
Chapter 11
Hierarchical Classification System
with Reject Option for Live Fish Recognition

Phoenix X. Huang

Abstract This chapter presents a Balance-Guaranteed Optimized Tree with Reject
option (BGOTR) for live fish recognition in a non-constrained environment. It recog-
nizes the top 15 common species of fish and detects new species in an unrestricted
natural environment recorded by underwater cameras. This system can assist ecolog-
ical surveillance research, e.g., obtaining fish population statistics from the open sea.
BGOTR is automatically constructed based on inter-class similarities. We apply a
Gaussian Mixture Model (GMM) and Bayes rule as a reject option after hierarchical
classification—we estimate the posterior probability of being a certain species and
then filter out less confident decisions. The proposed BGOTR-based hierarchical
classification method achieves significant improvements compared to state-of-the-
art techniques on a live fish image dataset of 24,150 manually labeled images from
the south Taiwan sea.

11.1 Introduction

Live fish recognition in the open sea has been investigated to help understand the
marine ecosystem, which is vital for studying the marine environments and pro-
moting commercial applications. This recognition task is fundamentally challenging
because of its complex situation where the illumination changes frequently. Prior
research is mainly restricted to constrained environments (fish in the tank or on a
conveyor system) or dead fish, and these machine vision systems have only explored
applications for a limited number of fish species. Thesemethods performworsewhen
they deal with unconstrained fish in a real-world underwater environment, especially
when the dataset is greatly imbalanced.
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In contrast, our work investigates novel techniques to perform effective live
fish recognition in an unrestricted natural environment and presents an application
of machine vision and learning for free swimming fish. This so-called Balance-
Guaranteed Optimized Tree with Reject option (BGOTR) system adopts a hierar-
chical classification that is based on inter-class similarities to improve the normal
hierarchical method and to integrate computer vision techniques and marine biolog-
ical knowledge. Multiclass classifier and feature selection are built together into a
hierarchical tree and optimized to maximize the classification accuracy of grouped
classes. BGOTRexploits a novel rejectionmechanism to re-classify samples that tend
to be confusable with other classes. Meanwhile, trajectory voting combines tempo-
ral information with the classification results so that majority results of the same
species are preserved while potential outliers produced by occasional illumination
changes or fish postures are eliminated. Conflicting decisions resulting from several
confusable species are effectively dealt with by voting using each fish detection that
appears in multiple frames of a video shot. The reject option after hierarchical clas-
sification is conducted by applying the Gaussian Mixture Model (GMM) method to
model the feature distribution of the training images. Low confidence decisions of
test samples are rejected so that a substantial proportion of classification errors and
new species are thrown out although a small number of correctly recognized fish are
also removed due to incorrect rejection. After forward sequential feature selection
and training each Support vector machine (SVM), Individual feature selection based
SVM (IFS-SVM) classifies each test sample by counting votes that are optimized
for every pair of specific classes. Tested on a manually labeled fish dataset of 24,150
images, which is the largest and most varied dataset used for fish species recogni-
tion, BGOTR demonstrates better accuracy averaged both by all images and by all
classes, compared with other previous research. This is the first time that the hierar-
chical classification method with reject option has been implemented in a live fish
recognition system. A figure of the whole recognition system is shown in Fig. 11.1.

Fig. 11.1 The fish recognition system, an overview framework
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11.2 Related Work

Traditionally, marine biologists have employed many tools to examine the appear-
ance and quantities of fish. For example, they cast nets to catch and recognize fish
in the ocean. They also dive to observe underwater environment, using photogra-
phy (Caley et al. 1996). Moreover, they combine net casting with acoustic (sonar)
(Brehmer et al. 2006). Nowadays, much more convenient tools are employed, such
as hand-held video filming devices. Embedded video cameras are also used to record
underwater animals (including insects, fish, etc.), and observe fish presence and
habits at different times (Nadarajan et al. 2011). This equipment has produced large
amounts of data, and it requires informatics technology like computer vision and
pattern recognition to analyze and query the videos. Statistics about specific oceanic
fish species distribution, besides an aggregate count of aquatic animals, can assist
biologists resolving issues ranging from food availability to predator-prey relation-
ships (Rova et al. 2007). Unlike the simple and constrained environments found in
the majority of previous work (e.g., fish tanks (Lee et al. 2004; Ruff et al. 1995),
conveyor belts (Strachan 1993), dead fish (Larsen et al. 2009)), we investigate the
recognition task of more fish species in a more complex and fundamentally challeng-
ing natural environment. We use underwater camera to record and recognize fish,
where the fish can move freely and the illumination levels change frequently both
locally from caustics arisen from the ocean surface waves and globally due to the
sun and cloud positions (Toh et al. 2009). Recently, Duan et al. (2012) used fine-
grained method to closely related categories like classify animal species by choosing
relevant local attributes. However, the fine-grained method requires high standard
about the quality of input images, which is not always met in our dataset. Instead,
we designed some species-specific features for fish recognition (e.g., white tail for
Chromis margaritifer, color stripe for Amphiprion clarkii).

