
Chapter 12

Remote Sensing of Biological Soil Crusts at

Different Scales

Bettina Weber and Joachim Hill

12.1 Introduction

Dryland ecosystems constitute some of the largest terrestrial biomes, collectively

covering 41% of Earth’s land surface and supporting over 38% of the global human

population (Maestre et al. 2012). Biological soil crusts (biocrusts) often grow in

patches, covering vast regions, making it impossible to accurately assess their

spatial distribution patterns based on ground-based mapping techniques. Thus,

remote sensing methods are invaluable to classify and characterize biocrusts and

to analyze their alteration over time by means of remote sensing change detection

analyses.

Remote sensing mapping techniques are based on the spectral characteristics of

the studied features, in our case the biocrusts. Prior to developing a classification

technique, the spectral patterns, which allow to distinguish between the biocrusts on

the one and the underlying and adjoining substrates as well as the surrounding

vegetation, on the other hand, need to be studied. Thus, this chapter is divided into

two major parts: in the first part, the spectral reflectance properties of biological soil

crusts are described and the effects of wetting and disturbance as well as the

potential to deviate physiological characteristics from these spectral characteristics

are discussed. In the second part, existing methodologies for biocrust classification

are presented, their functionality is investigated, and finally their universal applica-

bility and promising new methods for the future are discussed.
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12.2 Reflectance Spectroscopy of Biocrusts

12.2.1 Spectral Reflectance Characteristics of Biocrusts

The method of reflectance spectroscopy is based on electromagnetic radiation,

which, according to the “wave” and the “particle model” can be described as an

electromagnetic wave or as a particular kind of matter (Jensen 2007). According to

the particle model, impacting energy causes the electrons of atoms to jump to a

higher energy level (they are excited). After 10�8 s, the electrons fall back to the

atoms’ lowest empty energy level, giving off radiation, which is a function of the

energy that had been absorbed before. According to the quantum theory, this energy

is released in discrete packets called quanta or photons. The energy of a quantum is

inversely proportional to its wavelength, which is then measured by means of

spectroscopy. Thus, the different colors of substances are caused by their differ-

ences in energy levels and the selection rules (Jensen 2007). Electron orbital

changes are known to produce the shortest-wavelength radiation, near- and/or

middle-infrared energy is caused by molecule vibrational motion, whereas long-

wavelength infrared or microwave radiation is caused by rotational motion change

(Jensen 2007). These spectral characteristics are measured as reflectance spectra

displaying the amount of light reflected by a surface along different wavelengths.

As biocrusts comprise photosynthetically active organisms with chlorophyll,

i.e., cyanobacteria, green algae, lichens, and mosses, one would expect to find the

absorption maxima of chlorophyll within these spectra. In addition to that, the

organisms may contain starch, cellulose, and additional pigments, which might be

identified in the spectral response.

A general effect of lichen crusts on the variation of reflectance values of bare

soils was already observed by Graetz and Gentle (1982), who worked on the

reflectance characteristics of Australian semiarid rangelands. They, however, saw

biocrusts more as a disturbing issue than as a noteworthy feature on their own.

12.2.1.1 Different Types of Biocrusts

The general spectral characteristics of biocrusts have been investigated in a number

of studies, and in all of them, a chlorophyll absorption feature at a wavelength

around 667–682 nm has been observed (Table 12.1). At 1450 and 1920 nm, a

universal absorption caused by water or OH bonds was observed (Karnieli

et al. 1999; Ustin et al. 2009). In the medium infrared region at ~ 2300 nm,

Escribano et al. (2010) identified an additional adsorption feature in all biocrusts,

which was assigned to the presence of lignin or cellulose.

In most studies, reflectance spectra of different biocrust types have been studied

separately. Several studies revealed the overall reflectance values of cyanobacteria-

dominated crusts to be lower throughout the spectrum (covering 400–2500 nm:

O’Neill 1994; 400–900 nm: Weber et al. 2008; 350–1150 nm: Pinker and Karnieli

1995) as compared to bare soil. In contrast to that, other studies report lower
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Table 12.1 Spectral characteristics of biocrusts as described in scientific publications

Crust type

Wavelength

(nm) Absorption feature References

Opposing

references

Cyanobacteria-

dominated crust

~430 Increased reflec-

tance due to

phycobilins

Karnieli and

Sarafis (1996)

Not observed by

anybody else

Cyanobacterial

strains of

Coleofasciculus
chthonoplastes
and Nostoc sp.

