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700505 Iaşi, Romania

baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. The first part of the paper is devoted to a polynomial
solution of a well-known NP-complete problem (SAT problem) by using
an unconventional computation model provided by P systems with
active membranes (with neither polarization nor division rules). An
important step of this semi-uniform solution is given by polynomial com-
puting devices to build P systems that contain some exponential-size fea-
ture for which solving the SAT problem is easy. NP-complete problems
are decision problems that can be solved in polynomial time on a non-
deterministic Turing machine. Related to this step, in the second part we
show how we can simulate polynomial space Turing machines by using
a logarithmic space P system with active membranes, and employing
a binary representation in order to encode the positions on the Turing
machine tape.

Keywords: Natural computing · Membrane computing · Turing
machines

1 Introduction

Membrane computing [15] is a branch of the natural computing inspired by the
architecture and behaviour of living cells. Membrane systems (also called P sys-
tems) have been introduced by the computer scientist Gheorghe Păun, whose
last name is the origin of the letter P in “P Systems”. Membrane systems are
characterized by three features: (i) a membrane structure consisting of a hier-
archy of membranes (which are either disjoint or nested), with an unique top
membrane called the skin; (ii) multisets of objects associated with membranes;
(iii) rules for processing the objects and membranes. When membrane systems
are seen as computing devices, two main research directions are usually con-
sidered: computational power in comparison with the classical notion of Turing
computability (e.g., [2]), and efficiency in algorithmically solving NP-complete
problems in polynomial time (e.g., [3]). Such efficient algorithms are obtained
by trading space for time, with the space grown exponentially in a linear time
by means of bio-inspired operations (e.g., membrane division). Thus, membrane
systems define classes of computing devices which are both powerful and efficient.
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Related to the investigations of these research directions, there have been
studied several applications of these systems; among them, modelling of various
biological phenomena and the complexity and emergent properties of such sys-
tems presented in [7]. In [4] it is presented the detailed functioning of the sodium-
potassium pump, while in [1] it is described and analyzed the immune system
in the formal framework of P systems. Under the assumption that P �= NP,
efficient solutions to NP-complete problems cannot be obtained without intro-
ducing features which enhance the efficiency of the system ways to exponentially
grow the workspace during the computation, non-determinism, and so on). For
instance, some pre-computed resources are used in [9].

We show that P systems with active membranes [13] can provide simple semi-
uniform solutions to the SAT problem without using neither polarization nor
division, but using exponential size pre-computed initial configurations (either
alphabet or structure). An important observation is that we specify how our
pre-computed initial configurations are constructed in a polynomial number of
steps by additional well-defined P systems (P systems with replicated rewriting
and P systems with active membranes and membrane creation, respectively).

The semi-uniform solutions rely on constructing the system and the solution
in polynomial time in order to avoid solving the problem during the evolution of
the system. In this context, the initial (exponential) configuration is constructed
by another (polynomial) system, and the problem is solved by combining these
two systems. In this way, we propose a polynomial solution that uses a poly-
nomial P system for constructing the initial configuration (that is exponential).
Related to this step, we show that P systems with active membranes provide
an interesting simulation of polynomial space Turing machines by using only
logarithmic space and a polynomial number of read-only input objects.

The rest of this paper is organized as follows: Sect. 2 contains some prelimi-
nary notions used in this paper. Section 3 provides simple semi-uniform solutions
to the SAT problem, while Sect. 4 provides a simulation of polynomial space Tur-
ing machines by using only logarithmic space P systems with active membranes.
Conclusion and references end the paper.

2 Preliminaries

We consider P systems with active membranes extended with an input alphabet,
and such that the input objects cannot be created during the evolution [17]. The
original definition also includes division rules, rules that are not needed here.
The version used in this paper is similar to evolution-communication P systems
used in [6] with additional read-only input objects and polarities.

Definition 1. A P system with active membranes and input objects is a tuple

Π = (Γ,Δ,Λ, μ;w1, . . . , wd, R)

Where:

• d ≥ 1 is the initial degree;
• Γ is a finite non-empty alphabet of objects;
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• Δ is an input alphabet of objects such that Δ ∩ Γ = ∅;
• Λ is a finite set of labels for membranes;
• μ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) in which each membrane is labelled by an element of Λ in
a one-to-one way, and possesses an attribute called electrical charge, which
can be either neutral (0), positive (+) or negative (-);

• w1, . . . , wd are strings over Γ , describing the initial multisets of objects placed
in a number of d membranes of μ; notice that wi is assigned to membrane i;

• R is a finite set of rules over Γ ∪ Δ:
1. [a → w]αh object evolution rules

An object a ∈ Γ is rewritten into the multiset w, if a is placed inside
a membrane labelled by h with charge α. An object a can be deleted by
considering w the empty multiset ∅. Notice that these rules allow only to
rewrite objects from Γ , but not from Δ.

2. a[ ]αh → [b]βh send-in communication rules
An object a is sent into a membrane labelled by h and with charge α,
becoming b; also, the charge of h is changed to β. If b ∈ Δ, then a = b
must hold.