In general, fish recognition is an application of multi-class classification. A com-
mon multi-class classifier could be considered as a flat classifier because it classifies
all classes at the same time (Carlos and Alex 2010). A critical drawback is that
it does not consider certain similarities among classes; these classes could be bet-
ter separated by specifically selected features. One solution is to integrate domain
knowledge and construct a tree to organize the classes hierarchically (Deng et al.
2010). This method, called hierarchical classification, has significant advantages by
grouping similar classes into certain subsets and selecting specific subsets of features
to distinguish them at a later stage (Gordon 1987). However, one problem of the hier-
archical classification method is error accumulation. Each level of the hierarchical
tree has some classification errors and these compounds as one goes deeper down
the tree. As a result, realistic applications usually require rejection to eliminate the
accumulated errors from hierarchical classification (Wang and Casasent 2009). In
fish recognition, especially when our database is extremely imbalanced, misclassi-
fied samples are passed into deeper layers and reduce the average accuracy of the
final recognition performance. Furthermore, false detections (e.g., non-fish objects,
blurred images) and fish from an unknown species are also input to the recognition
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process. We introduce rejection into hierarchical classification by calculating the
Bayesian posterior density. A GMM model is applied at the leaves of the hierarchi-
cal tree as the reject option. It evaluates the posterior probability of the test samples
and rejects low probability samples. Using a reject option produces a lower false
positive rate, but at the price of a slightly lower true positive rate due to incorrect
rejections.

11.3 Feature Extraction

We observe fish images from underwater telerecording streams. These fish images
record the illumination values (RGB) of pixels over the observing range. Unfortu-
nately, the appearance of the fish are not constant due to the various conditions of,
e.g., illuminations, reflections, shadows, etc. However, computers can only distin-
guish the fish from digital numeral data of extracted features. For example, in fish
recognition, some species of fish have specific colors, fin shapes, stripes or texture.
Computer vision techniques exploit these similarities, and present them by similar
feature density distributions.

This section describes the feature extraction methods that are implemented for
fish recognition in unconstrained circumstances since the quality of underwater video
streams affect the recognition accuracy by adding distortions and noise to the origi-
nal image. The pre-processing procedures are undertaken to improve the quality of
features, including a Grabcut method for better segmentation of the fish inside the
bounding box, a novel fish rotation algorithm to align the fish into the same direction.
Afterwards, we give the technical details about our feature extraction algorithms and
idiosyncratic fish descriptors. A combination of color, shape and texture properties
in different parts of the fish such as tail, head, top and bottom are extracted.

11.3.1 Image Pre-processing

The pre-processing is undertaken to improve the quality of features. Firstly, the
detection and tracking software described in Spampinato et al. (2014b) is used to
obtain the fish and mask images. Then the Grabcut algorithm (Rother et al. 2004) is
employed to segment fish from the background, similar to Edgington et al. (2006),
Cline and Edgington (2010)). Given prior information such as reference frame or
pre-label foreground area, the graph cut solution gives each pixel a weight between
foreground (source) and background (sink), and solves the segmentation problem
with aminimumcost cutmethod to divide the source from the sink. The solution finds
the global energy optimum. This approach converts an image processing problem
into a graph energy minimization problem, and there is a universal algorithm to
tackle the graph cut question. The optimization procedure is based on the similarity
between a pixel and its local neighbors. This method can overcome normal image
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distortion, such as additional noise and water reflection, which triggers segmentation
errors in other algorithms. We then add padding around the detected fish to ensure
that the whole fish is included. The padding may extend outside the input frame if
the fish is close to the edge of the frame. An example of a detected fish is provided
in Fig. 11.2, where most parts of the key feature (white tail) are preserved by the
segmentation algorithm.

After acquiring the fish bounding boxes, we align the fish images in the same
direction before further processing. We rotate their bodies by an estimated angle so
that fish from the same species are facing the same directions. Thereafter, we can
divide the fish into several parts and extracts specific features (e.g., focus on the
white tail part for Chromis margaritifer). The rotation angle is estimated by using
a heuristic method inspired by the streamline hypothesis that a fish’s head part is
smoother than its tail part because it needs a more frictional tail (caudal fin) to swim
and keep its body balanced. As a result, the centroid of the curvature value on the
fish contour is located on the tail part.

