func-
tioning with restrictions, etc. to completely failed. This indicates that they are very
suitable for modelling of complex systems. On the other hand, growing number of
states of system components results in dramatic increase of model size, what causes
increase of time complexity of the analysis. Therefore, use of MSSs requires devel-
opment of new and effective methods that could be used to analyse them.

There are several approaches that are used in proposing methods and algorithms for
the investigation of MSSs. As a rule, these approaches are based on one of the fol-
lowing four mathematical backgrounds [8]: extensions of Boolean methods, stochastic
processes, universal generating function, and Monte Carlo simulation. Each of these
approaches is used for some specific tasks relating to evaluation of MSSs. For example,
stochastic processes (such as Markov processes) are used to analyse system state
transition process [9], universal generating function is useful in optimization problems
[10], while Monte Carlo simulation represents a universal tool for reliability assessment
of systems consisting of a huge amount of components [11]. If we want to investigate
influence of individual system components on the system activity, then the approach
based on extensions of Boolean methods can be viewed as one of the most suitable.

The idea of extensions of Boolean methods for the analysis of MSSs lies in the fact
that the tools of Boolean algebra have been widely used in reliability analysis of BSSs.
This has resulted from the fact that the system structure function, which defines
dependency between system state and states of system components, can be viewed as a
Boolean function in the case of BSSs [4, 8]. However, this is not true for MSSs.
Therefore, some works, e.g. [12, 13], have tried to transform the structure function of a
MSS into a Boolean function using Boolean algebra with restrictions [12]. Such
transformation allows us to use methods of Boolean algebra in reliability analysis of
MSSs. However, this transformation can result in increase of model complexity. To
avoid these complications, other authors have proposed using Multiple-Valued Logic
(MVL) in reliability analysis of MSSs since there are some correlations between the
structure function of a MSS and a MVL function [14, 15]. One of the tools of MVL that
can be used in the analysis of MSSs is logical differential calculus [16, 17].

Logical differential calculus has been developed for the analysis of dynamic
behaviour of Boolean and MVL functions. The central concept of this tool is a logic
derivative. There are several types of logic derivatives from which the most interesting
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are Direct Partial Logic Derivatives (DPLDs). Use of DPLDs in reliability analysis of
MSSs has been considered in several works, e.g. [15–18]. In those works, it has been
shown that DPLDs are useful in calculation of special reliability indices that are named
as importance measures. In this paper we propose the application of DPLD for the
calculation of exact boundary states that indicate the system state for which the change
of one or some of fixed components cause the system performance level decrease or
increase. Therefore, they can be used to identify situations in which a degradation of a
given component results in a decrease of system performance. Identification of such
situations is very important for estimation of component influence on system activity.
New indices as probabilities of exact boundary states are introduced in the paper. These
indices allow estimating the stability of system in point of view of its availability.

The paper has next structure. Section 2 recalls some basics about structure function
and introduce a concept of boundary states of a MSS. Section 3 provides short
description of DPLDs computed with respect to one variable and with respect to a
vector of several variables (variable vector). Finally, new indices for estimation of MSS
boundary states are proposed in Sect. 4, the calculation of these indices are provided
based on DPLD.

2 MSS Structure Function

2.1 Structure Function of MSS

A MSS is mathematical model that is used for the description of the system of
n components. The i-th system component state is denoted as xi (i = 1, …, n). Consider
simple variant of a MSS where the system components and system have equal number
of states and performance levels. Each component in such mathematical representation
has m states that are indicated as 0 for the complete failure and as m-1 for perfect
functioning. Suppose, that the system has m performance level too: from the complete
failure (it is 0) to the perfect functioning (it is m-1). The system performance levels
depend on components states and this dependency is defined by the structure function ϕ
(x) identically:

/ x1; x2; . . .; xnð Þ ¼ / xð Þ : 0; 1; . . .; m� 1f gn ! 0; 1; . . .; m� 1f g: ð1Þ

