
Partial Key Exposure Attacks on RSA
with Exponent Blinding

Stelvio Cimato1, Silvia Mella1(B), and Ruggero Susella2

1 Università degli Studi di Milano, Milano, Italy
{stelvio.cimato,silvia.mella}@unimi.it
2 STMicroelectronics, Agrate Brianza, Italy

ruggero.susella@st.com

Abstract. Partial key exposure attacks, introduced by Boneh, Durfee
and Frankel in 1998, aim at retrieving an RSA private key when a frac-
tion of its bits is known. These attacks are of particular interest in the
context of side-channel attacks, where the attacker can retrieve bits of
the key exploiting leakages in the implementation. In this work we ana-
lyze the effectiveness of partial key exposure when a countermeasure for
side-channel attacks is adopted. In particular, we consider the exponent
blinding technique, which consists in randomizing the private exponent
at each execution. We address our analysis to both RSA and CRT-RSA,
providing theoretical proofs and experimental results.

Keywords: RSA · Partial key exposure · Coppersmith’s method · Expo-
nent blinding · Horizontal attack

1 Introduction

Partial key exposure attacks, introduced by Boneh et al. in 1998 [7], are attacks
that rely on some knowledge about the private key, for example some portion of
the bits, that can be used to fully recover the key itself and break the system.
The high interest for this family of attacks is motivated by the fact that, in
practice, some implementations may leak some bits of the private key, as in the
case of side channel attacks.

In these attacks, introduced in 1996 by Paul Kocher [14], some informa-
tion can be extracted by examining the RSA computation (such as power con-
sumption, electromagnetic emission, acoustic emission, etc.), and can be used to
recover the secret key. Most side channel attacks leverage on combining the side-
channel leakages, i.e. traces, of several executions of the cryptographic algorithm
with same secret but different input. The first attack of this family is Differential
Power Analysis (DPA) [16]. Its main feature is the ability to significantly reduce
the random noise, by averaging a large amount of traces, compared to Simple
Power Analysis (SPA), where only one trace is used.

In general, side channel attacks allow the adversary to gain information about
some number of either consecutive most significant bits (MSBs) or least sig-
nificant bits (LSBs) of the private exponent. On the basis on this knowledge,
c© Springer International Publishing Switzerland 2016
M.S. Obaidat and P. Lorenz (Eds.): ICETE 2015, CCIS 585, pp. 364–385, 2016.
DOI: 10.1007/978-3-319-30222-5 17

Partial Key Exposure Attacks on RSA with Exponent Blinding 365

Boneh et al. show that, for the common cases where the factorization of the
public exponent is known, the given partial information on the private exponent
can be used to obtain partial information on a prime factor of the modulus.
In turn, those attacks rely on Coppersmith’s method to find small solutions of
univariate modular polynomials. This method has been presented in [4], and
extended to bivariate equations, enabling the factorization of an RSA modulus
given half of the bits of one of its prime factors [11].

The importance of partial key exposure attacks is given also by the considera-
tion that in many cases some countermeasures can be adopted by implementers
to thwart side channel attack and enable the attacker to obtain information
on just a part of the secret exponent. Indeed, a common countermeasure used
for RSA is exponent blinding, originally introduced in [14] but often attributed
to [15]. This technique consists of adding a random multiple of φ(N) to the
RSA private exponent at each execution. This countermeasure has the feature
to change the private exponent at each computation, thus not permitting the
use of multiple traces, as required for DPA. This results in the need of using a
single trace to discover the secret key. A method for this was originally proposed
in [17], for a particular exponentiation algorithm, and generalized for regular
exponentiation algorithms in [18] and named horizontal attack.

The question as to whether partial key exposure could be applied in this
setting was answered in [6]. The authors presented two techniques to recover the
full exponent, knowing enough MSBs or LSBs portions of it, leaving the open
question as up to which extent it is possible to apply partial key exposure when
exponent blinding is applied to the Chinese Remainder Theorem variant of RSA
(CRT-RSA) [21].

Our Contribution. Our contribution consists of new methods for partial key
exposure when exponent blinding is used, improving the results of [6] for common
RSA settings and providing novel attacks for the CRT variant. Specifically, in
this work, we:

– provide a more efficient technique for the LSBs attack, requiring to reduce
a lattice basis of lower dimension;

– reduce the number of required bits for the MSBs attack and make it to not
rely on a common heuristic assumption;

– present novel attacks against CRT-RSA implementations that make use of
exponent blinding; This particular case has never been analyzed before;

– provide experimental results using moduli of 2048 or 3072-bit length.

This work is organized as follows. At first we present some previous results on
partial key exposure attacks in Sect. 2. In Sect. 3 we recall some basic information
about RSA and the parameter choices commonly made for real applications. In
Sect. 4 we give a brief introduction about lattices and Coppersmith’s method. In
Sect. 5 we present two partial key exposure attacks on RSA with exponent blind-
ing and in Sect. 6 on CRT-RSA with exponent blinding. Experimental results
are then provided in Sect. 7.

366 S. Cimato et al.

2 Related Works

In their work, Boneh, Durfee and Frankel presented several attacks on RSA
based on the knowledge of the least significant bits of the private exponent or of
the most significant bits of the private exponent [7]. When the LSBs are known
they show that a quarter of the private exponent is sufficient to break the system
if the public exponent is relatively small, i.e. smaller than N

1
4 . When the MSBs

are known, the number of bits that the adversary needs to know depends on his
knowledge of e. Supposing that N

1
4 < e < N

1
2 and its factorization is known,

than at most half of the bits of d are required. The smaller e is, the smaller the
number of required bits is. Indeed, when e is close to N

1
4 then only a quarter

of bits of d are sufficient to mount the attack. When the factorization for e is
not known and e < N

1
2 , at least half of the bits of d are required. Unlike the

previous case, the smaller e is, the bigger number of required bits is.
In 2003, Blömer and May presented partial key exposure attacks considering

larger values of the public exponent e. They show that for N
1
2 < e < N

3
4 the

number of MSBs of d required to mount the attack increases as e grows. For
instance, when e is close to N

1
2 then half of the bits of d suffice to mount the

attack, whereas for e close to N
2
3 the fraction of required bits is bigger than

80 %. When LSBs of the private exponent are known, they provide results for all
exponents e < N

7
8 . When e is close to N

1
2 , about 90 % of the bits are required,

whereas when e is close to N
7
8 , almost all the bits must be known. In this work,

Blömer and May provide also results for CRT-RSA. In the case of known LSBs,
for low public exponents e (i.e. e = poly(log N)), half of the LSBs of dp suffice
to mount the attack. In the case of known MSBs for e < N

1
4 again only half of

the MSBs of dp are required.
In [8], Lu et. al. extended the attack for CRT-RSA up to e < N

3
8 and dp of

full-size. The bigger e is, the bigger the number of required bits of dp is, for both
the MSBs and LSBs cases.