3. [a]αh → b[ ]βh send-out communication rules
An object a, placed into a membrane labelled by h and having charge α, is
sent out of membrane h and becomes b; simultaneously, the charge of h is
changed to β. If b ∈ Δ, then a = b must hold.

4. [a]αh → b dissolution rules
An object a, placed into a membrane labelled by h and having charge α
dissolves membrane hand becomes b. All object contained in membrane h
are released in the parent membrane of h.

Each configuration Ci of a P system with active membranes and input objects is
described by the current membrane structure, including the electrical charges,
together with the multisets of objects located in the corresponding membranes.
The initial configuration of such a system is denoted by C0. An evolution step
from the current configuration Ci to a new configuration Ci+1, denoted by Ci ⇒
Ci+1, is done according to the principles:

• Each object and membrane is involved in at most one communication rule per
step.

• Each membrane could be involved in several object evolution rules that can
be applied in parallel inside it.

• The application of rules is maximally parallel: the only objects and membranes
that do not evolve are those associated with no rule, or only to rules that are
not applicable due to the electrical charges.

• When several conflicting rules could be applied at the same time, a non-
deterministic choice is performed; this implies that multiple configurations
can be reached as the result of an evolution step.

• In each computation step, all the chosen rules are applied simultaneously.
• Any object sent out from the skin membrane cannot re-enter it.
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A halting evolution of such a system Π is a finite sequence of configurations−→C = (C0, . . . , Ck), such that C0 ⇒ C1 ⇒ . . . ⇒ Ck, and no rules can be applied
any more in Ck. A non-halting evolution

−→C = (Ci | i ∈ N) consists of an infinite
evolution C0 ⇒ C1 ⇒ . . ., where the applicable rules are never exhausted.

Example 1. Addition is trivial; we consider n objects a and m objects b placed
in a membrane 0 with charge +. The rule [b → a]+h says that an object b is
transformed in one object a. Such a rule is applied in parallel as many times
as possible. Consequently, all objects b are erased. The remaining number of
objects a represents the addition n + m. More examples can be found in [5].

In order to solve decision problems (i.e., decide languages over an alphabet
Σ), we use families of recognizer P systems Π = {Πx | x ∈ Σ∗} that respect
the following conditions: (1) all evolutions halt; (2) two additional objects yes
(successful evolution) and no (unsuccessful evolution) are used; (3) one of the
objects yes and no appears in the halting configuration [16]. Each input x is
associated with a P system Πx that decides the membership of x in the language
L ⊆ Σ∗ by accepting or rejecting it. The mapping x � Πx must be efficiently
computable for each input length [12].

In this paper we use a logarithmic space uniformity condition [17].

Definition 2. A family of P systems Π = {Πx | x ∈ Σ∗} is said to be (L,L)-
uniform if the mapping x � Πx can be computed by two deterministic logarithmic
space Turing machines F (for “family”) and E (for “encoding”) as follows:

• F computes the mapping 1n � Πn, where Πn represents the membrane struc-
ture with some initial multisets and a specific input membrane, while n is the
length of the input x.

• E computes the mapping x � wx, where wx is a multiset encoding the specific
input x.

• Finally, Πx is Πn with wx added to the multiset placed inside its input mem-
brane.

In the following definition of space complexity adapted from [17], the input
objects do not contribute to the size of the configuration of a P system. In this
way, only the actual working space of the P system is measured, and P systems
working in sublinear space may be analyzed.

Definition 3. Given a configuration C, the space size |C| is defined as the sum
of the number of membranes in μ and the number of objects in Γ it contains.
If

−→C is a halting evolution of Π, then |−→C | = max{|C0|, . . . , |Ck|} or, in the case
of a non-halting evolution

−→C , |−→C | = sup{|Ci| | i ∈ N}. The space required by Π

itself is then |Π| = sup{|−→C | | −→C is an evolution of Π}.
Notice that |Π| = ∞ if Π has an evolution requiring infinite space or an

infinite number of halting evolutions that can occur such that for each k ∈ N

there exists at least one evolution requiring most than k steps.
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3 Solving the SAT Problem with Active Membranes

At the beginning of 2005, Gh. Păun wrote:

“My favourite question (related to complexity aspects in P systems with
active membranes and with electrical charges) is that about the number of
polarizations. Can the polarizations be completely avoided? The feeling
is that this is not possible - and such a result would be rather sound:
passing from no polarization to two polarizations amounts to passing
from non-efficiency to efficiency.”

This conjecture (problem F in [14]) can be formally described in terms of
membrane computing complexity classes as follows:

P = PMCAM0(+d,−n,+e,+c)

where

• PMCR indicates that the result holds for P systems with input membrane;
• +d indicates that dissolution rules are permitted;
• −n indicates that only division rules for elementary membranes are allowed;
• +e indicates that evolution rules are permitted;
• +c indicates that communication rules are permitted.

The SAT problem checks the satisfiability of a propositional logic formula in
conjunctive normal form (CNF). Let {x1, x2, . . . , xn} be a set of propositional
variables. A formula in CNF is of the form ϕ = C1∧C2∧· · ·∧Cm where each Ci,
1 ≤ i ≤ m is a disjunction of the form Ci = y1 ∨ y2 ∨ · · · ∨ yr (r ≤ n), where
each yj is either a variable xk or its negation ¬xk.