In the mathematical point of view the structure function (1) corresponds with the
definition of a MVL function [19]. Therefore the mathematical approaches of MVL can
be used in qualification and quantification analysis of MSS. But the structure function
(1) allows representing the very small class of real system for which the number of
system performance levels and number of every component states are equal. As a rule,
the real-world system has different numbers of states for different components and
these numbers are not equal to number of performance levels and the structure function
of such system is defined as:
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/ xð Þ : 0; 1; . . .; m1 � 1f g � . . . � 0; 1; . . .; mn � 1f g ! 0; 1; . . .; M � 1f g; ð2Þ

where mi is number of states for i-th system component (i = 1, …, n) and M is number
of a system performance levels.

The Eq. (2) is not a MVL function. The interpretation of the Eq. (2) as a MVL
function needs additional transformation. Some formal changes in the interpretation of
the structure function (2) allow to consider this function as an incompletely specified
MVL function. The first of them it is definition of value of incompletely specified MVL
function. In this case the maximal value of numbers of components states and number
of system performance level is interpreted as an value of incompletely specified MVL
function mmax = MAX{m1, …, mn, M}. The second changes in formal interpretation of
the structure function is addition of real values of mi (i = 1,.., n) and M to value of
incompletely specified MVL function mmax. And the structure function (2) as an
incompletely specified MVL function can be defined as:

/‘ xð Þ : 0; 1; . . .; mmax � 1f gn ! 0; 1; . . .; mmax � 1f g: ð3Þ

The interpretation of the structure function (2) as an incompletely specified MVL
function (3) permits to use mathematical approaches of MVL without principal
restriction for analysis of properties of the structure function (2). Therefore components
states (xi, i = 1, …, n) are interpreted as values of variables of MVL function and
system performance levels are considered as values of the MVL function (Fig. 1). And
changes of the i-th system component state agrees with changes of the i-th variable
value at that the changes of a MSS performance level can be considered as changes of a
MVL function. The introduction of these correlations is important for consideration of
a MSS boundary states that will be investigated below.

For example, consider the simple service system (Fig. 2) in a region from paper
[18]. This system consists of three components (n = 3) – service point 1 (x1), service
point 2 (x2) and infrastructure (x3). This system has four performance levels: 0 –

non-operational (no customer is satisfied), 1 – partially non-operational (some cus-
tomers are not satisfied), 2 – partially operational (some customers are satisfied),

Incompletely specified 
MVL function 

Structure function

Variables values Function values

(x) {0, …, mmax-1}

(x)

(x) {0, …, M-1}

(x)

xi {0, …, mmax-1}

xi

xi {0, …, mmax-1}

xi

Fig. 1. The correlation of MVL function and structure function.
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3 – fully operational (all customers are satisfied). Next, we assume that the service
points are only functional (state 1) or dysfunctional (state 0). The infrastructure can be
modelled by 4 quality levels, i.e. from 0 (the quality of the infrastructure is poor) to 3
(the quality is perfect). The structure function of this system according to (2) is defined
in Table in Fig. 2 (where m1 = m2 = 2, m3 = 4 and M = 4). Interpret this structure
function as incompletely specified MVL function. The value of this function is defined
as maximal value of m1, m2, m3, and M and it is mmax = 4. Therefore two variables x1
and x2 must be added by two values: 2 and 3. But values of the structure function are
not known and are indicated by “–”. The structure function of this system as incom-
pletely specified MVL function is in Table 1.

Application of the mathematical approach of MVL in reliability engineering has
one assumption. This mathematical approach can be used for the analysis of MSS
reliability in stationary state or availability only because MVL function is
time-independent function [14, 19]. But this assumption is not restriction for the def-
inition of boundary states of a MSS and other reliability indices. Consider the calcu-
lation of most important indices in reliability analysis as availability and unavailability.
The availability and unavailability of MSS depend on components states. MSS com-
ponents states are defined in mathematical model by the probabilities of states:

pi;s ¼ Pr xi ¼ sf g; s ¼ 0; . . .; mi � 1: ð4Þ

A MSS availability and unavailability based on the conception of the structure
function (2) and taking into account the components states probabilities (4) are defined
as follows [8]:

A jð Þ ¼ Prf/ xð Þ � jg; j ¼ 1; . . .; M � 1; ð5Þ

U ¼ Prf/ xð Þ ¼ 0g: ð6Þ

The system                                                The system structure function

Components states
x1 x2 x3

0 1 2 3
0 0 0 0 0 0
0 1 0 1 1 2
1 0 0 1 1 2
1 1 0 2 3 3

Fig. 2. A simple service system and its structure function
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But there is the special case of the definition of the system availability for MSS as
[8, 15]:

Aj ¼ Prf/ xð Þ ¼ jg; j ¼ 1; . . .; M � 1 ð7Þ

In this paper Definitions (7) and (6) for a MSS availability and unavailability will
be used. Consider a coherent MSS. There are next assumptions for structure function of
a coherent MSS [8]: (a) the structure function (2) is monotone and ϕ(s) = s (s2{0, …,
m-1}), and (b) all components are s-independent and are relevant to the system.

In papers [6, 7] authors shown that any system state j (j = 1,…, M -1) of a coherent
MSS according to the assumption (b) can be calculated as the product of probabilities
of components states (4) and the system availability for performance level j is sum of
probabilities of all possible states for the performance level j. In terms of structure
function it means that the system availability (7) can be calculate as the sum of
probabilities of all values j of the structure function ϕ(x) that are computed as product
of probabilities of components states.

Illustrate the calculation of the availability (7) by example. Consider the simple
service system (Fig. 2) and calculate the availability of this system for the performance
level 3. The structure function of this system has two values 3 for the state vectors (x1
x2 x3) = (1, 1, 2) and (x1 x2 x3) = (1, 1, 3). Therefore the availability of the simple
service system for the performance level 3 is:

Table 1. The structure function of the simple service system represented as an incompletely
specified MVL function

Components
states

x1 x2 x3
0 1 2 3

0 0 0 0 0 0
0 1 0 1 1 2
0 2 – – – –

0 3 – – – –

1 0 0 1 1 2
1 1 0 2 3 3
1 2 – – – –

1 3 – – – –

2 0 – – – –

2 1 – – – –

2 2 – – – –

2 3 – – – –

3 0 – – – –

3 1 – – – –

3 2 – – – –

3 3 – – – –
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A3 ¼ Prf/ xð Þ ¼ 3g ¼ Prf/ 1; 1; 2ð Þ þ Prf/ 1; 1; 3ð Þ ¼ p1;1 � p2;1 � p3;2 þ p3;3
� �

Taking into account the components states probabilities for this system shown in
Table 2 the availability of this system for the performance level 3 is A3 = 0.112.

The system availability for the performance levels 2 and 1, and unavailability are
calculated similar:

A2 ¼ Prf/ xð Þ ¼ 2g ¼ p1;1 � p2;1 � p3;1 þ ðp1;0 � p2;1 þ p1;1 � p2;0Þ � p3;3 ¼ 0:374;

A1 ¼ Prf/ xð Þ ¼ 1g ¼ ðp1;0 � p2;1 þ p1;1 � p2;0Þ � p3;1 þ p3;2
� � ¼ 0:266

U ¼ Prf/ xð Þ ¼ 0g ¼ p3;0 þ p1;0 � p2;0 � p3;1 þ p3;2 þ p3;3
� � ¼ 0:248

Note, the structure function in Table 1 has one more performance level that is
indicated as incompletely specified and marked by “–”. These states are depended on
the 1-th and 2-nd components states 2 and 3 for which the component state proba-
bilities are equal zero, because these states are not possible: p1,2 = p1,3 = p2,2 = p2,3 = 0.
Therefore the probability of this performance level is zero too.

The system availability for the performance level 2 has maximal value of proba-
bility, therefore the service system functioning is more possible as partially operational
(some customers are satisfied). The system fault or non-operational (where no customer
is satisfied) is characterized by unavailability U = 0.248. In comparison with other
available performance level this probability is not large.