In [3], Ernst et al. provided new results in the case e or d is full-size and the
other is relatively small. For instance, when d is close to N

1
3 then a quarter of

its MSBs or of its LSBs are sufficient to mount the attack.
All these works consider the private exponent d smaller than N . In 2012,

Joye and Lepoint [6] analyzed RSA implementations using larger exponents d,
which is the scenario of exponent blinding. We will give more details about their
results in the next sections when comparing our approach with their one.

3 RSA Applications

In literature, Coppersmith’s method has been applied with very different, and
unusual, RSA parameters. For example the case where e is of the same bitsize
of N has been analyzed in [3]. In this work we preferred to focus our analysis on
more common RSA settings. Before presenting them, we briefly introduce the
RSA algorithm and its variant CRT-RSA.

Partial Key Exposure Attacks on RSA with Exponent Blinding 367

3.1 RSA

A pair of private and public key for RSA is generated as follows.
At first, two large distinct primes p and q are chosen at random. Then the

modulus N = p · q is defined together with φ (N) = (p − 1) (q − 1), where φ
denotes the Euler’s totient function. Then an integer e is chosen such that 1 <
e < φ (N) and gcd (e, φ (N)) = 1 (i.e., e and φ (N) are coprime). Finally the
multiplicative inverse of e modulo φ (N), denoted by d, is computed. Namely, e
and d satisfy

ed ≡ 1 mod N . (1)

The pair (N, e) is released as the public key, whereas d is the private key.
Notice that also p, q and φ (N) are kept private, otherwise they can be used to
calculate d.

To encrypt a message, it is first turned into an integer m, such that 0 ≤
m < N and gcd (m,N) = 1 and then a modular exponentiation by e is per-
formed. Namely, the ciphertext is computed as c = me (mod N). To decrypt
the ciphertext c, an exponentiation by d is performed: m = ce (mod N).

The correctness of the algorithm relies on the Euler’s theorem, which states
that for each a that is coprime with N the equation aφ(N) ≡ 1 mod sN holds.
Thus, the following equalities show that m is correctly retrieved:

med ≡ m1+kφ(N) ≡ m
(
mφ(N)

)k

≡ m(1)k ≡ m mod N . (2)

The first equality holds since ed ≡ 1 mod N , that implies ed = 1 + kφ(N) for
some integer k. By working separately modulo p and modulo q and then combing
the results through the Chinese Remainder Theorem [21] it is possible to show
that encryption and decryption works even when gcd (m,N) �= 1.

3.2 CRT-RSA

In order to speed up the exponentiation computation, some RSA implemen-
tations make use of a technique based on the Chinese Remainder Theorem
(CRT)[21]. In particular, one can use exponents

dp = d mod (p − 1) and dq = d mod (q − 1)

to compute
m1 = cdp mod p and m2 = cdq mod q .

Then, the value
h = q−1(m1 − m2) mod p

is computed and the message retrieved as m = m2 + hq.

368 S. Cimato et al.

3.3 Exponent Blinding

The side-channel countermeasure considered in this work is the exponent blind-
ing, introduced by Kocher [14]. It consists of adding a random multiple of φ(N)
to d. In particular, RSA exponentiation is computed by using the new expo-
nent d∗ = d + �φ(N), for some � > 0 randomly chosen at each execution. The
correctness of RSA is still valid, since

med∗ ≡ med+e�φ(N) ≡ m1+(k+e�)φ(N) ≡ m
(
mφ(N)

)k+e�

≡ m(1)k+e� ≡ m mod N .

(3)
Also CRT-RSA can be protected with exponent blinding. Thus, exponentiation
is computed by using d∗

p = dp + �1(p − 1) and d∗
q = dq + �2(q − 1), for some

�1, �2 > 0 randomly chosen.

3.4 Common Parameters Setting

The modulus N has prime factors p and q that for security purposes are chosen
of equal bit-size. We assume wlog that p > q, that implies

q <
√

N < p < 2q < 2
√

N

and √
N < p + q < 3

√
N .

It is common practice to choose the modulus N as 1024, 2048 or 3072-bit long.
The most common value for the public exponent e is 216 +1. This is also the

default value for the public exponent in the OpenSSL library. Other common
values are 3 and 17. NIST mandates that e satisfies 216 < e < 2256 [12]. There-
fore, to be as generic as possible but still adhering to realistic scenarios, we will
consider in our analysis 3 ≤ e < 2256, but we will provide experiments only for
the most common case e = 216 + 1.

The exponent d is commonly chosen to be full size, namely as large as φ(N).
In order to speed-up the decryption process, someone suggests to use smaller
d. However, this choice may lead to security problems as Wiener’s attack [2].
Therefore, it is usually avoided.

The dimension of the random factor � used in the exponent blinding coun-
termeasure is a tradeoff between security and efficiency. If � is 32-bit long or
smaller, it allows some combination of brute-forcing and side-channel as in [19],
where a brute-force on � is required. Thus, it is a safer choice to use � with
bit-size 64. A larger dimension would make the decryption process less efficient.

In our analysis, to maintain generality, we will consider 0 ≤ � < 2128 and in
our experiments we will test bit-sizes of 0, 10, 32, 64 and 100. Our methods never
require the capability of brute-forcing the values of k or �, sometimes needed in
other works.

To recap, in this work we will consider both RSA and CRT-RSA implementa-
tions that make use of the exponent blinding countermeasure. Our RSA settings

Partial Key Exposure Attacks on RSA with Exponent Blinding 369

will consider moduli of 1024, 2048 and 3072 bits, public exponent such that
3 ≤ e < 2256, private exponent of full size and a randomization factor up to
128 bits. To derive theoretical bounds in next sections, we prefer to express the
restrictions on e and � with respect to the modulus N . In general, we translate
them to the less restrictive conditions: � < 2N

1
8 and e < 2N

1
4 . When necessary,

we will consider more restrictive bounds. We will run experiments by considering
the widely used public exponent e = 216 + 1 and random values � of different
bit-size from 0 to 100. The modulus N will be 2048 or 3072-bit long, but note
that our attacks are effective also for other sizes.

4 General Strategy

Partial key exposure attacks relies on Coppersmith’s method for finding roots of
modular polynomials and multivariate polynomials. This method makes signifi-
cant use of lattices and lattice reduction algorithms.

We give here a brief introduction to lattices and to the general strategy used
in partial key exposure attacks and thus also in our attacks.

4.1 Lattices

Given a set of real linearly independent vectors B = {b1, . . . , bn} with bi ∈ R
n,

a (full-rank) lattice spanned by B is the set of all integer linear combinations of
vectors of B. Namely, the set L(B) = {∑i xibi : xi ∈ Z}.

B is called the basis of the lattice and the (n × n)-matrix consisting of the
row vectors b1, . . . , bn is called basis matrix.