~440 Absorption by

chlorophyll a or

β-carotene

Weber et al. (2008)

Cyanobacterial

strain of

Coleofasciculus
chthonoplastes

~489 Absorption by

carotenoid or

phycoerythrin

Weber et al. (2008)

Cyanobacteria-

dominated

crusts

~504 Absorption by

carotenoids

Chamizo

et al. (2012),

Rodrı́guez-Cabal-

lero et al. (2014)

Cyanobacterial

strain of

Coleofasciculus
chthonoplastes

~544 Absorption by

phycocyanin or

phycoerythrin

Weber et al. (2008) Ustin

et al. (2009)—

no absorption in

crusts

Cyanobacteria-

dominated crust

<550 Higher reflectance

than underlying

soil

Tsoar and Karnieli

(1996), Karnieli

(1997)

Pinker and

Karnieli (1995),

O’Neill (1994),
Weber

et al. (2008),

Chen

et al. (2005)

Cyanobacteria-

dominated crust

>550 Lower reflectance

than underlying

soil

Tsoar and Karnieli

(1996), Karnieli

(1997)

Pinker and

Karnieli (1995),

O’Neill (1994),
Weber

et al. (2008),

Chen

et al. (2005)

Cyanobacterial

strain of

Coleofasciculus
chthonoplastes

~613 Absorption by

phycocyanin

Weber et al. (2008) Ustin

et al. (2009)—

no absorption in

crusts

Cyanobacterial

filaments of

Microcoleus sp.

~627 Phycocyanin

absorption

Karnieli

et al. (2003)

Cyanobacterial

strains of

Coleofasciculus
chthonoplastes
and Phormidium
sp.

~630 Phycocyanin

absorption

Weber et al. (2008)

(continued)
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Table 12.1 (continued)

Crust type

Wavelength

(nm) Absorption feature References

Opposing

references

Cyanobacteria-

dominated crust;

biocrusts in

general

~680 Chlorophyll

a absorption

O’Neill (1994),
Pinker and Karnieli

(1995), Karnieli

and Tsoar (1995),

Karnieli

et al. (1996),

Karnieli

et al. (2002),

Karnieli

et al. (2003), Chen

et al. (2005),

Weber

et al. (2008), Ustin

et al. (2009),

Escribano

et al. (2010),

Chamizo

et al. (2012),

Rodrı́guez-Cabal-

lero et al. (2014)

All crust types ~1450 Water Karnieli

et al. (1999),

Chamizo

et al. (2012)

Moss-domi-

nated crust

~1720 Cellulose/lignin/

starch/pectin

Karnieli

et al. (1999)

Moss- and

lichen-

dominated

crusts

~1720 Cellulose and

lignin

Ustin et al. (2009)

Biocrust (not

specified)

~1920 Water or �OH

bonds

Karnieli

et al. (1999), Ustin

et al. (2009)

Biocrust (not

specified)

~2080 Cellulose, lignin,

or other organic

components

(Escribano

et al. 2010) or

starch (O’Neill
1994)

O’Neill (1994),
Ustin et al. (2009),

Escribano

et al. (2010)

Absorbing

material

doubted by

Ustin

et al. (2009)

Lichen-domi-

nated crust

~2100 Starch and

cellulose

O’Neill (1994)

Moss-domi-

nated crust

~2180 Starch/lignin/wax/

tannin

Karnieli

et al. (1999)

Biocrust (not

specified)

~2300 Lignin and

cellulose

Escribano

et al. (2010)

(continued)
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reflectance values at wavelengths between 550 and 1100 nm, whereas at shorter

wavelengths (400–550 nm), higher reflectance values were measured on

cyanobacteria-dominated crusts as compared to bare soil (Karnieli and Tsoar

1995; Tsoar and Karnieli 1996). Karnieli and Sarafis (1996) and later Karnieli

et al. (1999) investigated the spectra of cyanobacteria-dominated biocrusts in an

experimental approach, showing that phycobilins caused an increased reflectance of

1–2 % at about 430 nm. They claimed that this slightly increased reflectance may be

used to differentiate between cyanobacteria-dominated crusts and bare soil and to

classify cyanobacteria-dominated crusts within Landsat imagery (Karnieli 1997;

see Sect. 12.3.2).

Reflectance spectra of isolated cyanobacterial strains revealed some additional

absorption features, which could not be identified in complete crust samples

(Table 12.1). On Coleofasciculus chthonoplastes, absorption maxima at ~440 nm

(chlorophyll a or β-carotene), ~489 nm (carotenoid or phycoerythrin), ~544 nm

(phycocyanin or phycoerythrin), ~613 nm (phycocyanin), and ~630 nm (phyco-

cyanin) were determined by Weber et al. (2008). The absorption maximum at

~440 nm was shared by Nostoc sp., that at ~630 nm by Phormidium sp.. Karnieli

et al. (2002) also observed the phycocyanin absorption maximum on Microcoleus
filaments at ~627 nm.