The system availability and unavailability indicate the probability of the system
performance level been, but don’t represent the critical states/situation for which a
modification of one of components states causes the change of the system performance
level, first of all the system degradations. The definition such states are possible by the
boundary states of MSS.

2.2 Boundary States of MSS

The conception of boundary states has been proposed for Binary-State System firstly.
The boundary state of BSS is defined as system state for which the failure of one system
components causes of a system failure [23]. There are different types of boundary states
as minimal cut/path sets [14, 23]; exact boundary states [21]. In paper [8] boundary
states have been generalized for MSS. The boundary state of MSS must be defined for
every system performance level. In papers [24] the boundary states of MSS are

Table 2. The components states probabilities of the simple service system

Components states

x1 x2 x3
0 1 0 1 0 1 2 3

pi,s 0.3 0.7 0.2 0.8 0.2 0.6 0.1 0.1
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interpreted as minimal cut/path sets. Authors of [22] introduced conception of Lower
(Upper) Boundary Points of MSS for system performance level j (j = 0, …, M-1). The
boundary states for system performance level j and component i (i = 1,…, n) (named as
exact boundary states) has been proposed and considered in papers [20, 21]. In paper
[18] and [25] the correlations of these boundary states with minimal cut/path sets and
Lower (Upper) Boundary Points are shown accordingly.

The exact boundary states have been considered in paper [15]. These states are
system states for which the change of the i-th component state from s to ~s causes the
system performance level change from j to ~j (s, ~s2 {0,…, mi -1}, s ≠ ~s and j, ~j2 {0,
…, M -1}, j ≠ ~j). The exact boundary state is defined by the exact boundary vector
unambiguously. Therefore the exact boundary vectors must be calculated for the def-
inition of exact boundary states. Illustrate the correlation of a system exact boundary
state and an exact boundary vector by the example for the service system in Fig. 2.

Determine the exact boundary states of this service system for which the failure of
the first component causes the system failure as the change of the system performance
level from state 1 to 0. According to Table 1, there are two situations that correspond to
this condition. They are possible for the failure of the second component and the third
component state 1 or 2. These exact boundary states can be presented as vector states:
x = (x1, x2, x3) = (1 → 0,0,1) and x = (x1, x2, x3) = (1 → 0,0,2). Note that the boundary
state x = (x1, x2, x3) = (1 → 0,0,3) does not satisfy the condition because the system
performance level in this case changes from 1 to 2 depending on the failure of the first
component.

One of possible mathematical approaches for the definition of the exact boundary
states in MVL is Logical Differential Calculus, in particular the DPLDs [19]. Consider
the application of this mathematical approach for analysis of structure function of MSS.

3 Direct Partial Logical Derivatives

3.1 Direct Partial Logical Derivative with Respect to One Variable

The mathematical tool of DPLDs has been proposed in [15] for calculation of an exact
boundary states of a MSS. In this paper the definition of DPLDs for MVL function has
been adapted for a structure function (1). This definition has been generalized for the
structure function (2) in paper [16]. According to [16] DPLD with respect to variable xi
for the structure function (2) permits analyse the system performance level change from
j to ~j when the i-th component state changes from s to ~s:

@/ðj ! ~jÞ�@xiðs ! ~sÞ ¼ 1; if /ðsi; xÞ ¼ j and /ð~si; xÞ ¼ ~j
0; other

�
ð8Þ

where ϕ(si, x) = ϕ(x1,…, xi-1, s, xi+1,…, xn); ϕ(~s, x) = ϕ(x1,…, xi-1, ~s, xi+1,…, xn); s, ~s2
{0,…, mi -1}, s ≠ ~s and j, ~j2 {0,…, M -1}, j ≠ ~j.

There is correlation between exact boundary states and DPLD. Therefore these
derivatives can be used for the calculation of exact boundary states and the
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investigation of influence of the i-th system component changes from s to ~s to per-
formance level j.