Every lattice has an infinite number of lattice bases. A basis is obtained from
another through a unimodular transformation (i.e., by multiplying the basis
matrix by a matrix with determinant ±1). The determinant of the lattice is
defined as det(L) = |det(Bi)| and is an invariant, namely it is independent of
the choice of the basis. The dimension of the lattice is dim(L) = n.

The goal of lattice reduction is to find a basis with short and nearly orthogo-
nal vectors. The LLL algorithm [20] produces in polynomial time a set of reduced
basis vectors. The following theorem bounds the norm of these vectors.

Theorem 1 (Lenstra-Lenstra-Lovász). Let L be a lattice of dimension n.
The LLL-algorithm outputs in polynomial time reduced basis vectors vi, 1 ≤ i ≤
n, satisfying

‖v1‖ ≤ ‖v2‖ ≤ . . . ≤ ‖vi‖ ≤ 2
n(n−1)

4(n+1−i) det L
1

n+1−i .

4.2 General Strategy

In [4], Don Coppersmith presents a rigorous method to find small roots of uni-
variate modular polynomials. The method is based on LLL and can be extended
to polynomials in more variables, but only heuristically.

In this work we use the following reformulation of Coppersmith’s theorem
due to Howgrave-Graham [5].

370 S. Cimato et al.

Theorem 2 (Howgrave-Graham). Let f(x1, . . . , xk) be a polynomial in k
variables with n monomials. Let m be a positive integer. Suppose that

1. f(r1, . . . , rk) = 0 mod bm where |ri| < Xi ∀i ;

2. ‖f(x1X1, . . . , xkXk)‖ <
bm

√
n
.

Then f(r1, . . . , rk) = 0 holds over the integers.

The general strategy is the following. Starting from an RSA equation we
construct a multivariate polynomial fb(x1, . . . , xk) modulo an integer b, such
that its root (r1, . . . , rk) contains secret values. Our goal is to find this root,
even if no classic root finding method is known for modular polynomials. So, we
construct k polynomials f1, . . . , fk satisfying the two conditions of Theorem2 so
that such polynomials will have the same root (r1, . . . , rk) over Z. Finally, we
compute the common roots of these polynomials and recover the secret values.

To generate such polynomials we apply the following strategy. Starting from
fb we construct auxiliary polynomials gi(x1, . . . , xk) that all satisfy condition 1
of Howgrave-Graham’s Theorem. Since every integer linear combination of these
polynomials also satisfies condition 1, we look for linear combinations that also
satisfy condition 2. Such combinations are the polynomials f1, . . . , fk.

In order to construct f1, . . . , fk, we build a lattice L(B) where the basis B is
composed by the coefficient vectors of the polynomials gi(x1X1, . . . , xkXk) (with
X1, . . . , Xk bounds on the root as in Theorem2).

By using the LLL-lattice reduction algorithm, we obtain a reduced basis for
the lattice L as in Theorem 1. The first k vectors of the reduced basis have norm
smaller than bm√

n
, if:

2
n(n−1)

4(n+1−k) det L
1

n+1−k <
bm

√
n

.

We may let terms that do not depend on N contribute to an error term ε and
consider the simplified condition

det L ≤ bm(n+1−k) . (4)

If this condition holds, then we can use the first k reduced-basis vectors to con-
struct the polynomials f1, . . . , fk satisfying the second condition of Theorem2.
Then, in order to compute (r1, . . . , rk), we do the following.

If k = 1, then we consider the polynomial F = f1(x1) and apply a classic
roots finding algorithm for univariate polynomials over the integers.

If k > 1, we use the resultant computation to construct k univariate polyno-
mials Fi(xi) from f1, . . . , fk and apply a classic roots finding algorithm for each
of them. The effectiveness of this last method relies on the following heuristic
assumption.

Assumption 1. The resultant computation for the polynomials fi described
above yields a non-zero polynomial.

Partial Key Exposure Attacks on RSA with Exponent Blinding 371

This assumption is fundamental and widely used for many attacks in literature
[3,6–9]. None of our experiments has ever failed to yield a non-zero polynomial
and hence to mount the attack.

In this work we will make use of a seminal result due to Coppersmith, based
on the strategy described above. We present here a more general variant of it,
due to May [13], together with a sketch of its proof to illustrate how we will
construct lattices for our experiments.

Theorem 3. Let N = pq with p > q. Let k be an unknown integer that is not a
multiple of q. Suppose we know an approximation k̃p of kp with |kp− k̃p| ≤ 2N

1
4 .

Then we can factor N in time polynomial in log N .

Sketch of Proof. Define the univariate polynomial

fp(x) = x + k̃p

with root x0 = kp − k̃p modulo p.
Divide the interval [−2N

1
4 , 2N

1
4] into 8 subintervals of size 1

2N
1
4 centered at

some xi. For each subinterval consider the polynomial fp(x − xi) and find its
roots r such that |r| ≤ 1

4N
1
4 . Among all these roots of all these polynomials

there is also x0. So, for each fp(x − xi) set X = 1
4N

1
4 . Fix m = 	log N/4
 and

set t = m.
Define the auxiliary polynomials

gi,j(x) = xjN ifm−i for i = 0, . . . , m − 1; j = 0 ;
hi(x) = xifm(x) for i = 0, . . . , t − 1 .

and construct the lattice spanned by the vectors gi,j(xX) and hi(xX).
By applying the LLL-algorithm to L, a reduced basis is obtained. From the

shortest vector construct the polynomial fi(x). Among its roots over the integers,
there are also the roots of fp(x − xi). Compute the roots of fi(x) by using a
classic roots-finding algorithm. Construct the set R of all integer roots of the
polynomials fi(x). The set R will contain also the root x0.

Thus, f(x0) = kp can be computed and, since k is not a multiple of q, the
computation of gcd (N, kp) gives p.

Recall that the LLL-algorithm is polynomial in the dimension of the matrix
basis and in the bit-size of its entries. Since the dimension of the lattice is
m + t = 	log N/2
 and the bit-size of its entries is bounded by a polynomial in
(m log N), every step of the proof can be done in polynomial time. ��

5 Attacks on RSA

In this section we present two attacks on RSA implementations, one given the
most significant bits of the private exponent and the other one given its least
significant bits. We assume that the private exponent d is full-size and that it is
masked by a random multiple � of φ(N). Thus, exponentiation is performed by
using the exponent d∗ = d + �φ(N) for some � ≥ 0. When � = 0 clearly d∗ = d,
that means that no countermeasure is applied.

372 S. Cimato et al.

5.1 Partial Information on LSBs of d∗

In this section, we assume that the attacker is able to recover the least significant
bits of the secret d∗. We write d∗ = d1 ·M +d0, where d0 represents the fraction
of d∗ known to the attacker while d1 represents the unknown part. For instance,
if the attacker knows the m LSB of d∗, then M = 2m.

To prove our result, we generalize the method used in [9], by introducing the
new factor �.