On lichen-dominated biocrusts, the effect of chlorophyll, causing an absorption

maximum between 670 and 680 nm, could be very weak (Chen et al. 2005),

whereas in other cases it was clearly visible (Weber et al. 2008; Escribano

et al. 2010). Further shallow absorption features at 2080 and 2100 nm were

determined by O’Neill (1994), which he supposed to be caused by starch and a

combination of starch and cellulose, respectively. The absorption feature at

2080 nm was also determined by Escribano et al. (2010), who ascribed it to the

presence of cellulose, lignin, and/or other organic components.

In spectra of moss-dominated crusts, clear chlorophyll-conditioned absorption

maxima were observed (Karnieli et al. 1999; Chen et al. 2005). Additional absorp-

tion features were identified at 1720 nm (assigned to cellulose, lignin, starch and/or

pectin), 2180 nm (assigned to starch, lignin, wax and/or tannins), and at 2309 nm

(assigned to humid acid, wax, and/or starch; Karnieli et al. 1999).

Weber et al. (2008) analyzed an additional type of liverwort-dominated biocrusts.

Organisms of the dominating liverwort taxon Riccia have a dorsal “epithelium” of

Table 12.1 (continued)

Crust type

Wavelength

(nm) Absorption feature References

Opposing

references

Moss-domi-

nated crust

~2309 Humic acid/wax/

starch

Karnieli

et al. (1999)

Ustin

et al. (2009)—

absorption due

to carbonate;

observed in

biocrusts and in

soil
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achlorophyllous cells (Perold 1999), causing a silvery reflectance. Thus, this crust

type revealed overall higher reflectance values with a chlorophyll absorption max-

imum being strongly masked.

12.2.1.2 Continuum Removal

The spectral characteristics of biocrusts as opposed to those of bare soil are often

characterized by only subtle deviations. In order to identify such slight differences,

Clark and Roush (1984) developed a method to model the continuum in a reflec-

tance spectrum as a mathematical function, which is then used to isolate particular

absorption features for analysis. This method was used by Escribano et al. (2010) to

differentiate between crusts growing in different seasons, whereas Rodrı́guez-

Caballero et al. (2014) illustrated an absorption peak at 504 nm caused by caro-

tenoids, which was present in cyanobacteria, but did not occur in lichen-dominated

crusts. Weber et al. (2008) applied continuum removal to set up five rules, which

allowed to successfully delimitate biocrusts from both bare soil and vascular plant

vegetation, which also proved to work reliably on hyperspectral remote sensing

data (see Sect. 12.3.2).

In a later study, Chamizo et al. (2012) used this method to also set up rules,

which allowed successful distinction between the spectral response of different

crust types. This method was applied to spatial remote sensing data in a later

approach (Rodrı́guez-Caballero et al. 2014).

12.2.2 Effects of Watering

Watering has an instantaneous effect on the reflectance spectra of lichen-dominated

crusts, as illustrated by O’Neill (1994). Already 10 min after watering, the absorp-

tion maximum at ~680 nm had deepened, and also at wavelengths >1200 nm,

reflectance values were considerably lower. Studying cyanobacteria-dominated

crusts, also Karnieli and Sarafis (1996) observed overall lower reflectance values

upon watering of the crust. After 12 h wet the reflectance at ~680 nm and around

1000 nm had decreased, probably caused by the movement of cyanobacteria within

the crust (Danin 1991; Garcia-Pichel and Pringault 2001) or by the initiated growth

and formation of new chlorophyll a. Analyzing cyanobacteria- and one moss-

dominated crust in a dry state, 1 day and 7 days after watering and incubation,

Karnieli et al. (1999) observed that the reflectance level decreased and a significant

dip ~680 nm developed during the incubation process.

The spectral response following different watering regimes was also studied by

Rodrı́guez-Caballero et al. (2015). Immediately after watering, the reflectance of a

cyanolichen-dominated crust with non-lichenized cyanobacteria decreased consi-

derably (Fig. 12.1). After 24 h, wet reflectance values within the visible part of the

spectrum (400–700 nm) were below 4% (Fig. 12.1) and the crust surface had turned

dark (Fig. 12.2). Upon drying, the reflectance values increased again, reaching
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similar values over a major part of the spectrum, which remained, however,

somewhat lower ~680 nm (Fig. 12.1), indicating the movement of organisms to

the surface or the formation of new chlorophyll.