For example, investigate the influence of the first component failure to the fault of the
simple service system in Fig. 2. DPLD ∂ϕ(1 → 0)/∂x1(1 → 0) allows to calculate the
system state for which this failure causes the system break down. The calculation of this
derivative is shown in Fig. 3 in form offlow graph. The derivative ∂ϕ(1→ 0)/∂x1(1→ 0)
has two non-zero values that agrees with state vectors: x = (x1, x2, x3) = (1→ 0,0,1) and
x = (x1, x2, x3) = (1→ 0,0,2). According to the definition of DPLD (8) for these system
states the failure of thefirst system component causes the system failure too. Therefore the
service system fails after the failure of the first service point if the second service point
isn’t functioning and the functioning of the infrastructure conforms state 1 or state 2. The
system states x = (x1, x2, x3) = (1 → 0,0,1) and x = (x1, x2, x3) = (1 → 0,0,2) are exact
boundary states for thefirst system component failure and the systemperformance level 1.

DPLD (8) allows investigating boundary states of a MSS for which component
state xi change from s to ~s causes the system performance level change from j to ~j.
Therefore, this derivative allows calculating exact boundary states of the i-th system
component for MSS performance level j that agree to state vectors x = (x1, x2,…, xn).
All possible changes of the i-th system component and their influence to MSS per-
formance level can be investigated based on DPLD (8). But this derivative permits to
investigate the influence of one component only. DPLD with respect of variable vector
investigates the system state changes depending on changes of states of some system
components.

Fig. 3. Calculation of the direct partial logic derivative ∂ϕ(1 → 0)/∂x1(1 → 0).
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3.2 Direct Partial Logical Derivative with Respect to Variable Vector

DPLD of a structure function ϕ(x) of n variables with respect to variables vector
xðpÞ ¼ xi1 ; xi2 ; . . .; xip

� �
reflects the fact of changing of function from j to ~j when the

value of every variable of vector x(p) is changing from s to ~s [16]:

@/ðj ! ~jÞ
.
@xiðsðpÞ ! ~sðpÞÞ ¼ 1; if /ðsi1 ; . . .; sip ; xÞ ¼ j and /ð~si1 ; . . .; ~sip ; xÞ ¼ ~j

0; other

�
ð9Þ

In (9) a change of value of iq-th variable xiq form siq to ~siq agrees with a change of
iq-th MSS component state form siq to ~siq (q = 1, …, p and p < n). Changes of some

components states correspond with change of a variables vector xðpÞ ¼ xi1 ; . . .; xip
� �

.
Every variable values of this vector changes form siq to ~siq . So, vector x(p) can be
interpreted as components states vector or components efficiencies vector.

For example, consider the simple service system (Fig. 2) failure depending on fault
of the first service point and reduction of functioning of infrastructure from state 2 to
state 1. This system behavior can be presented by the Direct Partial Logic Derivative ∂ϕ
(1 → 0)/∂x1(1 → 0) ∂x3(2 → 1). The calculation of this derivative is shown in Fig. 4.

The derivative ∂ϕ(1 → 0)/∂x1(1 → 0) ∂x3(2 → 1) has two values and one of them
is non-zero value that agrees with state vector: x = (x1, x2, x3) = (1→ 0, 0, 2→ 1). This
state vector define of the service system failure depending on the failure of the first
service point and deterioration of the infrastructure functioning from state 2 to state 1.
Therefore the system state x = (x1, x2, x3) = (1 → 0, 0, 2 → 1) can be interpreted as
exact boundary state for the first and the third system components of the system
performance level 1.

Fig. 4. Calculation of the direct partial logic derivative ∂ϕ(1 → 0)/∂x1(1 → 0) ∂x3(2 → 1).

Analysis of Boundary States of Multi-state System 149



The Direct Partial Logic Derivative with respect to variable vector (15) allows
investigating boundary states of a MSS for which simultaneous changes of p compo-
nents states from siq to ~siq (q = 1, …, p and p < n) causes the system performance level

change from j to ~j. Therefore, the Direct Partial Logic Derivative with respect to
variable vector allows calculating exact boundary states for MSS performance level j of
the i-th system component.