Theorem 4. Let (N, e) be an RSA public key with e = Nα ≤ 2N
1
4 and d∗ =

d + �φ(N), for some � = Nσ ≤ 2N
1
8 . Suppose we are given d0 and M satisfying

d0 = d∗ mod M with

M ≥ N
1
3

√
1+6(α+σ)+ 1

6 (1+6σ)+ε ,

for some ε > 0. Then, under Assumption 1, we can find the factorization of N
in time polynomial in log N .

Proof. We start from the RSA equation

ed − 1 = kφ(N) .

Since d∗ = d + �φ(N), we obtain the equation

ed∗ − 1 = (k + e�)φ(N) .

Let k∗ = k + e�, so that ed∗ − 1 = k∗φ(N).
By writing d∗ = d1M + d0 and considering that φ(N) = N − (p + q − 1), we

get
k∗N − k∗(p + q − 1) − ed0 + 1 = eMd1 .

It follows that the bivariate polynomial

feM (x, y) = xN − xy − ed0 + 1

has root (x0, y0) = (k∗, p + q − 1) modulo eM .
In order to bound x0, notice that

k∗ =
ed∗ − 1
φ(N)

< e

(
d + �φ(N)

φ(N)

)
< e(1 + �) ≤ 2Nα+σ .

In addition, recall that p + q ≤ 3N
1
2 .

We can set the bounds X = 2Nα+σ and Y = 3N
1
2 so that x0 ≤ X and

y0 ≤ Y .
To construct the lattice, we consider the following auxiliary polynomials

gi,j(x, y) = xi(eM)ifm−i
eM for i = 0, . . . , m; j = 0, . . . , i;

hi,j(x, y) = yj(eM)ifm−i
eM for i = 0, . . . , m; j = 1, . . . , t ,

for some integers m and t, where t = τm has to be optimized.

Partial Key Exposure Attacks on RSA with Exponent Blinding 373

All integer linear combinations of these polynomials have the root (x0, y0)
modulo (eM)m, since they all have a term (eM)ifm−i

eM . So the first condition
of Theorem 2 is satisfied. In order to satisfy the second condition, we have to
find a short vector in the lattice spanned by gi,j(xX, yY) and hi,j(xX, yY). In
particular, this vector shall have a norm smaller than (eM)m√

dimL
.

The second condition of Theorem 2 is satisfied when inequality (4) holds,
i.e. if

det L ≤ (eM)m(n−1). (5)

An easy computation shows that n =
(
τ + 1

2

)
m2 and that

det L(M) =
(
(eMY)3τ+2Z3τ2+3τ+1

) 1
6m3(1+o(1))

.

Considering the bounds X = 2Nα+σ and Y = 3N
1
2 , we obtain the condition

(
(eM2Nα+σ)3τ+2(3N

1
2)3τ2+3τ+1

) 1
6 m3(1+o(1))

≤ (eM)m(n−1)

that reduces to

N
m3
6 ((α+σ)(3τ+2)+ 1

2 (3τ2+3τ+1))(1+o(1)) ≤ (eM)m(n−1)−m3
6 (3τ+2)(1+o(1)) .

We know that eM ≥ Nα 1
3

√
1+6(α+σ)+ 1

6 (1+6σ)+ε, so the above condition is satis-
fied if

9τ2 + 6(α + σ + τ) − 2
√

1 + 6(α + σ)(1 + 3τ) + 2 ≤ 0 .

The left-hand side is minimized, for

τ =
1
3

(√
1 + 6(α + σ) − 1

)
.

Thus, for this choice of τ condition 5 is satisfied so we can successfully apply the
LLL-algorithm.

From the LLL-reduced basis, we construct two polynomials f1(x, y), f2(x, y)
with the common root (x0, y0) over the integers. By the heuristic assumption,
the resultant resx(f1, f2) is not zero and we can find y0 = p+q−1 using standard
root finding algorithms. This gives us the factorization of N.

To conclude the proof, we need to show that every step of the method can be
done in time polynomial in log(N). The LLL-algorithm runs in polynomial time,
since the basis matrix B has constant dimension (fixed by m) and its entries are
bounded by a polynomial in N . Additionally, resx(f1, f2) has constant degree
and coefficients bounded by a polynomial in N . Thus, every step can be done in
polynomial time. ��

We would like to make two considerations. The first is that when σ = 0, we
get the same result of [9]. Indeed, our method is a generalization of it. The second
is that we obtain the same bound of [6], but our approach is more effective in
practice. As we will show in Sect. 7.1, we are able to get closer to the theoretical
bound by using smaller lattices.

374 S. Cimato et al.

5.2 Partial Information on MSBs of d∗

In this section, we prove that if the attacker knows a sufficiently large number of
most significant bits of the protected exponent, then she can factor N. To prove
this result, we show how the partial knowledge on d∗ can be used to construct
an approximation of p that allows to apply Theorem3.

The advantage of this approach compared to [6] is that it does not rely on
the heuristic Assumption 1 and yields to a better bound.

Theorem 5. Let (N, e) be an RSA public key with e = Nα and d∗ = d+ �φ(N)
for some � = Nσ with σ > 0 and Nα+σ < 2N

3
8 . Suppose that |p − q| ≥ cN

1
2 , for

some c ≤ 1
2 , and suppose we are given an approximation d̃∗ of d∗ such that

|d∗ − d̃∗| ≤ cN
1
4+σ .

Then we can find the factorization of N in time polynomial in log N .

Notice that, like in Theorem4, we have ed∗ − 1 = k∗φ(N) with k∗ = k + e�.
In order to prove Theorem5 we need first to prove the following lemma.

Lemma 1. With Nα+σ < 2N
3
8 , given d̃∗ such that |d∗ − d̃∗| ≤ 1

4N1−α then the

approximation k̃∗ :=
⌈

e˜d∗−1
N+1

⌉
of k∗ is exact.

Proof. This proof follows the same strategy used in the proof of Theorem 6 of
[9]. Note that

|k∗ − k̃∗| <

∣∣∣∣∣
ed∗ − 1
φ(N)

− ed̃∗ − 1
N + 1

∣∣∣∣∣

<

∣∣∣∣∣
(ed∗ − 1)(N + 1) − (ed̃∗ − 1)(N + 1 − (p + q))

φ(N)(N + 1)

∣∣∣∣∣ .

Then, given that φ(N) > N/2, p+q ≤ 3N
1
2 , N2 +N > N2 and d∗ < 2N1+σ,

we obtain

|k∗ − k̃∗| <

∣∣∣∣∣
e(d∗ − d̃∗)

φ(N)

∣∣∣∣∣ +

∣∣∣∣∣
(p + q)(ed̃∗ − 1)
φ(N)(N + 1)

∣∣∣∣∣

<

∣∣∣∣∣
1
4NαN1−α

N
2

∣∣∣∣∣ +

∣∣∣∣∣
6N

3
2+α+1+σ

N
2 (N + 1)

∣∣∣∣∣

<
1
2

+ 12N− 1
2+

3
8 <

1
2

+
12
N

1
8

.