The spectral and optical response of cyanobacteria-dominated crusts after

10 days wet revealed considerable deviations from the former characteristics

(Figs. 12.3 and 12.4b). The crust had turned almost blackish, indicating intense

new growth of organisms, and after 1 day of subsequent drying, the overall spectral

response was well below the initial spectrum with an intense reflectance minimum

~680 nm. During the subsequent 5 weeks of drying, the reflectance values increased

gradually and the reflectance minimum ~680 nm flattened. Nevertheless,

Fig. 12.1 Spectral response of a cyanolichen-dominated biocrust with cyanobacteria in a dry state

and at different times during and after a 24-h watering event

Fig. 12.2 Surface appearance of a cyanolichen-dominated biocrust with cyanobacteria (a) prior to

watering, and (b) after 24 h in a wet stage
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Fig. 12.3 Spectral response of a cyanolichen-dominated biocrust with cyanobacteria in a dry state

and at different times during and after a 10-day watering event

Fig. 12.4 Surface appearance of a cyanolichen-dominated biocrust with cyanobacteria (a) prior to

watering, (b) in the end of 10-day watering event, and (c) 5 weeks (in a dry state) after 10-day

watering event
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reflectance values between 550 and 950 nm remained well below those of the

initially measured spectrum and the crust looked still more densely colonized

compared to the initial crust habitus (Figs. 12.3 and 12.4a, c). Thus, watering of

the crusts over several days seems to have a long-term effect on the spectral

characteristics of biocrusts.

Karnieli et al. (2002) studied the spectral reflectance of biocrusts depending on

rainy and dry seasons during the year. After 2 weeks of rainfall, they measured

well-developed reflectance spectra reminding of vascular plants with a high peak at

~550 nm, a distinct absorption maximum at ~680 nm, a sharp rise at ~700 nm (red

edge), and a plateau in the near-infrared (700–1100 nm). During the following dry

season the spectrum flattened, the maxima and minima gradually disappeared, and

at the end of the dry season the spectra closely resembled those of bare soil

(Karnieli et al. 2002). In a different study, biocrusts (n¼ 5), which had been

collected after the rainy season, were stored for 11 months under dry conditions

in the dark. The spectral reflectance of the crusts did not change significantly over

the whole time span (Weber unpublished), pointing to the fact that sunlight and/or

UV-radiation might be responsible for the spectral alteration of biocrusts during

the year.

12.2.3 Effects of Disturbance on the Spectral Characteristics
of Biocrusts

Whereas biocrusts generally cause a darkening of the soil surface, their disturbance

by both trampling and scraping provokes an increase in albedo (Chamizo

et al. 2012). As trampling causes a breakdown of the crust, the lighter-colored

soil becomes more dominant in reflectance spectra and after scraping, the spectra

closely resemble these of bare soil. Absorption features of pigments ~500 and

~680 nm and of water ~1450 nm were observed to be weaker in trampled and

weakest in scraped crusts. A second disturbance effect is the flattening of the

surface by both trampling and scraping, also resulting in increased reflectance

values (Chamizo et al. 2012).

Mechanical substrate disturbance had similar effects in a study by Ustin

et al. (2009), where biocrusts responded with overall higher reflectance values

and shallower absorption features at ~420 and ~500 nm. An absorption feature at

~2080 nm, probably caused by organic components, disappeared completely upon

disturbance (Ustin et al. 2009).
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12.2.4 Spectral Indicators

As previously shown, biocrusts have an absorption feature at ~680 nm in common

(Table 12.1), which nicely correlates with the chlorophyll content of dry

cyanobacteria-, lichen-, and moss-dominated crusts in a savannah-type ecosystem

in Namibia (BIOTA observatories 39, 40; Weber unpublished; Fig. 12.5). This

chlorophyll a absorption feature is also utilized in vegetation indices, with the

most prominent one being the normalized difference vegetation index (NDVI).

The NDVI is based on the spectral reflectance of Landsat satellite bands, i.e., the

red band (R), 600–700 nm, comprising the chlorophyll absorption, and the near-

infrared band (NIR), covering 700–1100 nm. It is defined as

NDVI ¼ NIR� Rð Þ= NIRþ Rð Þ

reaching values between �1 and 1.

It was observed that wet cyanobacteria-dominated crusts on sand reached NDVI

values up to 0.22 and moss-dominated crusts even gained values of 0.3 (Karnieli

et al. 1996, 1999), whereas bare soil had values of 0.08. Thus, they showed that high

NDVI values of wet biocrusts may be misinterpreted as vascular plant vegetation

dynamics, whereas dry biocrusts only gained negligible NDVI values.