More specifically, the curvature value of each boundary pixel is defined as follows
(Mokhtarian and Suomela 1998; He and Yung 2004):

κ(u, σ ) = Xu(u, σ )Yuu(u, σ ) − Xuu(u, σ )Yu(u, σ )

(Xu(u, σ )2 + Yu(u, σ )2)
3
2

(11.1)

Fig. 11.2 An example of fish detection from a whole trajectory of Chromis margaritifer. This
species of fish has a noteworthy white tail. This feature is essential for discriminating it from other
species of fish, especially Dascyllus reticulatus. These images have successfully maintained most
parts of the white tails

Fig. 11.3 Fish orientation demonstration: a input image of Dascyllus reticulatus fish; b fish bound-
ary afterGaussian smoothing,with small spines eliminated sincewe are only interested in substantial
fluctuations; c curvature levels along fish boundary, where the x-axis is the index of pixels of the
contour starting from the top part of the fish and counting anti-clockwise, and the y-axis shows the
degree of curvature; d oriented fish image for further processing. This method helps to divide fish
in a constant way and extracts specific features (e.g., the white tail of Chromis margaritifer)
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where Xu(u, σ ), Xuu(u, σ ) and Yu(u, σ ), Yuu(u, σ ) are the first and the second deriv-
ative of X (u, σ ) and Y (u, σ ), respectively; X (u, σ ) and Y (u, σ ) are the convolution
result of 1-D Gaussian kernel function g(u, σ ) with fish boundary coordinates x(u)

and y(u). We fix σ so that κ depends only on u. A typical fish orientation procedure
is illustrated in Fig. 11.3. Considering the first image (Fig. 11.3a) as input, we first
smooth the contour image with a Gaussian filter to eliminate spines, which gener-
ate pulses in curvature and should be excluded since we only care about substantial
components (Fig. 11.3b). The degrees of curvature of fish contour are illustrated in
Fig. 11.3c, where the x-axis is the index of pixels of contour starting from the top
part of the fish and passing anti-clockwise and the y-axis stands for the curvature
degree. The curvature degree fluctuates more severely on the right side than on the
left since the curvature is concentrated at the rear half of the fish. In order to refine
the estimation of tail direction, we fit the fish boundary into an ellipse shape, and
then use the deflective angle for minor trimming. Figure11.3d shows the final result,
where the Dascyllus reticulatus is rotated horizontally and faces right. The fish ori-
entation method achieves 95% correct fish orientation ±15◦ using 1000 manually
labeled fish images.

11.3.2 Feature Extraction

The procedure of feature extraction is often considered as a black box in object
recognition applications. However, the quality of features is critical in the follow-
ing classification step. Feature engineering work aims at obtaining discriminative
characteristics of input data. In this section, we propose a set of effective low level
visual descriptors for fish images. We treat this as an incremental process, where
new features are designed to improve on the accuracy achieved by appropriate com-
binations of existing features. More specifically, we put all existing features into a
pool for selection, and the algorithm chooses the candidate features which maximize
the averaged classification accuracy over all species. Sixty nine types of feature are
extracted. These features are a combination of color, shape and texture properties in
different parts of the fish such as tail/head/top/bottom, as well as the whole fish. We
use normalized color histogram in the Red&Green channel and the Hue component
in HSV color space. These color features are normalized to minimize the effect of
illumination changes. In order to equalize the color histogram and create a more
uniform distribution for the whole dataset to maximize contrast, we calculate the
average distribution of the whole dataset and use it as the global probability function
for histogram equalization. We also introduce a set of new features which help dis-
tinguish fish species that tend to be misclassified, including projected color density,
tail/head and tail/body area ratios. These features are designed to integrate computer
vision techniques with marine knowledge. Those fish that have the same ancestors
share similar synapomorphic characteristics. They indicate the distinction between
species, for example, the presence or absence of components, specific number, and
so on. Some of these synapomorphic characteristics can be obtained from the video
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frame, mostly from the shape of the fish contour. Firstly, we exploit the projected
color density, which describes the color variations of fish body changes in both hor-
izontal and vertical directions and generates a density histogram by calculating the
mean value of color along the axis. This feature is useful for describing the signifi-
cant surface marks such as the colorful tail, stripes, and spots of fish. The mean and
standard deviation of the projected density are stored as idiosyncratic fish features.