With RSA parameters, we have 12 � N1/8, so we can safely assume |k∗−k̃∗| < 1.
But the difference between two integers is an integer, thus we can conclude that
it is zero, therefore k̃∗ = k∗. ��

Partial Key Exposure Attacks on RSA with Exponent Blinding 375

It is worth to observe two facts: first, the bound |d∗ − d̃∗| ≤ 1
4N1−α requires

the attacker to get the (log2(Nσ+α) + 2) most significant bits of d∗, a result
which holds even for σ = 0 (i.e. d∗ = d); second, the assumption Nα+σ < 2N

3
8

of Lemma 1 always holds for our choice of RSA parameters.
We can now prove Theorem 5.

Proof of Theorem 5. We begin by applying Lemma1 to obtain the value of k∗.
The condition |d∗−d̃∗| ≤ 1

4N1−α of the lemma is always satisfied by our choices of
RSA parameters because 1

2N
1
4+σ � 1

4N1−α, since Nσ < 2N
1
8 and Nα < 2N

1
4 .

We can define an approximation s̃ of s = p + q as

s̃ := 1 + N − ed̃∗ − 1
k∗ .

Reminding that k∗, with the assumption of σ > 0, is lower bounded by Nα+σ,
we obtain

|s − s̃| =
∣∣∣ e

k∗
(
d∗ − d̃∗

)∣∣∣ ≤ Nα

Nα+σ
cN

1
4+σ ≤ cN

1
4 .

We use s̃ to define
p̃ :=

1
2

(
s̃ +

√
s̃2 − 4N

)

as an approximation of p.
Without loss of generality, following Appendix B of [7], we now assume that

s̃ ≥ s, so that p̃ ≥ p.
Observe that

p̃ − p =
1
2
(s̃ − s) +

1
2

(√
s̃2 − 4N −

√
s2 − 4N

)

=
1
2
(s̃ − s) +

(s̃ + s)(s̃ − s)
2
(√

s̃2 − 4N +
√

s2 − 4N
) .

Since s̃ ≥ s, we have s̃2 − 4N ≥ s2 − 4N = (p − q)2 and |p − q| ≥ cN
1
2 with

c ≤ 1
2 .

Noting that s̃ ≤ s + cN
1
4 , we have

s̃ + s ≤ 2s + cN
1
4 ≤ 2(p + q) + N

1
4 ≤ 6N

1
2 + N

1
4 ≤ 7N

1
2 .

It follows that

p̃ − p ≤ 1
2
(s̃ − s) +

(s̃ + s)(s̃ − s)
4(p − q)

≤ 1
2
cN

1
4 +

(7N
1
2)(cN

1
4)

4cN
1
2

≤ 1
4
N

1
4 +

7
4
N

1
4 ≤ 2N

1
4 .

Since the approximation p̃ satisfies the hypothesis of Theorem 3 with k = 1,
we can find the factorization of N in time polynomial in log N . ��

376 S. Cimato et al.

From Theorem 5 we can recover the minimum number of known MSBs required.
In accordance to previous sections we define this quantity as log2 M where M is
defined as

M =
d∗

|d∗ − d̃∗|
=

2N1+σ

cN
1
4+σ

=
2
c
N

3
4 ≥ 4N

3
4 . (6)

It is important to underline that this bound is not affected by the size of α
and σ as long as the condition of Lemma 1 holds. In fact, while it might seem
counter-intuitive, the presence of the countermeasure (i.e. σ > 0) improves the
theoretical bound |d−d̃| ≤ cN

1
4−α of Theorem 3.3 of [7]. However, this difference

was not shown in the experimental results, probably due to low value of α when
e = 216 + 1.

Also note that Theorem (5) provides a significant improvement over the
bound of [6]. In fact, for α + σ ≤ 1

2 (which is always true in our setting), their
bound is |d∗ − d̃∗| ≤ Nα+σ, which would require knowledge of log2(N1−α) bits.

Considerations on C. It can be noted from equation (6) that the required
number of bits to be recovered depends on c which is unknown to the attacker.
It’s easy to show that c is closely related to 1

2i+1 where i is the number of most
significant bits that p and q have in common. While it is true that attacker has
no a priori knowledge of c and thus can’t a priori know how many bits she needs
to recover before being able to apply Theorem5, it is also true that she can get
its exact value after recovering the required minimum bits log2(4N

3
4). In fact,

she can compute p̃ and q̃ = N
p̃ and retrieve c which is lower bounded by NIST

in the condition |p− q| > 2log2(N)/2−100 so that log2(4N
3
4) are always enough to

compute it.

Attack Using Both MSBs and LSBs of d∗. We want to briefly analyze also
the case where the attacker might be able to detect bits in different positions
of d∗. In this scenario, the attacker could obtain enough most significant bits
to satisfy Lemma 1 and obtain 1

4 log2 N least significant bits to recover half
of the bits of p and factor N , as shown in [7]. Thus, the knowledge of only
(log2(N

1
4+σ+α) + 2 + ε) bits and the resolution of an univariate equation are

required. We don’t describe the attack in details because, once k∗ is recovered
applying Lemma 1, it reduces to the method of [7]. Thus, we remind the reader
to it. In Sect. 7, we will provide experimental results.

6 Attacks on CRT-RSA

In this section we present two attacks on CRT-RSA implementations, where
we target exponentiation by d∗

p. One is based on the knowledge of the most
significant bits of the CRT private exponent and one is based on the knowledge
of its least significant bits. We assume that the private exponent dp is full-size
(with respect to p) and that it is masked by a random multiple � of (p − 1), for
some � ≥ 0. When � = 0 clearly d∗

p = dp, that means that no countermeasure is
applied.

Partial Key Exposure Attacks on RSA with Exponent Blinding 377

6.1 Partial Information on LSBs of d∗
p

Assuming that the attacker is able to recover the least significant bits of the
secret d∗

p, we can write d∗
p = d1 ·M +d0 where d0 is known while d1 is unknown.

The integer M is a power of two and represents the bound on the known part.
To prove our result we use a method presented by Herrmann and May to

find the solutions of a bivariate linear equation modulo p [10].

Theorem 6. Let (N, e) be an RSA public key with e = Nα. Let dp = d mod p − 1
and let d∗

p = d + �(p − 1) for some � = Nσ with σ ≥ 0. Suppose that Nα+σ ≤
N

1√
2
− 1

2 and that we are given d0 and M satisfying d0 = d∗
p mod M with

M ≥ N
1− 1√

2
+α+2σ+ε

,

for some ε > 0. Then, under Assumption 1, we can find the factorization of N
(in time polynomial in log N).

Proof. We start from the equation

edp − 1 = kp(p − 1) .