Zaady et al. (2007) used a brightness index (BI) in addition to the NDVI to

follow the biocrust succession after a disturbance event. The BI utilizes the reflec-

tance values in the green (G: 500–600 nm), red (R: 600–700 nm), and near-infrared

region (NIR: 700–1100 nm) to calculate the overall brightness of a surface:

Fig. 12.5 Correlation of mean surface reflectance at 680 nm with chlorophyll aþb content of

dry cyanobacteria-, lichen-, and moss-dominated crusts sampled in a savannah-type ecosystem in

the BIOTA observatories No. 39 and 40 in Namibia. Pearson: r¼�0.78, n¼ 71
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BI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ R2 þ NIR2

p

In 6 years after disturbance by scraping, with the crumbled soil being distributed

again, the brightness index decreased and the NDVI values increased as expected,

but the same development, to a lesser extent, also occurred on non-disturbed control

plots. The NDVI values of the controls were significantly higher than those of the

treatment plots, but nevertheless, only comparably low NDVI values up to 0.15

were measured on wet crusts.

12.2.5 Spectral Characteristics Related to CO2 Gas
Exchange

As the spectral reflectance at ~680 nm correlates with the chlorophyll content of

biocrusts, Burgheimer et al. (2006a, b) investigated the feasibility to derive carbon

flux rates from NDVI values of biocrusts. This worked quite well when average

data of each 3-day field trip were used. At higher temporal resolution, however,

environmental factors like soil water content and light intensity strongly influenced

CO2-gas exchange values, whereas NDVI values remained stable. Thus, only weak

correlations were found between both factors measured on biocrusts growing in

sandy (R2¼ 0.44) and in loess environment (R2¼ 0.35; Burgheimer et al. 2006b).

Nevertheless, the NDVI was found to be a good tool to represent the biocrusts’
seasonal photosynthetic activity. Thus, in a later step, remote sensing methods

might be applicable to estimate biocrust assimilation activity (Burgheimer

et al. 2006a).

In another approach, chlorophyll fluorescence measurements of cyanobacteria-,

lichen-, and moss-dominated crusts were linked to the NDVI and photochemical

reflectance index (PRI; Yamano et al. 2006). The PRI is sensitive to changes in

carotenoid pigments, which in turn are indicative of photosynthetic light use

efficiency. It is calculated as

PRI ¼ R 531 � R 570

�
=
�
R 531 þ R 570

� �

with R indicating reflectance and numbers indicating the wavelengths in nano-

meters. Whereas the NDVI values of wet samples were higher in wet as compared to

dry crusts, PRI values of wet crusts had lower values compared to dry ones. Due to

inactivity of the crusts, no Fv/Fm was measured on dry crusts. In hydrated moss-

dominated crusts, PRI values significantly correlated with Fv/Fm and in wet lichen-

dominated crusts Fv/Fm was positively correlated with both the PRI and the NDVI.

The authors concluded that the PRI was more effective in estimating the photo-

synthetic capacity of lichen- and moss-dominated crusts. One, however, has to have

in mind that realized CO2 gas exchange values cannot be directly derived from the

fluorescence data measured on the crusts (Raggio et al. 2014).
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12.3 Mapping the Spatial Distribution of Biocrusts

Given the significant role of biocrusts in assuring the functioning of desert and

steppe ecosystems, there has always been a strong interest in producing spatially

explicit distribution maps for improving the estimates of photosynthetic activity

and CO2 exchange retrieved from limited ground measurements (Burgheimer

et al. 2006a). The fact that biomass and activity in biological soil crusts are usually

concentrated within the uppermost millimeters of the soil surface (see Chap. 13 by

Garcia-Pichel et al.) suggests that, in case stable relationships between optically

active key variables and crust properties are identified, satellite-based or airborne

remote sensing might be employed to assess the presence or absence of biological

soils crusts or to differentiate between various crust types (e.g., Karnieli

et al. 2003).

While only very limited work has been done on the emissive properties of

biocrusts (e.g., Rozenstein and Karnieli 2014), a wealth of studies is available on

the use of imaging systems which operate in the reflective optical domain. Already

at the time of early Landsat satellites during the 1970s, the nature of the sharp

contrast along the Israel–Egypt border has been a matter of scientific interest and

debate. Otterman et al. (1974) were the first to explain this by the presence of dark

desert plants (either photosynthetically active or senescent) on the Israeli side,

while the Egyptian area was almost devoid of vegetation. However, the predomi-

nant role of higher plants in producing this spectral contrast was rejected by

Karnieli and Tsoar (1995) who claimed that the spectral contrast was not a direct

result of vegetation cover but caused by an almost complete presence of biogenic

crusts. In his reply Otterman (1996) insisted that even with sparse plant cover (e.g.,

less than 30 %), the interception of solar irradiance by desert plants, as well as the

rays reflected from the soil (i.e., absorption and shadowing), is providing a highly

significant contribution to the spectral reflectance.