4 The Calculation and Estimation of Exact Boundary States
of MSS Based on Direct Partial Logic Derivatives

The exact boundary state of MSS are defined based on the condition that fixed system
performance level change depending on the appointed change of one system compo-
nent state or specified changes of some components states. DPLD with respect to one
variable (8) and DPLD with respect to variable vector (9) can be used to investigate
change of the system performance level from j to~j that are caused by specified changes
of one or some system components states. These derivatives have non-zero values of
the structure function for system states that satisfy for specified condition: the system
performance level change from j to ~j depending on specified changes of one or some
system components states. Therefor the exact boundary states can be defined as system
states that conform to non-zero values of derivatives (8) and (9). In paper [26] new
probabilistic indices for exact boundary state that allow estimating the probability of
the system boundary/critical states. In this paper this investigation is continued and
some new indices are introduced.

Use the symbol xi
j!~j

s!~s

� �
for the exact boundary state of MSS performance level

j depending on the i-th system component has been introduced in paper [26]. This state
is indicated by vector state x = (x1,…, xi,…, xn) = (a1,…, si,…, an) for which ϕ(a1,
…, si,…, an) = j and ϕ(a1,…, ~si,…, an) = ~j. Therefore this state can be calculated as
non-zero value of DPLD (8). The exact boundary state for MSS performance level

j depends on p components xi1, xi2, …, xip xi1 . . .xip
j!~j

si1!~si1 sip!~sip

 !
is indicated by vector state

x = (x1,…, xi1,…, xip,…, xn) = (a1,…, si1,…, sip,…, an). This state is calculated as
non-zero value of DPLD (9).

In paper [26] some probabilistic indices of the exact boundary states for the
coherent MSS have been introduced (Table 3).

The probability of every boundary state (a1, …, si, …, an) for MSS performance
level j depending on the i-th system component change from s to ~s is calculated based
on the probabilities of components states [26]:

pða1...anÞ xi
j!~j

s!~s

� �
¼ p1;a1 � . . . � pi�1;ai�1 � pi;si � piþ 1;aiþ 1 � . . .pn;an ð10Þ
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The practical application of estimation of a MSS boundary states supposes the
calculation of other probabilities, for example, as probability of MSS performance level
change depending on all possible changes of the i-th system component. These
probabilities are calculated based on the probability of the system boundary state
(10) and are presented in Table 3.

In the Table 3 new indices for the analysis of MSS availability are proposed. These
indices are probabilities of exact boundary states that allow estimate the critical
state/situation of investigated system/object. In particular, these indices allow investi-
gating the influence of different changes the i-th component state s to the fixed per-
formance level.

The similar indices for probabilistic estimation of exact boundary states (Table 3
and 4) can be defined for estimation of exact boundary state for MSS performance level

j of p components xi1 ; xi2 ; . . .; xiP xi1 . . .xip
j!~j

si1!~si1 sip!~sip

 !
.

Table 3. Probabilities for the estimation of exact boundary states of MSS defined in paper [26]

The index description Equation for calculation

The probability of exact boundary state of the i-th
component change from s to ~s and for
performance level change from j to ~j

p xi
j!~j

s!~s

� �
¼ P

/ða1;...;si;...;anÞ¼j
pða1...anÞ xi

j!~j

s!~s

� �

The probability of exact boundary states of the i-th
component for all changes and for performance
level change from j to ~j

p xi
j!~j
� �

¼P
s;~s

p xi
j!~j

s!~s

� �

The probability of exact boundary states of the i-th
component change from s to ~s and for all
performance level j changes

p xi
s!~s

� �
¼P

j;~j

p xi
j!~j

s!~s

� �

The probability of exact boundary states of the i-th
component all changes p xi

� �
¼P

s;~s
p xi

s!~s

� �

Table 4. New probabilities for the estimation of exact boundary states of MSS

The index description Equation for calculation

Probability of exact boundary state of i-th component for all
decreases from state s and for performance level change
from j to ~j

p xi
j!~j

s#

� �
¼ P0

r¼s�1
p xi

j!~j

s!r

� �

Probability of exact boundary state of i-th component for all
increases from state s and for performance level change
from j to ~j

p xi
j!~j

s"