Since d∗
p = dp + �(p − 1), we obtain

ed∗
p − 1 = (kp + e�)(p − 1) .

Let k∗
p denote kp + e�. By writing d∗

p = d1M + d0, we obtain the following
equation

eMd1 + k∗
p + ed0 − 1 = k∗

pp .

It follows that the bivariate polynomial

fp(x, y) = eMx + y + ed0 − 1

has root (x0, y0) = (d1, k∗
p) modulo p.

In order to bound y0, notice that

k∗
p =

ed∗
p − 1

(p − 1)
< e

(
dp + �(p − 1)

(p − 1)

)
< e(1 + �) ≤ 2Nα+σ .

Additionally, recall that d1 = d∗
p

M − d0.

We can set bounds X = N
1√
2
− 1

2−α−σ and Y = 2Nα+σ so that x0 ≤ X and
y0 ≤ Y .

To construct the lattice, we consider the following auxiliary polynomials:

f̄ = x + Ry + R(ed0 − 1) where R = (eM)−1 mod N ;

gk,i = yif̄kNmax{t−k,0}, k = 0, . . . , m; i = 0, . . . , m − k .

for some integers m and t, where t = τm has to be optimized.

378 S. Cimato et al.

All integer linear combinations of these polynomials share the root (x0, y0)
modulo pt. Thus, the first condition of Theorem2 is satisfied. In order to satisfy
the second condition we have to find a short vector in the lattice L, spanned by
gk,i(xX, yY). In particular, this vector shall have a norm smaller than pt

√
dimL

.
The second condition of Theorem 2 is satisfied when equation (4) holds, i.e.

when
det L ≤ N

1
2 τm(n−1) . (7)

A straightforward computation shows that n = 1
2 (m2 + 3m + 2) and that

det L(M) = (XY)
1
6 (m

3+3m2+2m)N
1
6mτ(mτ+1)(4+3m−mτ) .

Thus, condition (7) becomes

(XY)
1
6 (m3+3m2+2m) ≤ N

1
4 τm(m2+3m)− 1

6 mτ(mτ+1)(4+3m−mτ)

that reduces to
XY ≤ N

1
2 (3τ+2τ3−6τ2) .

Since XY = 2N
1√
2
− 1

2 , the above condition is satisfied if

1√
2

− 1
2

− 1
2
(3τ + 2τ3 − 6τ2) ≤ 0 .

The left-hand side is minimized for τ = 1− 1√
2
. For this choice of τ condition (7)

is satisfied, so we can successfully apply LLL-algorithm and then find the root
(d1, k∗

p). From this values, we can obtain p − 1 and then the factorization of N .
To conclude the proof, we need to show that every step of the method can

be done in time polynomial in log(N). The LLL-algorithm is polynomial in the
dimension of the matrix, that is O(m2), and in the bit-size of its entries, that
are O(m log N). Additionally, resy(f1, f2) has constant degree and coefficients
bounded by a polynomial in N . Thus, every step can be done in polynomial
time. ��

6.2 Partial Information on MSBs of d∗
p

In this section, we prove that if the attacker knows a sufficiently large number
of most significant bits of the protected exponent d∗

p, then she can factor N .
To prove this result, we show how the partial knowledge on d∗

p can be used to
construct an approximation of a multiple of p that allows to apply Theorem3.

Theorem 7. Let (N, e) be an RSA public key with e = Nα. Let dp = d mod p − 1
and let d∗

p = dp+�(p−1), for some � = Nσ with σ ≥ 0. Suppose thatNα+σ ≤ 1
2N

1
4

and that we are given an approximation d̃∗
p of d∗

p such that

|d∗
p − d̃∗

p| ≤ N
1
4−α .

Then, we can find the factorization of N in time polynomial in log N .

Partial Key Exposure Attacks on RSA with Exponent Blinding 379

Proof. We start from equation

ed∗
p − 1 = k∗

p(p − 1)

with k∗
p = kp + �e.

Note that k∗
p ≤ 2Nα+σ < 1

2N
1
2 implies that q can’t divide k∗

p.
We compute an approximation

k̃∗
pp := ed̃∗

p − 1

of k∗
pp, up to an additive error of at most

|k∗
pp − k̃∗

pp| = |ed∗
p − 1 + k∗

p − ed̃∗
p + 1|

= |e(d∗
p − d̃∗

p) + k| ≤ N
1
4 + 2Nα+σ ≤ 2N

1
4 .

Since the approximation k̃∗
pp satisfies the hypothesis of Theorem 3, we can find

the factorization of N in time polynomial in log N . ��
The bound of Theorem7 implies that an attacker has to know at least log2 M

bits, where

M =
d∗

p

|d∗
p − d̃∗

p|
=

2N
1
2+σ

N
1
4−α

= 2N
1
4+α+σ . (8)

This bound holds when the condition Nα+σ ≤ 1
2N

1
4 holds, which is not always

the case in our settings. For example an RSA modulus of 1024 bit with log2 e =
256 and log2� = 128 will have Nα+σ ≤ 2N

3
8 . For these cases we are unaware of

successful applications of Coppersmith’s method.
In [8] Sect. 4 it is presented a novel technique for the CRT case with better

bound but with the requirement to have dp not full size. This requirement also
implies that no countermeasure is applied.

7 Experimental Results

In our experiments we target RSA applications with 2048 or 3072-bit modulus
N and public exponent e = 216 + 1, since this is the most common choice made
for real implementations. In addition we assume that a random multiple � of
φ(N) (or of (p− 1) for CRT-RSA applications) is added to the private exponent
d (respectively dp).

For each dimension of �, we first report the theoretical bound on the minimum
number of bits of the secret key that the attacker needs to know to recover
it entirely. This values are derived from theorems we have proved in previous
sections. Then, we report the average minimum number of bits that we really
needed in our tests. In fact, theoretical bounds are reached when the lattice
dimension goes to infinity. In general, the smaller is the number of known bits,

380 S. Cimato et al.

the bigger the lattice shall be. To concretely mount an attack, one needs to
construct a lattice whose dimension is such that the LLL-algorithm runs in
practical time.

Recall that the running time of LLL-algorithm depends on the lattice dimen-
sion and on the dimension of the entries of its matrix-basis. Since the dimen-
sion of the entries depends on the bounds Xi and on the modular polynomial
used, the LLL-algorithm may have different running times for the same lattice
dimension. We decided to fix an upper bound on the dimension of the lattices
we constructed. We chose the threshold 80 as a tradeoff between efficiency and
effectiveness of our attacks. Indeed, this choice allows us to get closer to the
theoretical bounds as opposed to smaller dimensions. On the other hand, 80 is
small enough to make the LLL-algorithm running in practical time. We fixed
the same threshold for all attacks in order to compare their effectiveness when
using the same lattice dimension.