We present some attempts to solve this conjecture by providing algorithms
solving the SAT problem using P systems with active membranes with neither
polarizations nor division, but using exponential pre-computed initial configura-
tions constructed by additional P systems in polynomial time. As usually done
in the membrane computing community, we construct effectively a system of
membranes that solves the problem.

3.1 Solving SAT Problem by Using a Pre-computed Alphabet

In this section, we propose a polynomial time solution to the SAT problem using
the polarizationless P systems with active membranes, without division, but
with a pre-computed alphabet. For any instance of SAT we construct effectively
a system of membranes that solves it. Formally, we prove the following result:

Theorem 1. The SAT problem can be solved by a polarizationless P system
with active membranes and without division, but with an exponential alpha-
bet pre-computed in linear time with respect to the number of variables and the
number of clauses, i.e.,

P = PMCAM0(+d,+e,+c,pre(α)).

where pre(α) indicates that a pre-computed alphabet is permitted.
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Proof. Let us consider a propositional formula

ϕ = C1 ∧ C2 ∧ · · · ∧ Cm

where each Ci, 1 ≤ i ≤ m is a disjunction of the form

Ci = y1 ∨ y2 ∨ · · · ∨ yr(r ≤ n),

where each yj is either a variable xk or its negation ¬xk.
We construct a P system with active membranes able to check the satisfia-

bility of ϕ. The P system is given by Π = (Γ,Λ, μ,w1, . . . , wd, R), where:

– Γ = {zi | 0 ≤ i ≤ max{m,n}} ∪
∪ {si | i = t1 . . . tn, tj ∈ {0, 1} and 1 ≤ j ≤ n} ∪ {yes, no}.
The alphabet {si | i = t1 . . . tn, tj ∈ {0, 1} and 1 ≤ j ≤ n} to be placed inside
the input membrane 0 can be generated, starting from an object s, using the
rules:
• s → s0s1;
• si → si0si1, for i = t1 . . . tk where tj ∈ {0, 1} and 1 ≤ j ≤ k < n.
Thus all the possible assignments for the n variable {x1, x2, . . . , xn} are cre-
ated. The rules are applied until the length k of i in the second rule equals n.
For example, s100 over {x1, x2, x3} represents the assignment x1 = 1, x2 = 0
and x3 = 0 (1 stands for true, while 0 stands for false). The input alphabet
can be computed in linear (polynomial) time by using an additional device,
for instance P systems with replicated rewriting [8].

– Λ = {0, c1, . . . , cm, h}, with ci = z1 . . . zn, 1 ≤ i ≤ m where
• zj = 1 if xj appears in Ci;
• zj = 0 if ¬xj appears in Ci;
• zj = 
 if neither xj nor ¬xj appear in Ci.
For example c1 = 1 
 0 over the set of variables {x1, x2, x3} represents the
disjunction c1 = x1 ∨ ¬x3.

– μ = [[[. . . [[[ ]0]c1 ]c2 . . .]cm−1 ]cm ]h.
– w0 = z0.
– wi = λ, for all i ∈ Λ\{0}.
– The set R contains the following rules:

1. [z0]0 → z0
After the input is placed inside membrane 0, membrane 0 is dissolved, and
its content is released in the upper membrane labelled with c1.

2. [si]cj → si[ ]cj
if i and j have at least one position with the same value (either 0 or 1);

3. [si]cm → yes
if i and m have at least one position with the same value (either 0 or 1).
An assignment si is sent out of a membrane cm if there is at least one
position in i and j that is equal, namely an assignment to a variable
xk such that it makes Cj true. Once an object yes is generated, another
object yes cannot be created because membrane cm was dissolved and the
rule [si]cm → yes cannot be applied. For example, if c1 = 1 
 0 and s101
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(as described above), then this means that s101 satisfies the clause coded
by c1 = 1 
 0 since both have 1 on their first position, and this is enough
to make true a disjunction.

4. [z0 → z1]c1
5. [zi]ci → [ ]cizi+1, for 1 ≤ i ≤ m − 1
6. [zm]cm → no

The object z0 waits a step after membrane 0 is dissolved in order to allow
the other objects si to go through the cj membranes. The object zi then is
communicated through the cj membranes. Once zm reached the membrane
cm, if membrane cm still exists (i.e., the rule [si]cm → yes was not applied),
then the answer no is generated. Once an object yes or no is generated,
other objects yes or no cannot be created because membrane cm was dis-
solved, and neither rule [si]cm → yes nor [zm]cm → no can be applied.

7. [yes]h → yes[ ]h
8. [no]h → no[ ]h

The answer yes or no regarding the satisfiability is sent out of the skin.