� �
¼ Pm�1

r¼sþ 1
p xi

j!~j

s!r

� �

Probability of exact board state of i-th component for all
changes of state s and for performance level change from
j to ~j

p xi
j!~j

s

� �
¼ p xi

j!~j

s#

� �
þ p xi

j!~j

s"

� �

Probability of exact board state of i-th component for all
decreases from state s and for performance level change
from j to ~j

p xi
j!~j
� �

¼ Pm�1

r¼0
p xi

j!~j

r

� �
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Consider the examples of the estimation of exact boundary states for the simple
service system (Fig. 2). The components states probabilities for this system are defined in
Table 2. Investigate this system failure depending on the first components. DPLD ∂ϕ
(1 → 0)/∂x1(1 → 0) represents this system behavior (Fig. 3). This derivative has two

non-zero values that conform to two boundary states x1
1!0

1!0

� �
: x = (1, 0, 1) and x = (1, 0, 2).

The probabilities of boundary states for the system failure depending on the first

component break down x1
1!0

1!0

� �
are calculate according to (16) and are:

p x1
1!0

1!0

� �
¼ pð101Þ x1

1!0

1!0

� �
þ pð102Þ x1

1!0

1!0

� �
¼ p1;1 � p2;0 � p3;1 þ p1;1 � p2;0 � p3;2 ¼ 0:098 ð11Þ

By the similar way the probability of this system failure depending on the break-

down of the second service point is calculated and this probability is p x2
1!0

1!0

� �
¼ 0:168

too. The influence of the infrastructure failure to the fault of the system by the critical

state is estimated as p x3
1!0

1!0

� �
¼ 0:228. Therefore the infrastructure failure has maximal

influence to the stop of the service system.
Investigate other critical states of this system failure. The critical states can be

indicated as exact boundary states of the system. These states correlate to non-zero
values of DPLDs @/ðj ! 0Þ=@xiðs ! s� 1Þ for j, s 2 {1, 2, 3} (Table 5).

Table 5. The exact boundary states of simple service system calculated based on DPLD

DPLDs Boundary states for the components
x1 x2 x2

@/ð1 ! 0Þ=@xið3 ! 2Þ –

@/ð1 ! 0Þ=@xið3 ! 1Þ –

@/ð1 ! 0Þ=@xið3 ! 0Þ –

@/ð1 ! 0Þ=@xið2 ! 1Þ –

@/ð1 ! 0Þ=@xið2 ! 0Þ (0, 1, 2), (1, 0, 2)
@/ð1 ! 0Þ=@xið1 ! 0Þ (1, 0, 1), (1, 0, 2) (0, 1, 1), (0, 1, 2) (0, 1, 1), (1, 0, 1)
@/ð2 ! 0Þ=@xið3 ! 2Þ –