We implemented our methods with the SAGE computer-algebra system [1]
and run it on a 3GHz Intel Core i5. With the exception of the CRT-MSB case,
where we used only 5 experiments, for all other attacks we ran 100 experiments
generating different key pairs and different values of �. We report the average
values obtained from these experiments.

7.1 Results with Known LSBs of d∗

Experimental results are presented in Table 1. For generating lattices, we used
m = 11 and t = τm, where τ is defined in the proof of Theorem4. Notice that τ
is always very small resulting in t = 0 for each experiment. Thus, the dimension
of the lattice is always equal to 78.

Table 1. Experimental results for partial key exposure attack given least significant
bits of the secret exponent d∗ = d + �φ(N). The public exponent is e = 216 + 1.

log2 � log2 N = 2048 log2 N = 3072

theo. bound exp. bound dim(L) LLL theo. bound exp. bound dim(L) LLL

0 1040 1043 78 18 s 1552 1556 78 23 s

10 1060 1063 78 19 s 1572 1577 78 30 s

32 1103 1106 78 22 s 1615 1620 78 40 s

64 1164 1171 78 50 s 1678 1684 78 58 s

100 1232 1243 78 70 s 1747 1756 78 80 s

The difference between theoretical and experimental bounds is of very few
bits and the LLL-algorithm’s running time is really small.

It is worth to say that for � = 0 and small e, the attack in [7] is more effective
than our attack. Indeed the n/4 least significant bits of d are sufficient to factor
N . However their attack requires a brute-force search on k, that in our case
is allowed only when e + e� is small. Thus, with the introduction of exponent

Partial Key Exposure Attacks on RSA with Exponent Blinding 381

Table 2. Comparison between the approach of [6] and our approach for partial key
exposure attack given least significant bits of the secret exponent d∗ = d+ �φ(N). The
modulus N is 1000-bit long and e = 216 + 1.

log2 � Approach of [6] Our approach

theo. bound exp. bound dim(L) LLL theo. bound exp. bound dim(L) LLL

10 535 580 16 1 s 535 540 10 1 s

100 700 760 16 1 s 700 720 10 1 s

200 871 960 16 1 s 871 920 10 1 s

300 1033 1160 16 1 s 1033 1120 10 1 s

Table 3. Experimental results for partial key exposure attack given most significant
bits of the secret exponent d∗ = d + �φ(N). The public exponent is e = 216 + 1.

log2 � log2 N = 2048 log2 N = 3072

theo. bound exp. bound dim(L) LLL theo. bound exp. bound dim(L) LLL

0 1555 1555 80 112m 2323 2331 80 203m

10 1538 1555 80 112m 2306 2331 80 203m

32 1538 1555 80 112m 2306 2331 80 203m

64 1538 1555 80 112m 2306 2331 80 203m

100 1538 1555 80 112m 2306 2331 80 203m

blinding, or for larger dimension of e, their method can’t be applied, because
the brute force-search becomes impractical.

In Table 2 we report experimental results to compare our approach and the
approach of [6] for the same scenario. Specifically, we consider 1000-bit modulus
N , public exponent e = 216 + 1 and � ∈ {10, 100, 200, 300} as used in [6]. In our
analysis we use a bivariate polynomial instead of a trivariate polynomial, thus we
perform a single resultant computation, instead of three. The theoretical bound
we obtain is the same of [6], but our approach allows us to get closer to it as
shown in Table 2. Moreover, we do it by using smaller lattices.

7.2 Results with Known MSBs of d∗

In Table 3 we present our results. Since this method uses an univariate polyno-
mial, it is possible, in theory, to match the theoretical limit, although the lattice
dimension would make LLL highly impractical. By imposing the threshold for
the maximum dimension of the lattice equal to 80, the LLL-algorithm’s running
time is about 2 hours. For constructing such a lattice, we used m = 40 and
t = 40.

The experiments confirmed the independence of the bound with respect to
the dimension of the random integer �.

Unfortunately, in this case we cannot compare our approach with the app-
roach of [6], because they didn’t provide any experimental result respecting our

382 S. Cimato et al.

Table 4. Experimental results for partial key exposure attack given most and least
significant bits of the secret d∗ = d + �φ(N). The public exponent is e = 216 + 1.

log2 � log2 N = 2048 log2 N = 3072

theo. bound exp. bound dim(L) LLL theo. bound exp. bound dim(L) LLL

0 17+514 17+526 80 2 h 27m 17+770 17+789 80 4 h 50m

10 27+514 27+526 80 2 h 27m 27+770 27+789 80 4 h 50m

32 49+514 49+526 80 2 h 27m 49+770 49+789 80 4 h 50m

64 81+514 81+526 80 2 h 27m 81+770 81+789 80 4 h 50m

100 117+514 117+526 80 2 h 27m 117+770 117+789 80 4 h 50m

assumptions. In fact, they use very large values of �, namely 500, 600 or 700-bit
long for a modulus N of size 1000 bits. These settings do not satisfy our require-
ment of Lemma 1 for Nα+σ ≤ 2N

3
8 . In any case, our approach improves their

bound, as said in Sect. 5.2.

Results Using Both MSBs and LSBs. As said in Sect. 5.2, it is possible to mount
an attack knowing both MSBs and LSBs of d∗. An univariate polynomial is
constructed and its root is found by constructing a lattice as in the proof of
Theorem 3. In Table 4 we provide some experimental results for this method.

7.3 Results with Known LSBs of d∗
p

In Table 5 we present our results, obtained by generating lattices using m = 3
an t = 11. To get closer to the theoretical bound, the lattice dimension should
be significantly increased. But this makes the LLL-algorithm’s running time
highly impractical. By setting the threshold 80 for the lattice dimension, the
LLL-algorithm’s running time is about 13 minutes.

Table 5. Experimental results for partial key exposure attack against CRT-RSA, given
least significant bits of the secret exponent d∗

p = dp + �(p − 1). The public exponent is
e = 216 + 1.

log2 � log2 N = 2048 log2 N = 3072

theo. bound exp. bound dim(L) LLL theo. bound exp. bound dim(L) LLL

0 617 691 80 8m 917 1019 80 14m

10 637 712 80 10m 937 1041 80 16m

32 681 758 80 13m 981 1087 80 21m

64 745 822 80 17m 1045 1154 80 28m

100 817 894 80 18m 1117 1227 80 34m

In this case, the difference between theoretical and experimental bounds is
about 80 bits for 2014-bit N and about 100 for 3072-bit N . Given a smaller
number of leaked bits one can still mount the attack by constructing bigger

Partial Key Exposure Attacks on RSA with Exponent Blinding 383

Table 6. Experimental results for partial key exposure attack given most significant
bits of the CRT secret exponent d∗

p = d + �(p − 1). The public exponent is e = 216 + 1.

log2 � log2 N = 2048 log2 N = 3072

theo. bound exp. bound dim(L) LLL theo. bound exp. bound dim(L) LLL

0 528 540 80 3 h 03m 783 803 80 8 h 54m

10 537 550 80 3 h 59m 793 813 80 12 h 17m

32 560 573 80 4 h 23m 815 835 80 13 h 46m

64 591 604 80 4 h 52m 848 868 80 15 h 59m

100 628 640 80 6 h 13m 884 903 80 22 h 25m

lattices, but the computation will need more time to end. For example, by setting
t = 5 and m = 18 it is sufficient to obtain 50 (or 70) bits more than the theoretical
bound to solve. But the corresponding lattice dimension is 190, which makes the
LLL-algorithm end in about one day. By setting t = 7 and m = 24 it is sufficient
to obtain 40 (or 60) bits more than the theoretical bound to solve. But the lattice
dimension is around 500 and we think that the LLL-al gorithm would be highly
impractical in this case.