3.2 Solving SAT Problem Using a Pre-computed Initial Structure

In this section, we propose a polynomial time solution to the SAT problem using
the polarizationless P systems with active membranes and without division, but
with a pre-computed structure. For any instance of SAT we construct effectively
a system of membranes that solves it. The fact that each membrane can be
subject to at most one communication rule per step is needed when generating
all possible assignments to be verified. Formally, we prove the following result:

Theorem 2. The SAT problem can be solved by a polarizationless P system
with active membranes and without division, but with an initial exponential
structure pre-computed in linear time with respect to the number of variables and
the number of clauses, i.e.,

P = PMCAM0(+d,+e,+c,pre(μ)).

where pre(μ) indicates that a pre-computed structure is permitted.

Proof. Let us consider a propositional formula

ϕ = C1 ∧ C2 ∧ · · · ∧ Cm

where each Ci, 1 ≤ i ≤ m is a disjunction of the form

Ci = y1 ∨ y2 ∨ · · · ∨ yr(r ≤ n),

where each yj is either a variable xk or its negation ¬xk.
We construct a P system with active membranes able to check the satisfia-

bility of ϕ. The P system is given by Π = (Γ,Λ, μ,w1, . . . , wd, R), where:

– Γ = {ai, ti, t
′
i, fi, f

′
i | 1 ≤ i ≤ n} ∪ {zi | 0 ≤ i ≤ 4 × n + 2 × m} ∪ {yes, no}.
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– Λ = {0, . . . , n, c1, . . . , cm, h}, 1 ≤ i ≤ m.
– μ = [[[[. . .]2[. . .]2]1[[. . .]2[. . .]2]1]0]h, where

• each membrane i contains two membranes i + 1 for 0 ≤ i ≤ n − 1;
• each membrane n contains a membrane structure [[. . . [ ]cm . . .]c1 ]c0 ;
• membrane 0 is the input membrane.
Graphically, the membrane structure μ can be represented as a tree:

This membrane structure can be generate in linear (polynomial) time with
respect to the number of variables and the number of clauses. This is done by
using an additional device that starts from a membrane structure [[ ]0]h, with
object 0 placed inside membrane 0 and rules of the form:
• [i → (i + 1)′ (i + 1)′]i, for 0 ≤ i ≤ n − 1
• i′ → [i]i, for 1 ≤ i ≤ n
• n → [c2]c1
• ck → [ck+1]ck , for 2 ≤ k ≤ m − 1
• cm → [ ]cm .

– w0 = a1z0.
– wi = λ, for all i ∈ Λ\{0}.
– The set R contains the following rules:

1. [zi → zi+1]0, for all 0 ≤ i < 4 × n + 2 × m
These rules count the time needed for producing the truth assignments
for the n variables inside the membranes labelled by n (3 × n steps), then
to dissolve the membranes labelled by cj , 1 ≤ j ≤ m (2 × m steps), and
for an y object to reach the membrane labelled by 0 (n steps).

2. [ai → tifi]i−1, for 1 ≤ i ≤ n
3. ti[ ]i → [ti]i, for 1 ≤ i ≤ n
4. fi[ ]i → [fi]i, for 1 ≤ i ≤ n
5. [ti → t′it

′
iai+1]i, for 1 ≤ i ≤ n − 1

6. t′i[ ]k → [ti]k, for i + 1 ≤ k ≤ n
7. [ti → t′it

′
i]k, for i + 1 ≤ k ≤ n − 1

8. [fi → f ′
if

′
iai+1]i, for 1 ≤ i ≤ n − 1

9. f ′
i [ ]k → [fi]k, for i + 1 ≤ k ≤ n

10. [fi → f ′
if

′
i ]k, for i + 1 ≤ k ≤ n − 1

In membranes n we create all possible assignments for the n variable
{x1, x2, . . . , xn}. It starts from an object a1 placed initially in membrane
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labelled by 0. Each ai is used to create ti and fi that are then send in
one of the two membranes labelled by i placed in membrane i − 1. In fact
each membrane i receives either ti or fi, and this is possible because a
membrane can be involved in only one communication rule of an evolution
step. After an object ti or fi reaches a membrane i, it generates two new
copies of it to be sent inside membranes i+1 together with an object ai+1

that is used then to construct the assignments over variable xi+1.
11. ti[ ]cj → [ti]cj , if xi appears in Cj

12. [ti]cj → ti, for 1 ≤ i ≤ n, 1 ≤ j < m
13. [ti]cm → y, for 1 ≤ i ≤ n
14. fi[ ]cj → [ti]cj , if ¬xi appears in Cj

15. [fi]cj → fi, for 1 ≤ i ≤ n, 1 ≤ j ≤ m
16. [fi]cm → y, for 1 ≤ i ≤ n.

An assignment ti (fi) is sent into a membrane cj if there is an assignment
to a variable xk (¬xk) such that it makes Cj true. Once all membranes
labelled by ci are dissolved inside a membrane labelled by n, an object y
is generated.

17. [y]k → [ ]ky, for k ∈ Λ\{0, h}
18. [y]0 → yes
19. [z4×n+2×m]0 → no.

The object z0 waits for 4×n+2×m steps in order to allow dissolving the
membrane labelled by 0 if this still exists (i.e., the rule [y]0 → yes was not
applied), then the answer no is generated. Once an object yes or no is gen-
erated, other objects yes or no cannot be created because membrane cm

was dissolved, and neither rule [y]0 → yes nor [z4×n+2×m]0 → no can be
applied.