In order to describe the fish texture, we calculate the Gray-Level Co-occurrence
Matrix (GLCM), Fourier descriptor and Gabor filter. The GLCM describes the co-
occurrence frequency of two gray scale pixels at a given distance d. The frequency is
calculated for four angles φ: 0◦, 45◦, 90◦, and 135◦. The offset distance ranges from 1
to 10.We computed theGLCM for themulti-spectral image and produced inter-plane
combinations of the co-occurrencematrixwhere six combinations (RR,RG,RB,GG,
GB, and BB) are concatenated. We compute 12 features of each normalized GLCM
introduced by Soh and Tsatsoulis (1999), Haralick et al. (1973): contrast, correlation,
energy, entropy, homogeneity, variance, inverse difference moment, cluster shade,
cluster prominence, maximum probability, auto-correlation, and dissimilarity.

Histogramof oriented gradients andMoment Invariants, aswell asAffineMoment
Invariants, are employed as the shape features. Furthermore, some specific features
like tail/head area ratio, tail/body area ratio, etc. are also included.

These descriptors are found to be effective. They are designed to integrate domain
knowledgewithmachine visionmethods and considered together as a pool for feature
selection in the classification step. This pool is incrementally constructed so that
additional features are designed and introduced after analyzing the experimental
results. As discussed before, we propose 69 groups of features (2626 dimensions)
to recognize fish. Example and more details are included in Huang (2014). These
features are a combination of the color, shape, and texture properties of different parts
of the fish such as the tail/head/top/bottom as well as the whole fish. All features are
normalized by subtracting the mean and dividing by the standard deviation (z-score
normalized after 5% outlier removal).

11.4 Fish Recognition

The Balance Guaranteed Optimized Tree with reject option (BGOTR) is based on
the inter-class similarity among fish species, and it groups similar classes at the upper
levels of the tree to distinguish them at a later stage. BGOTR is a recursive hierar-
chical structure using a multiclass decision (here using SVM) at each tree node. The
feature selectionmethod chooses particular subsets of features tomaximize the accu-
racy over all subsets at each node. Discussion of multiclass classifiers is presented
in this section, which compares the normal flat classifier approach to the hierarchi-
cal classification method. The latter method uses a divide and conquer strategy, and
organizes candidate classes into multiple levels. In a greatly imbalanced dataset, the
less common classes are grouped with other classes and this strategy helps ease the
imbalance of data. The hierarchical classification method also exploits the corre-
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lations between classes and finds similar groupings. Unlike biological hierarchical
classification methods like the taxonomy tree, which aims to systematize animals
into their pre-defined hierarchical categories, the BGOTR method chooses an opti-
mal binary split of the given classes at every node. It improves the normal hierarchical
method by arranging more accurate classifications at a higher level and keeping the
hierarchical tree balanced. The reject function evaluates the posterior probability of
the tested samples given the recognition result. This is a post-recognition step and
the rejection is independent of the recognition since it is applied only to the recog-
nition results. The “rejection” term targets the specific application scenarios of: (1)
eliminating false positives from the recognition results, and (2) eliminating samples
not belonging to the training classes. In the experimental section, we evaluate the
performance of our method on these two applications respectively.

11.4.1 The Balance Guaranteed Optimized Tree Method

A hierarchical classifier hhier is designed as a structured node set. Fundamentally, a
node is defined as a triple: Nodet = {IDt , F̃t , Ĉt}, where IDt is a unique node number,
F̃t ⊂ {f1, . . . , fm} is a feature subset chosen by a feature selection procedure that is
found to be effective for classifying Ĉt , which is a subset of classes and their groups.
We only consider binary splits (until the final layer), so each node has at most two
groups. All samples that are classified as the same group will be transmitted into
the same child node for later processing. An example with 15 classes is shown in
Fig. 11.4, where the IDt is illustrated in each node and Ĉt are the local groups. The
binary splitting process stops when each group has at most 4 classes (e.g., Node ID
4, 5, 6, 7) in order to limit the maximum depth of the tree and avoid overtraining. All
the leaf nodes are multiclass SVMs using the One-versus-One strategy.

Fig. 11.4 GMM for rejection post-processing for classes C1, . . ., C6 in hierarchical classification,
integrated with a BGOTR method



11 Hierarchical Classification System with Reject Option … 149

This hierarchical classification method is presented as an assembly of individual
multiclass classifiers. These classifiers are treated as tree nodes. At each node, there
are at least two groups of classes. We use the term “group” to indicate a super-class,
which includes several classes as a single item. In the following paragraph, we will
introduce our strategy to organize training classes into groups. Every child node
corresponds to a choice of group. During classification, every sample starts from the
root node at the top, and goes through the hierarchical architecture. At a non-leaf
node, the classification decision determines which group the test sample belongs to.
The sample is then passed to the corresponding child node for further classification.
The procedure continues until the test sample reaches a leaf nodewhose classification
result is a single class, instead of a group of classes.