Besides the fact that the presence of biocrusts in this area is by far more

discontinuous and scattered than it was suggested in former studies (Hill

et al. 2008), this early scientific debate frames the core problem of mapping

biocrusts with multi- or hyperspectral imaging systems: biocrusts are mostly asso-

ciated with higher plants, and the problem emerging from this fact is that the

observed reflectance signal represents a more or less complex mixture of spectral

contributions from soil, biocrusts, and vascular plants in varying states and, there-

fore, partially similar reflectance characteristics. In addition, the contribution

biocrusts have on spectral soil surface properties does not depend only on crust

composition and state but also on their relative cover (Rodrı́guez-Caballero

et al. 2014). The task is thus to identify different types of biocrusts and to quantify

their relative abundance at sub-pixel scale against the background of spectrally

similar components.
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12.3.1 Image Preprocessing

Monitoring of vegetation and land surface characteristics using passive optical

imaging systems largely depends on relationships between biophysical quantities

on the ground and their spectral reflectance properties. The different approaches for

mapping biological soils crusts discussed in this chapter rely on the availability of

calibrated reflectance imagery, i.e., they require that effects of the atmosphere, sun,

and sensor positions as well as surface orientation have been properly corrected.

The use of atmospheric radiative transfer models to remove atmospheric effects

from Landsat imagery has recently been demonstrated in an operational context by

a number of authors, such as Richter and Schläpfer (2002), Masek et al. (2006),

Vicente-Serrano et al. (2008), and Flood et al. (2013). Since these concepts can be

equally applied to a large variety of multispectral imaging systems and are currently

included in operational data processing schemes, atmospheric corrections should be

considered a necessary prerequisite that can be solved routinely.

12.3.2 Spectral Indices

The work in establishing suitable mapping methods builds on the spectral charac-

teristics of biocrusts which are described in more detail in the first part of this

chapter. Accordingly, the prominent chlorophyll absorption feature at ~680 nm,

common to cyanobacteria-, lichen-, and moss-dominated crusts, might suggest the

use of corresponding ratio indices such as the NDVI. However, since NDVI values

in the range of 0.05–0.25 are also typical for a wide range of soil spectra, and

because sparse woody vegetation structures as well tend to become spectrally

effective from NDVI values around 0.1–0.15 onwards (e.g., Price 1993), this

would require that the contribution of such materials to the reflectance signal

could be computationally removed.

Karnieli (1997) was one of the first authors to propose a simple spectral index

which was based on findings that the presence of cyanobacteria in the biocrusts is

the cause for a relatively high reflectance in the blue region. He demonstrated that

the spectral index

CI ¼ 1� ρred � ρblue
ρred þ ρblue

had the ability to differentiate between crusted and uncrusted samples in laboratory

experiments. Since the CI can also be derived from any imaging system with

spectral bands in the blue and red region of the electromagnetic spectrum (e.g.,

the Landsat systems, MODIS, or the forthcoming Sentinel-2 and -3 systems), it

suggested a wide range of applicability. However, the major problem was that the

index enhances the spectral contrast between different geomorphic and lithological
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units (e.g., areas with different mineralogies and varying contents of fine-grained

material or organic components) in general, but fails to provide a reproducible

relationship with increasing biocrust abundance. In addition, the index would by

definition be less suitable for biological soil crusts where cyanobacteria are not a

dominant constituent (Chen et al. 2005). The obvious conclusion to be drawn is to

not only identify spectral ranges which are sensitive to varying abundances of

biocrusts but to combine these with bands that are suited to enhance the spectral

difference between biological crusts and associated material such as bare soil and

photosynthetically active, senescent, or woody plant material.

Based on a study in the cold deserts of N-China, Chen et al. (2005) developed a

biological soil crust index (BSCI) which is based on the reflectance in the green,

red, and near-infrared range of the electromagnetic spectrum. The proposed index

BSCI ¼ 1 � L � ρred � ρgreen
�� ��
ρAVE

uses the average reflectance in the red, green, and near-infrared bands (ρAVE) to
normalize the spectral contrast between the red and green part of the spectrum; L is

an adjustment parameter to amplify the absolute difference between these bands.