20. [yes]h → yes[ ]h
21. [no]h → no[ ]h.

The answer yes or no regarding the satisfiability is sent out of the skin.

Example 2. We illustrate this algorithm and the evolution of a system Π con-
structed for the propositional formula ψ = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2).

Thus, m = n = 2. The initial configuration of the systems, constructed by an
additional device that starts from a membrane structure [[ ]0]h, with object 0
placed inside membrane 0 and rules of the form:

• [0 → 1′ 1′]0 and [1 → 2′ 2′]1
• 1′ → [1]1 and 2′ → [2]2
• 2 → [c2]c1 and c2 → [ ]c2 .

The obtained structure is

[[[[[[ ]c2 ]c1 ]2[[[ ]c2 ]c1 ]2]1[[[[ ]c2 ]c1 ]2[[[ ]c2 ]c1 ]2]1a1z0]0]h

Graphically, the membrane structure μ can be represented as a tree:
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Using the set R of rules 1 ÷ 21, the computation proceeds as follows:

[[[[[[ ]c2 ]c1 ]2[[[ ]c2 ]c1 ]2]1[[[[ ]c2 ]c1 ]2[[[ ]c2 ]c1 ]2]1a1z0]0]h
⇒ [[[[[[ ]c2 ]c1 ]2[[[ ]c2 ]c1 ]2]1[[[[ ]c2 ]c1 ]2[[[ ]c2 ]c1 ]2]1t1f1z1]0]h
⇒ [[[[[[ ]c2 ]c1 ]2[[[ ]c2 ]c1 ]2t1]1[[[[ ]c2 ]c1 ]2[[[ ]c2 ]c1 ]2f1]1z2]0]h
⇒ [[[[[[ ]c2 ]c1 ]2[[[ ]c2 ]c1 ]2t

′
1t

′
1a2]1[[[[ ]c2 ]c1 ]2[[[ ]c2 ]c1 ]2f

′
1f

′
1a2]1z3]0]h

⇒ [[[[[[ ]c2 ]c1t1]2[[[ ]c2 ]c1t1]2t2f2]1[[[[ ]c2 ]c1f1]2[[[ ]c2 ]c1f1]2t2f2]1z4]0]h
⇒ [[[[[[ ]c2 ]c1t1t2]2[[[ ]c2 ]c1t1f2]2]1[[[[ ]c2 ]c1f1t2]2[[[ ]c2 ]c1f1f2]2]1z5]0]h
⇒ [[[[[[ ]c2t1]c1t2]2[[[ ]c2t1]c1f2]2]1[[[[ ]c2t2]c1f1]2[[[ ]c2 ]c1f1f2]2]1z6]0]h
⇒ [[[[[ ]c2t1t2]2[[ ]c2t1f2]2]1[[[ ]c2t2f1]2[[[ ]c2 ]c1f1f2]2]1z7]0]h
⇒ [[[[[ ]c2t1t2]2[[f2]c2t1]2]1[[[f1]c2t2]2[[[ ]c2 ]c1f1f2]2]1z8]0]h
⇒ [[[[[ ]c2t1t2]2[yt1]2]1[[yt2]2[[[ ]c2 ]c1f1f2]2]1z9]0]h
⇒ [[[[[ ]c2t1t2]2[t1]2y]1[[t2]2[[[ ]c2 ]c1f1f2]2y]1z10]0]h
⇒ [[[[[ ]c2t1t2]2[t1]2]1[[t2]2[[[ ]c2 ]c1f1f2]2]1yyz11]0]h
⇒ [[[[ ]c2t1t2]2[t1]2]1[[t2]2[[[ ]c2 ]c1f1f2]2]1yz12yes]h
⇒ [[[[ ]c2t1t2]2[t1]2]1[[t2]2[[[ ]c2 ]c1f1f2]2]1yz12]hyes

It can be noticed that even the object z has now the subscript 4×n+2×m =
4× 2+2× 2 = 12, it cannot generate a no object because membrane labelled by
0 was already dissolved by an y object in the previous step. Also, even another y
object reached the membrane labelled by 0, it cannot generate an yes object
because membrane labelled by 0 was already dissolved by another y object in a
previous step.

4 Natural Computing Modelling of the Polynomial Space
Turing Machines

The semi-uniform solutions rely on constructing the system and the solution in
polynomial time in order to avoid solving the problem during the evolution of the
system. In this context, the initial (exponential) configuration is constructed by
another (polynomial) system, and the problem is solved by combining these two
systems. In this way, we propose a polynomial solution that uses a polynomial P
system for constructing the initial configuration (that is exponential). Related to
this step, we show that P systems with active membranes provide an interesting
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simulation of polynomial space Turing machines by using only logarithmic space
and a polynomial number of read-only input objects.