To construct the hierarchical tree, we first aim at finding an optimal split of the
given classes at the current node by minimizing the mean misclassification rate
between the two child nodes. We search for all possible splits of the classes into
two nearly equal sets of classes. We also select the feature subset that achieves the
best accuracy for the given split, using forward sequential feature selection based
on grouped subset of features. This process is repeated for each child node. A well-
designed hierarchical tree can help improve the accuracy of some confusable classes
while suppressing the error accumulation. We propose two heuristics for how to
organize a single classifier and construct a hierarchical tree with higher accuracy.

1. Arrange more accurate classifications at a higher level and leave similar classes
to deeper layers.

2. Keep the hierarchical tree balanced to minimize the max-depth and control error
accumulation. Here we split the tree by equal number of classes, but one could
also use other splits, such as by equal a priori fish appearance probabilities, or
non-equal numbers of classes to minimizing error.

To help choose a good classifier for each level of the hierarchy, we tried the
Random Forests method (Breiman 2001) as an exploration on a small dataset of
7200 fish images of 15 fish species (Table11.1), when the full dataset of 241,500
images was still in progress. A Random Forest is made of a number of decision
trees with binary splits for classification. It predicts responses for new data with
the ensemble learned model. In our experiment on 15 species of fish, the Random
Forests method was implemented with 50 decision trees. Each tree was constructed

Table 11.1 Fish recognition exploration for choosing the most effective classifier

Method AR (%) AP (%) AC (%)

Random Decision Forests (Ho 1995) 0.772 0.662 0.914

Random Forests (Breiman 2001) 0.625 0.782 0.903

Ada-Boost (Liang et al. 2010) 0.753 0.769 0.923

SVM (Cortes and Vapnik 1995) 0.863 0.858 0.934

Average Recall (AR), Average Precision (AP), Accuracy by Count (AC) are introduced in the
experimental Sect. 11.5
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using 500 randomly selected features. This Random Forests method and another
popular method, Ada-Boost (Liang et al. 2010), were implemented to compare with
the multiclass SVM method, as an exploration to choose the appropriate classifier.
The experimental results demonstrated that the performance of the multiclass SVM
method was better than the Random Forests and Ada-Boost methods.

11.4.2 Trajectory Voting Method

In the view of a traditional fish recognition system, the classifier predicts fish species
according to individual images. Some classification errors occur due to varying illu-
mination arising either by the fish orientations or light field.Using the fish recognition
results from consecutive frames of the same trajectory helps eliminate these minor
errors and improves the overall accuracy.We have applied the image set classification
to the live fish recognition scenario in a non-constrained environment. This method
uses a set of observations to recognize test samples. The image set is from a video
sequence containing multiple images of the same target. In the literature concerning
the image set integration, there are mainly two categories of theories regarding the
underlying sequence of result integration: the early integration strategy and the late
integration strategy. The former method uses the observations to determine the sim-
ilarity between image sets, before matching. Shakhnarovich et al. (2002) consider
the features of multiple observations as a whole, and propose a classification based
on their distributions. On the other hand, the late integration strategy uses likeli-
hoods after matching. These likelihoods could be calculated either by product or by
maximizing of the individual decisions (Maron and Lozano-Pérez 1998; Zhang and
Goldman 2001; Yang et al. 2005).

In our live fish recognition system, we have applied the majority voting algo-
rithm to make use of the temporal information embedded in fish trajectories, and to
minimize the environmental influence. This is a late integration strategy. As all fish
are freely swimming in a varying illumination environment, the detected fish may
have different orientations and appearances. Therefore, the recognition results may
vary even for a fish in the same trajectory. A trajectory based winner-take-all voting
mechanism is applied after the individual classification. It combines the single frame
classification results. The trajectory voting method enhances the fish recognition
accuracy by exploiting the consistency in labels expected from tracking each fish
individually.