The rationale behind the BSCI is that the red reflectance for biological soil crusts

will be much lower than those of bare sand, dry plant material, or photosynthetic

vegetation. Chen et al. (2005) demonstrated that the performance of the proposed

BSCI is limited to specific bounds, and that these can be substantially extended

when atmospherically corrected imagery is used. However, an important limitation

of the BSCI is that it must be applied under conditions where higher plants exhibit

no photosynthetic activity.

The BSCI had been developed for a specific crust type (with a dominance of

lichens) and it was therefore not surprising that transferring the index to a different

site in S-Africa was not successful (Weber et al. 2008). However, the availability of

hyperspectral imagery (CASI) with a spatial resolution of 1 m allowed the authors

to analyze the spectral information content of field-measured biocrust spectra in

more detail. Hyperspectral sensors can identify subtle spectral characteristics

related to the presence of chlorophyll, carotenoids, and phycobilins in biocrusts

(Rodrı́guez-Caballero et al. 2014). Weber et al. (2008) identified subtle but charac-

teristic differences within the absorption regions around 516 and 675 nm which

could be used to define a hyperspectral Continuum Removal Crust Identification

Algorithm (CRCIA). When applying this index to hyperspectral CASI data, it was

possible to map biological soil crusts as long as those covered more than approxi-

mately 30 % per pixel.

The importance of high spectral resolution has been acknowledged in several

studies (e.g., Hill et al. 1999; Pinet et al. 2006; Escribano et al. 2010), particularly

because additional diagnostic bands in the short-wave infrared region (due to the

presence of cellulose, lignin, and other organic components) may support discrimi-

nation between biocrusts and soils. Also Ustin et al. (2009) confirmed the important
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potential of hyperspectral imagery, since they could identify experimental treat-

ments of biological soil crusts as part of a long-term manipulative experiment.

However, it is important to understand that these treatments were applied to homo-

geneous plots, where the interaction with other materials was largely excluded.

More complicated is the identification when biocrusts are mixed with other soil

properties or higher plants. The CRCIA, for example, worked quite reliably also in

the presence of plant litter. However, it was observed that spectra of bare soil with

minor photosynthetic plant coverage (about 5–10 %) already closely resemble

certain types of biocrusts. This implies that biological crusts are almost impossible

to map when growing in the proximity of, or even below, photosynthetic shrubs.

For this reason an application of the CRCI algorithm on images with coarser spatial

resolution was considered critical, owing to increasing spectral mixing effects in the

visible and near-infrared (Weber et al. 2008). Similarly, important spectral features

of dry and woody plant material (cellulose, starch, etc.) in the 2–2.5 μmwavelength

range are also common to certain types of biocrusts. It should therefore not be

expected that the availability of hyperspectral data alone can resolve all spectral

ambiguities when biocrusts occur spatially mixed with desert plants in photo-

synthetic or non-photosynthetic states.

12.3.3 Biocrusts as an Element of Complex Spectral
Mixtures

In principle the work of Chen et al. (2005) and Weber et al. (2008) already

conceptualized the detection of biocrusts as a spectral mixing problem (where

biological soil crusts and a background consisting of bare sand, green, or dry

plant material and its shadow are main components of the composite reflectance).

However, instead of developing optimized spectral indices it might be appropriate

to adopt approaches for directly estimating the proportional abundance of materials

within an observed surface area. Spectral mixture analysis (SMA) has been advo-

cated as an efficient method to computationally decompose spectra into proportions

of pure spectral components (endmembers; e.g., Schowengerdt 1997; Smith

et al. 1990). In first approximation, spectral mixing is modeled as a linear combi-

nation of pure component (“endmember”) spectra:

ρi ¼
Xn

j¼1

Fj � ρEij þ εi

where ρi is the reflectance of the mixed spectrum in band i, ρEij is the reflectance of

the endmember spectrum j in band i, Fj denotes the abundance of endmember j, and
εi is the residual modeling error in band i.

Maps of endmember abundances Fj provide the convenience and inter-

comparability of standard land cover metrics (e.g., NDVI) while retaining benefits
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of physically based estimates, and they can be edited and recombined to produce

thematic maps. Hill et al. (2008), for example, could successfully demonstrate that

SMA was capable to differentiate between important surface materials (sand,

biocrusts, and mineral crusts with different silt/clay contents) on reflectance-

calibrated high-spatial-resolution true-color air photos after these had been strati-

fied into areas with and without higher plant coverage. When SMA was applied to

hyperspectral imagery, the analysis of mixing residuals (which usually indicate

components not represented by the set of endmembers) proved that, in addition to

the occurrence of biocrusts, also senescent and woody plants were an essential part

of the composite reflectance of the Nizzana dune system in Israel (Hill et al. 1999),

thereby confirming the results of Otterman (1996).