4.1 A Membrane Structure for Simulation

Let M be a single-tape deterministic Turing machine working in polynomial
space s(n). Let Q be the set of states of M , including the initial state s; we denote
by Σ′ = Σ ∪ {�} the tape alphabet which includes the blank symbol � �∈ Σ.
A computation step is performed by using δ : Q × Σ′ → Q × Σ′ × {−1, 0, 1},
a (partial) transition function of M which we assume to be undefined on (q, σ)
if and only if q is a final state. We describe a uniform family of P systems
Π = {Πx | x ∈ Σ∗} simulating M in logarithmic space.

Let x ∈ Σn be an input string, and let m = �log s(n)� be the minimum num-
ber of bits needed in order to write the tape cell indices 0, . . . , s(n)-1 in binary
notation. The P system Πn associated with the input length n and computed
as F (1n) has a membrane structure consisting of |Σ′| · (m + 1) + 2 membranes.
The membrane structure contains:

– a skin membrane h;
– an inner membrane c (the input membrane) used to identify the symbol needed

to compute the δ function;
– for each symbol σ ∈ Σ′ of M , the following set of membranes, linearly nested

inside c and listed inward:
• a membrane σ for each symbol σ of the tape alphabet Σ′ of M ;
• for each j ∈ {0, . . . , (m − 1)}, a membrane labelled by j.

This labelling is used in order to simplify the notations. To respect the one-to-
one labelling from Definition 1, the membrane j can be labelled jσ. Thus in all
rules using membranes j, the σ symbol is implicitly considered. Furthermore,
the object z0 is located inside the skin membrane h.

The encoding of x, computed as E(x), consists of a set of objects describ-
ing the tape of M in its initial configuration on input x. These objects are the
symbols of x subscripted by their position bin(0), . . . , bin(n− 1) (where bin(i) is
the binary representation of i on m positions) in x, together with the s(n) − n
blank objects subscripted by their position bin(n), . . . , bin(s(n)−1). The binary
representation, together with the polarities of the membranes, is essential when
the membrane system has to identify the symbol needed to simulate the δ func-
tion (e.g., rule (13)). The multiset E(x) is placed inside the input membrane c.
Figure 1 depicts an example.

During the first evolution steps of Πx, each input object σi is moved from
the input membrane c to the innermost membrane (m− 1) of the corresponding
membrane σ by means of the following communication rules:

σi[ ]0σ → [σi]0σ for σ ∈ Σ′, bin(0) ≤ i < bin(s(n)) (1)

σi[ ]0j → [σi]0j for σ ∈ Σ′, bin(0) ≤ i < bin(s(n)), 0 ≤ j < m (2)
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1
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Fig. 1. Initial configuration of the P system Π3 with tape alphabet Σ′ = {a, b, �},
working in space s(n) = n + 1 = 4 on the input abb.

Since only one communication rule per membrane can be applied during
each evolution step of Πx, all s(n) input objects pass through m membranes,
in order to reach the innermost membranes (m − 1), in at most l = s(n) + m
evolution steps. In the meantime, the subscript of object z0 is incremented up to
max{0, l − 3} before object zl−3 exits and enters membrane c changing the
membrane charge from 0 to +:

[zt → zt+1]0c for 0 ≤ t < l − 3 (3)

[zl−3]0c → zl−3[ ]0c (4)

zl−3[ ]0c → [zl−3]+c (5)

The object zl−3 is rewritten to a multiset of objects containing an object z′ (used
in rule (10)) and |Σ′| objects z+ (used in rules (7))

[zl−3 → z′ z+ · · · z+
︸ ︷︷ ︸

]+c

|Σ′|copies
(6)

The objects z+ are used to change the charges from 0 to + for all membranes
σ ∈ Σ′ using parallel communication rules, and then are deleted:

z+[ ]0σ → [#]+σ for σ ∈ Σ′ (7)

[# → ∅]+σ for σ ∈ Σ′ (8)

In the meantime, the object z′ is rewritten into z′′ (in parallel with rule (7)),
and then, in parallel with rule (8), into s00 (where s is the initial state of M):

[z′ → z′′]+c (9)

[z′′ → s00]+c (10)

The configuration reached by Πx encodes the initial configuration of M (Fig. 2):
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b
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Fig. 2. Configuration of Πx (from Fig. 1) encoding the initial configuration of M on
input x = abb and using s(|x|) = 4 tape cells.

An arbitrary configuration of M on input x is encoded by a configuration
of Πx as it is described in Fig. 3:

• membrane c contains the state-object qi, where q is the current state of M
and i ∈ {bin(0), . . . , bin(s(n) − 1)} is the current position of the tape head;

• membranes (m − 1) contain all input objects;
• all other membranes are empty;
• all membranes are neutrally charged, except those labelled by σ ∈ Σ′ and by

c which all are positively charged.

We employ this encoding because the input objects must be all located in the
input membrane in the initial configuration of Πx (hence they must encode both
symbol and position on the tape), and they can never be rewritten.