11.4.3 Gaussian Mixture Model For Reject Option

AGMM is employed to represent the hypothetical clusters of density distributions in
feature space because individual component Gaussian functions were not sufficient
to model the underlying characteristics of the given classes. For example, in fish
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recognition, some species of fish have specific colors, fin shapes, stripes or texture.
It is reasonable to assume that the extracted features represent the domain knowl-
edge and represent them by the density distributions. Each characteristic is expressed
both by the mean value μi and the covariance matrix Σi . The training procedure is
unsupervised (after assigning the training class), the GMM captures the prominent
density distributions and is not constrained by the label information. There are several
variables to be fit in this step, likeμi ,Σi . The ExpectationMaximization (EM) algo-
rithm (Shental et al. 2003), which is guaranteed to converge to a local maximum by
iteratively searching, is applied to optimize the Gaussian mixture model. Figueiredo
and Jain (2002) present an unsupervised learning algorithm to learn a proper mixture
model from multivariate data. It can automatically select the finite mixture model
by using the minimum message length (MML) with advantages compared to other
deterministic criteria, e.g., Bayesian Inference criterion (BIC), Minimum Descrip-
tion length (MDL): in particular, it is less sensitive to the initialization, and avoids
the boundary of the parameter space.

One difficulty for rejection in a hierarchical method is how to evaluate a probabil-
ity score based on the intermediate classification results at different layers. Instead
of integrating the result score along the path of the hierarchy, here a GMM model
is applied after the BGOTR classification to implement the reject option (Fig. 11.4).
The GMM model is trained by a subset of features by using the forward sequential
selection method. For each BGOTR result, the final P(C | x) for that input is esti-
mated according to the GMM likelihood score. More specifically, the rejection uses
the posterior probability for the predicted class Ci giving evidence X :

p(Ci | X) = p(Ci )p(X | Ci )

p(X)
= p(Ci )p(X | Ci )

∑
j p(C j )p(X | C j )

(11.2)

where the prior knowledge p(Ci ) is calculated from the training samples. The fea-
tures used for training the GMM are the same as for BGOTR but a different subset
was selected (using the same feature selection criteria). In Chib (1995), Chib and
Siddhartha express the marginal density as the prior times the likelihood function
over the posterior density. They found comparable performance of the marginal like-

Fig. 11.5 a Distribution of posterior probability of the training samples of species Chromis chry-
sura. bDistribution of posterior probability of test sample True Positives. c Distribution of posterior
probability of test sample False Positives. See text for details
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lihood with an estimation of the posterior density. Since we address the improvement
of rejection in hierarchical classification, we also calculate the posterior density of
the testing samples by Bayes rule. For each sample with evidence X and BGOTR
prediction Ci , we calculate its posterior probability P(Ci | X) from Eq.11.2 and set
a small threshold (i.e., 0.01) to reject all samples whose posterior probabilities are
below the threshold. Figure11.5 illustrates the distribution of the posterior probability
p(Ci | X) of all samples that are classified as species Chromis chrysura. These sam-
ples are either correctly classified (True Positives, Fig. 11.5b) or misclassified (False
Positives, Fig. 11.5c). The distribution of the posterior probability of False Positives
(as shown in Fig. 11.5c) has a peak distribution (about 38%) around the value of zero
while most of the True Positives have higher posterior probability (Fig. 11.5b). The
difference between these two distributions is exploited to distinguish False Positives.
This algorithm rejects a substantial portion of the misclassified samples with the cost
of also rejecting a small proportion of True Positives (see experiment section for
details).

11.5 Fish Recognition Experiments

Our data is acquired from a live fish dataset of the 15 different species shown in
Fig. 11.6. This figure shows the fish species name and the numbers of observations
and trajectories in the ground-truth. The data is very imbalanced, where the most
frequent species is about 500 times more common than the least one. Note, the
images shown here are ideal images as many of the others in the database are a bit
blurred, and have fish at different distances and orientations or are against coral or
ocean floor backgrounds.

All fish are manually labeled by following instructions from marine biologists
(Boom et al. 2012). The labeling work was supported by a clustering method. Then,
three users checked and cleared the clustering results. The final annotation work was
confirmed by two marine biologists. In our experiment, the training and testing sets
are isolated so fish images from the same trajectory sequence are not used during
both training and testing. We use the pre-processing and feature extraction methods
presented in the previous section.

11.5.1 Fish Recognition Experiments Using Ground Truth
Data

We use the BGOTR method for fish recognition. Both flat SVM and hierarchical
methods are explored. Both linear and non-linear kernel methods are tested. Based
on the multi-class classifier, we designed four other classifiers:

1. A multiclass 1v1 flat SVM classifier, which classifies all 15 classes simultane-
ously, is implemented as a baseline classifier. Forward sequential feature selection
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Fig. 11.6 Top 15 species of fish in underwater videos, with the number of observations and trajec-
tories in the ground-truth. All in all, there are 24,150 observations and 8069 trajectories

is applied (named flatSVM-fs) to do greedy selection of the features to maximize
the average recall among all classes.