Recently, Rodrı́guez-Caballero et al. (2014) combined a support vector machine

classification of hyperspectral CASI data in five ground units (dominated by

principal surface components, such as bare soil, green, and dry vegetation, cyano-

bacteria, and lichen biocrusts) with an analysis of the SMA-derived abundance of

different crust types within these units. It was found that all SMA models with a

fixed number of spectral endmembers had limited performance (large root-mean-

squared modeling errors and/or substantial amounts of abundance estimates smaller

than 0 or larger than 100 %), independently of being applied either to the entire

image or to more homogeneous ground units. This represents a common problem

with linear SMA; it typically occurs when the number of spectral endmembers is

greater than the number actually required to unmix an individual pixel in the scene.

Material abundances predicted by linear SMA are therefore most accurate when

only those endmembers that comprise a given pixel are used. It has therefore been

suggested to replace simple SMA by efficient multiple endmember concepts which

include the automatic detection of required endmembers (e.g., Garcı́a-Haro

et al. 2005; Rogge et al. 2006). Correspondingly, the application of multiple

endmember SMA (MESMA) to pre-stratified ground units in the study of

Rodrı́guez-Caballero et al. (2014) helped to improve results substantially.

12.3.4 Temporal Variability

All methods referred to so far cannot fully resolve the fundamental problem that,

depending on the seasonal and short-term variability of phenological conditions,

biocrusts may adopt reflectance properties very similar to soils or higher plants of

steppe or desert ecosystems. The analysis of an exceptionally long observation

record (28 satellite images from two consecutive years) with corresponding field

data enabled Burgheimer et al. (2006a) to present a detailed analysis of the spectral

reflectance dynamics of cyanobacteria-dominated biocrusts and other ground fea-

tures in the northern Negev Desert in Israel (Burgheimer et al. 2006a). Although

both the photosynthetic activation of biocrusts and the growth of annual plants are

triggered by rainfall events during the winter period, it could be demonstrated that
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biocrusts and annuals (although spectrally similar) might become separable due to

different development rates: biocrusts are responding almost immediately to the

availability of water while the emergence of annual plants is slower. Spatial

separation of the two will thus depend on the availability of satellite observations

during the time span where biocrusts are photosynthetically active but annuals have

not yet reached a cover proportion high enough to mask the biocrust reflectance.

This period, however, is short (usually not more than 2 weeks) and requires the

availability of earth observation systems that combine suitably high spatial resolu-

tion with sufficiently high repetition rates. Such systems in principle exist (e.g., the

RapidEye, SPOT, and WorldView multi-satellite constellations), but their acqui-

sition management needs to efficiently cope with highly irregular rainfall and

diverse temperature regimes common to semiarid and arid ecosystems. The high

variability of different biocrust types (i.e., cyanobacteria-, lichen-, or moss-

dominated), which frequently will be found associated to or mixed with

each other, adds additional complications which render also the exploitation of

such multi-temporal observation schemes anything else than trivial.

12.4 Conclusion

Biocrusts are spectrally characterized by a chlorophyll a absorption feature at

~680 nm accompanied by spectral features varying between biocrust types, sub-

strates, and studies. Watering causes a rapid intensification of spectral character-

istics, whereas disturbance was observed to produce overall higher albedo and

flattened absorption features. Few studies showed that spectral indices may also

be used to draw conclusions on the photosynthetic potential of biocrusts, but here

further studies are needed to evaluate the overall explanatory power of

spectral data.

Improving the production of reliable maps of biocrust cover further depends on

the availability of imaging systems which provide not only adequate spatial and

spectral resolution but are also capable of collecting images sufficiently frequent.

Owing to the irregular rainfall regimes in global drylands, short repetition cycles

are required to provide observations within the unusually short phenological win-

dows when the spectral contrast between biocrusts and background components is

maximized.

This primarily qualifies airborne imaging or, alternatively, space systems which

build on multi-satellite constellations for implementing sufficiently dense repetition

rates, such as RapidEye (http://blackbridge.com/rapideye/), the SPOT-6/7 and

WorldView constellations (http://www.satimagingcorp.com/), and others. Since

2015 onwards the European Sentinel-2 satellite complements Landsat-8 OLI and

forms an additional, powerful EO constellation which covers the visible and near-

and short-wave infrared region at intermediate spatial resolution. Hyperspectral

information seems able to capture also the more subtle spectral variability of

biocrusts and vascular plants during the phenological cycle. Acquiring
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hyperspectral images at least twice a year is expected to further improve monitoring

capabilities. The German hyperspectral EnMAP mission scheduled for launch in

2018 (http://www.enmap.org/) will add important monitoring capacities.
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