4.2 Simulating Polynomial Space Turing Machines

Starting from a configuration of the single-tape deterministic Turing machine
M , the simulation of a computation step of M by the membrane system Πx is
directed by the state-object qi. As stated above, qi encodes the current state

a a b

0 1 2 3

q1

h

0

c

+

q01
a

+

0

0

1

0

a00

b01

b

+

0

0

1

0

b10

+

0

0

1

0

11

Fig. 3. A configuration of M (from Fig. 1) and the corresponding configuration of Πx

simulating it. The presence of b01 inside membrane 1 of a indicates that tape cell 1 of
M contains the symbol a.
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of M and the position of the head on the tape (in binary format). To simulate
the transition function δ of the Turing machine M in state q, it is necessary to
identify the actual symbol occurring at tape position i. In order to identify this
σi object from one of the (m−1) membranes, the object qi is rewritten into |Σ′|
copies of q′

i, one for each membrane σ ∈ Σ′:

[qi → q′
i · · · q′

i
︸ ︷︷ ︸

]+c
|Σ′|copies

for q ∈ Q, bin(0) ≤ i < bin(s(n)) (11)

The objects q′
i first enter the symbol-membranes in parallel, without changing

the charges:

q′
i[ ]+σ → [q′

i]
+
σ for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (12)

The object q′
i traverses the membranes 0, . . . , (m − 1) while changing their

charges such that they represent the bits of i from the least to the most significant
one, where a positive charge is interpreted as 1 and a negative charge as 0.
For instance, the charges of [[[ ]−2 ]−1 ]+0 encode the binary number 001 (that is,
decimal 1). By the j-th bit of a binary number is understood the bit from the
j-th position when the number is read from right to left (e.g., the 0-th bit of the
binary number 001 is 1). The changes of charges are accomplished by the rules:

q′
i[ ]0j → [q′

i]
α
j for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)), 0 ≤ j < m, (13)

where α is − if the j-th bit of i is 0, and α is + if the j-th bit of i is 1.
The membranes j, where 0 ≤ j < m, behave now as “filters” for the input

objects σk occurring in membrane (m − 1): these objects are sent out from each
membrane j if and only if the j-th bit of k corresponds to the charge of j.

[σk]αj → [ ]αj σk for σ ∈ Σ′, bin(0) ≤ k < bin(s(n)), 0 < j < m, (14)

where α is − if the j-th bit of k is 0, and α is + if j-th bit of k is 1.
If an object σk reaches membrane 0, it is sent outside if the 0-th bit of k

corresponds to the charge of membrane 0. In order to signal that it is the symbol
occurring at location i of the tape, the charge of the corresponding membrane 0
is changed (either from + to − or from − to +). By applying the rules (15) to
(17), exactly one object σk, with k = i, will exit through membrane c:

[σk]+0 → [ ]−0 σk for σ ∈ Σ′, bin(0) ≤ k < bin(s(n))
[σk]−0 → [ ]+0 σk for σ ∈ Σ′, bin(0) ≤ k < bin(s(n)),

(15)

where α is − if the j-th bit of k is 0, and α is + if the j-th bit of k is 1;

[σk]+τ → σk[ ]−τ for σ, τ ∈ Σ′, bin(0) ≤ k < bin(s(n)). (16)

After an σi exits from membrane c it gets blocked inside membrane h, by the
new charge of membrane c, until it is allowed to move to its new location accord-
ing to function δ of the Turing machine M . Thus, if another object τj reached



Solving NP-complete Problems in Polynomial Time 105

membrane σ due to the new charge of membrane 0 established by rule (15), τj is
contained in membrane σ until reintroduced in a membrane (m-1) using rule (2).

[σk]+c → σk[ ]−c for σ ∈ Σ′, bin(0) ≤ k < bin(s(n)) (17)

Since there are s(n) input objects, and each of them must traverse at most
(m + 1) membranes, the object σi reaches the skin membrane h after at most
l + 1 steps, where l is as defined in Sect. 4.1 before rule (3). While the input
objects are “filtered out”, the state-object q′

i “waits” for l steps using the rules:

[q′
i → q′′

i,1]
α
m−1 for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)), α ∈ {−,+} (18)

[q′′
i,t → q′′

i,t+1]
α
m−1

σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n))
α ∈ {−,+}, 1 ≤ t ≤ l

(19)

[q′′
i,l+1 → q′′

i ]αm−1 for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)), α ∈ {−,+} (20)

In order to reach membrane c, the objects q′′
i are sent out through membranes

j (0 < j ≤ m − 1) using rule (21), through membrane 0 by rules (22) and (24),
and through membranes σ ∈ Σ′ by rule (23). While passing through all these
membranes, the charges are changed to neutral. This allows the input objects to
move back to the innermost membrane (m − 1) by using rules of type (2).

[q′′
i ]αj → [ ]0jq

′′
i

for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n))
0 < j ≤ m − 1, α ∈ {−,+} (21)

When q′′
i reaches the membranes 0, only one has the charge different from the

0-th bit of i, thus allowing q′′
i to identify the symbol in tape location i of M :

[q′′
i ]α0 → [ ]00q

′′′
i for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)), (22)

where α is − if the 0-th bit of i is 1, and α is + if the 0-th bit of i is 0.