@/ð2 ! 0Þ=@xið3 ! 1Þ –

@/ð2 ! 0Þ=@xið3 ! 0Þ (0, 1, 3), (1, 0, 3)
@/ð2 ! 0Þ=@xið2 ! 1Þ –

@/ð2 ! 0Þ=@xið2 ! 0Þ –

@/ð2 ! 0Þ=@xið1 ! 0Þ (1, 0, 3) (0, 1, 3) (1, 1, 1)
@/ð3 ! 0Þ=@xið3 ! 2Þ –

@/ð3 ! 0Þ=@xið3 ! 1Þ –

@/ð3 ! 0Þ=@xið3 ! 0Þ (1, 1, 3)
@uð3 ! 0Þ=@xið2 ! 1Þ –

@uð3 ! 0Þ=@xið2 ! 0Þ (1, 1, 2)
@uð3 ! 0Þ=@xið1 ! 0Þ – – –
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All critical state for every of components of the service system failure are shown in
Table 5. The symbol “–” is in cell, if the critical states are absent for fixed component
change. The grey cells agree with the situations where the indicated changes are not
possible. The analysis of the exact boundary states in Table 5 shows conditions of the
system failure. The system failure can be caused by break down of any system com-
ponent (one of the service points or the infrastructure), but the degradation the system
infrastructure has not influence for the system fault (changes the third component state
x3 from 3 to 2 and from 2 to 1). The probabilistic estimations of the critical states are
shown in Table 6. According to these indices the system failure (performance level
change from 3 to 0) depending on the third component fault is most possible. The
probabilities of other failures of the system (performance level change from 2 to 0 and
from 1 to 0) have large values in comparison with probabilities of other critical states.
Therefore the third component (the system infrastructure) is most important for the
functioning of the system in whole and the support of this component working state
must be principal goal of this system maintenance. The index of the system failure
depending of all possible changes of one of system components p xið Þ has maximal
value for the third component that indicates principal influence of this component to the
system failure too.

Therefore the proposed indices for the estimation of the exact boundary states are
useful for the analysis of the system availability and its functioning. These indices
permit to indicate the system component with maximal influence to the fixed changes of
the performance levels. These components will have priority in the maintenance plan.

5 Conclusion

The mathematical methods of MVL are used in reliability estimation of MSS. The
mathematical background for application of mathematical methods of MVL for relia-
bility analysis of MSS is considered in this paper. The correlation of the structure
function (2) and MVL function are shown and proved by means of the conception of
incompletely specified MVL function. This background allows using DPLD for
analysis of MSS structure function.

In this paper the investigation of boundary values of the structure function of MSS
and definition of MSS exact boundary states based on these valued are considered.
Conception of exact boundary states is important for the examination of critical
states/situation of the system functioning and availability. The analysis of probabilistic

Table 6. Probabilities for the estimation of critical states of the simple service system

⎟⎠
⎞⎜⎝

⎛ →

→

01

01
i

xp ⎟⎠
⎞⎜⎝

⎛ →

→

01

02
i

xp ⎟⎠
⎞⎜⎝

⎛ →

→

02

03
i

xp ⎟⎠
⎞⎜⎝

⎛ →

→

02

01
i

xp ⎟⎠
⎞⎜⎝

⎛ →

→

03

02
i

xp ⎟⎠
⎞⎜⎝

⎛ →

→

03

03
i

xp ⎟⎠
⎞⎜⎝

⎛ →01

i
xp ⎟⎠

⎞⎜⎝
⎛ →02

i
xp ⎟⎠

⎞⎜⎝
⎛ →03

i
xp ⎟⎠

⎞⎜⎝
⎛

→01
i

xp ⎟⎠
⎞⎜⎝

⎛
→02

i
xp ⎟⎠

⎞⎜⎝
⎛

→03
i

xp ⎟⎠
⎞⎜⎝

⎛
i

xp

x1 0.098 0.014 0.098 0.014 0 0.112 0.112
x2 0.168 0.024 0.168 0.024 0 0.192 0.192
x3 0.228 0.038 – 0.336 – 0.056 0.266 0.336 0.056 0.564 0.038 0.056 0.658
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indices of exact boundary states allows indicating the system components with most
influence and taking into account such components in the maintenance plan.

The analysis of MSS based on the exact boundary states has not limits for the
numbers of components (n) and states for every component (mi), and system perfor-
mance levels (M) according to the theoretical background. But in real-world applica-
tions these numbers have important influence to the structure function dimension
(number of structure function elements) that is calculated as:

Nstructure function dimension = m1 × m1 × … × mn

As a rule the number of system performance levels (M) and number of component
states (mi) are defined between two and seven. According to the investigation in papers
[16–18] the Direct Partial Logical Derivatives is applicable for systems which have
dimension less than ten millions elements. Therefore the proposed method can be
useful for the MSS analysis with number of components under ten.
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