2. The Principal Component Analysis (PCA) algorithm is also implemented as a
baseline method for feature selection and classification. It uses singular value
decomposition (SVD) to reduce the feature dimensions and we preserve 98% of
the principal component variance (up to 583 dimensions). The processed features
are then classified by a 15-class SVM classifier.

3. The Lasso (L1-constrained fitting) algorithm (Tibshirani 1996) is a shrinkage and
selection method (Zou and Hastie 2005) for linear regression. It minimizes the
usual sum of squared errors, with a bound on the sum of the absolute values of the
coefficients. In our experiment, it is implemented as a wrapper procedure using
the scoring function of feature subset. We select features such that the MSE is
within one standard error of the minimum (up to 763 dimensions). The selected
features are then classified by a 15-class SVM classifier.
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4. A classical classification and regression tree method (CART (Hastie et al. 2001))
is provided as another automatically generated hierarchical decision tree to be
compared with. It starts with a single node, and then looks for the binary distinc-
tion which gives the most information about the class. The generating process
continues until it reaches the stopping criterion.

5. A taxonomy tree is constructed according to the fish species taxonomy. This
tree is pre-defined. It reflects the homologous similarity between species. All the
15 species of fish belong to the Actinopterygii class (ray-finned fishes), but in
different orders, families and genus. This tree splits all classes into 9 groups at
the first level according to their family synapomorphies characteristic and leaves
a few similar species to deeper layers where the customized multiclass 1v1 SVM
classifier is trained.

6. An automatically generated tree (BGOTR) is designed by recursively choosing a
binary split which has the best accuracy over the given classes. Forward sequential
feature selection (FSFS) is applied in the BGOTR method to select effective
subsets of features at each node of the hierarchical tree and the goal of feature
selection is to maximize the average accuracy among all classes, which enhances
the weight of less common classes. Feature selection typically selects about 300
of the features at each node.

The experiment is based on 24,150 fish images with a 5-fold cross validation
procedure with a leave- 15 -out strategy. The training and testing sets are isolated so
fish images from the same trajectory sequence are not used during both training
and testing. We applied the majority voting algorithm to make use of the temporal
information.

Results for the 5 algorithms are listed in Table11.2 where the AR and AP are
recall/precision averaged over all classes rather than over all fish. This is because
of the greatly unbalanced class sizes. Three performance metrics are employed to
evaluate the accuracy of the proposed system. The first metric is Average Recall
(AR, or Macro-Averaged Recall) over all species. It describes on average how many
fish are correctly recognized for each species. This score is more important to our
experiment because of the imbalance in the classes. The second score is Average
Precision (AP, or Macro-Averaged Precision) over all species. It is the probability
that the classification results are relevant to the specified species. The third metric is
the accuracy over all samples (Accuracy over Count, AC, or Micro-Average Recall),
which is defined as the proportion of correct classified samples among the whole
dataset.

We compare the hierarchical classification against the linear SVMclassifier (AR=
76.9%). Other non-linear flat SVMmethods (polynomial, radial basis function, sig-
moid function) are also included but their performances are worse than the linear
SVM method. PCA is a popular algorithm to reduce feature dimensions. We apply
it before an SVM and achieve almost the same score (AR = 77.7%). In the seventh
row, feature selection before use in a SVM produces slightly better results (AR =
78.4%) than the flat SVM using all features. The CART algorithm has the lowest AR
(53.6%) among all three hierarchical methods. The taxonomymethodology achieves
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Table 11.2 Fish recognition results

Method AR (%) AP (%) AC (%)

SVM (linear) 76.9 ± 4.6 88.5 ± 3.6 95.7 ± 0.5

SVM (polynomial) 61.8 ± 5.0 86.0 ± 7.0 93.0 ± 0.4

SVM (RBF kernel) 70.4 ± 5.6 87.8 ± 6.7 96.0 ± 0.6

SVM (sigmoid) 62.3 ± 5.8 77.1 ± 7.2 85.9 ± 1.0

Lasso 76.6 ± 4.7 85.4 ± 3.3 95.4 ± 0.5

PCA (98%) 77.7 ± 3.8 88.9 ± 4.1 95.4 ± 0.4

flatSVM-fs 78.4 ± 3.7 88.0 ± 5.5 95.9 ± 0.4

CART (Hastie et al. 2001) 53.6 ± 5.1 52.9 ± 4.6 87.0 ± 0.7

Taxonomy 76.1 ± 5.2 87.2 ± 6.7 95.3 ± 0.4

BGOTR 84.8* ± 3.9 91.4 ± 2.8 97.5* ± 0.6

We add the standard deviation of AR/AP/AC over 5-fold cross validation. * means the score is a
significant improvement over other methods at 95% confidence level