Notice that for � = 0 and small e, Blömer and May show that a quarter of
dp is sufficient to the attacker to factor N [9]. To prove their result, they use
a brute-force search on kp, that is allowed only when e + e� is small. Thus, for
e = 216 + 1 and � = 0 their method is better than our method, since a smaller
number of leaked bits are sufficient to factor N . But, for larger dimension of e
and when � > 0 their method is no more effective because the brute force-search
becomes unfeasible.

7.4 Results with Known MSBs of d∗
p

Also in this case we imposed the threshold 80 for the lattice dimension, which
allowed us to run the LLL-algorithm in practical time. We constructed lattices
by using m = 40 and t = 40.

In Table 6 we report the theoretical and experimental number of leaked bits,
the lattice dimension and the running time of LLL-algorithm.

As opposite to the case based on LSBs, this method is the most effective
also for � = 0. Indeed, our method is a generalization of [9], thus for � = 0 we
obtain their original result which is the most effective method in literature for
this scenario.

8 Conclusions

We presented some methods to mount partial key exposure attacks on RSA
with exponent blinding. We investigated both RSA and CRT-RSA, focusing on
practical settings for the exponents and the blinding factor �. In particular, we
focused on public exponent e such that 3 ≤ e < 2256, combining the upper bound

384 S. Cimato et al.

provided by NIST with the frequent value of 3. Additionally, we focused on full
size private exponents and � < 2128, as commonly used in real implementations.

We derived sufficient conditions to successfully mount partial key exposure
attacks in different scenarios and validated them providing numerical experi-
ments, using N of size 2048 or 3072 and e = 216+1, which is the most commonly
used setting in real implementations.

As for RSA, we improved the results of [6] with the aim of reducing the num-
ber of bits to be recovered by the adversary through side-channel. In particular,
when least significant bits are exposed, our approach allows to get closer to the
theoretical bound by using smaller lattices, as shown in Table 2. Whereas, when
most significant bits are exposed, we presented a method that does not rely on
the heuristic assumption and that provides better bounds, as shown in Sect. 5.2.

Additionally, we provided novel results for the particular case where the
adversary is able to recover non-consecutive portions of the private information.

As for CRT-RSA with exponent blinding, we provided novel results for both
scenarios when either least or most significant bits are exposed.

Table 7. The number of bits that the attacker needs to know to successfully mount
partial key exposure attacks. The public exponent is e = 216 +1. The private exponent
is blinded using the random factor �.

log2 � log2 N = 2048 log2 N = 3072

LSB MSB MSB+LSB CRT-LSB CRT-MSB LSB MSB MSB+LSB CRT-LSB CRT-MSB

0 1043 1555 17+526 691 540 1556 2331 17+789 1019 803

10 1063 1555 27+526 712 550 1577 2331 27+789 1041 813

32 1106 1555 49+526 758 573 1620 2331 49+789 1087 835

64 1171 1555 81+526 822 604 1684 2331 81+789 1154 868

100 1243 1555 117+526 894 640 1756 2331 117+789 1227 903

In Table 7, we recap the numerical results we obtained from our experiments.
For each dimension of � we provide the minimum number of bits of the protected
exponent that is sufficient to the attacker to successfully break the system.

With the only exception of the RSA attack based on most significant bits,
the number of known bits depends on the bit-size of the blinding factor �.

References

1. Sage Mathematics Software (Version 6.2). http://www.sagemath.org
2. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. The-

ory 36, 553–558 (1990)
3. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on

RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

4. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Mau-
rer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer,
Heidelberg (1996)

http://www.sagemath.org

Partial Key Exposure Attacks on RSA with Exponent Blinding 385

5. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, Michael J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355,
pp. 131–142. Springer, Heidelberg (1997)

6. Joye, M., Lepoint, T.: Partial key exposure on RSA with private exponents larger
than N. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232,
pp. 369–380. Springer, Heidelberg (2012)

7. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the
private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514,
pp. 25–34. Springer, Heidelberg (1998)

8. Lu, Y., Zhang, R., Lin, D.: New partial key exposure attacks on CRT-RSA with
large public exponents. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS
2014. LNCS, vol. 8479, pp. 151–162. Springer, Heidelberg (2014)

9. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

10. Herrmann, M., May, A.: Solving linear equations modulo divisors: on factoring
given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008)

11. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol.
1070, pp. 178–189. Springer, Heidelberg (1996)

12. NIST: FIPS PUB 186–4 Federal Information Processing Standards Publication,
Digital Signature Standard (DSS) (2013)

13. May, A.: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis
(2003)

14. Kocher, P.C.: Timing attacks on implementations of diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

15. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

16. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

17. Walter, C.D.: Sliding windows succumbs to big mac attack. In: Koç, Ç.K., Nac-
cache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer,
Heidelberg (2001)

18. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal corre-
lation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS
2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

19. Fouque, P.-A., Kunz-Jacques, S., Martinet, G., Muller, F., Valette, F.: Power attack
on small RSA public exponent. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 339–353. Springer, Heidelberg (2006)

20. Lenstra, A.K., Lenstra, H.W.J., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 515–534 (1982)

21. Quisquater, J.-J., Couvreur, C.: Fast decipherment algorithm for RSA public-key
cryptosystem. Electron. Lett. 18, 905–907 (1982)

	Partial Key Exposure Attacks on RSA with Exponent Blinding
	1 Introduction
	2 Related Works
	3 RSA Applications
	3.1 RSA
	3.2 CRT-RSA
	3.3 Exponent Blinding
	3.4 Common Parameters Setting

	4 General Strategy
	4.1 Lattices
	4.2 General Strategy

	5 Attacks on RSA
	5.1 Partial Information on LSBs of d*
	5.2 Partial Information on MSBs of d*

	6 Attacks on CRT-RSA
	6.1 Partial Information on LSBs of dp*
	6.2 Partial Information on MSBs of dp*

	7 Experimental Results
	7.1 Results with Known LSBs of d*
	7.2 Results with Known MSBs of d*
	7.3 Results with Known LSBs of dp*
	7.4 Results with Known MSBs of dp*

	8 Conclusions
	References