[q′′′
i ]−σ → [ ]0σqi,σ,1 for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (23)

The other copies of q′′
i are sent out as objects # through membrane 0, and then

deleted by rules of type (8):

[q′′
i ]α0 → [ ]00# for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)), (24)

where α is − if the 0-th bit of i is 0, and α is + if the 0-th bit of i is 1.
The state-object qi,σ,1 waits in membrane c for l steps, l representing an

upper bound of the number of steps needed for all the input objects to reach the
innermost membranes:

[qi,σ,t → qi,σ,t+1]−c for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)), 1 ≤ t < l (25)

qi,σ,l[ ]0σ → [qi,σ,l]+σ for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (26)

[qi,σ,l]+σ → q′
i,σ[ ]+σ for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (27)
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The state-object q′
i,σ now contains all the information needed to compute the

transition function δ of the Turing machine M . Suppose δ(q, σ) = (r, v, d) for
some d ∈ {−1, 0,+1}. Then q′

i,σ sets the charge of membrane v to − and waits
for m + 1 steps, thus allowing σi to move to membrane (m − 1) of v by using
the rules (31), (32) and (2):

q′
i,σ[ ]+v → [q′

i,σ]+v for σ, v ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (28)

[q′
i,σ]+v → q′

i,σ,1[ ]−v for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (29)

[q′
i,σ,1]

−
c → q′

i,σ,1[ ]0c for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (30)

σi[ ]0c → [σi]0c for σ ∈ Σ′, bin(0) ≤ i < bin(s(n)) (31)

σi[ ]−v → [σi]−v for σ, v ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (32)

[q′
i,σ,t → q′

i,σ,t+1]
0
h for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n))1 ≤ t ≤ m (33)

The object q′
i,σ,m+1 is used to change the charges of membranes c and v to +,

thus preparing the system for the next step of the simulation:

q′
i,σ,m+1[ ]

0
c → [q′

i,σ,m+1]
+
c for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (34)

q′
i,σ,m+1[ ]

−
v → [q′

i,σ,m+1]
−
v for σ, v ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (35)

[q′
i,σ,m+1]

−
v → q′′

i,σ[ ]
+
v for σ, v ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (36)

Finally, the state-object q′′
i,σ is rewritten to reflect the change of state and

head position, thus producing a configuration of Πx corresponding to the new
configuration of M , as described in Sect. 4.1:

[q′′
i,σ → ri+d]+c for bin(0) ≤ i < bin(s(n)) (37)

The P system Πx is now ready to simulate the next step of M . If q ∈ Q is a final
state of M , we assume that δ(q, σ) is undefined for all σ ∈ Σ′; thus we introduce
the following rules which halt the P system with the same result (acceptance or
rejection) as M :

[qi]+c → [ ]+c yes for bin(0) ≤ i < bin(s(n)), if q is an accepting state (38)

[yes]0h → [ ]0hyes for bin(0) ≤ i < bin(s(n)), if q is an accepting state (39)

[qi]+c → [ ]+c no for bin(0) ≤ i < bin(s(n)), if q is a rejecting state (40)

[no]0h → [ ]0hno for bin(0) ≤ i < bin(s(n)), if q is a rejecting state (41)

The simulation directly leads to the following result.

Theorem 3. Let M be a single-tape deterministic Turing machine working in
polynomial space s(n) and time t(n). Then there exists an (L,L)-uniform family
Π of P systems Πx with active membranes using object evolution and commu-
nication rules that simulates M in space O(log n) and time O(t(n)s(n)).

Proof. For each x ∈ Σn, the P system Πx can be built from 1n and x in logarith-
mic space as it is described in Definition 2; thus, the family Π is (L,L)-uniform.
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Each P system Πx uses only a logarithmic number of membranes and a constant
number of objects per configuration; thus, Πx works in space O(log n). Simu-
lating one of the t(n) steps of M requires O(s(n)) time, an upper bound to the
subscripts of objects used to introduce delays during the simulation; thus, the
total time is O(t(n)s(n)).

5 Conclusion

We proved P = PMCAM0(+d,+e,+c,pre(α)) and P = PMCAM0(+d,+e,+c,pre(μ))

by providing two algorithms for solving the SAT problem using polarizationless
P system with active membranes and without division. For the former equality,
the provided algorithm is using an exponential alphabet pre-computed in linear
time by a P system with replicated rewriting, while the later one is using an
initial exponential structure pre-computed in linear time with respect to the
number of variables and clauses by P systems with membrane creation.

In this paper we also provided a simulation of the polynomial space Tur-
ing machines by using logarithmic space P systems with active membranes and
binary representations for the positions on the tape. A similar approach is pre-
sented in [11]. There are important differences in terms of technical details and
efficient representation; in comparison to [11], we improve the simulation by
reducing the number of membranes (by |Σ′| − 1) and the number of rules (by
|Σ′|·|Q|·s(n)·(5−|Σ′|)+|Σ′|·|Σ′|s(n)·(2·m+1)+|Q|·s(n)−|Σ′|·s(n)·(m+3)). In
particular, for the running example, the number of rules is reduced by 14·|Q|+84.
A different approach is presented in [10] where it is claimed that a constant space
is sufficient. However, in order to obtain the constant space space, input objects
(from Δ) are allowed to create other objects (from Γ ) leading to a different and
more powerful formalism than the one used by us in this paper.
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