a better AR of 76.1% than CART but is worse than the automatically generated hier-
archical tree (84.8%) which chooses the best splitting by exhaustively searching
all possible combinations while remaining balanced. The BGOTR method without
node rejection has a lower performance (80.1% in AR). Most algorithms achieve
high AC score, but this is because the classes are very unbalanced. For example, to
simply label all fish as class 1 already achieves an AC = 50.4%. These experimental
results demonstrate that reject option has significantly improved the fish recognition
performance where comparing to other state-of-the-art techniques, more details are
included in Huang et al. (2014).

11.5.2 BGOTR Application to New Real Fish Videos

Our fish recognition system depends on the detection results. Due to the complex
environment (e.g., light distortion, fish occlusions and illumination transformation),
the fish detection algorithm produces errors that are input to the classification proce-
dure and cause unexpected recognition results. The previous experiments are evalu-
ated on a “clean” dataset where all tested images are valid fish from either known or
unknown species. However, in real applications, the acquired data may contain false
detections, e.g., blurred images, occlusion by other fish or background objects, non-
fish objects (coral, sea flowers, etc.). Some examples of false detections are shown in
Fig. 11.7. In this section we experimentally evaluate how many false detections our
BGOTR system can reject while preserving the valid ones. We chose 3 underwater
videos and have labeled 1000 detections from each video.

The recognition results are shown in Tables11.3 and 11.4. We use BGOTR to
classify the test images and calculate the Average Recall (AR, macro recall) and
Averaged Precision (AP, macro precision) among all 15 species. The AR score
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Fig. 11.7 Invalid fish images, chosen from 3 underwater videos. In a normal classifier without a
reject option, these imageswould be classified and cause unexpected results. Our rejection algorithm
aims at eliminating them while preserving most valid fish images

Table 11.3 Experiment result for real videos

ID Average Recall (AR) Averaged Precision (AP)

Video1 0.815 0.412

Video2 0.804 0.448

Video3 0.725 0.557

Average 0.781 0.472

In each video we select the first 1000 detections and manually label all samples

Table 11.4 Experiment of rejection result in real videos

ID True detections False detections Rejections TR FR

Video1 308 692 390 378 12

Video2 148 852 734 705 29

Video3 513 487 380 312 68

Average 323 677 501 465 36

TR = True Rejection, FR = False Rejection

demonstrates that the BGOTR method recognizes about 78% of the real, untrained
valid fish images correctly. The test images include many invalid detections (692,
892, 487, respectively). The BGOTR method filters more than half of these false
detections (378, 705, 312, respectively) while it retains most of the valid inputs.
Some false detections are not rejected and these inputs lower the average precision
score (c. 47%).

11.6 Conclusion

Live fish recognition in the open sea is fundamentally challenging because of a com-
plex situation where the illumination changes frequently. Prior research is mainly
restricted to constrained environments (fish in the tank or on a conveyor system) or
dead fish. None of these methods works because of the unconstrained environment
and imbalanced dataset. In this chapter, we presented a novel Balance-Guaranteed
Optimized Tree (BGOTR) classifier for live fish recognition in a non-constrained
environment.Although hierarchical classification iswidely applied inmachine vision
applications, BGOTR improves the normal hierarchical method by two heuristics for
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how to organize a single classifier and construct a hierarchical tree with higher accu-
racy. After constructing the tree architecture, a novel trajectory voting method is
used to eliminate accumulated errors during hierarchical classification and achieves
better performance. The novel rejection system enhances the hierarchical classifi-
cation algorithm as applied for fish species recognition. We apply a GMM model
at the leaves of the hierarchical tree as a reject option. We use feature selection to
select a subset of effective features that distinguishes the samples of a given class
from others. After learning the mixture models, the reject function is integrated with
a BGOTR hierarchical method. It evaluates the posterior probability of the testing
samples and reduces the false positive rate, since some misclassification errors in
the BGOTR classifier can be overcome at the price of a slightly lower true positive
rate due to incorrect rejections. The experimental results demonstrate that the auto-
matically generated hierarchical tree achieves c. 6% improvement of the average
recall (AR) and c. 3% improvement of the average precision (AP) compared to the
flat SVM and other hierarchical classifiers (Table11.2). More detailed information
is included in Huang et al. (2012, 2014), Huang (2014).
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